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To Dr. Florentin Smarandache

for his 50th birthday

0. In 1999, the second author of this remarks published a book over 30 of Smarandache’s
problems in area of elementary number theory (see [1, 2]). After this, we worked over new 20
problems that we collected in our book [28]. These books contain Smarandache’s problems,
described in [10, 16]. The present paper contains some of the results from [28].

In [16] Florentin Smarandache formulated 105 unsolved problems, while in [10] C.Du-
mitresu and V. Seleacu formulated 140 unsolved problems of his. The second book contains
almost all the problems from [16], but now each problem has unique number and by this reason
in [1, 28] and here the authors use the numeration of the problems from [10].

In the text below the following notations are used.
N - the set of all natural numbers (i.e., the set of all positive integers);
[x] - ”floor function” (or also so called ”bracket function”) - the greatest integer which is not
greater than the real non-negative number x;
ζ - Riemann’s Zeta-function;
Γ - Euler’s Gamma-function;
π - the prime counting function, i.e., π(n) denotes the number of prime p such that p ≤ n;
]x[ - the largest natural number strongly smaller than the real (positive) number x;
dxe - the inferior integer part of x, i.e, the smallest integer greater than or equal to x.

For an arbitrary increasing sequence of natural number C ≡ {cn}∞n=1 we denote by πC(n)
the number of terms of C, which are not greater than n. When n < c1 we put πC(n) = 0.

1. The results in this section are taken from [8].
The second problem from [10] (see also 16-th problem from [16]) is the following:
Smarandache circular sequence:

1︸︷︷︸
1

, 12, 21︸ ︷︷ ︸
2

, 123, 231, 312︸ ︷︷ ︸
3

, 1234, 2341, 3412, 4123︸ ︷︷ ︸
4

,

12345, 23451, 34512, 45123, 51234︸ ︷︷ ︸
5

,
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123456, 234561, 345612, 456123, 561234, 612345︸ ︷︷ ︸
6

, · · ·

Let f(n) be the n-th member of the above sequence. We shall prove the following
Theorem 1.1. For each natural number n:

f(n) = s(s + 1) . . . k12 . . . (s− 1),

where

k ≡ k(n) =]
√

8n + 1− 1
2

[

and
s ≡ s(n) = n− k(k + 1)

2
.

2. The results in this section are taken from [25].
The eight problem from [10] (see also 16-th problem from [16]) is the following:
Smarandache mobile periodicals (I):

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 1 1 0 0 0 0 0 1 1 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .
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. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 1 1 0 0 0 0 0 1 1 0 0 . . .

. . . 0 1 1 0 0 0 0 0 0 0 1 1 0 . . .

. . . 0 0 1 1 0 0 0 0 0 1 1 0 0 . . .

· · ·
· · ·

This sequence has the form

1, 111, 11011, 111, 1︸ ︷︷ ︸
3

, 1, 111, 11011, 1100011, 11011, 111, 1︸ ︷︷ ︸
7

,

1, 111, 11011, 1100011, 110000011, 1100011, 11011, 111, 1︸ ︷︷ ︸
9

, . . .

All digits from the above table generate an infinite matrix A. We described the elements
of A.

Let us take a Cartesian coordinate system C with origin in the point containing element
”1” in the topmost (i.e., the first) row of A. We assume that this row belongs to the ordinate
axis of C (see Fig. 1) and that the points to the right of the origin have positive ordinates.

The above digits generate an infinite sequence of squares, located in the half-plane (de-
termined by C) where the abscissa of the points are nonnegative. Their diameters have the
form

”110 . . . 011”.

Exactly one of the diameters of each of considered square lies on the abscissa of C. It can
be seen (and proved, e.g.,by induction) that the s-th square, denoted by Gs(s = 0, 1, 2, . . .)
has a diameter with length 2s + 4 and the same square has a highest vertex with coordinates
〈s2 + 3s, 0〉 in C and a lowest vertex with coordinates 〈s2 + 5s + 4, 0〉 in C.

Let us denote by ak,i an element of A with coordinates 〈k, i〉 in C.
First, we determine the minimal nonnegative s for which the inequality

s2 + 5s + 4 ≥ k

holds. We denote it by s(k). Directly it is seen the following
Lemma 2.1 The number s(k) admits the explicit representation:

s(k) =





0, if 0 ≤ k ≤ 4[√
4k+9−5

2

]
, if k ≥ 5 and 4k + 9 is

a square of an integer[√
4k+9−5

2

]
+ 1, if k ≥ 5 and 4k + 9 is

not a square of an integer

(2.1)
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and the inequality

(s(k))2 + 3s(k) ≤ k ≤ (s(k))2 + 5s(k) + 4 (2.2)

hold.
Second, we introduce the integer δ(k) and ε(k) by

δ(k) ≡ k − (s(k))2 − 3s(k), (2.3)

ε(k) ≡ (s(k))2 + 5s(k) + 4− k. (2.4)

From (2.2) we have δ(k) ≥ 0 and ε(k) ≥ 0. Let Pk be the infinite strip orthogonal to the
abscissa of C and lying between the straight lines passing through those vertices of the square
Gs(k) lying on the abscissa of C. Then δ(k) and ε(k) characterize the location of point with
coordinate 〈k, i〉 in C in strip Pk. Namely, the following assertion is true.
Proposition 2.1. The elements ak,i of the infinite matrix A are described as follows:
if k ≤ (s(k))2 + 4s(k) + 2, then

ak,i =





0, if δ(k) < |i| or δ(k) ≥ |i|+ 2,

1, if |i| ≤ δ(k) ≤ |i|+ 1

if k ≥ (s(k))2 + 4s(k) + 2, then

ak,i =





0, if ε(k) < |i| or ε(k) ≥ |i|+ 2,

1, if |i| ≤ ε(k) ≤ |i|+ 1

where here and below s(k) is given by (2.1), δ(k) and ε(k) are given by (2.3) and (2.4), respec-
tively.

Below, we propose another description of elements of A, which can be proved (e.g., by
induction) using the same considerations.

ak,i =





1, if 〈k, i〉 ∈
{〈(s(k))2 + 3s(k), 0〉, 〈(s(k))2 + 5s(k) + 4, 0〉}
⋃{〈(s(k))2 + 3s(k) + j,−j〉,
〈(s(k))2 + 3s(k) + j,−j + 1〉,
〈(s(k))2 + 3s(k) + j, j − 1〉,
〈(s(k))2 + 3s(k) + j, j〉 : 1 ≤ j ≤ s(k) + 2}
〈(s(k))2 + 5s(k) + 4− j,−j〉,
〈(s(k))2 + 5s(k) + 4− j,−j + 1〉,
〈(s(k))2 + 5s(k) + 4− j, j − 1〉,
〈(s(k))2 + 5s(k) + 4− j, j〉 :

1 ≤ j ≤ s(k) + 1}
0, otherwise
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Similar representations are possible for the ninth, tenth and eleventh problems. In [28]
we introduce eight modifications of these problems, giving formulae for their (k, i)-th members
ak,i.

Essentially more interesting is Problem 103 from [10]:
Smarandache numerical carpet:
has the general form

·
·
·
1

1 a 1

1 a b a 1

1 a b c b a 1

1 a b c d c b a 1

1 a b c d e d c b a 1

1 a b c d e f e d c b a 1

1 a b c d e f g f e d c b a 1

1 a b c d e f e d c b a 1

1 a b c d e d c b a 1

1 a b c d c b a 1

1 a b c b a 1

1 a b a 1

1 a 1

1

·
·
·

On the border of level 0, the elements are equal to ”1”;
they form a rhomb.

Next, on the border of level 1, the elements are equal to ”a”;
where ”a” is the sum of all elements of the previous border;
the ”a”s form a rhomb too inside the previous one.

Next again, on the border of level 2, the elements are equal to ”b”;
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where ”b” is the sum of all elements of the previous border;
the ”b”s form a rhomb too inside the previous one.

And so on . . .
The above square, that Smarandache named ”rhomb”, corresponds to the square from our

construction for the case of s = 6, if we begin to count from s = 1, instead of s = 0. In [10] a
particular solution of the Problem 103 is given, but there a complete solution is not introduced.
We will give a solution below firstly for the case of Problem 103 and then for a more general
case.

It can be easily seen that the number of the elements of the s-th square side is s + 2 and
therefore the number of the elements from the contour of this square is just equal to 4s + 4.

The s-th square can be represented as a set of sub-squares, each one included in the next.
Let us number them inwards, so that the outmost (boundary) square is the first one. As it is
written in Problem 103, all of its elements are equal to 1. Hence, the value of the elements of
the subsequent (second) square will be (using also the notation from problem 103):

a1 = a = (s + 2) + (s + 1) + (s + 1) + s = 4(s + 1);

the value of the elements of the third square will be

a2 = b = a(4(s− 1) + 4 + 1) = 4(s + 1)(4s + 1);

the value of the elements of the fourth square will be

a3 = c = b(4(s− 2) + 4 + 1) = 4(s + 1)(4s + 1)(4s− 3);

the value of the elements of the fifth square will be

a4 = d = c(4(s− 3) + 4 + 1) = 4(s + 1)(4s + 1)(4s− 3)(4s− 7);

etc.,where the square, corresponding to the initial square (rhomb), from Problem 103 has the
form

1

· · ·

1 a1 · · · a1 1

1 a1 a2 · · · a2 a1 1

1 a1 a2 a3 · · · a3 a2 a1 1

1 a1 a2 · · · a2 a1 1

1 a1 · · · a1 1

· · ·

1
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It can be proved by induction that the elements of this square that stay on t-th place are
given by the formula

at = 4(s + 1)
t−2∏

i=0

(4s + 1− 4i).

If we would like to generalize the above problem, we can construct, e.g., the following
extension:

x

· · ·
x a1 · · · a1 x

x a1 a2 · · · a2 a1 x

x a1 a2 a3 · · · a3 a2 a1 x

x a1 a2 · · · a2 a1 x

x a1 · · · a1 x

· · ·
x

where x is given number. Then we obtain

a1 = 4(s + 1)x

a2 = 4(s + 1)(4s + 1)x

a3 = 4(s + 1)(4s + 1)(4s− 3)x

a4 = 4(s + 1)(4s + 1)(4s− 3)(4s− 7)x

etc. and for t ≥ 1

at = 4(s + 1)
t−2∏

i=0

(4s + 1− 4i)x.

where it assumed that
−1∏

i=0

· = 1.

3. The results in this section are taken from [21].
The 15-th Smarandache’s problem from [10] is the following: “Smarandache’s simple num-

bers”:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27,

29, 31, 33, . . .

A number n is called “Smarandache’s simple number” if the product of its proper divisors is
less than or equal to n. Generally speaking, n has the form n = p, or n = p2, or n = p3, or
n = pq, where p and q are distinct primes”.
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Let us denote: by S - the sequence of all Smarandache’s simple numbers and by sn - the
n-th term of S; by P - the sequence of all primes and by pn - the n-th term of P; by P2 - the
sequence {p2

n}∞n=1; by P3 - the sequence {p3
n}∞n=1; by PQ - the sequence {p.q}p,q ∈ P, where

p < q.
In the present section we find πS(n) in an explicit form and using this, we find the n-th

term of S in explicit form, too.
First, we note that instead of πP (n) we use the notation π(n).
Hence

πP2(n) = π(
√

n), πP3(n) = π( 3
√

n),

Thus, using the definition of S, we get

πS(n) = π(n) + π(
√

n) + π( 3
√

n) + πPQ(n) (4.1)

Our first aim is to express πS(n) in an explicit form. For π(n) some explicit formulae are
proposed in [18]. Other explicit formulae for π(n) are given in [14]. One of them is known as
Minác̈’s formula. It is given below

π(n) =
n∑

k=2

[
(k − 1)! + 1

k
− [

(k − 1)!
k

]]. (4.2)

Therefore, the problem of finding of explicit formulae for functions π(n), π(
√

n), π( 3
√

n) is solved
successfully. It remains only to express πPQ(n) in an explicit form.

Let k ∈ {1, 2, . . . , π(
√

n)} be fixed. We consider all numbers of the kind pkq, which p ∈ P,
q > pk for which pk.q ≤ n. The quality of these numbers is π( n

pk
)−π(pk), or which is the same

π(
n

pk
)− k. (4.3)

When k = 1, 2, . . . , π(
√

n), the number pk.q, as defined above, describe all numbers of the
kind p.q, with p, q ∈ P, p < q, p.q < n. But the quantity of the last numbers is equal to πPQ(n).
Hence

πPQ(n) =
π(
√

n)∑

k=1

(π(
n

pk
)− k), (4.4)

because of (4.3). The equality (4.4), after a simple computation yields the formula

πPQ(n) =
π(
√

n)∑

k=1

π(
n

pk
)− π(

√
n)(π(

√
n) + 1)

2
. (4.5)

In [20] the identity

π(b)∑

k=1

π(
n

pk
) = π(

n

b
).π(b) +

π( n
2 )−π( n

b )∑

k=1

π(
n

pπ( n
b )+k

) (4.6)

is proved, under the condition b > 2 (b is a real number). When π(n
2 ) = π(n

b ), the right hand-
side of (4.6) is reduced to π(n

b ).π(b). In the case b =
√

n and n ≥ 4 equality (4.6) yields

π(
√

n)∑

k=1

π(
n

pk
) = (π(

√
n))2 +

π( n
2 )−π(

√
n)∑

k=1

π(
n

pπ(
√

n)+k

). (4.7)
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If we compare (4.5) with (4.7) we obtain for n ≥ 4

πPQ(n) =
π(
√

n)(π(
√

n)− 1)
2

+
π( n

2 )−π(
√

n)∑

k=1

π(
n

pπ(
√

n)+k

). (4.8)

Thus, we have two different explicit representations for πPQ(n). These are formulae (4.5)
and (4.8). We note that the right hand side of (4.8) reduces to π(

√
n)(π(

√
n)−1)

2 , when π(n
2 ) =

π(
√

n).
Finally, we observe that (4.1) gives an explicit representation for πS(n), since we may use

formula (4.2) for π(n) (or other explicit formulae for π(n)) and (4.5), or (4.8) for πPQ(n).

The following assertion solves the problem for finding of the explicit representation of sn.
Theorem 4.1. The n-th term sn of S admits the following three different explicit representa-
tions:

sn =
θ(n)∑

k=0

[
1

1 + [πS(n)
n ]

]; (4.9)

sn = −2
θ(n)∑

k=0

ζ(−2[
πS(n)

n
]); (4.10)

sn =
θ(n)∑

k=0

1

Γ(1− [πS(n)
n ])

, (4.11)

where

θ(n) ≡ [
n2 + 3n + 4

4
], n = 1, 2, . . .

We note that (4.9)-(4.11) are representations using, respectively, “floor function”, Rie-
mann’s Zeta-function and Euler’s Gamma-function. Also, we note that in (4.9)-(4.11) πS(k) is
given by (4.1), π(k) is given by (4.2) (or by others formulae like (4.2)) and πPQ(n) is given by
(4.5), or by (4.8). Therefore, formulae (4.9)-(4.11) are explicit.

4. The results in this section are taken from [6].
The 17-th problem from [10] (see also the 22-nd problem from [16]) is the following:
Smarandache’s digital products:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9︸ ︷︷ ︸, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9︸ ︷︷ ︸,

0, 2, 4, 6, 8, 10, 12, 14, 16, 18︸ ︷︷ ︸, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27︸ ︷︷ ︸,
0, 4, 8, 12, 16, 20, 24, 28, 32, 36︸ ︷︷ ︸, 0, 5, 10, 15, 20, 25 . . .︸ ︷︷ ︸

(dp(n)is the product of digits.)
Let the fixed natural number n have the form n = a1a2 . . . ak, where a1, a2, . . . , ak ∈

{0, 1, . . . , 9} and a1 ≥ 1. Therefore,

n =
k∑

i=1

ai10i−1.
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Hence, k = [log10 n] + 1 and

a1(n) ≡ a1 = [
n

10k−1
],

a2(n) ≡ a2 = [
n− a110k−1

10k−2
],

a3(n) ≡ a3 = [
n− a110k−1 − a210k−2

10k−3
],

. . .

a[log10(n)](n) ≡ ak−1 = [
n− a110k−1 − . . .− ak−2102

10
],

a[log10(n)]+1(n) ≡ ak = n− a110k−1 − . . .− ak−110.

Obviously, k, a1, a2, . . . , ak are functions only of n. Therefore,

dp(n) =
[log10(n)]+1∏

i=1

ai(n).

5. The results in this section are taken from [4, 27].
The 20-th problem from [10] is the following (see also Problem 25 from [16]):

Smarandache devisor products:

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19,

8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768,

1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, . . .

(Pd(n) is the product of all positive divisors of n.)
The 21-st problem from [10] is the following (see also Problem 26 from [16]):

Smarandache proper devisor products:

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1,

13824, 5, 26, 27, 784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39,

64000, 1, . . .

(pd(n) is the product of all positive divisors of n but n.)
Let us denote by τ(n) the number of all devisors of n. It is well-known (see, e.g., [13]) that

Pd(n) =
√

nτ(n) (6.1)

and of course, we have

pd(n) =
Pd(n)

n
. (6.2)

But (6.1) is not a good formula for Pd(n), because it depends on function τ and to express
τ(n) we need the prime number factorization of n.
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Below, we give other representations of Pd(n) and pd(n), which do not use the prime
number factorization of n.
Proposition 6.1. For n ≥ 1 representation

Pd(n) =
n∏

k=1

k[ n
k ]−[ n−1

k ] (6.3)

holds.
Here and further the symbols ∏

k/n

· and
∑

k/n

·

mean the product and the sum, respectively, of all divisors of n.
Let

θ(n, k) ≡ [
n

k
]− [

n− 1
k

]

=





1, if k is a divisor of n

0, otherwise

The following assertion is obtained as a corollary of (6.2) and (6.3).
Proposition 6.2. For n ≥ 1 representation

pd(n) =
n−1∏

k=1

k[ n
k ]−[ n−1

k ]

holds.
For n = 1 we have

pd(1) = 1.

Proposition 6.3. For n ≥ 1 representation

Pd(n) =
n∏

k=1

[n
k ]!

[n−1
k ]!

(6.5)

holds, where here and further we assume that 0! = 1.
Now (6.2) and (6.5) yield.

Proposition 6.4. For n ≥ 2 representation

pd(n) =
n∏

k=2

[n
k ]!

[n−1
k ]!

holds.
Another type of representation of pd(n) is the following

Proposition 6.5. For n ≥ 3 representation

pd(n) =
n−2∏

k=1

(k!)θ(n,k)−θ(n,k+1),
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where θ(n, k) is given by (6.4).
Further, we need the following

Theorem 6.1. [22] For n ≥ 2 the identity

n∏

k=2

[
n

k
]! =

n−1∏

k=1

(k!)[
n
k ]−[ n

k+1 ] (6.6)

holds.
Now, we shall deduce some formulae for

n∏

k=1

Pd(k) and
n∏

k=1

pd(k).

Proposition 6.6. Let f be an arbitrary arithmetic function. then the identity

n∏

k=1

(Pd(k))f(k) =
n∏

k=1

kρ(n,k) (6.7)

holds, where

ρ(n, k) =
[ n

k ]∑
s=1

f(ks).

Now we need the following
Lemma 6.1. For n ≥ 1 the identity

n∏

k=1

[
n

k
]! =

n∏

k=1

k[ n
k ]

holds.
Proposition 6.7. For n ≥ 1 the identity

n∏

k=1

Pd(k) =
n∏

k=1

[
n

k
]! (6.8)

holds. As a corollary from (6.2) and (6.8), we also obtain
Proposition 6.8. For n ≥ 2 the identity

n∏

k=1

pd(k) =
n∏

k=2

[
n

k
]! (6.9)

holds.
From (6.6) and (6.9), we obtain

Proposition 6.9. For n ≥ 2 the identity

n∏

k=1

pd(k) =
n−1∏

k=1

(k!)[
n
k ]−[ n

k+1 ] (6.10)

holds.
As a corollary from (6.10) we obtain, because of (6.2)
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Proposition 6.10. For n ≥ 1 the identity

n∏

k=1

Pd(k) =
n∏

k=1

(k!)[
n
k ]−[ n

k+1 ] (6.10)

holds.
Now, we return to (6.7) and suppose that

f(k) > 0 (k = 1, 2, . . .).

Then after some simple computations we obtain
Proposition 6.11. For n ≥ 1 representation

Pd(k) =
n∏

k=1

kσ(n,k) (6.11)

holds, where

σ(n, k) =
∑[ n

k ]
s=1 f(ks)−∑[ n−1

k ]
s=1 f(ks)

f(n)
.

For n ≥ 2 representation

pd(k) =
n−1∏

k=1

kσ(n,k) (6.12)

holds.
Note that although f is an arbitrary arithmetic function, the situation with (6.11) and

(6.12) is like the case f(x) ≡ 1, because

∑[ n
k ]

s=1 f(ks)−∑[ n−1
k ]

s=1 f(ks)
f(n)

=





1, if k is a divisor of n

0, otherwise

Finally, we use (6.7) to obtain some new inequalities, involving Pd(k) and pd(k) for k =
1, 2, . . . , n.

Putting

F (n) =
n∑

k=1

f(k)

we rewrite (6.7) as
n∏

k=1

(Pd(k))
f(k)
F (n) =

n∏

k=1

k(
∑[ n

k
]

s=1 f(ks))/(F (n)). (6.13)

Then we use the well-known Jensen’s inequality

n∑

k=1

αkxk ≥
n∏

k=1

xαk

k ,

that is valid for arbitrary positive numbers xk, αk(k = 1, 2, . . . , n) such that

n∑

k=1

αk = 1,
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for the case:
xk = Pd(k),

αk =
f(k)
F (n)

.

Thus we obtain from (6.13) inequality

n∑

k=1

f(k).Pd(k) ≥ (
n∑

k=1

f(k)).
n∏

k=1

k(
∑[ n

k
]

s=1 f(ks))/(
∑n

s=1 f(s)). (6.14)

If f(x) ≡ 1, then (6.14) yields the inequality

1
n

n∑

k=1

Pd(k) ≥
n∏

k=1

( n
√

k)[
n
k ].

If we put in (6.14)

f(k) =
g(k)
k

for k = 1, 2, . . . , n, then we obtain

n∑

k=1

g(k).pd(k) ≥ (
n∑

k=1

g(k)
k

).
n∏

k=1

( k
√

k)(
∑[ n

k
]

s=1
g(ks)

s )/(
∑n

s=1
g(s)

s ). (6.15)

because of (6.2).
Let g(x) ≡ 1. Then (6.15) yields the very interesting inequality

(
1

Hn

n∑

k=1

pd(k))Hn ≥
n∏

k=1

( k
√

k)H[ n
k

] ,

where Hm denotes the m-th partial sum of the harmonic series, i.e.,

Hm =
1
1

+
1
2

+ . . . +
1
m

.

All of the above inequalities become equalities if and only if n = 1.

6. The results in this section are taken from [29].
The 25-th and the 26-th problems from [10] (see also the 30-th and the 31-st problems

from [16]) are the following:

Smarandache’s cube free sieve:

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26,

28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50,

51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, . . .

Definition: from the set of natural numbers (except 0 and 1):
- take off all multiples of 23 (i.e. 8,16,24,32,40,. . . )
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- take off all multiples of 33

- take off all multiples of 53

. . . and so on (take off all multiples of all cubic primes).

Smarandache’s m-power free sieve:
Definition: from the set of natural numbers (except 0 and 1) take off all multiples of 2m,
afterwards all multiples of 3m . . . and so on(take off all multiples of all m-power primes, m ≥ 2).
(One obtains all m-power free numbers.)

Here we introduce the solution for both of these problems.
For every natural number m we denote the increasing sequence a

(m)
1 , a

(m)
2 , a

(m)
3 , . . . of all

m-power free numbers by m. Then we have

∅ ≡ 1 ⊂ 2 ⊂ . . . ⊂ (m− 1) ⊂ m ⊂ (m + 1) ⊂ . . .

Also, for m ≥ 2 we have

m =
m−1⋃

k=1

(2)k

where
(2)k = {x|(∃x1, . . . , xk ∈ 2)(x = x1.x2 . . . xk)}

for each natural number k ≥ 1.
Let us consider m as an infinite sequence for m = 2, 3, . . .. Then 2 is a subsequence of m.

Therefore, the inequality
a(m)

n ≤ a(2)
n

holds for n = 1, 2, 3, . . . .
Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . be the sequence of all primes. It is obvious that this

sequence is a subsequence of 2. Hence the inequality

a(2)
n ≤ pn

holds for n = 1, 2, 3, . . .. But it is well-known that

pn ≤ θ(n) ≡ [
n2 + 3n + 4

4
]

(see [12]). Therefore, for any m ≥ 2 and n = 1, 2, 3, . . . we have

a(m)
n ≤ a(2)

n ≤ θ(n).

Hence, there exits λ(n) such that λ(n) ≤ θ(n) and inequality:

a(m)
n ≤ a(2)

n ≤ λ(n).

holds. In particular, it is possible to use θ(n) instead of λ(n).
In [28] we find the following explicit formulae for a

(m)
n when m ≥ 2 is fixed:

a(m)
n =

λ(n)∑

k=0

[
1

1 + [πm(k)
n ]

]; (7.1)
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a(m)
n = −2

λ(n)∑

k=0

ζ(−2[
πm(k)

n
]); (7.2)

a(m)
n =

λ(n)∑

k=0

1

Γ(1− [πm(k)
n ])

. (7.3)

Thus, the 26-th Smarandache’s problem is solved and for m = 3 the 25-th Smarandache’s
problem is solved, too.

The following problems are interesting.
Problem 7.1. Does there exist a constant C > 1, such that λ(n) ≤ C.n?
Problem 7.2. Is C ≤ 2?

Below we give the main explicit representation of function πm(n), that takes part in for-
mulae (7.1) - (7.3). In this way we find the main explicit representation for a

(m)
n , that is based

on formulae (7.1) - (7.3), too.
Theorem 7.1. Function πm(n) allows representation

πm(n) = n− 1 +
∑

s∈2
⋂{2,3,...,[ m

√
n]}

(−1)ω(s).[
n

sm
],

where ω(s) denotes the number of all different prime divisors of s.

7. The results in this section are taken from [24].
The 28-th problem from [10] (see also the 94-th problem from [16]) is the following:

Smarandache odd sieve:

7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67, 73, 75, 83,

85, 91, 93, 97, . . .

(All odd numbers that are not equal to the difference of two primes).
A sieve is to get this sequence:
- subtract 2 from all prime numbers and obtain a temporary sequence;
- choose all odd numbers that do not belong to the temporary one.

We find an explicit form of the n-th term of the above sequence, that will be denoted by
C = {Cn}∞n=1 below.

Firstly, we shall note that the above definition of C can be interpreted to the following
equivalent form as follows, having in mind that every odd number is a difference of two prime
numbers if and only if it is a difference of a prime number and 2:

Smarandache’s odd sieve contains exactly these odd numbers that cannot be represented as
a difference of a prime and 2.

We rewrite the last definition to the following equivalent form, too:
Smarandache’s odd sieve contains exactly these odd numbers that are represented as a

difference of a composite odd number and 2.
We find an explicit form of the n-th term of the above sequence, using the third definition

of it. Initially, we use the following two assertions.
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Lemma 8.1. For every natural number n ≥ 1, Cn+1 is exactly one of the numbers: u ≡
Cn + 2, v ≡ Cn + 4 or w ≡ Cn + 6.
Corollary 8.1. For every natural number n ≥ 1:

Cn+1 ≤ Cn + 6.

Corollary 8.2. For every natural number n ≥ 1:

Cn ≤ 6n + 1. (8.1)

Now, we return to the Smarandache’s problem.
In [18] the following three universal explicit formulae are introduced, using numbers πC(k) (k =

0, 1, 2, . . .), that can be used to represent numbers Cn:

Cn =
∞∑

k=0

[
1

1 + [πC(k)
n ]

],

Cn = −2
∞∑

k=0

ζ(−2[
πC(k)

n
]),

Cn =
∞∑

k=0

1

Γ(1− [πC(k)
n ])

.

For the present case, having in mind (8.1), we substitute symbol ∞ with 6n + 1 in sum∑∞
k=0 for Cn and we obtain the following sums:

Cn =
6n+1∑

k=0

[
1

1 + [πC(k)
n ]

], (8.2)

Cn = −2
6n+1∑

k=0

ζ(−2[
πC(k)

n
]), (8.3)

Cn =
6n+1∑

k=0

1

Γ(1− [πC(k)
n ])

. (8.4)

We must explain why πC(n) (n = 1, 2, 3, . . .) is represented in an explicit form. It can be
directly seen that the number of the odd numbers, that are not bigger than n, is exactly equal
to

α(n) = n− [
n

2
], (8.5)

because the number of the even numbers that are not greater than n is exactly equal to [n
2 ].

Let us denote by β(n) the number of all odd numbers not bigger than n, that can be
represented as a difference of two primes. According to the second form of the above given
definition, β(n) coincides with the number of all odd numbers m such that m ≤ n and m has
the form m = p− 2, where p is an odd prime number. Therefore, we must study all odd prime
numbers, because of the inequality m ≤ n. The number of these prime numbers is exactly
π(n + 2)− 1. therefore,

β(n) = π(n + 2)− 1. (8.6)
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Omitting from the number of all odd numbers that are not greater than n the quantity of
those numbers that are a difference of two primes, we find exactly the quantity of these odd
numbers that are not greater than n and that are not a difference of two prime numbers, i.e.,
πC(n). Therefore, the equality

πC(n) = α(n)− β(n)

holds and from (8.5) and (8.6) we obtain:

πC(n) = (n− [
n

2
])− (π(n + 2)− 1) = n + 1− [

n

2
]− π(n + 2).

But π(n+2) can be represented in an explicit form, e.g., by Minác̈’s formula and therefore,
we obtain that the explicit form of πC(N) is

πC(N) = N + 1− [
N

2
]−

N+2∑

k=2

[
(k − 1)! + 1

k
− [

(k − 1)!
k

]], (8.7)

where N ≥ 1 is a fixed natural number.
It is possible to put [N+3

2 ] instead of N + 1− [N
2 ] into (8.7).

Now, using each of the formulae (8.2) - (8.4), we obtain Cn in an explicit form, using (8.7).
It can be checked directly that

C1 = 7, C2 = 13, C3 = 19, C4 = 23, C5 = 25, C6 = 31,

C7 = 33, . . .

and
πC(0) = πC(1) = πC(2) = πC(3) = πC(4) = πC(5) = πC(6) = 0.

Therefore from (8.2) - (8.4) we have the following explicit formulae for Cn

Cn = 7 +
6n+1∑

k=7

[
1

1 + [πC(k)
n ]

],

Cn = 7 +−2
6n+1∑

k=7

ζ(−2.[
πC(k)

n
]),

Cn = 7 +
6n+1∑

k=7

1

Γ(1− [πC(k)
n ])

,

where πC(k) is given by (8.7).

8. The results in this section are taken from [7, 26].
The 46-th Smarandache’s problem from [10] is the following:

Smarandache’s prime additive complements;

1, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1,

0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0 . . .
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(For each n to find the smallest k such that n + k is prime.)

Remarks: Smarandache asked if it is possible to get as large as we want but finite decreasing
k, k − 1, k − 2, . . . , 2, 1, 0 (odd k) sequence included in the previous sequence - i.e., for any
even integer are there two primes those difference is equal to it? He conjectured the answer is
negative.

Obviously, the members of the above sequence are differences between first prime number
that is greater or equal to the current natural number n and the same n. It is well-known that
the number of primes smaller than or equal to n is π(n). Therefore, the prime number smaller
than or equal to n is pπ(n). Hence, the prime number that is greater than or equal to n is the
next prime number, i.e., pπ(n)+1. Finally, the n-th member of the above sequence will be equal
to 




pπ(n)+1 − n, if n is not a prime number

0, otherwise

We shall note that in [3] the following new formula pn for every natural number n is given:

pn =
θ(n)∑

i=0

sg(n− π(i)),

where θ(n) = [n2+3n+4
4 ] and

sg(x) =





0, if x ≤ 0,

1, if x > 0.

Let us denote by an the n-th term of the above sequence. Next, we propose a way for
obtaining an explicit formula for an (n = 1, 2, 3, . . .). Extending the below results, we give an
answer to the Smarandache’s question from his own remark in [10]. At the end, we propose
a generalization of Problem 46 and present a proof of an assertion related to Smarandache’s
conjecture for Problem 46.
Proposition 9.1. an admits the representation

an = pπ(n−1)+1 − n, (9.1)

where n = 1, 2, 3, . . ., π is the prime counting function and pk is the k-th term of prime number
sequence.

It is clear that (9.1) gives an explicit representation for an since several explicit formulae
for π(k) and pk are known (see, e.g. [14]).

Let us define
n(m) = m! + 2.

Then all numbers

n(m), n(m) + 1, n(m) + 2, . . . , n(m) + m− 2

are composite. Hence
an(m) ≥ m− 1.
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This proves the Smarandache’s conjecture, since m may grow up to infinity. Therefore
{an}∞n=1 is unbounded sequence.

Now, we shall generalize Problem 46.
Let

c ≡ c1, c2, c3, . . .

be a strictly increasing sequence of positive integers.
Definition. Sequence

b ≡ b1, b2, b3, . . .

is called c-additive complement of c if and only if bn is the smallest non-negative integer, such
that n + bn is a term of c.

The following assertion generalizes Proposition 1.
Proposition 9.2. bn admits the representation

bn = cπc(n−1)+1 − n,

where n = 1, 2, 3, . . ., πc(n) is the counting function of c, i.e., πc(n) equals to the quantity of
cm, m = 1, 2, 3, . . ., such that cm ≤ n.

Let
dn ≡ cn+1 − cn (n = 1, 2, 3, . . .).

The following assertion is related to the Smarandache’s conjecture from Problem 46.
Proposition 9.3. If {dn}∞n=1 is unbounded sequence, then {bn}∞n=1 is unbounded sequence,
too.
Open Problem. Formulate necessary conditions for the sequence {bn}∞n=1 to be unbounded.

9. The results in this section are taken from [23].
Solving of the Diophantine equation

2x2 − 3y2 = 5 (10.1)

i.e.,
2x2 − 3y2 − 5 = 0

was put as an open Problem 78 by F. Smarandache in [16]. In [28] this problem is solved
completely. Also, we consider here the Diophantine equation

l2 − 6m2 = −5,

i.e.,
l2 − 6m2 + 5 = 0

and the Pellian equation
u2 − 6v2 = 1,

i.e.,
u2 − 6v2 − 1 = 0.
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In [28] we introduce a generalization of the Smarandache’s problem 78 from [16].
If we consider the Diophantine equation

2x2 − 3y2 = p, (10.2)

where p 6= 2 is a prime number, then using [13], Chapter VII, exercise 2 and the same method
as in the case of (10.1), we obtain the following result.
Theorem 10.1. (1) The necessary and sufficient condition for solvability of (10.2) is:

p ≡ 5(mod24) or p ≡ 23(mod24) (10.3)

(2) if (10.3) is valid, then there exist exactly one solution < x, y >∈ N 2 of (10.2) such that
the inequalities

x <

√
3
2
.p

and

y <

√
3
2
.p

holds. Every other solution < x, y >∈ N 2 of (10.2) has the form:

x = l + 3m

y = l + 2m,

where < l, m >∈ N 2 is a solution of the Diophantine equation

l2 − 6m2 = −p.

The problem how to solve the Diophantine equation, a special case of which is the above
one, is considered in Theorem 110 from [13].

10. The results in this section are taken from [9]. In [15, 17] F. Smarandache formulates
the following four problems:

Problem 1. Let p be an integer ≥ 3. Then:

p is a prime if and only if

(p− 3)! is congruent to
p− 1

2
(modp).

Problem 2. Let p be an integer ≥ 4. Then:

p is a prime if and only if

(p− 4)! is congruent to (−1)d
p
3 e+1dp + 1

6
e(modp). (11.1)

Problem 3. Let p be an integer ≥ 5. Then:

p is a prime if and only if
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(p− 5)! is congruent to rh +
r2 − 1

24
(modp), (11.2)

with h = d p
24e and r = p− 24.

Problem 4. Let p = (k − 1)!h + 1 be a positive integer k > 5, h natural number. Then:

p is a prime if and only if

(p− k)! is congruent to (−1)th(modp). (11.3)

with t = h + d p
he+ 1.

Everywhere above dxe means the inferior integer part of x, i.e., the smallest integer greater
than or equal to x.

In [28] we discussed these four problems.
Problem 1. Admits the following representation:

Let p ≥ 3 be an odd number. Then:

p is a prime if and only if (p− 3)! ≡ p− 1
2

(modp).

Different than Smarandache’s proof of this assertion is given in [28].
Problem 2. Is false, because, for example, if p = 7, then (11.1) obtains the form

6 ≡ (−1)42(mod7),

where
6 = (7− 4)!

and
(−1)42 = (−1)d

7
3 e+1d8

6
e,

i.e.,
6 ≡ 2(mod7),

which is impossible.
Problem 3. Can be modified, having in mind that from r = p− 24h it follows:

rh +
r2 − 1

24
= (p− 24h).h +

p2 − 48ph + 242h2 − 1
24

= ph− 24h2 +
p2 − 1

24
− 2ph + 24h2 =

p2 − 1
24

− ph,

i.e., (11.2) has the form

p is a prime if and only if

(p− 5)! is congruent to
p2 − 1

24
(modp),
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Different than the Smarandache’s proof of this assertion is given in [28].
Problem 4. Also can be simplified, because

t = h + d p

h
e+ 1

= h + d (k − 1)!h + 1
h

e+ 1

= h + (k − 1)! + 1 + 1 = h + (k − 1)! + 2,

i.e.,
(−1)t = (−1)h,

because for k > 2: (k − 1)! + 2 is an even number. Therefore, (11.3) obtains the form

p is a prime if and only if

(p− k)! is congruent to (−1)hh(modp),

Let us assume that (11.4) is valid. We use again the congruences

(p− 1) ≡ −1(modp)

(p− 2) ≡ −2(modp)

. . .

(p− (k − 1)) ≡ −(k − 1)(modp)

and obtain the next form of (11.4)

p is a prime if and only if

(p− 1)! ≡ (−1)h.(−1)k−1.(k − 1)!.h(modp)

or
p is a prime if and only if

(p− 1)! ≡ (−1)h+k−1.(p− 1)(modp).

But the last congruence is not valid, because, e.g., for k = 5, h = 3, p = 73 = (5− 1)! + 11

holds
72! ≡ (−1)9.72(mod73), 2

i.e.,
72! ≡ 1(mod73),

1In [28] there is a misprint: 3! instead of 3.
2In [28] there is a misprint: (−1)9 instead of (−1)7.
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while from Wilson’s Theorem follows that

72! ≡ −1(mod73).

11. The results in this section are taken from [5].
In [17] F. Smarandache discussed the following particular cases of the well-known charac-

teristic functions (see, e.g., [11, 30]).
12.1) Prime function: P : N → {0, 1}, with

P (n) =





0, if n is a prime

1, otherwise

More generally: Pk : Nk → {0, 1}, where k ≥ 2 is an integer, and

Pk(n1, n2, . . . , nk) =





0, if n1, n2, . . . , nk are all prime numbers

1, otherwise

12.2) Coprime function is defined similarly: Ck : Nk → {0, 1}, where k ≥ 2 is an integer,
and

Ck(n1, n2, . . . , nk) =





0, if n1, n2, . . . , nk are coprime numbers

1, otherwise

In [28] we formulate and prove four assertions related to these functions.
Proposition 12.1. For each k, n1, n2, . . . , nk natural numbers:

Pk(n1, n2, . . . , nk) = 1−
k∏

i=1

(1− P (ni)).

Proposition 12.2. For each k, n1, n2, . . . , nk natural numbers:

Ck(n1, n2, . . . , nk) = 1−
k∏

i=1

k∏

j=i+1

(1− C2(ni, nj)).

Proposition 12.3. For each natural number n:

Cπ(n)+P (n)(p1, p2, . . . , pπ(n)+P (n)−1, n) = P (n).

Proposition 12.4. For each natural number n:

P (n) = 1−
π(n)+P (n)−1∏

i=1

(1− C2(pi, n)).

Corollary 12.1. For each natural number k, n1, n2, . . . , nk:

Pk(n1, n2, . . . , nk) = 1−
k∏

i=1

π(ni)+P (ni)−1∏

j=1

(1− C2(pj , ni)).
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Abstract

In this paper, we study the concept of Smarandache groupoids, subgroupoids, ideal of groupoids,

semi-normal subgroupoids, Smarandache-Bol groupoids and Strong Bol groupoids and obtain many

interesting results about them.
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Definition [1]: A groupoid (G, ∗) is a non-empty set, closed with respect to an operation
∗ (in general ∗ need not to be associative).

Definition 1: A Smarandache groupoid G is a groupoid which has a proper subset
S ⊂ G which is a semigroup under the operation of G.

Example 1: Let (G, ∗) be a groupoid on modulo 6 integers. G = {0, 1, 2, 3, 4, 5} is given by
the following table:

∗ 0 1 2 3 4 5

0 0 3 0 3 0 3

1 1 4 1 4 1 4

2 2 5 2 5 2 5

3 3 0 3 0 3 0

4 4 1 4 1 4 1

5 5 2 5 2 5 2

Clearly S1 = {0, 3}, S2 = {1, 4} and S3 = {2, 5} are semigroups of G. So (G, ∗) is a
Smarandache groupoid.

Example 2: Let G = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be the set of integers modulo 10. Define an
operation ∗ on G by choosing a pair (1, 5) such that a ∗ b = 1a + 5b(mod 10) for all a, b ∈ G.

