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Preface

Arithmetic is where numbers run across your mind looking for the answer.

Arithmetic is like numbers spinning in your head faster and faster until you blow up with the
answer.

KABOOM!!

Then you sit back down and begin the next problem.

(Alexander Nathanson)

Number theory is an ancient subject, but we till cannot answer many smplest and most natural
guestions about the integers. Some old problems have been solved, but more arise. All the research
for these ancient or new problems implicated and are ill promoting the development of number
theory and mathematics.

American-Romanian number theorist Florentin Smarandache introduced hundreds of interest
sequences and arithmetical functions, and presented many problems and conjectures in his life. In
1991, he published a book named Only problems, Not solutions!. He presented 105 unsolved
arithmetical problems and conjectures about these functions and sequences in it.  Already many
researchers studied these sequences and functions from his book, and obtained important results.

This book, Research on Smarandache Problems in Number Theory (Collected papers), contains 41
research papers involving the Smarandache sequences, functions, or problems and conjectures on
them.

All these papers are original. Some of them treat the mean value or hybrid mean value of
Smarandache type functions, like the famous Smarandache function, Smarandache cell function, or
Smarandache primitive function. Others treat the mean vaue of some famous number theoretic
functions acting on the Smarandache sequences, like k-th root sequence, k-th complement sequence,
or factorial part sequence, etc. There are papers that study the convergent property of some infinite
series involving the Smarandache type sequences. Some of these sequences have been first
investigated too. In addition, new sequences as additive complement sequences are first studied in
severa papers of this book.

Most authors of these papers are my students. After this chance, | hope they will be more interested
in the mysterious integer and number theory!

All the papers are supported by the N. S. F. of P. R. China (10271093). So | would like to thank the
Department of Mathematical and Physical Sciencesof N. S. F. C.



| would aso like to thank my students Xu Zhefeng and Zhang Xiaobeng for their careful typeset
and design works. My specid gratitude is due to al contributors of this book for their great help to
the publication of their papers and their detailed comments and corrections.

More future papers by my students will focus on the Smarandache notions, such as sequences,
functions, constants, numbers, continued fractions, infinite products, series, etc. in number theory!

August 10, 2004

Zhang Wenpeng



AN ARITHMETIC FUNCTION AND THE PRIMITIVE
NUMBER OF POWER P

Zhang Wenpeng

Research Center for Basic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
wpzhang@nwu.edu.cn

Abstract For any fixed prime p, we define

Sp(n)=m, if p"|m! and p"f(m-—1),

ap(n)=m, if p™|n and p™t'in.

The main purpose of this paper is to study the mean value properties of a,(Sp(n)),
and give an interesting asymptotic formula for it.

Keywords:  Primitive number; Mean value; Asymptotic formula.

§1. Introduction

Let p be a prime, n be any positive integer, we define two arithmetic func-
tions as following:

Sp(n) =m, if p"|m! and p"{(m-—1),
ap(n) =m, if p™|n and P tn.
In problem 49 and 68 of reference [1], Professor F.Smarandache asked us to
study the properties of these two arithmetic functions. About these problem:s,
many scholars showed great interests in them (See references [2], [3]). But it
seems that no one knows the relationship between these two arithmetic func-
tions before. In this paper, we shall use the elementary methods to study the
mean value properties of a,(Sp(n)), and give an interesting asymptotic for-
mula for it. That is , we shall prove the following conclusion:

Theorem. For any fixed prime p and any real number x > 1, we have the
asymptotic formula

p+1

Z ap(Sp(n)) = Wﬂﬂ +0 (ln3 x) .

n<zx

Taking p = 2, 3 in the theorem, we may immediately obtain the following
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Corollary. For any real number © > 1, we have the asymptotic formula

> as(8s(n)) =3z + 0 (I’ z),

n<z

3 a3(S3(n)) =2+ 0 (1n3 :c) .

n<z

§2. One simple lemma

To complete the proof of the theorem, we need the following simple lemma:
Lemma. For any fixed prime p and real number x > 1, we have

2 2

« + T
Z—a:pip?,JFO(—x)-
et (=1) p

Proof. First we come to calculate

Note that the identities

1 LAY LAY
“(1__) - Z—Q—Zpaﬂ

p a=1 p a=1
1 (a+1)2—a?
= 1_) n+1 + Z a+1
1 n? Y20 +1
= ]_7 - pn—l—l ‘ pa—i—l ?
o=
and
1\? 1 n? 2+ 1 1
uil-- =\, pntt Z at1 1--
p p p a1 p
1 1 n2—n? "1oa+1 " 20 —1
- 5_ P + pnt2 Zl potl 22 patl
o= o=
1.2 nf-n? nl o2 n? —n?p—(2n—1)p
= -+ n2 + n-+2 Z a+1 + n-+2
p p p a— P p
1 2"t =1 n?—(nP+2n-1)
- 1_) + pn—l—l —pn pn—|—2

So we have

u = <1+2(pn_1—1)+n2—(n2+2n—1)p)( 1

P pn—|—1 _ pn pn—|—2
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P N 2(pp" 1t —1) N n? —(n?+2n—1)p
(p—12  pr2(p—1)3 p"(p —1)?

Then we can immediately obtain

o _ _p 2p z?
Z - <p—1)2+<p—1)3+0<pw>

This completes the proof of the Lemma.

§3. Proof of the Theorem

In this section, we shall use the above Lemma to complete the proof of the
Theorem. From the definition of S, (n) and a,(n), we may immediately get

> ap(Sp(n))

n<zx

= Y o'= ) o'=3a 3 1
m<z 2m <z p*<r  m<z/p>
p*|lm (p,m) 1 (p;m)=1

= 2 ) > ud

p*<z  m<z/p* d|(mp)

- YY) ¥

p*<z dlp t<z/p*

ST ORE

o<y t<z/p* t<z/patl

- Y (i_paﬁl +oa ))

(8%
p*<z p

gt g A5

o
a<ln$/lnpp a<lnz/Inp a<lnz/lnp

) Lo (10 2)

a<lnz/lnp p*

(1-
— ( )(p +1§)3+0<¥>>$+O(ln3x)

= (5j11)2x+0 (ln?’x) .

This completes the proof of the Theorem.
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ON THE PRIMITIVE NUMBERS OF POWER P AND
K-POWER ROOTS

Yi Yuan

Research Center for Basic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China
yiyuan74@163.com

Liang Fangchi
School of Science, Air Force Engineering University, Xi’an, Shaanxi, P.R.China
fc-liang@163.com

Abstract Let p be a prime, n be any positive integer, Sp(n) denotes the smallest integer
m € NT, where p"|m!. In this paper, we study the mean value properties
of Sp(an), where a,, is the superior integer part of k-power roots, and give an
interesting asymptotic formula for it.

Keywords:  Primitive numbers of power p; k-power roots; Asymptotic formula.

§1. Introduction and results

Let p be a prime, n be any positive integer, Sp(n) denotes the smallest
integer such that Sj,(n)! is divisible by p™. For example, S3(1) = 3, S3(2) =
6, S3(3) =9, S3(4) =9, ------ . In problem 49 of book [1], Professor F.
Smarandache ask us to study the properties of the sequence {S,(n)}. About
this problem, Professor Zhang and Liu in [2] have studied it and obtained an
interesting asymptotic formula. That is, for any fixed prime p and any positive
integer n,

Sp(n) =p@P—-1)n+0 (%-lnn).

For any fixed positive intger k, let a,, denotes the superior integer part of k-
power roots, thatis,a; = 1,---,a9x_1 = 1,a9x = 2, - - -. In problem 80 of book
[1], Professor F. Smarandache ask us to study the properties of the sequence
an. About this problem, the author of [3] have studied it and obtained an
interesting asymptotic formula. That is, for any real number z > 1,

%Q(an) = %wlnlnx#— %(A—lnk) x4+ 0 (ﬁ) ,
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where €(n) denotes the numbers of all prime divisor of nn, A be a computable
constant.

In this paper, we will use the elementary method to study the asymptotic
properties of Sy (a,,) in the following form:

) % Sp(ans1) — Splan)],

n<lz

where z be a positive real number, and give an interesting asymptotic formula
for it. In fact, we shall prove the following result:

Theorem. For any real number x > 2, let p be a prime and n be any
positive integer. Then we have the asymptotic formula

5 2 ISplanis) = Splan) =5t - (1= ) +.0x (7).

n<z

where Oy, denotes the O-constant depending only on parameter k.

§2. Proof of the Theorem

In this section, we shall complete the proof of the theorem. First we need
following one simple Lemma. That is,
Lemma. Let p be a prime and n be any positive integer, then we have

B _ [ p, ip"|m}
|Sp(n +1) Sp(’ﬂ)‘ - { 0, otherwise,

where Sy(n) = m, p" || m! denotes that p"|m! and p" ' {m!.

Proof. Now we will discuss it in two cases.

(i) Let Sp(n) = m, if p* || m!, then we have p™|m! and p" ' {m!. From the
definition of Sj(n) we have p"*1t(m + 1)}, p" 1 (m + 2)!, - -+, p" T (m +
p — 1)l and p"*1{(m + p)!, so Sp(n + 1) = m + p, then we get

[Sp(n + 1) = Sp(n)| = p. ey

(i3) Let Sp(n) = m, if p™|m! and p"!|m!, then we have S,(n + 1) = m,
)

|Sp(n + 1) = Sp(n)| = 0. (2)
Combining (1) and (2), we can easily get
_ [ p, ifp" | mh
[Sp(n +1) = Sp(n)| = { 0, otherwise.

This completes the proof of Lemma.
Now we use above Lemma to complete the proof of Theorem. For any real
number z > 2, let M be a fixed positive integer such that M* < z < (M +1)*,
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then from the definition of S,(n) and the Lemma we have

1
Y~ |Sp(ant1) — Sp(an)] 3)
ngmp
M-1 1
= X > 1Sp(ans1) = Sylan)|
t=1 \th<n<(erip—1 P
1
+ Y = 1Sp(ant1) — Splan)]
MkE<n<zx
M-l 1
= Z —|Sp(t +1) = Sp(t)] + Z —[Sp(ant1) — Splan)|
=1 P M’angwp
M1,
= Z - |Sp(t + 1) - Sp(t)|
=1 P
= z 1+0(Q1). 4)
tgzc%
pt||m!

where Sp(t) = m. Note that if p* || ml, then we have (see reference [4],
Theorem 1.7.2)

- Bzl

=1 1<log, m 4
1
= m-: Z —Z.—I—O(logpm)
1<log, m
1
= 240 (ﬂ) . 5)
p—1 Inp
From (4), we can deduce that
Int
mz(p—1)t+0(’i). ©6)
Inp

So that

plnzx
Inp

1§m§(p—1)-x%+0k< ), if 1§t§x%.

Note that for any fixed positive integer ¢, if there has one m such that p? || m!,
then p? || (m + 1), p* || (m +2)!, ---, p* || (m + p — 1)!. Hence there have p
[e.°]

times of m such thatt = ) [1%] in the interval
i=1

1
1§m§(p—1)-ac%—|—01c (p nm).
Inp
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Then from this and (3), we have

) }3 1Sp(ani1) — Splan)]
n<z
= > 1+0()

1
t<zk
pt||m!

= (=12t +0, (B2 +oq)

= l'%(l—l)—FOk(ln—x)
P Inp

This completes the proof of Theorem.
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MEAN VALUE ON THE PSEUDO-SMARANDACHE
SQUAREFREE FUNCTION

Liu Huaning
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Gao Jing
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Abstract For any positive integer n, the pseudo-Smarandache squarefree function ZW (n)
is defined as the least positive integer m such that m™ is divisible by n. In this
paper, we study the mean value of ZW (n), and give a few asymptotic formulae.

Keywords:  Pseudo-Smarandache squarefree function; Mean value; Asymptotic formula.

§1. Introduction

According to [1], the pseudo-Smarandache squarefree function ZW(n) is
defined as the least positive integer m such that m" is divisible by n. It is
obvious that ZW (1) = 1. For n > 1, Maohua Le [1] obtained that

ZW (n) = p1p2- - P, (D

where p1, pa, - - -, pi are distinct prime divisors of n. Also he showed that

= 1
> 0, a€R, a>0
= (ZW(n))
is divergence.

In this paper, we study the mean value of ZW (n), and give a few asymptotic
formulae. That is, we shall prove the following:

Theorem 1. For any real numbers «, s with s—a > 1 and a > 0, we have

i": ZWe(n)  ((s)((s —a) I [1 1 ] ,

n®  ((2s—2a) Pt

n=1
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where ((8) is the Riemann zeta function, H denotes the product over all prime

D
numbers.

Theorem 2. For any real numbers o > 0 and x > 1, we have

a ((a+ 1)zt 1 atlie
> zw (n)zmn[l—m]—l-O(z +2+).

n<z

Noting that Z ZW%n) =z +0(1)and lim al(a+1) =1, so from

+
n<z a—0

Theorem 2 we immediately have the limit
1 1
lim — 1——— ) =((2).
ag](r)l+al;[< pa(p—l-l)) ¢2)
§2. Proof of the theorems

Now we prove the theorems. For any real numbers «, s with s —a > 1 and
a >0, let

r) =y 20,
n=1

From (1) and the Euler product formula [2] we have

1) = 1;[[1+Z—j+§—;+“']:1;[ 1+1i]
1
- 7|(557) ()
%H{l_psipa]'

This proves Theorem 1.
For any real numbers e > 0 and z > 1, it is obvious that

* ZW(n) 1
VA <n® d
ZWewl<nt ad 30 <

where o is the real part of s. So by Perron formula [3] we can get

ZW*(n) 1 /’H‘iT z* °B(b+ o9)
27\ = iy | 220790
Z nso 278 Jo—iT F(s+s0) s s+0 T

+0 (a:l_UOH(ZT) min (1, loix))

+0 (x“OH(N) min (1, ﬁ)) ,

n<z
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where N is the nearest integer to z, and ||z|| = |z — N|. Taking so = 0,
b=a+ % and T > 2 in the above, then we have

S

. 1 [oti+iT z 7ot5
S ZWe(n) —/(1+%—iT f(s)?ds+0< . )

<t 211

Now we move the integral line from o + % +iT to o + % —¢7". This time,

the function
.,L,S

f(S):

have a simple pole point at s = a + 1 with residue

C(a+ 1)zt I [1 1 ]
(@)(a+1) 5 pr(p+1)]
Now taking T' = x, then we have

C(a+ 1)zt [1_ 1 ]
(@) (a+1) p*(p+1)

1 a+itiz s
b= [ He) s 4 0 ()
S

278 Jat % —iz

> ZWe(n) =

n<zx

S I

- (@(a+1) p+1)
+0 (/x f(a+%+e+z‘x) %dt)—l—O(mO‘"'%"‘e)

C(a+1)zott [1 B 1
(@)(a+1) p*(p+1)

] +0 (xa—l—%—l—e) .
This completes the proof of Theorem 2.
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ON THE ADDITIVE K-TH POWER COMPLEMENTS

Xu Zhefeng
Department of Mthematics, Northwest University, Xi’an, Shaanxi, P.R.China

zfxu@eyou.com

Abstract In this paper, similar to the Smarandache k-th power complements, we defined
the additive k-th power complements. Using the elementary method, we study
the mean value properties of the additive square complements, and give some
interesting asymptotic formulae.

Keywords:  Additive k-th power complements; Mean value; Asymptotic formula.

1. Introduction

For any positive integer n, the Smarandache k-th power complements b (n)
is the smallest positive integer such that nby(n) is a complete k-th power, see
problem 29 of [1]. Similar to the Smarandache k-th power complements, we
define the additive k-th power complements ax(n) as follows: ay(n) is the
smallest nonnegative integer such that agx(n) + n is a complete k-th power.
For example, if k& = 2, we have the additive square complements sequence
{a2(n)} (n =1,2,---)asfollows: 0,2,1,0,4,3,2,1,0,6,5,4, 3,2,1,0,7,- - .
In this paper, we stdudy the mean value properties of ag(n) and d(ax(n)),
where d(n) is the Dirichlet divisor function, and give several interesting asymp-
totic formulae. That is, we shall prove the following conclusion:

Theorem 1. For any real number x > 3, we have the asymptotic formula

2
Z ag(n) = 4kk_ QxZ_% +0 (:cQ_%) .

n<z

Theorem 2. For any real number x > 3, we have the asymptotic formula

Z d(ag(n)) = (1 - %) zlnz+ (2fy—l—lnk -2+ %) z+0 (:vk% lnx) )

where vy is the Euler constant.

§2. Some lemmas

Before the proof of the theorems, some lemmas will be usefull.
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Lemma 1. For any real number x > 3, we have the asymptotic formula:
Z diz)=zlnz+ 2y -1z + 0 (m%) ,
n<zx

where vy is the Euler constant.

Proof. See reference [2].

Lemma 2. For any real number x > 3 and any nonnegative arithmetical
Sfunction f(n) with f(0) = 0, we have the asymptotic formula:

I::c%:lfl
Yo flam)= > Y fm+0| Y fln)],

RS )

where [x] denotes the greatest integer less than or equal to x and g(t) =

k=1, _
Zl ( . )tl.
1=
Proof. For any real number z > 1, let M be a fixed positive integer such
that

MF <z < (M+1)k
Noting that if n pass through the integers in the interval [t’“, (t+ l)k), then

ay(n) pass through the integers in the inteval [O, (t+ 1)k —tk — 1] and f(0) =
0, we can write

> flar(n)) = flae@®)+ D flak(n))
n<z t=1 th<n<(t+1)k Mk<n<g
M-1
= f(n)+ > f(n),
t=1 n<g(t) 9(M)+M*k —z<n<g(M)
k=1, . )
where g(t) = ( 1 ) t*. Since M = [mﬁ], so we have
i=1

This proves Lemma 2.
Note: This Lemma is very usefull. Because if we have the mean value for-
mula of f(n), then from this lemma, we can easily get the mean value formula

of ) f(ak(n)).

n<z
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§3. Proof of the theorems

In this section, we will complete the proof of the theorems. First we prove
Theorem 1. From Lemma 1 and the Euler summation formula (See [3]), let

f(n) = n, we have
B!

Zak(n) = n+ 0 Z n

n<o =1 n<g(t) E)
[ﬁ]q
1 B 2
=3 X k242 2—|—O<x2 k)
- 4kki2 0 (a7

This proves Theorem 1.
Now we prove Theorem 2. From Lemma 1 and Lemma 2, we have

> d(ax(n))

n<z

I:m%]—l
= ) > dn)+0 > d(n)
s es([4))

[ |

= 2 (kt’“ (ln Et* ! +1n (1 +0 (Z)))

+(2y — 1)ktk71) +0 (:vl*% lnx)

= (k(k = 1)t Int + (29 + Ink — 1)kth !

+O(t*2)) + 0 (s' % Inz)

[w%]fl [m%]fl
= k(k—1) > t*'nt+@y+mk-1k > F!
t=1 t=1

+0 (xl_% lnx) .

Then from the Euler summation formula, we can easily get

Z d(ax(n)) = (1 - %) rlnz+ (2’)’+lnk -2+ %) z+0 (xk% lnx) .

n<z
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This completes the proof of the theorems.
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Abstract The main purpose of this paper is to study the mean value properties of the
Smarandache pseudo-multiples of 5 number sequence, and give an interesting
asymptotic formula for it.

Keywords:  Pseudo-multiples of 5 numbers; Mean value; Asymptotic formula.

§1. Introduction

A number is a pseudo-multiple of 5 if some permutation of its digits is a
multiple of 5, including the identity permutation. For example: 0,5, 10, 15,
20, 25, 30, 35,40, 50, 51,52, - - - are pseudo-multiple of 5 numbers. Let A de-
notes the set of all the pseudo-multiple of 5 numbers. In reference [1], Profes-
sor F. Smarandache asked us to study the properties of the pseudo-multiple of
5 sequence. About this problems, it seems that none had studied it, at least we
have not seen such a paper before. In this paper, we use the elementary method
to study the mean value properties of this sequence, and obtain an interesting
asymptotic formula for it. That is, we shall prove the following:

Theorem. For any real number x > 1, we have the asymptotic formula

S fn) =3 f(n)+ 0 (Mzws),
neA n<z
n<z

where M = max {|f(n)|}. Taking f(n) = d(n), Q(n) as the Dirichlet
nsr

divisor function and the function of the number of prime factors respectively,
then we have the following:
Corollary 1. For any real number © > 1, we have the asymptotic formula

S din) = #hn + (2 — 1) + 0 (5257
neA
n<z

where 7y is the Euler constant, € is any fixed positive number.
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Corollary 2. For any real number x > 1, we have the asymptotic formula

Z Q(n) =zlnlnz + Bz + O <i> )

neA Inz

n<zx

where B is a computable constant.

