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PREFACE  
 
 
Over the past 25 years, I have been immersed in research in Algebra and more 
particularly in ring theory. I embarked on writing this book on Smarandache rings (S-
rings) specially to motivate both ring theorists and Smarandache algebraists to 
develop and study several important and innovative properties about S-rings.  
 
Writing this book essentially involved a good deal of reference work. As a researcher, 
I felt that it will be a great deal better if we thrust importance on results given in 
research papers on ring theory rather than detail the basic properties or classical 
results that the standard textbooks contain. I feel that such a venture, which has 
consolidated several ring theoretic concepts, has made the current book a unique one 
from the angle of research.  
 
One of the major highlights of this book is by creating the Smarandache analogue of 
the various ring theoretic concepts we have succeeded in defining around 243 
Smarandache concepts.   
 
As it is well known, studying any complete structure is an exercise in unwieldiness. On 
the other hand, studying the same properties locally makes the study easier and also 
gives way to greater number of newer concepts. Also localization of properties 
automatically comes when Smarandache notions are defined. So the Smarandache 
notions are an excellent means to study local properties in rings.  

 
Two levels of Smarandache rings are defined. We have elaborately dealt in case of 
Smarandache ring of level I, which, by default of notion, will be called as 
Smarandache ring. The Smarandache ring of level II could be constructed mainly by 
using Smarandache mixed direct product. The integral domain Z failed to be a 
Smarandache ring but it is one of the most natural Smarandache ring of level II.  
 
This book is organized into five chapters. Chapter one is introductory in nature and 
introduces the basic algebraic structures. In chapter two some basic results and 
properties about rings are given. As we expect the reader to have a strong background 
in ring theory and algebra we have recollected for ready reference only the basic 
results. Chapter three is completely devoted to the introduction, description and 
analysis of the Smarandache rings — element-wise, substructure-wise and also by 
localizing the properties. The fourth chapter deals with mixed direct product of rings, 
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which paves way for the more natural expression for Smarandache rings of level II. It 
is important to mention that unlike in rings where the two sided ideals form a 
modular lattice, we see in case of Smarandache rings the two sided ideals in general 
do not form a modular lattice which is described in the cover page of this book. This 
is a marked difference, which distinguishes a ring and a Smarandache ring. The fifth 
chapter contains a collection of suggested problems and it contains 200 problems in 
ring theory and Smarandache ring theory. It is pertinent to mention here that some 
problems, specially the zero divisor conjecture find several equivalent formulations. 
We have given many equivalent formulations, for this conjecture that has remained 
open for over 60 years.  
 
I firstly wish to put forth my sincere thanks and gratitude to Dr. Minh Perez. His 
making my books on Smarandache notions into an algebraic structure series, 
provided me the necessary enthusiasm and vigour to work on this book and other 
future titles.  
 
It gives me immense happiness to thank my children Meena and Kama for single-
handedly helping me by spending all their time in formatting and correcting this 
book.  
 
I dedicate this book to be my beloved mother-in-law Mrs. Salagramam Alamelu 
Ammal, whose only son, an activist-writer and crusader for social justice, is my dear 
husband. She was the daughter of Sakkarai Pulavar, a renowned and much-favoured 
Tamil poet in the palace of the King of Ramnad; and today when Meena writes poems 
in English, it reminds me that this literary legacy continues. 
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Chapter One 

PRELIMINARY NOTIONS  
 
This chapter is devoted to the introduction of basic notions like, groups, semigroups, 
lattices and Smarandache semigroups. This is mainly done to make this book self-
sufficient. As the book aims to give notions mainly on Smarandache rings, so it 
anticipates the reader to have a good knowledge in ring theory. We recall only those 
results and definitions, which are very basically needed for the study of this book.  
 
In section one we introduce certain group theory concepts to make the reader 
understand the notions of Smarandache semigroups, semigroup rings and group 
rings. Section two is devoted to the study of semigroups used in building rings viz. 
semigroup rings. Section three aims to give basic concepts in lattices. The final 
section on Smarandache semigroups gives the definition of Smarandache semigroups 
and some of its properties, as this would be used in a special class of rings.  
 
 
1.1 Groups  
 
In this section we just define groups for we would be using it to study group rings. As 
the book assumes a good knowledge in algebra for the reader, we give only some 
definitions, notations and results with the main motivation to make the book self-
contained; atleast for the basic concepts. We give examples and ask the reader to 
solve the problems at the end of each section, as it would help the student when 
she/he proceeds into the study of Smarandache rings and Smarandache notions about 
rings; not only for comparison of these two concepts, but to make them build more  
Smarandache structures.  
 