The groupoid is given by the following table.
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∗ 0 1 2 3 4 5 6 7 8 9

0 0 5 0 5 0 5 0 5 0 5

1 1 6 1 6 1 6 1 6 1 6

2 2 7 2 7 2 7 2 7 2 7

3 3 8 3 8 3 8 3 8 3 8

4 4 9 4 9 4 9 4 9 4 9

5 5 0 5 0 5 0 5 0 5 0

6 6 1 6 1 6 1 6 1 6 1

7 7 2 7 2 7 2 7 2 7 2

8 8 3 8 3 8 3 8 3 8 3

9 9 4 9 4 9 4 9 4 9 4

Clearly S1 = {0, 5}, S2 = {1, 6}, S3 = {2, 7}, S4 = {3, 8} and S5 = {4, 9} are semigroupoids
under the operation ∗. Thus {G, ∗, (1, 5)} is a Smarandache groupoid.

Theorem 2. Let Z2p = {0, 1, 2, · · · , 2p−1}. Define ∗ on Z2p for a, b ∈ Z2p by a∗b = 1a+pb(
mod 2p). {Z2p, ∗, (1, p)} is a Smarandache groupoid.

Proof . Under the operation ∗ defined on Z2p we see S1 = {0, p}, S2 = {1, p + 1}, S3 =
{2, p + 2},· · · ,Sp = {p− 1, 2p− 1} are semigroup under the operation ∗. Hence {Z2p, ∗, (1, p)}
is a Smarandache groupoid.

Example 3: Take Z6 = {0, 1, 2, 3, 4, 5}. (2, 5) = (m,n). For a, b ∈ Z6 define a ∗ b =
ma + nb(mod 6). The groupoid is given by the following table:

∗ 0 1 2 3 4 5

0 0 5 4 3 2 1

1 2 1 0 5 4 3

2 4 3 2 1 0 5

3 0 5 4 3 2 1

4 2 1 0 5 4 3

5 4 3 2 1 0 5

Every singleton is an idempotent semigroup of Z6.

Theorem 3. Let Z2p = {0, 1, 2, · · · , p− 1}. Define ∗ on Z2p by a ∗ b = 2a+(2p− 1)b(mod
2p) for a, b ∈ Z2p. Then {Z2p, ∗, (2, 2p− 1)} is a Smarandache groupoid.

Proof . Under the operation ∗ defined on Z2p we see that every element of Z2p is idempo-
tent, therefore every element forms a singleton semigroup. Hence the claim.

Example 4: Consider Z6 = {Z6, ∗, (4, 5)} given by the following table:
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∗ 0 1 2 3 4 5

0 0 5 4 3 2 1

1 4 3 2 1 0 5

2 2 1 0 5 4 3

3 0 5 4 3 2 1

4 4 3 2 1 0 5

5 2 1 0 5 4 3

{3} is a semigroup. Hence ∗ is a Smarandache groupoid. It is easily verified that Z6 is a
Smarandache groupoid as {Z6, ∗, (4, 5)} has an idempotent semigroup {3} under ∗.

Theorem 4. Let Z2p = {0, 1, 2, · · · , 2p− 1} be the set of integers modulo 2p. Define ∗ on
a, b ∈ Z2p by a(2p− 2) + b(2p− 1)(mod 2p). Then {Z2p, ∗, (2p− 2, 2p− 1)} is a Smarandache
groupoid.

Proof . Z2p = {0, 1, 2, · · · , 2p−1}. Take (2p−2, 2p−1) = 1 from Z2p. For a, b ∈ Zp define
a∗b = a(2p−2)+b(2p−1)(mod 2p). Clearly for a = b = p we have (2p−2)p+(2p−1)p = p(mod
2p). Hence {p} is an idempotent semigroup of Z2p. So {Z2p, ∗, (2p−2, 2p−1)} is a Smarandache
groupoid.

Definition 5: Let (G, ∗) be a Smarandache groupoid. A non-empty subset H of G is said
to be a Smarandache groupoid if H contains a proper subset K ⊂ H such that K is a semigroup
under the operation ∗.

Theorem 6. Not every subgroupoid of a Smarandache groupoid S is in general a Smaran-
dache subgroupoid of S.

Proof . By an example.
Let Z6 = {0, 1, 2, 3, 4, 5}(mod 6). Take (t, u) = (4, 5) = 1. For a, b ∈ Z6 define ∗ on Z6 by

a ∗ b = at + bu(mod 6) given by the following table:

∗ 0 1 2 3 4 5

0 0 5 4 3 2 1

1 4 3 2 1 0 5

2 2 1 0 5 4 3

3 0 5 4 3 2 1

4 4 3 2 1 0 5

5 2 1 0 5 4 3

Clearly {Z6, ∗, (4, 5)} is a Smarandache groupoid for it contains {0, 3} as a semigroup. But
this groupoid has the following subgroupoids: A1 = {0, 2, 4} and A2 = {1, 3, 5}. A1 has no
non-trivial semigroup({0} is a trivial semigroup). But A2 has a non-trivial semigroup, viz.{3}.
Hence the claim.

Theorem 7. If a groupoid contains a Smarandache subgroupoid, then the groupoid is a
Smarandache groupoid.
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Proof . Let G be a groupoid and H ⊂ G be a Smarandache subgroupoid, that is H contains
a proper subset P ⊂ H such that P is a semigroup. So P ⊂ G and P is a semigroup. Hence G

is a Smarandache groupoid.
Definition 8:
i) A Smarandache Left Ideal A of the Smarandache Groupoid G satisfies the following

conditions:
1. A is a Smarandache subgroupoid. 2. For all x ∈ G, and x ∈ A, xa ∈ A.
ii) Similarly, one defines a Smarandache Right Ideal.
iii) If A is both a Smarandache right and left ideals then A is a Smarandache Ideal. We

take {0} as a trivial Smarandache ideal.
Example 5: Let {Z6, ∗, (4, 5)} be a Smarandache groupoid. A = {1, 3, 5} is a Smarandache

subgroupoid and A is Smarandache left ideal and not a Smarandache right ideal. Easy to verify.
Theorem 9. Let G be a groupoid. An ideal of G in general is not a Smarandache ideal

of G even if G is a Smarandache groupoid.
Proof. By an example. Consider the groupoid G = {Z6, ∗, (2, 4)} given by the following

table.

∗ 0 1 2 3 4 5

0 0 4 2 0 4 2

1 2 0 4 2 0 4

2 4 2 0 4 2 0

3 0 4 2 0 4 2

4 2 0 4 2 0 4

5 4 2 0 4 2 0

Clearly G is a Smarandache groupoid for {0, 3} is a semigroup of G. Now, {0, 4, 2} is an
ideal of G but is not a Smarandache ideal as {0, 4, 2} is not a Smarandache subgroupoid.

Definition 10: Let G be a Smarandache groupoid and V be a Smarandache subgroupoid
of G. We say V is a Smarandache semi-normal subgroupoid if:

1. aV = X for all a ∈ G; 2. V a = Y for all a ∈ G, where either X or Y is a Smarandache
subgroupoid of G but X and Y are both subgroupoids.

Example 6: Consider the groupoid G = {Z6, ∗, (4, 5)} given by the table.

∗ 0 1 2 3 4 5

0 0 5 4 3 2 1

1 4 3 2 1 0 5

2 2 1 0 5 4 3

3 0 5 4 3 2 1

4 4 3 2 1 0 5

5 2 1 0 5 4 3
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Clearly G is a Smarandache groupoid as {3} is a semigroup. Take A = {1, 3, 5}. A is also a
Smarandache subgroupoid. Now aA = A is a Smarandache groupoid. Aa = {0, 2, 4}. {0, 2, 4}
is not a Smarandache subgroupoid of G. Hence A is a Smarandache semi-normal subgroupoid.

Definition 11: Let A be a Smarandache groupoid and V be a Smarandache subgroupoid.
V is said to be Smarandache normal subgroupoid if aV = X and V a = Y where both X

and Y are Smarandache subgroupoids of G.

Theorem 12. Every Smarandache normal subgroupoid is a Smarandache semi-normal
subgroupoid, and not conversely.

Proof . By the definition 10 and 11, we see every Smarandache normal subgroupoid is
Smarandache semi-normal subgroupoid. We prove the converse by an example. In example 6
we see A is a Smarandache semi-normal subgroupoid but not a normal subgroupoid as Aa =
{0, 2, 4} is only a subgroupoid and not a Smarandache subgroupoid.

Example 7: Let G = {Z8, ∗, (2, 6)} be a groupoid given by the following table:

∗ 0 1 2 3 4 5 6 7

0 0 6 4 2 0 6 4 2

1 2 0 6 4 2 0 6 4

2 4 2 0 6 4 2 0 6

3 6 4 2 0 6 4 2 0

4 0 6 4 2 0 6 4 2

5 2 0 6 4 2 0 6 4

6 4 2 0 6 4 2 0 6

7 6 4 2 0 6 4 2 0

Clearly G is a Smarandache groupoid for {0, 4} is a semigroupoid G. A = {0, 2, 4, 6} is
a Smarandache subgroupoid. Clearly Aa = A for all a ∈ G. So A is a Smarandache normal
subgroupoid of G.

Definition 13: Let G be a Smarandache groupoid H and P be subgroupoids of G, we say
H and P are Smarandache semi-conjugate subgroupoids of G if:

1. H and P are Smarandache subgroupoids.

2. H = xP or Px, for some x ∈ G.

3. P = xH or Hx, for some x ∈ G.

Example 8: Consider the groupoid G = {Z12, ∗, (1, 3)} which is given by the following
table:
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∗ 0 1 2 3 4 5 6 7 8 9 10 11

0 0 3 6 9 0 3 6 9 0 3 6 9

1 1 4 7 10 1 4 7 10 1 4 7 10

2 2 5 8 11 2 5 8 11 2 5 8 11

3 3 6 9 0 3 6 9 0 3 6 9 0

4 4 7 10 1 4 7 10 1 4 7 10 1

5 5 8 11 2 5 8 11 2 5 8 11 2

6 6 9 0 3 6 9 0 3 6 9 0 3

7 7 10 1 4 7 10 1 4 7 10 1 4

8 8 11 2 5 8 11 2 5 8 11 2 5

9 9 0 3 6 9 0 3 6 9 0 3 6

10 10 1 4 7 10 1 4 7 10 1 4 7

11 11 2 5 8 11 2 5 8 11 2 5 8

Clearly G is a Smarandache groupoid for {0, 6} is a semigroup of G. Let A1 = {0, 3, 6, 9}
and A2 = {2, 5, 8, 11} be two subgroupoids. Clearly A1 and A2 are Smarandache subgroups of
G as {0, 6} and {2, 8} are semigroups of A1 and A2 respectively.

Now:

A1 = 3{2, 5, 8, 11} = 3A2

= {0, 3, 6, 9}

and similarly:

A2 = 2{0, 3, 6, 9} = 2A1.

Hence A1 and A2 are conjugate Smarandache subgroupoids of G.

Definition 15: Let G1, G2, G3, · · · , Gn be n groupoids. We say G = G1×G2× · · · ×Gn

is a Smarandache direct product of groupoids if G has a proper subset H of G which
is a semigroup under the operations of G. It is important to note that each Gi need not be a
Smarandache groupoid for in that case G will be obviously a Smarandache groupoid. Hence we
take any set of n groupoids and find the direct product.

Definition 16: Let (G, ∗) and (G
′
, ◦) be any two Smarandache groupoids. A map φ

from (G, ∗) to (G
′
, ◦) is said to be a Smarandache groupoid homomorphism if φ(a ∗ b) =

φ(a) ◦ φ(b) for all a, b ∈ A.

We say the Smarandache groupoid homomorphism is an isomorphism if φ is an isomor-
phism.

Definition 17: Let G be a Smarandache groupoid. We say G is a Smarandache

commutative groupoid if there is a proper subset A of G which is a commutative semigroup
under the operation of G.
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Definition 18: Let G be Smarandache groupoid. We say G is Smarandache inner

commutative groupoid if every semigroup contained in every Smarandache subgroupoid of G

is commutative.
Theorem 19. Every Smarandache inner commutative groupoid G is a Smarandache

commutative groupoid and not conversely.
Proof. By the very definition 18 and 19 we see if G is a Smarandache inner commutative

groupoid then G is Smarandache commutative groupoid.
To prove the converse we prove it by an example. Let Z2 = {0, 1} be integers modulo 2.

Consider set of all 2× 2 matrices with entries from Z2 = (0, 1) denote it by M2×2.

M2×2 =






 0 0

0 0


 ,


 0 1

0 0


 ,


 1 0

0 0


 ,


 0 0

1 0





 0 1

0 1


 ,


 1 0

0 1


 ,


 0 1

1 0


 ,


 1 1

0 1





 0 0

0 1


 ,


 1 1

0 0


 ,


 0 0

1 1


 ,


 1 0

1 0





 1 0

1 1


 ,


 1 1

1 0


 ,


 0 1

1 1


 ,


 1 1

1 1








.

M2×2 is made into a groupoid by for A =


 a1 a2

a3 a4


 and B =


 b1 b2

b3 b4


 in M2×2.

A ◦B =


 a1 a2

a3 a4


 ◦


 b1 b2

b3 b4




=


 a1b3 + a2b1(mod2) a1b4 + a2b2(mod2)

a3b3 + a4b1(mod2) a3b4 + a4b2(mod2)




Clearly (M2×2, ◦) is a Smarandache groupoid for


 1 0

0 0


 ◦


 1 0

0 0


 =


 0 0

0 0


.

So






 0 0

0 0


 ,


 1 0

0 0


 , ◦



 is a semigroup.

Now consider A1 =






 0 0

0 0


 ,


 1 0

0 0


 ,


 0 1

0 0


 ,


 1 1

0 0


 , ◦



 is a Smaran-

dache groupoid but A1 is non-commutative Smarandache groupoid for A1 contains a non-

commutative semigroupoid S. S =






 0 0

0 0


 ,


 1 1

0 0


 ,


 1 0

0 0


 , ◦



 such that


 1 0

0 0


◦
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 1 1

0 0


 =


 0 0

0 0


 and


 1 1

0 0


◦


 1 0

0 0


 =


 1 0

0 0


. So (M2×2, ◦) is a Smaran-

dache commutative groupoid but not Smarandache inner commutative groupoid.
Definition 20: A groupoid G is said to be a Moufang groupoid if for every x, y, z in G

we have (xy)(zx) = (x(yz))x.
Definition 21: A Smarandache groupoid (G, ∗) is said to be Smarandache Moufang

groupoid if there exists H ⊂ G such that H is a Smarandache groupoid satisfying the Moufang
identity: (xy)(zx) = (x(yz)x) for all x, y, z in H.

Definition 22: Let S be a Smarandache groupoid. If every Smarandache subgroupoid H of
S satisfies the Moufang identity for all x, y, z in H then S is a Smarandache Strong Moufang

groupoid.
Theorem 23. Every Smarandache Strong Moufang groupoid is a Smarandache Moufang

groupoidand not conversely.
Proof . Every Strong Smarandache Moufang groupoid is a Smarandache Moufang groupoid.

The proof of the converse can be proved by constructing examples.
Definition 24: A groupoid G is said to be a Bol groupoid if ((xy)z)y = x((yz))y for all

x, y, z ∈ G.
Definition 25: Let G be a groupoid. G is said to be Smarandache−Bol groupoid if G

has a subgroupoid H of G such that H is a Smarandache subgroupoid and satisfies the identity
((xy)z)y = x((yz))y for all x, y, z in H.

Definition 26: Let G be a groupoid. We say G is Smarandache Strong Bol groupoid

if every Smarandache subgroupoid of G is a Bol groupoid.
Theorem 27. Every Smarandache Strong Bol groupoid is a Smarandache Bol groupoid

and the converse is not true.
Proof . Obvious.
Theorem 28. Let Zn = {0, 1, 2, · · · , n − 1} be the set of integers modulo n. Let G =

{Zn, ∗, (t, u)} be a Smarandache groupoid. G is a Smarandache Bol groupoid if t3 = t(mod n)
and u2 = u(mod n).

Proof . Easy to verify.
Example 9: Let G = {Z6, ∗, (2, 3)} defined by the following table:

∗ 0 1 2 3 4 5

0 0 3 0 3 0 3

1 2 5 2 5 2 5

2 4 1 4 1 4 1

3 0 3 0 3 0 3

4 2 5 2 5 2 5

5 4 1 4 1 4 1

{0, 3} is a Smarandache subgroupoid and since 23 = 2(mod 6) and 32 = 3(mod 6) we see G

is a Smarandache Bol groupoid.
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Problem 2: Let {0, 1, 2, · · · , n− 1} be the ring of integers modulo n. G = {Zn, ∗, (t, u)}
be a groupoid. Find conditions on n, t and u so that G:

1. is a Smarandache groupoid.
2. has Smarandache semi-normal subgroupoids.
3. has Smarandache normal subgroupoids.
4. is Smarandache commutative.
5. is Smarandache inner commutative.
6. is a Smarandache-Bol groupoid.
7. is a Smarandache Strong Bol groupoid.
8. is a Smarandache-Moufang groupoid.
9. is a Smarandache-Strong-Moufang groupoid.
10. has always a pair of Smarandache conjugate subgroupoid.
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§1. Introduction

Let p be a prime, n be any fixed positive integer, Sp(n) denotes the smallest positive
integer such that Sp(n)! is divisible by pn. For example, S3(1) = 3, S3(2) = 6, S3(3) = 9,
S3(4) = 9, S3(5) = 12, · · · . In problem 49 of book [1], Professor F. Smarandache asks us to
study the properties of the sequence Sp(n). About this problem, some asymptotic properties
of this sequence have been studied by Zhang Wenpeng and Liu Duansen [2], they proved that

Sp(n) = (p− 1)n + O

(
p

log p
log n

)
.

The problem is interesting because it can help us to calculate the Smarandache function. In
this paper, we use the elementary methods to study the mean value properties of Sp(n) for p,
and give a sharp asymptotic formula for it. That is, we shall prove the following:

Theorem Let x ≥ 2, for any fixed positive integer n, we have the asymptotic formula

∑

p≤x

Sp(n) =
nx2

2 log x
+

k−1∑
m=1

namx2

logm+1 x
+ O

(
nx2

logk+1 x

)
,

where am(m = 1, 2, · · · , k − 1) are computable constants.

§2. Some Lemmas

To complete the proof of the theorem, we need the following:
Lemma Let p be a prime, n be any fixed positive integer. Then we have the estimate

(p− 1)n ≤ Sp(n) ≤ np.

1This work is supported by the N.S.F(10271093) and P.N.S.F of P.R.China
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Proof. Let Sp(n) = k = a1p
α1 + a2p

α2 + · · ·+ asp
αs with αs > αs−1 > · · · > α1 ≥ 0 under the

base p. Then from the definition of Sp(n) we know that p | Sp(n)! and the Sp(n) denotes the
smallest integer satisfy the condition. However, let

(np)! = 1 · 2 · 3 · · · p · (p + 1) · · · 2p · (2p + 1) · · ·np = upl.

where l ≥ n, p†u.

So combining this and p | Sp(n)! we can easily obtain

Sp(n) ≤ np. (1)

On the other hand, from the definition of Sp(n) we know that p | Sp(n)! and pn† (Sp(n)− 1)!,
so that α1 ≥ 1, note that the factorization of Sp(n)! into prime powr is

k! =
∏

q≤k

qαq(k).

where
∏

q≤k

denotes the product over all prime , and

αq(k) =
∞∑

i=1

[
k

qi
]

because p | Sp(n)!, so we have

n ≤ αp(k) =
∞∑

i=1

[
k

pi
] =

k

p− 1

or

(p− 1)n ≤ k (2)

combining (1) and (2) we immediately get the estimate

(p− 1)n ≤ Sp(n) ≤ np.

This completes the proof of the lemma.

§3. Proof of the theorem

In this section, we complete the proof of Theorem. Based on the result of lemma

(p− 1)n ≤ Sp(n) ≤ np

we can easily get ∑

p≤x

(p− 1)n ≤
∑

p≤x

Sp(n) ≤
∑

p≤x

np.

Let

a(n) =





1, if n is prime;

0, otherwise,
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Then from [3] we know that for any positive integer k,

∑

n≤x

a(n) = π(x) =
x

logx
(1 +

k−1∑
m=1

m!
logm x

) + O

(
x

logk+1 x

)
.

By Abel’s identity we have
∑

p≤x

p =
∑

m≤x

a(m)m

= π(x)x−
∫ x

2

π(t)dt

=
x2

logx
+

x2

logx

k−1∑
m=1

m!
logm x

−
∫ x

2

t

logt
(1 +

k−1∑
m=1

m!
logm t

)dt + O

(
x2

logk+1 x

)

=
x2

2 log x
+

k−1∑
m=1

amx2

log( m + 1)x
+ O

(
x2

logk+1 x

)

where am(m = 1, 2, · · · , k − 1) are computable constants. From above we have

∑

p≤x

(p− 1) =
∑

p≤x

p− π(x) =
x2

2 log x
+

k−1∑
m=1

amx2

log( m + 1)x
+ O

(
x2

logk+1 x

)
.

Therefore

∑

p≤x

Sp(n) =
∑

p≤x

k ==
x2

2 log x
+

k−1∑
m=1

amx2

log( m + 1)x
+ O

(
x2

logk+1 x

)
.

This completes the proof of the theorem.
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Abstract We use the Maple system to check the investigations of S.S.Gupta regarding the Smaran-

dache consecutive and the reversed Smarandache sequence of triangular numbers [Smarandache Notions

Journal,Vol. 14, 2004, pp.366-368]. Furthermore, we extend previous investigations to the mirror and

symmetric Smarandache sequences of triangular numbers.

The nth triangular number tn, n ∈ N , is defined by tn =
∑n

i=1 i = n(n + 1)/2. These
numbers were first studied by the Pythagoreans.
The first k terms of the triangular sequence {tn}∞n=1 are easily obtained in Maple:
> t:=n − >n∗(n+1)/2:
> first :=k − > seq(t(n), n=1,· · · ,k):
For example:
> first(20);

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210

In this short note we are interested in studying Smarandache sequences of triangular num-
bers with the help of the Maple system. To define the Smarandache sequences, it is convenient
to introduce first the concatenation operation. Given two positive integer numbers n and m,
the concatenation operation conc is defined in Maple by the following function:

> conc :=(n, m) − > n∗10length(m)+m:
For example,
> conc(12, 345);

12345

Given a positive integer sequence {un}∞n=1, we define the corresponding Smarandache Con-
secutive Sequence {scsn}∞n=1 recursively:

scs1 = u1,
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scsn = conc(scsn−1, un).

In Maple we define:
> scs n :=(u, n) − > if n = 1 then u(1) else conc(scs n(u, n−1), u(n)) fi:

> scs := (u, n) − > seq(scs n(u, i), i=1· · · n):
The standard Smarandache consecutive sequence, introduced by the Romanian mathe-

matician Florentin Smarandache, is obtained when one chooses un = n,∀n ∈ N . The first 10
terms are: > scs(n->n,10);

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910

Another example of a Smarandache consecutive sequence is the Smarandache consecutive
sequence of triangular numbers. With our Maple definitions, the first 10 terms of such sequence
are obtained with the following command:

> scs(t, 10);
1, 13, 136, 13610, 1361015, 136101521, 13610152128,

1361015212836, 136101521283645, 13610152128364555,

Sometimes, it is preferred to display Smarandache sequence in ”triangular form”.
> show :=L − >map(i − >print(i), L):
> show([scs(t, 10)]):

1

13

136

13610

1361015

136101521

13610152128

1361015212836

136101521283645

13610152128364555

The Reversed Smarandache Sequence (rss) associated with a given sequence {un}∞n=1, is
defined recursively by

rss1 = u1

rssn = conc(un, rssn−1).

In Maple we propose the following definitions:
> rss n :=(u, n) − > if n = 1 then u(1) else conc(u(n), res n(u, n−1)) fi:
> rss :=(u, n) − > seq(rss n(u, i), i=1,· · · n):



Vol. 1 Smarandache sequence of triangular numbers 41

The first terms of the reversed Smarandache sequence of triangular numbers are now easily
obtained:
> rss(t, 10);

1, 31, 631, 10631, 1510631, 211510631, 28211510631,

3628211510631, 453628211510631, 55453628211510631,

We define the Smarandche Mirror Sequence (sms) as follows:

sms1 = u1,

smsn = conc(conc(un, smsn−1), un)

> sms n :=(u, n) − > if n = 1 then
> u(1)

> else
> conc(conc(u(n), sms n(u, n−1)), u(n))
> sms :=(u, n) − >seq(sms n(u, i), i=1· · ·n):
The first 10 terms of the Smarandache mirror sequence introduced by Smarandache are:
> sms(n − >, 10);

1, 212, 32123, 4321234, 543212345, 65432123456, 7654321234567,

876543212345678, 98765432123456789, 109876543212345678910

We are interested in the Smarandache mirror sequence of triangular numbers. The first 10
terms are:
> sms(t, 10);

1, 313, 63136, 106313610, 1510631361015, 21151063136101521,

282115106313610152128, 3628211510631361015212836,

45362821151063136101521283645, 554536282115106313610152128364555,

Finally, we define the Smarandache Symmetric Sequence (sss). For that we introduce the
function ”But Last Digit” (bld):

> bld :=n − > iquo(n,10):
> bld(123);

12

If the integer number is a one-digit number, then function bld returns zero:
> bld(3);

0

This is important: with our conc function, the concatenation of zero with a positive integer n

gives n.
> conc(bld(1), 3);

3
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The Smarandache Symmetric Sequence (sss) is now easily defined, appealing to the Smaran-
dache consecutive, and reversed Smarandache sequences:

sss2n−1 = conc(bld(scs2n−1), rss2n−1),

sss2n = conc(scs2n, rss2n),

n ∈ N . In Maple, we give the following definitions:
> sss n :=(u, n) − > if type(n, odd) then
> conc(bld(scs n(u, (n+1)/2), rss (u, (n+1)/2))
> else
> conc(scs n(u, n/2), rss n(u, n/2))
> fi:
> sss :=(u, n) − > seq(sss n(u, i), i=1· · ·n):
The first terms of Smarandache’s symmetric sequence are
> sss(n − > n, 10);

1, 11, 121, 1221, 12321, 123321, 1234321, 12344321, 123454321, 1234554321

while the first 10 terms of the Smarandache symmetric sequence of triangular numbers are
> sss(t, 10);

1, 11, 131, 1331, 13631, 136631, 136110631, 1361010631, 1361011510631, 13610151510631,

One interesting question is to find prime numbers in the above defined Smarandache sequences
of triangular numbers. We will restrict our search to the first 1000 terms of each sequence. All
computations were done with Maple 9 runing on a 2.00Ghz Pentium 4 with 256Mb RAM. We
begin by collecting four lists with the first 1000 terms of the consecutive, reversed, mirror, and
symmetric Smarandache sequences of triangular numbers:
> st:=time(): Lscs1000:=[scs(t, 1000)]: print(”%a seconds”, round(time()-st));

20 seconds
> st:=time(): Lrss1000:=[rss(t, 1000)]: print(”%a seconds”, round(time()-st));
75 seconds
> st:=time(): Lsms1000:=[sms(t, 1000)]: print(”%a seconds”, round(time()-st));
212 seconds
> st:=time(): Lsss1000:=[sss(t, 1000)]: print(”%a seconds”, round(time()-st));
26 seconds
We note that scs1000 and rss1000 are positive integer numbers with 5354 digits;
> length(Lscs1000[1000]), length(Lrss1000[1000]);

5354, 5354

while sms1000 and sss1000 have, respectively, 10707 and 4708 digits.
> length(Lsms1000[1000]), length(Lsss1000[1000]);

10707, 4708
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There exist two primes (13 and 136101521) among the first 1000 terms of the Smarandache
consecutive sequence of triangular numbers;

> st := time()
> select(isprime, Lscs1000);
> printf(”%a minutes”, round((time()-st)/60));

[13, 136101521]

9 minutes
six primes among the first 1000 terms of the reversed Smarandache sequence of triangular

numbers;
> st := time()
> select(isprime, Lrss1000);
> printf(”%a minutes”, round((time()-st)/60));

[31, 631, 10631, 55453628211510631, 786655453628211510631, 10591786655453628211510631]

31 minutes
only one prime (313) among the first 600 terms of the Smarandache mirror sequence of triangular
numbers;

> length(Lsms1000[600]); # sms {600} is a number with 5907 digits

5907

> st := time()
> select(isprime, Lsms1000[1· · · 600]);
> printf(”%a minutes”, round((time()-st)/60));

[313]

3 minutes
and five primes among the first 1000 terms of the Smarandache symmetric sequence of

triangular numbers (the fifth prime is an integer with 336 digits).
> st := time()
> select(isprime, Lsss1000);
> printf(”%a minutes”, round((time()-st)/60));
[11,131,136110631,1361015212836455566789110512012010591786655453628211510631,
1361015212836455566789110512013615317119021023125327630032535137840643546549652856159

5630666703741780820861903946990103510811128117612251275132613781431148515401596165316
5315961540148514311378132612751225117611281081103599094690386182078074170366663059556
152849646543540637835132530027625323121019017115313612010591786655453628211510631]

19 minutes
> length(%[5]);

336

How many primes are there in the above defined Smarandache sequences of triangular
numbers? This seems to be an open question. Another interesting question is to find triangular
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numbers in the Smarandache sequences of triangular numbers. We begin by defining in Maple
the boolean function istriangular.

> istriangular := n− > evalb(nops(select(i− >evalb(whattype(i)=integer),)[solve(t(k)=n)])>
0)

There exist two triangular numbers (1 and 136) among the first 1000 terms of the Smaran-
dache consecutive sequence of triangular numbers;

> st := time()

> select(istriangular, Lscs1000);

> printf(”%a seconds”, round(time()-st));

[1, 136]

6 seconds

while the other Smarandache sequences of triangular numbers only show, among the first
1000 terms, the trival triangular number 1:

> st := time()

> select(istriangular, Lrss1000);

> printf(”%a seconds”, round(time()-st));

[1]

6 seconds

> st := time()

> select(istriangular, Lsms1000);

> printf(”%a seconds”, round(time()-st));

[1]

10 seconds

> st := time()

> select(istriangular, Lsss1000);

> printf(”%a seconds”, round(time()-st));

[1]

6 seconds

Does exist more triangular numbers in the Smarandache sequences of triangular numbers?
This is, to the best of our knowledge, an open question needing further investigations. Since
checking if a number is triangular is much faster than to check if a number if prime, we invite
the readers to continue our research of triangular numbers for besides the 1000th term of the
Smarandache sequences of triangular numbers. We look forward to readers discoveries.
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§1. Introduction

A number is called a square-free number if its digits don’t contain the numbers: 0, 1, 4,
9. Let A denote the set of all square-free numbers. In reference [1], Professor F. Smarandache
asked us to study the properties of the square-free number sequence. About this problem, it
seems that none had studied it, at least we have not seen such a paper before. In this paper,
we use the elementary method to study the number of the square-free number sequence, and
obtain two interesting asymptotic formulas for it. That is, let S(x) =

∑

n≤x,n∈A
1, we shall prove

the followings:
Theorem 1. For any real number x ≥ 1, we have the asymptotic formula

lnS(x) =
ln 6
ln 10

× lnx + O(1).

Theorem 2. For any real number x ≥ 1, we have the asymptotic formula

∑

n≤x,n∈B
1 = x + O

(
x

2 ln 2
ln 10

)
,

where B denote the complementary set of those numbers whose all digits are square numbers.
Let B′ denote the set of those numbers whose all digits are square numbers. Then we have

the following:
Theorem 3. For any real number x ≥ 1,we have the asymptotic formula

∑

n≤x,n∈B

1
n

= ln x + γ − C + O

(
x−

ln 5
2

ln 10

)
,

where C is a computable constant, γ denotes the Euler’s constant.
Let A′ denote the complementary set of A, we have following:
Corollary. For any real number x ≥ 1, we have the asymptotic formula
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∑

n≤x,n∈A′

1
n

= ln x + γ −D + O

(
x−

ln 5
3

ln 10

)
,

where D is a computable constant.

§2. Proof of Theorems

In this section, we shall complete the proof of Theorems. First we need the following one
simple lemma.

Lemma. For any real number x ≥ 1, we have the asymptotic formula

∑

n≤x,n∈B′

1
n

= C + O

(
x−

ln 5
2

ln 10

)
.

Proof. In the interval [10r−1, 10r), (r ≥ 2), there are 3× 4r−1 numbers belong to B′ , and
every number’s reciprocal isn’t greater than 1

10r−1 ; when r = 1, there are 4 numbers belong to
B′ and their reciprocals aren’t greater than 1. Then we have

∑

n∈B′

1
n

< 3 +
∞∑

r=1

3× 4r

10r
,

then
∑

n∈B′ 1 is convergent to a constant C. So

∑

n≤x,n∈B′

1
n

=
∑

n∈B′

1
n
−

∑

n>x,n∈B′

1
n

= C + O

( ∞∑

r=k

3× 4r

10r

)
= C + O

(
x−

ln 5
2

ln 10

)
.

Now we come to prove Theorem 1. First for any real number x ≥ 1, there exists a non-
negative integer k, such that 10k ≤ x < 10k+1(k ≥ 1) therefore k ≤ log x < k + 1. If a number
belongs to A, then its digits only contain these six numbers: 2, 3, 5, 6, 7, 8.

So in the interval [10r−1, 10r)(r ≥ 1), there are 6r numbers belong to A. Then we have

∑

n≤x,n∈A
1 ≤

k+1∑
r=1

6r =
6
5
× (6k+1 − 1) <

6k+2

5
<

62

5
× x

ln 6
ln 10 ,

and

∑

n≤x,n∈A
1 ≥

k∑
r=1

6r =
6
5
× (6k − 1) ≥ 6k >

1
6
× x

ln 6
ln 10 .

So we have

1
6
× x

ln 6
ln 10 <

∑

n≤x,n∈A
1 <

62

5
× x

ln 6
ln 10 .

Taking the logarithm computation on both sides of the above, we get
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ln(x
ln 6
ln 10 ) + (− ln 6) <

∑

n≤x,n∈A
1 < ln

(
x

ln 6
ln 10

)
+ (2× ln 6− ln 5).

So

lnS(x) = ln


 ∑

n≤x,n∈A
1


 = ln

(
x

ln 6
ln 10

)
+ O(1) =

ln 6
ln 10

× lnx + O(1).

This proves the Theorem 1.
Now we prove Theorem 2. It is clear that if a number doesn’t belong to B, then all of its

digits are square numbers. So in the interval [10r−1, 10r), (r ≥ 2), there are 3× 4r−1 numbers
don’t belong to B; when r = 1, there are 4 numbers don’t belong to B. Then we have

∑

n≤x,n∈B
1 =

∑

n≤x

1−
∑

n≤x,n∈B′
1

= x + O
(
4 + 3× 4 + 3× 42 + · · ·+ 3× 4k

)

= x + O
(
4k+1

)
= x + O

(
x

2×ln 2
ln 10

)
.

This completes the proof of the Theorem 2. Now we prove the Theorem 3. In reference [2], we
know the asymptotic formula:

∑

n≤x

1
n

= ln x + γ + O

(
1
x

)
,

where γ is the Euler’s constant.
Then from this asymptotic formula and the above Lemma, we have

∑

n≤x,n∈B

1
n

=
∑

n≤x

1
n
−

∑

n≤x,n∈B′

1
n

= ln x + γ + O

(
1
x

)
− C + O

(
x−

ln 5
2

ln 10

)

= ln x + γ − C + O

(
x−

ln 5
2

ln 10

)
.

This completes the proof of the Theorem 3. Now the Corollary immediately follows from the
Lemma and Theorem 3.
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§1. Introduction

In this paper, we studied Finite-Smarandache 2-algebraic structure of Finite-near-rings,
namely, Finite-Smarandache-near-ring, written as Finite-S-near-ring. A Finite-Smarandache
2-algebraic structure on a Finite-set N means a weak algebraic structure A0 on N such that
there exist a proper subset M of N , which is embedded with a stronger algebraic structure A1,
stronger algebraic structure means satisfying more axioms, by proper subset means a subset
different from the empty set, from the unit element if any, from the whole set [5]. By a Finite-
near-ring N , we mean a zero-symmetric Finite- right-near-ring. For basic concept of near-ring
we refer to Gunter Pilz [2].

Definition 1. A Finite-near-ring N is said to be Finite-Smarandache-near-ring. If a
proper subset M of N is a Finite-near-field under the same induced operations in N .

Example 1 [2]. Let N = {0, n1, n2, n3} be the Finite-near-ring defined by:
Let M = {0, n1} ⊂ N be a Finite-near-field. Defined by
Now (N, +, .) is a Finite-S-near-ring .
Example 2 [4]. Let N = {0, 6, 12, 18, 24, 30, 36, 42, 48, 54} (mod 60) be the Finite-

near-ring since every ring is a near-ring. Now N is a Finite-near-ring, Whose proper subset
M = {0, 12, 24, 36, 48} (mod 60) is a Finite-field. Since every field is a near-field, then M is a
Finite-near-field. Therefore N is a Finite-S-near-ring.

Theorem 1. Let N be a Finite-near-ring. N is a Finite-S-near-ring if and only if there
exist a proper subset M of N , either M ∼= Mc(z2) or Zp, integers modulo p, a prime number.

Proof. Part-I: We assume that N is a Finite-S-near-ring. By definition, there exist
a proper subset M of N is a Finite-near-field. By Gunter Pilz Theorem (8.1)[2], either M ∼=
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Mc(z2) or zero-symmetric. Since Z,S
p is zero-symmetric and Finite-fields implies Zp, S are zero-

symmetric and Finite-near-fields because every field is a near-field. Therefore in particular M

is Zp.
Part-II: We assume that a proper subset M of N , either M ∼= Mc(z2) or Zp. Since

Mc(z2) and Zp are Finite-near-fields. Then M is a Finite-near-field. By definition, N is a
Finite-S-near-ring.

Theorem. Let N be a Finite-near-ring. N is a Finite-S-near-ring if and only if there
exist a proper subset M of N such that every element in M satisfying the polynomial xpm− x.

Proof. Part-I: We assume that N is a Finite-S-near-ring. By definition, there exist
a proper subset M of N is a Finite-near-field. By Gunter Pilz, Theorem (8.13)[2]. If M is
a Finite-near-field, then there exist p ∈ P, ∃m ∈ M such that | M |= pm. According to
I.N.Herstein[3]. If the Finite-near-field M has pm element, then every a ∈ M satisfies apm = a,
since every field is a near-field. Now M is a Finite-near-field having pm element, every element
a in M satisfies apm = a. Therefore every element in M satisfying the polynomial xpm − x.

Part-II: We assume that there exist a proper subset M of N such that every element
in M satisfying the polynomial xpm − x, which implies M has pm element. According to
I.N.Herstein[3], For every prime number p and every positive integer m, there is a unique field
having pm element. Hence M is a Finite-field implies M is a Finite-near-field. By definition,
N is a Finite-S-near-ring.

Theorem 3. Let N be a Finite-near-ring. N is a Finite-S-near-ring if and only if M

has no proper left ideals and M0 6= M . Where M is a proper sub near-ring of N , in which
idempotent commute and for each x ∈ M , there exist y ∈ M such that yx 6= 0.

Proof. Part-I :We assume that N is a Finite-S-near-ring. By definition A proper subset
M of N is a Finite-near-field. In [1] Theorem (4),it is zero-symmetric and hence every left-ideal
is a M-subgroup. Let M1 6= 0 be a M-subgroup and m1 6= 0 ∈ M1. Then m−1

1 m1 = 1 ∈ M1.
therefore M = M1. Hence M has no proper M-subgroup, which implies M has no proper left
ideal.

Part-II: We assume that a proper sub-near-ring M of N has no proper left ideals and
M0 6= M , in which idempotent commute and for each x ∈ M there exist y ∈ M such that yx 6= 0.
Let x 6= 0 in M . Let F (x) = {m ∈ M | mx = 0}. Clearly F (x) is a left ideal. Since there
exist y ∈ M such that yx 6= 0. Then y /∈ F (x). Hence F (x) = 0. Let φ : (M, +) −→ (Mx, +)
given by φ(m) = mx. Then φ is an isomorphism. Since M is finite then Mx = M . Now by a
theroem(2) in [1], M is a Finite-near-field. Therefore, by definition N is a Finite-S-near-ring.

We summarize what has been studied in
Theorem 4. Let N be a Finite-near-ring. Then the following conditions are equivalent.
1. A proper subset M of N , either M ∼= Mc(z2) or Zp, integers modulo p, a prime number.
2. A proper subset M of N such that every element in M satisfying the polynomial xpm−x.
3. M has no proper left ideals and M0 6= M . Where M is a proper sub near-ring of N , in

which idempotent commute and for each x ∈ M , there exist y ∈ M such that yx 6= 0.
Theorem 5. Let N be a Finite-near-ring. If a proper subset M , sub near-ring of N , in

which M has left identity and M is 0-primitive on MM . Then N is a Finite-S-near-ring.
Proof. By Theorem(8.3)[2], the following conditions are equivalent:
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(1) M is a Finite-near-field;
(2) M has left identity and M is 0-primitive on MM .
Now Theorem is immediate.
Theorem 6. Let N be a Finite-near-ring. If a proper subset M , sub near-ring of N , in

which M has left identity and M is simple. Then N is a Finite-S-near-ring.
Proof. By Theorem(8.3)[2], the following conditions are equivalent:
(1) M is a Finite-near-field;
(2) M has left identity and M is simple. Now the Theorem is immediate.
Theorem 7. Let N be a Finite-near-ring. If a proper subset M , sub near-ring of N is a

Finite-near-domain, then N is a Finite-S-near-ring.
Proof. By Theorem(8.43)[2], a Finite-near- domain is a Finite-near-field. Therefore M

is a Finite-near-field. By definition N is a Finite-S-near-ring.
Theorem 8. Let N be a Finite-near-ring. If a proper subset M of N is a Finite-Integer-

domain. Then N is a Finite-S-near-ring.
Proof. By I.N.Herstein[3], every Finite-Integer-domain is a field, since every field is a

near-field. Now M is a Finite-near-field. By definition N is a Finite-S-near-ring.
Theorem 9. Let N be a Finite-near-ring. If a proper subset M of N is a Finite-division-

ring. Then N is a Finite-S-near-ring.
Proof. By Wedderburn’s Theorem(7.2.1)[3], a Finite-division-ring is a necessarily com-

mutative field, which gives M is a field, implies M is a Finite-near-field. By definition N is a
Finite-S-near-ring.