§2. Proof of the Theorem

Now we completes the proof of the Theorem. First let 10¥ < z < 10%+!
(k > 1), then k < logz < k + 1. According to the definition of set A, we
know that the largest number of digits (< z) not attribute set A is 81, In
fact, in these numbers, there are 8 one digit, they are 1,2, 3,4,6,7,8,9; There
are 82 two digits; The number of the k digits are 8*. So the largest number of
digits (< z) not attribute set A is 8+ 8%+ -+ 8% = 8(8F —1) < 8*¥*1. Since

1 1
N 1
gh < gloaT — (0BT ) P8I0 — (3) 50 = g

So we have,

8k =0 (,7,-111:)180) .
Next, let M denotes the upper bounds of | f(n)| (n < z), then
> f(n) =0 (Mz=i).
ng¢A
n<x

Finally, we have

Y fn) = Y fln)=3 fn)

neA n<x n¢A
n<z n<z
= Y f(n)+0(Mzwiv),
n<z

This proves the Theorem.
Now the Corollary 1 follows from the Theorem, the asymptotic formula

z din)=zlnz+ (2y—-1)z+ 0O (x%)

n<z

(see [2]), and the estimate d(n) < z€ (for all 1 < nm < z). And then, the
Corollary 2 follows from the Theorem, the asymptotic formula

Z Q(n) =zlnlnz+ Bz + O <L>
log x

n<z

(See [3]), and the estimate (n) < z¢ (forall 1 < n < x).



On the Smarandache pseudo-multiples of b sequence 19

References

[1] Smarandache F. Only problems, not Solutions. Chicago: Xiquan Publ.
House, 1993.

[2] Tom M. Apostol. Introduction to Analytic Number Theory. New York:
Springer-Verlag, 1976.

[3] G.H. Hardy and S. Ramanujan. The normal number of prime factors of
a number n. Quart. J. Math. 48(1917), 76-92.






AN ARITHMETIC FUNCTION AND THE DIVISOR
PRODUCT SEQUENCES

Zhang Tianping
Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China
tianpzhang@eyou.com

Abstract Let n be any positive integer, Py(n) denotes the product of all positive divisors
of n. Let p be a prime, ap(n) denotes the largest exponent (of power p) such
that divisible by n. In this paper, we study the asymptotic properties of the mean
value of ap(Pz(n)), and give an interesting asymptotic formula for it.
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§1. Introduction

Let n be any positive integer, Py(n) denotes the product of all positive
divisors of n. That is, Py(n) = J[d. For example, Py(1) = 1,P4(2) =

P

2,P4(3) = 3,P4(4) = 8,---. Let p be a prime, ap(n) denotes the largest ex-
ponent (of power p) such that par() | 7. In problem 25 and 68 of reference [1],
Professor F.Smarandache asked us to study the properties of these two arith-
metic functions. About these problems, many scholars showed great interests
in them (see references [2],[3]). But it seems that no one knows the relation-
ship between these two arithmetic functions before. In this paper, we shall
use the elementary methods to study the mean value properties of a,(Sp(n)),
and give an interesting asymptotic formula for it. That is , we shall prove the
following conclusion:

Theorem. Let p be a prime, then for any real number x > 1, we have the
asymptotic formula

zlnzx

ay(Py(n)) = —

HES:I P( d( )) p(p—l)
p—1)3(2y —1) — (2p* +4p® +p> —2p + 1) Inp 1o,

where 7y is the Euler constant, and e denotes any fixed positive number.
Taking p = 2, 3 in the theorem, we may immediately obtain the following
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Corollary. For any real number © > 1, we have the asymptotic formula

1 2y —65In2 —1

Z G’Q(Pd(n)) =—zlnz + 7= 65In T+ O(x%—ke);
2 2

n<z
1 —137In3—4

n<z 6 24

§2. Some lemmas

To complete the proof of the theorem, we need the following simple lem-
mas:
Lemma 1. For any positive integer n, we have the identity

d(n)
Pd(n) =n 2,

where d(n) is the divisor function.
Proof. This formula can be immediately got from Lemma 1 of [2].

Lemma 2. For any real number x > 1, we have the asymptotic formula

1 1\2 1
E d(n):x<lnx+2y—1+2§ - )II(l—_> + O(z29),
= p—1 P
( ”_)”:1 plm plm

where H denotes the product over all primes, v is the Euler constant, and €

P
denotes any fixed positive number.

1 2
Proof. Let T = z'/2, A(s) = H (1 — —s) . Then by the Perron formula
p
P

(See Theorem 2 of reference [4]), we may obtain

1 [p3HT 9 x5 1
3 ) = g [, COAE s+ Ol
(n,m)=1

where ((s) is the Riemann-zeta function.
Moving the integral line from % + T to % =+ ¢7". This time, the function

£(s) = () A(s) =

S

has a second order pole point at s = 1 with residue

x(lnx+27—1+2zphil> H<1_1)2.

p|m plm
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So we have
S

1 34T +4iT 5—iT 3T
R (Y A Ay g LN
T 5—iT S 44T +iT 5—iT S

Inp ( 1)2
=z|lnz+2y—-1+2 1—=-) .
( v Zp_l)H ;

plm p|m

Note that

1, 1, 3_;
1 2—|—2T+ 3 1T+ 5 —iT CZ(S)A(S)xst
2w \J 3T 1T 1T s
2 2 2
< pite

From the above we can immediately get the asymptotic formula:

nsw lm plm

(nym)=1

This completes the proof of Lemma 2.

23

_ Inp 1y Lie
> dn :v(ln:v+2'y—1+22p )H(1 p) +O0(z27°).

Lemma 3. Let p be a prime, then for any real number x > 1, we have the

following asymptotic formulae

2552w o(?)

a<a:

2 2 2

_I_

> O s o(2),
et (=1 p

3 3 42 3
Yo -T2,
=P (p—1) p

Proof. We only prove formula (2) and (3). First we come to calculate
f=Y o
a<ln
Note that the identities

f<1_},) - ia_a_ a+1

alp alp

1 n2 la+1)? -
_ 5 e

P pn—l—l ‘ pa—|—1
a=

1 "f 20 +1
1 +1
p pvtt = po

)

2)

3)
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and

2" 1 —1) n?—(n?+2n—1)p
pn—l—l _p pn+2

So we have

1 2p"t—1) n?2-—(@m?+2n—1)p 1
(5 + pn—|—1 _pn + pn—|—2 ) (1 B l)2
p
D 2p" 1 —=1) n?—(n?+2n—-1)p
(p—1)2 * pn2(p—1)3 pr(p —1)2

Then we can immediately obtain

_ P 2p z*
Z_ a (p—1)2+(p—1)3+0<p‘”)

a<sc
2 2
+
)
(p—1) p
This proves formula (2).
Now we come to prove formula (3). Let

g=> o /p~

a<n

Note that the identities
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1 nd " 307 —-3a+1
= ompm X T

p  pntl
p pn a=2

1 n? pmt—1 2 n p" 2 —1 3
]_)_pn+1+pn+1_pn_ E_pn-l—l—}_pn-}-l_pn 1_%

4  n? 5 2n—1 2(p"3-1) 1 3
T\ oz o T 3~ Tam T et n I 1
pe P p°p prt=pt J1=2)1—4

P
p?+4p+10 3n—3n2+p" 1 —1+(3—6n)p

p(p —1)2 p*(p—1)
n®  6p(p" P —1) 30" ?-1)(p—1)
pntl + pL(p—1)3 :
Then we have
Za_3 - p2+4p+10+ 1 N 9—3p P Lo z?
p* pp—1)2  plp-1) plp—-1)3)p-1 pe
a<lz
3 4 2 3
= EEAER L (2.
(r—1) P

This completes the proof of Lemma 3.

§3. Proof of the Theorem

In this section, we shall use the above lemmas to complete the proof of the
Theorem. From the definition of Py(n) and ap(n), we may immediately get

> ap(Pa(n))

n<zx

= Z wd(l): Z @ Z d(l)

pel<z pe<z I<z/p>
(p,l):l (p,l)zl

LT g ) (1)

a —
a<lnz/Inp p p—1 p

+0 (227)
2
_ E(1—3) (1nx+2’7—1+21n11)) 3 lat Do
b b

2 (67
a<lnz/lnp p

2
s o)

a<lnz/Inp

T 1\? 2Inp
= —|1—-- 1 2v—1
2( p) <n$+ 7 +p—1)
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p’+p P In? 2
* <<p—1>3 RTES R <T>)

1 3 4 4p2 2 13
_xnpc-%p+p+p-ﬂﬂ+0<n$ +0 ()

2 (p—1)* (p—1)° z
_ zlnz (p—1)32y—1)— (2p* +4p> +p> —2p+ 1) Inp
p(p—1) p(p—1)* ’
+0 (:z;%ﬁ).

This completes the proof of the Theorem.
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Abstract In this paper, we use the analytic method to study the mean value properties of
the irrational root sieve sequence, and give an interesting asymptotic formula for
it.
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1. Introduction

According to reference [1], the definition of Smarandache irrational root
sieve is: from the set of natural numbers (except 0 and 1):
-take off all powers of 2k k> 2;
-take off all powers of 3k k> 2:
-take off all powers of 5k k> 2;
-take off all powers of 6k, k > 2:
-take off all powers of 7 k k> 2
-take off all powers of 105, k > 2;
.-+ and so on (take off all k-powers, k& > 2). For example: 2,3,5,6,7,10,
11,12,13,14,15,17,18,19 - - - are all irrational root sieve sequence. Let A
denotes the set of all the irrational root sieve. In reference [1], Professor F.
Smarandache asked us to study the properties of the irrational root sieve se-
quence. About this problem, it seems that none had studied it, at least we have
not seen such a paper before. In this paper, we study the mean value of the
irrational root sieve sequence, and give an interesting asymptotic formula for
it. That is, we shall prove the following:
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Theorem. Let d(n) denote the divisor function. Then for any real number
x > 1, we have the asymptotic formula

> d(n)

neA
n<z

3

= (:1: — ﬁﬂlnm + Alm% In’z + Aga:% Inz + Agl‘% + A4\/§> Inz
T

+ (27— 1)z + Asv/z + Agz + 0 (z85F)

where € denotes any fixed positive number, «y is the Euler constant, A1, As, As,
Ay, As, Ag are the computable constants.

§2. Some Lemmas

To complete the proof of the theorem, we need the following lemmas:
Lemma 1. For any real number x > 1, we have the asymptotic formula:

Z din)=zlnz+ (2y—-1)z+ O (x%+f) ,
n<z
where € denotes any fixed positive number and -y is the Euler constant.

Proof. This result may be immediately got from [2].
Lemma 2. For any real number x > 1, we have two asymptotic formulae

In’z B
Z d(n?) = 3\/5# + ?lx/a_clnm + Bovz + O (]7%—1—6) ;
n<ya "
1
6Coz3 In® C C
Zl d(n®) = 70;7;411 T ?113% In? 2 + ?215% Inz+ Cs23 + 0 (w%H) ,
n<zc3

where B1, By, Cy, C1, Co, C3 are computable constants.
Proof. Let
>, d(n?)

f(s):ZT’

n=1
Re(s) > 1. Then from the Euler product formula [3] and the multiplicative
property of d(n) we have

fls) = H(1+i+%+%+...)

) p? p
= H<1 1)_1<1+2+ 2 )
- s 25 " 35 '
p S ps S ps
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S (CONES
¢(s)
¢(2s)°

where C (s) is the Riemann zeta-function. By Perron formula [2] with sg = 0

T—x2 andb— , we have

1 2+’T 3
S a0 =5 [ Gy a0 ().

n<z

To estimate the main term

13t (3(s) 2°
omi /——zT ¢(2s) s Phae

we move the integral line from s = % + 4T to s = + 4 ¢T. This time, the

¢*(s) 2*

function

has a three order pole point at s = 1 with residue
(2)
1 3(s) &* 3
lim—. ((s — )35(;3 %) = W—xln2x+31$lnx+32x,

where B, By are the computable constants

Note that
; 1_, 3_, 3
1T /2 ZT>C()$d<<:1:2+€

1 %'HT
_ Hf7 4
2im /g+z’T Lyr Jizir ) ((2s) s

From above we may immediately get the asymptotic formula

> d(n®

n<x

3 1
rne + Bizlnz + Boz + O (:v?“).

That is,
3/ In? B
Y din?) = VL B s 4 B/ + 0 (a4).
472 2
n</T

This proves the first formula of Lemma 2.
Similarly, we can deduce the second asymptotic formula of Lemma 2. In

fact let - s
d(n
gls) = Yo A

n=1
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Re(s) > 1. Then from the Euler product formula [3] and the multiplicative
property of d(n) we have

4 7 10

g(s) = H(1+—+—+—+ )

» p°

1\7! 3 3 3
1—— R R = TR

()

where ((s) is the Riemann zeta-function. Then by Perron formula [2] and the
method of proving the first asymptotic formula of Lemma 2 we may immedi-
ately get

Zd = —Coxln z4+ Cizln’z+ Cozlnz + C3z + O (:v2+€).

n<z

That is,

Z d(n?) = 6Cozz Iz C)

Cy
o7 +— 9 35 In? w+?x31nw+03xs —|—O(w6+€)

1
n<r3

This proves the Lemma 2.

§3. Proof of the Theorem

Now we completes the proof of the Theorem. According to the definition of
the set A and the result of Lemma 1 and Lemma 2 , we have

> d(n)

neA
n<lz

= Ydm) - 3 de*) - X din® 2, 2 dif

1
nsz n<ve n§z3 4<k<£§n<zk

= Ydmn) - 3 dn®) - Y dm®)+o| 3 ante

n<z n</z n<as 4<k<Inz
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1
= (m — 73\25 2nx + Alwé In? z + Aga:% Inz + A3,’1}% + A4\/E> Inz
T

H(2y — D)z + Asv/z + Agzs + O (m%“) ,
where A; 1 = 1,2,---,6) are computable constants.
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§1. Introduction

Let p be a prime, e,(n) denote the largest exponent of power p which di-
vides n. In problem 68 of [1], Professor F.Smarandach asked us to study the
properties of the sequence ey, (n). This problem is closely related to the factor-
ization of n!. In this paper, we use elementary methods to study the asymptotic
properties of the mean value Z ey'(n), and give an interesting asymptotic

Y4
n<z

formula for it. That is, we will prove the following:
Theorem. Let p be a prime, m > 0 be an integer. Then for any real number
x > 1, we have the asymptotic formula

-1
> etn) = o —ap(m)a + O(log™ o),
n<z p
where a,(m) is a computable constant.
Taking m = 1, 2, 3 in the theorem, we may immediately obtain the follow-
ing
Corollary. For any real number © > 1, we have the asymptotic formula

Z ep(n) =

1
72+ O(log? z);

n<zx
1
Z eﬁ(n) = LQx + O(log? z);
+4p+1
Z e:‘z(n) = wa: + O(log? ).

(p—1)3

n<zx
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§2. Proof of the Theorem

In this section, we complete the proof of the theorem. In fact, from the
definition of e,(n) we have

dogm = > > o= ) o™ ) 1

n<z pe<z p u<x a<loge u< 2%
(u,p)= ~los® )
u,p (u,p)=1
p—1zx
- (TS o)
p p
a<_5_
log p
m
p—1 a
- Ly S0l ¥
p a<lee a<logez
log p —logp
Let ©
m
n
ap(m) = Z n ?
n=1 p

then a,(m) is a computable constant. Obviously we have

o
a™ a™
AT % 27
logp
Z)H
log:v T 1
( ( logp uzlp“
ol (logm) °° ))
"™ \logp = p
=ap(m)+ O (m_l log™+! LE) (1)
and
ol ¥ o :0(1ogm+1 x) )
<_5_

logp

From (1) and (2) we have

Z e, (n) = P- 13: (ap(m) +0 (zil log™ x)) +0 (logm+1 m)

n<zx p
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p—1 1
= a,(m)z + O (log™ ™ z) .
D p( ) ( g )

This completes the proof of the theorem. As to a,(m), it is easy to show that

) io: 1 1
(93 = —_— = —
P —pn p—-1
and
o0
(n+1)™
prap(m)—1= Z .
n=1 p
o'} nm ) [e7e] 1 ) 00 n o'} 1
—
=2 =+ Cn ) AR Dt Bl
n=1 p n=1 n:lp n:lp
= ap(m) + Cryap(m — 1) + -+ + Ci " ap (1) + ap(0),
so we have
1 1 m—1
ap(m) = - (Cap(m —1) + -+ + G ay(1) + ap(0) +1).

From this formula, we can easily compute the first several a,(m):

_ Py PP _ PP+ +p
al’(l) - (p_l)g’ P( ) ( ) (p_1)4 ’

N

Then use the Theorem, we can get the Corollary.
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§1. Introduction

Let p be a prime, n be any fixed positive integer, S, (n) denote the smallest
positive integer such that Sp(n)! is divisible by p™. For example, S3(1) = 3,
S3(2) = 6, S3(3) =9, S3(4) = 9, S3(5) = 12, - --. In problem 49 of book
[1], Professor F. Smarandache asks us to study the properties of the sequence
Sp(n). About this problem, some asymptotic properties of this sequence have
been studied by many scholar. In this paper, we use the elementary methods to
study the arithmetical properties of Sp(n), and give a triangle inequality for it.
That is, we shall prove the following:

Theorem 1. Let p be an odd prime, m; be positive integer. Then we have
the triangle inequality

k k
Sp (Z mz> < ZSp(mi).
=1 =1
Theorem 2. There are infinite integers m; (i = 1,2, -+, k.) satisfying

k k
Sp (; mz) = ;Sp(mi)-

§2. Proof of the theorems

In this section, we complete the proof of the theorems. First we prove the-
orem 1. From the definition of S,(n), we know that p™i | Sp(m;)!, p™ |
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Sp(m;)! (i # 7). From this we can easily obtain:
pip™ =™ | Sp(mi)!Sp(my)! | (Sp(mi) + Sp(my))! (1

But from the definition of Sj,(n), we know that Sp,(n)! is the smallest positive
integer that is divisible by p™. That is

p™itM | Sy (my + my)l. 2)
From (1), (2) we can immediately get
Sp(mi +myj) < Sp(mi) + Sp(my).