References

[1] P.Dheena, On near-field, J. Pure. Appl. Math., 17(3) (1986), 332-326.
[2] G.Pilz, Near-ring, North Holland, Amsterdam, 1997.
[3] I.N.herstein, Topics in algebra, Wiley Eastern Limited, New Delhi, 1993
[4] R.Padilla, Smarandache algebraic structures,presented to the Universidade do Minho,

Baraga, Portugal, 18-23, June, 1999.
[5] PlanetMath, Smarandache n-structure.



Scientia Magna
Vol. 1 (2005), No. 2, 52-54

Some interesting properties of the Smarandache
function

Kang Xiaoyu

Editorial Board of Journal of Northwest University

Xi’an, Shaanxi, P.R.China

Abstract The main purpose of this paper is using the elementary method to study the property of

the Smarandache function, and give an interesting result.

Keywords Smarandache function; Additive property; Greatest prime divisor.

§1. Introduction and results

Let n be an positive integer, the famous Smarandache function S(n) is defined as following:

S(n) = min{m : m ∈ N, n|m!}.

About this function and many other Smarandache type function, many scholars have studied
its properties, see [1], [2], [3] and [4]. Let p(n) denotes the greatest prime divisor of n, it is clear
that S(n) ≥ p(n). In fact, S(n) = p(n) for almost all n, as noted by Erdös [5]. This means that
the number of n ≤ x for which S(n) 6= p(n), denoted by N(x), is o(x). It is easily to show that
S(p) = p and S(n) < n except for the case n = 4, n = p. So there have a closely relationship
between S(n) and π(x):

π(x) = −1 +
[x]∑

n=2

[
S(n)

n

]
,

where π(x) denotes the number of primes up to x, and [x] denotes the greatest integer less than
or equal to x. For two integer m and n, can you say S(mn) = S(m) + S(n) is true or false? It
is difficult to say. For some m an n, it is true, but for some other numbers it is false.

About this problem, J.Sandor [7] proved an very important conclusion. That is, for any
positive integer k and any positive integers m1,m2, · · · ,mk, we have the inequality

S

(
k∏

i=1

mi

)
≤

k∑

i=1

S(mi).

This paper as a note of [7], we shall prove the following two conclusions:

Theorem 1. For any integer k ≥ 2 and positive integers m1,m2, · · · ,mk, we have the
inequality

S

(
k∏

i=1

mi

)
≤

k∏

i=1

S(mi).
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Theorem 2. For any integer k ≥ 2, we can find infinite group numbers m1,m2, · · · ,mk

such that:

S

(
k∏

i=1

mi

)
=

k∑

i=1

S(mi).

§2. Proof of the theorems

In this section, we will complete the proof of the Theorems. First we prove a special case
of Theorem 1. That is, for any positive integers m and n, we have

S(m)S(n) ≥ S(mn).

If m = 1 ( or n = 1), then it is clear that S(m)S(n) ≥ S(mn). Now we suppose m ≥ 2 and n ≥ 2,
so that S(m) ≥ 2, S(n) ≥ 2, mn ≥ m + n and S(m)S(n) ≥ S(m) + S(n). Note that m|S(m)!,
n|S(n)!, we have mn|S(m)!S(n)!|((S(m) + S(n))!. Because S(m)S(n) ≥ S(m) + S(n), we have
(S(m) + S(n))!|(S(m)S(n))!. That is, mn|S(m)!S(n)!|(S(m) + S(n))!|(S(m)S(n))!. From the
definition of S(n) we may immediately deduce that

S(mn) ≤ S(m)S(n).

Now the theorem 1 follows from S(mn) ≤ S(m)S(n) and the mathematical induction.
Proof of Theorem 2. For any integer n and prime p, if pα‖n!, then we have

α =
∞∑

j=1

[
n

pj

]
.

Let ni are positive integers such that ni 6= nj , if i 6= j, where 1 ≤ i, j ≤ k, k ≥ 2 is any positive
integer. Since

∞∑
r=1

[
pni

pr

]
= pni−1 + pni−2 + · · ·+ 1 =

pni − 1
p− 1

.

For convenient, we let ui = pni−1
p−1 . So we have

S(pui) = pni , i = 1, 2, · · · , k. (1)

In general, we also have

∞∑
r=1




k∑

i=1

pni

pr




=
k∑

i=1

pni − 1
p− 1

=
k∑

i=1

ui.

So

S
(
pu1+u2+···+uk

)
=

k∑

i=1

pni . (2)
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Combining (1) and (2) we may immediately obtain

S

(
k∏

i=1

pui

)
=

k∑

i=1

S(pui).

Let mi = pui , noting that there are infinity primes p and ni, we can easily get Theorem 2.
This completes the proof of the theorems.
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Part I. Terminology and Notations

§1.1 Klein Surfaces
A Klein surface is a Hausdorff, connected, topological space S with a family

∑
= {(Ui, φi)|i ∈

I} such that the chart {Ui|i ∈ I} is an open covering of S, each map φi : Ui −→ Ai is a home-
omorphism onto an open subset Ai of C or C+ = {z ∈ C : Imz ≥ 0} and the transition
functions

φij = φiφ
−
j : φj(Ui

⋂
Uj) −→ φi(Ui

⋂
Uj).

are dianalytic, where a mapping f : A −→ C is said dianalytic if ∂f
∂z = 0 (Cauchy-Riemann

equation) or ∂f
∂z = 0.

§1.2 {Riemann Surfaces}⊂ {Klein surfaces}

§1.3 Embedding and Combinatorial Maps
Embedding of a graph:

For any connected graph Γ = (V (Γ), E(Γ)) and a surface S, an embedding of the graph Γ
in the surface S is geometrical defined to be a continuous 1− 1 mapping τ : Γ → S. The image

1Reported at the Academy of Mathematics and Systems of Chinese Academy of Sciences.
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τ(Γ) is contained in the 1-skeleton of a triangulation of the surface S. If each component in
S − τ(Γ) homeomorphic to an open disk, then the embedding is an embedding.

Map:

A combinatorial map is a connected topological graph cellularly embedded in a surface.

The Algebraic Definition of Maps:

A combinatorial map M = (Xα,β ,P) is defined to be a basic permutation P, i.e, for any
x ∈ Xα,β , no integer k exists such that Pkx = αx, acting on Xα,β , the disjoint union of
quadricells Kx of x ∈ X (the base set), where K = {1, α, β, αβ} is the Klein group, satisfying
the following two conditions:

(Ci) αP = P−1α;

(Cii) the group ΨJ =< α, β,P > is transitive on Xα,β .

§1.4 Orientation

If the group ΨI =< αβ,P > is transitive on Xα,β , then M is non-orientable. Otherwise,
orientable.

§1.5 An Example of Maps K4 on the torus.

Fig.1¸

(Xα,β ,P):

Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv,

αw, βx, βy, βz, βu, βv, βw, αβx, αβy,

αβz, αβu, αβv, αβw}
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P = (x, y, z)(αβx, u, w)(αβz, αβu, v)

× (αβy, αβv, αβw)(αx, αz, αy)(βx, αw, αu)

× (βz, αv, βu)(βy, βw, βv)

Vertices:
v1 = {(x, y, z), (αx, αz, αy)}
v2 = {(αβx, u, w), (βx, αw, αu)}
v3 = {(αβz, αβu, v), (βz, αv, βu)}
v4 = {(αβy, αβv, αβw), (βy, βw, βv)}

Edges:
{e, αe, βe, αβe}, e ∈ {x, y, z, u, v, w}

Faces:
f1 = {(x, u, v, αβw, αβx, y, αβv, αβz), (βx, αz, αv, βy, αx, αw, βv, βu)}
f2 = {(z, αβu,w, αβy), (βz, αy, βw, αu)}

§1.6 Isomorphism of Maps
Two maps M1 = (X 1

α,β ,P1) and M2 = (X 2
α,β ,P2) are said to be isomorphic if there exists

a bijection ξ

ξ : X 1
α,β −→ X 2

α,β

such that for ∀x ∈ X 1
α,β ,

ξα(x) = αξ(x), ξβ(x) = βξ(x), ξP1(x) = P2ξ(x).

§1.7 Equivalence
Two maps M1,M2 underlying graph Γ are equivalent if there exists an isomorphism ζ

between them induced by an element ξ, ξ ∈ AutΓ. Call ζ an equivalence between M1,M2.
Certainly, on an orientable surface, an equivalence preserve the orientation on this surface.

Theorem 1.1. Let M = (Xα,β ,P) be a map with an underlying graph Γ, ∀g ∈ AutΓ. Then
the extend action of g on Xα,β with X = E(Γ) is an automorphism of map M iff ∀v ∈ V (M),
g preserves the cyclic order of v.

§1.8 Covering of Maps
For two maps M̃ = (X̃α,β , P̃) and M = (Xα,β ,P), call the map M̃ covering the map M if

there is a mapping π : X̃α,β → Xα,β such that ∀x ∈ X̃α,β ,

απ(x) = πα(x), βπ(x) = πβ(x), πP̃(x) = Pπ(x).

Theorem 1.2. Let π : X̃α,β → Xα,β be a covering mapping. Then π is an isomorphism iff
π is an 1− 1 mapping.

§1.9 Voltage Map
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Let M = (Xα,β ,P) be a map and G a finite group. Call a pair (M, ϑ) a voltage map with
group G if ϑ : Xα,β → G, satisfying the following condition:

(i) ∀x ∈ Xα,β , ϑ(αx) = ϑ(x), ϑ(αβx) = ϑ(βx) = ϑ−1(x);
(ii) ∀F = (x, y, · · · , z)(βz, · · · , βy, βx) ∈ F (M), the face set of M , ϑ(F ) = ϑ(x)ϑ(y) · · ·ϑ(z)

and < ϑ(F )|F ∈ F (u), u ∈ V (M) >= G, where, F (u) denotes all the faces incident with the
vertex u.

§1.10 Lifting of a Voltage Map
For a voltage map (M, ϑ) with group G, the map Mϑ = (X ϑ

α,β ,Pϑ) is called its lifting map.
Theorem 1.3. An finite group G is a fixed-free automorphism group of a map M =

(Xα,β ,P) on V (M) iff there is a voltage map (M/G, G) with an assignment ϑ : Xα,β/G → G

such that M ∼= (M/G)ϑ.
( A permutation group G action on Ω is called fixed-free if Gx = 1G for ∀x ∈ Ω.)

§1.11 Semi-Arcs of a Graph
An edge e = uv ∈ E(Γ) can be divided into two semi-arcs eu, ev.
X 1

2
(Γ)— the set of semi-arcs.

Incidence of Semi-Arcs:
Call u the root vertex in the semi-arc eu. Two semi-arc eu, fv are said v-incident or

e-incident if u = v or e = f .

§1.12 A Semi-Arc Automorphism
An 1 − 1 mapping ξ on X 1

2
(Γ) such that ∀eu, fv ∈ X 1

2
(Γ), ξ(eu) and ξ(fv) are v-incident

or e-incident if eu and fv are v-incident or e-incident, is called a semi-arc automorphism of the
graph Γ.

Aut 1
2
Γ— the semi-arc automorphism group of Γ

For ∀g ∈ AutΓ, there is also an induced action g| 12 on X 1
2
(Γ), g : X 1

2
(Γ) → X 1

2
(Γ), as

follows:

∀eu ∈ X 1
2
(Γ), g(eu) = (g(e)g(u).

All induced action of the elements in AutΓ on X 1
2
(Γ) is denoted by AutΓ| 12 . Notice that

AutΓ ∼= AutΓ| 12 .

Theorem 1.4. For a graph Γ without loops,

Aut 1
2
Γ = AutΓ| 12 .

Theorem 1.5. For two maps M1 = (Xα,β ,P1) and M2 = (Xα,β ,P2) underlying a graph
Γ, then

(i) M1,M2 are equivalent iff M1,M2 are in one orbits of Aut 1
2
Γ action on X 1

2
(Γ);

(ii)M1,M2 are isomorphic iff M1,M2 are in one orbits of Aut 1
2
Γ× < α > action on Xα,β .
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Part II Automorphisms of Maps and Klein Surfaces

§2.1 Relation of Maps with Klein Surfaces
Angles incident with a Quadricell:

For a map M = (Xα,β ,P), x ∈ Xα,β , the permutation pair {(x,Px), (αx,P−1αx)} is called
an angle incident with x.

Theorem 2.1. Any automorphism of a map M = (Xα,β ,P) is conformal.
Theorem 2.2. If M is a locally orientable map of genus q, then AutM is isomorphic to a

group of comformal transformations of a compact Klein surface of genus q.
(For Riemann surfaces, the same result gotten by Jones and Singerman in 1978.)

§2.2 The Euler Characteristic of Lifting Map
Theorem 2.3. The Euler characteristic χ(Mϑ) of the lifting map Mϑ of the voltage map

(M, G) is

χ(Mϑ) = |G|(χ(M) +
∑

m∈O(F (M))

(−1 +
1
m

)),

where O(F (M)) denotes the order o(F ) set of the faces in M .

§2.3 A Group Being That of a Map
Theorem 2.4 If a group G,G ¹ AutM , is fixed-free on V (M), then

|G|(χ(M/G) +
∑

m∈O(F (M/G))

(−1 +
1
m

)) = χ(M).

Corollary 2.1. If M is an orientable map of genus p, G ¹ AutM is fixed-free on V (M)
and the quotient map M/G with genus γ, then

|G| = 2p− 2
2γ − 2 +

∑
m∈O(F (M/G))

(1− 1
m ))

.

Particularly, if M/G is planar, then

|G| = 2p− 2
−2 +

∑
m∈O(F (M/G))

(1− 1
m ))

.

Corollary 2.2. If M is a non-orientable map of genus q, G ¹ AutM is fixed-free on V (M)
and the quotient map M/G with genus δ, then

|G| = q − 2
δ − 2 +

∑
m∈O(F (M/G))

(1− 1
m ))

.

Particularly, if M/G is projective planar, then

|G| = q − 2
−1 +

∑
m∈O(F (M/G))

(1− 1
m ))

.
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Theorem 2.5. If a group G,G ¹ AutM , then

χ(M) +
∑

g∈G,g 6=1G

(|Φv(g)|+ |Φf (g)|) = |G|χ(M/G),

where, Φv(g) = {v|v ∈ V (M), vg = v} and Φf (g) = {f |f ∈ F (M), fg = f}, and if G is
fixed-free on V (M), then

χ(M) +
∑

g∈G,g 6=1G

|Φf (g)| = |G|χ(M/G).

Corollary 2.3. If a finite group G,G ¹ AutM is fixed-free on V (M) and transitive on
F (M), for example, M is regular and G = AutM , then M/G is an one face map and

χ(M) = |G|(χ(M/G)− 1) + φ(M)

Corollary 2.4. For an one face map M , if G, G ¹ AutM is fixed-free on V (M), then

χ(M)− 1 = |G|(χ(M/G)− 1),

and |G|, especially, |AutM | is an integer factor of χ(M)− 1.
Remark 2.1. For an one face planar map, i.e., the plane tree, the only fixed-free auto-

morphism group on its vertices is the trivial group by the Corollary 2.4.

§2.4 The Non-Euclid Area of a Map
For a given voltage map (M, G), its non-Euclid area µ(M, G) is

µ(M, G) = 2π(−χ(M) +
∑

m∈O(F (M))

(−1 +
1
m

)).

Particularly, since any map M can be viewed as a voltage map (M,1G), we get the non-
Euclid area of a map M

µ(M) = µ(M,1G) = −2πχ(M).

Theorem 2.6. ( Riemann-Hurwitz formula) If G ¹ AutM is fixed-free on V (M), then

|G| = µ(M)
µ(M/G, ϑ)

.

Theorem 2.7. The non-Euclid area µ(∆) of a triangle ∆ on a surface S with internal
angles η, θ, σ is

µ(∆) = η + θ + σ − π.

§2.5 A Combinatorial Refinement of Huriwtz Theorem
Graphical property P :

Define a graphical property P to be a kind of subgraphs of a graph Γ, such as, regular
subgraphs, circuits, trees, stars, wheels, · · · .

Call a subset A of Xα,β of M = (Xα,β ,P) has the graphical property P if the underlying
graph of A has property P .
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A(P, M)— the set of all the A subset with property P in the map M .
Theorem 2.8. Let M = (Xα,β ,P) be a map. Then for ∀G ¹ AutM ,

[|vG||v ∈ V (M)] | |G|

|G| | |A||A(P, M)|,

where [a, b, · · · ] denotes least common multiple of a, b, · · · .
Corollary 2.5. Let T r2 be the set of tours with each edge appearing 2 times. Then for

∀G ¹ AutM ,

|G| | (l|T r2|, l = |T | = |T |
2
≥ 1, T ∈ T r2, ).

Let T r1 be the set of tours without repeat edges. Then

|G| | (2l|T r1|, l = |T | = |T |
2
≥ 1, T ∈ T r1, ).

Particularly, denote by φ(i, j) the number of faces in M with facial length i and singular
edges j, then

|G| | ((2i− j)φ(i, j), i, j ≥ 1),

where, (a, b, · · · ) denotes the greatest common divisor of a, b, · · · .
Corollary 2.6. Let T be the set of trees in the map M . Then for ∀G ¹ AutM ,

|G| | (2ltl, l ≥ 1),

where tl denotes the number of trees with l edges.
Corollary 2.7. Let vi be the number of vertices with valence i. Then for ∀G ¹ AutM ,

|G| | (2ivi, i ≥ 1).

Theorem 2.9. Let M be an orientable map of genus g(M) ≥ 2. Then for ∀G ¹ Aut+M ,

|G| ≤ 84(g(M)− 1)

and for ∀G ¹ AutM ,
|G| ≤ 168(g(M)− 1).

Corollary 2.8. For any Riemann surface S of genus g ≥ 2,

4g(S) + 2 ≤ |Aut+S| ≤ 84(g(S)− 1)

8g(S) + 4 ≤ |AutS| ≤ 168(g(S)− 1).

Theorem 2.10. Let M be a non-orientable map of genus g′(M) ≥ 3. Then for ∀G ¹
Aut+M ,

|G| ≤ 42(g′(M)− 2)
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and for ∀G ¹ AutM ,
|G| ≤ 84(g′(M)− 2),

with the equality hold iff M is a regular map with vertex valence 3 and face valence 7 or vice
via.

Corollary 2.9. For any Klein surface K underlying a non-orientable surface of genus q ≥ 3,

|Aut+K| ≤ 42(q − 2) and |AutK| ≤ 84(q − 2).

§2.6 The Cyclic Group of a Klein Surface
Theorem 2.11. Let M = (Xα,β ,P) be a map and N = pr1

1 · · · prk

k , p1 < p2 < · · · < pk, be
the arithmetic decomposition of the integer N . Then for any voltage assignment ϑ : Xα,β → ZN ,

(i) if M is orientable, the minimum genus gmin of the lifting map Mϑ which admits an
automorphism of order N , fixed-free on V (Mϑ), is

gmin = 1 + N{g(M)− 1 + (1−
∑

m∈O(F (M))

1
p1

)bφ(M)
2

c}.

(ii) if M is non-orientable, the minimum genus g′min of the lifting map Mϑ which admits
an automorphism of order N , fixed-free on V (Mϑ), is

g′min = 2 + N{g(M)− 2 + 2(1− 1
p1

)bφ(M)
2

c}. \

Theorem 2.12. The maximum order Nmax of an automorphism g of an orientable map
M of genus≥ 2 is

Nmax ≤ 2g(M) + 1

and the maximum order N ′
max of anautomorphism g of a non-orientable map of genus≥ 3 is

N ′
max ≤ g(M) + 1,

where g(M) is the genus of the map M .
Corollary 2.10. The maximum order of an automorphism of a Riemann surface of genus≥

2 is 2g(M) + 1, and the maximum order of an automorphism of a non-orientable Klein surface
of genus≥ 3 without boundary is g(M) + 1.

§2.7 The Subgroup of a Graph Being That of Maps
Theorem 2.13. Let Γ be a connected graph. If G ¹ AutΓ, then G is an automorphism

group of a map underlying the graph Γ iff for ∀v ∈ V (Γ), the stabler Gv ¹ < v > × < α >.
Theorem 2.14. Let Γ be a connected graph. If G ¹ AutΓ, then G is an orientation-

preserving automorphism group of a map underlying the graph Γ iff for ∀v ∈ V (Γ), the stabler
Gv ¹ < v > is a cyclic group.

Theorem 2.15. Let M be a map underlying the graph G and omax(M, g), omax(G, g) be
the maximum order of orientation-preserving automorphism in AutM and in Aut 1

2
G. Then

omax(M, g) ≤ omax(G, g),
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and the equality hold for at least one map underlying the graph G.
Corollary 2.11. For any positive integer n, there exists a vertex transitive map M un-

derlying a circultant such that Zn is an orientation-preserving automorphism group of the map
M .

Corollary 2.12. The maximum order of an orientation - preserving automorphism of a
complete map Kn, n ≥ 3, is at most n.

Part III The representation of Automorphisms of a Map

§3.1 Complete Maps
A map underlying a complete graph Kn is called a complete map. Let Kn be a complete

graph of order n. Label its vertices by integers 1, 2, ..., n. Then its edge set is {ij|1 ≤ i, j ≤
n, i 6= j ij = ji}, and

Xα,β(Kn) = {ij+ : 1 ≤ i, j ≤ n, i 6= j}
⋃ {ij− : 1 ≤ i, j ≤ n, i 6= j}

α =
∏

1≤i,j≤n,i 6=j

(ij+, ij−),

β =
∏

1≤i,j≤n,i 6=j

(ij+, ij+)(ij−, ij−).

Theorem 3.1. All orientation-preserving automorphisms of non-orientable complete maps
of order≥ 4 are extended actions of elements in

E
[s

n
s ]

, E
[1,s

n−1
s ]

,

and all orientation-reversing automorphisms of non-orientable complete maps of order≥ 4 are
extended actions of elements in

αE
[(2s)

n
2s ]

, αE
[(2s)

4
2s ]

, αE[1,1,2],

where, Eθ denotes the conjugatcy class containing element θ in the symmetry group Sn.
Theorem 3.2. All orientation-preserving automorphisms of orientable complete maps of

order≥ 4 are extended actions of elements in

E
[s

n
s ]

, E
[1,s

n−1
s ]

and all orientation-reversing automorphisms of orientable complete maps of order≥ 4 are ex-
tended actions of elements in

αE
[(2s)

n
2s ]

, αE
[(2s)

4
2s ]

, αE[1,1,2],
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where,Eθ denotes the conjugatcy class containing θ in Sn.

§3.2 Semi-Regular Maps
A graph is semi-regular if it is simple and its automorphism group action on its ordered

pair of adjacent vertices is fixed-free and a map is semi-regular if it underlying a semi-regular
graph.

Theorem 3.3. Let Γ be a semi-regular graph. Then all the automorphisms of orientable
maps underlying the graph Γ are

g|Xα,β and αh|Xα,β , g, h ∈ AutΓ with h ≡ 0(mod2).

and all the automorphisms of non-orientable maps underlying the graph Γ are also

g|Xα,β and αh|Xα,β , g, h ∈ AutΓ with h ≡ 0(mod2).

§3.3 One Face Maps
Theorem 3.4. Let Bn be a bouquet with n edges 1, 2, · · · , n. Then the automorphisms

(g;h1, h2, · · · , hn) of orientable maps underlying a Bn, n ≥ 1, are respective
(O1) g ∈ E

[k
n
k ]

, hi = 1, i = 1, 2, · · · , n;
(O2) g ∈ E

[k
n
k ]

and if

g =
n/k∏

i=1

(i1, i2, · · · ik),

where ij ∈ {1, 2, · · · , n}, n/k ≡ 0(mod2), then hi1 = (1, αβ), i = 1, 2, · · · , n
k and hij

= 1 for j ≥
2;

(O3) g ∈ E
[k2s,(2k)

n−2ks
2k ]

and if

g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(ej1 , ej2 , · · · , ej2k
),

where ij , ejt
∈ {1, 2, · · · , n}, then hi1 = (1, αβ), i = 1, 2, · · · , s, hil

= 1 for l ≥ 2 and hjt
= 1 for

t = 1, 2, · · · , 2k and the automorphisms (g;h1, h2, · · · , hn) of non-orientable maps underlying a
Bn, n ≥ 1, are respective

(N1) g ∈ E
[k

n
k ]

, hi = 1, i = 1, 2, · · · , n;
(N2) g ∈ E

[k
n
k ]

and if

g =
n/k∏

i=1

(i1, i2, · · · ik),

where ij ∈ {1, 2, · · · , n}, n/k ≡ 0(mod2), then hi1 = (1, αβ), (1, β) with at least one hi01(1, β), i =
1, 2, · · · , n

k and hij
= 1 for j ≥ 2;

(N3) g ∈ E
[k2s,(2k)

n−2ks
2k ]

and if

g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(ej1 , ej2 , · · · , ej2k
),
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where ij , ejt
∈ {1, 2, · · · , n}, then hi1 = (1, αβ), (1, β) with at least one hi01 = (1, β), i =

1, 2, · · · , s, hil
= 1 for l ≥ 2 and hjt

= 1 for t = 1, 2, · · · , 2k.

Part IV The Enumeration of Unrooted Maps

§4.1 A Scheme for Enumeration
Theorem 4.1. For a given graph Γ, let E ⊂ EL(Γ), then the numbers n(E ,Γ) and η(E ,Γ)

of non-isomorphic unrooted maps and non-equivalent embeddings in E are respective

n(E ,Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|Φ1(g)|,

where, Φ1(g) = {P|P ∈ E and Pg = P or Pgα = P} and

η(E ,Γ) =
1

|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|Φ2(g)|,

where, Φ2(g) = {P|P ∈ E and Pg = P}.
Corollary 4.1. The numbers nO(Γ), nN (Γ) and nL(Γ) of non-isomorphic unrooted ori-

entable maps ,non-orientable maps and locally orientable maps underlying a graph Γ are re-
spective

nO(Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦO
1 (g)|;

nN (Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦN
1 (g)|;

nL(Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦL
1 (g)|,

where, ΦO
1 (g) = {P|P ∈ EO(Γ) and Pg = P or Pgα = P}, ΦN

1 (g) = {P|P ∈ EN (Γ) and Pg = P
or Pgα = P}, ΦL

1 (g) = {P|P ∈ EL(Γ) and Pg = P or Pgα = P}.

§4.2 The Number of Complete Maps
Theorem 4.2. The number nL(Kn) of complete maps of order n ≥ 5 on surfaces is

nL(Kn) =
1
2
(
∑

k|n
+

∑

k|n,k≡0(mod2)

)
2α(n,k)(n− 2)!

n
k

k
n
k (n

k )!
+

∑

k|(n−1),k 6=1

φ(k)2β(n,k)(n− 2)!
n−1

k

n− 1
,

where,

α(n, k) =





n(n−3)
2k , if k ≡ 1(mod2);

n(n−2)
2k , if k ≡ 0(mod2),

and
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β(n, k) =





(n−1)(n−2)
2k , if k ≡ 1(mod2);

(n−1)(n−3)
2k , if k ≡ 0(mod2).

and nL(K4) = 11.

Theorem 4.3. The number nO((Kn) of complete maps of order n ≥ 5 on orientable
surfaces is

nO(Kn) =
1
2
(
∑

k|n
+

∑

k|n,k≡0(mod2)

)
(n− 2)!

n
k

k
n
k (n

k )!
+

∑

k|(n−1),k 6=1

φ(k)(n− 2)!
n−1

k

n− 1
.

and n(K4) = 3. For K4 on the surfaces, see the Fig.2

Fig.2¸

§4.3 The Number of Semi-Regular Maps
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Theorem 4.4. Let Γ be a semi-regular graph. Then the numbers of unrooted maps on
orientable and non-orientable surfaces underlying the graph Γ are

nO(Γ) =
1

|AutΓ| (
∑

ξ∈AutΓ

λ(ξ)
∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!

and

nN (Γ) =
1

|AutΓ| ×
∑

ξ∈AutΓ

(2|T
E
ξ |−|T V

ξ | − 1)λ(ξ)
∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!,

where λ(ξ) = 1 if o(ξ) ≡ 0(mod2) and 1
2 , otherwise.

Corollary 4.2. Let Γ = Cay(Zp : S) be connected graph of prime order p with (p−1, |S|) =
2. Then

nO(Γ,M) =
(|S| − 1)!p + 2p(|S| − 1)!

p+1
2

4p
+

(p− 1)(|S| − 1)!
4p

and

nN (Γ,M) =
(2

p|S|
2 −p − 1)(|S| − 1)!p

2p
+

2(2
p|S|−2p−2)

4 − 1)p(|S| − 1)!
p+1
2

2p

+
(2

|S|−2
2 − 1)(p− 1)(|S| − 1)!

4p
.

§4.4 The Number of One Vertex Maps

Theorem 4.5. The number nO(Bn) of non -isomorphic maps on orientable surfaces un-
derlying a graph Bn is

nO(Bn) =
∑

k|2n,k 6=2n

k
2n
k −1(

2n

k
− 1)!

1
( 2n

k )!
∂

2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+ φ(2n)
∂(Z(Sn[S2]))

∂s2n
|s2n=0

Theorem 4.6. he number nN (Bn) of non -isomorphic maps on the non-orientable surfaces
with an underlying graph Bn is

nN (Bn) =
(2n− 1)!

n!
+

∑

k|2n,3≤k<2n

(2k)
2n
k −1(

2n

k
− 1)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+
1

2nn!
(
∑

s≥1

n!
(n− 2s)!s!

+ 4n(n− 1)!(
∂n(Z(Sn[S2]))

∂sn
2

|s2=0 − bn2 c)).

For B2 on the surfaces, see the Fig.3.
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Fig.3¸

Part V Map Geometry

§5.1 What are the Contribution of Maps to Mathematics
Klein Erlanger Program:

Any geometry is finding invariant properties under the transformation group of this geom-
etry (This is essentially the group action idea.)

The following problems are applications of the Klein Erlanger Program in maps:
(i)determine isomorphism maps or rooted maps;
(ii)determine equivalent embeddings of a graph;
(iii)determine an embedding whether exists;
(iv)enumerate maps or rooted maps on a surface;
(v)enumerate embeddings of a graph on a surface;
(vi) · · · , etc.
What are their importance to classical mathematics?
What are their contributions to science?

§5.2 Smarandache Geometries
Classical geometries:

The axiom system of Euclid geometry is the following:
(A1)there is a straight line between any two points.
(A2)a finite straight line can produce a infinite straight line continuously.
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(A3)any point and a distance can describe a circle.
(A4)all right angles are equal to one another.
(A5)if a straight line falling on two straight lines make the interior angles on the same side

less than two right angles, then the two straight lines, if produced indefinitely, meet on that side
on which are the angles less than the two right angles.

The axiom (A5) can be also replaced by:
(A5’)given a line and a point exterior this line, there is one line parallel to this line.
The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry, is a geometry

with axioms (A1)− (A4) and the following axiom (L5):
(L5) there are infinitely many line parallels to a given line passing through an exterior

point.
The Riemann geometry is a geometry with axioms (A1) − (A4) and the following axiom

(R5):
there is no parallel to a given line passing through an exterior point.
Smarandache introduced the paradoxist geometry, non-geometry, counter-proje

-ctive geometry and anti-geometry by contradicts the axioms (A1) − (A5) in Euclid geometry,
generalize the classical geometries. For example, the axioms of a Paradoxist geometry are
(A1)− (A4) and with one of the following as the axiom (P5):

(i)there are at least a straight line and a point exterior to it in this space for which any
line that passes through the point intersect the initial line.

(ii)there are at least a straight line and a point exterior to it in this space for which only
one line passes through the point and does not intersect the initial line.

(iii)there are at least a straight line and a point exterior to it in this space for which only a
finite number of lines l1, l2, · · · , lk, k ≥ 2 pass through the point and do not intersect the initial
line.

(iv)there are at least a straight line and a point exterior to it in this space for which an
infinite number of lines pass through the point (but not all of them) and do not intersect the
initial line.

(v)there are at least a straight line and a point exterior to it in this space for which any
line that passes through the point and does not intersect the initial line.

F. Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10/2000.

The Smarandache geometries are defined as follows.
Definition 5.1. An axiom is said Smarandachely denied if the axiom behaves in at least

two different ways within the same space, i.e., validated and invalided, or only invalided but in
multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied
axiom(1969).

A nice model for the Smarandache geometries, called s-manifolds, is found by Isier, which
is defined by Mao using maps as follows:

An s-manifold is any collection C(T, n) of these equilateral triangular disks Ti, 1 ≤ i ≤ n

satisfying the following conditions:
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(i) Each edge e is the identification of at most two edges ei, ej in two distinct triangular
disks Ti, Tj , 1 ≤ i, j ≤ n and i 6= j;

(ii) Each vertex v is the identification of one vertex in each of five, six or seven distinct
triangular disks.

H.Iseri, Smarandache manifolds, American Research Press, Rehoboth, NM,2002.

L.F.Mao, Automorphism groups of maps, surfaces and Smarandache geometries, American Research

Press, Rehoboth, NM,2005.

§5.3 A Classification of Smarandache Manifolds

Classical Type:

(1) ∆1 = {5− regular triangular maps} (elliptic);

(2) ∆2 = {6− regular triangular maps}(euclidean);

(3) ∆3 = {7− regular triangular maps}(hyperbolic).
Smarandache Type:

(4) ∆4 = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);

(5) ∆5 = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);

(6) ∆6 = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);

(7) ∆7 = {triangular maps with vertex valency 5, 6 and 7} (mixed).

Theorem 5.1. |∆1| = 2, |∆5| ≥ 2 and |∆i|, i = 2, 3, 4, 6, 7 are infinite.

Iseri proposed a question: Do the other closed 2-manifolds correspond to s-manifolds with
only hyperbolic vertices?. Since |∆3| is infinite, the answer is affirmative for this question.

§5.4 Map Geometry

Definition 5.2. For a combinatorial map M with each vertex valency≥ 3, associates a
real number µ(u), 0 < µ(u) < π, to each vertex u, u ∈ V (M). Call (M, µ) the fundamental
map space, µ(u) the angle factor of the vertex u and to be orientable or non-orientable if the
map M is orientable or not.

Definition 5.3. A point u in a map space (M, µ) is called elliptic, euclidean or hyperbolic
if ρ(u)µ(u) < 2π, ρ(u)µ(u) = 2π or ρ(u)µ(u) > 2π.

Definition 5.4. Let (M, µ) be a map space. An m-line in (M, µ) is a curve with a constant
curvature. Points in (M, µ) are called m-points.

We have the following result for map geometries.

Theorem 5.2. For any planar map M with order≥ 3 and vertex valency≥ 3, there is an
angle factor µ such that (M, µ) is a Smarandache geometry by denial the axiom (A5) with the
axioms (A5), (L5) and (R5).



Vol. 1 On automorphisms groups of maps, surfaces and Smarandache geometries 71

Fig.4¸

Theorem 5.3. For any map M on an orientable surface with order≥ 3 and vertex valency≥
3, there is an angle factor µ such that (M, µ) is a Smarandache geometry by denial the axiom
(A5) with the axioms (A5),(L5) and (R5).

Theorem 5.4. Let P be a k-polygon in a map space with each line segment passes through
at most one elliptic or hyperbolic point. If H is the set of elliptic points and hyperbolic points
on the line segment of P , then the sum of the internal angles in P is

(k + |H| − 2)π − 1
2

∑

u∈H

ρ(u)µ(u).

Corollary 5.1. Let 4 be a triangle in a map space. Then
(i) if 4 is euclidean, then then the sum of its internal angles is equal to π;
(ii) if 4 is elliptic, then the sum of its internal angles is less than π;
(iii) if 4 is hyperbolic, then the sum of its internal angles is more than π.
Theorem 5.5. The number nO(Γ, g) of non -equivalent orientable map geometries under-

lying a simple graph Γ by denial the axiom (A5) by (A5), (L5) or (R5) is

3|Γ|
∏

v∈V (Γ)

(ρ(v)− 1)!

2|AutΓ| ,

where ρ(v) is the valency of the vertex v in the graph G.
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Part VI Open Problems for Combinatorial Maps

§6.1 The Uniformization Theorem for Simple Connected Riemann Surfaces
The uniformization theorem for simple connected Riemann surfaces is one of those beautiful

results in the Riemann surface theory, which is stated as follows:
If S is a simple connected Riemann surface, then S is conformally equivalent to one and

only one of the following three:
(a) C⋃∞;
(b) C;
(c) 4 = {z ∈ C||z| < 1}.
How can we define the conformal equivalence for maps enabling us to get the

uniformization theorem of maps?
What is the correspondence class maps with the three type (a) − (c) Riemann

surfaces?

§6.2 Combinatorial Construction of an Algebraic Curve of Genus
A complex plane algebraic curve Cl is a homogeneous equation f(x, y, z) = 0 in P2C =

(C2 \ (0, 0, 0))/ ∼, where f(x, y, z) is a polynomial in x, y and z with coefficients in C. The
degree of f(x, y, z) is said the degree of the curve Cl. For a Riemann surface S, a well-known
result is ([2]) there is a holomorphic mapping ϕ : S → P2C such that ϕ(S) is a complex plane
algebraic curve and

g(S) =
(d(ϕ(S))− 1)(d(ϕ(S))− 2)

2
.

By map theory, we know a combinatorial map also is on a surface with genus. Then
whether we can get an algebraic curve by all edges in a map or by make

operations on the vertices or edges of the map to get plane algebraic curve with
given k-multiple points?

how do we find the equation f(x, y, z) = 0?

§6.3 Classification of s-Manifolds by Maps
We present an elementary classification for the closed s-manifolds in the Part V . For

the general s-manifolds, their correspondence combinatorial model is the maps on surfaces
with boundary, founded by Bryant and Singerman in 1985 (R.P.Bryant and D.Singerman,
Foundations of the theory of maps on surfaces with boundary,Quart.J.Math.Oxford(2),36(1985),
17-41.). The later is also related to the modular groups of spaces and need to investigate further
itself. The questions are

(i) how can we combinatorially classify the general s-manifolds by maps with
boundary?

(ii) how can we find the automorphism group of an s-manifold?
(iii) how can we know the numbers of non-isomorphic s-manifolds, with or

without root?
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(iv) find rulers for drawing an s-manifold on a surface, such as, the torus, the
projective plane or Klein bottle, not the plane.

§6.4 Map Geometries
(i) For a given graph, determine properties of the map geometries underlying

this graph.
(ii) For a given locally orientable surface, determine the properties of map

geometries on this surface.
(iii) Classify map geometries on a locally orientable surface.
(iv) Enumerate non-equivalent map geometries underlying a graph or on a

locally orientable surface.
(v) Establish the surface geometry by map geometries.
(vi) Applying map geometries to classical mathematics or other sciences.

§6.5 Gauss Mapping Among Surfaces
In the classical differential geometry, a Gauss mapping among surfaces is defined as follows:
Let S ⊂ R3 be a surface with an orientation N. The mapping N : S → R3 takes its value

in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}
along the orientation N. The map N : S → S2, thus defined, is called the Gauss mapping.

we know that for a point P ∈ S such that the Gaussian curvature K(P ) 6= 0 and V a
connected neighborhood of P with K does not change sign,

K(P ) = lim
A→0

N(A)
A

,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by the
Gauss mapping N : S → S2. The questions are

(i) what is its combinatorial meaning of the Gauss mapping? How to realizes
it by maps?

(ii) how we can define various curvatures for maps and rebuilt the results in
the classical differential geometry?

§6.6 The Gauss-Bonnet Theorem
Let S be a compact orientable surface. Then

∫ ∫

S
Kdσ = 2πχ(S),

where K is Gaussian curvature on S.
This is the famous Gauss-Bonnet theorem for compact surface. The questions are
(i) what is its combinatorial mean of the Gauss curvature?
(ii) how can we define the angle, area, volume, curvature, · · · , of a map?
(iii)can we rebuilt the Gauss-Bonnet theorem by maps? or can we get a gen-

eralization of the classical Gauss-Bonnet theorem by maps?
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Abstract For any fixed positive integer n, the Smarandache ceil function of order k is denoted by

N∗ → N and has the following definition:

Sk(n) = min{x ∈ N | n | xk} (∀n ∈ N∗) .

In this paper, we study the mean value properties of the Smarandache ceil function, and give a sharp

asymptotic formula for it.
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§1. Introduction

For any fixed positive integer n, the Smarandache ceil function of order k is denoted by
N∗ → N and has the following definition:

Sk(n) = min{x ∈ N | n | xk} (∀n ∈ N∗) .

For example, S2(1) = 1, S2(2) = 2, S2(3) = 3, S2(4) = 2, S2(5) = 5, S2(6) = 6, S2(7) = 7,
S2(8) = 4, S2(9) = 3, · · · . This was introduced by Smarandache who proposed many problems
in [1]. There are many papers on the Smarandache ceil function. For example, Ibstedt [2] and [3]
studied this function both theoretically and computationally, and got the following conclusions:

(∀a, b ∈ N∗)(a, b) = 1 ⇒ Sk(ab) = Sk(a)Sk(b),

Sk(pα1
1 pα2

2 . · · · .pαr
r ) = S(p

α1
1 ). · · · .S(p

αr
r ).

In this paper, we study the mean value properties of the Smarandache ceil function, and
give a sharp asymptotic formula for it. That is, we shall prove the following:

Theorem. Let x ≥ 2, for any fixed positive integer k, we have the asymptotic formula

∑

n≤x

Sk(n) =
x2

2
ζ(2k − 1)

∏
p

[
1− 1

p(p + 1)

(
1 +

1
p2k−3

)]
+ O

(
x

3
2+ε

)
.

where ζ(s) is the Riemann zeta function,
∏
p

denotes the product over all prime p, and ε be

any fixed positive number.
1This work is supported by the N.S.F(60472068) and P.N.S.F of P.R.China
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This solved a conjecture of [4].

From this theorem we may immediately deduce the following:

Corollary 1. For any real number x ≥ 2, we have the asymptotic formula:

∑

n≤x

S2(n) =
3x2

π2
ζ(3) + O

(
x

3
2+ε

)
.