Now the theorem 1 follows from this inequality and the induction.
Next we complete the proof of theorem 2. For any positive integers m; with
m; #mj (1 <1i,5 < k), weleta = a(p,n) satisfy p||n!. Then

a=a(p,n) zi [g]

. Mg .
For convenient, we let k; = %11. Since

2[1’ ]zpm’1+pm’2+---+1=p = ki.
— | pr p—1
r=1
So we have
Sp(k’z) :pmia 1= 1a27"'ak' )
On the other hand,

k

0 ;pmi E pmi 1
S -y

r=1

So

k k
Sp (Z kz) - mei- “4)
i—1 i—1

Combining (3) and (4) we may immediately obtain

k k
Sy (Z k1> =" Sp(ki).
i=1 i=1
This completes the proof of Theorem 2.
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Abstract The main purpose of this paper is to study the asymptotic properties of Sy (),
and give two interesting asymptotic formulae for it.
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§1. Introduction and results

For any positive 7, the Smarandache function S(n) is defined as the smallest
m € N, where n|m!. For a fixed prime p, the Smarandache-simple function
Sp(n) is defined as the smallest m € N, where p™|m!. In reference [2],
Jozsef Sandor introduced the additive analogue of the Smarandache-simple
function Sy (z) as follows:

Sp(z) =min {m € N : p®* <ml}, z € (1,x),

and
Sy(z) = max {m € N : m! <p"}, z € [1,x),

which is defined on a subset of real numbers. It is clear that S,(z) = m if
z € ((m—1)!,m!] form > 2 (form = 1itis not defined, as 0!=1!), therefore
this function is defined for z > 1. About the properties of S(n), many people
had studied it before (See [2], [3]). But for the asymptotic formula of Sp(z), it
seems that no one have studied it before. The main purpose of this paper is to
study the asymptotic properties of Sp,(z), and obtain an interesting asymptotic
formula for it. That is, we shall prove the following:
Theorem 1. For any real number x > 2, we have the asymptotic formula

1 Inl
Sp(x):a:np_i_O(wnnx).

Inz In?z

Obviously, we have

S (z) — Sy(z)+1, if ze(ml,(m+1)) (m>1)
b(z) = Sy (z), if z=(m+1)! (m>1)

P
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Therefore, we can easily get the following:
Theorem 2. For any real number x > 2, we have the asymptotic formula

« _ xlnp zlnlnz
Sple) = Inz +O( In? )

§2. Proof of the theorem

In this section, we complete the proof of the theorem 1. In fact, from the
definition of Sp(z), we have (m — 1)! < p* < m! and taking the logistic
computation in the two sides of the inequality, we get

m—1 m
Zlni<xlnp§2]ni. (D)
i=1 i=1

Then using the Euler’s summation formula we have

Zz::llni = /1 lntdt-l-/1 (t — [t])(Int) Intdt
= mlnm —m+ O(lnm) 2)

and

m—1 1 -
; Ini = /1 In tdt +/1 (t — [t])(Int)'dt
= mlom—m+ O(lnm). )

Combining (1),(2) and (3), we can easily deduce that

zlnp =mlnm —m+ O(lnm). “4)
So
_ zlnp
 Inm—1 +0W). ©)

Similarly, we continue taking logistic computation in two sides of (5), then we
also have

Inm =Inz + O(lnlnm). (6)
and

Inlnm = O(Inlnz). (7)
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Hence, by (5), (6) and (7) we have

_ zlnp
Spl(z) = Inz + O(lnlnm) — 1 +00)

. xlnp+ 1 ( O(Inlnm) )
=~ g 7P Inz(Inz 4+ O(lnlnm) — 1)
_ wlnp+0<:1:1n21n:c>.

In“z

Inzx

This completes the proof of Theorem 1.
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Abstract The main purpose of this paper is using analytic method to study the asymp-
totic properties of k-power complement sequence, and give several interesting
asymptotic formulae.
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§1. Introdution

For any positive integer n > 2, let bx(n) denotes k-power complement
sequence. That is, bx(n) denotes the smallest integer such that nbg(n) be a
perfect k-power. In problem 29 of reference [1], professor F.Smarandache
asked us to study the properties of this sequence. About this problem, some
people had studied it before, see references [4]and [5]. The main purpose
of this paper is using the analytic method to study the asymptotic properties
of k-power complement sequence, and obtain several interesting asymptotic
formulae. That is, we shall prove the following :

Theorem. Let d(n) denote the Dirichlet divisor function, then for any real
number x > 1, we have the asymptotic formula

3 d(nby(n)) = (Ao "z + Aj In* 'z 4 -+ Ay) + O(2779),

n<z

where Ag, A1,---, A are computable constants, ¢ is any fixed positive num-
ber.

From this theorem, we may immediately deduce the following

Corollary 1. Let a(n) be the square complement sequence, then for any
real number x > 1, we have

Z d(na(n)) = z(Aln*z 4+ Blnz + C) + O(x%"'f),

n<lz

where A, B, C are computable constants.
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Corollary 2. Let b(n) be the cubic complement sequence, then for any real
number x > 1, we have

Z d(nb(n)) = z(B1 n®z+Ciln’z+ Dilnz + E)) + 0($%+s)’

n<z
where By, C1, D1 and E1 are computable constants.

§2. Proof of the Theorem

In this section, we shall complete the proof of the Theorem. Let

= d(nb(n)

From the definition of bg(n), the properties of the divisor function and the
Euler product formula [2], we have

d(pb d(p2by (p?
f@::HO+@6m+@S?D+J
. p p
d(p*) dp*) | d(p*) d(p*) )
= H 14 + -+ T + -+ - + .-
. ( ps pks p(k—l—l)s p2 s
k+ 1 k+1  2k+1 2%k + 1
_ l;[(1+ T S T WJF...)

P ps (plcs
B Ck+1(3) H - k’pks Z <i€) pks
-k k(pks — 1) i k|
¢k (2s) 5, P+t -1 52, p i+ 1)
where ((s) is the Riemann Zeta function. Obviously, we have
o d(nbk(n)) 1
d(nb < <
I Ert

where o is the real part of s. Therefore by Perron formula [3]

i d(nzlz(fn))

n=1
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1 ot z* 2°B(b + o9)
T 2mi /b—iT fst SO)?dS +0 (#

+O( =00 F7(2) min{1, 18;95 >+0(x“’0H(N) min{1, B H})

where N be the nearest integer to x, ||z|| = |z — N|. Taking s = 0,b = 2

T =z, H(z) = z, B(0) = —1;, then we have

N

84T rk+1 s )
> d(nbg(n) 2711'2/ . ik( ())R(s)%ds—l—O(aﬁ*‘s),

n<x

where

p

To estimate the main term

1 34T ChH1(s) 5
27rz/ i Ck(2s) Ris s

we move the integer line from s = 3/2+4T to s = 1/2+4T, then the function

Ck_H(S) s
(Fas) TV
have one k + 1 order pole point at s = 1 with residue
i L _ 1\k+1k+1 R(s)z* ) (%)
E—rﬁ k! <(S D (S)Ck(Zs)s
B 1 (k) R(s)z®
- B CF(25)s

() (- vHers)
+(8) (= D) (c()))
+(§) (s — )k+lck+1 (Ck 2s) ) >

= z(AglnfFz 4+ A InF o4+ Ay),

where Ag, A1, - - -, A are computable constants. So we can obtain

1 34T +iT 1T 34T\ fk+1 s
— /2 /2 +/ /2 UL E (s)a R(s)ds
2mi \J3—ir 44T T L ) (F(2s)s

= z(AlnfFz+ A I o4+ Ap).
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Note that the estimates

1 LT rkt1 s
/32 ﬂ}%(s)ds < z3te,
3

2mi J3 i CF(28)s

1 37 ¢k tl(g)gs 1
— >—————R(s)d 3te
27T'L ézT Ck(25)3 (8) S << I ?2 ?

and

R(s)ds| < z2 7.

1 37T ¢k H(5)gs
2mi /%-i-iT Ck(2s)s

Therefore we get

3 d(nby(n)) = (Ao ¥z + A1 InF "z 4 - 4 A) + O(227).

n<z

This completes the proof of the Theorem .
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§1. Introduction

For any positive integer n, the inferior factorial part denoted by a(n) is the
largest factorial less than or equal to n. It is the sequence: 1,2,2,2,2,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24,24,24,24, ... On the other
hand, the superior factorial part denoted by b(n) is the smallest factorial greater
than or equal to n. It is the sequence as follows: 1,2,6,6,6,6,24,24,24,
24,24,24,24,24,24,24,24, 24,24, 24,24, 24,24,24,120,120,120, - - - . Inthe
42th problem (see [1]) of his famous book Only problems, Not solutions,
Professor F.Smarandache asked us to study these sequences. About this prob-
lem, it seems no one had studied it before. In this paper, we studied two infinite
series involving a(n) and b(n) as follows:

e 1 e 1
I = ) S = )
Doy >

and given some sufficient conditions of the convergent property of them. That
is, we shall prove the following

Theorem. Let o be any positive real number. Then the infinite series I and
S are convergent if a > 1, divergent if a < 1.

Especially, when o = 2, we have the following

Corollary. We have the identity

= d?m)
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§2. Proof of the theorem

In this section, we will complete the proof of the theorem. Let a(n) = m/!. It
is easy to see that if m! < n < (m+1)!, then a(n) = m!. So the same number
m! repeated (m + 1)! — m! times in the sequence {a(n)} (n = 1,2,--.).
Hence, we can write

_OOLZOO(m—l—l)!—m!:oom-m!:oo m
1= G =X e X (e X G

Itis clear that if @ > 1 then I is convergent, if & < 1 then [ is divergent. Using
the same method, we can also get the sufficient condition of the convergent
property of S. Especially, when a = 2, from the knowledge of mathematical
analysis (see [2]), we have

e 1 e 1 X1
nz::lcﬂ(n) —W; (m — 1)! _goﬁ_e'

This completes the proof of the theorem.
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§1. Introduction

Let p and q are two primes, eq4(n) denotes the largest exponent of power ¢
which divides n. It is obvious that e, = k if ¢* divides n but ¢**1) does not.
In problem 68 of [1], Professor F.Smarandache asked us to study the properties
of the sequence e,4(n). In this paper, we use elementary methods to study the

asymptotic properties of the mean value 3 p® (™) where p is a prime such
n<z
that ¢ > p, and give an interesting asymptotic formula for it. That is, we will
prove the following :
Theorem. Let p and q are primes with ¢ > p. Then for any real number

x > 1, we have the asymptotic formula

z peq (n)

n<zx
_ 1 .
_ %w—l—O(xﬁe), 1 if q¢>p;
penz + (5’1;}(7— 1) + ’%)HO (ﬂ*e), if q¢=p;

where € is any fixed positive number, -y is the Euler constant.

§2. Proof of the Theorem

In this section, we will complete the proof of the theorem. Let
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For any positive integer 7, it is clear that e,4(n) is a addtive function. So pea(n)
is a multiplicative function. Then from the definition of e,4(n) and the Euler
product formula (See Theorem 11.6 of [3]), we can write

o = ST )

n=1 P1 \m=0 p
peq (pl ) peq (pl)

p1 n
2 1 1
— 1+£+p_+... H 14— 4+ 4.
qs q25 pS p25
P74 1 1
¢’ —1
= C(S)qs_p-

By Perron formula (See reference [2]), let sp = 0, b = 2, T' = z3/2. Then we
have

S = oL [ R D ds + 0 ),

n<e 27TZ 2T

where R(s) = 3:11)
Now we estimate the main term

1 2-+41T s
o / . C@R(6) % s,

we move the integral line from 2 + 47" to 1/2 £ 4T
If ¢ > p, then function

¢(s)R(s)—

S

have a simple pole point at s = 1, so we have

1 2+iT 1/2+4T 1/2—iT  (2-iT -
= / + + + C(s)R(s)=ds = R(1)z.
2mi \Jo—ir 2HiT 1/244T 1/2—iT

Taking T' = x%, we have

1 lyir 2T 2
2mi </2+iT * /%—iT> C(S)R(s);ds

2 72

< [ [¢lo+ z'T)R(s)? do
3
2+€

< gt



A number theoretic function and its mean value 51

And we can easy get the estimate

1

1 3T z° T o1 z2 1y
Q—M,/%HT C(5)R(s) - ds <</0 iy +it)R(s) 2| db << e,
Note that 1
q_
r()=91"",
(1) -

we may immediately obtain the asymptotic formula

Y pa = Z :113“’ +0(x379),
n<z

if g > p.
If g = p, then the function

C(s)R(s)—

S

have a second order pole point at s = 1. Let Res (§ (s)R(s)z—:) denotes its
residue, so we have

Res (C(S)R(s)%s)
= 1 (Z )6 - 122
= o ((p::;( —1)§)Ig(s)(s—1)
(p: :11)( — 1)%) (C(s)(s — 1))')
Noting that ,
tim (E=5-1) =211,
lim¢(s)(s — 1) =1

and

we may immediately get
5 -1 -1 1
Res (C(s)R(s)x—) =l S+ (p—('y— 1) —I-]i> x
S plnp plnp
So we have the asymptotic formula

-1 -1 1
Zpeq(n) = %mlnx + (il—npw -1+ %) z+ O($%+€)>
n<zx

if ¢ = p. This completes the proof of Theorem.
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§1. Introduction

The generalized constructive set S is defined as: numbers formed by digits
di,do,---,dn, only, all d; being different each other, 1 < m < 9. That is to
say,

(1) dy,do,- -+, dy, belong to S

(2) If @, b belong to S, then ab belongs to S too;

(3) Only elements obtained by rules (1) and (2) applied a finite number of
times belong to S.

For example, the constructive set (of digits 1, 2) is :1,2,11, 12,21, 22,111,
112,121,122,211,212,221,222,1111,1112,1121, - - - . And the constructive
set (of digits 1,2,3)is: 1,2,3,11,12,13, 21,22, 23,31, 32,33,111, 112,113,
121,122,123,211, 212,213, 221,222,223, - - - . In problem 6, 7 and 8 of ref-
erence [1], Professor F.Smarandache asked us to study the properties of this
sequence. About this problem, it seems that no one had studied it before. For
convenience, we denote this sequence by {a, }. In this paper, we shall use the
elementary methods to study the convergent properties of the series

+
8

1

7
(e
an

3
Il
-

where « is any positive number. That is , we shall prove the following conclu-
sion:
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+00
1
Theorem 1. The series Z — s convergent if o > log m, and divergent
a
n=1""7
if a < logm.
Especially, let
1 1 1

Sy=14s4 iyt
2T T T2 T ol T2

and

S—1+++1+1+1+1+1+1+1+1+1+
5 3 13 23 31 32 ' 33
Then we have the following

Theorem 2. The series So and S3 are convergent, and the estimate

10264 _ 8627 314568337 _ , _ 10532147
5775 2™ 4620 155719200 ~ 7% ™ 4449120

hold.

§2. Proof of the Theorems

In this section, we shall complete the proof of the Theorems. First we prove
Theorem 1. Note that for k = 1,2, 3, - -, there are m* numbers of k digits in
the generalized constructive sequence, so we have

Loy
« k— 1
= ag b 10
lc 1

+
- Z 10(k—1)e
=

1 — 15e
m - 10%
10¢ —m’

where we have used the fact that the series

+o0 mkil

2 1gETa

is convergent only if its common proportion -+
completes the proof of the Theorem 1.
Now we come to prove Theorem 2.

1oe < 1, thatis @ > log m. This

S, = 14i4t Ly
2 - 2 711 "12 "21 " 22
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<1+1+1+1+1+1++ZOo A
2711 12 21 22 10k
—1+1+1+1+1+1+23§fzk73
a 271112 21 221 107 & 1052

NS U S S NS VS
2 11 12 21 22 25 1-1

8627

= 620"

On the other hand, we have

11 1 1 1 I 9k
14 -4+ — 4 = 4 = 4 = =
S2 > Jr2+11+12+21+22+,§,10'c

—1+1+1+1+1+1+23+§>2k_3
- 211 12 21 22 103 & 10F3

—1+1+1—|—1+1+1+1x 1
N 2 11 12 21 22 125 1-%

10264
5775
This proves the first part of Theorem 2.

Similarly, we can prove the second part of Theorem 2. This completes the
proof of the Theorems.
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largest prime number less than or equal to n, and superior prime part function
P,(n) is denoted as the smallest prime number greater than or equal to n. The
main purpose of this paper is using the important works of D.R.Heath Brown
to study the mean value of p,(n) and P,(n), and give two sharp asymptotic
formulae.
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1. Introduction

For any positive integer n, inferior prime part function p,(n) is defined as
the largest prime number less than or equal to n, and superior prime part func-
tion Pp(n) is denoted as the smallest prime number greater than or equal to 7.
In problem 39 of [1], F.Smarandache asked us to study these sequences.

For each integer n, the prime additive complement b(n) is defined as the
smallest nonnegative integer such that n + b(n) is a prime. In problem 44 of
[1], F.Smarandache also advised us to study this sequence.

It is interesting that there exist some relationships among pp(n), P,(n) and
b(n). In this paper, we use the important works of D.R.Heath Brown to study
the mean value properties of p,(n) and P,(n), and give two sharp asymptotic
formulae. That is, we shall prove the following:

Theorem 1. For any real number x > 1, we have

2
Y pp(n) = % +0 (w%+€) :

n<z

where € is any fixed positive number.
Theorem 2. For any real number x > 1, we have

> Rutn) = &+ 0 (afi)

n<z
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§2. Proof of the theorems

To complete the proof of the theorems, we need the following:
Lemma 1. Let b(n) be the prime additive complement, then we have the
estimate:

3 b(n) < ziste,

n<z

Proof. Denote p,, as the n-th prime, then from the definition of b(n) we

have
dobn) = Y Y. b(n)

n<z 1<i<n(z) pi<n<pit+1
< Y > (i —p)
1<i<n(z) pi<n<pit1
< > (i—m)t (D
1<i<n(z)

By [2] we can get
23
Z (pit1 — pi)* <€ 7€, (2)
1<i<n(z)
so by (1) and (2) we immediately have
3 b(n) < ziste,
n<z

This proves Lemma 1.
Now we prove the theorems. For any real number x > 1, from the definition
of pp(n) we have

doppn)= D (pis1 —pi)pi- 3)
n<zx 1<i<n(z)
On the other hand,
Y (ntbn) = Y (n+b(n)
n<z 1<i<n(z) Pi<n<pit+1
= 2 (Pit1 — Pi)pit1
1<i<n(z)
= Z (it —pi)° + Z (Pit1 — pi)pi- (4
1<i<n(zx) 1<i<n(x)

Then from Lemma 1, (2), (3) and (4) we have

dopp(n) = (n+bn)— D (pirr—p)’

n<z n<z 1<i<n(z)

.’L'2 23
- Z”"‘ Z b(n) — Z (pip1 —pi)° = > +0 (wﬁ“).

n<z n<z 1<i<n(z)
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This proves Theorem 1.
Similarly, from the definition of Pp(n), (4) and Lemma 1 we can get

Y Pyn) = 6+ > (pit1—Ppi)pitt
n<z 1<i<n(z)
2
— 6+ (n+b(n) = % +0 (25+).

n<z

This completes the proof of Theorem 2.
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Abstract The main purpose of this paper is to calculate the value of the series
+
> G
(nak(n))*’
n=1
where a(n) is the k-power complement number of any positive integer n, and
s is a complex number with Re(s) > 1. Several interesting identities are given.
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1. Introduction

For any given natural number £ > 2 and any positive integer n, we call
ay(n) a k-power complement number, if ax(n) denotes the smallest integer
such that n-ax(n) is a perfect k-power. Especially, we call a2(n), asz(n), as(n)
a square complement number, cubic complement number, and quartic comple-
ment number, respectively. In reference [1], Professor F. Smarandache asked
us to study the properties of the k-power complement number sequence. Yet
we still know very little about it. In this paper, we shall use the analytic method
to calculate the value of the series

+00 1
nZ::l (nax(n))*’

where s is a complex number with Re(s) > 1, and obtain several interesting
identities. That is, we shall prove the following several theorems:

Theorem 1. For any complex number s with Re(s) > 1, we have the
identity

X1 (2
,; (nas(n))® — ((4s)’

where ((s) is the Riemann-zeta function.
Theorem 2. For any complex number s with Re(s) > 1, we have

X1 (3(3s) 1
2 (nas(n))® — ((6s) 1,_,[ <1 T 1) ’

n=1
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where H denotes the product over all primes.
P

Theorem 3. For any complex number s with Re(s) > 1, we have
+00 1

nz::l (nas(m)® ~ C;((;SS)) 1;[ (1 i p451+ 1) (1 " gﬁ) '

Taking s = 1, 2 in the theorems, and note that the fact

7'('2 7'('4 7'('6 7'('8
2) = — 4) = — 6) = — 8) = —
¢(2) 6 ¢(4) 90’ ¢(6) 915’ ¢(8) 9450
691712 3617716
12)= ——— 16)= ———
¢(12) 638512875’ ¢(16) = 325641566250

We may immediately obtain the following two corollaries
Corollary 1.

“+oo 1 _ §.
— nag(n) 2’
<1 ¢ 1
2 )~ C6) 1;[(“ 1)

Corollary 2.

—+o00 1 B Z
n=1 (naz(n)) 6’
—+ 00
1 715 1
> e = ar (1 1)
a—1 (naz(n)) 691 % p°+1
I 1 7293

2 Gy~ 7234 1L (1 " ps%ﬂ (1 * ps%z) -

§2. Proof of the Theorems

In this section, we shall complete the proof of the Theorems. For any pos-
itive integer n, we can write it as n = [ 2m, where m is a square-free number
(that is, p T mn implies p? 1 m). Then from the definition of ag(n) we have

+00 1 +o00 +00 +00 +00
_ 1 _C2(23)
) “28)1;[(”;)28) ()
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where u(n) denotes the Mébius function. This completes the proof of Theorem
1.

Now we come to prove Theorem 2. For any positive integer n, we can write
it as n = I3m?r, where (m,r) = 1, and rm is a square-free number. Then
from the definition of ag(n), we have

+o0 +00 +00 +00
1 _ ZZ m)| |p(r)]
nmt (nas(m))™ = 0 l3m2T mr)?
(m,r)=1
+o0o +o0
|lu(m)] |n(r)]
= ((3s) p ;
m=1 m? 72 rd
(m,r)=1
2 u(m 1
— ((3s) mn(ﬁs)' <1+ 35>
m=1 ptm P
)

B 1;[( 3S+1>

This completes the proof of Theorem 2.

Now we come to prove Theorem 3. For any positive integer n, we can write
it as n = I*m3r?t, where (m,r) = 1, (mr,t) = 1 and mrt is a square-free
number. Then from the definition of a4(n), we have

+0o0 1
nzl (nas(n))®
_ %’fi”oo m)| |p(r)] |p(t)]
= o oo mdrtt - mr?t3)e
(m,r)=1
(mryt)=1
_ Jioio m)| |p(r)| io ()]
- 4s,r4s #4s
m=1r=1 t=1
(m,r)=1 (mmr,t)=1

C2(43 “+0o0 —|—oo

_ ) p(r)]
- G L

m=1r=1 p|lmr
(m,r)=1
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_ -« Jio | (m)| |p(r)] H H 1
m=1r=1 mitsrds plm <1 + ) plr (1 + I%)
(m,r) 1
C2 48 \u(m | (1 1 )
= +
mzl m? H ( + 17;;) pl’[_!n Pt +1

(?(4s) X |p(m)] P
= Z 1l
¢(8s) 2 ms . L 1
1 p| (1+p )plml <1+p4s+1)

- G ) (%)

p

This completes the proof of Theorem 3.
Using our method, we can also obtain the identities for the series

+
8

1

2 (nag(n)"

where k > 5.
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Abstract For any positive integer n, let a(n) is the additive square complements of n.
That is, a(n) is the smallest non-negative integer such that n + a(n) is a perfect
square number. In this paper, we study the mean value properties of a(n) with
the divisor function d(n), and give an interesting mean value formula for d(n +

a(n)).

Keywords:  Additive square complements; Divisor function; Asymptotic formula.

§1. Introduction and results

For any positive integer n, the square complements a2(n) is defined as the
smallest positive integer k such that nk is a perfect square. For example,
ag(l) = 1, a2(2) = 2, a2(3) = 3, a2(4) = 1, a2(5) = 5, CI,2(6) = 6,
az(7) = 7,a2(8) = 2, - - -. In problem 27 of [1], Professor F. Smarandache ask
us to study the properties of {az(n)}. About this problem, some authors had
studied it, and obtained some interesting results. For example, the authors [2]
used the elementary method to study the mean value properties of as(n) and
#(n). Zhang H.L. and Wang Y. in [3] studied the mean value of 7(az(n)), and
obtained an asymptotic formula by the analytic method.

Similarly, we will define the additive square complements as follows: for
any positive integer n, the smallest non-negative integer k is called the additive
square complements of n if n + k is a perfect square number. Let

a(n) = min{kln + k =m? k > 0,m € N1},

then a(1) = 0, a(2) = 2, a(3) = 1, a(4) = 0, a(5) = 4, ---. In this paper,
we will use the analytic methods to study the asymptotic properties of divisor
function for this sequence in the following form: » _ d(n+a(n)), where z > 2

n<x
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be a real number, d(n) be the divisor function, and give an sharper asymptotic
formula for it. That is, we shall prove the following:
Theorem. For any real number x > 2, we have the asymptotic formula

3
E , d(n+a(n)) = m:l:ln2 z+ Aixlnz + Asx + O(m%+€),
n<z

where Ay and Ay are computable constants, € is any fixed positive number.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. First we need
following:
Lemma. For any real number x > 1, we have

3
Z d(n?) = 3 zIn’z + BizInz + Boz + O (:1;%+6) ,

n<zx

where By and By are computable constants, € is any fixed positive number.
d(n?)

ns

o0
Proof. Let s = o + it be a complex number and f(s) =

Note that d(n?) < n¢, so it is clear that f(s) is a Dirichlet series at;solutely
convergent for Re(s)> 1, by the Euler Product formula [4] and the definition
of d(n) we get

fls) = H(l+%p+@+...+d(p—2n)+...>

5 p25 pns
3 5 2n+1

= H<1+_+T+"'+ +)

P pS p S p'ILS

1
= ol (1+5)
P
((29)°
where ((s) is the Riemann zeta-function and [] denotes the product over all
2

primes.
From (1) and Perron’s formula [5], we have

3 d(n?) = 1 /;HT Cls) 2% 10 <$§+6> . )

= C2mi Jar ((25) s T

Now we move the integral line in (2) from s = % +3T tos = % + ¢T'. This

time, the function %% . % have a third order pole point at s = 1 with residue

3

5 -xln’z + BizInz + By, (3)

™
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where B; and By are computable constants. Hence, we have

1 S—ir ST $+iT 3=\ (3(s) z°
T ) S
2mi \Jiir 8 _iT 84T 1yr ) ((28) s

3
_ ﬁ.xln2x+B1xlnx+Bﬂ-

We can easily get the estimate
i. /%+z’T+ ST 43(3) . x_sds
2ri \Jewir  Jizir ) C(25) s

l_.
e 2]
2mi Jiyir ((2s) s

Taking T' = x, combining (2), (4), (5) and (6) we deduce that

+€

N

x

<

and

3
Z d(nz) =2 -zln’z + Bizlnz 4+ Boz + O (x%“) .

n<z

This completes the proof of Lemma.

67

4)

)

(6)

Now we use above Lemma to complete the proof of Theorem. For any real

number z > 2, let M be a fixed positive number such that
M? <z < (M+1)>2

Then from the definition of a(n), we have

Z d(n + a(n))

n<z

- ¥ ( > d(n+a(n))>+ Y. d(n+a(n)

1<m<M—1 \m2<n<(m+1)2 M2<n<zx
p> ( > d<n+a(n>>)+o<w%+f)
1<m<M \m?2<n<(m+1)?
> > d(m+1)?) )| + 0@t
1<m<M \m?2<n<(m+1)?2
= Y 2md((m+1)?) + O(z27)
1<m<M

= 2. Z md(mQ)-l-O(w%’Le).
1<m<M

(7

(8)
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Let A(z) = 3 d(n?), then by Able’s identity and Lemma, we can easily
n<z

deduce that

Z md(m?)

1<m<M

M
= MA(M)— / A(t)d(t) + O(M* )
1
=M (% -M1n*M + BiMIn M +B2M)
s

M 3 2 §+€
—/ (—-tln t+Bltlnt+Bgt) dt+O(M2 )
1

2
T
13 21..2 2 2 31e
= 5 MM+ CiM M + CoM ++O(M2 ) 9)
T
where C' and C'y are computable constants.
Note that 0 < z — M2 < /z and In? 7 = 41n2 M + O(z~27), then from
(8) and (9) we get

Z d(n+a(n)) = 43?$1n2 z+ Ajzlnz + Asx + O(:c%+€).

n<z

This completes the proof of Theorem.
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Abstract In this paper, we study the mean value of two Smarandache-type multiplicative
functions, and give a few asymptotic formulae.
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§1. Introduction

In [1], Henry Bottomley considered eleven particular families of interrelated
multiplicative functions, which are listed in Smarandache’s problems.

In this paper we study the mean value of two Smarandache-type multiplica-
tive functions. One is Cp,(n), which is defined as the m-th root of largest
m-th power dividing n. The other function J;,(n) is denoted as m-th root of
smallest m-th power divisible by n. We will give a few asymptotic formulae
on these two functions. That is, we shall prove the following:

Theorem 1. For any integer m > 3 and real number x > 1, we have

3 Ot = a0 (5.

Theorem 2. For any integer m > 1 and real number x > 1, we have

2 RIS N B

=0T Ee T R )
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§2. Proof of the theorems

Now we prove the theorems. Let

Noting that
Cr(p®) =p*,  if mk<a<mk+1).

Then from the Euler product formula [2] we have

fis) = 11 iicm(pa)

ol o’ pas
e cnwm)
- 1;[ kZ::O/J’:O pmk+ﬂ)s ]
[0 m—1 lc
= H Z pmk+ﬂ ]
P | k=0 B=0
1 1~ ]:as)c(ms—l)_
ey ey

So by Perron formula [3] we can get

> Omln) _ 1. /MT fs+ So)%sds +0 (LBU’ + UO))

<z n S50 271 Jo—iT T
1
+0 (xl_""H(Zc) min (1, 05 “7)) +0 (:1:_‘70 H(N) min (1, ﬁ)) ,
x
where N is the nearest integer to z, and ||z|| = |z — N|. Taking s = 0,b =2

and T' > 2 in above, then we have
1 3T s 3
ZZW"‘ = /2 f(s)x—ds+0<ﬁ> .
oyt T i 34T S T

Now we move the integral line from %:l:z'T to % —41". This time, the function

have a simple pole point at s = 1 with residue

¢(m—1)
¢(m)

x
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Now taking I" = z, then we have
-1 1 3+iz 5 L
> Cm(n) = %x + 5 /%_m f(s)%ds +0 (7+)
— 7C(ZT;)1)$+O (/_J; f (% -I—e-l-ix)
— 1)

= C(?Wm + 0 (ma’L%"'e) .

This proves Theorem 1.
For any integer m > 1 and real number z > 1, let

o(s) = 3 Tml)

ns

n<z

1
3 te

)+

Noting that
I (p%) = pkH, if mk<a<m(k+1).

Then from the Euler product formula [2] we have

[ — Jm(pa)]
» as

g(s) = H
mk-l—/J’)
= H 1+ZZ mk+,3)s

ey Z;ms]

p | kOﬁlp

_ 1l 1- L ]
ey 5 (=)

_ H 14 1 n p(m+1)372 + p2s1—1 - p(m+11)3*1 - p(m+12)572

e (1-5) (1= 52=)

_ C(s—1) H 1 p(m+11)sf2 + p2s1—1 - p(m+11)371 - p(m+12)372
e | 2 1 2) ()

So by Perron formula [3] and the methods of proving Theorem 1 we can easily
get Theorem 2.
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Abstract The main purpose of this paper is using the elementary method to study the
mean value properties of the compound function involving €2 and Smarandache
ceil function, and give an interesting asymptotic formula.
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1. Introduction

For a fixed positive integer k£ and any positive integer n, the Smarandache
ceil function Sg(n) is defined as follows:

Si(n) = min{m € N : n|m*}.

This was introduced by Professor F.Smarandache. About this function, many
scholar studied its properties, see [1] and [2]. In [1], Ibstedt presented the
following properties:

(Va,b € N) (a,b) =1 = Si(a-b) = Sk(a) - Sk(b),

and Si(p®) = p!%!, where p is a prime and [z] denotes the least integer
greater than . That is, Sk(n) is a multiplicative function. Therefore, if n =

Py ps? -+ - p&r is the prime decomposition of n, then the following identity is
obviously:

AN

Sk(n) = Sp(py'p3® - ") = py cepr kL (1)
The arithmetic function 2 is defined as follows:
Q(n) = Qp*py°---pp") =1 +ag + - + .

In this paper, we use the elementary method to study the mean value proper-
ties of the compound function involving €2 and Sk (n), and give an interesting
asymptotic formula. That is, we shall prove the following:
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Theorem. Let k be a given positive integer. Then for any real number
T > 3, we have the asymptotic formula:

3 Q(Sk(n)) = zInlnz + Az + O (ﬁ) ,

n<x

1 1
where A = v + E (ln (1 — —) + —), v is the Euler constant and E de-
p p
P 2

notes the sum over all the primes.

§2. Some simple lemma

Before the proof of the theorem, a simple lemma will be useful.
Lemma 1. Let w(n) = w(p*ps?---p) = r. Then for any real number
T > 3, we have the asymptotic formula:

> w(n )—xlnlnm+Ax+O(1 w)

n<x

1 1
where A = v+ E (ln (1 — —) + —), «y is the Euler constant.
p p
2

Proof. See reference [3].
Lemma 2. For any real number x > 3, we have the asymptotic formula:

ZQ <J;k+1

n<x

neA

where A denotes the set of k + 1-full numbers, € is any fixed positive integer.
Proof. First we define arithmetic function a(n) as follows:

(n) = 1, if n is a k 4+ 1-full number ;
M= 0, otherwise .

Now from Euler product formula, we have

— a(n) 1 1
nzzl ns 1;[ (1 + p(k+D)s + p(E+2)s +)
1 1
= H<1+ ] T L)
p p®
1 p(k+1)s s
= H (1 + pk+D)s ) pDs {1 + (p*+Ds +1)(p° — 1)

b
» +
C((k+1)s)

Cek+ ))1;[<”( G| (ps—1>
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where ((s) is the Riemann-zeta function. By Perron formula (see [4]), we can
obtain

Za(n)zZl

n<z n<zw
neA
1
_ 6(k+ zFt 12)30“1 II <1 + 1; ) +0 (me) .
T P (p+1)(pFTt —1)
So we have )
Z Q(n) < zF1te
n<x
neA

This proves Lemma 2.

§2. Proof of the theorem

In this section, we will complete the proof of the theorem. Let

ar, Q2

n=piy'py” P
From (1) and the completely additive property of function 2 , we can write

Q(Sk(n)) = Q (p{ﬁpgﬁ ---piaﬁ> = [%W : 2

=1
It is clear that [ 9] > 1, so we get

T

3 [O‘ﬂ > ;1 = w(n). 3)

=1

On the other hand, if there have some prime p; such that pf +1 | 7, then [%ﬂ >
2. Let n = mine, where (n1,m2) = 1 and ny is a k + 1-full number. That is,
if p | ny then pkt! | n1. Now we can easily get the following inequality:

r -

%Swn-l—Qn. 4
>[5 ] < o + 0

From (3) and (4), we can write

w(n) < i ?-‘ <w(n) + Qn1).

So we have
Sum) < T asim) = LY [ < Tom+ X 0w, ©
n<x n<z n<zi=1 n<z n<z
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where A denotes the set of k£ + 1-full numbers. Now combining Lemma 1,
Lemma 2 and (5), we have

Z Q(Sk(n)) =zlnlnz + Az + O (&) .

n<z

This completes the proof of the theorem.
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Abstract Let p be a prime, e, (n) denote the largest exponent of power p which divides n.
In this paper, we study the mean value of Z ((n+1)™ —n™)ep(n), and
nm<x

give an asymptotic formula for it.
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§1. Introduction

Let p be a prime, e,,(n) denote the largest exponent of power p which divides
n. In problem 68 of [1], Professor F.Smarandach asked us to study the proper-
ties of the sequence e,(n). In this paper, we use elementary methods to study
the asymptotic properties of the mean value Z ((n+1)™ —n™) ep(n), and
nm<x
give an asymptotic formula for it. That is, we will prove the following:
Theorem. Let p be a prime, m > 1 be an integer, then for any real number
x > 1, we have the asymptotic formula

Y (1) —n"™)ep(n) = ——

g p—1m+1

z+ O (:vl_%)

§2. Proof of the theorem

In this section, we complete the proof of the theorem. In fact, from the
definition of e,(n) we have

> ((n+1)™ —n™) ep(n)
= > Y ((u+1)"+ (@)™ a
e
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— Z Z (C’rlnpa(m—l)um—l + Cfnpa(m—Q)um—Q 4. )

1
—mlogp u<zm
(u,p):l

_ Z a Z (Crlnpa(m—l)um—l_I_CTana(m—Q)um—Q_l__._) o
a< Llogz L
= m logp ugﬂ;gl

Cl a(m—1) m=1 4 2 a(m—2) m—2

Yo oa > (Cwp (up)™ ™ + Cpp (up)™ ™% +
a<Lloge =
—m logp u<p9;T_1

I
Q
/7~
R
+
—_
ﬁ
//~ 3
|
¥|/
_l’_
Q
/\
’E\
Q
SN—"
——

a< L logz
—m logp
mz 1 a 1 a
- )y fiofla v oo
m p a<L1£€_’:p a<L1£€_mp
='m Togp m logp
and
a > n a
> Loyroy o2
ag Llos n=1 a>Llsz
m logp m logp
1 logz
_ D 1 e
(p 1)2 p[%i%g_ﬁ] n=1 pn
B p 1 <llogw)2
 (p-1% z \\mlogp
P _
— (p—1)2+0($ 1logQJ:)
So we have

Z ((n+1)"™ =n")ey(n)

nm<g

O [ ES)

+0 <$17#) (ﬁ +0 (xil log? :v))
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= Z%mrilx%—O(xl#).

This completes the proof of the theorem.
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Abstract In this paper, we study the asymptotic property of the divisor product sequences,
and obtain two interesting asymptotic formulae.
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§1. Introduction

A natural number 7 is called a divisor product of n if it is the product of all
positive divisors of n, we denote it by a(n). For example, a(1) = 1,a(2) =
2,a(3) = 3,a(4) = 8,a(5) = 5,---; Similarly, n is called a proper divisor
product of n if it is the product of all positive divisors of n except n, we de-
note it by b(n). For example, b(1) = b(2) = b(3) = 1,b(4) = 2,b(5) =
1,b(6) = 6, - -. In reference [1], Professor F. Smarandache asked us to study
the properties of these two sequences. About these problems, it seems that
none had studied them before. In this paper, we shall use the analytic methods
to study the asymptotic properties of these sequences, and give two interesting
asymptotic formulae. That is, we shall prove the following two theorems.

Theorem 1. For any real number x > 1, we have the asymptotic formula

> Ina(n) = %manx +(C—-1)zlnz—(C—-1)z+ O(x% Inz).
n<z

where C'is the Euler constant.
Theorem 2. For any real number x > 1, we have the asymptotic formula

Z Inb(n) =zln’z + (C —2)zlnz — (C — 2)$+O($% Inz).

n<z

§2. Some lemmas

To complete the proof of the theorems, we need the following simple lem-
mas.
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Lemma 1. For any natural number n, we have the following identities

d(n) d(n)—1
aln)=n"2,  bn)=n"2,

where d(n) is the divisor function.
Proof. From the definition of a(n) we know that

n
a(n) = H d= H 3
dln dln
So from this formula we have

aQ(n):HdXHEZHn:nd("). €))
dln

dln dln

where d(n) = Z 1. From (1) we may immediately obtain a(n) =n"2 and

dln
114

d
d|n = ’n,%_l.

b(n) = H d=

d|n,d<n

n

This completes the proof of Lemma 1.
Lemma 2. For any real number x > 1, we have the asymptotic formula

Y d(n) = zlnz +2(y— 1)z + O(z?),
n<z

where vy is the Euler constant.
Proof. (See reference [2]).
Lemma 3. For any real number x > 1, we have the asymptotic formula

Z dn)lnn=zln’z+2(y—1)zlnz —2(y— 1)z + O(x% Inz).
n<x
Proof. Let A(z) = Z d(n), then by Abel’s identity (see Theorem 4.2 of

n<z
[2]) and Lemma 2 we have

Z d(n)lnn

n<x

= A(z)lnz — A(1)Inl — /f @dt

= Inz (xlnav +2(y—-1)z+ O(x%))

M

)dt

T 4nt+2(y— 1)t +O(t
_/1 t
= zln’z+ (2y— D) zlnz — (tInt —t+ (2y — 1) 1) |Zf+0(x% Inx)
= xln2x+2(fy—1)x1nx—2('y—1):v-|—0(:v% Inz).

This completes the proof of Lemma 3.
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§3. Proof of the Theorems

In this section, we shall complete the proof of the Theorems. First we come
to prove Theorem 1. From Lemma 1 and Lemma 3, we have

n 1
Z lna(n) = Z Inn s = 3 Z d(n)lnn
n<c n<z n<z

1
= §x1n2$+(7— zlnz — (’)’—1)]7-{—0(]7% Inz).