Corollary 2. Let x ≥ 1 and Sc(n) denotes the smallest cube greater than or equal to n,
then we have

∑

n≤x

(Sc(n)− n) =
9
10

x
5
3 + O

(
x

4
3

)
.

§2. A Lemma

To complete the proof of the theorem, we need the following famous Perron formula [5]:

Lemma. Suppose that the Dirichlet series f(s) =
∞∑

n=1

a(n)n−s, with s = σ + it is conver-

gent absolutely for σ > β, and that there exist a positive λ and a positive increasing function
A(s) such that

∞∑
n=1

|a(n)|n−σ ¿ (σ − β)−1, σ → β + 0

and

a(n) ¿ A(n), n = 1, 2, · · · .

Then for any b > 0, b + σ > β, and x not to be an integer, we have

∑

n≤x

a(n)n−s0 =
1

2πi

∫ b+iT

b−iT

f(s0 + ω)
xω

ω
dω + O

(
xb

T (b + σ − β)λ

)

+O

(
A(2x)x1−σ log x

T || x ||
)

,

where || x || is the nearest integer to x.

§3. Proof of the theorem

In this section, we shall complete the proof of Theorem. Let

f(s) =
∞∑

n=1

Sk(n)
ns

,

where Re(s) > 3.
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By Euler product formula [6], we have

f(s) =
∏
p

(
1 +

Sk(p)
ps

+
Sk(p2)

p2s
+ · · ·+ Sk(pk)

pks
+ · · ·

)

=
∏
p

(
1 +

p

ps
+

p

p2s
+ · · ·+ p

pks
+

p2

p(k+1)s
+ · · ·+ p2

p2ks
+ · · ·

)

=
∏
p

(
1 +

1
ps−1

1− 1
pks

1− 1
ps

+
p2

p(k+1)s

1− 1
pks

1− 1
ps

+ · · ·
)

=
∏
p

(
1 +

1− 1
pks

1− 1
ps

1
ps−1

1− 1
pks−1

)

=
ζ(s)ζ(s− 1)ζ(ks− 1)

ζ(2s− 2)

∏
p

(
1− 1

1 + 1
ps−1

(
1

pks−1
+

1
ps

))

where ζ(s) is the Riemann zeta function.
Taking s0 = 0, b = 3, T = x

5
2 in the Lemma, we have

∑

n≤x

Sk(n) =
1

2iπ

∫ 3+iT

3−iT

ζ(s)ζ(s− 1)ζ(ks− 1)
ζ(2s− 2)

R(s)
xs

s
ds + O(x

3
2+ε),

where

R(s) =
∏
p

(
1− 1

1 + 1
ps−1

(
1

pks−1
+

1
ps

))
.

To estimate the main term

1
2iπ

∫ 3+iT

3−iT

ζ(s)ζ(s− 1)ζ(ks− 1)
ζ(2s− 2)

R(s)
xs

s
ds,

we move the integral line from s = 3± iT to s = 3
2 ± iT . This time, the function

f(s) =
ζ(s)ζ(s− 1)ζ(ks− 1)xs

ζ(2s− 2)s
R(s)

has a simple pole point at s = 2 with residue x2

2 ζ(2k − 1)R(2). So we have

1
2iπ

(∫ 3+iT

3−iT

+
∫ 3

2+iT

3+iT

+
∫ 3

2−iT

3
2+iT

+
∫ 3−iT

3
2−iT

)
ζ(s)ζ(s− 1)ζ(ks− 1)xs

ζ(2s− 2)s
R(s)ds

=
x2

2
ζ(2k − 1)

∏
p

[
1− 1

p(p + 1)

(
1 +

1
p2k−3

)]
.

Note that

1
2iπ

(∫ 3
2+iT

3+iT

+
∫ 3

2−iT

3
2+iT

+
∫ 3−iT

3
2−iT

)
ζ(s)ζ(s− 1)ζ(ks− 1)xs

ζ(2s− 2)s
R(s)ds ¿ x

3
2+ε

From the above, we may immediately get the asymptotic formula:
∑

n≤x

Sk(n) =
x2

2
ζ(2k − 1)

∏
p

[
1− 1

p(p + 1)

(
1 +

1
p2k−3

)]
+ O

(
x

3
2+ε

)
.

This completes the proof of Theorem.
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Abstract In this paper, we solve an open question concerning the Smarandache function.
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For any positive integer n, let S(n) and ϕ(n) denote the Smarandache function and the
Euler totient function respectively. In [1], Bencze asked that solve the equation

S

(
n∑

k=1

nk

)
= ϕ(n)

n∏

k=1

S(k) (1)

in positive integers n. In this paper we solve this question as follows.
Theorem. The equation (1) has only positive integer solution n = 1.
The proof of our Theorem depends on the following lemmas.
Lemma 1([3]). If a is a positive integer with a > 1, then S(a) > 1.
Lemma 2([3]). If a and b are coprime positive integers, then we have S(ab) = max(S(a), S(b)).
Lemma 3([2]). If p is a prime and α is a positive integer, then we have S(pα) ≤ pα and

p|S(pα).
Proof of Theorem. It is easy to see that (1) has only solution n = 1 with n ≤ 5. We now

suppose that n is a positive integer solution of (1) with n > 5. Since gcd
(
n, 1 + n + · · ·+ nn−1

)δ =
1, by Lemma 2, we get

S

(
n∑

k=1

nk

)
= S

(
n

(
1 + n + · · ·+ nn−1

))
(2)

= max
(
S(n), S(1 + n + · · ·+ nn−1)

)
.

If S(n) ≥ S(1 + n + · · ·+ nn−1), then from (1) and (2) we obtain

1 = ϕ(n)
n−1∏

k=1

S(k). (3)

Since n ≥ 5, by Lemma 1, we get S(n − 1) > 1 and (3) is impossible. So we have S(n) <

S(1 + n + · · ·+ nn−1).

1

This work is supported by N.S.F. of P. R. China(No.10271104), the Guangdong Provincial Natural Science

Foundation(No.011781) and the Natural Science Foundation of the Education Department of Guangdong

Province(No.0161).
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Then, by (1) and (2), we get

S(1 + n + · · ·+ nn−1) = ϕ(n)
n∏

k=1

S(k). (4)

Let

1 + n + · · ·+ nn−1 = pα1
1 pα2

2 · · · pαr
r (5)

be the factorization of 1 + n + · · ·+ nn−1. By Lemma 2, we have

S(1 + n + · · ·+ nn−1) = max(S(pα1
1 ), S(pα2

2 ), · · · , S(pαr
r )). (6)

It implies that

S(1 + n + · · ·+ nn−1) = S(pα), (7)

where

pα = p
αj

j , 1 ≤ j ≤ r. (8)

Hence, by (1) and (7), we get

S(pα) = ϕ(n)
n∏

k=1

S(n). (9)

Since p is a prime, we find from (9) that p|S(pα) and

p|ϕ(n) or p|S(k), 1 ≤ k ≤ n. (10)

On the other hand, by Lemma 3, we have S(pα) ≤ αp. Therefore, we get from (9) that

αp ≥ ϕ(n)
n∏

k=1

S(k). (11)

Since n ≥ 5, we have ϕ(n) > 1 and S(k) > 1 for k = 2, · · · , n. hence, by (10) and (11), we get

α ≥ 1
p
ϕ(n)

n∏

k=1

S(k) > 2n−1. (12)

However, since 1 + n + · · ·+ nn−1 is odd, we see from (5) and (8) that pα < nn and

α <
n log n

log p
<

n log n

log 3
< n log n. (13)

The combination of (12) and (13) yields

n log n > 2n−1, n > 5, (14)

a contradiction. Thus, (1) has only solution n = 1. The theorem is proved.
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Abstract In this paper we generalize the abc-theorem for n-polynomials over F[x] in which F is

an algebraically closed field of characteristic zero. This generalization is obtained by considering the

Wronskian of functions over F[x]. We also show that the Diophantine equation (The generalized

Fermat-Catalan equation)

am1
1 + am2

2 + · · ·+ a
mn−1
n−1 = amn

n ,

where a1, a2, · · · , an ∈ F[x] such that at most one of ai’s is constant, and m1, m2, · · · , mn ∈ N, has no

solution for which ai(i = 1, · · · , n) are relatively prime by pairs provided that n(n− 2) ≤ min
1≤i≤n

{mi}.
Keywords abc-theorem; abc-conjecture; algebraically closed field; Wronskian; Diophantine equa-

tions.

§1. Introduction

Although the arithmetic abc-conjecture is a great mystery, its algebraic counterpart is a
rather easy theorem (abc-theorem). It looks like it was first noticed by W.W. Stothers [1].
Later on it was generalized and rediscovered independently by several people, including R.C.
Mason [2] and J.H. Silverman [3].

Discovering the abc-theorem, opened a new way for investigating the Fermat’s last theorem
over the polynomials with coefficients in an algebraically closed field of characteristic zero. This
theorem presented a very elementary proof of the Fermat’s last theorem for polynomials. This
led mathematician to give a variant of this theorem over the ring of integer numbers. Of course,
this result has been stated as a conjecture and this conjecture has not been proved yet. Today
this conjecture is known as the abc-conjecture. Let us state the original abc-theorem [1-4,8,9].
To do this, we need to introduce some notations. We denote the set of all polynomials of one
variable x over F by F[x], where F is an algebraically closed field of characteristic zero. We also
consider the non-zero elements of F[x], as follows

f(x) = c
r∏

i=1

(x− αi)mi ,

where α1, α2, · · · , αr are the distinct roots of f , c 6= 0 is a constant, and the positive integers
mi (i = 1, 2, · · · , r) are the multiplicities of the roots. The degree of the polynomial f is

deg f = m1 + m2 + · · ·+ mr.

1The first and second authors are supported in part by the Institute for Advanced Studies in Basic

Sciences Zanjan, IRAN
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The number of distinct roots of f will be denoted by n0(f). Thus, we have n0(f) = r. If f, g

are two nonzero polynomials, then in general

n0(fg) ≤ n0(f) + n0(g),

and the equality holds whenever f, g are relatively prime. Now, we state the abc-theorem.
The abc-Theorem (Stothers, Mason, Silverman). Let a, b, c ∈ F[x] be non-constant

relatively prime polynomials satisfying a + b = c. Then

max{deg a,deg b, deg c} ≤ n0(abc)− 1.

The similar result for the ring of integers is well-known as the abc-conjecture. This conjecture
has been stated by Oesterle and Masser [5,6] in 1986.

The abc-Conjecture (Oesterle, Masser). Given ε > 0, there exists a constant C(ε)
such that for all a, b, c ∈ Z with a + b = c, we have the inequality

max{|a|, |b|, |c|} ≤ C(ε)(N0(abc))1+ε,

in which N0(abc) denotes the radical of abc. By radical function we mean

N0(n) =
∏

p|n
p (p is prime and n ∈ N).

Note that Stewart and Tijdeman gave some lower bounds for C(ε) (cf [7]).

§2. Generalizing ABC-Theorem

Now, we generalized the abc-theorem for n-functions. To do this, we need the following
lemmas:

Lemma 1. Suppose f is a nonzero polynomial in F[x]. Then, we have

deg f −m.n0(f) ≤ deg(f, f ′, · · · , f (m)), (1)

where (f, f ′, · · · , f (m)) is the greatest common divisor of f, f ′, · · · , f (m).
Needless to say that the derivative is considered as a purely algebraic operator over the

elements of F[x]. However, all known rules for derivatives in calculus text book can be easily
proved by means of simple algebraic tools.

Proof of Lemma 1. Suppose f(x) = c
∏r

i=1(x − αi)mi , in which α1, α2, · · · , αr are the
distinct roots of f with multiplicities m1,m2, · · · ,mr respectively.

Case I. Suppose for any i(1 ≤ i ≤ r) we have mi ≤ m. Then we get

deg f =
r∑

i=1

mi ≤ mr = m.n0(f) ≤ m.n0(f) + deg(f, f ′, · · · , f (m)).

Case II. Now, we suppose that there exists an i such that mi > m. Therefore, we have

(x− αi)mi−m
∣∣ f (j) (j = 0, 1, · · · ,m),
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and consequently,

(x− αi)mi−m
∣∣ (f, f ′, · · · , f (m)).

It is clear to see that, ∏
0<mi−m
1≤i≤r

(x− αi)mi−m
∣∣ (f, f ′, · · · , f (m)).

Considering the degrees of the both sides of the above result, we obtain
∑

0<mi−m
1≤i≤r

(mi −m) ≤ deg(f, f ′, · · · , f (m)).

Since
r∑

i=1

(mi −m) ≤
∑

0<mi−m
1≤i≤r

(mi −m),

we get
r∑

i=1

(mi −m) ≤ deg(f, f ′, · · · , f (m)),

or equivalently
deg f −m.n0(f) ≤ deg(f, f ′, · · · , f (m)),

and this completes our proof.
Remark 1. If char(F) = 0, then we conclude that

deg f −m.n0(f) ≤ deg(f, f (m)) =
∑

0<mi−m
1≤i≤r

(mi −m).

Definition 1. Let f1, f2, · · · , fn be functions over the ring F[x]. The Wronskian of these
functions is defined by,

W [f1, f2, · · · , fn] = det
∣∣∣f (i−1)

j

∣∣∣
1≤i,j≤n

.

Lemma 2. If char(F) = 0 and f1, f2, · · · , fn be linearly independent functions over
F in F[x], then there exists an element x in F, such that W [f1, f2, · · · , fn](x) 6= 0 ( i.e.
W [f1, f2, · · · , fn](x) is a nonzero polynomial ).

Proof. Suppose for every x ∈ F, we have

W [f1, f2, · · · , fn](x) = 0.

Therefore, there are constant numbers ci(i = 1, 2, · · · , n) in F, such that at least one of these
ci is nonzero and

c1




f1(x)

f ′1(x)
...

f
(n−1)
1 (x)




+ · · ·+ cn




fn(x)

f ′n(x)
...

f
(n−1)
n (x)




=




0

0
...

0




,
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or

c1f1(x) + · · ·+ cnfn(x) = 0,

which is a contradiction with the linearly independence of f1, f2, · · · , fn.
Lemma 3. Suppose char(F) = 0 and f1, f2, · · · , fn are nonzero functions in F[x]. Then,

for W [f1, f2, · · · , fn] 6= 0, we have

deg W [f1, f2, · · · , fn] ≤ deg(f1f2 · · · fn)− n(n− 1)
2

. (2)

Whenever deg f1 = · · · = deg fn, we get

deg W [f1, f2, · · · , fn] ≤ deg(f1f2 · · · fn)− n(n− 1)
2

− 1. (3)

Proof. We proceed it by mathematical induction on n. The initialization step n = 1, is
clear. Suppose it holds for n− 1 nonzero functions. By expanding the Wronskian determinant
W [f1, f2, · · · , fn] with respect to the first row, we obtain

W [f1, f2, · · · , fn] =
n∑

i=1

(−1)i+1fi.W [f ′1, · · · , f ′i−1, f
′
i+1, · · · , f ′n]. (4)

We have the following inequality for degrees

deg W [f1, f2, · · · , fn] ≤ max
1≤i≤n

{deg fi + deg W [f ′1, · · · , f ′i−1, f
′
i+1, · · · , f ′n]},

and since W [f1, f2, · · · , fn] 6= 0, there exists an i such that the right-hand side has the greatest
degree, namely

deg W [f1, f2, · · · , fn] ≤ deg fi + deg W [f ′1, · · · , f ′i−1, f
′
i+1, · · · , f ′n]. (5)

Now, considering the induction hypothesis for the set of (n− 1)-functions

f ′1, · · · , f ′i−1, f
′
i+1, · · · , f ′n,

we get

deg W [f ′1, · · · , f ′i−1, f
′
i+1, · · · , f ′n] ≤ deg(f ′1 · · · f ′i−1f

′
i+1 · · · f ′n)− (n− 1)(n− 2)

2

≤ deg(f1 · · · fi−1fi+1 · · · fn)− n(n− 1)
2

. (6)

Finally, by (5) and (6), we have

deg W [f1, f2, · · · , fn] ≤ deg(f1f2 · · · fn)− n(n− 1)
2

.

For proving (3), it is necessary to show that after expanding the determinant of W [f1, f2, · · · , fn],
the term with the highest degree is vanished. We prove this by induction on n, with n ≥ 2.
First we investigate the case n = 2. Since deg f1 = deg f2, we have f1(x) = akxk + P (x) and
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f2(x) = bkxk + Q(x), where P (x) and Q(x) are two polynomials of degree at most (k− 1). So,
we have

W [f1, f2] =

∣∣∣∣∣∣
akxk + P (x) bkxk + Q(x)

kakxk−1 + P ′(x) kbkxk−1 + Q′(x)

∣∣∣∣∣∣
= akxkQ′(x) + kbkxk−1P (x)− bkxkP ′(x)− kakxk−1Q(x).

Now, assume its validity for any arbitrary (n− 1)-functions. Then the proof is straight forward
considering the relation (4). Now, we are ready to state our main result

Theorem 1. Let fn = f1 + f2 + · · ·+ fn−1, in which fi’s are relatively prime by pairs in
F[x] with char(F) = 0 and at most one of them is constant. Then, we have

max
1≤i≤n

deg fi ≤ (n− 2)n0(f1f2 · · · fn)− (n− 1)(n− 2)
2

, (7)

and also

min
1≤i≤n

deg fi ≤ (n− 2)n0(f1f2 · · · fn)− (n− 1)(n− 2)
2

− 1. (8)

Proof. For proving the first inequality, we distinguish between two cases. The proof of
Case I, is analogous with [9, Theorem 1.2].

Case I. Let f1, f2, · · · , fn−1 be linearly dependent over F. Now, the proof proceeds by
induction on n. For n = 3, it is true; considering the results in [1-4]. Assume that the theorem is
true for all cases n′, 3 ≤ n′ < n, and consider n polynomials. In equality fn = f1+f2+· · ·+fn−1,
assume that fi(i = 1, 2, · · · , n − 1), are linearly dependent over F. Note that, at most one of
the fi(i = 1, 2, · · · , n − 1), is constant. Let {fi1 , · · · , fiq

}, q < n − 1, be a maximal linearly
independent subset of the fi(i = 1, 2, · · · , n− 1). Since n− 1 ≥ 2, and fj ’s are relatively prime
by pairs, it follows that q ≥ 2. So each fj , 1 ≤ j ≤ n − 1; j not one of the ik, is a linear
combination of the fik

, of the form

fj = λ1fi1 + · · ·+ λqfiq
, (9)

where the λk ∈ F, and at least two of these λk are not zero. Using our inductive hypothesis we
apply the theorem to (9). This yields that if λk 6= 0, then

deg fik
≤ (q − 1)n0(fj

q∏

k=1

fik
)− q(q − 1)

2
,

and so that

deg fik
≤ (q − 1)n0(

n∏

i=1

fi)− q(q − 1)
2

. (10)

Now, since at most one of fi is a constant, i.e. n− 1 ≤ n0 (
∏n

i=1 fi), we yield that

(q − 1)n0(
n∏

i=1

fi)− q(q − 1)
2

≤ (n− 2)n0(
n∏

i=1

fi)− (n− 1)(n− 2)
2

. (11)
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Now, using (10) and (11), we have

deg fik
≤ (n− 2)n0(

n∏

i=1

fi)− (n− 1)(n− 2)
2

. (12)

From (9) the same estimate as in (12) follows for deg fj . Thus the theorem is proved for
such fj and fik

. Inserting all the relations of the from (9) into the right side of equality
fn = f1 + f2 + · · ·+ fn−1, yields an equation of the form

fr = κ1fi1 + · · ·+ κqfiq
, (13)

where the κj ∈ F. Moreover, if one of these κν = 0, then the corresponding fiν must be
appeared in one of the equations (9) with a nonzero λν . Hence, (12) is established for this fiν .
Finally, for those κν 6= 0, we treat (13) exactly as we did (9), (note that q + 1 < n), and obtain
the estimate (12) for deg fiν

, and deg fn. This completes the induction in this case.
Case II. f1, f2, · · · , fn−1 are linearly independent over F. By using Lemma 2, we have

W [f1, f2, · · · , fn−1] 6= 0. Without lost of generality, we suppose that fn has the greatest degree,
and therefore it is necessary to prove that

deg fn ≤ (n− 2)n0(f1f2 · · · fn)− (n− 1)(n− 2)
2

.

Considering the equality fn = f1 + f2 + · · ·+ fn−1, we have

W [f1, · · · , fn−2, fn−1] = W [f1, · · · , fn−2, fn].

It can be easily seen for any i (i = 1, · · · , n),

(fi, f
′
i , · · · , f

(n−2)
i )

∣∣∣ W [f1, · · · , fn−2, fn−1].

Since fi’s are relatively prime by pairs, we conclude that (fi, f
′
i · · · , f

(n−2)
i )’s are relatively

prime. So, we get
n∏

i=1

(fi, f
′
i , · · · , f

(n−2)
i )

∣∣∣ W [f1, · · · , fn−2, fn−1].

Now since W [f1, · · · , fn−2, fn−1] 6= 0, we conclude that

n∑

i=1

deg(fi, f
′
i , · · · , f

(n−2)
i ) ≤ deg W [f1, · · · , fn−2, fn−1].

Using the relations (1) and (2), we obtain

n∑

i=1

(deg fi − (n− 2)n0(fi)) ≤ deg(f1f2 · · · fn−1)− (n− 1)(n− 2)
2

or equivalently,

deg fn ≤ (n− 2)n0(f1f2 · · · fn)− (n− 1)(n− 2)
2

.

For proving (8), it is necessary to consider the case deg f1 = · · · = deg fn. Now the proof is
clear using the relation (3).
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Remark 2. In the case where the number of constant polynomials are more than one,
the inequality (7) is not valid in general case. For example if f1 = · · · = f5 = 1, f6 = x and
f7 = x + 5, then it is not true. Indeed, finding similar inequality for the case that constant
polynomials are more than one is an open question yet.

As an immediate result of the relation (7), we have:
Corollary 1. With the assumption of the Theorem 1, we have

deg(f1f2 · · · fn) ≤ n(n− 2)n0(f1f2 · · · fn)− n(n− 1)(n− 2)
2

.

Corollary 2. For n ≥ 3, suppose f1, f2, · · · , fn are non-constant and relatively prime by
pairs. Then we obtain

1
n− 2

<
n0(f1)
deg f1

+
n0(f2)
deg f2

+ · · ·+ n0(fn)
deg fn

.

Proof. Without loss of generality, we suppose that deg f1 ≤ · · · ≤ deg fn. Applying
Theorem 1, yields

deg fn < (n− 2)(n0(f1) + · · ·+ n0(fn)).

Dividing the both sides of the above inequality by (n− 2) deg fn, completes the proof.

§3. Application to the generalized Fermat-Catalan Equa-

tion

Now, we deal with the generalized Fermat-Catalan equation [8].
Theorem 2. Consider the generalized Fermat-Catalan equation as follows

am1
1 + am2

2 + · · ·+ a
mn−1
n−1 = amn

n , (14)

in which a1, a2, · · · , an are elements of F[x] with char(F) = 0, such that they are relatively
prime by pairs and at most one of ai’s is constant. Then the equation (14) with condition
n(n− 2) ≤ m = min

1≤i≤n
{mi} has no solution in F[x].

Proof. Suppose f1 = am1
1 , f2 = am2

2 , · · · , fn = amn
n . These functions satisfy the condi-

tions of Theorem 1. Thus we have

deg(am1
1 am2

2 · · · amn
n ) ≤ n(n− 2)n0(am1

1 · · · amn
n )− n(n− 1)(n− 2)

2
. (15)

We also have,

m deg(a1a2 · · · an) ≤ deg(am1
1 am2

2 · · · amn
n ), (16)

and

n0(am1
1 am2

2 · · · amn
n ) = n0(a1a2 · · · an) ≤ deg(a1a2 · · · an). (17)

Now considering the both relations (15)-(17), we get

m deg(a1a2 · · · an) ≤ n(n− 2) deg(a1a2 · · · an)− n(n− 1)(n− 2)
2

, (18)
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or equivalently,

(m− n(n− 2)) deg(a1a2 · · · an) ≤ −n(n− 1)(n− 2)
2

. (19)

The last inequality result in m − n(n − 2) < 0, which is in contradiction with our theorem’s
hypothesis. Therefore, we conclude that the Diophantine equation (14) has no solution in F[x].

Of course, there is in [10] a natural extension of the above result for several variables using
the generalized Wronskian.
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Abstract For any positive integer n, let S(n) denotes the Smarandache function, and φ(n) is the

Euler function. The main purpose of this paper is using the elementary method to study the solutions

of the equation S(n) = φ(n), and give all solutions for it.

Keywords Smrandache function; Equation; Solutions.

§1. Introduction

For any positive integer n, the Smarandache function S(n) is defined as the smallest integer
m such that n|m!. From the definition and the properties of S(n), one can easily deduce that
if n = pα1

1 pα2
2 · · · pαk

k is the prime powers factorization of n, then

S(n) = max
1≤i≤k

{S(pαi
i )}.

About the arithmetical properities of S(n), many people had studied it before, see references
[3], [4] and [5].

If n ≥ 1, the Euler function φ(n) is defined to be the number of all positive integers not
exceeding n, which are relatively prime to n. It is clear that φ(n) is a multiplicative function.

In this paper, we shall use the elementary method to study the solutions of the equation
S(n) = φ(n), and give all solutions for it. That is, we shall prove the following:

Theorem. The equation S(n) = φ(n) have only 4 solutions, namely,

n = 1, 8, 9, 12.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. Let n = pα1
1 pα2

2 · · · pαk

k denotes
the factorization of n into prime powers, and let

S(n) = max
1≤i≤k

{S(pi
αi)} = S(pα).

Then from the definitions of S(n) and φ(n) we have

φ(n) = pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαk−1
k (pk − 1)

= φ(pα)φ(n1) = pα−1(p− 1)φ(n1) = S(pα).
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It is clear that n = 1 is a solution of the equation S(n) = φ(n). If n > 1, then we will discuss
the problem in three cases:

(I) If α = 1 and n = p, then S(n) = p 6= p− 1 = φ(n). That is, there is no any prime
satisfied the equation. If α = 1 and n = n1p, then S(n) = p 6= (p − 1)φ(n1) = φ(n1p). So the
equation has also no solution.

(II) If α = 2, then S(p2) = 2p and φ(p2n1) = p(p− 1)φ(n1). So in this case S(n) = φ(n) if
and only if

(p− 1)φ(n1) = 2.

This time, there are two cases: p − 1 = 1, φ(n1) = 2; p − 1 = 2, φ(n1) = 1. That is, p = 2,
n1 = 3; p = 3, n1 = 1. So in this case, the equation has two solutions: n = 12, 9.

(III) If α = 3, it is clear that S(23) = φ(23) = 4, so n = 8 satisfied the equation.
If α ≥ 3 and p > 2, noting that

pα−2 > 2α−2 = (1 + 1)α−2 = 1 + α− 2 + · · ·+ 1 > α.

That is,
pα−1 > αp ⇒ pα−1(p− 1)φ(n1) > αp,

but
S(pα) ≤ αp.

So this time, the equation has no solution.
Now combining the above three cases, we may immediately get all 4 solutions of equation

S(n) = φ(n), namely
n = 1, 8, 9, 12.

This completes the proof of Theorem.
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Abstract We present some inequalities for the polygamma funtions. As an application, we give

the upper and lower bounds for the expression
n∑

k=1

1
k
− ln n − γ, where γ = 0.57721 · · · is the Euler’s

constant.

Keywords Inequality; Polygamma function; Harmonic sequence; Euler’s constant.

§1. Inequalities for the Polygamma Function

The gamma function is usually defined for Rez > 0 by

Γ(z) =
∫ ∞

0

tz−1e−tdt.

The psi or digamma function, the logarithmic derivative of the gamma function and the
polygamma functions can be expressed as

ψ(z) =
Γ
′
(z)

Γ(z)
= −γ +

∞∑

k=0

(
1

1 + k
− 1

z + k

)
,

ψn(z) = (−1)n+1n!
∞∑

k=0

1
(z + k)n+1

for Rez > 0 and n = 1, 2, · · · , where γ = 0.57721 · · · is the Euler’s constant.
M. Merkle [2] established the inequality

1
x

+
1

2x2
+

2N∑

k=1

B2k

x2k+1
<

∞∑

k=0

1
(x + k)2

<
1
x

+
2N+1∑

k=1

B2k

x2k+1

for all real x > 0 and all integers N ≥ 1, where Bk denotes Bernoulli numbers, defined by

t

et − 1
=

∞∑

j=0

Bj

j!
tj .

The first five Bernoulli numbers with even indices are

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

, B10 =
5
66

.

1This work is supported in part by SF of Henan Innovation Talents at University of P. R. China
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The following theorem 1 establishes a more general result.
Theorem 1. Let m ≥ 0 and n ≥ 1 be integers, then we have for x > 0,

lnx− 1
2x

−
2m+1∑

j=1

B2j

2j

1
x2j

< ψ(x) < lnx− 1
2x

−
2m∑

j=1

B2j

2j

1
x2j

(1)

and
(n− 1)!

xn
+

n!
2xn+1

+
2m∑

j=1

B2j

(2j)!
Γ(n + 2j)

xn+2j

< (−1)n+1ψ(n)(x) <
(n− 1)!

xn
+

n!
2xn+1

+
2m+1∑

j=1

B2j

(2j)!
Γ(n + 2j)

xn+2j
. (2)

Proof. From Binet’s formula [6, p. 103]

ln Γ(x) =
(

x− 1
2

)
lnx− x + ln

√
2π +

∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt,

we conclude that

ψ(x) = lnx− 1
2x

−
∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t
dt (3)

and therefore

(−1)n+1ψ(n)(n) =
(n− 1)!

xn
+

n!
2xn+1

+
∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
tn−1e−xtdt. (4)

It follows from Problem 154 in Part I, Chapter 4, of [3] that

2m∑

j=1

B2j

(2j)!
t2j <

t

et − 1
− 1 +

t

2
<

2m+1∑

j=1

B2j

(2j)!
t2j (5)

for all integers m > 0. The inequality (5) can be also found in [4].
From (3) and (5) we conclude (1), and we obtain (2) from (4) and (5). This completes the

proof of the theorem 1.
Note that ψ(x + 1) = ψ(x) + 1

x (see [1, p. 258]), (1) can be written as

1
2x

−
2m+1∑

j=1

B2j

2j

1
x2j

< ψ(x + 1)− lnx <
1
2x

−
2m∑

j=1

B2j

2j

1
x2j

(6)

and (2) can be written as

(n− 1)!
xn

− n!
2xn+1

+
2m∑

j=1

B2j

(2j)!
Γ(n + 2j)

xn+2j

< (−1)n+1ψ(n)(x) <
(n− 1)!

xn
− n!

2xn+1
+

2m+1∑

j=1

B2j

(2j)!
Γ(n + 2j)

xn+2j
. (7)

In particular, taking in (6) m = 0 we obtain for x > 0,

1
2x

− 1
12x2

< ψ(x + 1)− lnx <
1
2x

(8)
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and taking in (7) m = 1 and n = 1, we obtain for x > 0

1
2x2

− 1
6x3

+
1

30x5
− 1

42x7
<

1
x
− ψ

′
(x + 1) <

1
2x2

− 1
6x3

+
1

30x5
(9)

The inequalities (8) and (9) play an important role in the proof of the theorem 2 in Section
2.

§2. Inequalities for Euler’s Constant

Euler’s constant γ = 0.57721 · · · is defined by

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− lnn

)
.

It is of interest to investigate the bounds for the expression
n∑

k=1

1
k − lnn− γ. The inequality

1
2n

− 1
8n2

<
n∑

k=1

1
k
− lnn− γ <

1
2n

is called in literature Franel’s inequality [3, Ex. 18].

It is given in [1, p. 258] that ψ(n) =
n−1∑
k=1

1
k − γ, and then we have get

n∑

k=1

1
k
− lnn− γ = ψ(n + 1)− lnn. (10)

Taking in (6) x = n we obtain that

1
2n

−
2m+1∑

j=1

B2j

2j

1
n2j

<
n∑

k=1

1
k
− lnn− γ <

1
2n

−
2m∑

j=1

B2j

2j

1
n2j

. (11)

The inequality (11) provides closer bounds for
n∑

k=1

1
k − lnn− γ.

L.Tóth [5, p. 264] proposed the following problems:
(i) Prove that for every positive integer n we have

1
2n + 2

5

<
n∑

k=1

1
k
− lnn− γ <

1
2n + 1

3

.

(ii) Show that 2
5 can be replaced by a slightly smaller number, but that 1

3 can not be
replaced by a slightly larger number.

The following Theorem 2 answers the problem due to L.Tóth.
Theorem 2. For every positive integer n,

1
2n + a

<
n∑

i=1

1
i
− lnn− γ <

1
2n + b

, (12)

with the best possible constants
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a =
1

1− γ
− 2 and b =

1
3

Proof. By (10), the inequality (12) can be rearranged as

b <
1

ψ(n + 1)− lnn
− 2n ≤ a.

Define for x > 0

φ(x) =
1

ψ(x + 1)− lnx
− 2x.

Differentiating φ and utilizing (8) and (9) reveals that for x > 12
5

(ψ(x + 1)− lnx)2φ
′
(x) =

1
x
− ψ

′
(x + 1)− 2(ψ(x + 1)− lnx)2

<
1

2x2
− 1

6x3
+

1
30x5

− 2
(

1
2x

− 1
12x2

)2

=
12− 5x

360x5
< 0,

and then the function φ strictly decreases with x > 12
5 .

Straightforward calculation produces

φ(1) =
1

1− γ
− 2 = 0.36527211862544155 · · · ,

φ(2) =
1

3
2 − γ − ln 2

− 4 = 0.35469600731465752 · · · ,

φ(3) =
1

11
6 − γ − ln 3

− 6 = 0.34898948531361115 · · · .

Therefore, the sequence

φ(n) =
1

ψ(n + 1)− lnn
− 2n, n ∈ N

is strictly decreasing. This leads to

lim
n→∞

φ(n) < φ(n) ≤ φ(1) =
1

1− γ
− 2.

Making use of asymptotic formula of ψ (see [1, p. 259])

ψ(x) = lnx− 1
2x

− 1
12x2

+ O(x−4) (x →∞),

we conclude that

lim
n→∞

φ(n) = lim
x→∞

φ(x) = lim
x→∞

1
3 + O(x−2)
1 + O(x−1)

=
1
3
.

This completes the proof of the theorem 2.
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Abstract In this paper we find the number of smarandache zero divisors (S-zero divisors) and

smarandache weak zero divisors (S-weak zero divisors) for the loop rings Z2Ln(m) of the loops Ln(m)

over Z2. We obtain the exact number of S-zero divisors and S-weak zero divisors when n = p2 or p3 or

pq where p, q are odd primes. We also prove ZLn(m) has infinitely many S-zero divisors and S-weak

zero divisors, where Z is the ring of integers. For any loop L we give conditions on L so that the loop

ring Z2L has S-zero divisors and S-weak zero divisors.

§0 . Introduction

This paper has four sections. In the first section, we just recall the definitions of S-
zero divisors and S-weak zero divisors and some of the properties of the new class of loops
Ln(m). In section two, we obtain the number of S-zero divisors of the loop rings Z2Ln(m)

and show when n = p2, where p is an odd prime, Z2Ln(m) has p(1 +
p−1∑

r=2, r even

p+1Cr) S-zero

divisors. Also when n = p3, p an odd prime, Z2Ln(m) has p(1 +
p2−1∑

r=2, r even

p2+1Cr) + p2(1 +

p−1∑
r=2,reven

p+1Cr) S-zero divisors. Again when n = pq, where p, q are odd primes, Z2Ln(m) has

p+q+p(
q−1∑

r=2, r even

q+1Cr)+q(
p−1∑

r=2, r even

p+1Cr) S-zero divisors. Further we prove ZLn(m) has

infinitely many S-zero divisors. In section three, we find the number of S-weak zero divisors
for the loop ring Z2Ln(m) and prove that when n = p2, where p is an odd prime, Z2Ln(m)

has 2p(1 +
p−1∑

r=2, r even

p+1Cr) S-weak zero divisors. Also when n = p3, where p is an odd prime,

Z2Ln(m) has 2p(
p2−1∑

r=2,reven

p2+1Cr) + 2p2(
p−1∑

r=2, r even

p+1Cr) S-weak zero divisors. Again when

n = pq, where p, q are odd primes, Z2Ln(m) has 2[p(
q−1∑

r=2, r even

q+1Cr) + q(
p−1∑

r=2, r even

p+1Cr)]

S-weak zero divisors. We prove ZLn(m) has infinitely many S-weak zero divisors. The final
section gives some unsolved problems and some conclusions based on our study.
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§1. Basic Results

Here we just recollect some basic results to make this paper a self contained one.
Definition 1.1[4]. Let R be a ring. An element a ∈ R\{0} is said to be a S-zero divisor

if a.b = 0 for some b 6= 0 in R and there exists x, y ∈ R\{0, a, b} such that

i. a.x = 0 or x.a = 0

ii b.y = 0 or y.b = 0

iii. x.y 6= 0 or y.x 6= 0

Definition 1.2[4]. Let R be a ring. An element a ∈ R\{0} is a S-weak zero divisor if
there exists b ∈ R\{0, a} such that a, b = 0 satisfying the following conditions: There exists
x, y ∈ R\{0, a, b} such that

i. a.x = 0 or x.a = 0

ii. b.y = 0 or y.b = 0

iii. x.y = 0 or y.x = 0

Definition 1.3[3]. Let Ln(m) = {e, 1, 2, 3 · · · , n} be a set where n > 3, n is odd and m

is a positive integer such that (m,n) = 1 and (m− 1, n) = 1 with m < n. Define on Ln(m), a
binary operation ′.′ as follows:

i. e.i = i.e for all i ∈ Ln(m)\{e}

ii. i2. = e for all i ∈ Ln(m)

iii. i.j = t, where t ≡ (mj−(m−1)i)(mod n) for all i, j ∈ Ln(m), i 6= e and j 6= e.

Then Ln(m) is a loop. This loop is always of even order; further for varying m, we get a class
of loops of order n + 1 which we denote by Ln.

Example 1.1[3]. Consider L5(2) = {e, 1, 2, 3, 4, 5}. The composition table for L5(2) is
given below:

. e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

This loop is non-commutative and non-associative and of order 6.
Theorem 1.1[3]. Let Ln(m) ∈ Ln. For every t|n there exists t subloops of order k + 1,

where k = n/t.
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Theorem 1.2[3]. Let Ln(m) ∈ Ln. If H is a subloop of Ln(m) of order t + 1, then t|n.

Remark 1.2[3]. Lagrange’s theorem is not satisfied by all subloops of the loop Ln(m),i.e
there always exists a subloop H of Ln(m) which does not satisfy the Lagrange’s theorem, i.e
o(H) † o(Ln(m)).

§2. Definition of the number of S-zero divisors in Z2Ln(m)

and ZLn(m)

In this section, we give the number of S-zero divisors in Z2Ln(m). We prove ZLn(m)
(where n = p2 or pq, p and q are odd primes), has infinitely many S-zero divisors. Further we
show any loop L of odd (or even) order if it has a proper subloop of even (or odd) order then
the loop ring Z2Ln(m) over the field Z2 has S-zero divisors. We first show if L is a loop of odd
order and L has a proper subloop of even order, then Z2Ln(m) has S-zero divisors.

Theorem 2.1. Let L be a finite loop of odd order. Z2 = {0, 1}, the prime field of
characteristic 2. Suppose H is a subloop of L of even order, then Z2L has S-zero divisors.

Proof. Let |L| = n; where n is odd. Z2L be the loop ring of L over Z2. H be the subloop

of L of order m, where m is even. Let X =
n∑

i=1

gi and Y =
m∑

i=1

hi, then

X.Y = 0.

Now
(1 + gt)X = 0, gt ∈ l\H.

also
(1 + hi + hj + hk)Y = 0, hi, hj , hk ∈ H.

so that
(1 + gt)(1 + hi + hj + hk) 6= 0.

Hence the claim.
Corollary 2.1. If L is a finite loop of even order n and H is a subloop of odd order m,

then the loop ring Z2L has S-zero divisors.
It is important here to mention that Z2L may have other types of S-zero divisors. This

theorem only gives one of the basic conditions for Z2L to have S-zero divisors.
Example 2.1. Let Z2L25(m) be the loop ring of the loop L25(m) over Z2, where

(m, 25) = 1 and (m− 1, 25) = 1. As 5|25, so L25(m) has 5 proper subloops each of order 6. Let
H be one of the proper subloops of L25(m).

Now take

X =
26∑

i=1

gi, Y =
6∑

i=1

hi, gi ∈ L25(m), hi ∈ H,

then
(1 + gi)X = 0, gi ∈ L25(m)\H
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(1 + hi)Y = 0, hi ∈ H

but
(1 + gi)(1 + hi) 6= 0.

so X and Y are S-zero divisors in Z2L25(m).
Theorem 2.2. Let Ln(m) be a loop of order n+1 (n an odd number,n > 3) with n = p2,

p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has exactly

p

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors.
Proof. Given Ln(m) is a loop of order n+1, where n = p2 (p an odd prime). Let Z2Ln(m)

be the loop ring of the loop Ln(m) over Z2. Now clearly the loop Ln(m) has exactly p subloops
of order p + 1. The number of S-zero divisors in Z2Ln(m) for n = p2 can be enumerated in the
following way: Let

X =
n+1∑

i=1

gi and Y =
p+1∑

i=1

hi

where gi ∈ Ln(m) and hi ∈ Hj . For this

X.Y = 0

choose
a = (1 + g), g ∈ Ln(m)\Hj

b = (hi + hj), hi, hj ∈ Hj

then
a.X = 0 and b.Y = 0

but
a.b 6= 0.

So X and Y are S-zero divisors. There are p such S-zero divisors, as we have p subloops Hj

(j = 1, 2, · · · , p) of Ln(m).
Next consider, S-zero divisors of the form

(h1 + h2)
n+1∑

i=1

gi = 0, where h1, h2 ∈ Hj , gi ∈ Ln(m)

put

X = (h1 + h2), Y =
n+1∑

i=1

gi

we have p+1C2 such S-zero divisors. This is true for each of the subloops. Hence there exists
p+1C2 × p such S-zero divisors. Taking four elements h1, h2, h3, h4 from Hj at a time, we get

(h1 + h2 + h3 + h4)
n+1∑

i=1

gi = 0
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so we get p+1C4 × p such S-zero divisors. Continue in this way, we get

(h1 + h2 + · · ·+ hp−1)
n+1∑

i=1

gi = 0, where h1, h2, · · · , hp−1 ∈ Hj

So we get p+1Cp−1 × p such S-zero divisors. Adding all these S-zero divisors, we get

p

(
1 +

p−1∑
r=2, r even

p+1Cr

)

number of S-zero divisors in the loop ring Z2Ln(m). Hence the claim.
Example 2.2. Let Z2L49(m) be the loop ring of the loop L49(m) over Z2, where (m, 49) =

1 and (m− 1, 49) = 1. Here p = 7, so from Theorem 2.2, Z2L49(m) has

7

(
1 +

6∑
r=2, r even

7+1Cr

)

S-zero divisors i.e 7(1 +
6∑

r=2, r even

8Cr) = 889 S-zero divisors.

Theorem 2.3. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = p3, p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has
exactly

p


1 +

p2−1∑
r=2, r even

p2+1Cr


 + p2

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors.
Proof. We enumerate all the S-zero divisors of Z2Ln(m) in the following way:
Case I: As p|p3, Ln(m) has p proper subloops Hj each of order p2 + 1. In this case I, we

have p2 − 1 types of S-zero divisors. We just index them by type I1, type I2, · · · , type Ip2−1.
Type I1: Here

n+1∑

i=1

gi

p2+1∑

i=1

hi = 0, gi ∈ Ln(m), hi ∈ Hj , (j = 1, 2, · · · , p)

So we will get p S-zero divisors of this type.
Type I2:

(h1 + h2)
n+1∑

i=1

gi = 0, h1, h2 ∈ Hj(j = 1, 2, · · · , p).

As in the Theorem 2.2, we will get p2+1C2 × p S-zero divisors of this type.
Type I3:

(h1 + h2 + h3 + h4)
n+1∑

i=1

gi = 0, h1, h2, h3, h4 ∈ Hj(j = 1, 2, · · · , p).

We will get p2+1C4 × p S-zero divisors of this type.
Continue this way,
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Type Ip2−1:

(h1 + h2 + · · ·+ hp2−1)
n+1∑

i=1

gi = 0, hi ∈ Hj

We will get p2+1Cp2−1 × p S-zero divisors of this type. Hence adding all this types of S-zero
divisors we will get

p


1 +

p2−1∑
r=2, r even

p2+1Cr




S-zero divisors for case I.
Case II: Again p2|p3, so there are p2 subloops Hj each of order p + 1. Now we can

enumerate all the S-zero divisors in this case exactly as in case I above. So there are

p2(1 +
p−1∑

r=2, r even

p+1Cr)

S-zero divisors. Hence the total number of S-zero divisors in Z2Ln(m) is

p


1 +

p2−1∑
r=2, r even

p2+1Cr


 + p2

(
1 +

p−1∑
r=2, r even

p+1Cr

)

Hence the claim.
Example 2.3. Let Z2L27(m) be the loop ring of the loop L27(m) over Z2, where

(m, 27) = 1 and (m− 1, 27) = 1. Here p = 3, so from Theorem 2.3, Z2L27(m) has

3(1 +
8∑

r=2, r even

32+1Cr) + 32(1 +
2∑

r=2, r even

4Cr)

S-zero divisors i.e 3

(
1 +

8∑
r=2, r even

10Cr

)
+ 9

(
1 +

2∑
r=2, r even

4Cr

)
= 1533 S-zero divisors.

Theorem 2.4. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = pq, where p, q are odd primes. Z2 be the prime field of characteristic 2. The loop ring
Z2Ln(m) has exactly

p + q + p

(
1 +

q−1∑
r=2, r even

q+1Cr

)
+ q

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors.
Proof. We will enumerate all the S-zero divisors in the following way:
Case I: As p|pq, Ln(m) has p subloops Hj each of order q + 1. Proceeding exactly in the

same way as in the Theorem 2.3, we will get p + p

(
1 +

q−1∑
r=2, r even

q+1Cr

)
S-zero divisors for

case I.
Case II: Again q|pq, so Ln(m) has q subloops Hj each of order p + 1. Now as above we

will get q + q

(
1 +

p−1∑
r=2, r even

p+1Cr

)
S-zero divisors for case II. Hence adding all the S-zero
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divisors in case I and case II, we get

p + q + p

(
1 +

q−1∑
r=2, r even

q+1Cr

)
+ q

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors in Z2Ln(m).
Hence the claim.
Now we prove for the loop ring ZLn(m) when n = p2 or p3 or pq, where p, q are odd

primes, ZLn(m) has infinitely many S-zero divisors.
Theorem 2.5. Let ZLn(m) be the loop ring of the loop Ln(m) over Z, where n = p2 or

p3 or pq (p, q are odd primes), then ZLn(m) has infinitely many S-zero divisors.
Proof. Let Ln(m) be a loop ring such that n = p2. Ln(M) has p subloops (say Hj) each

of order p + 1.
Now the loop ring ZLn(m) has the following types of S-zero divisors:

X = a− bh1 + bh2 − ah3 and Y =
n+1∑

i=1

gi

where a, b ∈ Z and hi ∈ Hi, gi ∈ Ln(m) such that

(a− bh1 + bh2 − ah3)
n+1∑

i=1

gi = 0

Again
(1− gk)Y = 0, gk ∈ Ln(m)\Hj

also
(a− bh1 + bh2 − ah3)

∑
hi = 0, hi ∈ Hj

clearly

(1− gk)


 ∑

hi∈Hj

hi


 6= 0.

So X, Y are S-zero divisors in ZLn(m). Now we see there are infinitely many S-zero divisors
of this type for a and b can take infinite number of values in Z. For n = p2 or p3 or pq we can
prove the results in a similar way. Hence the claim.

§3. Determination of the number of S-weak zero divisors

in Z2Ln(m) and ZLn(m)

In this section, we give the number of S-weak zero divisors in the loop ring Z2Ln(m) when
n is of the form p2, p3 or pq where p and q are odd primes. Before that we prove the existence
of S-weak zero divisors in the loop ring Z2L whenever L has a proper subloop.

Theorem 3.1. Let n be a finite loop of odd order. Suppose H is a subloop of L of even
order, then Z2L has S-weak zero divisors.
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Proof. Let |L| = n; n odd. Z2L be the loop ring. H be the subloop of L of order m,

where m is even. Let X =
n∑

i=1

gi and Y = 1 + ht, gi ∈ L, ht ∈ H, then

X.Y = 0

Now

Y.
m∑

i=1

hi = 0, hi ∈ H

also
X(1 + gt) = 0, gt(6= ht) ∈ H

so that

(1 + gt)
m∑

i=1

hi = 0.

Hence the claim.
Example 3.1. Let Z2L25(m) be the loop ring of the loop L25(m) over Z2, where

(m, 25) = 1 and (m− 1, 25) = 1. As 5|25, so L25(m) has 5 proper subloops each of order 6.
Take

X =
26∑

i=1

gi, Y = 1 + ht, gi ∈ L25(m), ht ∈ H

then
X.Y = 0

again
X(1 + gt) = 0, gt(6= ht) ∈ H

Y
6∑

i=1

hi = 0, hi ∈ H

also

(1 + gt)
6∑

i=1

hi = 0,

So X and Y are S-weak zero divisors in Z2L25(m).
Example 3.2. Let Z2L21(m) be the loop ring of the loop L21(m) over Z2, where where

(m, 21) = 1 and (m− 1, 21) = 1. As 3|21, so L21(m) has 3 proper subloops each of order 8.
Take

X =
8∑

i=1

hi, Y = 1 + ht, hi, ht ∈ H

then
X.Y = 0

again
X(1 + gt) = 0, gt(6= ht) ∈ H

Y
22∑

i=1

gi = 0, gi ∈ L21(m)
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also

(1 + gt)
22∑

i=1

gi = 0,

So X and Y are S-weak zero divisors in Z2L21(m).

Theorem 3.2. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = p2, p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has
exactly

2p

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors.
Proof. Clearly the loop Ln(m) has p subloops Hj each of order p + 1. As in case of

Theorem 2.3, we index the p − 1 types of S-weak zero divisors by I1, I2, · · · , Ip−1. Now the
number of S-weak zero divisors in Z2Ln(m) for n = p2 can be enumerated in the following way:

Type I1. Let

X = h1 + h2, Y =
n+1∑

i=1

gi

where h1, h2 ∈ Hj and gi ∈ Ln(m) then

XY = 0

take

a =
p+1∑

i=1

hi, and b = h3 + h4 where hi ∈ Hj , (j = 1, 2, · · · , p)

then
aX = 0, bY = 0

also
ab = 0

So for each proper subloop we will get p+1C2 S-weak zero divisors and as there are p proper
subloops we will get p+1C2 × p such S-weak zero divisors.

Type I2. Again let

X = h1 + h2, Y =
p+1∑

i=1

hi, hi ∈ Hj

then
XY = 0

take

a =
n+1∑

i=1

gi, gi ∈ Ln(m), b = h1 + h2, h1, h2 ∈ Hj ,

then
aX = 0, bY = 0
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also
ab = 0

Here also we will get p+1C2 × p such S-weak zero divisors of this type.
Type I3.

(h1 + h2 + h3 + h4)
n+1∑

i=1

gi, gi ∈ Ln(m), hi ∈ Hj .

As above we can say there are p+1C4 × p such S-weak zero divisors.
Type I4.

(h1 + h2 + h3 + h4)
p+1∑

i=1

hi, hi ∈ Hj .

There are p+1C4 × p such S-weak zero divisors.
Continue this way,
Type Ip−2.

(h1 + h2 + · · ·+ hp−1)
n+1∑

i=1

gi, gi ∈ Ln(m), hi ∈ Hj .

there are p+1Cp−1 × p such S-weak zero divisors.
Type Ip−1.

(h1 + h2 + · · ·+ hp−1)
n∑

i=1

hi, hi ∈ Hj .

Again there are p+1Cp−1 × p such S-weak zero divisors of this type. Adding all these S-weak
zero divisors we will get the total number of S-weak zero divisors in Z2Ln(m) as

2p

(
p−1∑

r=2, r even

p+1Cr

)

Hence the claim.
Theorem 3.3. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with

n = p3, p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has
exactly

2p




p2−1∑
r=2, r even

p2+1Cr


 + 2p2

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors.
Proof. We enumerate all the S-weak zero divisors of Z2Ln(m) in the following way:
Case I: As p|p3, Ln(m) has p proper subloops Hj each of order p2 + 1. Now as in the

Theorem 3.2.
Type I1:

(h1 + h2)
n+1∑

i=1

gi = 0, gi ∈ Ln(m), hi ∈ Hj .

So we will get p2+1C2 × p S-weak zero divisors of type I1.
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Type I2:

(h1 + h2)
p2+1∑

i=1

hi = 0, hi ∈ Hj .

So we will get p2+1C2 × p S-weak zero divisors of type I2.
Continue in this way
Type Ip2−2:

(h1 + h2 + · · ·+ hp2−1)
n+1∑

i=1

gi = 0,

So we will get p2+1Cp2−1 × p S-weak zero divisors of this type.
Type Ip2−1:

(h1 + h2 + · · ·+ hp2−1)
p2+1∑

i=1

hi = 0,

So we will get p2+1Cp2−1 × p S-weak zero divisors of type Ip2−1.
Adding all this S-weak zero divisors, we will get the total number of S-weak zero divisors

(in case I) in Z2Ln(m) as 2p




p2−1∑
r=2, r even

p2+1Cr


.

Case II: Again p2|p3, so there are p2 proper subloops Hj each of order p + 1. Now we can
enumerate all the S-weak zero divisors in this case exactly as in case I above. So there are

2p2

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors in case II.
Hence the total number of S-weak zero divisors in Z2Ln(m) is

2p




p2−1∑
r=2, r even

p2+1Cr


 + 2p2

(
p−1∑

r=2, r even

p+1Cr

)

Hence the claim.
Theorem 3.4. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with

n = pq, p, q are odd primes. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m)
has exactly

2

[
p

(
q−1∑

r=2, r even

q+1Cr

)
+ q

(
p−1∑

r=2, r even

p+1Cr

)]

S-weak zero divisors.
Proof. We will enumerate all the S-weak zero divisors in the following way:
Case I: As p|pq, Ln(m) has p proper subloops Hj each of order q + 1. Proceeding exactly

same way as in Theorem 3.3, we will get

2p

(
q−1∑

r=2, r even

q+1Cr

)
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S-weak zero divisors in case I.

Case II: Again as q|pq, Ln(m) has q proper subloops Hj each of order p + 1. So as above
we will get

2q

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors in case II.

Hence adding all the S-weak zero divisors in case I and case II, we get

2

[
p

(
q−1∑

r=2, r even

q+1Cr

)
+ q

(
p−1∑

r=2, r4 even

p+1Cr

)]

S-weak zero divisors in Z2Ln(m).

Hence the claim.

Now we prove for the loop ring ZLn(m) where n = p2 or p3 or pq, (p, q are odd primes),
ZLn(m) has infinitely many S-weak zero divisors.

Theorem 3.5. Let ZLn(m) be the loop ring of the loop Ln(m) over Z, where n = p2 or
p3 or pq (p, q are odd primes), then ZLn(m) has infinitely many S-weak zero divisors.

Proof. Let Ln(m) be a loop ring such that n = p2. Ln(M) has p subloops (say Hj) each
of order p + 1. Now the loop ring ZLn(m) has the following types of S-weak zero divisors:

X = a− bh1 + bh2 − ah3 and Y =
n+1∑

i=1

gi

where a, b ∈ Z, gi ∈ Ln(m) and h1, h2, h3 ∈ Hj are such that

XY = 0.

Again

X

p+1∑

i=1

hi = 0, hi ∈ Hj

also

(1− gt)Y = 0, gt(6= ht) ∈ Hj

clearly

(1− gt)

(
p+1∑

i=1

hi

)
= 0.

So X, Y are S-weak zero divisors in ZLn(m). Now we see there are infinitely many S-weak zero
divisors of this type for a and b can take infinite number of values in Z.

For n = p2 or p3 or pq we can prove the results in a similar way.

Hence the claim.
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§4. Conclusions:

In this paper we find the exact number of S-zero divisors and S-weak zero divisors for the
loop rings Z2Ln(m) in case of the special type of loops Ln(m) ∈ Ln over Z2, when n = p2 or
p3 or pq (p, q are odd primes). We also prove for the loop ring ZLn(m) has infinite number of
S-zero divisors and S-weak zero divisors. We obtain conditions for any loop L to have S-zero
divisors and S-weak zero divisors. We suggest it would be possible to enumerate in the similar
way the number of S-zero divisors and S-weak zero divisors for the loop ring Z2Ln(m) when
n = ps, s > 3; p a prime or when p = p1p2 · · · pt where p1, p2, · · · , pt are odd primes. However
we find it difficult when we take Zp instead of Z2, where p can be odd prime or a composite
number such that (p, n+1 = 1) or (p, n+1 = p) and n is of the form n = pt1

1 pt2
2 · · · ptr

r , ti > 1, n

is odd and p1, p2, · · · pr are odd primes.
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Abstract For any positive integer n, let S(n) and Z(n) denote the Smarandache function and the

pseudo Smarandache function respectively. In this paper we prove that the equation S(n) = Z(n) has

infinitely many positive integer solutions n.

Keywords Smarandache function; Pseudo Smarandache function; Diophantine equation.

For any positive integers n, let S(n) and Z(n) denote the Smarandache function and pseudo
Smarandache function respectively. In [1], Ashbacher proposed two problems concerning the
equation

S(n) = Z(n) (1)

as follows.
Problem 1. Prove that if n is an even perfect number, then n satisfies (1).
Problem 2. Prove that (1) has infinitely many positive integer solutions n.
In this paper we completely solve these problems as follows.
Theorem 1. If n is an even perfect number, then (1) holds.
Theorem 2. (1) has infinitely many positive integer solutions n.
Proof of Theorem 1. By [2, Theorem 277], if n is an even perfect number, then

n = 2p−1(2p − 1), (2)

where p is a prime. By [3] and [4], we have

S(n) = 2p − 1. (3)

On the other hand, since

1
2

(2p − 1) ((2p − 1) + 1) = n, (4)

by (2), we get

Z(n) = 2p − 1 (5)

immediately. The combination of (3) and (5) yields (1). Thus, the theorem is proved.

1

This work is supported by N.S.F. of P. R. China(10271104), the Guangdong Provincial Natural Science

Foundation(011781) and the Natural Science Foundation of the Education Department of Guangdong

Province(0161).



110 Maohua Le No. 2

Proof of Theorem 2. Let p be an odd prime with p ≡ 3( mod 4). Since S(2) = 2 and
S(p) = p, we have

S(2p) = max(S(2), S(p)) = max(2, p) = p. (6)

Let t = Z(2p), By the define of Z(n), we have

1
2
t(t + 1) ≡ 0(mod2p). (7)

It implies that either t ≡ 0(modp) or t + 1 ≡ 0(modp). Hence, we get t ≥ p − 1. If t = p − 1,
then from (7) we obtain

1
2
(p− 1)p ≡ 0(mod2p). (8)

whence we get

1
2
(p− 1)p ≡ 0(mod2). (9)

But, since p ≡ 3(mod4), (9) is impossible. So we have

t ≥ p. (10)

Since p + 1 ≡ 0(mod4), we get

1
2
p(p + 1) ≡ 0(mod2p) (11)

and t = p by (10). Therefore, by (6), n = 2p is a solution of (1). Notice that there exist
infinitely many primes p with p ≡ 3(mod4). It implies that (1) has infinitely many positive
integer solutions n. The theorem is proved.
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Abstract The main purpose of this paper is using elementary method to study the main value of the

m-th power mean of the sum of all digits in the Smarandache pseudo-number sequence, and give some

interesting asymptotic formulae for them.
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§1. Introdution

A number is called Smarandache pseudo-multiple of 5 if some permutation of the digits is a
multiple of 5, including the identity permutation. For example: 51, 52, 53, 54, 56, 57, 58, 59, 101, 102,

103, 104, 106 · · · are Smarandache pseudo-multiple of 5 numbers. Similarly we can define the
Smarandache pseudo-even numbers and the Smarandache pseudo-odd numbers. In reference
[1], Professor F.Smarandache asked us to study the properties of the pseudo-multiple of 5,
pseudo-even, pseudo-odd sequence. Let A denote the set of all Smarandache Pseudo-multiple
of 5 numbers; Let B denote the set of all Smarandache Pseudo-even numbers and Let C denote
the set of all Smarandache Pseudo-odd numbers. For convenience, denoted by A(n), the sum
of all the digits of the base 10 digits of n. That is

A(n) =
k∑

i=0

ai

if n = ak10k + ak−110k−1 + · · ·+ a110 + a0. In this paper, we shall use the element method to
study the mean value of the m-power of the sum of all digits in the pseudo-number sequence,
and give some interesting formulae for them. That is, we shall prove the following results:

Theorem 1. For any integer number x ≥ 1, we have the asymptotic formula

∑

n∈A
n≤x

Am(n) = x

(
9
2

log x

)m

+ O
(
x(log x)m−1

)
.

Theorem 2 For any integer number x ≥ 1, we have the asymptotic formula

∑

n∈B
n≤x

Am(n) = x

(
9
2

log x

)m

+ O(x(log x)m−1).
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Theorem 3 For any integer number x ≥ 1, we have the asymptotic formula

∑

n∈C
n≤x

Am(n) = x

(
9
2

log x

)m

+ O(x(log x)m−1).

§2. Some lemmas

To complete the proof of the theorem, we need the following lemmas.
Lemma 1. For any integer number x ≥ 1, we have the asymptotic formula

∑

n≤x

Am(n) = x

(
9
2

log x

)m

+ O
(
x(log x)m−1

)
.

Proof. See reference [1].
Lemma 2. For any integer number x ≥ 1. Let D denotes the complementary set of A,

then we have the asymptotic formula

∑

n∈D
n≤x

Am(n) = O

(
x

(log x)m

( 5
4 )log x

)
.

Proof. From the definition of the set D, we know that the base 10 digits of the numbers
in D are 1, 2, 3, 4, 6, 7, 8, 9, not including 0, 5. So, there are 8m m-digit number in D. Hence,
for any integer n, there is a k such that 10k−1 ≤ x < 10k. Then we have

∑

n∈D
n≤x

Am(n) ≤
k∑

t=1

∑

10t−1≤n<10t

n∈D

Am(n)

Noting that ∑

10t−1≤n<10t

n∈D

Am(n) < (9t)m × 8t,

we can write
k∑

t=1

∑

10t−1≤n<10t

n∈D

Am(n) <
k∑

t=1

(9t)m × 8t < 9m × km × 8k+1.

Since k ≤ (log x) + 1 < k + 1, we have

∑

n∈D
n≤x

Am(n) = O
(
(log x)m × 8log x

)
= O

(
x

(log x)m

( 5
4 )log x

)
.

This proves Lemma 2.
Lemma 3. For any integer number x ≥ 1. Let E denote the complementary set of B,

then we have the asymptotic formula

∑

n∈E
n≤x

Am(n) = O

(
x

(log x)m

2log x

)
.
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Proof. By use the same method of proving Lemma 2, we can also get this Lemma.

§3. Proof of the theorems

Now we complete the proof of the theorems. First we prove Theorem 1. From the definition
of Smarandache pseudo-multiple of 5 numbers, Lemma 1 and Lemma 2, we can get

∑

n∈A
n≤x

Am(n) =
∑

n≤x

Am(n)−
∑

n∈D
n≤x

Am(n)

= x

(
9
2

log x

)m

+ O(x(log x)m−1)−O

(
x

(log x)m

( 5
4 )log x

)

= x

(
9
2

log x

)m

+ O(x(log x)m−1).

This completes the proof of Theorem 1. Using the same method of proving Theorem 1, we can
also deduce the other Theorems.
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Abstract This short paper presents an exact formula for counting twin prime pairs less than or equal

to x in terms of the classical Smarandache Function. An extension of the formula to count prime pairs

(p, p + 2n), n > 1 and a positive interger is also given.

§1. Introduction

The most known Smarandache function which has become a classical Smarandache function
in number theory is defined as follows:

Definition. The classical Smarandache function, S, is a function
S : N → N, N , the set of natural numbers such that S(1) = 1, and S(n)=The smallest

integer such that n/S(n)!.
This function has been extensively studied and many interesting properties of it have been

discovered [1]. Subsequently many Smarandache type functions have been defined and their
interesting properties have been achieved. Ruiz and Perez have discussed some properties of
several Smarandache type funcitons that are involved in many proposed, solved and unsolved
problems [2].

An exact formula for counting primes less than or equal to given x in terms of classical
Smarandache function has been discovered by L.Seagull[3]. Ruiz and Perez have quoted this
result along with a proof while discussing some properties of the classical Smrandache function
(Property 2.4) [2].

§2. A formula for twin prime pairs

We now proceed to obtain an exact formula for counting twin prime pairs less than or
equal to given x in terms of the classical Smarandache function.

We denote by T2(x) the exact number of twin prime pairs less than or equal to x. Also
[m] denotes the integral part of m.

Theorem.

T2(x) = −1 +
∑

1≤j≤x−2

[
S(j) · S(j + 2)

(j) · (j + 2)

]
,

where S(k) denotes the value of classical Smarandache function evaluated at k.
Proof. It is well known that (1) S(p) = p iff p is prime > 4, (2) S(p) < p when p is not

prime and p 6= 4, (3) S(4) = 4.
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In the light of the above properties,
(1)

[
S(2)·S(4)
(2)·(4)

]
= 1,

therefore (2, 4) will be counted as a twin prime pair in the sum given in the above formula.
The term ”− 1” is added in the formula to eliminate this additional count. Also,

(2)
[

S(j)·S(j+2)
(j)·(j+2)

]
= 1

only when (j, j + 2) will be a twin prime pair and in all other cases[
S(j)·S(j+2)
(j)·(j+2)

]
= 0.

Hence the theorem is obvious.
Let us denote by T2n(x) the exact number of prime pairs (p, p+2n), n is a positive integer

and n > 1.
Corollary.

T2n(x) =
∑

1≤j≤x−2n

[
S(j) · S(j + 2n)

(j) · (j + 2n)

]
.

Proof. Since n > 1, the illegal appearance of the pair (2, 4) as a prime pair is automatically
prohibited, and the proof follows by proceeding on the similar lines.

§3. Conclusion

Like formula for counting primes up to given x, [3], one can obtain a similar formula for
counting twin prime pairs as well as prime pairs in which the primes are separated by 2n in
terms of the Classical Smarandache Functions by proceeding along the same lines.
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Babeş-Bolyai University of Cluj, Romania

1. Let f : N∗ → N be a given arithmetic function. Recently, J.L.Pe[3] has called a number
n to be f -perfect, if

∑

i|n,i<n

f(i) = n, (1)

where the sum is taken for all proper divisors i of n (i.e. i|n, i < n). Clearly for f = I (where
I(n) = n for all n ≥ 1)(1) given σ(n) = 2n, i.e. one reobtains the classical perfect numbers.

Let S, Z be the Smarandache, resp. Pseudo-Smarandache functions, defined by

S(n) = min{kεN : n|n!}, Z(n) = min{kεN : n|k(k + 1)
2

} (2)

Since 0! = 1, we may assume S(1) = 0. With this assumption, recently Ch. Ashbacher [1]
showed that for n ≤ 106 the only S-perfect number is n = 12, while the Z-perfect numbers in
this range are n = 4, 6, 471544.

2. In what follows, we shall call a number n completely f -perfect, if
∑

i|n
f(i) = n, (3)

where the sum is over all divisors of n. We note that this notion generalizes again the clas-
sical notion of a perfect number, since for f = I − ϕ (where ϕ is Euler’s totient), clearly
f(n) = n− ϕ ≥ 0 for all n, and by Gauss’ relation

∑

i|n
ϕ(i) = n, (3) implies σ(n) = 2n. Thus,

the completely I − ϕ-perfect numbers are the perfect numbers.

3. By assuming S(1) = 0, P.Gronas [2] has shown that for f = S, all solutions of equation
(3) are the following: n = p (prime), and n = 9, 16, 24. Thus:

Theorem 1. All completely S-perfect numbers are the primes, and the numbers 9,16,24.
Remark. It is important to note, that if one defines S(n) by S(n) = min{kεN∗ : n|k!},

then clearly S(1) = 1, and Theorem 1 above, as well as Aschbacher’s result, are no more valid.
Indeed, when S(1) = 0, then for f = S, (1) has the form

∑

i|n,1<i<n

S(i) = n, (4)
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while if S(1) = 1, then (1) becomes
∑

i|n,1<i<n

f(i) = n− 1. (5)

Thus we have two distinct equations, namely (4) at one part, and (5) at another part.
On the other hand, from (3) we can deduce the two distinct equations (the first one solved by
Theorem 1):

∑

i|n,1<i<n

f(i) = n− S(n), (6)

and
∑

i|n,1<i<n

f(i) = n− S(n)− 1. (7)

Then, since S(2) = 2, S(3) = 3 and 2, 3 are the only proper divisors of 6, n = 6 is a
solution to (5), but not (4). Therefore one can have two distinct notions of ”S-perfect” (as
well as ”completely S-perfect”) numbers. Let us call n to be S-perfect in the case 1, if (4)
holds, and S-perfect in the sense 2, if (5) holds. The following little result is true:

Theorem 2. Let p,q be distinct primes. Then the only S-perfect number n of the form
n = pq in the sense 2 is n = 6. There are no S-perfect numbers of this form in sense 1. The
only S-perfect numbers of this form in sense 2.

Proof. Let n = pq in (5), and assume p < q. Then since S(p) = p, S(q) = q, one obtains
the equation p + q = pq − 1 i.e. (p − 1)(q − 1) = 2, giving p − 1 = 1,q − 1 = 2, i.e. p = 2,
q = 3, implying n = 6. The equation (4) gives p + q = pq, which cannot have a solution. Let
now n = p2q. The proper divisors are p, q, p2, pq, and since S(p2) = 2p, S(pq) = q, (4) implies
the equation

3p + 2q = p2q.

Since p|2q, clearly p|2, so p = 2. This implies q = 3, so n = 22 · 3 = 12. The equation

3p + 2q = p2q − 1

can not have solution, since for p = 2 this gives 7 = 2q (impossible); while for p, q odd, p2q−1 =
even, 3p + 2q = odd.

In the similar way, one can prove:
Thoerem 3. There are no completely S-perfect numbers of the form n = pq in both

sense. There are no completely S-perfect numbers of the form n = p2q in sense 1. The only
completely S-perfect number of this form in sense 2, is n = 28.

Proof. Let n = pq (p > q primes) in (6), resp. (7). Then one gets p + q = pq − q, resp.
p + q = pq − q − 1. The first equation, i.e. p + 2q = pq forces q|p, impossible; while the second
one, i.e. p + 2q + 1 = pq for p = 2 gives 3 = 0, while for p,q ≥ 3 left side = even, right side n

odd.
Now let n = p2q. Since S(p2) = 2p, S(pq) = q and S(p2q) = max{S(p2), S(q)} =

max{2p, q}, one can deduce the following equations:
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i) 3p + 2q = p2q −max{2p, q};
ii)3p + 2q = p2q −max{2p, q} − 1.
i) a) 2p > q ⇒ 5p + 2q = p2q. Since p|2q, this gives p = 2, when 2q = 10, impossible.
b) 2p < q ⇒ 3p + 3q = p2q, giving p|3q, so p = 3 and 9 = 6p, impossible again.
ii)a) ⇒ 5p + 2q = p2q − 1. For p = 2 one has q = −5, impossible, while for p, q ≥ 3 left

side = odd, right side = even.
b) ⇒ 3p + 3q = p2q − 1. Remark that p = 2,q = 7 is a solution of this equation and this

satisfies condition 2p < q since 4 < 7. Now, for p, q ≥ 3 write the equation in the form

q(pq − 3) = 3p + 1

and remark that by q > p ≥ 3 one has q ≥ 5 so q(pq − 3) ≥ 5(5p− 3) > 3p + 1, i.e. 22p > 16,
which is true. Thus, there are no other solutions.

4. The solutions n = 6 of (5) and n = 28 of (7) are ordinary prefect numbers. Having in
view to determine all these solutions, we first prove the following result:

Theorem 4. Let n = 2kp, where p is an odd prime, k ≥ 1 and p ≥ 2k. Then n cannot be
a solution to equation (4) or (6). The number n is a solution of (5) iff n = 6. The only solution
of this type of equation (7) is n = 28.

Proof. We first calculate S =
∑

i|n,1<i<n

S(n). Since the proper divisors of n = 2kp are

2, 22, · · · , 2k, p, 2p, 22p, · · · , 2k−1p, one has

S(n) = S(2) + S(22) + · · ·+ S(2k) + S(1 · p) + S(2 · p) + · · ·+ S(2k−1 · p)

Now

S(2lp) = max{S(2l), S(p)} = max{S(2l), p}

and since it is well-known that S(2l) ≤ 2l, by 2l ≤ 2(k − 1) < 2k < p we get

S ≤ 2 + 2 · 2 + · · ·+ 2 · k + kp =
2(k + 1)k

2
+ kp = k(k + 1) + kp,

so

S ≤ k(k + 1) + kp (8)

Therefore, by (4), (5), (6), (7) we have to solve the equations

S(2) + S(22) + · · ·+ S(2k) + kp =





2kp (4′)

2kp− 1 (5′)

2kp− p (6′)

2kp− p− 1 (7′)

a) For (4’) remark that by (8) we must have 2kp ≤ kp + k(k + 1), so p(2k − k) ≤ k(k + 1).
Since p > 2k, on the other hand we have p(2k − k) > 2k(2k − 2) ≥ k(k + 1) by the inequality
2(2k − k) ≥ k + 1, i.e.

2k+1 ≥ 3k + 1, k ≥ 1 (9)



Vol. 1 On completely f -perfect numbers 119

It is easy to verify by induction that (9) holds true for all k ≥ 1. Therefore, equation (4’)
is impossible.

Remark. The solution n = 12 = 22 · 3 with p = 3, k = 2 doesn’t satisfy p > 2k.
b) Similarly, for (5’), by (8) we should have satisfied the inequality 2kp−1 ≤ kp+k(k+1).

Now, by p > 2k we get

p(2k − k) < 2k(2k − k) > k(k + 1) + 1 ⇔ k(2k+1 − 3k − 1) ≥ 2.

Now, the inequality

2k+1 ≥ 3k + 2, k ≥ 2 (10)

holds true. Thus for k ≥ 2 we cannot have a solution. For k = 1, however, by Theorem 2 we
get the solution n = 21 · 3 when p = 3 > 2 · 1 = 2.

c) For (6’) remark, that similarly we must have 2kp− p ≤ k(k +1)+ kp, or p(2k− k− 1) ≤
k(k + 1). Now, by p > 2k, and the inequality

2k+1 > 3k + 3, k ≥ 3 (11)

it follows that p(2k − k− 1) > 2k(2k − k− 1) > k(k + 1). Thus we could have eventually k = 1
or k = 2. By Theorem 3 we cannot have solutions.

d) The equation (7’), by (8) implies 2kp−p−1 ≤ k(k+1)+kp so p(2k−k−1)−1 ≤ k(k+1).
Now, by p > 2k, and 2k(2k − k − 1) > k(k + 1) + 1 ⇔ k(2k+1 − 3k − 3) > 1, this is true by

2k+1 ≥ 3k + 4, k ≥ 3, (12)

so we could have eventually k = 1 or k = 2, i.e. n = 2p or n = 22p. By Theorem 3 this is
possible only when p = 7, when p > 2k, i.e. 7 > 4 is satisfied.

Corollary. There are no ordinary even perfect numbers which are S-perfect or completely
S-perfect in sense 1. The only even perfect number which is S-perfect in sense 2 is n = 6. The
only even perfect number which is completely S-perfect in sense 2 is n = 28.

Proof. Let n be an even perfect number. Then, by Euclid-Euler’s theorem, n can be
written as n = 2kp, where p is a prime of the form p = 2k+1 − 1. Now, p > 2k is true, since
2k+1 > 2k + 1, k ≥ 1. This follows e.g. by induction, and we omit the details. Theorem 4
implies the corollary.

4. Finally, note that in paper [4] we have proved that the only completely d-perfect numbers
are n = 1, 3, 18 and 36 (here d(n) is the number of distinct divisors of n).
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Abstract Parallel lines are very important objects in Euclid plane geometry and its behaviors can

be gotten by one’s intuition. But in a planar map geometry, a kind of the Smarandache geometries,

the situation is complex since it may contains elliptic or hyperbolic points. This paper concentrates on

the behaviors of parallel bundles in planar map geometries, a generalization of parallel lines in plane

geometry and obtains characteristics for parallel bundles.
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§1. Introduction

A map is a connected topological graph cellularly embedded in a surface. On the past
century, many works are concentrated on to find the combinatorial properties of maps, such as
to determine whether exists a particularly embedding on a surface ([7], [11]) or to enumerate
a family of maps ([6]). All these works are on the side of algebra, not the object itself, i.e.,
geometry. For the later, more attentions are given to its element’s behaviors, such as, the
line, angle, area, curvature, · · · , see also [12] and [14]. For returning to its original face, the
conception of map geometries is introduced in [10]. It is proved in [10] that the map geometries
are nice model of the Smarandache geometries. They are also a new kind of intrinsic geometry
of surfaces ([1]). The main purpose of this paper is to determine the behaviors of parallel
bundles in planar geometries, a generalization of parallel lines in the Euclid plane geometry.

An axiom is said Smarandachely denied if the axiom behaves in at least two different ways
within the same space, i.e., validated and invalided, or only invalided but in multiple distinct
ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied
axiom(1969)([5], [13]).

In [3] and [4], Iseri presented a nice model of the Smarandache geometries, called s-
manifolds by using equilateral triangles, which is defined as follows([3], [5] and [9]):

An s-manifold is any collection C(T, n) of these equilateral triangular disks Ti, 1 ≤ i ≤ n

satisfying the following conditions:
(i) Each edge e is the identification of at most two edges ei, ej in two distinct triangular

disks Ti, Tj , 1 ≤ i, j ≤ n and i 6= j;
(ii) Each vertex v is the identification of one vertex in each of five, six or seven distinct

triangular disks.
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The conception of map geometries without boundary is defined as follows ([10]).

Definition 1.1 For a given combinatorial map M , associates a real number µ(u), 0 <

µ(u) < π, to each vertex u, u ∈ V (M). Call (M, µ) a map geometry without boundary, µ(u)
the angle factor of the vertex u and to be orientablle or non-orientable if M is orientable or
not.

In [10], it has proved that map geometries are the Smarandache geometries. The realization
of each vertex u, u ∈ V (M) in R3 space is shown in the Fig.1 for each case of ρ(u)µ(u) > 2π,
= 2π or < 2π, call elliptic point, euclidean point and hyperbolic point, respectively.

ρ(u)µ(u) < 2π ρ(u)µ(u) = 2π ρ(u)µ(u) > 2π¸

Fig.1¸

Therefore, a line passes through an elliptic vertex, an euclidean vertex or a hyperbolic vertex
u has angle ρ(u)µ(u)

2 at the vertex u. It is not 180◦ if the vertex u is elliptic or hyperbolic. Then
what is the angle of a line passes through a point on an edge of a map? It is 180◦? Since we wish
the change of angles on an edge is smooth, the answer is not. For the Smarandache geometries,
the parallel lines in them are need to be given more attention. We have the following definition.

Definition 1.2 A family L of infinite lines not intersecting each other in a planar geometry
is called a parallel bundle.

In the Fig.2, we present all cases of parallel bundles passing through an edge in planar
geometries, where, (a) is the case of points u, v are same type with ρ(u)µ(u) = ρ(v)µ(v), (b)
and (c) the cases of same types with ρ(u)µ(u) > ρ(v)µ(v) and (d) the case of u is elliptic and
v hyperbolic.

Fig.2¸

Here, we assume the angle at the intersection point is in clockwise, that is, a line passing
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through an elliptic point will bend up and a hyperbolic point will bend down, such as the cases
(b),(c) in the Fig.2. For a vector

−→
O on the Euclid plane, call it an orientation. We classify

parallel bundles in planar map geometries along an orientation
−→
O .

§2. A condition for parallel bundles

We investigate the behaviors of parallel bundles in the planar map geometries. For this
object, we define a function f(x) of angles on an edge of a planar map as follows.

Definition 2.1 Denote by f(x) the angle function of a line L passing through an edge uv

at the point of distance x to u on the edge uv.

Then we get the following result.

Proposition 2.1 A family L of parallel lines passing through an edge uv is a parallel
bundle iff

df

dx

∣∣∣∣
+

≥ 0.

Proof. If L is a parallel bundle, then any two lines L1, L2 will not intersect after them
passing through the edge uv. Therefore, if θ1, θ2 are the angles of L1, L2 at the intersect points
of L1, L2 with uv and L2 is far from u than L2, then we know that θ2 ≥ θ1. Whence, for any
point with x distance from u and ∆x > 0, we have that

f(x + ∆x)− f(x) ≥ 0.

Therefore, we get that

df

dx

∣∣∣∣
+

= lim
∆x→+0

f(x + ∆x)− f(x)
∆x

≥ 0.

As the cases in the Fig.1.

Now if df
dx

∣∣∣
+
≥ 0, then f(y) ≥ f(x) if y ≥ x. Since L is a family of parallel lines before

meeting uv, whence, any two lines in L will not intersect each other after them passing through
uv. Therefore, L is a parallel bundle. \

A general condition for a family of parallel lines passing through a cut of a planar map
being a parallel bundle is the following.

Proposition 2.2 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a cut
of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1 and the angle
functions on them are f1, f2, · · · , fl, respectively, also see the Fig.3.
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Fig.3¸
Then a family L of parallel lines passing through C is a parallel bundle iff for any x, x ≥ 0,

f ′1(x) ≥ 0

f ′1+(x) + f ′2+(x) ≥ 0

f ′1+(x) + f ′2+(x) + f ′3+(x) ≥ 0

· · · · · · · · · · · ·
f ′1+(x) + f ′2+(x) + · · ·+ f ′l+(x) ≥ 0.

Proof. According to the Proposition 2.1, see the following Fig.4,

Fig.4¸
we know that any lines will not intersect after them passing through u1v1 and u2v2 iff for

∀∆x > 0 and x ≥ 0,

f2(x + ∆x) + f ′1+(x)∆x ≥ f2(x).

That is,

f ′1+(x) + f ′2+(x) ≥ 0.

Similarly, any lines will not intersect after them passing through u1v1, u2v2 and u3v3 iff for
∀∆x > 0 and x ≥ 0,

f3(x + ∆x) + f ′2+(x)∆x + f ′1+(x)∆x ≥ f3(x).
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That is,

f ′1+(x) + f ′2+(x) + f ′3+(x) ≥ 0.

Generally, any lines will not intersect after them passing through u1v1, u2v2, · · · , ul−1vl−1

and ulvl iff for ∀∆x > 0 and x ≥ 0,

fl(x + ∆x) + f ′l−1+(x)∆x + · · ·+ f ′1+(x)∆x ≥ fl(x).

Whence, we get that

f ′1+(x) + f ′2+(x) + · · ·+ f ′l+(x) ≥ 0.

Therefore, a family L of parallel lines passing through C is a parallel bundle iff for any
x, x ≥ 0, we have that

f ′1(x) ≥ 0

f ′1+(x) + f ′2+(x) ≥ 0

f ′1+(x) + f ′2+(x) + f ′3+(x) ≥ 0

· · · · · · · · · · · ·
f ′1+(x) + f ′2+(x) + · · ·+ f ′l+(x) ≥ 0.