This completes the proof of Theorem 2.
Similarly, we can also prove Theorem 2. From Lemma 1, we have

dm-1 1 1
Z Inb(n) = Z Inn™ 2 = 3 Z d(n)Inn — 3 Z Inn
n<z n<z n<z n<z
1 1
= 3 Z d(n)Inn — 2 In [z]!.
n<z
Note that
Infz]! =zlnz — 2+ O(lnz) 2

(see reference [2]). Then by Lemma 3 and (2), we can easily obtain
Z Inb(n) =zln?z 4+ (y—2)zlnz — (v —2) z + O(m% Inz).
n<x

This completes the proof of Theorem 2.
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1. Introduction

A number is called pseudo-even number if some permutation of its digits is
a even number, including the identity permutation. For example: 0,2, 4,6, 8,
10,12, 14,16, 18,20,21, - - - are pseudo-even numbers. Let A denotes the set
of all the pseudo-even numbers. Similarly, we can define the pseudo-odd num-
ber. That is, a number is called pseudo-odd number if some permutation of its
digits is an odd number, such as 1,3,5,7,9,10,11,12,13, - - - are pseudo-odd
numbers. Let B denote the set of all the pseudo-odd numbers.

In reference [1], Professor F. Smarandache asked us to study the properties
of the pseudo-even number sequence and pseudo-odd number sequence. About
these problems, it seems that none had studied them before. In this paper, we
use the elementary method to study the mean value properties of these two
sequences, and obtain some asymptotic formulae for them. That is, we shall
prove the following:

Theorem 1. For any real number x > 1, we have the asymptotic formula

> fm) = fn)+ O (Mawi),
n<s ner

where M = lrgnggm{\f(nﬂ}
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Theorem 2. For any real number x > 1, we have

> f(n) =3 f(n) + O (Mawis).
e

Corollary. For any real number x > 1, let d(n) denote the divisor function,
then we have the asymptotic formulae

Z d(n) =zlnz + (2y - 1)z + O (x%“)
neA
n<z

and .
S d(n) = slns + 2y — 1 + 0 (a857)
neB
n<z

where vy is the Euler constant.

§2. Proof of the Theorems

Now we completes the proof of the Theorems. First we prove Theorem 1.
Let 10* < z < 10! (k > 1), then k < logz < k + 1. According to
the definition of set A, we know that the largest number of digits (< z) not
attribute set A is 5511, In fact, in these numbers, there are 5 one digit, they
are 0,2, 4, 6,8; There are 52 two digits; The number of the & digits are 5*. So
the largest number of digits (< z) not attribute set A is 5 + 5% 4 --+ + 5F =
3(5% — 1) < 5¥+1. Since

1
— 1
5k < logz _ (5log5;c) Tog5 10 _ ()50 = x—lln"fo,

So we have,

5k =0 (:1;11:150) .
Next, let M denotes the upper bounds of |f(n)| (n < z), then
Z fln)=0 (Macllnn_lso) .
n¢A

n<c

Finally, we have

Y. fn) = Y fn)= 3 f(n)

neA n<z n¢A
n<z n<c
= Zf(n)—I—O(Mxll;_fo)
n<zx

This proves the Theorem 1.
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Use the same method, we may immediately get:

S fn) =Y f(n) +0 (Mawis).
el =

This completes the proof of the Theorems.
Now the corollary follows from Theorem 1 and 2, the asymptotic formula

Z din)=zlnz+ (2y—-1)z+ 0 (x%)

n<z

(see [2]), and the estimate d(n) < z¢ (forall 1 < n < x).
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§1. Introduction

Let p be a prime, e,(n) denote the largest exponent of power p which di-
vides n. In problem 68 of [1], Professor F.Smarandache asked us to study the
properties of the sequence e,(n). About this problem, it seems that none had
studied it, at least we have not seen related papers before. In this paper, we
use elementary and analytic methods to study the asymptotic properties of the
mean value >, ., ep(n)$(n) (¢(n) is the Euler totient function), and give an
interesting asymptotic formula for it. That is, we will prove the following:

Theorem. Let p be a prime, ¢(n) is the Euler totient function. Then for
any real number x > 1, we have the asymptotic formula

Z ep(n)g(n) = 371)352 +0 (x%—}—e) '

2 _ 2
ot (p? = )7

§2. Some lemmas

To complete the proof of the theorem, we need the following:
Lemma 1. Let p be a given prime. Then for any real number z > 1, we
have the asymptotic formula

n;x $(n) = (pfﬁx? +0 (a:%"'e) ;

(n,p)=1
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Proof. Let

o0
-5
(u,p)=1

Re(s) > 1. Then from the Euler product formula [3] and the multiplicative
property of ¢(n), we have

> oy A

(no)=1 g7#p m=0
n,p)=

1+ 4

I
—
/N
—_
Q
[
|
Q
+
Q
|
Q
+
N——

Il
/N
—

+

< |-
T
=l
/N
—

+

T+~
—

+

N

@

=

+

N——
N——

q#p
1 _
_ II<L+1_E—£i—>
s—1 5—1 __ 1
q#p 4 q
_ Ss=1)p*—p
C(s) p*—1’

where ((s) is the Riemann zeta-function. By Perron formula [2] with sq = 0,
T=zand b= g,wehave

P(n 1 2*”(@—1M>—pw
Z; EﬁﬁﬂT ((s) pP—1s d+O<T)
(n,p)=1

To estimate the main term

1 /““I@—lnf—pﬁ
2mi s G(s) pP—1s

we move the integral line from s = g il tos = % 4 ¢+7T". This time, the
function
((s=1)p°—pz’

((s) pP—1s

has a simple pole point at s = 2, and the residue is C il) 7. So we have

1 /%JriT /2+ZT+/—ZT /giT ((s—1)p* —pz* 3pz?
2 \Jo—ir  Joqar v Jioir ) C(s) pP—1s  (p+1)n?

fls) =
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Note that

1 3T 34T 34T C(s—1)p* —pa? 5.
o + + e s o <Kzt
2im \JSpir  J3pir SRt ((s) p*—1s

From above we may immediately get the asymptotic formula:

3pz? 3.,
> o= grne o).

(n.p)=1
This completes the proof of the Lemma 1.

Lemma 2. Let « is an any fixed integer, and p is a prime. Then for any real
number x > 1, we have the asymptotic formula

a p -1
— =—+0(z "logz);
ag_gg_;Pa (r—1) ( )
1
Z %— 1p2 2-|-O(w 210gx)

a o
Y aoyioy 2
1
g1 sl
- pt [&S_w] pt
t=1 pHlosr’ t=1
logz
[e) t [l_g_] (o) ¢
_ Z_+O -1 ogp Z_
t _ t
=1 p—1 =p
p -1
= 4+ 0z " logz),
(p—1)° ( )
and
« i t o
= = ¥ = —a
A
& 1 &L+t
- Z_ﬁ_ l[m}z t
t=1P2  p2tlogp’ t=1 p?2
logz
> ¢ i N
D e e e
t—1 P2 pz—1 = p?
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This completes the proof of the Lemma 2.

§3. Proof of the Theorem

In this section, we complete the proof of the theorem.

> ep(n)p(n)
n<zx
= Y Y abtw= Y adkp) Y )
po<z peu<z pe<z u<ly
(u,p)=1 (u,p)=1
B 2 3te
A o= R (FY)
P e (p+1)7* \p p
log p
= el Z 2 40| aste Z 2
(p+1 S P° Toge P2
logp A= Togp
3(p—1) , p 1
= +0 1
i e O o)
+0 | z2 7€ b 2+O(x 2logx)

This completes the proof of the Theorem.
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§1. Introduction

Let n be an positive integer, if a(n) is the smallest integer such that na(n)
is a cubic number, then we call a(n) is the cubic complements of n. For any
positive integer n and any fixed positive integer k, we define the arithmetical
function S(n) as follows:

Si(n) = max{z € N | z¥ | n}.

Obviously, that Si(n) is a multiplicative function. In this paper, we use the

elementary method to study the mean value properties of Sao(a(n)) , and give

a sharp asymptotic formula for it. That is, we shall prove the following:
Theorem. For any real number x > 3, we have the asymptotic formula

2.4

= Tem 1 3.,
ZSQ(CL(’H)): 315 1;[(1+]m> +O(:pz+)’

n<x

where ((s) is the Riemann zeta-function, H denotes the product over all prime

P
p, and € be any fixed positive integer.

§2. A Lemma

To complete the proof of the theorem, we need the following famous Perron

formula [1]:
o0

Lemma. Suppose that the Dirichlet series f(s) = Z a(n)n"% s = o+it,
n=1
converge absolutely for o > (3, and that there exist a positive A and a positive
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increasing function A(s) such that
o
Z la(n)|n™° < (6 —B)"to—=B+0
=1

and
a(n) € A(n),n=1,2,---.
Then for any b > 0, b+ o > f, and x not to be an integer, we have

s 1 b+iT xwd 0 xb
%a(n)n _2—7Ti/b—iT f(S()-I—(xJ); w + T—(b—f—a—,@))‘
A(2z)zt=° logw)
+0 ,
( Tzl

where || x || is the nearest integer to x.

§3. Proof of the theorem

In this section, we complete the proof of the theorem. Let

fls) = Y. S2te))

s
n=1 n

Re(s) > 1. Then by the Euler product formula [2] and the multiplicative
property of So(n) we have

o = 11 <1 | Balap) | Bala?) | Balals®)) , )

p ps p23 p3s
Sp*) S 1) | Sa(p?
_ H<1+ 20) | 5olp) | Boll) | 2<£)+___>
» p P p p
1 1
_ H(1+%+TS+§+%+---)
» pt o p¥ p>¥p
1 1 1
- N )
p 3 p3
= §(33)H(1+ )
P P
_B9) oy ( )
C(23_2 23 +ps+1

where ((s) is the Riemann zeta-function. So by Perron formula, with s = 0,
t=x2,b= 3, we have
1 34T (s —1)((3s) z* 3
Sa( / 2 R(s)—ds + O(x2%),
Z 2(n ~ %r 3—ir  ((25—2) (5) s s+0(@2™)

n<x
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where )
R(S):H(1+W)'

To estimate the main term

1 3+ ((3s)¢(s — 1) z°
% /S—iT ¢(2s —2) R(s):ds

we move the integral line from s = 3 + T to s = % + ¢T'. This time, the

function
((3s)¢(s — 1)z*

fls) = (25 — 2)s

R(s)

x>

has a simple pole point at s = 2 with residue ¢ C(6)R(2). So we have

L (30T et st st ((3s)¢(s — 1)a?
2im </3—iT +/3-|—iT +/g+iT +/%_iT> ((25 —2)s R(s)ds
z? 1
“ @@l (14 54)

Noting that

1 T ST 3—iT 1Dzt
e /2 +/2 -I-/ C@s)¢(s — Lo R(s)ds < :1;%"'6,
2 \ Japar 34 i C(2s —2)s

and

we may immediately get the asymptotic formula:
2,4

— T 1 3¢
ZSg(a(n)): 315 1;[(1+W>+0<$2+).

n<x

This completes the proof of the theorem.
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Abstract For any positive integer n, let {a } denotes the symmetric sequence. In this pa-
per, we study the asymptotic properties of {a~ }, and give an interesting identity
for it.
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§1. Introduction

For any positive integer n, we define the symmetric sequence {ay} as fol-
lows: a1 = 1l,a92 = 11,a3 = 121,a4 = 1221,a5 = 12321,a¢ = 123321,
ey a9k—1 = 123--- (K — 1)k(k — 1)---321, a9 = 123--- (k — 1)kk(k —
1)---321,---.In problem 17 of [1], Professor F.Smarandache asks us to study
the properties of the sequence {a,}. About this problem, Professor Zhang
Wenpeng [2] gave an interesting asymptotic formula for it. In this paper, we
define A(ay,) as follows: A(a1) =1, A(a2) =2,A(a3) =4,---, Alagg—1) =
1+24+---+k—1+k+k—1+---+1,A(a2k) =1+ ---+k—1+k+k+
kE—1+4+---41),---. We shall use elementary method to study the properties
of sequence A(ay,), and obtain an interesting identity involving A(ay). That
is, we shall prove the following:

Theorem. Let A(ay,) as the definition of the above. Then we have

o
2

n=1

L _T
Alap,) 6 '

§2. Proof of the Theorem

In this section, we complete the proof of the theorem. From the definition
of A(ay), we know that



98 RESEARCH ON SMARANDACHE PROBLEMS IN NUMBER THEORY

So by this formula we have

n n—1 "ok —1
D Alar) = Y Alag1) + ) [T] +n. (1)
k=1 k=1 k=1
From (1) we may immediately get
" Tk—1 (n—1)2
Alay,) = k; [T] +n= lT] +n. )

In the following, we separate the summation in the Theorem into two parts.
For the first part, if n = 2k + 1, we have

2k +1) —1]?
Alay) = [% +2k+1=(k+ 1) (3)
For the second part, if n = 2k, we have
2k —1)?
Alay) = l%] + 2k = k* + k. (4)

Combining (2), (3), (4) and note that {(2) = %2 we have

2 A(:;n) N A(Zl) +§:1 (/lc+11)2 +1§ k(k1+ 1)
- g%Jr,ik(kil)

This completes the proof of the Theorem.
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§1. Introduction

Let n > 2 be a positive integer, a(n) denotes the integral part of the k-th
root sequence, we can express it as a(n) = [n%] In paper [2], Jozsef Sandor
defined the following analogue of the Smarandache function:

Si(z) =min{m € N : z <ml!},z € (1,00),

which is defined on a subset of real numbers. In this paper, we study the mean
value properties of the additive analogue Smarandache function acting on the
floor of the k-th root sequence, and obtain two interesting asymptotic formulae.
That is, we shall prove the following:

Theorem 1. For any real number x > 2 and integer k > 2, we have the
asymptotic formula

1
zlog x z(log x)(log log log x %
n<z kloglog z*® (loglog z*)?

Theorem 2. For any real number x > 2, we have the estimate

log? loglog 1
> dmSi(n) = e (140 (FECEET))
e loglog x log log x

where d(n) be the divisor function.

§2. Proof of the Theorems

In this section, we shall complete the proof of the Theorems. Firstly, we
need following:
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Lemma 1. For any real number x > 2, we have the mean value formula

ZS ) — zlogzx +O(m(logm)(loglogloga:)>.
log log x (loglog z)?

n<z
Proof. From the definition of S, we know that if (m — 1)! < n < m!, then
S1(n) = m. For (m —1)! < n < m!, by taking the logistic computation in the

two sides, we have
m—1

Z logi < logn < Zlogz
=1 =1

Using the Euler’s summation formula, we get

Zlogz—mlogm m + O(logm) = Zlogz
=1
So
logn = mlogm —m + O(log m),
then we can obtain )
ogn
=———40(1
logm—1+ (1),

we continue taking the logistic computation in two sides, then

~ logn + ( (log n)(loglog log n) )
~ loglogn (loglogn)?

Using the Euler’s formula, we have the estimate

2. St = >, ) 0m

n<x n<z (m—1)!<n<m!
_ Z ( logn Lo ((log n)(log log log n)))
= Toe loo 7 2
4= \loglogn (loglogn)

_ logn z(log x)(log log log x)
= 2 iogiogn "9 log log 7)?
i<, loglogn (loglog z)

_ zlogzx 0 (x(log z)(log log log m))
log log = (log log x)2 '

This proves Lemma 1.
Lemma 2. For any real number > 2, we have the estimate

Y d(n) = zlogz + (2y — 1)z + O(Vx),

n<zx

where 7y is the Euler’s constant.
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Proof. See reference [3].
Now we use the above Lemmas to complete the proof of the Theorems. First
we prove Theorem 1, from the definition of a(n), we have

> Siam) = 3 S ([n+])

n<z n<lc
— dYoosM+ D Si@) 4+
1k <i<2k 2k <i<3k

+ Z Sl(N)+O(Nk—1+E)
Nk<i<z<(N+1)k
= Y (G+Dr=5%) s() + owt1*e)
1<j<N
Let
zlogx

A(x):zsl(n)—7+o(

e loglog x

z(log x)(log log log x) )
(log log )2 ’

and f(j) = (j + 1)k — 5%, suppose N*¥* < z < (N + 1)*, then by Abel’s
identity we can get

> Sifa(n)

n<z
= AN - A@F@ - [ AWS W+ O

Nlog N N(log N)(log loglogN))) k k
_  (NlgN N+ —N
(loglogN " ( (loglog N)? <( U )
N/ tlogt t(logt)(loglog log t) PN
_ O t+1)" —¢t%) dt
/2 (log logt + ( (loglog t)2 >) (( +1) )
_ NFlogN 0 N (log N)(logloglog N)
loglog N (loglog N)?

B zlogz 4O (:v(log:v)(loglogloga:h)
(log log z+)? '

kloglog Tk

This completes the proof of the Theorem 1.
Now we prove Theorem 2. From the process of proof Lemma 1 and apply-
ing Lemma 2 we have

3 d(n)$) (n)
n<x
= Z z d(n)m

n<z (m—1)!<n<m!
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_ Zd(n)( logn +O((logn)(logloglogn)))

e loglogn (loglogn)?
1 1 log log1l
n<w 0g logn n<w (log logn)
Let
A(z) =) d(n) = zlogz + (2y — 1)z + O(V=),
n<x
and

logt folt) = (log t)(logloglogt) '

)= —0
Att) loglogt’ (log log )2

From Abel’s identity, we can obtain

> d(n)Si(n)

n<zx
= AN - AQLEG - [ AOH@d+
+0 (4@ fala) = A2)22) - [ A0S0t )

oz log? z zlog? z loglog log
loglog (loglog z)?

_ zlog?x (1 L0 <logloglogx>> .
loglog x log log x

This completes the proof of Theorem 2.
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Abstract The main purpose of this paper is using the elementary method to study the
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1. Introduction

For a fixed positive integer k£ and any positive integer n, the Smarandache
ceil function Sg(n) is defined as follows:

Sk(n) = min{m € N : n|mF}.

This was introduced by Professor F.Smarandache. In [1], Ibstedt presented that
Sk(n) is a multiplicative function. That is,

(Va,b € N) (a,b) =1 = Sk(a-b) = Sk(a) - Sk(b).

It is easily to show S (p®) = pl% !, where p is a prime and [z] denotes the least
integer greater than z. So, if n = p{*ps? -+ - p& is the prime decomposition
of n, then the followinig identity is obviously:
Sk(n) = Sp(pPps? - p2r) = pl F ph* | -opr . (D)

In this paper, we used the elementary method to study the value distribution
properties of Si(n!), and given an interesting asymptotic formula. That is, we
shall prove the following

Theorem. Let k be a given positive integer. Then for any integer n > 3, we
have the asymptotic formula:

Q(Si(n) = 7 (nlnn + 0) + O (l) ,

Inn

where C'is a computable constant.
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§2. Some simple lemmas

Before the proof of the theorem, some simple lemmas will be useful.
Lemma 1. Let n be any positive integer, we have the asymptotic formula:

1 n n
Z@=T+O(T), ®)

p<n In“n In°n

where p denotes primes.
Proof. From Abel’s identity (see [2]), we have

=)+ [ )t
— =7(n)— 7(t) ———dt,
pSnlnp Inn 2 tln“t

where m(n) denotes the number of the primes up to 7. Noting that

n n
“mzaﬁ“mamy

n
40 (—) .
lnp In’n In®n
This proves Lemma 1.

Lemma 2. Let m be any positive integer, we have the asymptotic formula:

we can get

2 s

p<n

zl 1n1nn-|—A+O< L ), 3)

o< Inn

where A is a computable constant.
Proof. See reference [3].

§3. Proof of the theorem

In this section, we will complete the proof of the theorem. Let

1,02

=pi'pet .
From (1) and the completely additive property of function €2 , we can write
o1 a2 ar r Q;
o) = o (o F AT o0 [H) @
i=1

It is clear that

o n
:Z[_.], i=1,2,- .7
o Lo
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Noting that if p/ > n then [;’—J] = 0, from Lemma 1 we can write

asi) = ¥ | [g]

:z%

p<n

:Z%

p<n J=1

Il
=3
| | =
—_

|
£

S —
|
=
N———

+

®)
7N

E
N——

Il
>3
IA
i
|-
—_
N———
+
Q
=
=
2l
N—

p<n
_ofsliy L )io(n). e
k P pgnp(p—l) Inn
Noting that
1 1 1 1
27:27—27:3—1—0(—), (6)
Zple—1) 4plp-1) Splp-1) n

1
where B = Z Py is a constant. Combining (5), (6) and Lemma 2, we

> plp—1)
can get

Q(Si(n) = 7 (nlnn + 0) + O (ﬁ) .