This completes the proof. \.
Corollary 2.1 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a cut

of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1 and the angle
functions on them are f1, f2, · · · , fl. Then a family L of parallel lines passing through C is still
parallel lines after them leaving C iff for any x, x ≥ 0,

f ′1(x) ≥ 0

f ′1+(x) + f ′2+(x) ≥ 0

f ′1+(x) + f ′2+(x) + f ′3+(x) ≥ 0

· · · · · · · · · · · ·
f ′1+(x) + f ′2+(x) + · · ·+ f ′l−1+(x) ≥ 0

f ′1+(x) + f ′2+(x) + · · ·+ f ′l+(x) = 0.

Proof. According to the Proposition 2.2, we know the condition is a necessary and suffi-
cient condition for L being a parallel bundle. Now since lines in L are parallel lines after them
leaving C iff for any x ≥ 0 and ∆x ≥ 0, there must be that

fl(x + ∆x) + f ′l−1+(x)∆x + · · ·+ f ′1+(x)∆x = fl(x).

Therefore, we get that
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f ′1+(x) + f ′2+(x) + · · ·+ f ′l+(x) = 0 \

When do the parallel lines parallel the initial parallel lines after them passing through a
cut C in a planar map geometry? The answer is in the following result.

Proposition 2.3 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a cut
of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1 and the angle
functions on them are f1, f2, · · · , fl. Then the parallel lines parallel the initial parallel lines
after them passing through C iff for ∀x ≥ 0,

f ′1(x) ≥ 0

f ′1+(x) + f ′2+(x) ≥ 0

f ′1+(x) + f ′2+(x) + f ′3+(x) ≥ 0

· · · · · · · · · · · ·
f ′1+(x) + f ′2+(x) + · · ·+ f ′l−1+(x) ≥ 0

and

f1(x) + f2(x) + · · ·+ fl(x) = lπ.

Proof. According to the Proposition 2.2 and Corollary 2.1, we know the parallel lines
passing through C is a parallel bundle.

We calculate the angle α(i, x) of a line L passing through an edge uivi, 1 ≤ i ≤ l with the
line before it meeting C at the intersection of L with the edge uivi, where x is the distance of
the intersection point to u1 on u1v1, see also the Fig.4. By the definition, we know the angle
α(1, x) = f(x) and α(2, x) = f2(x)− (π − f1(x)) = f1(x) + f2(x)− π.

Now if α(i, x) = f1(x) + f2(x) + · · · + fi(x) − (i − 1)π, then similar to the case i = 2, we
know that α(i + 1, x) = fi+1(x)− (π − α(i, x)) = fi+1(x) + α(i, x)− π. Whence, we get that

α(i + 1, x) = f1(x) + f2(x) + · · ·+ fi+1(x)− iπ.

Notice that a line L parallel the initial parallel line after it passing through C iff α(l, x) = π,
i.e.,

f1(x) + f2(x) + · · ·+ fl(x) = lπ.

This completes the proof. \

§3. Linear condition and combinatorial realization for par-

allel bundles

For the simplicity, we can assume the function f(x) is linear and denoted it by fl(x). We
can calculate fl(x) as follows.
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Proposition 3.1 The angle function fl(x) of a line L passing through an edge uv at the
point with distance x to u is

fl(x) = (1− x

d(uv)
)
ρ(u)µ(v)

2
+

x

d(uv)
ρ(v)µ(v)

2
,

where, d(uv) is the length of the edge uv.
Proof. Since fl(x) is linear, we know that fl(x) satisfies the following equation.

fl(x)− ρ(u)µ(u)
2

ρ(v)µ(v)
2 − ρ(u)µ(u)

2

=
x

d(uv)
,

Calculation shows that

fl(x) = (1− x

d(uv)
)
ρ(u)µ(v)

2
+

x

d(uv)
ρ(v)µ(v)

2
. \

Corollary 3.1 Under the linear assumption, a family L of parallel lines passing through
an edge uv is a parallel bundle iff

ρ(u)
ρ(v)

≤ µ(v)
µ(u)

.

Proof. According to the Proposition 2.1, a family of parallel lines passing through an edge
uv is a parallel bundle iff for ∀x, x ≥ 0, f ′(x) ≥ 0, i.e.,

ρ(v)µ(v)
2d(uv)

− ρ(u)µ(u)
2d(uv)

≥ 0.

Therefore, a family L of parallel lines passing through an edge uv is a parallel bundle iff

ρ(v)µ(v) ≥ ρ(u)µ(u).

Whence,
ρ(u)
ρ(v)

≤ µ(v)
µ(u)

. \

For a family of parallel lines pass through a cut, we have the following condition for it
being a parallel bundle.

Proposition 3.2 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a cut
of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1. Then under
the linear assumption, a family L of parallel lines passing through C is a parallel bundle iff the
angle factor µ satisfies the following linear inequality system

ρ(v1)µ(v1) ≥ ρ(u1)µ(u1)

ρ(v1)µ(v1)
d(u1v1)

+
ρ(v2)µ(v2)
d(u2v2)

≥ ρ(u1)µ(u1)
d(u1v1)

+
ρ(u2)µ(u2)

d(u2v2)

· · · · · · · · · · · ·
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ρ(v1)µ(v1)
d(u1v1)

+
ρ(v2)µ(v2)
d(u2v2)

+ · · ·+ ρ(vl)µ(vl)
d(ulvl)

≥ ρ(u1)µ(u1)
d(u1, v1)

+
ρ(u2)µ(u2)
d(u2, v2)

+ · · ·+ ρ(ul)µ(ul)
d(ul, vl)

.

Proof. Under the linear assumption, for any integer i, i ≥ 1, we know that

f ′i+(x) =
ρ(vi)µ(vi)− ρ(ui)µ(ui)

2d(uivi)

by the Proposition 3.1. Whence, according to the Proposition 2.2, we get that a family L of
parallel lines passing through C is a parallel bundle iff the angle factor µ satisfies the following
linear inequality system

ρ(v1)µ(v1) ≥ ρ(u1)µ(u1)

ρ(v1)µ(v1)
d(u1v1)

+
ρ(v2)µ(v2)
d(u2v2)

≥ ρ(u1)µ(u1)
d(u1v1)

+
ρ(u2)µ(u2)

d(u2v2)

· · · · · · · · · · · ·

ρ(v1)µ(v1)
d(u1v1)

+
ρ(v2)µ(v2)
d(u2v2)

+ · · ·+ ρ(vl)µ(vl)
d(ulvl)

≥ ρ(u1)µ(u1)
d(u1, v1)

+
ρ(u2)µ(u2)
d(u2, v2)

+ · · ·+ ρ(ul)µ(ul)
d(ul, vl)

.

This completes the proof. \

For planar maps underlying a regular graph, we have the following interesting results for
parallel bundles.

Corollary 3.2 Let (M, µ) be a planar map geometry with M underlying a regular graph,
C = {u1v1, u2v2, · · · , ulvl} a cut of the map M with order u1v1, u2v2, · · · , ulvl from the left to
the right, l ≥ 1. Then under the linear assumption, a family L of parallel lines passing through
C is a parallel bundle iff the angle factor µ satisfies the following linear inequality system

µ(v1) ≥ µ(u1)

µ(v1)
d(u1v1)

+
µ(v2)

d(u2v2)
≥ µ(u1)

d(u1v1)
+

µ(u2)
d(u2v2)

· · · · · · · · · · · ·

µ(v1)
d(u1v1)

+
µ(v2)

d(u2v2)
+ · · ·+ µ(vl)

d(ulvl)
≥ µ(u1)

d(u1v1)
+

µ(u2)
d(u2v2)

+ · · ·+ µ(ul)
d(ulvl)

and particularly, if assume that all the lengths of edges in C are the same, then
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µ(v1) ≥ µ(u1)

µ(v1) + µ(v2) ≥ µ(u1) + µ(u2)

· · · · · · · · · · · · · · ·
µ(v1) + µ(v2) + · · ·+ µ(vl) ≥ µ(u1) + µ(u2) + · · ·+ µ(ul).

Certainly, by choosing different angle factors, we can also get combinatorial conditions for
existing parallel bundles under the linear assumption.

Proposition 3.3 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a cut
of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1. If for any integer
i, i ≥ 1,

ρ(ui)
ρ(vi)

≤ µ(vi)
µ(ui)

,

then under the linear assumption, a family L of parallel lines passing through C is a parallel
bundle.

Proof. Notice that under the linear assumption, for any integer i, i ≥ 1, we know that

f ′i+(x) =
ρ(vi)µ(vi)− ρ(ui)µ(ui)

2d(uivi)

by the Proposition 3.1. Whence, f ′i+(x) ≥ 0 for i = 1, 2, · · · , l. Therefore, we get that

f ′1(x) ≥ 0

f ′1+(x) + f ′2+(x) ≥ 0

f ′1+(x) + f ′2+(x) + f ′3+(x) ≥ 0

· · · · · · · · · · · ·
f ′1+(x) + f ′2+(x) + · · ·+ f ′l+(x) ≥ 0.

By the Proposition 2.2, we know that a family L of parallel lines passing through C is a
parallel bundle. \

§4. Classification of parallel bundles

For a cut C in a planar map geometry and e ∈ C, denote by fe(x) the angle function on
the edge e, f(C, x) =

∑
e∈C

fe(x). If f(C, x) is independent on x, then we abbreviate it to f(C).

According to the results in the Section 2 and 3, we can classify the parallel bundles with a
given orientation

−→
O in planar map geometries into the following 15 classes, where, each class

is labelled by a 4-tuple 0, 1 code.
Classification of parallel bundles

(1) C1000: for any cut C along
−→
O , f(C) = |C|π;
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(2) C0100: for any cut C along
−→
O , f(C) < |C|π;

(3) C0010: for any cut C along
−→
O , f(C) > |C|π ;

(4) C0001: for any cut C along
−→
O , f ′+(C, x) > 0 for ∀x, x ≥ 0;

(5) C1100: There exist cuts C1, C2 along
−→
O , such that f(C1) = |C1|π and f(C2) = c <

|C2|π;
(6) C1010: there exist cuts C1, C2 along

−→
O , such that f(C1) = |C1|π and f(C2) > |C2|π;

(7) C1001: there exist cuts C1, C2 along
−→
O , such that f(C1) = |C1|π and f ′+(C2, x) > 0

for ∀x, x ≥ 0;
(8) C0110: there exist cuts C1, C2 along

−→
O , such that f(C1) < |C1|π and f(C2) > |C2|π;

(9) C0101: there exist cuts C1, C2 along
−→
O , such that f(C1) < |C1|π and f ′+(C2, x) > 0

for ∀x, x ≥ 0;
(10) C0011: there exist cuts C1, C2 along

−→
O , such that f(C1) > |C1|π and f ′+(C2, x) > 0

for ∀x, x ≥ 0;
(11) C1110: there exist cuts C1, C2 and C3 along

−→
O , such that f(C1) = |C1|π, f(C2) <

|C2|π and f(C3) > |C3|π;
(12) C1101: there exist cuts C1, C2 and C3 along

−→
O , such that f(C1) = |C1|π, f(C2) <

|C2|π and f ′+(C3, x) > 0 for ∀x, x ≥ 0;
(13) C1011: there exist cuts C1, C2 and C3 along

−→
O , such that f(C1) = |C1|π, f(C2) >

|C2|π and f ′+(C1, x) > 0 for ∀x, x ≥ 0;
(14) C0111: there exist cuts C1, C2 and C3 along

−→
O , such that f(C1) < |C1|π, f(C2) >

|C2|π and f ′+(C1, x) > 0 for ∀x, x ≥ 0;
(15) C1111: there exist cuts C1, C2, C3 and C4 along

−→
O , such that f(C1) = |C1|π, f(C2) <

|C2|π, f(C3) > |C3|π and f ′+(C4, x) > 0 for ∀x, x ≥ 0.

Notice that only the first three classes may be parallel lines after them passing through the
cut C. All of the other classes are only parallel bundles, not parallel lines in the usual meaning.

Proposition 4.1 For an orientation
−→
O , the 15 classes C1000 ∼ C1111 are all the parallel

bundles in planar map geometries.
Proof. Not loss of generality, we assume C1, C2, · · · , Cm,m ≥ 1, are all the cuts along−→

O in a planar map geometry (M, µ) from the upon side of
−→
O to its down side. We find their

structural characters for each case in the following discussion.
C1000: By the Proposition 2.3, a family L of parallel lines parallel their initial lines before

meeting M after the passing through M .
C0100: By the definition, a family L of parallel lines is a parallel bundle along

−→
O only if

f(C1) ≤ f(C2) ≤ · · · ≤ f(Cm) < π.

Otherwise, some lines in L will intersect. According to the Corollary 2.1, they parallel each
other after they passing through M only if

f(C1) = f(C2) = · · · = f(Cm) < π.

C0010: Similar to the case C0100, a family L of parallel lines is a parallel bundle along
−→
O

only if
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π < f(C1) ≤ f(C2) ≤ · · · ≤ f(Cm)

and parallel each other after they passing through M only if

π < f(C1) = f(C2) = · · · = f(Cm).

C0001: Notice that by the proof of the Proposition 2.3, a line has angle f(C, x)− (|C|− 1)π
after it passing through C with the initial line before meeting C. In this case, a family L of
parallel lines is a parallel bundle along

−→
O only if for ∀xi, xi ≥ 0, 1 ≤ i ≤ m,

f(C1, x1) ≤ f(C2, x2) ≤ · · · ≤ f(Cm, xm).

Otherwise, they will intersect.
C1100: In this case, a family L of parallel lines is a parallel bundle along

−→
O only if there is

an integer k, 2 ≤ k ≤ m, such that

f(C1) ≤ f(C2) ≤ · · · ≤ f(Ck−1) < f(Ck) = f(Ck+1) = · · · = f(Cm) = π.

Otherwise, they will intersect.
C1010: Similar to the case C1100, in this case, a family L of parallel lines is a parallel bundle

along
−→
O only if there is an integer k, 2 ≤ k ≤ m, such that

π = f(C1) = f(C2) = · · · = f(Ck) < f(Ck+1) ≤ · · · ≤ f(Cm).

Otherwise, they will intersect.
C1001: In this case, a family L of parallel lines is a parallel bundle along

−→
O only if there is

an integer k, l, 1 ≤ k < l ≤ m, such that for ∀xi, xi ≥ 0, 1 ≤ i ≤ k or l ≤ i ≤ m,

f(C1, x1) ≤ f(C2, x2) ≤ · · · ≤ f(Ck, xk) < f(Ck+1)

= f(Ck+2) = · · · = f(Cl−1) = π < f(Cl, xl) ≤ · · · ≤ f(Cm, xm).

Otherwise, they will intersect.
C0110: In this case, a family L of parallel lines is a parallel bundle along

−→
O only if there is

integers k, 1 ≤ k < m, such that

f(C1) ≤ f(C2) ≤ · · · ≤ f(Ck) < π < f(Ck+1) ≤ · · · ≤ f(Cm).

Otherwise, they will intersect.
C0101: In this case, a family L of parallel lines is a parallel bundle along

−→
O only if there is

integers k, 1 ≤ k ≤ m, such that for ∀xi, xi ≥ 0, 1 ≤ i ≤ m,

f(C1, x1) ≤ f(C2, x2) ≤ · · · ≤ f(Ck, xk) < π ≤ f(Ck+1, xk+1) ≤ · · · ≤ f(Cm, xm),

and there must be a constant in f(C1, x1), f(C2, x2), · · · , f(Ck, xk).
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C0011: In this case, the situation is similar to the case C0101 and there must be a constant
in f(Ck+1, xk+1), f(Ck+2, xk+2), · · · , f(Cm, xm).

C1110: In this case, a family L of parallel lines is a parallel bundle along
−→
O only if there is

an integer k, l, 1 ≤ k < l ≤ m, such that

f(C1) ≤ f(C2) ≤ · · · ≤ f(Ck) < f(Ck+1)

= · · · = f(Cl−1) = π < f(Cl) ≤ · · · ≤ f(Cm).

Otherwise, they will intersect.
C1101: In this case, a family L of parallel lines is a parallel bundle along

−→
O only if there is

an integer k, l, 1 ≤ k < l ≤ m, such that for ∀xi, xi ≥ 0, 1 ≤ i ≤ k or l ≤ i ≤ m,

f(C1, x1) ≤ f(C2, x2) ≤ · · · ≤ f(Ck, xk) < f(Ck+1)

= · · · = f(Cl−1) = π < f(Cl, xl) ≤ · · · ≤ f(Cm, xm)

and there must be a constant in f(C1, x1), f(C2, x2), · · · , f(Ck, xk). Otherwise, they will
intersect.

C1011: In this case, a family L of parallel lines is a parallel bundle along
−→
O only if there is

an integer k, l, 1 ≤ k < l ≤ m, such that for ∀xi, xi ≥ 0, 1 ≤ i ≤ k or l ≤ i ≤ m,

f(C1, x1) ≤ f(C2, x2) ≤ · · · ≤ f(Ck, xk) < f(Ck+1)

= · · · = f(Cl−1) = π < f(Cl, xl) ≤ · · · ≤ f(Cm, xm)

and there must be a constant in f(Cl, xl), f(Cl+1, xl+1), · · · , f(Cm, xm). Otherwise, they
will intersect.

C0111: In this case, a family L of parallel lines is a parallel bundle along
−→
O only if there is

an integer k, 1 ≤ k ≤ m, such that for ∀xi, xi ≥ 0,

f(C1, x1) ≤ f(C2, x2) ≤ · · · ≤ f(Ck, xk) < π < f(Cl, xl) ≤ · · · ≤ f(Cm, xm)

and there must be a constant in f(C1, x1), f(C2, x2), · · · , f(Ck, xk) and a constant in
f(Cl, xl), f(Cl+1, xl+1), · · · , f(Cm, xm). Otherwise, they will intersect.

C1111: In this case, a family L of parallel lines is a parallel bundle along
−→
O only if there is

an integer k, l, 1 ≤ k < l ≤ m, such that for ∀xi, xi ≥ 0, 1 ≤ i ≤ k or l ≤ i ≤ m,

f(C1, x1) ≤ f(C2, x2) ≤ · · · ≤ f(Ck, xk) < f(Ck+1)

= · · · = f(Cl−1) = π < f(Cl, xl) ≤ · · · ≤ f(Cm, xm)

and there must be a constant in f(C1, x1), f(C2, x2), · · · , f(Ck, xk) and a constant in
f(Cl, xl), f(Cl+1, xl+1), · · · , f(Cm, xm). Otherwise, they will intersect.
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Following the structural characters of the classes C1000 ∼ C1111, by the Proposition 2.2, 2.3
and Proposition 3.1, we know that any parallel bundle is in one of the classes C1000 ∼ C1111 and
each class in C1000 ∼ C1111 is non-empty. This completes the proof. \

A example of parallel bundle in a planar map geometry is shown in the Fig.5, in where the
number on a vertex u denotes the number ρ(u)µ(u).

Fig.5¸

§5. Generalization

All the planar map geometries considered in this paper are without boundary. For planar
map geometries with boundary, i.e., some faces are deleted ([10]), which are correspondence
with the maps with boundary ([2]). We know that they are the Smarandache non-geometries,
satisfying one or more of the following conditions:

(A1−)It is not always possible to draw a line from an arbitrary point to another arbitrary
point.

(A2−)It is not always possible to extend by continuity a finite line to an infinite line.
(A3−)It is not always possible to draw a circle from an arbitrary point and of an arbitrary

interval.
(A4−)Not all the right angles are congruent.
(A5−)If a line, cutting two other lines, forms the interior angles of the same side of it

strictly less than two right angle, then not always the two lines extended towards infinite cut
each other in the side where the angles are strictly less than two right angle.

Notice that for an one face planar map geometry (M, µ)−1 with boundary, if we choose all
points being euclidean, then (M, µ)−1 is just the Poincaré’s model for the hyperbolic geometry.
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Using the neutrosophic logic idea, we can also define the conception of neutrosophic surface
as follow, comparing also with the surfaces in [8] and [14].

Definition 5.1 A neutrosophic surface is a Hausdorff, connected, topological space S such
that every point v is elleptic, euclidean, or hyperbolic.

For this kind of surface, we present the following problem for the further researching.
Problem 5.1 To determine the behaviors of elements, such as, the line, angle, area, · · · ,

in neutrosophic surfaces.

Notice that results in this paper are just the behaviors of line bundles in a neutrosophic
plane.
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§1. Introduction And Results

According to reference [1], the definition of the odd sieve is: subtract 2 from all prime
numbers and obtain a temporary sequence, and choose all odd number that do not belong to
the temporary one. For example: 7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67,
73, 75, 79, 83, 85, 91, 93, 97,. . . are all belong to odd sieve sequence. Let A denote the set of
all odd sieve. In reference [1], Professor F.Smarandache asked us to study the properties of the
odd sieve sequence. About this problem, it seems that none had studied it, at least we have
not seen related paper before. In this paper, we use elementary method and analytic method to
study the asymptotic properties of odd sieve sequence, and obtain two interesting asymptotic
formulae. That is, we shall prove the following:

Theorem 1. For any real number x ≥ 3, we have the asymptotic formula

∑

a∈A
a≤x

a = x2 − x2

2 log x
− x2

4 log2 x
+ O (x) .

Theorem 2. For any real number x ≥ 3, we have the asymptotic formula
∑

a∈A
a≤x

d(a) =
1
2
x log x + Bx + O

(
x

1
2 log2 x

)
,

where B = 4C− 1
2 + 3

2 log 2− 315ζ(3)
6π4 , C is Euler constant, d(n) be the Dirichlet divisor function.

§2. Several Lemmas

To complete the proof of the theorems, we need the following several simple lemmas.
Firstly, we have
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Lemma 1. For any real number x ≥ 1, we have

∑

n≤x

nα =
xα+1

α + 1
+ O (xα) . (α ≥ 1)

Proof. (See reference [2]).
Taking α = 0, 1 in the lemma 1, we may immediately obtain the following:
Corollary. For any real number x ≥ 1, then we have

∑

n≤x

1 = x + O (1)

and ∑

n≤x

n =
1
2
x2 + O (x) .

Lemma 2. For any fixed real number x, let π(x) denote the number of all primes not
exceeding x, then we have

π(x) =
x

log x
+

x

log2 x
+ O

(
x

log3 x

)
.

Proof. (See reference [3]).
Lemma 3. For any real number x ≥ 3, let p be a prime, then we have

∑

p≤x

p =
x2

2 log x
+

x2

4 log2 x
+ O

(
x2

log3 x

)
.

Proof. From Lemma 2 and by Abel’s identity, we can easily deduce that

∑

p≤x

p = π(x)x−
∫ x

1

π(x)dt

=
x2

log x
+

x2

log2 x
+ O

(
x2

log3 x

)

−
∫ x

2

t

log t
dt−

∫ x

2

t

log2 t
dt + O

(∫ x

2

t

log3 t
dt

)

=
x2

2 log x
+

x2

4 log2 x
+ O

(
x2

log3 x

)
.

This complets the proof of Lemma 3.
Lemma 4. For any real number x ≥ 1, we have

∑

n≤x

d(n) = x log x + (2C − 1)x + O
(√

x
)
,

where C is Euler constant, and d(n) be the Dirichlet divisor function.
Proof. This result may be immediately got from [2].
Lemma 5. For any real number x ≥ 1, we have

∑

n≤x

d(2n) =
3
2
x log x + (

log 2
2

− 3
2
)x + O

(
x

1
2 log2 x

)
.
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Proof. Let s = σ + it be a complex number and h(s) =
∞∑

n=1

d(2n)
ns . Note that d(2n) ¿ nε,

so it is clear that h(s) is a Dirichlet series absolutely convergent for Re(s)> 1, by the Euler
Product formula [2] and the definition of d(n) we get

h(s) =
∏
p

∞∑
m=0

d(2pm)
pms

=
∞∑

m=0

d(2m+1)
2ms

·
∏
p>2

∞∑
m=0

d(2pm)
pms

= 2ζ2(s) ·
(
∏

p>2

∞∑
m=0

d(pm)
pms ) · (

∞∑
m=0

d(2m+1)
2ms )

∏
p

∞∑
m=0

d(pm)
pms

= 2ζ2(s) ·

∞∑
m=0

d(2m+1)
2ms

∞∑
m=0

d(2m)
2ms

= ζ2(s)(2− 1
2s

), (1)

where ζ(s) is the Riemann Zeta-function and
∏
p

denotes the product over all primes.

From (1) and Perron’s formula [4], for b = 1 + ε, T ≥ 1 and x ≥ 1 we have

∑

n≤x

d(2n) =
1

2πi

∫ b+iT

b−iT

h(s)
xs

s
ds + O

∣∣∣∣
xb

T

∣∣∣∣ + O

(
xH(2x) log x

T

)
. (2)

Taking a = 1
2 + ε, we move the integral line in (2). Then

∑

n≤x

d(2n) = Res
s=1

ζ2(s)(2− 1
2s

)
xs

s

+
1

2πi

∣∣∣∣∣
∫ a−iT

b−iT

+
∫ a+iT

a−iT

+
∫ b+iT

a+iT

∣∣∣∣∣ ζ2(s)(2− 1
2s

)
xs

s
ds

+ O

∣∣∣∣
xb

T

∣∣∣∣ + O

∣∣∣∣
xH(2x) log x

T

∣∣∣∣ ,

where

∣∣∣∣∣
∫ a−iT

b−iT

+
∫ b+iT

a+iT

∣∣∣∣∣ ζ2(s)(2− 1
2s

)
xs

s
ds ¿ x

T
∫ a+iT

a−iT

ζ2(s)(2− 1
2s

)
xs

s
ds ¿ x

1
2 log2 T.
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Hence, we have

∑

n≤x

d(2n) = Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
+ O

∣∣∣ x

T

∣∣∣

+ O
(
x

1
2 log2 T

)
+ O

∣∣∣∣
xb

T

∣∣∣∣ + O

∣∣∣∣xH(2x)
log x

T

∣∣∣∣

= Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
+ O

∣∣∣ x

T

∣∣∣

+ O
(
x

1
2 log2 T

)
+ O

∣∣∣∣x1+ε log x

T

∣∣∣∣ . (3)

Taking T = x
1
2+ε in (3), then

∑

n≤x

d(2n) = Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
+ O

(
x

1
2−ε

)
+ O

(
x

1
2 log2 x

)

= Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
+ O

(
x

1
2 log2 x

)
. (4)

Now we can easily get the residue of the function ζ2(s)(2− 1
2s ) · xs

s at second order pole point
s = 1

Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
=

3
2
x log x + (

log 2
2

− 3
2
)x. (5)

Combining (4) and (5), we immediately get

∑

n≤x

d(2n) =
3
2
x log x + (

log 2
2

− 3
2
)x + O

(
x

1
2 log2 x

)
.

This completes the proof of Lemma 5.

Lemma 6. For any x > 0 , let a be any fixed positive integer, then we have

∑

0<p−a≤x

d(p− a) =
315ζ(3)

2π4

∏

p|a

(p− 1)2

p2 − p + 1
x + O

(
x(log x)−1+ε

)
,

where ε is any positive integer.

Proof. This result may be immediately got from [5].

§3. Proof of the Theorem

In this section, we will complete the proof of Theorem. First, we have

∑

a∈A
a≤x

a =
∑

n≤x

(2n− 1)−
∑

p≤x

(p− 2)

= 2
∑

n≤x

n−
∑

n≤x

1−
∑

p≤x

p + 2π(x).
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From Lemma 1, Lemma 2 and Lemma 3, we have

∑

a∈A
a≤x

a = 2
(

x2

2
+ O (x)

)
− (x + O (1))

− (
x2

2 log x
+

x2

4log2x
+ O

(
x2

log3x

)
)

+ 2(
x

log x
+

x

log2 x
+ O

(
x

log3 x

)
)

= x2 − x2

2 log x
− x2

4 log2 x
+ O (x) .

This completes the proof of Theorem 1.
Now we will give the proof of Theorem 2.
From Lemma 4, Lemma 5 and Lemma 6, we can easily obtain

∑

a∈A
a≤x

d(a) =
∑

n≤x

d(2n− 1)−
∑

p≤x

d(p− 2)

=
∑

n≤2x

d(n)−
∑

n≤x

d(2n)−
∑

p≤x

d(p− 2)

= 2x log x + 2(2C − 1 + log 2)x + O
(√

x
)

− 3
2
x log x + (

log 2
2

− 3
2
)x + O

(
x

1
2 log2 x

)

− 315ζ(3)
6π4

x + O
(
x(log x)−1+ε

)

=
1
2
x log x + Bx + O

(
x

1
2 log2 x

)
,

where B = 4C − 1
2 + 3

2 log 2− 315ζ(3)
6π4 , C is Euler constant.

This completes the proof of Theorem 2.
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Abstract In this paper, we have introduced Smarandache quasigroups which are Smarandache non-

associative structures. W.B.Kandasamy [2] has studied groupoid ring and loop ring. We have defined

Smarandache quasigroup rings which are again non-associative structures having two binary operations.

Substructures of quasigroup rings are also studied.
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§1. Introduction

In the paper [2] W.B.Kandasamy has introduced a new concept of groupoid rings. This
structure provides number of examples of SNA-rings (Smarandache non-associative rings).
SNA-rings are non-associative structure on which are defined two binary operations one as-
sociative and other being non-associative and addition distributes over multiplication both
from right and left. We are introducing a new concept of quasigroup rings. These are non
associative structures. In our view groupoid rings and quasigroup rings are the rich source of
non-associative SNA-rings without unit since all other rings happen to be either associative or
non-associative rings with unit. To make this paper self contained we recollect some definitions
and results which we will use subsequently.

§2. Preliminaries

Definition 2.1. A groupoid S such that for all a, b ∈ S there exist unique x, y ∈ S such
that ax = b and ya = b is called a quasigroup.

Thus a quasigroup does not have an identity element and it is also non-associative.
Here is a quasigroup that is not a loop.

∗ 1 2 3 4 5

1 3 1 4 2 5

2 5 2 3 1 4

3 1 4 2 5 3

4 4 5 1 3 2

5 2 3 5 4 1
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We note that the definition of quasigroup Q forces it to have a property that every element of
Q appears exactly once in every row and column of its operation table. Such a table is called
a LATIN SQUARE. Thus, quasigroup is precisely a groupoid whose multiplication table is a
LATIN SQUARE.

Definition 2.2. If a quasigroup (Q, ∗) contains a group (G, ∗) properly then the quasigroup
is said to be Smarandache quasigroup.

Example 2.1. Let Q be a quasigroup defined by the following table:

∗ a0 a1 a2 a3 a4

a0 a0 a1 a3 a4 a2

a1 a1 a0 a2 a3 a4

a2 a3 a4 a1 a2 a0

a3 a4 a2 a0 a1 a3

a4 a2 a3 a4 a0 a1

Clearly, A = {a0, a1} is a group w.r.t. ∗ which is a proper subset of Q. Therefore Q is a
Smarandache quasigroup.

Definition 2.3. A quasigroup Q is idempotent if every element x in Q satisfies x ∗x = x.
Definition 2.4. A ring (R, +, ∗) is said to be a non-associative ring if (R, +) is an additive

abelian group, (R, ∗) is a non-associative semigroup (i.e. binary operation ∗ is non-associative)
such that the distributive laws
a ∗ (b + c) = a ∗ b + a ∗ c and (a + b) ∗ c = a ∗ c + b ∗ c for all a, b, c in R.

Definition 2.5. Let R be a commutative ring with one. G be any group (S any semigroup
with unit) RG (RS the semigroup ring of the semigroup S over the ring R) the group ring of the

group G over the ring R consists of finite formal sums of the form
n∑

i=1

αigi, (n < ∞) i.e. i runs

over a finite number where αi ∈ R and gi ∈ G (gi ∈ S) satisfying the following conditions:

1.
n∑

i=1

αimi =
n∑

i=1

βimi ⇔ αi = βi, for i = 1, 2, · · · , n

2.

n∑

i=1

αimi +
n∑

i=1

βimi ⇔
n∑

i=1

(αi + βi)mi

3. (
n∑

i=1

αimi)(
n∑

i=1

βimi) =
n∑

i=1

γkmk,mk = mimj , where γk =
∑

αiβi

4. rimi = miri for all ri ∈ R and mi ∈ G(mi ∈ S).

5. r
n∑

i=1

rimi =
n∑

i=1

rrimi for all r ∈ R and
n∑

i=1

rimi ∈ RG. RG is an associative ring with

0 ∈ R acts as its additive identity. Since I ∈ R we have G = IG ⊆ RG and R.e = R ⊆ RG

where e is the identity element of G.
If we replace the group G in the above definition by a quasigroup Q we get RQ the

quasigroup ring which will satisfy all the five conditions 1 to 5 given in the definition. But RQ
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will only be a non-associative ring without identy. As I ∈ R we have Q ⊆ RQ. Thus we define
quasigroup rings as follows:

Definition 2.6. For any quasigroup Q the quasigroup ring RQ is the quasigroup Q over

the ring R consisting of all finite formal sums of the form
n∑

i=1

riqi, (n < ∞) i.e. i runs over

a finite number where ri ∈ R and qi ∈ Q satisfying conditions 1 to 5 given in the definition of
group rings above.

Note that only when Q is a quasigroup with identity (i.e. then Q is a Loop) that the
quasigroup ring RQ will be a non-associative ring with unit. Here we give examples of non-
associative quasigroup rings.

Example 2.2. Let Z be the ring of integers and (Q, ∗) be the quasigroup given by the
following table:

∗ 1 2 3 4 5

1 3 1 4 2 5

2 5 2 3 1 4

3 1 4 2 5 3

4 4 5 1 3 2

5 2 3 5 4 1

Clearly (Q, ∗) is a quasigroup and does not posses an identity element. The quasigroup ring
ZQ is a non-associative ring without unit element.

Example 2.3. Let R be the ring of reals and (Q, ∗) be the quasigroup defined by the
following table:

∗ 1 2 3 4

1 1 3 4 2

2 4 2 1 3

3 2 4 3 1

4 3 1 2 4

(Q, ∗) is an idempotent quasigroup. Again RQ is a non-associative quasigroup ring without
unit. Note that R〈1〉, R〈2〉, R〈3〉, R〈4〉 are the subrings of RQ which are associative.

Result: All quasigroup rings RQ of a quasigroup Q over the ring R are non-associative
rings without unit.

The smallest non-associative ring without unit is quasigroup ring given by the following
example. This example was quoted by W.B.Kandasamy [2] as a groupoid ring.

Example 2.4. Let Z2 = {0, 1} be the prime field of characteristic 2. (Q, ∗) be a
quasigroup of order 3 given by the following table:
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∗ q1 q2 q3

q1 q1 q2 q3

q2 q3 q1 q2

q3 q2 q3 q1

Z2Q is a quasigroup ring having only eight elements given by {0, q1, q2, q3, q1 + q2, q2 +
q3, q1 + q3, q1 + q2 + q3}. Clearly, Z2Q is a non-associative ring without unit. This happens to
be the smallest non-associative ring without unit known to us.

§3. SNA-Quasigroup rings

We introduce Smarandache non-associative quasigroup rings. It is true that quasigroup
rings are always non-associative. We write “Smarandache non-associative quasigroup ring” only
to emphasize the fact that they are non-associative.

Definition 3.1. Let S be a quasigroup ring. S is said to be SNA-quasigroup ring (Smaran-
dache non-associative quasigroup ring ) if S contains a proper subset P such that P is an
associative ring under the operations of S.

Example 3.1. Let Z be the ring of integers and Q be a quasigroup defined by the following
table;

∗ a0 a1 a2 a3 a4

a0 a0 a1 a3 a4 a2

a1 a1 a0 a2 a3 a4

a2 a3 a4 a1 a2 a0

a3 a4 a2 a0 a1 a3

a4 a2 a3 a4 a0 a1

Clearly, A = {a0, a1} is group and ZQ ⊃ ZA. Thus the quasigroup ring ZQ contains an
associative ring properly. Hence ZQ is an SNA-quasigroup ring. Note that Q is a Smarandache
quasigroup.

Example 3.2. Let R be the reals, (Q, ∗) be the quasigroup defined by the following table;

∗ 0 1 2 3

0 0 1 3 2

1 1 0 2 3

2 3 2 1 0

3 2 3 0 1
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Then clearly RQ is an SNA-quasigroup ring as RQ ⊃ R〈0, 1〉 and R〈0, 1〉 is an associative ring.

Theorem 3.1. Let Q be a quasigroup and R be any ring. Then the quasigroup ring RQ

is not always an SNA-quasigroup ring.

Proof. Since Q does not have an identity element, there is no guarantee that R is contained
in RQ .

Example 3.3. Let R be an arbitrary ring and Q be a quasigroup defined by the table;

∗ 1 2 3 4 5

1 3 1 4 2 5

2 5 2 3 1 4

3 1 4 2 5 3

4 4 5 1 3 2

5 2 3 5 4 1

Then clearly, RQ is not an SNA-quasigroup ring as the quasigroup ring RQ does not contain
an associative ring.

Theorem 3.2. If Q is a quasigroup with identity, then quasigroup ring RQ is SNA-
quasigroup ring.

Proof. Quasigroup with identity is a Loop. So, RI ⊆ RQ and R serves as the associative
ring in RQ. Thus RQ is an SNA-quasigroup ring.

Theorem 3.3. Let R be a ring. If Q is a Smarandache quasigroup, then quasigroup ring
RQ is an SNA-quasigroup ring. .

Proof. Obviously RQ is a non-associative ring. As Q is a Smarandache quasigroup Q
contains a group G properly. So RQ ⊃ RG and RG is an associative ring contained in RQ.
Therefore RQ is an SNA-quasigroup ring.

§4. Substructure of SNA-quasigroup rings

Definition 4.1. Let R be a SNA-quasigroup ring. Let S be a non-empty subset of R.
Then S is said to be S-quasigroup subring of R if S itself is a ring and contains a proper subset
P such that P is an associative ring under the operation of R.

Example 4.1. Let Z be the ring of integers. Let Q be the quasigroup defined by the
following table:
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∗ 1 2 3 4 5 6 7 8

1 1 2 3 4 6 5 8 7

2 2 1 4 3 5 6 7 8

3 3 4 1 2 7 8 6 5

4 4 3 2 1 8 7 5 6

5 6 5 7 8 1 2 3 4

6 5 6 8 7 2 3 4 1

7 8 7 6 5 3 4 1 2

8 7 8 5 6 4 1 2 3

Clearly the quasigroup ring ZQ is a non-associative ring. Consider the subset S = {1, 2, 3, 4}
then S is a group and hence ZS is a group ring and hence also a quasigroup ring. Let P = {1, 2}.
Note that ZS also contains ZP where P = {1, 2}. So, ZS is an S-quasigroup subring of SNA-
quasigroup ring ZQ.

We have not yet been able to find a Smarandache non associative quasigroup subring for
a given quasigroup ring. We think that it is not possible to obtain a subquasigroup for any
quasigroup because for a quasigroup its composition table is a LATIN SQUARE.

Theorem 4.1. Let R be a quasigroup ring, if R has a SNA-quasigroup subring S, then
R itself is SNA-quasigroup ring.

Proof. As S is an SNA-quasigroup surbring S contains an associative ring. As a result
R contains an associtive ring. Thus R is an SNA-quasigroup ring.
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§1. Introduction

A natural number n is called a k + 1-power free number if it can not be divided by any
pk+1, where p is a prime number. One can obtain all k +1-power free numbers by the following
method:

From the set of natural numbers (except 0 and 1)
-take off all multiples of 2k+1(i.e. 2k+1, 2k+2, · · · ).
-take off all multiples of 3k+1.
-take off all multiples of 5k+1.
· · · and so on (take off all multiples of all k + 1-power primes).
In reference [1], Professor F. Smarandache asked us to study the properties of the k + 1-

power free numbers sequence. Yet we still know very little about it.
Now we define two new number-theoretic functions U(n) and V (n) as following,

U(1) = 1, U(n) =
∏

p|n
p,

V (1) = 1, V (n) = V (pα1
1 ) · · ·U (pαr

r ) = (pα1 − 1) · · · (pαr − 1),

where n is any natural number with the form n = pα1
1 · · · pαr

r . Obviously they are both multi-
plicative functions. In this paper, we shall use the analytic method to study the distribution
properties of this sequence, and obtain two interesting asymptotic formulae. That is, we have
the following two theorems:

Theorem 1. Let A denote the set of all k + 1-power free numbers, then for any real
number x ≥ 1, we have the asymptotic formula

∑

n∈A
n≤x

U(n) =
3x2

π2

∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
+ O

(
x

3
2+ε

)
,
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where ε denotes any fixed positive number and
∏
p

denotes the product of all the prime numbers.

Theorem 2. For any real number x ≥ 1, we have the asymptotic formula

∑

n∈A
n≤x

V (n) =
x2

2

∏
p

(
1− 1

pk+1
− p2k+1 + p2k − p− 1

p2k+3 + p2k+1

)
+ O

(
x

3
2+ε

)
.

§2. Proof of Theorems

In this section, we shall complete the proof of Theorems. First we prove Theorem 1, let

f(s) = 1 +
∑

n∈A
n≤x

U(n)
ns

.

From the Euler product formula [2] and the definition of U(n), we may have

f(s) =
∏
p

(
1 +

U(p)
ps

+
U(p2)
p2s

+ · · ·+ U(pk)
pks

)

=
∏
p

(
1 +

1
ps−1

+
1

p2s−1
+ · · ·+ 1

pks−1

)

=
∏
p

(
1 +

1
ps−1

+
p(k−1)s − 1

p2s−1(p(k−1)s − p(k−2)s)

)

=
ζ(s− 1)

ζ(2(s− 1))

∏
p

(
1 +

p(k−1)s − 1
(p2s−1 + ps)(p(k−1)s − p(k−2)s)

)
,

where ζ(s) is the Riemann-zeta function. Obviously, we have the following two inequalities

|U(n)| ≤ n,

∣∣∣∣∣
∞∑

n=1

U(n)
nσ

∣∣∣∣∣ <
1

σ − 2
,

where σ > 2 is the real part of s. So by Perron formula [3]

∑

n≤x

U(n)
ns0

=
1

2iπ

∫ b+iT

b−iT

f(s + s0)
xs

s
ds + O

(
xbB(b + σ0)

T

)

+O

(
x1−σ0H(2x)min(1,

log x

T
)
)

+ O

(
x−σ0H(N)min(1,

x

||x|| )
)

,

where N is the nearest integer to x, ‖x‖ = |x−N |. Taking s0 = 0, b = 3, T = x
3
2 , H(x) = x,

B(σ) = 1
σ−2 , we have

∑

n≤x

U(n) =
1

2iπ

∫ 3+iT

3−iT

ζ(s− 1)
ζ(2(s− 1))

R(s)
xs

s
ds + O(x

3
2+ε),

where

R(s) =
∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
.
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To estimate the main term

1
2iπ

∫ 3+iT

3−iT

ζ(s− 1)
ζ(2(s− 1))

R(s)
xs

s
ds,

we move the integral line from s = 3± iT to s = 3
2 ± iT . This time, the function

f(s) =
ζ(s− 1)xs

ζ(2(s− 1))s
R(s)

has a simple pole point at s = 2 with residue x2

2ζ(2)R(2). So we have

1
2iπ

(∫ 3+iT

3−iT

+
∫ 3

2+iT

3+iT

+
∫ 3

2−iT

3
2+iT

+
∫ 3−iT

3
2−iT

)
ζ(s− 1)xs

ζ(2(s− 1))s
R(s)ds

=
x2

2ζ(2)

∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
.

We can easily get the estimates
∣∣∣∣∣

1
2πi

(∫ 3
2+iT

3+iT

+
∫ 3−iT

3
2−iT

)
ζ(s− 1)xs

ζ(2(s− 1))s
R(s)ds

∣∣∣∣∣

¿
∫ 3

3
2

∣∣∣∣
ζ(σ − 1 + iT )

ζ(2(σ − 1 + iT ))
R(s)

x3

T

∣∣∣∣ dσ ¿ x3

T
= x

3
2

and ∣∣∣∣∣
1

2πi

∫ 3
2−iT

3
2+iT

ζ(s− 1)xs

ζ(2(s− 2))s
R(s)ds

∣∣∣∣∣ ¿
∫ T

0

∣∣∣∣∣
ζ(1/2 + it)
ζ(1 + 2it)

x
3
2

t

∣∣∣∣∣ dt ¿ x
3
2+ε.

Note the fact that ζ(2) = π2

6 , then from the above we can obtain

∑

n∈A
n≤x

U(n) =
3x2

π2

∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
+ O

(
x

3
2+ε

)
.

This completes the proof of Theorem 1.
Now we come to prove Theorem 2. Let

g(s) = 1 +
∑

n∈A
n≤x

V (n)
ns

.

From the Euler product formula [2] and the definition of V (n), we also have

g(s) =
∏
p

(
1 +

V (p)
ps

+
V (p2)
p2s

+ · · ·+ V (pk)
pks

)

=
∏
p

(
1 +

p− 1
ps

+
p2 − 1

p2s
+ · · ·+ pk − 1

pks

)

=
∏
p

(
1− 1

p(k+1)(s−1)

1− 1
ps−1

−
1− 1

pks

ps − 1

)

= ζ(s− 1)
∏
p

(
1− 1

p(k+1)(s−1)
− (pks − 1)(ps−1 + 1)

(pks − p(k−1)s)p2s−1

)
.
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Now applying Perron formula [3], and the method of proving Theorem 1, we can also obtain
the result of Theorem 2.

This completes the proof of Theorems.
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§1. Introduction

For any fixed positive integer k and any positive integer n, the Smarandache ceil function
Sk(n) is defined as follows:

Sk(n) = min{m ∈ N : n|mk}.

This was introduced by Professor F.Smarandache. About this function, many scholar had
studied its properties, see [1] and [2]. In [1], Ibstedt presented the following properties:

(∀a, b ∈ N) (a, b) = 1 ⇒ Sk(a · b) = Sk(a) · Sk(b),

and Sk(pα) = pd
α
k e, where p is a prime and dxe denotes the smallest integer greater than x.

That is, Sk(n) is a multiplicative function. Therefore, if n = pα1
1 pα2

2 · · · pαr
r is the prime power

decomposition of n, then the following identity is obviously:

Sk(n) = Sk(pα1
1 pα2

2 · · · pαr
r ) = p

dα1
k e

1 p
dα2

k e
2 · · · pd

αr
k e

r .

For any positive integer n, the Smarandache k−th power complements ak(n) is the smallest
positive integer such that nak(n) is a complete k−th power. That is,

ak(n) = min{l | n · l = mk, l ≥ 0,m ∈ N+}.

If n = pα1
1 pα2

2 · · · pαr
r denotes the factorization n into prime powers, then from the definition of

ak(n), we know that it is also a multiplicative function, therefore

ak(n) = ak(pα1
1 )ak(pα2

2 ) · · · ak(pαr
r ).

Let A denotes the set of the positive integers n such that the equation Sk(n) = ak(n).
That is, A = {n ∈ N, Sk(n) = ak(n)}. In this paper, we use the elementary methods to study
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the properties of the infinity series
∞∑

n=1
n∈A

1
ns

, and give an interesting identity for it. That is, we

shall prove the following conclusion:
Theorem. Let k ≥ 2 be a given positive integer. Then for any real number s > 1, we

have the identity:
∞∑

n=1
n∈A

1
ns

=
ζ ((k − 1)s)
ζ ((k2 − 1)s)

,

where ζ(s) is the Riemann zeta-function.
Corollary 1. Taking k = 2 and s = 2 in the above theorem, then we have the identities:

∞∑
n=1
n∈A

1
n2

=
315
2π4

.

Corollary 2. Taking k = 3 and s = 1 in the above theorem, then we have the identities:
∞∑

n=1
n∈A

1
n

=
1575
π6

.

§2. Proof of the theorem

In this section, we will complete the proof of the theorem. First, we define the arithmetical
function b(n) as follows:

b(n) =





1, if n ∈ A,

0, otherwise.

Now let n = pα1
1 pα2

2 · · · pαs
s denotes the factorization n into prime powers. Then from the

introduction of this paper we know that Sk(n) and ak(n) both are multiplicative functions, so
we only discuss the case of n = pi.

If i = lk + n, (l ≥ 0, 0 ≤ n < k), then from the definition of Sk(n) and ak(n), we can easily
get:

Sk(pi) = pd
i
k e =





pl, if n = 0,

pl+1, if 0 < n < k.

ak(pi) =





1, if n = 0,

pk−n, if 0 < n < k.

So Sk(pi) = ak(pi), if and only if l+1 = k−n, i.e. n = k− l−1, or i = lk +n = lk +k− l−1 =
(k − 1)(l + 1). Hence, pi = p(k−1)(l+1), where 0 ≤ l ≤ k − 1.

For any real number s > 1, it is clear that
∞∑

n=1
n∈A

1
ns

=
∞∑

n=1

b(n)
ns

<
∞∑

n=1

1
ns

,
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and
∞∑

n=1

1
ns

is convergent if s > 1. Thus
∞∑

n=1
n∈A

1
ns

is also convergent if s > 1, so from the Euler

product formula (see [3]), we have

∞∑
n=1
n∈A

1
ns

=
∞∑

n=1

b(n)
ns

=
∏
p

(
1 +

b(p)
ps

+
b(p2)
p2s

+ · · ·
)

=
∏
p

(
1 +

k−1∑

l=0

b(p(k−1)(l+1))
p(k−1)(l+1)s

)

=
∏
p

(
1 +

k−1∑

l=0

1
p(k−1)(l+1)s

)

=
∏
p

(
1 +

1
p(k−1)s

k−1∑

l=0

1
p(k−1)ls

)

=
∏
p

(
1 +

1− 1
pk(k−1)s

p(k−1)s − 1

)

=
ζ ((k − 1)s)
ζ ((k2 − 1)s)

,

where ζ(s) is the Riemann zeta-function.
This completes the proof of Theorem.
Note that ζ(2) = π2

6 , ζ(6) = π6

945 and ζ(8) = π8

9450 , we may immediately deduce the
corollaries.
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§1. Introduction

Generally, in any human field, a Smarandache Structure on a set A means a weak structure
W on A such that there exists a proper subset B of A which is embedded with a strong
structure S. In [10], W.B.Vasantha Kandasamy studied the concept of Smarandache groupoids,
subgroupoids, ideal of groupoide, semi-normal subgroupoides, Smarandache Bol groupoids and
strong Bol groupoids and obtained many interesting results of congruences, and it was studied
by R.Padilla [9]. In this paper, we discuss the Smarandache structure on BCC-algebras, and
introduce the notion of Smarandache ideas, and investigate its properties. We give conditions
for a (special) subset to be a Smarandache BCC-ideal.

§2. Preliminaries

BCC-algebras were introduced by Komori [7] in a connection with some problems on BCK-
algebras in[11], and Dudek[1, 2] redefined the notion of BCC-algebras by using a dual form of
the ordinary definition in the sense of Komori.

An algebra (X; ∗, 0) of type (2, 0) is called a BCC-algebra if it satisfies the following con-
ditions.

(a1)(∀x, y, z ∈ X) (((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z)),
(a1)(∀x ∈ X) (0 ∗ x = 0),
(a1)(∀x ∈ X) (x ∗ 0 = 0),
(a1)(∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 =⇒ x = y).
Note that every BCK-algebra is BCC-algebra, but the converse is not true. A BCC-algebra

which is not a BCK-algebra is called a proper BCC-algebra. The smallest proper BCC-algebra
has four elements and for every n ≥ 4 there exists at least one proper BCC-algebra [2].

A nonempty subset I of a BCC-algebra X is called a BCC-ideal of X if it satisfies the
following assertions:
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(a5) 0 ∈ I,

(a6) (∀x, z ∈ X) (∀y ∈ I) ((x ∗ y) ∗ z ∈ I =⇒ x ∗ z ∈ I).

Note that every BCC-algebra X satisfies the following assertions.

(b1) (∀x ∈ X) (x ∗ x = 0),

(b2) (∀x, y ∈ X) (x ∗ y ≤ x),

(b3) (∀x, y, z ∈ X) (x ∗ y =⇒ x ≤ z ≤ y ∗ z, z ∗ y ≤ z ∗ x),
where x ≤ y if and only if x ≤ y = 0.

§3. Smarandache BCC-algebra

We know that every proper BCC-algebra has at least four elements (see [2]), and that if
X is a BCC-algebra then {0, a}, a ∈ X, is a BCC-algebra with respect to the same operation
on X. Now let us consider a proper BCC-algebra X = {0, 1, 2, 3, 4} with the following Cayley
table :

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 1 2

3 3 3 1 0 3

4 4 0 0 0 0

Table 3.1

Then {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0,1,2 } and {0, 1, 3} are BCC-algebras with respect to the
operation ∗ on X, and note that X does not contain BCC-algebras of order 4. Based on this
result, we give the following definition.

Definition 3.1. A Smarandache BCC-algebra is defined to be a BCC-algebra algebra X
in which there exists a proper subset Q of X such that

(¡) 0 ∈ Q, and |Q| ≥ 4,

(¡¡) Q is a BCC-algebra with respect to the operation on X.

Note that any proper BCC-algebra X with four elements can be Smarandache. Hence if X
is a Smarandache BCC-algebra, then |x| ≥ 5. Notice that the BCC-algebra X = {0, 1, 2, 3, 4}
with Table 3.1 is not a Smarandache BCC-algebra.
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Example 3.2. (1)Let X = {0, a, b, c, d, e} be a set with the following Cayley table:

∗ 0 a b c d e

0 0 0 0 0 0 0

a a 0 0 0 0 a

b b b 0 0 a a

c c b a 0 a a

d d d d d 0 a

e e e e e e 0

Table 3.2

Then(X; ∗, 0) is a Smarandache BCC-algebra. Note that Q = {0, a, b, c} is a BCK-algebra
which is contained in X.

(2)Let {X; ∗, 0} be a finite BCK-chain containing at least four elements and let c be its
maximal element. Let Y = X ∪ {d} , where d 6∈ X, and define a binary operation ¯ on Y as
follows:

x¯ y =





x ∗ y, if x, y ∈ X;

0, if x ∈ X, y = d;

d, if x = d, y = 0;

c, if x = d, y ∈ X.

Then (Y ;¯, 0) is a Smarandache BCC-algebra.
(3)Let {X; ∗, 0} be a BCC-algebra containing at least four elements in which a is the small

atom. Let Y = X ∪ {ω} , where ω 6∈ X,and define a binary operation ¯ on Y as follows:

x¯ y =





x ∗ y, if x, y ∈ X;

0, if y ∈ X, x = ω;

d, if x = ω = y;

c, if x ∈ X/{0}, y = ω.

Then (Y ;¯, 0) is a Smarandache BCC-algebra.
In what follows , let X and Q denote a Smarandache BCC-algebra and non-trivial BCC-

algebra which is properly contained in X , respectively, unless otherwise specified.
Definition 3.3. A nonempty subset I of X is called a Smarandache BCC-ideal of X related

to Q if it satisfies:
(c1) 0 ∈ I,
(c2) (∀x, z ∈ Q) (∀y ∈ I) ((x ∗ y) ∗ z ∈ I =⇒ x ∗ z ∈ I).
If I is a Smarandache BCC-ideal of X related to every non-trivial BCC-algebra contained

in X, we simply say that I is a Smarandache BCC-ideal of X.
Example 3.4. (1)Let X = {0, a, b, c, d, e} be the Smarandache BCC-algebra described

in Example 3.2(1). Then I = {0, a} and J = {0, a, b, c, d} are Smarandache BCC-ideals of X
related to Q = {0, a, b, c}.
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Proposition 3.5. Every Smarandache BCC-ideals of X related to Q satisfies:
(c3) (∀x ∈ Q) (∀a ∈ I) (x ∗ a ∈ I =⇒ x ∈ I),
(c4) (∀x ∈ Q) (∀a ∈ I) (a ∗ x ∈ I),
(c5) (∀x ∈ Q) (∀a, b ∈ I) (x ∗ ((x ∗ a) ∗ b ∈ I)).
Proof. (c3) Taking z = 0 and y = a in (c2) and using (a3) induces the desired implication.
(c4) For every x ∈ Q and a ∈ I, we have (a ∗a) ∗x = 0 ∗x = 0 ∈ I and so a ∗x ∈ I by (c2).
(c5) Let x ∈ Q and a, b ∈ I. Then (x ∗ a) ∗ (a ∗ x) = 0 ∈ I, and so x ∗ (x ∗ a) ∈ I by (c2).

Since
((x ∗ b) ∗ ((x ∗ a) ∗ b)) ∗ (x ∗ (x ∗ a)) = 0 ∈ I,

it follows from (c3) that (x ∗ b) ∗ ((x ∗ a) ∗ b) ∈ I so from (c2) that x ∗ ((x ∗ a) ∗ b) ∈ I.
Corollary 3.6. For every Smarandache BCC-ideal I of X related to Q, the following

implication is valid:
(∀x ∈ Q)(∀a ∈ I)(x ≤ a =⇒ x ∈ I).

Corollary 3.7. Let I be a Smarandache BCC-ideal I of X related to Q . Then

(∀x ∈ Q)(∀a, b ∈ I)(x ∗ a ≤ b =⇒ x ∈ I).

Theorem 3.8. Let Q1 and Q2 be non-trivial BCK-algebras which are properly contained in
X such that Q1 ⊂ Q2 . Then every Smarandache BCC-ideal of X related to Q2 is a Smarandache
BCC-ideal of X related to Q1.

Proof. Straightforward.
Corollary 3.9. If Q is the largest BCK-algebra which is properly contained in X, then

every Smarandache BCC-ideal of X related to Q is a Smarandache BCC-ideal of X.
The converse of Theorem 3.8 is not true in general as seen in the following example.
Example 3.10. Consider a Smarandache BCC-algebra X = {0, 1, 2, 3, 4, 5} with the

following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 1 0 0 0 0 1

2 2 1 0 0 0 1

3 3 1 1 0 1 1

4 4 1 1 1 0 1

5 5 5 5 5 5 0

Table 3.3

Note that Q1 := {0, 1, 2, 3} and Q2 := {0, 1, 2, 3, 4} are BCK-algebras. Then the set Q1 is a
Smarandache BCC-ideal of X related to Q1, but not Q2. In fact, we know that (4∗2)∗0 = 1 ∈ Q1

and 4 ∗ 0 = 4Q1.
Remark 3.11. Note that every BCC-ideal of X is a Smarandache BCC-ideal of X, but

the converse is not valid. Example 3.10 shows that there exists a BCC-algebra Q of order
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n ≥ 4 which is properly contained in a Smarandache BCC-algebra X such that a Smarandache
BCC-ideal of X related to Q is not a BCC-ideal of X.

We provide convide conditions for a subset to be a Smarandache BCC-ideal.
Theorem 3.12. If I is a subset of Q that satisfies conditions (c1) and (c3), then I is a

Smarandache BCC-ideal of X related to Q.
Proof. Let x, y ∈ Q and a ∈ I be such that (x ∗ a) ∗ y ∈ I. Since a ∈ I ⊆ Q and Q is a

BCK-algebra, it follows that (x ∗ y) ∗ a = (x ∗ a) ∗ y ∈ I. So from (c3) that x ∗ y ∈ I. Hence I
is a Smarandache BCC-ideal of X related to Q.

Theorem 3.13. If a nonempty subset I of X satisfies conditions (c1) and (c5), then I is
a Smarandache BCC-ideal of X related to Q.

Proof. Let x, y ∈ Q and a ∈ I be such that (x ∗ a) ∗ y ∈ I. Taking b = 0 in (c5) and using
(a3), we have (x ∗ x) ∗ a ∈ I. It follows from (a3), (a1) and (c5) that

x ∗ y = (x ∗ y) ∗ 0 = (x ∗ y) ∗ (((x ∗ y) ∗ ((x ∗ a) ∗ y)) ∗ (x ∗ (x ∗ a))) ∈ I.

Thus I is a Smarandache BCC-ideal of X related to Q.
Theorem 3.14. Let H be a BCC-subalgebra of X. Then H is a Smarandache BCC-ideal

of X related to Q if and only if it satisfies:
(∀x ∈ H)(∀y, z ∈ Q)((y ∗ x) ∗ z ∈ H =⇒ y ∗ z ∈ H).
Proof. Straightforward.
Given an element ω ∈ X\{0}, consider the set

[0, ω] := {x ∈ X‖x ≤ ω}.

which is called the initial segment of ω[5]. Obviously, 0 ∈ [0, ω] for all x ∈ ω. Since x ≤ ω is
equivalent to xω = 0, the initial segment of ω is defacto the left annihilator of ω. In general,
[0, ω] is not a Smarandache BCC-ideal of X, but it is a subalgebra. For example, let X be
the Smarandache BCC-algebra in example 3.2(1). Then [0, e] = {0, e} is not a Smarandache
BCC-ideal of X related to Q = {0, a, b, c} since (b ∗ e) ∗ d = 0 ∈ [0, e], but b ∗ d = a[0, e].

Theorem 3.15. For every c ∈ X\{0}, if the inequality

(∀x ∈ Q)(x ∗ ((x ∗ c) ∗ c) ≤ c

holds, then [0, c] is a Smarandache BCC-ideal of X related to Q.
Proof. Let x ∈ Q. If b ∈ [0, c], then b ≤ c and hence (x ∗ c) ∗ c ≤ (x ∗ c) ∗ b by (b3). It

follows from (b3) and assumption that

x ∗ ((x ∗ c) ∗ b) ≤ x ∗ ((x ∗ c) ∗ c) ≤ c.

Now if a ∈ [0, c], then x ∗ c ≤ x ∗ a, and so

x ∗ ((x ∗ a) ∗ b) ≤ x ∗ ((x ∗ c) ∗ b) ≤ c.

This shows that x ∗ ((x ∗ a) ∗ b) ∈ [0, c]. Applying Theorem 3.13, we conclude that [0, c] is a
Smarandache BCC-ideal of X related to Q.
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Theorem 3.16. The initial segment [0, c], where c ∈ X/{0}, is a Smarandache BCC-ideal
of X related to Q if and only if the implication

(∀x, y ∈ Q)((x ∗ c) ∗ y ≤ c =⇒ x ∗ z ∈ I)

is valid.
Proof. Let ∀x, y ∈ Q and a ∈ [0, c] be such that (x ∗ a) ∗ y ∈ [0, c]. Then a ≤ c and

(x ∗ a) ∗ y ≤ c. The inequality z ≤ c implies that (x ∗ c) ∗ y ≤ (x ∗ a) ∗ y ≤ c so from hypothesis
that x ∗ y ≤ c, that is, x ∗ y ∈ [0, c] is a Smarandache BCC-ideal of X related to Q. Conversely
assume that [0, c], c ∈ X\{0}, is a Smarandache BCC-ideal of X related to Q and let ∀x, y ∈ Q

be such that (x ∗ c) ∗ y ≤ c. Then (x ∗ c) ∗ y ∈ [0, c]. Since [0, c] is a Smarandache BCC-ideal
of X related to Q and c ∈ [0, c], it follows from (c2) that x ∗ y ∈ [0, c] so that x ∗ y ≤ c. This
completes the proof.

Corollary 3.17. If [0, c], c ∈ X/{0}, is a Smarandache BCC-ideal of X related to Q, then

(∀x, y ∈ Q)((x ∗ c) ≤ c =⇒ x ≤ c).

Theorem 3.18. For every c ∈ X/{0}, if the equality

(∀x, y ∈ Q)(((x ∗ c) ∗ y) ∗ c = (x ∗ y) ∗ c)

is valid, then [0, c] is a Smarandache BCC-ideal of X related to Q.
Proof. Let ∀x, y ∈ Q and a ∈ [0, c] be such that (x ∗ a) ∗ y ∈ [0, c]. Then a ≤ c and

(x ∗ a) ∗ y ≤ c. It follows that

(x ∗ y) ∗ c = ((x ∗ c) ∗ y) ∗ c ≤ ((x ∗ a) ∗ y) ∗ c ≤ c ∗ c = 0,

so that (x ∗ y) ∗ c = 0, i.e., x ∗ y ≤ c. Hence x ∗ y ∈ [0, c] and therefore [0, c] is a Smarandache
BCC-ideal of X related to Q.
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Abstract The main purpose of this paper is to study the mean value properties of the Smarandache

additive factorial complements, and give an interesting asymptotic formula for it.
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§1. Introduction

For any positive integer n, the Smarandache factorial complements quotients of n, denoted
by a(n), is defined as follows

c(n) = min{k|nk = m!, k ≥ 0,m ∈ N+}.

In problem 45 of reference [1], professor F.Smarandache asked us to study the properties of
the factorial complements. Analogously, we can define the Smarandache additive factorial
complements a(n):

a(n) = min{k|n + k = m!, k ≥ 0,m ∈ N+}.
About arithmetical properties of the this sequence, it seems that none had studied it before. In
this paper, we use the elementary method to study the mean value properties of the Smaran-
dache additive factorial complements, and obtain an interesting asymptotic formula for it. That
is, we shall prove the following:

Theorem. For any real number x ≥ 1, we have the asymptotic formula

∑

n≤x

1
a(n) + 1

=
ln2 x

2 ln lnx
+ O

(
ln2 x ln ln lnx

(ln lnx)2

)
.

§2. Proof of the theorem

In this section, we will complete the proof of the theorem. For any real number x, let
positive integer m satisfy

M ! ≤ x < (M + 1)!. (1)
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Taking the logistic computation on both sides of the inequality, we get

M∑

i=1

ln i ≤ lnx <
M+1∑

i=1

ln i.

And then using the Euler’s summation formula we have

M∑

i=1

ln i = M lnM −M + O(lnM) (2)

and
M+1∑

i=1

ln i = M lnM −M + O(lnM). (3)

Combining (2) and (3), we can easily deduce that

lnx = M lnM −M + O(lnM).

So we get

M =
lnx

lnM − 1
+ O(1).

Similarly, taking logistic computation on both sides we have

lnM = ln lnx + O(ln lnM) (4)

and

M =
lnx

ln lnx
+ O

(
lnx ln ln lnx

(ln lnx)2

)
. (5)

According to the definition of a(n) and (1), we can write

∑

n≤x

1
a(n) + 1

=
∑

1≤m≤M−1


 ∑

m!≤n<(m+1)!

1
a(n) + 1


 +

∑

M !≤n≤x

1
a(n) + n

=
∑

1≤m≤M−1

m·m!∑

i=1

1
i

+
∑

n≤x−M !+1

1
n

=
∑

1≤m≤M−1

(
ln(m ·m!) + γ − 1 + O

(
1

m ·m!

))
+ O (ln(M ·M !)) ,

where γ is the Euler’s constant. Now combining the Stirling Formula (see reference [2]), we can
get

∑

n≤x

1
a(n) + 1

=
∑

1≤m≤M−1

lnm! +
∑

1≤m≤M−1

lnm + O(M lnM)

=
∑

1≤m≤M−1

m ln(m + 1)−
∑

1≤m≤M−1

m + O(M lnM).

Applying Abel’s identity (see reference [3]), we have

∑

n≤x

1
a(n) + 1

=
1
2
M2 lnM − 3

4
M2 + O(M lnM).
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So from (4) and (5), we obtain

∑

n≤x

1
a(n) + 1

=
ln2 x

2 ln lnx
+ O

(
ln2 x ln ln lnx

(ln lnx)2

)
.

This completes the proof of Theorem.
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1. Let f : N∗ −→ N be a given arithmetic function and A ⊂ N a given set. The arithmetic
function

FA
f (n) = min{k ∈ A : n | f(k)} (1)

has been introduced in [4] and [5].
For A = N, f(k) = k! one obtains the Smarandache function; For A = N∗, A = p =

{2, 3, 5, ·} = set of all primes, one obtains a function

P (n) = min{k ∈ P : n | k!} (2)

For the properties of this function, see [4] and [5]. The “dual” function of (1) has been
defined by

GA
g (n) = max{k ∈ A : g(k) | n}, (3)

where g : N∗ −→ N is a given function, and A ∈ N is a given set. Particularly, forA =
N∗, g(k) = k!, one obtains the dual of the Smarandache function,

S∗(n) = max{k ≥ 1 : k! | n} (4)

For the properties of this function, see [4] and [5]. F.Luca [3], K.Atanassov [1] and L.le [2]
have proved in the affirmative a conjecture of the author.
For A = N∗ and f(k) = g(k) = ϕ(k) in (1), resp.(3) one obtains the Euler minimum, resp.
maximum-function, defined by

E(n) = min{k ≥ 1 : n | ϕ(k)}, (5)



Vol. 1 The Smarandache minimum and maximum functions 163

E∗(n) = max{k ≥ 1 : ϕ(k) | n} (6)

For the properties of these function, see [6]. When A = N∗, f(k) = d(k) =number of divisors
of k, one obtains the divisor minimum function (see [4], [5] and [7])

D(n) = min{k ≥ 1 : n | d(k)}. (7)

It is interesting to note that the divisor maximum function (i.e., the “ dual” of D(n)) given by

D∗(n) = max{k ≥ 1 : d(k) | n} (8)

is not well defined! Indeed, for any prime p one has d(pn−1) = n | n and pn−1 is unbounded as
p −→∞. For a finite set A, however DA

∗ (n) does exist. On one hand, it has been shown in [4]
and [5] that

∑
(n) = min{k ≥ 1 : n | σ(k)} (9)

(denoted there by Fσ(n)) is well defined. (Here σ(k) denotes the sum of all divisors of k). The
dual of the sum-of-divisors minimum function is

∑
∗(n) = max(k ≥ 1 : σ(k) | n}) (10)

Since σ(1) = 1 | n and σ(k) ≥ k, clearly
∑

∗(n) ≤ n, so this function is well defined (see [8]).
2. The Smarandache minimum function will be defined for A = N∗, f(k) = S(k) in (1).

Let us denote this function by Smin :

Smin(n) = min{k ≥ 1 : n | S(k)} (11)

Let us assume that S(1) = 1, i. e., S(n) is defined by (1) for A = N∗, f(k) = k! :

S(n) = min{k ≥ 1 : n | k!} (12)

Otherwise (i.e.when S(1) = 0) by n | 0 for all n, by (11) for one gets the trivial function
Smin(n) = 0. By this assumption, however, one obtains a very interesting (and difficult)
function smin given by (11). Since n | S(n!) = n, this function is correctly defined.

The Smarandache maximum function will be defined as the dual of Smin :

Smax(n) = max(k ≥ 1 : S(k) | n}. (13)

We prove that this is well defined. Indeed, for a fixed n, there are a finite number of
divisors of n, let i | n be one of them. The equation

S(k) = i (14)

is well-known to have a number of d(i!) − d((i − 1)!) solutions, i. e., in a finite number. This
implies that for a given n there are at most finitely many k with S(k) | k, so the maximum in
(13) is attained.
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Clearly Smin(1) = 1, Smin(2) = 2, Smin(3) = 3, Smin(4) = 4, Smin(5) = 5, Smin(6) =
9, Smin(7) = 7, Smin(8) = 32, Smin(9) = 27, Smin(10) = 25, Smin(11) = 11, etc, which can be
determined from a table of Smarandache numbers:

n 1 2 3 4 5 6 7 8 9 10 11 12 13

S(n) 1 2 3 4 5 3 7 4 6 5 11 4 13

n 14 15 16 17 18 19 20 21 22 23 24 25

S(n) 7 5 6 7 6 19 5 7 11 23 4 10

We first prove that:
Theorem 1. Smin(n) ≥ n for all n ≥ 1, with equality only for

n = 1, 4, p(p = prime) (15)

Proof. Let n | S(k). If we would have k < n, then since S(k) ≤ k < n we should get
S(k) < n, in contradiction with n | S(k). Thus k ≥ n, and taking minimum, the inequality
follows. There is equality for n = 1 and n = 4. Let now n > 4. If n = p =prime, then
p | S(p) = p, but for k < p, p †S(k). Indeed, by S(k) ≤ k < p this is impossible. Reciprocally, if
min{k ≥ 1 : n | S(k)} = n, then n | S(n), and by S(n) ≤ n this is possible only when S(n) = n,
i. e., when n = 1, 4, p(p = prime).

Theorem 2. For all n ≥ 1,

Smin(n) ≤ n! ≤ Smax(n) (16)

Proof. Since S(n!)=n, definition (11) gives the left side of (16), while definition (13)
gives the right side inequality.

Corollary. The series
∑

n≥1

1
Smin(n)

is divergent, while the series
∑

n≥1

1
Smax(n)

is convergent.

Proof. Since
∑

n≥1

1
Smax(n)

≤
∑

n≥1

1
n!

= e − 1 by (16), this series is convergent. On the

other hand, ∑

n≥1

1
Smin(n)

≥
∑

p

1
Smin(p)

=
∑

p

1
p

= +∞,

so the first series is divergent.
Theorem 3. For all primes p one has

Smax(p) = p! (17)

Proof. Let S(k) | p. Then S(k) = 1 or S(k) = p. We prove that if S(k) = p, then k ≤ p!.
Indeed, this follows from the definition (12), since S(k) = min{m ≥ 1 : k | m!} = p implies
k | p!, so k ≤ p!. Therefore the greatest value of k is k = p!, when S(k) = p | p. This proves
relation (17).

Theorem 4. For all primes p,

Smin(2p) ≤ p2 ≤ Smax(2p) (18)



Vol. 1 The Smarandache minimum and maximum functions 165

and more generally; for all m ≤ p,

Smin(mp) ≤ pm ≤ Smax(mp) (19)

Proof. (19) follows by the known relation S(pm) = mp if m ≤ p and the definition (11),
(13). Particularly, for m = 2, (19) reduces to (18). For m = p, (19) gives

Smin(p2) ≤ pp ≤ Smax(p2) (20)

This case when m is also an arbitrary prime is given in.

Theorem 5. For all odd primes p and q, p < q one has

Smin(pq) ≤ qp ≤ pq ≤ Smax(pq) (21)

(21) holds also when p = 2 and q ≥ 5.

Proof. Since S(qp) = pq and S(pq) = qp for primes p and q, the extreme inequalities
of (21) follow from the definition (11) and (13). For the inequality qp < pq remark that this is
equivalent to f(p) > f(q), where f(x) = ln x

x (x ≥ 3).

Since f ′(x) = 1−ln x
x2 = 0 ⇔ x = e immediately follows that f is strictly decreasing for

x ≥ e = 2.71· From the graph of this function, since ln 2
2 = ln 4

4 we get that

ln 2
2

<
ln 3
3

,

but
ln 2
2

>
ln q

q

for q ≥ 5. Therefore (21) holds when p = 2 and q ≥ 5. Indeed, f(q) ≤ f(5) < f(4) = f(2).

Remark. For all primes p, q

Smin(pq) ≤ min{pq, qp} (22)

and

Smax(pq) ≥ max{pq, qp}. (23)

For p = q this implies relation (21).

Proof. Since S(qp) = S(pq) = pq, one has

Smin(pq) ≤ pq, Smin(pq) ≤ qp, Smax(pq) ≤ pq, Smax(pq) ≤ qp

.
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Abstract Charles Ashbacher [1] has posed a number of questions relating to the pseudo-smarandache

function Z(n). In this note we show that the ratio of consecutive values Z(n+1)/Z(n) and Z(n−1)/Z(n)

are unbounded; that Z(2n)/Z(n) is unbounded; that n/Z(n) takes every integer value infinitely often;

and that the
∑

n 1/Z(n)α is convergent for any α > 1.

§1. Introduction

We defined the m-th triangular number T (m) = m(m+1)
2 . Kashihara [2] has defined the

pseudo-Smarandache function Z(n) by

Z(n) = min{m : n|T (m)}.

Charles Ashbacher [1] has posed a number of questions relating to pseudo-Smarandache function
Z(n). In this note, we show that the ratio of consecutive values Z(n)/Z(n−1) and Z(n)/Z(n+1)
are unbounded; that Z(2n)/Z(n) is unbounded; and that n/Z(n) takes every integer value
infinitely often. He notes that the series

∑
n 1/Z(n)α is divergent for α = 1 and asks whether it

is convergent for α = 2. He further suggests that the least value α for which the series converges
“ may never be known ” . We resolve this problem by showing that the series converges for all
α > 1.

§2. Some Properties of t he Pseudo-Smarandache Function

We record some elementary properties of the funtion Z.
Lemma 1.(1) If n ≥ T (m), then Z(n) ≥ m,Z(T (m)) = m.
(2)For all n we have

√
n < Z(n).

(3)Z(n) ≤ 2n− 1, and if n is odd, then Z(n) ≤ n− 1.
(4)If p is an odd prime dividing n, then Z(n) ≥ p− 1.
(5)Z(2k) = 2k+1 − 1.
(6)If p is an odd prime, then Z(pk) = pk−1 and Z(2pk) = pk−1 or pk according as pk ≡ 1

or 3 mod 4.
We shall make use of Dirichlet’s Theorem on primes in arithmetic progression in the fol-

lowing form.
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Lemma 2. Let a, b be coprime integers. Then the arithmetic progression a + bt is prime
for infinitely many values of t.

§3. Successive Values of the Pseudo-Smarandache Function

Using the properties (3) and (5), Ashbacher observed that |Z(2k)−Z(2k− 1)| > 2k and so
the difference between the consecutive of Z is unbounded. He asks about the ratio of consecutive
values.

Theorem 1. For any given L > 0 there are infinitely many values of n such that Z(n +
1)/Z(n) > L, and there are infinitely many values of such that Z(n− 1)/Z(n) > L .

Proof. Choose k ≡ 3 mod 4, so that T (k) is even and (k + 1)|(m + 1). There are satisfied
if m ≡ k mod k(k + 1), that is , m = k + k(k + 1)t for some t. We have m(m + 1) =
k(1 + (k + 1)t)(k + 1)(1 + kt), so that if n = k(k + 1)(k + 1)(1 + kt)/2, we have n|T (m).
Now consider n + 1 = T (k) + 1 + kT (k)t. We have k|T (k), so T (k) + 1 is coprime to both k

and T (k). Thus the arithmetic progression T (k) + 1 + kT (k)t has initial term coprime to its
increment and by Dirichlet’s Theorem contains infinitely many primes. We find that there are
infinitely many values of t for which n + 1 is prime and so Z(n) ≤ m = k + k(k + 1)t and
Z(n + 1) = n = T (k)(1 + kt). Hence

Z(n + 1)
Z(n)

≥ n

m
=

T (k) + kT (k)t
k + 2T (k)t

>
k

3
.

A similar argument holds if we consider the arithmetic progression T (k)− 1+ kT (k)t. We then
find infinitely many values of t for which n− 1 is prime and

Z(n− 1)
Z(n)

≥ n− 2
m

=
T (k)− 2 + kT (k)t

k + 2T (k)t
>

k

4
.

The Theorem follows by taking k > 4L.

We note that this Theorem, combined with Lemma 1(2) , given another proof of the result
that the differences of consecutive values is unbounded.

§4. Divisibility of the Pseudo-Smarandache Function

Theorem 2. For any integer k ≥ 2 , the equation n/Z(n) = k has infinitely many solutions
n.

Proof. Fix an integer k ≥ 2. Let p be a prime ≡ −1 mod2k and put p + 1 = 2kt. Put
n = T (p)/t = p(p + 1)/2t = pk. Then n|T (p) so that Z(n) ≤ p . We have p|n, so Z(n) ≥ p− 1;
That is, Z(n) must be either p or p− 1. Suppose, if possible, that it is the latter. In this case
we have 2n|p(p+1) and 2n|(p−1)p, so 2n divides p(p+1)− (p−1) = 2p; but this is impossible
since k > 1 and so n > p. We conclude that Z(n) = p and n/Z(n) = k as required. Further,
for any given value of k there are infinitely many prime values of p satisfying the congruence
condition and infinitely many values of n = Y (p) such that Z/Z(n) = k.



Vol. 1 Some properties of the pseudo-Smarandache function 169

§5. Another Divisibility Question

Theorem 3. The ratio Z(2n)/Z(n) is not bounded above.
Proof. Fix an integer k, let p ≡ −1mod 2k be prime and put n = T (p). Then Z(n) = p.

Consider Z(2n) = m. We have 2kp|p(p + 1) = 2n and this divides m(m + 1)/2. We have m = ε

mod p and m ≡ δ mod 2k+1 where each of ε, δ can be either 0 or −1.
Let m = pt + ε. Then m ≡ ε− t ≡ δ mod 2k. This implies that either t = 1 or t ≥ 2k − 1.

Now if t = 1 then m ≤ p and T (m) ≤ T (p) = n, which is impossible since 2n ≤ T (m). Hence
t ≥ 2k − 1. Since Z(2n)/Z(n) = m/p > t/2, we see that the ratio Z(2n)/Z(n) can be made as
large as desired.

§6. Convergence of A Series

Ashbacher observes that the series
∑

n 1/Z(n)α diverges for α = 1 and asks whether it
converges for α = 2 .

Lemma 3.

log n ≤
n∑

m=1

1/Z(n)α ≤ 1 + log n;

1
2
(log n)2 − 0.257 ≤

n∑
m=1

log m

m
≤ 1

2
(log n)2 + 0.110,

for n ≥ 4.

Proof. For the first part, we have 1
m ≤ 1

t ≤ 1
m−1 for t ∈ [m− 1,m]. Integrating,

1
m
≤

∫ m

m−1

1
t
dt ≤ 1

m− 1

Summing,

n∑
2

1
m
≤

∫ n

1

1
t
dt ≤

n∑
2

1
m− 1

That is ,

n∑
1

1
m
≤ 1 + log n

and

log n ≤
n−1∑

1

1
m

The result follows.
For the second part, we similarly have log m/m ≤ log t/t ≤ log(m − 1)/(m − 1), for

t ∈ [m− 1,m] when m ≥ 4, since log x/x is monotonic decreasing for x ≥ e.
Integrating,

log m

m
≤

∫ m

m−1

log t

t
dt ≤ m− 1

m
.
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Summing,

n∑
4

log m

m
≤

∫ n

3

log t

t
dt ≤

n∑
4

m− 1
m

.

That is,

n∑
1

log m

m
− log 2

2
− log 3

3

≤ 1
2
(log n)2 − 1

2
(log 3)2

≤
n∑
1

log m

m
− log n

n
− log 2

2
.

We approximate the numerical values

log 2
2

+
log 3

3
− 1

2
(log 3)2 < 0.110

and
log 2

2
− 1

2
(log 3)2 > −0.257

to obtain the result.
Lemma 4. Let d(m) be the function which counts the divisors of m. For n ≥ 2 we have

n∑
m=1

d(m)/m < 7(log n)2.

Proof. We verify the assertion numerically for n ≤ 6. Now assume that n ≥ 8 > e2, we
have

n∑
m=1

d(m)
m

=
n∑

m=1

∑

de=m

1
m

=
∑

d≤n

∑

de≤n

1
de

=
∑

d≤n

1
d

∑

e<n/d

1
e
≤

∑

d≤n

1
d
(1 + log(n/d))

≤ (1 + log n)2 − 1
2
(log n)2 + 0.257

= 1.257 + 2 log n +
1
2
(log n)2

<
4
3
(
log n

2
)2 + 2 log n(

log n

2
) +

1
2
(log n)2

< 2(log n)2

Lemma 5. Fix an integer t ≥ 5. Let et > Y > e(t−1)/2. The number of integers n with
et−1 > n > et such that Z(n) ≤ Y is at most 196Y t2.

Proof. Consider such an n with m = Z(n) ≤ Y . Now n|m(m + 1), say k1n1 = m and
k2n2 = m + 1, with n = n1n2. Thus k = k1k2 = m(m + 1)/n and k1n1 ≤ Y . The value
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of k is bounded below by 2 and above by m(m + 1)/n ≤ 2Y 2/et−1 = K, say. Given a pair
(k1, k2), the possible values of n1 are bounded above by Y/k1 and must satisfy the congruence
condition k1n1 + 1 ≡ 0 modulo k2: there are therefore at most Y/k1k2 + 1 such values. Since
Y/k ≥ Y/K = et−1/2Y > 1/2e, we have Y/k + 1 < (2e + 1)Y/k < 7Y/k. Given values for
k1, k2 and n1, the value of n2 is fixed as n2 = (k1n1 + 1)/k2. There are thus at most

∑
d(k)

possible pairs (k1, k2) and hence at most
∑

7Y d(k)/k possible quadruples (k1, k2, n1, n2). We
have K > 2, so that the previous Lemma applies and we can deduce that the number of values
of n satisfying the given conditions is most 49Y (logK)2. Now K = 2Y 2/et−1 < 2et+1 so
log K < t + 1 + log 2 < 2t. This establishes the claimed upper bound of 196Y t2.