This completes the proof of the theorem.
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Abstract Let p and q are two primes, e (n) denotes the largest exponent of power ¢ which
divides n. And b(n) is the cubic complements. In this paper, we study the
properties of this sequence pea®(™) and give an interesting asymptotic formula
for the mean value ) p®a (™).
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1. Introduction

Let p and g are two primes, e4(n) denotes the largest exponent of power ¢
which divides n. It is obvious that e,(n) = k if ¢* divides n but ¢**1) does
not. For any positive integer n, the cubic complements b(n) is the smallest
positive integer such that nb(n) is a perfect cubic. In problem 28 and 68 of
[1], Professor F.Smarandache let us to study the sequences e4(n) and b(n). In
this paper, we use the elementary methods to study the mean value properties

of ¥ pa(®™) and give an interesting asymptotic formula for it. That is, we
n<z
will prove the following :

Theorem. Let p and q are two primes, then for any real number T > 1, we
have the asymptotic formula

2 2
ealbn) — " FTPATD 5t
dop o (z279),

n<x

where € is any fixed positive number.

From this Theorem we may immediately deduce the following

Corollary. Let g be a prime, then for any real number x > 1, we have the
asymptotic formula

Z gt ™) = gz 4 O(SE%—H),

n<x

where € is any fixed positive number.
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§2. Proof of the Theorem

In this section, we will complete the proof of the theorem. Let positive
integer n = u3v?w, where v, w are square free numbers and (v,w) = 1. Then
from the definition of b(n), we can get b(n) = vw?. For any prime p and any
nonnegative integer m, we have

1, if m=3t
b(p™) =14 p°, if m=3t+1 (1)
D, if m=3t+2

For any complex s, we define the function

X pea(b(n))
_ p

It is clear that for any positive integer 7, e4(n) is an additive function and b(n)
is a multiplicative function. So we can prove that p€ (") is also a multiplica-
tive function.

If Re(s) > 1, then from the definition of e4(n) and the formula (1), applying
the Euler product formula (See Theorem 11.6 of [3]), we can get:

X eq(b(n)) 4(b(pT*)
£ (57

n=1 n
_ H (i peq(l) Z peq P1 i peq(Pl) )
o\ pilit 3t—|—1 = pg3t-|—2)s
1 & p2 D ) 11
= (Y = +Z +Z H(1+—+—+--->
3 2
<t “q ts - q(3t—|—1)s paard q(3t—|—2)s e s pls
_ q38+p2q28+pq L-l_...
- q H p 2s
P1#q 1 1
2s 2
B @’ +p°¢°+p
= )"z 75 )
g +q¢°+1
By Perron formula (See [2]), takinig sg = 0,b=2,T = z3/ 2. then we have
1 24T s
> b | (@RS ds + O o),
= 27rz 2 4T S

2s . ..
where R(s) = % and e is any fixed positive number.
Now we estimate the main term

o [ R D as,

271 Jo_iT S
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we move the integral line from 2 + 47" to 1/2 + 4T, this time, the function

C(s)R(s)—

S

have a simple pole point at s = 1 with the residue R(1)z, so we have

1 24T 1/244T 1/2—iT 2—iT 8
- / + + + C(s)R(s)Zds = R(1)z.
2ms \Jo—iT 2+4T 1/2+iT 1/2—iT

Taking 1" = x%, we have

1 $+iT 2—iT 8
— —d
271 </2+z’T +/%—1T> () R(s) s

2 2

< [ [¢lo +iT)R(s) | do
2
2+€

< xT .

And we can easy get the estimate

1 T s 1 1
— / CLOEE (5 + it R(s) | dt < zH+e.
2

2

T
<</
0

R(1 P +piq+p
(1) = 5——"—
g +qg+1

21 J 1T

Noting that

so we have the asymptotic formula

2 2
ealbn)) — 4" FTPATD 5 ey
2.7 > +q+1 (=27)

n<x

This completes the proof of the Theorem.
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Abstract In this paper, we study the counting problems of the Smarandache pseudo-
number sequences, and give some interesting asymptotic formulae for them.
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§1. Introduction

According to reference [1], a number is called pseudo-even number if some
permutation of its digits is a even number, including the identity permutation.
For example: 0,2,4,6,8,10,12, 14,16,18,20,21, - - - are pseudo-even num-
bers. Similarly, a pseudo-odd number is defined that if some permutation of
its digits is an odd number, such as 1,3,5,7,9,10,11,12,13,- - - are pseudo-
odd numbers. Let A and B denote the set of all the pseudo-even numbers and
the pseudo-odd numbers respectively. In addition, a number is called pseudo-
multiple of 5 if some permutation of the digits is a multiple of 5, including the
identity permutation. For example: 0, 5,10, 15,20, 25, 30, 35, 40, 50, 51, - - -
are pseudo-multiple of 5 numbers. Let C' denotes the set of all the pseudo-
multiple of 5 numbers. For convenience, let A(x), B(z) and C(z) denote the
number of pseudo-even numbers, pseudo-odd numbers, and pseudo-multiple
of 5 numbers that not exceeding x. That is,

A(z) = Z 1;  B(z)= Z 1;  Cz)= Z 1.

neA nEB neC

n<z n<z n<z
In reference [1], Professor F. Smarandache asked us to study the properties of
the pseudo-number sequence. In this paper, we use the elementary method to
study the counting problem of these three sequences, and obtain three interest-
ing asymptotic formulae for them. That is, we shall prove the following:

Theorem 1. For any real number x > 1, we have the asymptotic formula
In5

In(z — A(z)) = n10 Inz + O(1).
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Theorem 2. For any real number x > 1, we have the asymptotic formula

Inb
In(z — B(z)) = 1;1—10 Inz + O(1).

Theorem 3. For any real number x > 1, we have the asymptotic formula

In8
In(z — C(z)) = 11:—10 Inz + O(1).

§2. A Lemma

To complete the proof of the theorems, we need the following lemma:
Lemma. For any real number x > 1, we have the inequalities

5
5F <z — A(z) < 1(51C —1);

5F <z — B(z) < 2(51C —1);

sh<z—-0C(x) < g(s’c —1),

where k is a positive integer such that 10¥ < z < 10F+1,

Proof. Let 10¥ < z < 10*¥+! (k > 1), then k < logz < k + 1. According
to the definition of set A, we know that the largest number of digits (< z) not
attribute set A is 511, That is, in these numbers, there are 5 one digit, they
are 0, 2,4, 6,8; There are 52 two digits; The number of the & digits are 5%. So
the largest number of digits (< x) not attribute set A is 5 + 5% + --- + 5% =
3(5F — 1) < 5F*1. Then we get

5
5F <z — A(x) < 1(51C —1).
Use the same method, we may immediately get:

58 <z — B(z) < 2(51c —1);

and 8
k<o —Cx) < ?(Sk —1).

This proves the Lemma.

§3. Proof of the Theorems

Now we prove the Theorems. In fact from the Lemma and note that & <
Inz < k 4+ 1 we have

1
1 1
5k < glogo — (51055$) 8510 _ (7)ToBs 10 = ginto
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and

1 1
5k+1 > 5logz — (5log5 a:) Tog5 10 _ (:E)@ _ .7,‘111?150.

Therefore

1 n 1 n
gxxﬁggX5k+1§x—A(x)§5k+1§5xmﬁ.

Now taking logarithm on both sides of above, we get

In(z — A(z)) = 111_5 Inz + O(1);

Use the same method, the following formula will be immediately got.

In5

In(z — B(z)) = hfl—lolnm—l—O(l);
In8

In(z — C(z)) = hf—lolnx+0(1).

This completes the proof of the Theorems.
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§1. Introduction

For any fixed positive integer n, the famous Smarandache ceil function of
order k is defined as following:

Sp(n) = min{z € N | n | zF} (Vn € N*).

For example, S2(1) = 1, S2(2) = 2, S2(3) = 3, S2(4) = 2, S2(5) = 5,
S2(6) = 6, S2(7) = 7, S2(8) = 4, S2(9) = 3, ---. This function was first
introduced by Professor Smarandache [1], and many scholars showed great
interest in it (see references [2], [3], [4]). Similarly, for any positive integer n
and any fixed positive integer k, we define an arithmetical function S (n) as
following:

Si(n) = max{z € N | z* | n}.

Because
(Va,b € N*)(a,b) =1,
so we have
Si(ab) = max{z € N |zF|a} -max{z e N |zF|b}
= Sk(a) - Sk(b),
and

Sk(p®) = pl#],
where |z | denotes the greatest integer less than or equal to z. Therefore, if

n = pitpy? - p&r is the prime powers decomposition of n, then we have

Sk(pipg? - -par) = plT) - pl ¥ =5 p) ... Fpen).
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So S(n) is a multiplicative function. There are close relations between this
function and the Smarandache ceil function [4]. In this paper, we shall use
analytic methods to study the mean value properties of o4 (Sk(n)), and give
several asymptotic formulae for it. That is, we shall prove the followings:

Theorem 1. Let a > 0, 04(n) = > d*. Then for any real number x > 1
dln
and any fixed positive integer k > 2, we have the asymptotic formula

a+1 .
C(k—a)x+0(x5+€), if a<k-1.

> o (Sk(n)) =

where ((s) is the Riemann zeta-function, and € be any fixed positive number.
Theorem 2. Let d(n) denotes the divisor function. Then for any real num-
ber x > 1 and any fixed positive integer k > 2, we have

> d(S(m) = (k) +0 (237°).

n<z

a+l a a
{ ke (2 )x%+o(m%l+f), if a>k—1,

Taking k£ = 2, 3 in Theorem 2, we may immediately deduce the following:
Corollary. For any real number © > 1, we have

S d (Saln) = T+ 0 (a3
> (Sa(m) = T +0 (449

§2. Proof of the Theorems
In this section, we shall complete the proof of the Theorems. First we prove

Theorem 1. Let -
X g4 (Sk(n
f(s) = Z M

S
n=1 n

From the Euler product formula [5] and the multiplicative property of o, (Ek (n))

we have
oo (S oo [ Sk(p"
f(s) = H(l.kw%_..._kw%_”.)
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1 1
-1 1_W+1_W 1+p"‘+1+pa+p2°‘_|_m
1_1% 1_L pks pks

P p?

1 1 1
= C(S) 1;[ (1 + pks—a + p2(k5—a) + p3(k:s—a) T )

= C(S)C(ks - a)7

where ((s) is the Riemann zeta-function. Obviously, we have inequality

X g (gk(n))

. 1
‘Ua (Sk(n)) | <mn, 7;1 no o-_l_aT‘H’

where o > 1 + O‘T“ is the real part of s. So by Perron formula [5], we have

> Oa (gk (n))

n<z neo
I z° z°B(b + 09)
= 5. “ds+0 | =——~
2 /b—iT f(s +50) s st ( T
1
+0 (CEIUOH(QJI) min(l, O§$)> +0 (CIIJOH(N) min(l, ﬁ)) ’
T
where N is the nearest integer to z, ||z|| = |z — N|. Taking
a+l 1 atl 1
S0 ) A +ln =z 2% ,H(z) = z,B(0) U—l—aT‘H’
we have
— 1 bHT s .
Z Oq (Sk(n)) = —/ C(S)C(ks _ a)$—d3 +0 (wzikl—i—e) ]
n<z 2 Jo—ir S

Taking a = “*1 + m, to estimate the main term
1 b+iT s
— s)((ks — a)—ds
5 | C@)hs = o),

we move the integral line from s = b + ¢7" to s = a %+ ¢7". This time, when
a > k — 1 the function

T
7(s) = ()¢ (ks — ) =
. . atl k((i) a+l
has a simple pole point at s = %= with residue z % . So we have
b+eT a—|—zT a—iT b—T s
/ / +/ ks —a)—ds
2m b b+iT a+il s

kC (a—i—l) it

-\ k] =B
a+1 ac



118 RESEARCH ON SMARANDACHE PROBLEMS IN NUMBER THEORY

Note that

1 a+iT a—1iT b—iT s adl
— / +/ +/ C(s)C (ks — o) ds < 35,
2t \ JoiT a+iT a—iT S

From the above we can immediately get the asymptotic formula:

atl
> 0a (gk(n)) = Mﬂv%ﬂ +0 (waz_zl“) :

n<e a+1

This proves the first part of Theorem 1.
If 0 < a < k — 1, then the function

S

T

7(5) = ()¢ ks — @)™
has a simple pole point at s = 1 with residue ((k — ). Similarly, we can get
the asymptotic formula:

Z Oa (gk(n)) =((k—a)r+0 (:v%"'e) .

n<x

This proves the second part of Theorem 1.
Taking o = 0 in Theorem 1, we can easily get the result of Theorem 2. This
completes the proof of the Theorems.
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Abstract The main purpose of this paper is using the elementary method to study the mean
value properties of the Smarandache function acting on k-th roots sequences, and
give an interesting asymptotic formula.
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1. Introduction

Let n be an positive integer, ax(n) denotes the integer part of k-th root of n,
that is ax(n) = [n%], where [z] is the greatest integer that less than or equal
to real number x. In problem 80, 81, 82 of [1], professor F.Smarandache let
us to study the properties of the sequences ag(n). The famous Smarandache
function S(n) is defined as following:

S(n) = min{m : m € N, n|m!}.

It seems no one know the relation between this sequence and the Smaradache
function before. In this paper, we study the mean value properties of the
Smarandache function acting on the k-th roots sequences, and give an inter-
esting asymptotic formula. That is , we shall prove the following conclusion:
Theorem. For any real number x > 3, we have the asymptotic formula:

m2z'tE P

2
n<u In“z

§2. Some Lemmas

To complete the proof of the theorem, we need some simple Lemmas. For
convenience, we denotes the greatest prime divisor of n by p(n).

*This work is supported by the Education Department Foundation of Shannxi Province (03JK213).
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Lemma 1. [fp(n) > /n, then S(n) = p(n).

Proof. Let n = p{'p5? - - - p& p(n), so we have

pIpy? - pd < V/n

then
P?z|p(n)'a 1= 1727"'77"

So n|p(n)!, but p(n)(p(n) — 1)!, s0 S(n) = p(n).
This proves Lemma 1.
Lemma 2. Let x > 1 be any real number, then we have the asymptotic

formula:
nlx? z?
Z S(n) = 9T +0 (—) .

2
n<x In“z

Proof. It is clear that

ZS(n): Z S(n) + Z S(n). (1)
n<z n<z n<x

p(n)>vn p(n)<vn

From the Euler summation formula we can easily get the estimate of the second
term in the right side of (1):

> S(n)< > vnhn

n<z n<z

(n)<vn
= [ Vimwat+ [t~ )(Vilme'dt + Valna(o - fa)
< IE% Inz. &)

Now we calculate the first term. From Lemma 1, we can write

Z S(n) = Z S(n) = Z

n<z np<z n<Vi
p(n)>vn p>./np VE<p<E
= > > » 3)
n<Vz VE<p< T

Let (z) denotes the number of the primes up to z. Noting that
T T
-~ 10—
(@) Inz + (ln2m> ’

from the Abel’s identity [2], we have

op o= w(%) f—w(\/i)\/i—/zw(t)dt

n
VE<p<y
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z2 1 22 z2
= R _|_ O 72
n2lnx  2n2lnx n2ln” z

x? x2
= — — . 4
2n2Ilnzx +O<n21n2m) @)
Because
1 1
> ﬁ=<(2)+0(;), 5)
n<Vx

Combining (1), (2), (3), (4) and (5), we can get the result of Lemma 2.
Lemma 3. For any positive integer k and nonnegative integer i, we have
the asymptotic formula:

ds = Tt ofeE
Z ()_6(i+2)klnw+ I’z )’

1
t<zk—1

Proof. Applying Abel’s identity, combining Lemma 2, we have

S = @E-1T Y St)-i /1 (zsu)) £i-1dt

1 1
<z —1 <z —1 i<t

i+-2 1 . i+2
w2r 2 in2 ekl gitl 52
= - dt+ 0O

12klnz 12 J; Int Inz

o i42 it2
_ Tk L0 Tk
6(i+2)knz <ln2x> '
This proves Lemma 3.

§2. Proof of the theorem

In this section, we will complete the proof of the theorem. For any real
number z > 1, let M be a fixed positive integer such that

MF <z < (M4 1)k

Then we can write

M-1
Y Slak(n) = Y > Slam)+ Y S(a(n)
n<z =1 th<n<(t+1)k MkE<n<z
M-1

= [+ 1F—tFs@ + > S(M)

Mk<n<z

= (2) > tS() + 0 (wt)

i 1
t<ok !

> 5
I
L1

o

1=
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Now from Lemma 3 we have

L wrk Tk 1
> s = > () (—G(iﬂ)km 0 (E)) +0(ut)

n<x =0
LN
~ 6(k+1)Inz I’z )’

This completes the proof of Theorem.

]
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Abstract In this paper, we study the mean value of the Pseudo Smarandache function and
give an asymptotic formula.

Keywords:  Simple numbers; Pseudo Smarandache function; Asymptotic formula.

§1. Introduction

According to [1], a number n is called simple number if the product of its
proper divisors is less than or equal to n. For example: 2, 3, 4, 5, 6, 7, 8§, 9,
10, 11, 13, 14, 15, 17, 19, 21,- - - are simple numbers. Let A denote the set of
all the simple numbers. In [2], Jozsef Sandor denoted the dual of the Pseudo
Smarandache function by analogy by Z, as following:

m(m + 1)

Z.(n) = max{m € N*: —

n},

Remark:

and
[ 2, ifp=3
Z+(p) = { 1 ifp+#3.
where p is an arbitrary prime.
In this paper, we study the mean value of Z,(n) and give an asymptotic
formula. That is, we shall prove the following:
Theorem. For any real number x > 1, we have

2 2 2
}:z*(n)zclx—+02$—+o< e >
Inz

2 3
=y} In“z In° z

n<x

where Cy, Cy are computable constants.

§2. Some lemmas

To complete the proof, we need the following lemmas:



124 RESEARCH ON SMARANDACHE PROBLEMS IN NUMBER THEORY

Lemma 1. Let s > 1 be an integer and p a prime. Then:

2, ifp=3

Z*(ps):{ 1, ifp+#3.

Proof. This formula can be immediately got from Proposition 1 of [2].
Lemma 2. Let q be a prime such that p = 2q — 1 is a prime, too. Then:

Z.(pq) = p-

Proof. This formula can be immediately got from Proposition 2 of [2].
Lemma 3. Letn €A, then n has the form:

n=p, orp>, orp®, orpqg,

where p and q are distinct primes.
Proof. First we define :pg(n) = H d, and ¢4(n) = H d. According to
dn d|n,d<n
the definition of pg4(n), we have

(pa(n))* = [ n = n"™,

dln

where d(n) is the divisor function. That is: d(n) = Z 1, then
dln

d(n)
pa(n) =n"2 ;
and
n d(n)
galn) = 22 _p#p (1)

That is,
d(n) < 4.

Then Lemma 3 can be immediately proved from the definition of d(n).
Lemmad. Letk > 0 and x > 3, p denotes a prime. Then:

k+1 1

. 1 Lkt s}
DI N P e ]
ot k+1Inz (k+1)2?In°x In° z
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Proof. Noting that 7(z) = % + —5—

Inzx

+0 ( ) then by Abel identity

lnz

Zpk = 7(z)z® — /w m(t)ktF~1dt (2)
1

p<z

k+1 k+1 k+1 xr 1k
- T e 0 (i) L
z tk z tk
xk:-f—l xk-f—l IL‘k+1
()

Inz In“z In° z

k+1 2 9 k+1 x k
_ k =z _k + ka ) /t—3dt
kE+1lnz (k+1)2Inz 2 In°t

1 k+1 1 k+1 k+1
_ L4 T 0. 3)

we have

kE+1lnz (k+1)2In’z In? 2

This completes the proof of the Lemma 4.
Lemma 5. Let p and q are primes, Then:

2 2 2
S p=Ci—+ G+ 0|, 4)
o< Inz In‘z In° z

where Cy, Cy are computable constants.
Proof. Noting that when z < 1, we have ﬁ —l4+z+z2+23+---+
z™ + ---, then

dop 1

p<vz q<z/p

_ Zp< b2 2+o<7f_’ 3>)(5>
o Inz —Inp) (Inz —Ilnp) (Inz — Inp)

2 m
_ = (1 Inp  In’p ...+1np+...)
p<VzT

Inzx Inz  In?z In™ x

In

x In In™ !
e D <1+2—1 p+---+m71 m1p+--->
x <\/§ nxr n x

3
2

3
Z —1§w> :B11$2 +BZI 3 +O< L ), (6)
<z n 5 n

In*z

Nlc.o

where B1, By are computable constants. And then,

.13

e<vz pZz/q
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(2)2 (£)2 (Z)2
- Z (2(1n:cq— Ing) + 4(1I1£Eq— In g)? o (m)) ?