Theorem 4. Fix 1
2 < β < 1 and integer t ≥ 5. The number of integers n with et−1 < n <

et, such that Z(n) < nβ is at most 196t2eβt.

Proof. We apply the previous result with Y = eβt. The conditions of β ensure that the
previous Lemma is applicable and the upper bound on the number of such n is 196t2eβt as
claimed.

Theorem 5. The series
∞∑

n=1

1
Z(n)α

is convergent for any α >
√

2.

Proof. We note that if α > 2 then frac1Z(n)α < 1
nα and the series is convergent . So we

may assume
√

2 < α < 2 . Fix β with 1
α < β < α

2 . We have 1
2 < β <

√
1
2 < α

2 .

We split the positive integers n > e4 into two classes A and B. We let class A be the
union of the At where, for postive integer t ≥ 5 we put into class At those integers n such that
et−1 < n < et for integer t and Z(n) ≤ nβ . All values of n with Z(n) > nβ we put into class
B. We consider the sum of 1

Z(n)α over each of the two classes. Since all terms are positive, it is
sufficient to prove that each series separately is convergent.

Firstly we observe that for n ∈ B, we have 1
Z(n)α < 1

nαβ and since αβ > 1 the series
summed over the class B is convergent.

Consider the elements n of At : so for such n we have et−1 < n < et and Z(n) < nβ . By
the previous result, the number of values of n satisfying these conditions is at most 196t2eβt.
For n ∈ At, we have Z(n) >

√
n, so 1/Z(n)α ≤ 1/nα/2 < 1/eα(t−1)/2. Hence the sum of the

subseries
∑

n ∈ At
1

Z(n)α is at most 196t2eα/2e(β−α/2)t. Since β < α/2 for α >
√

2 , the sum
over all t of these terms is finite.

We conclude that
∑

1
Z(n)α is convergent for any α >

√
2.

Theorem 6. The series
∞∑

n=1

1
Z(n)α

is convergent for any α > 1.

proof. We fix β0 = 1 > β1 > · · · > βr = 1
2 with βj < αβj+1 for 0 ≤ j ≤ r− 1. We defined

a partition of the integers et−1 < n < et into classes Bt and Ct(j), 1 ≤ j ≤ r− 1. Into Bt place
those n with Z(n) > nβ1 . Into Ct(j) place those n with nβj+1 < Z(n) < nβj . Since βr = 1

2 we
see that every n with et−1 < n < et is placed into one of the classes.
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The number of elements in Ct(j) is at most 196t2eβjt and so

∑

n∈Ct(j)

1
Z(n)α

< 196t2eβjte−βjα(t−1) = 196t2eβj+1αe(βj−αβj+1)t.

For each j we have βj < αβj+1 so each sum over t converges.
The sum over the union of the Bt is bounded above by

∑
n

1
nαβ1

,

which is convergent since αβ1 > β0 = 1.
We conclude that

∑∞
n=1

1
Z(n)α is convergent.
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Abstract For any positive integer n, let φ(n) be the Euler function, and S(n) denotes the Smarandache

function. The main purpose of this paper is using the elementary methods to study the number of the

solutions of the equation φ(n) = S(nk), where k is any fixed positive integer, and give all solutions for

this equation.

Keywords Euler function; Smarandache function; Equation; Solutions.

§1. Introduction

For any positive integer n, let S(n) denotes the Smarandache function, S(n) is defined as
the smallest positive integer m such that n|m!. From the definition one can easily deduce that
if n = pα1

1 pα2
2 · · · pαk

k is the factorization of n into prime powers, then S(n) = max{S(pαi
i )},

where the maximum is taken over the i’s from 1 to k. Let φ(n) denotes the Euler function.
That is, φ(n) denotes the number of all positive integers not exceeding n which are relatively
prime to n. It is clear that φ(n) is a multiplicative function.

In this paper, we shall study the number of the solutions of the equation φ(n) = S(nk),
where k is any fixed positive integer. About this problem, it is easy to get that n = 1 be a
solution of the equation, but now we don’t know whether it have finite solutions or not. Here, we
shall use the elementary methods to solve this problem, and give all solutions for this equation
for any fixed positive integer k. That is, we shall prove the following conclusions:

Theorem 1. The equation φ(n) = S(n2) have three solutions, namely n = 1, 24, 50.
Theorem 2. The equation φ(n) = S(n3) have three solutions, namely n = 1, 48, 98.
Theorem 3. The equation φ(n) = S(n4) has one solution, namely n = 1.
Note. Using the similarly method, we can also deduce that the equation φ(n) = S(nk)

have the finite solutions, where k be any fixed positive integer.

§2. Proof of the theorem

In this section, we will complete the proof of the theorem. First, we need one simple lemma
which is necessary in the proof of Theorems.

Lemma If p is prime, then S(pk) ≤ kp. If k < p, then S(pk) = kp, where k be any fixed
positive integer.

1This work is supported by the N.S.F(10271093) and P.N.S.F of P.R.China
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Proof. ( See reference [2] ).
Now we shall complete the proofs of Theorems.
The proof of Theorem 1. Let n = pα1

1 pα2
2 · · · pαk

k , then from the definitions of S(n)
and φ(n) we have

S(n2) = max{S(p2αi
i )} = S(p2α),

where p be prime, and
φ(n) = pα−1(p− 1)φ(n1),

where (n1, p) = 1. That is, the largest common factor n1 and p is 1.
It is clear that n = 1 is a solution of the equation φ(n) = S(n2). If n > 1 then we will

discuss the problem in the following cases:
(i) Let α = 1.
If p = 2, then S(22) = 4, φ(n) = (2− 1)φ(n1), from S(n2) = S(22) = φ(n) = φ(n1), we get

φ(n1) = 4, so n1 = 5, then n = 22× 5. But now S(24 · 52) = 10 6= φ(22× 5), hence the equation
has no solution in this case.

If p ≥ 3, then from Lemma we have S(p2) = 2p, φ(n) = (p − 1)φ(n1), note that p † (p −
1)φ(n1), hence the equation has no solution in this case.

(ii) Let α = 2.
If p = 2, then S(24) = 6 = 2φ(n1), no solution.
If p = 3, then S(34) = 9 = 3× 2φ(n1), no solution.
If p = 5, then S(54) = 20 = 5× 4φ(n1), so n1 = 2, hence n = 52 × 2 is a solution.
If p ≥ 7, then S(p4) = 4p = p(p− 1)φ(n1), note that p− 1 > 4, hence no solution.
(iii) Let α = 3.
If p = 2, then S(26) = 8 = 4φ(n1), so n1 = 3, hence n = 23 × 3 is a solution.
If p = 3, then S(36) = 15 = 32 × 2φ(n1), no solution.
If p = 5, then S(56) = 25 = 52 × 4φ(n1), no solution.
If p = 7, then S(76) = 42 = 72 × 6φ(n1), no solution.
If p > 7, then S(p6) = 6p = p(p− 1)φ(n1), note that p− 1 > 6, no solution.
(iv) Let α = 4.
If p = 2, then S(28) = 10 = 8φ(n1), no solution.
If p ≥ 3, from Lemma we have S(p2α) < 2pα, note that φ(n) = pα−1(p − 1)φ(n1) and

pα−1 > 2pα, no solution.
(v) Let α = 5.
If p = 2, then S(210) = 12 = 24φ(n1), no solution.
If p ≥ 3, from Lemma we have S(p2α) < 2pα, note that φ(n) = pα−1(p − 1)φ(n1) and

pα−1 > 2pα, no solution.
(vi) Let α ≥ 6.
If p ≥ 2, from Lemma we have S(p2α) < 2pα, note that φ(n) = pα−1(p − 1)φ(n1) and

pα−1 > 2pα, no solution.
Combining (i) to (vi), we may immediately get that the equation φ(n) = S(n2) have three

solutions, namely n = 1, 24, 50. This completes the proof of Theorem 1.
Similarly, using the same methods we can also deduce the results of Theorem 2 and The-

orem 3. This complete the proofs of Theorems.
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For the general positive integer k, from the methods of proving our Theorems we can get
that the equation φ(n) = S(nk) have finite solutions.
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Abstract In [1] Recursive Prime Numbers were studied and shown to be finite. This article deals

with the same ”recursive” topic, but applies the method to numbers whose Smarandache value, S(n),

gives a palindromic number. Here, S(n) denotes the Smarandache function of least m such that n

divides m!, and a palindrome is an integer that reads the same forwards and backwards (23432, for

example). This sequence of recursive palindromic Smarandache values is shown to be finite with 1514384

being the last term.

Recursive palindromic Smarandache values (RPSV) are integers n > 0, such that S(n)
gives a palindromic value, and repeatedly deleting the rightmost digits of n and taking S(n)
at each step also gives a palindromic value until only a single digit remains. (Note that the
numbers are not permitted to have zeroes.) Example:

n S(n)

94649 1514384

373 151438

797 15143

1514 757

151 151

15 5

1 1

The same algorithm outlined in [1] was used to generate all RPSV sets beginning with each
digit 1 through 9. To summarize the basic algorithm, two arrays are defined: A1, contains only
the initial digit, then A2 is filled with any integers that give palindromic Smarandache values
after multiplying the integers in A1 by 10 and adding y, with 1 ≤ y ≤ 9. A1 is then updated
with the A2 values. This process is repeated until no solutions are found and thus A2 is empty.
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This is enough to prove that the sequence is finite. And using this algorithm, RPSVs were
found to be finite with 1514384 being the last term.

As in [1], genetic trees can be constructed from each digit for visualization and comparison
purposes. Below, only the genetic tree for the digit 5 is produced. It is left to readers so inclined
to construct the other trees. (However, the full sequence of RPSV numbers is given at the end
of this article.)

Tree of recursive palindromic Smarandache values with starting digit 5:

5

54 55 56

543 567

5436

54362 54365

543654

To show that the numbers in the genetic tree above are recursively palindromic when S(n)
is applied, let us demonstrate with 54365:

n S(n)

54365 131

5436 151

543 181

54 9

5 5

Unsolved Questions: What is the sequence of RPSVs when the leftmost digits are
repeatedly deleted? Is the sequence finite?

Full Sequence of RPSVs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 21, 22, 24, 27,
28, 32, 33, 35, 36, 42, 44, 45, 48, 54, 55, 56, 63, 64, 66, 72, 77, 81, 84, 88, 96, 99, 112, 121,
126, 128, 144, 151, 154, 162, 165, 168, 181, 189, 216, 224, 242, 275, 288, 324, 336, 352, 353,
362, 363, 448, 453, 484, 543, 567, 648, 724, 726, 727, 847, 968, 1212, 1267, 1441, 1448, 1512,
1514, 1515, 1629, 1812, 1815, 1818, 2424, 2751, 2757, 2882, 3247, 3535, 3537, 3624, 3629, 3635,
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3636, 4536, 4847, 4848, 4849, 5436, 7248, 7272, 7277, 8472, 12127, 12672, 15125, 15143, 18154,
18181, 24245, 27512, 27573, 27576, 32476, 35353, 36359, 36362, 48471, 54362, 54365, 72724,
72727, 72771, 126723, 151436, 151437, 151438, 181542, 181543, 275127, 275762, 363594, 363629,
484718, 543654, 1514384.
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Abstract In this paper we analyze and study the Smarandache idempotents (S-idempotents) in the

ring Zn and in the group ring ZnG of a finite group G over the finite ring Zn. We have shown the

existance of Smarandache idempotents (S-idempotents) in the ring Zn when n = 2mp (or 3p), where

p is a prime > 2 (or p a prime > 3). Also we have shown the existance of Smarandache idempotents

(S-idempotents) in the group ring Z2G and Z2Sn where n = 2mp (p a prime of the form 2mt + 1).

§1. Introduction

This paper has 4 sections. In section 1, we just give the basic definition of S-idempotents in
rings. In section 2, we prove the existence of S-idempotents in the ring Zn where n = 2mp,m ∈
N and p is an odd prime. We also prove the existence of S-idempotents for the ring Zn where
n is of the form n = 3p, p is a prime greater than 3. In section 3, we prove the existence of
S-idempotents in group rings Z2G of cyclic group G over Z2 where order of G is n, n = 2mp (p
a prime of the form 2mt + 1). We also prove the existence of S-idempotents for the group ring
Z2Sn where n = 2mp (p a prime of the form 2mt + 1). In the final section, we propose some
interesting number theoretic problems based on our study.

Here we just recollect the definition of Smarandache idempotents (S-idempotent) and some
basic results to make this paper a self contained one.

Definition 1.1[5]. Let R be a ring. An element x ∈ R 0 is said to be a Smarandache
idempotent (S-idempotent) of R if x2 = x and there exist a ∈ R x, 0 such that

i. a2 = x

ii. xa = x or ax = a.

Example 1.1. Let Z10 = {0, 1, 2, . . . , 9} be the ring of integers modulo 10. Here

62 ≡ 6(mod10), 42 ≡ 6(mod10)

and
6 · 4 ≡ 4(mod10).
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So 6 is a S-idempotent in Z10.
Example 1.2. Take Z12 = {0, 1, 2, . . . , 11} the ring of integers modulo 12. Here

42 ≡ 4(mod12), 82 ≡ 4(mod12)

and

4 · 8 ≡ 8(mod12).

So 4 is a S-idempotent in Z12.
Example 1.3. In Z30 = {0, 1, 2, . . . , 29} the ring of integers modulo 30, 25 is a S-

idempotent. As

252 ≡ 25(mod30), 52 ≡ 25(mod30)

and

25 · 5 ≡ 5(mod30).

So 25 is a S-idempotent in Z30.
Theorem 1.1 [5]. Let R be a ring. If x ∈ R is a S-idempotent then it is an idempotent

in R.
Proof. From the very definition of S-idempotents.

§2. S-idempotents in the finite ring Zn

In this section, we find conditions for Zn to have S-idempotents and prove that when n is
of the form 2mp, p a prime ¿2 or n = 3p (p a prime ¿3) has S-idempotents. We also explicitly
find all the S-idempotents.

Theorem 2.1. Zp = {0, 1, 2, . . . , p− 1}, the prime field of characteristic p, where p is a
prime has no non-trivial S-idempotents.

Proof. Straightforward, as every S-idempotents are idempotents and Zp has no non-
trivial idempotents.

Theorem 2.2: The ring Z2p, where p is an odd prime has S-idempotents.
Proof. Here p is an odd prime, so p must be of the form 2m + 1 i.e p = 2m + 1. Take

x = p + 1 and a = p− 1.

Here

p2 = (2m + 1)2 = 4m2 + 4m + 1

= 2m(2m + 1) + 2m + 1

= 2pm + p

≡ p(mod2p).

So

p2 ≡ p(mod2p).
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Again

x2 = (p + 1)2 ≡ p2 + 1(mod2p)

≡ p + 1(mod2p).

Therefore
x2 = x.

Also
a2 = (p− 1)2 ≡ p + 1(mod2p),

therefore
a2 = x.

And

xa = (p + 1)(p− 1)

= p2 − 1

≡ p− 1(mod2p)

therefore
xa = a.

So x = p + 1 is a S-idempotent in Z2p.
Example 2.1. Take Z6 = Z2·3 = {0, 1, 2, 3, 4, 5} the ring of integers modulo 6. Then

x = 3 + 1 = 4 is a S-idempotent. As

x2 = 42 ≡ 4(mod6),

take a = 2, then a2 = 22 ≡ 4(mod6).
Therefore

a2 = x,

and
xa = 4 · 2 ≡ 2(mod6)

i.e
xa = a.

Theorem 2.3. The ring Z22p, p a prime > 2 and is of the form 4m + 1 or 4m + 3 has
(at least) two S-idempotents.

Proof. Here p is of the form 4m + 1 or 4m + 3.
If p = 4m + 1, then p2 ≡ p(mod22p). As

p2 = (4m + 1)2

= 16m2 + 8m + 1

= 4m(4m + 1) + 4m + 1

= 4pm + p

≡ p(mod22p),
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therefore
p2 ≡ p(mod22p).

Now, take x = 3p + 1 and a = p− 1 then

x2 = (3p + 1)2 = 9p2 + 6p + 1

≡ 9p + 6p + 1(mod22p)

≡ 3p + 1(mod22p)

therefore
a2 = x.

And

xa = (3p + 1)(p− 1)

= 3p2 − 3p + p− 1

≡ p− 1(mod22p)

therefore
xa = a.

So x is an S-idempotent.
Similarly, we can prove that y = p, (here take a = 3p) is another S-idempotent. These are

the only two S-idempotents in Z22p when p = 4m + 1. If p = 4m + 3, then p2 ≡ 3p(mod22p).
As above, we can show that x = p + 1, (a = 3p − 1) and y = 3p, (a = p) are the two

S-idempotents. So we are getting a nice pattern here for S-idempotents in Z22p:
I. If p = 4m + 1, then x = 3p + 1, (a = p − 1) and y = p, (a = 3p) are the two

S-idempotents.
II. If p = 4m+3, x = p+1, (a = 3p−1) and y = 3p, (a = p) are the two S-idempotents.
Example 2.2. Take Z22·5 = {0, 1, . . . , 19}, here 5 = 4 · 1 + 1. So x = 3 · 5 + 1 = 16, (a =

5 − 1 = 4) is an S-idempotent. As 162 ≡ 16(mod20), 42 ≡ 16(mod20) and 16 · 4 ≡ 4(mod20).
Also y = 5, (a = 3 · 5 = 15) is another S-idempotent. As 52 ≡ 5(mod20), 152 ≡ 5(mod20) and
5 · 15 ≡ 15(mod20).

Example 2.3. In the ring Z22·7 = {0, 1, . . . , 27}, here 7 = 4 · 1+3, x = 7+1 = 8, (a = 3 ·
7 − 1 = 20) is an S-idempotent. As 82 ≡ 8(mod28), 202 ≡ 8(mod28) and 8 · 20 ≡ 20(mod28).
Also y = 3 · 7 = 21, (a = 7) is another S-idempotent. As 212 ≡ 21(mod28), 72 ≡ 21(mod28)
and 21 · 7 ≡ 7(mod28).

Theorem 2.4. The ring Z23p, p a prime > 2 has (at least) two S-idempotents of φ(23)
types (where φ(n) is the number of integer less than n and relatively prime to n).

Proof. As p is prime > 2. So p is one of the 8m + 1, 8m + 3, 8m + 5, 8m + 7. Now we
will get the following two S-idempotents for each φ(23) = 4 types of prime p.

I. If p = 8m + 1, then x = 7p + 1, (a = p− 1) and y = p, (a = 7p) are S-idempotents.
II. If p = 8m + 3, then x = 5p + 1, (a = 3p− 1) and y = 3p, (a = 5p) are S-idempotents.
III. If p = 8m + 5, then x = 3p + 1, (a = 5p− 1) and y = 5p, (a = 3p) are S-idempotents.
IV. If p = 8m + 7, then x = p + 1, (a = 7p− 1) and y = 7p, (a = p) are S-idempotents.
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Example 2.4. In the ring Z23·3 = {0, 1, . . . , 23}, here 3 = 8 · 0 + 3. So x = 5 · 3 +
1 = 16, (a = 3 · 3 − 1 = 8) is an S-idempotent. As 162 ≡ 16(mod24), 82 ≡ 16(mod24) and
16 · 8 ≡ 8(mod24). Also y = 3 · 3 = 9, (a = 5 · 3 = 15) is another S-idempotent. As 92 ≡
9(mod24), 152 ≡ 9(mod24) and 9 · 15 ≡ 15(mod24).

Example 2.5. Take Z23·13 = Z104 = {0, 1, . . . , 103}, here 13 = 8 ·1+5. So x = 3 ·13+1 =
40, (a = 5 · 13 − 1 = 64) is an S-idempotent. As 402 ≡ 40(mod104), 642 ≡ 40(mod104) and
40 · 64 ≡ 64(mod104). Also y = 5 · 13 = 65, (a = 3 · 13 = 39) is another S-idempotent. As
652 ≡ 65(mod104), 392 ≡ 65(mod104) and 65 · 39 ≡ 39(mod104).

Theorem 2.5. The ring Z24p, p a prime > 2 has (at least) two S-idempotents for each
of φ(24) types of prime p.

Proof. As above, we can list the S-idempotents for all φ(24) = 8 types of prime p.
I. If p = 16m + 1, then x = 15p + 1, (a = p− 1) and y = p, (a = 15p) are S-idempotents.
II. If p = 16m+3, then x = 13p+1, (a = 3p−1) and y = 3p, (a = 13p) are S-idempotents.
III. If p = 16m+5, then x = 11p+1, (a = 5p−1) and y = 5p, (a = 11p) are S-idempotents.
IV. If p = 16m + 7, then x = 9p + 1, (a = 7p− 1) and y = 7p, (a = 9p) are S-idempotents.
V. If p = 16m + 9, then x = 7p + 1, (a = 9p− 1) and y = 9p, (a = 7p) are S-idempotents.
VI. If p = 16m+11, then x = 5p+1, (a = 11p−1) and y = 11p, (a = 5p) are S-idempotents.
VII. If p = 16m + 13, then x = 3p + 1, (a = 13p − 1) and y = 13p, (a = 13p) are

S-idempotents.
VIII. If p = 16m+15, then x = p+1, (a = 15p−1) and y = 15p, (a = p) are S-idempotents.
Example 2.6. In the ring Z24·17 = Z272 = {0, 1, . . . , 271}, here 17 = 16 · 1 + 1. So

x = 15 · 17 + 1 = 256, (a = 17 − 1 = 16) is an S-idempotent. As 2562 ≡ 256(mod272), 162 ≡
256(mod272) and 256 · 16 ≡ 16(mod272). Also y = 17, (a = 15 · 17 = 255) is another S-
idempotent. As 172 ≡ 17(mod272), 2552 ≡ 17(mod272) and 17 · 255 ≡ 255(mod272).

We can generalize the above result as followings:
Theorem 2.6. The ring Z2np, p a prime > 2 has (at least) two S-idempotents for each

of φ(2n) types of prime p.
Proof. Here p is one of the φ(2n) form:

2nm1 + 1, 2nm2 + 3, . . . 2nmφ(2n) + (2n − 1).

We can find the two S-idempotents for each p as above. We are showing here for the prime
p = 2nm1 + 1 only. If

p = 2nm1 + 1,

then
x = (2n − 1)p + 1, (a = p− 1)

and
y = p, (a = (2n − 1)p)

are S-idempotents.
Similarly we can find S-idempotents for each of the φ(2n) form of prime p.
Theorem 2.7. The ring Z3p, p a prime > 3 has (at least) two S-idempotents of φ(3)

types.
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Proof. Here p can be one of the form 3m + 1 or 3m + 2. We can apply the Theorem 2.6
for Z3p also.

I. If p = 3m + 1, then x = 2p + 1, (a = p− 1) and y = p, (a = 2p) are S-idempotents.
II. If p = 3m + 2, then x = p + 1, (a = 2p− 1) and y = 2p, (a = p) are S-idempotents.
Example 2.7. In the ring Z3·5 = Z15 = {0, 1, . . . , 14}, here 5 = 3 · 1 + 2. So x = 5 + 1 =

6, (a = 2 · 5 − 1 = 9) is an S-idempotent. As 62 ≡ 6(mod15), 92 ≡ 6(mod15) and 6 · 9 ≡
9(mod15). Also y = 2 · 5 = 10, (a = 5) is another S-idempotent. As 102 ≡ 10(mod15), 52 ≡
10(mod15) and 10 · 5 ≡ 5(mod15).

Remark: The above result is not true for the ring Z32p, p prime > 3. As, for p =
9m + 5; x = 4p + 1, (a = 5p− 1) should be an S-idempotent from the above result. But we see
it is not the case in general; for take the ring Z32·23 = Z207 = {0, 1, . . . , 206}. Here p = 9 · 2+5.
Now take

x = 4 · 23 + 1 = 93 and a = 5 · 23− 1 = 114.

But
x2 6≡ x(mod207).

So x is not even an idempotent. So x = 4p + 1 is not an S-idempotent of Z32p.

§3. S-idempotents in the group rings Z2G

Here we prove the existance of Smarandache idempotents for the group rings Z32p of the
cyclic group G of order 2np where p is a prime of the form 2nt + 1.

Example 3.2. Let G = {g/g52 = 1} be the cyclic group of order 22 · 13. Consider the
group ring Z2G of the group G over Z2. Take

x = 1 + g4 + g8 + g12 + . . . + g44 + g48

and
a = 1 + g2 + g4 + . . . + g22 + g24

then
x2 = x, and a2 = x

also
x · a = x.

So x = 1 + g4 + g8 + g12 + . . . + g44 + g48 is a S-idempotent in Z2G.
Theorem 3.1. Let Z2G be the group ring of the finite cyclic group G of order 22p, where

p is a prime of the form 22m + 1, then the group ring Z2G has non-trivial S-idempotents.
Proof. Here G is a cyclic group of order 22p, where p of the form 22m + 1.
Take

x = 1 + g4 + g8 + . . . + g16m

and
a = 1 + g2 + g4 + . . . + g8m
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then

x2 = (1 + g4 + g8 + . . . + g16m)2

= 1 + g4 + g8 + . . . + g16m

= x.

And

a2 = (1 + g2 + g4 + . . . + g8m)2

= 1 + (g2)2 + (g4)2 + . . . + (g8m)2

= x.

Also

x · a = (1 + g4 + g8 + . . . + g16m)(1 + g2 + g4 + . . . + g8m)

= 1 + g4 + g8 + . . . + g16m

= x.

So x = 1 + g4 + g8 + . . . + g16m is a S-idempotent in Z2G.
Example 3.3. Let G = {g/g136 = 1} be the cyclic group of order 23 · 17. Consider the

group ring Z2G of the group G over Z2.
Take

x = 1 + g8 + g16 + . . . + g128

and
a = 1 + g4 + g8 + . . . + g64

then

x2 = (1 + g8 + g16 + . . . + g128)2

= 1 + g8 + g16 + . . . + g128

= x.

And

a2 = (1 + g4 + g8 + . . . + g64)2

= 1 + (g4)2 + (g8)2 + . . . + (g64)2

= x.

Also

x · a = (1 + g8 + g16 + . . . + g128)(1 + g4 + g8 + . . . + g64)

= 1 + g8 + g64 + . . . + g128

= x.

So x = 1 + g8 + g16 + . . . + g128 is a S-idempotent in Z2G.
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Theorem 3.2. Let Z2G be the group ring of a finite cyclic group G of order 23p, where
p is a prime of the form 23m + 1, then the group ring Z2G has non-trivial S-idempotents.

Proof. Here G is a cyclic group of order 23p, where p of the form 23m + 1.
Take

x = 1 + g8 + g16 + . . . + g8(p−1)

and
a = 1 + g4 + g8 + . . . + g4(p−1)

then

x2 = (1 + g8 + g16 + . . . + g8(p−1))2

= 1 + g8 + g16 + . . . + g8(p−1)

= x.

And

a2 = (1 + g4 + g8 + . . . + g4(p−1))2

= 1 + (g4)2 + (g8)2 + . . . + (g8(p−1))2

= x.

Also

x · a = (1 + g8 + g16 + . . . + g8(p−1))(1 + g4 + g8 + . . . + g4(p−1))

= 1 + g8 + g16 + . . . + g8(p−1)

= x.

So x = 1 + g8 + g16 + . . . + g8(p−1) is a S-idempotent in Z2G.
We can generalize the above two results as followings:
Theorem 3.3. Let Z2G be the group ring of a finite cyclic group G of order 2np, where

p is a prime of the form 2nt + 1, then the group ring Z2G has non-trivial S-idempotents.
Proof. Here G is a cyclic group of order 2np, where p of the form 2nt + 1.
Take

x = 1 + g2n

+ g2n·2 + . . . + g2n(p−1)

and
a = 1 + g2n−1

+ g2n−1·2 + . . . + g2n−1·(p−1)

then

x2 = (1 + g2n

+ g2n·2 + . . . + g2n(p−1))2

= 1 + g2n

+ g2n·2 + . . . + g2n(p−1)

= x.

And

a2 = (1 + g2n−1
+ g2n−1·2 + . . . + g2n−1·(p−1))2

= 1 + (g2n−1
)2 + (g2n−1·2)2 + . . . + (g2n−1·(p−1))2

= x.
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Also

x · a = (1 + g2n

+ g2n·2 + . . . + g2n(p−1))(1 + g2n−1
+ g2n−1·2 + . . . + g2n−1·(p−1))

= 1 + g2n

+ g2n·2 + . . . + g2n(p−1)

= x.

So x = 1 + g2n

+ g2n·2 + . . . + g2n(p−1) is a S-idempotent in Z2G.
Corollary 3.1. Let Z2Sn be the group ring of a symmetric group Sn where n = 2np, and

p is a prime of the form 2nt + 1, then the group ring Z2Sn has non-trivial S-idempotents.
Proof. Here Z2Sn is a group ring where n = 2np, and p of the form 2nt+1. Clearly Z2Sn

contains a finite cyclic group of order 2np. Then by the Theorem 3.3, Z2Sn has a non-trivial
S-idempotent.

§4. Conclusions

Here we have mainly proved the existance of S-idempotents in certain types of group rings.
But it is interesting to enumerate the number of S-idempotents for the group rings Z2G and
Z2Sn in the Theorem 3.3 and Corollary 3.1. We feel that Z2G can have only one S-idempotent
but we are not in a position to give a proof for it. Also, the problem of finding S-idempotents
in ZpSn (and ZpG) where (p, n) = 1 (and (p, |G|) = 1) or (p, n) = d 6= 1 (and (p, |G|) = d 6= 1)
are still interesting number theoretic problems.
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Abstract In this paper we establish the existence of S-idempotents in case of loop rings ZtLn(m)

for a special class of loops Ln(m); over the ring of modulo integers Zt for a specific value of t. These

loops satisfy the conditions g2
i for every gi ∈ Ln(m). We prove ZtLn(m) has an S-idempotent when t

is a perfect number or when t is of the form 2ip or 3ip (where p is an odd prime) or in general when

t = pi
1p2(p1 and p2 are distinct odd primes), It is important to note that we are able to prove only the

existence of a single S-idempotent; however we leave it as an open problem whether such loop rings

have more than one S-idempotent.

§1. Basic Results

This paper has three sections. In section one, we give the basic notions about the loops
Ln(m) and recall the definition of S-idempotents in rings. In section two, we establish the
existence of S-idempotents in the loop ring ZtLn(m). In the final section, we suggest some
interesting problems based on our study.

Here we just give the basic notions about the loops Ln(m) and the definition of S-
idempotents in rings.

Definition 1.1 [4]. Let R be a ring. An element x ∈ R \ {0} is said to be a Smarandache
idempotents (S-idempotent) of R if x2 = x and there exist a ∈ R \ {x, 0} such that

i. a2 = x

ii. xa = x or ax = a.

For more about S-idempotent please refer [4].
Definition 1.2 [2]. A positive integer n is said to be a perfect number if n is equal to the

sum of all its positive divisors, excluding n itself. e.g. 6 is a perfect number. As 6 = 1 + 2 + 3.
Definition 1.3 [1]. A non-empty set L is said to form a loop, if in L is defined a binary

operation, called product and denoted by ′.′ such that
1. For a, b ∈ L we have a.b ∈ L. (closure property.)
2. There exists an element e ∈ L such that a.e = e.a = a for all a ∈ L. (e is called the

identity element of L.)
3. For every ordered pair (a, b) ∈ L×L there exists a unique pair (x, y) ∈ L×L such that

ax = b and ya = b.
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Definition 1.4 [3]. Let Ln(m) = {e, 1, 2, 3, · · · , n} be a set where n > 3, n is odd and m

is a positive integer such that (m,n) = 1 and (m− 1, n) = 1 with m < n. Define on Ln(m), a
binary operation ′.′ as following:

i. e.i = i.e = i for all i ∈ Ln(m) \ {e}
ii. i2. = e for all i ∈ Ln(m)

iii. i.j = t, where t ≡ (mj − (m− 1)i)(modn) for all i, j ∈ Ln(m),

i 6= e and j 6= e.

Then Ln(m) is a loop. This loop is always of even order; further for varying m, we get a
class of loops of order n + 1 which we denote by

Ln = {Ln(m)|n > 3, n is odd and (m,n) = 1, (m− 1, n) = 1 with m < n}.

Example 1.1 [3]. Consider L5(2) = {e, 1, 2, 3, 4, 5}. The composition table for L5(2) is
given below:

· e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

This loop is non-commutative and non-associative and of order 6.

§2. Existence of S-idempotents in the Loop Rings ZtLn(m)

In this section we will prove the existence of an S-idempotent in the loop ring ZtLn(m)
when t is an even perfect number. Also we will prove that the loop ring ZtLn(m) has an
S-idempotent when t is of the form 2ip or 3ip (where p is an odd prime) or in general when
t = pi

1p2 (p1 and p2 are distinct odd primes).
Theorem 2.1. Let ZtLn(m) be a loop ring, where t is an even perfect number of the form

t = 2s(2s+1 − 1) for some s > 1, then α = 2s + 2sgi ∈ ZtLn(m) is an S-idempotent.
Proof. As t is an even perfect number, t must be of the form

t = 2s(2s+1 − 1), for some s > 1

where 2s+1 − 1 is a prime.
Consider

α = 2s + 2sgi ∈ ZtLn(m).

Choose
β = (t− 2s) + (t− 2s)gi ∈ ZtLn(m).
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Clearly
α2 = (2s + 2sgi)2

= 2.22s(1 + gi)

≡ 2s(1 + gi) [2s.2s+1 ≡ 2s(mod t)]

= α.

Now

β2 = ((t− 2s) + (t− 2s)gi)2

= 2.(t− 2s)2(1 + gi)

≡ 2s(1 + gi)

= α.

Also

αβ = [2s + 2sgi][(t− 2s) + (t− 2s)gi]

= 2s(1 + gi)(t− 2s)(1 + gi)

≡ −2.2s.2s(1 + gi)

≡ (t− 2s)(1 + gi)

= β.

So we get
α2 = α, β2 = α and αβ = β.

Therefore α = 2s + 2sgi is an S-idempotent.
Example 2.1. Take the loop ring Z6Ln(m). Here 6 is an even perfect number. As

6 = 2.(2s − 1), so α = 2 + 2gi is an S-idempotent. For

α2 = (2 + 2gi)2

≡ 2 + 2gi

= α.

Choose now
β = (6− 2) + (6− 2)gi.

then

β2 = (4 + 4gi)2

≡ (2 + 2gi)

= α.

And

αβ = (2 + 2gi)(4 + 4gi)

= 8 + 8gi + 8gi + 8

≡ 4 + 4gi

= β.
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So α = 2 + 2gi is an S-idempotent.
Theorem 2.2. Let Z2pLn(m) be a loop ring where p is an odd prime such that p | 2t0+1−1

for some t0 ≥ 1, then α = 2t0 + 2t0gi ∈ Z2pLn(m) is an S-idempotent.
Proof. Suppose p | 2t0+1 − 1 for some t0 ≥ 1. Take α = 2t0 + 2t0gi ∈ Z2pLn(m) and

β = (2p− 2t0) + (2p− 2t0)gi ∈ Z2pLn(m).
Clearly

α2 = (2t0 + 2t0gi)2

= 2.22t0(1 + gi)

= 2t0+1.2t0(1 + gi)

≡ 2t0(1 + gi)

= α.

As
2t0 .2t0+1 ≡ 2t0(mod 2p)

Since
2t0+1 ≡ 1(mod p)

⇔ 2t0 .2t0+1 ≡ 2t0(mod 2p) for gcd(2t0 , 2p) = 2, t0 ≥ 1.

Also

β2 = [(2p− 2t0) + (2p− 2t0)gi]2

= 2(2p− 2t0)2(1 + gi)

≡ 2.22t0(1 + gi)

= 2t0+1.2t0(1 + gi)

≡ 2t0(1 + gi)

= α.

And

αβ = [2t0 + 2t0gi][(2p− 2t0) + (2p− 2t0)gi]

≡ −2t0(1 + gi)2t0(1 + gi)

= −2.2t0(1 + gi)

≡ (2p− 2t0)(1 + gi)

= β.

So we get
α2 = α, β2 = α and αβ = β.

Hence α = 2t0 + 2t0gi is an S-idempotent.
Example 2.2. Consider the loop ring Z10Ln(m). Here 5 | 23+1 − 1, so t0 = 3.
Take
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α = 23 + 23gi and β = 2 + 2gi.

Now

α2 = (8 + 8gi)2

= 64 + 128gi + 64

≡ 8 + 8gi

= α.

And

β2 = (2 + 2gi)2

= 4 + 8gi + 4

≡ 8 + 8gi

= α.

Also

αβ = (8 + 8gi)(2 + 2gi)

= 16 + 16gi + 16gi + 16

≡ 2 + 2gi

= β.

So α = 8 + 8gi is an S-idempotent.
Theorem 2.3. Let Z2ipLn(m) be a loop ring where p is an odd prime such that p | 2t0+1−1

for some t0 ≥ i, then α = 2t0 + 2t0gi ∈ Z2ipLn(m) is an S-idempotent.
Proof. Note that p | 2t0+1 − 1 for some t0 ≥ i.
Therefore

2t0+1 ≡ 1(mod p) for some t0 ≥ i

⇔ 2t0 .2t0+1 ≡ 2t0(mod 2ip) as gcd(2t0 , 2ip) = 2i, t0 ≥ 1.

Now take

α = 2t0 + 2t0gi ∈ Z2ipLn(m) and β = (2ip− 2t0) + (2ip− 2t0)gi ∈ Z2ipLn(m).

Then it is easy to see that

α2 = α, β2 = α and αβ = β.

Hence α = 2t0 + 2t0gi is an S-idempotent.
Example 2.3. Take the loop ring Z23.7Ln(m). Here 7 | 25+1 − 1, so t0 = 5.
Take

α = 25 + 25gi and β = (23.7− 25) + (23.7− 25)gi.



Vol. 1 Smarandache Idempotents in Loop Rings ZtLn(m) of the Loops Ln(m) 193

Now

α2 = (32 + 32gi)2

= 1024 + 2048gi + 1024

≡ 32 + 32gi

= α.

And

β2 = (24 + 24gi)2

= 576 + 1152gi + 576

≡ 24 + 24gi

= α.

Also

αβ = (32 + 32gi)(24 + 24gi)

≡ 24 + 24gi

= β.

So α = 32 + 32gi is an S-idempotent.
Theorem 2.4. Let Z3ipLn(m) be a loop ring where p is an odd prime such that p | 2.3t0−1

for some t0 ≥ i, then α = 3t0 + 3t0gi ∈ Z3ipLn(m) is an S-idempotent.
Proof. Suppose p | 2.3t0 − 1 for some t0 ≥ i.
Take

α = 3t0 + 3t0gi ∈ Z3ipLn(m) and β = (3ip− 3t0) + (3ip− 3t0)gi ∈ Z3ipLn(m).

Then

α2 = (3t0 + 3t0gi)2

= 2.32t0(1 + gi)

= 2.3t03t0(1 + gi)

≡ 3t0(1 + gi)

= α.

As
2.3t0 ≡ 1(mod p) for some t0 ≥ i

⇔ 2.3t0 .3t0 ≡ 3t0(mod 3ip) as gcd(3t0 , 3ip) = 3i, t0 ≥ 1.

Similarly
β2 = α and αβ = β.

So α = 3t0 + 3t0gi is an S-idempotent.
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Example 2.4. Take the loop ring Z32.5Ln(m). Here 5 | 2.35 − 1, so t0 = 5.
Take

α = 35 + 35gi and β = (32.5− 35) + (32.5− 35)gi.

Now

α2 = (18 + 18gi)2

≡ 18 + 18gi

= α.

And

β2 = (27 + 27gi)2

≡ 18 + 18gi

= α.

Also
αβ = β.

So α = 35 + 35gi is an S-idempotent.
We can generalize Theorem 2.3 and Theorem 2.4 as following:
Theorem 2.5. Let Zpi

1p2
Ln(m) be a loop ring where p1 and p2 are distinct odd primes

and p2 | 2.pt0
1 − 1 for some t0 ≥ i, then α = pt0

1 + pt0
1 gi ∈ Zpi

1p2
Ln(m) is an S-idempotent.

Proof. Suppose p2 | 2.pt0
1 − 1 for some t0 ≥ i.

Take

α = pt0
1 + pt0

1 gi ∈ Zpi
1p2

Ln(m) and β = (pi
1p2 − pt0

1 ) + (pi
1p2 − pt0

1 )gi ∈ Zpi
1p2

Ln(m).

Then

α2 = (pt0
1 + pt0

1 gi)2

= 2.p2t0
1 (1 + gi)

= 2.pt0
1 pt0

1 (1 + gi)

≡ pt0
1 (1 + gi)

= α.

As
2.pt0

1 ≡ 1(mod p2) for some t0 ≥ i

.
⇔ 2.pt0

1 .pt0
1 ≡ pt0

1 (mod pi
1p2) as gcd(pt0

1 , pi
1p2) = pi

1, t0 ≥ i.

Similarly
β2 = α and αβ = β.

So α = pt0
1 + pt0

1 gi is an S-idempotent.
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§3. Conclusion

We see in all the 5 cases described in the Theorem 2.1 to 2.5 we are able to establish the
existence of one non-trivial S-idempotent. however we are not able to prove the uniqueness of
this S-idempotent. Hence we suggest the following problems:

• Does the loop rings described in the Theorems 2.1 to 2.5 can have more than one S-
idempotent?

• Does the loop rings ZtLn(m) have S-idempotent when t is of the form t = p1p2 . . . ps

where p1p2 . . . ps are distinct odd primes?
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