<Vvz
2 1 Ing 12 In™
= g 2 (1
<Vz
z? 1 Ing In™ g
—— 3 S (1+2— 4 fm—— .-
41n’ z qg/i q° Inz mlnm_1 T
72
+0(2 I
<V q

z? 1 z2 (1 Ing 1 1 z?
= Z—2+T<5Z—2+ZZ—2>+O<T>- ®)
q q

2Inz | In“z

So from (6) and (8) we get,

b= Dop Y 1+ > 1Y p—(d p(X D

pgsz p<vz q<lz/p q<vz p<z/q p<vr ¢z
22 2 22
= 01—+02 +0< ), )
In® z

where C}, Cy are computable constants. This proves Lemma 5.

§3. Proof of the Theorem

Now we prove the Theorem. From Lemmas 1, 2, 3, 4 and 5 we immediately
get

S Zin) = Y. Z.)+ Y Z.0)+ Y. Z.0®) + Y Zi(pg)

neA p<z p2<z p3<z pg<lz
n<z p#q
= 3+) 1+ > 1+ > 1+ > p
p<z p2<z p3<z pg<lzx
p#q
= 34D 1+ D 1+ > 1+> p=> p
p<lz p2<z p3<z pg<lz p2<z
2 2 2
T T T
= Ci— +Cy—— 5 + 0 .
Inz In“z ln T

This completes the proof of the Theorem.
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Abstract Let p be a prime, n be any positive integer, Sp(n) denotes the smallest integer
m € N7, where p™|m!. In this paper, we study the mean value properties of
Sp(n), and give an interesting asymptotic formula for it.

Keywords:  Smarandache function; Primitive numbers; Asymptotic formula.

§1. Introduction and results

Let p be a prime, n be any positive integer, S,(n) denotes the smallest
integer such that Sp(n)! is divisible by p™. For example, S3(1) = 3, S3(2) =
6, S3(3) =3, S3(4) =9, ------ . In problem 49 of book [1], Professor F.
Smarandache ask us to study the properties of the sequence {S,(n)}. About
this problem, Professor Zhang and Liu in [2] have studied it and obtained an
interesting asymptotic formula. That is, for any fixed prime p and any positive
integer n,

Sp(n)=@p@P—-1)n+0 (é . lnn> .

In this paper, we will use the elementary method to study the asymptotic prop-
erties of Sj,(n) in the following form:

> o

n<z
Sp(n+1)=Sp(n)

where z be a positive real number, and give an interesting asymptotic formula
for it. In fact, we shall prove the following result:
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Theorem. For any real number x > 2, let p be a prime and n be any
positive integer. Then we have the asymptotic formula
T Inx
n<w p np
Sp(n+1)=5p(n)

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. First we need
following:
Lemma. Let p be a prime and n be any positive integer, then we have

, otherwise,

o y
|Sp(n+ 1) — Sp(n)| = { O’ ifp" || ml;

where Sp(n) = m, p™ || m! denotes that p™|m! and p"*{m!.

Proof. Now we will discuss it in two cases.

(4) Let Sp(n) = m, if p™ || m!, then we have p™|m! and p"*'{m!. From the
definition of Sp(n) we have p"T1t(m + 1)}, p" i (m + 2)!, -+, p" i (m +
p— 1)!and p" ! (m + p)!, so Sp(n + 1) = m + p, then we get

[Sp(n + 1) = Sp(n)| = p- ey

(i3) Let Sp(n) = m, if p™|m! and p"!|m!, then we have S,(n + 1) = m,
)

|Sp(n + 1) = Sp(n)| = 0. 2)
Combining (1) and (2), we can easily get
_ [ p, ifp™|m}
|Sp(n+1) = Sp(n)] = { 0, otherwise.

This completes the proof of Lemma.
Now we use above Lemma to complete the proof of Theorem. For any real
number z > 2, by the definition of S,(n) and Lemma we have

3 1= Y 1=z- > 1 3)

n<x n<w n<x
Sp(n+1)=Sp(n) p"|ml,pntim! p"||m!

where Sp(n) = m. Note that if p" || m!, then we have (see reference [3],
Theorem 1.7.2)

N
I
(]
E
I
]
E

=1 P 1<log, m P’
1
= m Z —Z.+O(logpm)
1<log, m

il +O(ln—m>. “)
p—1 Inp
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From (4), we can deduce that

&)

m=((p-—1)n+0 (plnn).

Inp
So that

plnz

1§m§(p—1)-x+0< ), if 1<n<ua.

Inp

Note that for any fixed positive integer n, if there has one m such that p™ || m!,

then p™ || (m + 1)1, p" || (m +2)!, ---,p" || (m + p — 1)!. Hence there have
o0

p times of m such that n = > [1%] inthe interval 1 <m < (p—1) -z +
i=1

0] (plnw). Then we have

Inp
1= 1((10—1)-ach0<p1”))
ot P Inp
p"||m!
- x-<1—1)+0<ln—x>. 6)
p Inp

Combining (3) and (6), we can easily deduce that

> 1 = z- > 1

n<lz n<z
Sp(n+1)=>5p(n) p||m!

1
= m—x-(l——)+0
p

- E+O(ln—m>.
P Inp

()
Inp

This completes the proof of Theorem.
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Abstract For any fixed positive integer n, the Smarandache ceil function of order £ is
denoted by N* — NN and has the following definition:

Sp(n) = min{z € N | n |z} (Vvn e N*).

In this paper, we study the mean value properties of a new arithmetical function
0o (Sk(n)) concerning with the Smarandache ceil function, and give several
asymptotic formulae for it.

Keywords:  Smarandache ceil function; Mean value; Asymptotic formulae.

1. Introduction

For any fixed positive integer n, the famous Smarandache ceil function of
order k is defined as folloing:

Sp(n) = min{z € N | n | zF} (V¥n € N*).

For example, S2(1) = 1, S2(2) = 2, S2(3) = 3, S2(4) = 2, S2(5) = 5,
S2(6) = 6, S2(7) = 7, S2(8) = 4, S2(9) = 3, ---. This function was first
introduced by Professor Smarandache (see reference [1]), and many scholars
showed great interest in it. For example, Ibstedt [2] and [3] studied this func-
tion both theoretically and computationally, and got the following conclusions:

(Ya,b € N*)(a,b) = 1 = Sy(ab) = Sk(a)Sk(b),

Sk(p1'py® - --pr7) = S(p1") -+ S(pr7)-

While Professor Tabirca established the asymptotic density of fixed point is
%, and found the average function of the Smarandache ceil function behaves
linearly.

In this paper, we shall use the analytic methods to study the mean value
properties of a new arithmetical function o, (Sk(n)), and give two asymptotic
formulae for it. That is, we shall prove the following:
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Theorem 1. Let o > 0, oo(n) = 3 d®. Then for any real number x > 2,
dln
and any fixed positive integer k > 2, we have the asymptotic formula
622 (@ + 1){(k(a+1) —a)

> oa (Sk(n) = e R(a+1)+0 (2°73%),

n<z

where ((s) is the Riemann zeta-function, € be any fixed positive number, and

1
Ra+1)=]] (1 T patha _p(k—l)(a+1)) :

p

Theorem 2. Let d(n) denotes the Dirichlet divisor function. Then for
any real number x > 1, and any fixed positive integer k > 2, we have the
asymptotic formula

Z d(Sk(n)) = wn (1 — #> +Cz+0 <$%+e) ’

k k—1
n<c & p prEp

where C' is a computable constant.
Taking k£ = 2 in Theorem 2, we may immediately deduce the following:
Corollary. For any real number x > 2, we have the asymptotic formula:

1 1,
> d(Sa2(n)) zwlnzl;[ (1_p2+p> +C$+O(x2+ )

n<x

§2. Proof of the Theorems

In this section, we shall complete the proof of the Theorems. First we prove
Theorem 1. Let -
a (Sk(n))
flo) =2 ="
n
n=1

From the Euler product formula [5] and the multiplicative property of o, (Sk(n))
we have

e = Tl (1+ 0u (Sk(0)) , o0 (S507) ., %o (Se0) +)

p ps p2s pks

= H<1+w¢_(m+m+0a(p)+aa(p2) + e

. ps pks p(k+1)s
+Ua (p2) + Oq (pg) +...
p2ks p(2k—|—1)s

1—% 1+ p© 14 p® 2a
= pS p p +p o
= H(1+1_#< pe + s +
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1 1 1 1
- C(S) H (1 + ps— @ (1 + pksfa + p2(lcs—a) + pS(ks—a) T >)

p

= ()¢ks - )] (1 - Iﬁ 4 L)

S—Q
» p

C(s)C(s —a)(ks — a) 1
C(2(3 - a)) 1;[ (1 - pks—a _p(k1)5> ’

where ((s) is the Riemann zeta-function. Obviously, we have inequality

i a (Sk(n)) 1

o0 (Sk(n) | <n, g ‘ ——

atl?’
n=1 k

where 0 > 1 + QTH is the real part of s. So by Perron formula (see reference

[5D.
Z Oq (Sk (n))

50
n<z n

1 ot z* 2°B(b + o)
= — —ds+ 0| ———
2’i7T/b—iT f(s—l—so)s s+ ( T
I
+0 (zl_”"H(Zz) min(1, %)) +0 (z‘”OH(N) min(1, ﬁ)) ,
T
where N is the nearest integer to z, ||z|| = |z — N|. Taking s = 0,b = a+3,
T = z°%, H(z) = 3, B(o) =

Z Oq (Sk (n))

n<z

1
1= We have

L e sladle —a)ilke — ) g2y, g (serie)
s ?

"~ 2im Jay g ((2(s —a))

where

1
R(s) = 1;[ (1 - e _p(k—l)s) )
To estimate the main term

S [ e o)l — ) g

2im Jat 3T C(2(s — a)) s

we move the integral line from s = a + % +iTtos=a+ % =+ 4T This time,
when « > 0, the function
_ G(s)¢(s —a)¢(ks —a) @

=y O
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has a simple pole point at s = « + 1 with residue

Cla+1)¢(k(a+1) —

Oé) a xa—|—1
(ar1)i(@) et het

So we have
1 at3 +zT a—|— —I—zT a—l———zT %—'
2im a+d—ir a—|— 34T /a+ LT /a +3—il
¢(s)¢(s — a)¢(ks — o)z
R(s)ds
oG —as )
(lat+1)¢(k(a+1) —a) +1
= R(a+ 1)z*™.
@ric@ ety
Note that
1 at+i+4iT a+1—iT a+2—iT
o / +/ +/
2im \Jat34iT atiiT atliT
C(s)C(s — (s —a)a o
((2(s —))s
& zotate
and ((2) = %2.
From the above we can immediately get the asymptotic formula:
6z (a+ 1) (k(a+1) — a) 1
= 1 a+5+e€ .
%aa (Sk(n)) T R(a+1)+0 (2275

This completes the proof of Theorem 1.
If o = 0, then the function

25¢%(s)( (ks 1
o) = T (1 i)

5 P —p

has a second order pole point at s = 1 with residue

lim (s — 1)2g(s))

= lim [(s - 1)%@)‘”{]'
= lim { [(3 - 1)2h(s)]’ %s +(s— 1)2h(5)W}

Note that

. _ (k) B 1
fim(s — 1)%h(s) = ¢(2) 1,_,[ <1 p +p’“1> '
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From the above we have

S d(Sp(n)) = KRzIne (1 - ﬁ) +Cz+0 (23,

k
n<c 4 p prEp

where C is a computable constant.
This completes the proof of Theorem 2.
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Abstract In this paper, Analytic method is used to study the mean value properties of
Smarandache-Type multiplicative function K, (n) and L,,(n), and give their
asymptotic formula respectively.

Keywords:  Smarandache-Type multiplicative function; Mean value; Asymptotic formula.

1. Introduction

According to [1], the definition of Smarandache-Type multiplicative func-
tion K, (n) is the largest m* power-free number dividing n. Another Smaran-
dache type multiplicative function L, (n) is defined as: n divided by largest
m'" power-free number dividing n. That is, for any positive integer 7, if n has
the prime power decomposition n = p{*p5? - - - pp*, Kp(n) and Ly, (n) are
presented in the following

Km(n) =pi"p5? - pi*,  Lm(n) = pl'p3" -+ pj%,
where §; = min(a;, m — 1),y = max(0,; —m + 1).
It is obvious to show that K,,(n) and L,,(n) are multiplicative functions. In
this paper, we study the mean value properties of these two functions, and give
their asymptotic formulae respectively. That is, we shall prove the following
Theorem 1. Let m > 2 is a given integer, then for any real number x > 1,
we have

z2 1 3¢
2 Knln) = 555 11 (1 grmerm) o).

n<x

Theorem 2. Let m > 2 is a given integer, then for any real number r > 1,
we have

1 T 1 1.,
2 T = cim 1L <1+ <pm—1><p+1)) +0(a37),

n<z p

where ((s) is the Riemann zeta-function.
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§2. Proof of the Theorem

Now we prove the Theorem 1. Let

X K,(n
- § Kate

Re(s) > 1. From the Euler product formula [3] and the multiplicative property
of K, (n) we have

o = 1114 ot e )

p

where ((s) is the Riemann zeta-function. By Perron formula [2], with sq = 0,
T:x,b—% we have
1 3T ¢(s—1 : :
3 Kn(n JQLJ—MQ£@+O(E>
e " 2mi s_ir ((m(s—1)) s T
where

_ psfl -1
R(s) = H <1 + (ps=1) —1) (ps — 1)) :

P
To estimate the main term

1 ST -1 s
/ 2 Cs—1) R(s) T ds,
omi s_ir ((m(s—1)) s
we move the integral line from s = g il tos = % =+ ¢7". This time, the
function
((s=1) i

Cm(s ) )

has a simple pole point at s = 2, and the residue is

fs) =

2
%R(?). So we have

1 S4iT 3 44T 8T ST\ (s 1) .
2im </g—iT /—l—zT +/+ZT ~/g—iT ) mR(S):dS
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2

=t (1 Gr o)

p

Note that

1 3T 34T 54T —1 s
— /2 -|-/2 +/2 MR(S)x—ds < ghte
2ir \Jiqir  Jiqr  Jior ) ((m(s—1)) s

From above we may immediately get the asymptotic formula:

2

x 1 3.,
ZKm(n):WH<1+(pm_l)(p+1)>+0(.’152+).

n<c p

This completes the proof of the Theorem 1.
Now we give the proof of Theorem 2. Let

96 = X g

Re(s) > 1. From the Euler product formula [3] and the multiplicative property
of L,,(n) we have

1 1
g(s) = H (1 + L + Lo (p?)p?* +)

1~ s 1 1
+
1- L ety L

(s p*—1
a C(mé‘)l,—,[<1+(pms—l)(p”l—l))

where ((s) is the Riemann zeta-function. By Perron formula [2], with sg = 0,
T:x,b:% we have
1 [3HT ((s) z* ©’
T(s)—ds+0O|—],
; ~ o /__,T ¢(ms—) (5) s T
where

T(s) =1 (1 + ra _ps) zpiﬂ — 1)>

p
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To estimate the main term

=5 D ) s,

2mi J3_ir C(m(s—1)) s
we move the integral line from s = % +iT tos = % 4 ¢T'. This time, the
function () .
T
- T(s) -
905) = s T6)°

has a simple pole point at s = 1 with residue ﬁT(l). So we have
1 34T +4T 1T 3 4T s

— /2 /2 +/ /2 C(s) T(S)w—ds
2im \ J3—ir 3 4T T 1 ) ((ms) s

=C(fn)1;l(1+(pm_f)(p+1))-

Note that

1 1T LT 34T s
— / +/2 +/2 G A A
2im \J3qir  Jsyr  Js—ir ) ((ms) s

from above we may immediately get the asymptotic formula:

1 T 1 1.,
2 ow ~cm U <1+ (pm—1)<p+1)> +0(a84).

n<z p

This completes the proof of the Theorem 2.
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Abstract For any positive integer m, let a(m) denotes the integer part of the k-th root of
m. Thatis, a(m) = [ml/ k] . In this paper, we study the asymptotic properties
of the sequences {a(m)}, and give two interesting asymptotic formulae.

Keywords:  Integer part sequence; k-th root; Mean value; Asymptotic formulas.

§1. Introduction

For any positive integer m, let a(m) denotes the integer part of the k-th root
of m. That is, a(m) = [ml/k] . For example, let K = 3 then a(1) = a(2) =

-=a(7) =1,a(8) =a(9) =--- =a(26) =8,b(1) =b2) = =
b(7) = 8, b(8) = b(9) = --- = b(26) = 27,---. In problem 80 of reference
[1], Professor F.Smarandach asked us to study the asymptotic properties of the
sequence {a(m)} . About this problem, it seems that none had studied it, at
least we have not seen related paper before. In this paper, we shall use the
elementary method to study the asymptotic properties of this sequence, and
give two interesting asymptotic formulas. For convenience, we define Q(n)
and w(n) as following: Q(n) = oy + a2 + ... + o, w(n) = r, if n =
ppd? - - - p&r be the factorization of n into prime powers. Then we have the
following:

Theorem. For any real number x > 1, we have the asymptotic formula

Zw(a(n)) =zlnlnz+ (A—Ink)z+ O (%) ,

n<zx

Eﬁ(a(n)) — znlnz+ (B—k)z+0 (ﬁ) ,

*This work is supported by the Education Department Foundation of Shannxi Province (03JK213).
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where

A:7+Z<ln(1—l>+%>,B:A+§zﬁ

? p

are two constants.
Taking & = 3 on the above, we can immediately obtain the following

Corollary. For any real number x > 1, we have the asymptotic formula

n%w(a(n)) — slnlnz + (A—In3)z + O (&) ,

> Qa(n)) =zlnlnz+ (B-n3)z+ O (ﬁ) :

n<x

§2. Proof of the Theorems

In this section, we shall complete the proof of the Theorem. First we come
to prove the first part of the Theorem. For any real number z > 1, let M be a
fixed positive integer such that

M* <z < (M + 1)k

Then from the definition of a(n) we have

M
Yowla(n) = Y Y w@n)+ Y wla(n)

n<zx m=1 (m—1)k<n<mk Mk<n<lg

=YY wmt Y e

m=1 mk<n<(m+1)k MkEk<n<z
M—-1
= > (Chmb =+ CEmh =2 4 4 1) w(m)

m=1

+0 ( Z w(M))
M<n<(M+1)F
M
= kY m* 1 w(m) + O(M* '1n M),

m=1

where we have used the estimate w(n) < Inn.
Note that (see reference [2])

Y w(n) =zlnlnz+ Az + O (i) ,
et Inz
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where A is a constant. Let B(y) = Z w(m), by Abel’s identity (see Theorem
m<y
4.2 of [3]) we have

M
Zm = M*1B(M )—/z B(y)dy

M
= Mk (MInlnM + AM) — / (yk_l Inlny + Aykfl) dy
2
Mk
+O (lnM)

— MFllnM 4 amb - Fo (MklnlnM+AMk)+O M*
k InM

K k M
= Ivtmma o+ Sam
O +k +O<111M>

Therefore, we can obtain the asymptotic formula

Mk:
Zw(a( ) = M'“lnlnM—FAM’“FO(1 M)

n<zx

where A is a constant.
On the other hand, note that the estimates

0<z— M < (M+1)F— MF=ClMF' + C2MF2 4. 41 < 2™ F
and

Ink+lnln M <Inlng < Ink+lnln(M+1) < Ink+Inln M+0 (z7/%).

Now combining the above, we may immediately obtain the asymptotic for-
mula
Zw(a(n)):xlnlnm—l—(A lnk)x—I—O( )

Inz

n<z
This proves the first part of the Theorem.

Similarly, we can prove the second part of the Theorem. This completes the
proof of the Theorem.
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Abstract For any positive integer n, let b(n) denotes the additive cubic complements of
n. That is, b(n) denotes the smallest non-negative integer such that n+b(n) is a
perfect cubic number. In this paper, we study the mean value properties of b(n)
and the function Q(n), here 2(n) denotes the numbers of all prime divisors of
n, and give a sharper asymptotic formula for the mean value of Q(n + b(n)).

Keywords:  Additive cubic complements; Function of prime divisors; Asymptotic formula.

§1. Introduction and results

For any positive integer n, the cubic complements bs(n) is defined as the
smallest integer k such that nk is a perfect cubic number. For example, b3(1) =
1, b3(2) = 4, b3(3) = 9, b3(4) = 2, b3(b) = 25, b3(6) = 36, b3(7) = 49,
b3(8) = 1, ---. In problem 28 of [1], Professor F. Smaradache ask us to study
the properties of {b3(n)}. About this problem, there have some authors to
study and proved some interesting results. For example, Wang Y. [2] stud-
ied the asymptotic properties of n;w % and n;x bg?—n), and obtained several
asymptotic formulae. N -

Similarly, we will define the additive cubic complements as follows: for
any positive integer n, the smallest non-negtive integer & is called the additive
cubic complements of n if n + k is a perfect cubic number. Let

b(n) = min{k|n + k =m> &k > 0,m € N},

then b(1) = 0, b(2) = 6, b(3) = 5, b(4) = 4, b(5) = 3, b(6) = 2, b(7) = 1,
b(8) = 0, b(9) = 18, - - -. About this sequence, it seems that none had studied
it before, at least we have not seen any results at present.

In this paper, we will use the analytic methods to study the asymptotic prop-
erty of this sequence in the following form: »_ Q(n + b(n)), where z > 2

n<z
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be a real number, 2(n) denotes the numbers of all prime divisors of n, i.e.,
Q(n) = a1 +ag+---+a, ifn = p{'pg? - - - p&r be the factorization of n into
prime powers, and give a sharper asymptotic formula for it. That is, we shall
prove the following:

Theorem. For any real number x > 2, we have the asymptotic formula

)7

S Q(n+b(n)) = 3zInlnz + 3(A — n3)a + O(——

In
n<z z

where A = v+ Y (In(1 — 1)+ 1) + 3 L > denotes the summation
m ( P p) 5 -1 5

over all primes, and y be the Euler constant.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. First we need
following:
Lemma. For any real number x > 1, we have

E Q(n)=zlnlnz + Az + O (_x ) ,
Inz
n<z

where A =y + 3 (ln(l — %) + %) +> ﬁ, v be the Euler constant.
P P

Proof. (See reference [3]).
Now we use above Lemma to complete the proof of Theorem. For any real
number x > 2, let M be a fixed positive such that

M3 <z< (M+1)>3 (1)

For any prime p and positive intger a, note that Q(p®) = ap. Then from the
definition of b(n), we have

Z Q(n +b(n)) 2)
n<z

= Z ( Z Q(n + b(n))) + Z Q(n + b(n))
1<t<M -1 \t3<n<(t+1)3 M3<n<z

> ( Y Qn+ b(n))) +O(z5T)
1<t<M \$3<n<(t+1)3

= Z ( Z Q((t+ 1)3)> + O(a:%"'e)
1<t<M \3<n<(t+1)3

= 3 B2+3t+1)Q((t+1)%) + Oz5T)
1<t<M
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= 3 (92 +3t+3)Q(t + 1) + O(a37)
1<t<M
= 9. 3 (t+1)°Q(t+1) + O(z5")
1<t<M
— 9. 3 20(t)+0(it), 3)

1<t<M

where we have used the estimate 2(n) < n¢.
Let A(z) = Y Q(n), then by Able’s identity (see reference [4], Theorem

n<z
4.2) and Lemma, we can easily deduce that

M
> e = MPAMH - [T AW (2)de) +00)

1<t<M

= M? (MlnlnM+AM-|—O (ﬂ»
InM

M t
—/ (tlnlnt+At+O(—>) - 2tdt
1 Int

= M*lnlnM + AM3+ 0O M
o InM

_ /1 M (2t2 Inlnt + 2At2) dt

1 4 1, 4 M3
= 3M Inln M + 3AM +0 (lnM . 4
Note that
1 .
0<o—M3> < (M+1)>3—M3=3M>+3M+1 = M2(3+%+W) < 13,
&)
and
Inlnz =Inln M +1n3 + O(1). (6)
From (3), (4) and (5), we have
9 1 1 T
Sy ) = —aclnlna:+—(A—1n3)a:+O(1—). (7)
e 3 3 nz
Combining (2) and (6), we may immediately get
3" Q(n+b(n)) = 3zInlnz + 3(A — In3)z + 0(%).

n<z

This completes the proof of Theorem.
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AN ARITHMETICAL FUNCTION AND ITS HYBRID
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Abstract For any positive integer n, let k2(n) be the smallest integer such that nksz(n)
is the double factorial number. The main purpose of this paper is to study the
hybrid mean value of k2(n) and the Mangoldt function, and give a sharp asymp-
totic formula.

Keywords:  Double factorial; hybrid Mean; Asymptotic formula.

§1. Introduction

For any positive integer n, let k2 (n) be the smallest integer such that nks(n)
is the double factorial number. For example, ko(1) = 1, k2(2) = 1, k2(3) =1,
k2(4) = 2, kao(5) = 3, kao(6) = 8, ko(7) = 15, ---. It seems that ka(n)
relates to k(n), which denotes the smallest integer such that nk(n) is a facto-
rial number [1]. In this paper, we study the hybrid mean value of k2(n) and
the Mangoldt function, and give a sharp formula. That is, we shall prove the
following:

Theorem. If x > 2, then we have the asymptotic formula

S A(n) log (ks () = %:132 log z + O(z2).

n<zx

§2. A Lemma

To complete the proof of the theorem, we need the following:
Lemma. Let x > 2, then we have

log[z]! = zlogz — z + O(log ),

where [y] denotes the largest integer not exceeding y.
Proof. This is Theorem 3.15 of [2].
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§3. Proof of the theorem
In this section, we complete the proof of the theorem. From the definition
of ko(n) we have
ka(p®) = (p* = 2)1 < (p* — 1! < p™!

So from the Lemma, we obtain

3" A(n)log ks (n)

n<zx

= Z log plog(p® — 2)!!
p<z

= > plog’p+0| > p*logplogp®

p<z p*<z
2<a

Let
[ 1, ifnisaprime,
a(n) = { 0, otherwise.

then

T T
E = = +0 ( ) .
a(n) = m(z) log = log?
By Abel’s identity we have

Zplogzp = Za(n)nlogzn

p<z n<x

x
= n(z) zlog’z — / m(t) <log2 t+ 2log t) dt
2
X
= z?logz + O(z?) — / (tlogt+ O(t)) dt
2
We can easily get
v L 9 2
/ tlog tdt = 2% logz + O(z7),
2

Therefore

1
Zplong = 53:2 log z + O(z?).
p<z

Similarly we can get
Z alog?p <« z2.

p<w
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But
> ap®log’p
p*<z
<o Y Yl
1
< z z a:z:%logma
2§a<}—g§—§
< wglogw
So we have

Z A(n)logka(n) = %:1:2 log z + O(z?).

n<x

This completes the proof of theorem.
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Abstract In this paper, we use the elementary method to study the arithmetical properties
of the k-th power free sieve sequence, and give some interesting identities.

Keywords:  k-th power free sieve sequence; Infinite series; Divisor function

§1. Introduction

For any positive integer k£ > 2, one can obtains the k-th power free sieve se-
quence as follows: from the set of natural numbers (except 0 and 1), take off all
multiples of 2%, afterwards all multiples of 3, - - -, and so on (take off all multi-
ples of all k-th power primes). In problem 31 of [1], Professor F.Smarandache
let us to study this sequence. Let A denotes the set of all numbers in the k-th
power free sieve sequence. In this paper, we study the convergent property of
some infinite series invovling this sequence, and give some interesting identi-
ties. That is, we shall prove the following conclusions:

Theorem 1. Let k > 2 be any positive integer. For any real number @ > 1,
we have the identity:

where ((s) denotes the Riemann-zeta function.

From this Theorem we may immediately deduce the following:

Corollary. Let B be the set of all numbers in the square free sieve sequence,
C be the set of all numbers in the cubic free sieve sequence. Then we have the
identities:

1 15 > 315
= — =
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Theorem 2. Let k > 2 be any positive integer. For any real number o > 1,
we have the identity:

o dn) _ (o) _ _k(*-1)
,;1 ne  ((ka) 1;[ (1 plktie —pa) '

neA

§2. Proof of the theorems

In this section, we will complete the proof of the theorems. First, we prove
Theorem 1. For any real number @ > 0, it is clear that

1 1

o
and Z — is convergent if & > 1. So from the Euler product formula (See
—n

n=1
Theorem 11.6 of [2]) and the definition of the k-th power free sieve sequence,
we have

SRS { (UL SR N
— ne - . pe p2a p(k—l)a
neA
1— L
)
p - p*
e
((ka)

This proves Theorem 1.
Now we prove Theorem 2. Similarly, from the Euler product formula and
the definition of the k-th power free sieve sequence, we have

= d(n) 2 3 k
> e H(1+ﬁ+@+“'+T1)a)

n=1 p p
neA
1 11 1 k
= 1;[ . <1+I;+Ta+ +p<k_1)a—ﬁ>
- s &
= o p -
()
IS (_ k(p"—l))
B C(ka)l,—,[ LT e —pa )

This completes the proof of the theorems.
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Abstract In this paper, we study the mean value of a new Smarandache sequence and give
an asymptotic formula.

Keywords:  Simple numbers; Smarandache sequence ; Asymptotic formula.

§1. Introduction

According to [1], a number n is called simple number if the product of
its proper divisors is less than or equal to n. For example: 2, 3, 4, 5, 6, 7,
8,9, 10, 11, 13, 14, 15, 17, 19, 21,-- - are simple numbers. Let A denote
the set of all the simple numbers. Generally speaking, n has the form: n =
p, or p?, or p3, or pg, where p and ¢ are distinct primes. In [2], Jason Earls
defined sopfr(n) as a new Smarandache sequence as following: Let sopfr(n)
denote the sum of primes dividing n (with repetition). That is,

sopfr(n Zp
For example:
n 123456789 10 11 12 13 14 15 16 17 18 19
sopfr(n) 0 2 3 4557667 11 7 13 9 8 8 17 8 19

In this paper, we study the mean value properties of sopfr(n), and give an
interesting asymptotic formula. That is, we shall prove the following:
Theorem. For any real number x > 1, we have

72 72 72
Zsopfr A1—+A21 +O< ),

neA ln z

n<x

where A1, As are computable constants.

*This work is supported by the Education Department Foundation of Shannxi Province (03JK213).
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§2. Some lemmas

To complete the proof of the theorem, we need the following lemmas:
Lemmal. Let k > 0 and x > 3, p denotes a prime. Then:

k+1 1

1 =z xk—l—l 0 $k-|—1
= + +0|=].
Z;ﬁp E+1lnz (k+1)2n’z In® z

Inz

Proof. Noting that 7(z) = 77 + 5= + O (1nfg$), then by Abel’s identity

we have

S pF = n(z)ak — / ")kt ()
1

p<z
gkl k1 okl
= —+——+0
Inz + ln2:c + <ln3:1:>
T tk
—k —dt k/ dt+O / —dt
9 Int 9 In3¢

k+1 k+1 k+1
T xz T
= ——+4+—5—+0 < )

Inz  In’z In® z
k .’Ek+1 kQ + Qk .’L'k+1 T tk:
- - +0 / gt
kE+1lnz (k+1)2n%z 2 Indt
1 $lc+1 1 xk:—l—l $k+1
= — 2
E+11lnz +(k+1)2]n2m In® z @)
This completes the proof of the Lemma 1.
Lemma 2. Let p and q are primes, Then:
z2 72 z2
dYop= C1—+Cg = +0|—=—], (3)
pa<o In°’ z

where Cy, Cy are computable constants.
Proof. Noting that when z < 1, we have ﬁ —l+z+z22+23+---+
z™ + ---, then

dop 1

p<vz q<z/p

z z z
P P P
= Zp( + 2+O< 3))(4)
o (Inz —Inp) (lnz —Inp) (Inz —Inp)
1 In’ In"
= iz 1+ﬂ+ n2p+..._|_ nmp+...
Inz Inz  In°z In" z
p<VzT
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1 1 m—1
+ 1% (1+21n—p+---+m1nm71p+---)
SN nz n T
3 3 %
x
+ O — B —+B +0 5
g/iln?’f—)) 'n2 2ln (ln :v)’ ©®)
where B, By are computable constants.
And then,
DIRIDDN
9<vz p<z/q
T\2 z\2 z\2
Ly (@G (@ o
Py 2(lnz —Ing)  4(Inz —1ng)? (Inz — Ing)3
z2 1 < Ing In%q In™ g )
= Yo S (1+—+ +- +---
2 2 m
2lna:q§ﬁq Inz  In“z In™ z
z? 1 In In™ lyg
+ 1-1-2—-1- “+m +---
41n’ z g/_q In In™ !z
22
+ 0 ( > AT
<z q
z? 1 z? (1 Ing 1 1 z?
= —+—\z) 5 +5) 5 |+tO0|—=|- 7
2lnac;q2 In? 2 2; q2 él;q2 In® @

So from (5) and (7) we get,

Sp= Y p X 1+> 1> (X (>

pq<z p<vz q<z/p q<vz p<z/q p<vz  ¢<Vx
z2 z2 x2
Ci—+C—+0|(—1, 8
Ynz 2ln2:1c In3 z ®)

where C}, Cy are computable constants. This proves Lemma 2.

§3. Proof of the Theorem

Now we prove the Theorem. From Lemma 1 and Lemma 2 we may imme-
diately get

Z sopfr(n)

neA

n<zx

Z sopfr(p) + Z sopfr(p”) + Z sopfr(p®) + Z sopfr(pq)
p<z p2<z i<z Pg<z

p#q
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S p+2> p+3> p+2> p

p<z p2<z p3<z pg<lzx
P#q

Z p+3 Z p+2 Z P

p<z p3<z pq<z

z? 1 z2 1 x2
E(Cl + 5) + anx(CQ + 4) +0 <ln x)

.1'2 2 2

Inz In?z In3 z

This completes the proof of the Theorem.
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Abstract In this paper, we shall use the analytic method to study the mean value properties
of Smarandache-Type multiplicative function Fy,, (n) and G, (n), and give two
asymptotic formulae for them.

Keywords:  Smarandache-Type multiplicative function; Mean value; Asymptotic formula.

1. Introduction

In reference [1], the definition of Smarandache-Type multiplicative function
Fy,(n) is the smallest m!* power divisible by n divided by largest m ‘" power
which divides n. Another Smarandache-Type multiplicative function G,,(n)
is defined as m!™ root of smallest " power divisible by n divided by largest
m* power which divides n. That is, for any fixed positive integer n with the
normal factorization p{*p3? - - - pi*, (1 <4 < k) we have

1, if o = mk;

(o7} —_
Fm(pi ) = { pi*, otherwise.

and
1, if a; = mk;
p;, otherwise.

Gnlr) = {

It is clear that F,,(n) and Gy, (n) are multiplicative functions. In this paper,
we study the mean value properties of these two functions, and give some
asymptotic formulae for them. That is, we shall prove the following:

Theorem 1. For any real number r > 1 and integer m > 2, we have the
asymptotic formula

S F(n) = 6¢(m? + m)((m + HR(m + Ha™* (am+4+e).

2
n<x ™
where ((s) is the Riemann zeta-function, € be any fixed positive integer, and

1 1
R(m+1)——||(1— — )
+1 2 221
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Theorem 2. For any real number x > 1 and integer m > 2, we have

> Gmln) = C2m)R(2)2* + 0 (237)

n<zx

where

1 1
R(2):H(1_ 2, pom—1 o 2 —2)'
. p*+p pT A p

§2. Proof of the Theorems

Now we prove the Theorem 1. Let

() =3 Fnl)

Re(s) > 1. From the Euler product formula [3] and the multiplicative property
of F,(n) we have

fs) = H<1+Fm(p)+Fm(p2)+Fm(p3)+.“)

p ps p25 p3s

pm  p™ p™ 1
= 1+ 4 &2 442 4 -
1;[ ( N R CE T

m m

p
p(m+1

p

+ p(m+2

p" 1
)s +”'+p(2m—1)s +p2ms +--

1 1 1
= M) (1 + )

p

Gl (e )

p

= ((ms)¢(s) ] (1 b ;)

1
. P ps pm(s )

= Clme)gts) e T (1- )

- o ps + pm a pm(sfl) + pms—s

s T

where ((s) is the Riemann zeta-function. By Perron formula [2], with sy = 0,
T = xm+%, b=m+ %, we have

— 1 m—l—%—l—iT C(S_m) z’ m % €
%Fm(n) = 2—m-/m+%_iT §(m3)§(3)MR(3)?d5’+0 (95 tat ),

where
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To estimate the main term

21

¢(ms)¢(s)

1 m+2 44T _ s
/ ? MR(S)x—dS,
m+3 —iT ¢(2s —2m) S
we move the integral line from s = m + % +iTtos=m+ % +¢T". This time,

the function
((s—m) z°

f(s) = 4(m3)4(3)M?R(3)

has a simple pole point at s = m + 1 with residue

¢(m® +m)¢(m + 1)< a™  R(m + 1).

L
¢(2)

1 m+3+iT m+1+4iT m+1—iT m+3 —iT
2im \Jm+2—iT m+3 44T m+ 14T m+ LT

C(s—m) z*

So we have

N

Cm3)(5) gy s FS)S
= ¢(m? +m)¢(m + 1)T12):cm+1R(m +1).
Note that
1 m+%+iT m+—sz %fi
2 (/m+%+z'T /m+ 1T /m +4—4T )
Clms)(s) iy s T R(s)ds
& l_m—f—%—{—e
and ((2) = %2.

From above we may immediately get the asymptotic formula:

Z Fo(n) = 6¢(m? +m)¢(m ;|T—21)xm+1R(m-|— 1) 40 (xm+%+€) .

n<z

This completes the proof of the Theorem 1.
Next, we will give the proof of Theorem 2. Let
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Re(s) > 1. From the Euler product formula [3] and the multiplicative property
of G (n) we have

g(s) = H<1+Gm(p) +Gm(p2) +Gm(p3) +>

p ps p25 p35

p 1

B p p
= H(l—l_];—'_ﬁ—}_.”—l—m_f—]ﬁ

p

p p p 1
p(m+1)s + p(m+2)s oot p(2m71)s + p2ms

= W) T+ )
= C(ms)l;[(l—l—p(éﬁLZ%—l--”ﬁLlﬁ))
= com )@ T (1+ 5~ 5 s

p p p*

= ms S 7€(S — 1) - L - !
= C( )C( )C(2S — 2) 1;[ (1 pS+p pmsfl _|_pmss> ’

where ((s) is the Riemann zeta-function. By Perron formula [2], with so = 0,

T—:cg b= 2,wehave
1 3+l C(s—1) z® 3
G, / ST p ) ds + 0 (23,
z = Gt s g ) gy gy Bl s (237)
where

1
H( s_|_p pms 1_|_pms s)'

p

To estimate the main term

1 3T C(s—1) z®
- / " Cma)C(e) o R s,

we move the integral line from s = g +iT tos = % + ¢T'. This time, the
function

— C(ms)c(s) S 2 b
9ls) = Clms)C(s) gy 5 R()

has a simple pole point at s = 2 with residue

¢(2m)z2R(2).
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So we have
1 ST m+ 34T m+3—iT 34T
- / +/ +/ +
2im \J5 it SiT m+3+iT m+3—iT
¢(s—1) a*
———R(s)d
Cms)C(5) gy g 5 R()ds
= ((2m)z*R(2).
Note that

1 /m+g+z‘T m+3—iT 54T
— + / +
2T ST m+ 34T m+3—iT

(s=1) 0
Cms)C(s) g5 gy 5 B

< x%+€.

So we may immediately get the asymptotic formula:

> Gm(n) = (2m)z*R(2) + O (#5+) .

n<zx

This proves the Theorem 2.
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The book contains 41 research papers involving the Smarandache sequences,
functions, or problemsand conjectureson them.
All these papersare original. Some of them treat the mean value or hybrid mean value
of Smarandache type functions, like the famous Smarandache function, Smarandache
cell function, or Smarandache primitive function. Otherstreat the mean value of some
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