DEFINITION 1.1.1: A set G that is closed under a given operation '.' is called a 
group if the following axioms are satisfied.  
 

1. The set G is non-empty.  
2. If a, b, c ∈ G then a(bc) = (ab) c. 
3. There are exists in G an element e such that  

(a) For any element a in G, ea = ae = a.  
(b) For any element a in G there exists an element a-1 in G such that   

a-1a = aa-1 = e.  
 
A group, which contains only a finite number of elements, is called a finite group, 
otherwise it is termed as an infinite group. By the order of a finite group we mean the 
number of elements in the group.  
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It may happen that a group G consists entirely elements of the from an, where a is a 
fixed element of G and n is an arbitrary integer. In this case G is called a cyclic group 
and the element a is said to generate G.  
 
Example 1.1.1: Let Q be the set of rationals. Q\{0} is a group under multiplication. 
This is an infinite group.  
 
Example 1.1.2: Zp = {0, 1, 2, … , p – 1}, p a prime be the set of integers modulo 
p. Zp\{0} is a group under multiplication modulo p. This is a finite cyclic group of 
order p-1.  
 
DEFINITION 1.1.2: Let G be a group. If a . b = b . a for all a, b ∈ G, we call G 
an abelian group or a commutative group.  
 
The groups given in examples 1.1.1 and 1.1.2 are both abelian.  
 
DEFINITION 1.1.3: Let X = {1, 2, … , n}. Let Sn denote the set of all one to one 
mappings of the set X to itself. Define operation on Sn as the composition of 
mappings denote it by ‘o’. Now (Sn , o) is a group, called the permutation group 
of degree n. Clearly (Sn , o) is a non-abelian group of order n!. Throughout this 
text Sn will denote the symmetric group of degree n.  
 
Example 1.1.3: Let X={1, 2, 3}. S3 = {set of all one to one maps of the set X to 
itself} . The six mappings of X to itself is given below:  
 

  1 → 1 
 p0 : 2 → 2 
  3 → 3 

 
  1 → 1   1 → 3 
 p1 : 2 → 3  p2 : 2 → 2 
  3 → 2   3 → 1 
 
  1 → 2   1 → 2 
 p3 : 2 → 1  p4 : 2 → 3 
  3 → 3   3 → 1 
 

  1 → 3 
and p5 : 2 → 1 

    3 → 2 
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S3 = {p0, p1, p2, p3, p4, p5} is a group of order 6 = 3! 
 
Clearly S3 is not commutative as  
 
    1 → 3 
  p1 o p2   = 2 → 1 = p5 
    3 → 2 
 
    1 → 2 
  p2 o p1   = 2 → 3 = p4. 
    3 → 1 
 
Since p1 o p2 ≠ p2 o p1, S3 is a non-commutative group.  
 
Denote p0, p1, p2 ,…, p5 by  
 









321

321
, 








231

321
, 








123

321
,…, 








213

321
 

 
respectively. We would be using mainly this notation.  
 
DEFINITION 1.1.4: Let (G, o) be a group. H a non-empty subset of G. We say H 
is a subgroup if (H, o) is a group.  
 
Example 1.1.4: Let G = 〈g / g8 = 1〉 be a cyclic group of order 8. H={g2, g4, g6, 1} is 
subgroup of G.  
 
Example 1.1.5: In the group S3 given in example 1.1.3, H = {1, p4, p5} is a 
subgroup of S3.  
 
Just we shall recall the definition of normal subgroups.  
 
DEFINITION 1.1.5: Let G be a group. A non-empty subset H of G is said to be a 
normal subgroup of G, if Ha = aH for every a in G or equivalently H={a-1ha / for 
every a in G and every h ∈ H}. If G is an abelian group or a cyclic group then all 
of its subgroups are normal in G.  
 
Example 1.1.6: The subgroup H={1, p4, p5} given in example 1.1.5 is a normal 
subgroup of S3.  
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Notation: Let Sn be the symmetric group of degree n. Then for n ≥ 5, each Sn has only 

one normal subgroup, An which is of order 
2
!n
called the alternating group.  

 
DEFINITION 1.1.6: If G is a group, which has no normal subgroups then we say 
G is simple.  
 
DEFINITION 1.1.7: A subnormal series of a group G is a finite sequence H0 , H1 , 
…, Hn of subgroups of G such that Hi is a normal subgroup of Hi+1 with H0={e} 
and Hn = G.  
 
A normal series of G is a finite sequence H0, H1 , … , Hn of normal subgroups of G 
such that Hi ⊂ Hi + 1, H0={e} and Hn= G. 
 
Example 1.1.7: Let Z11 \ {0}= {1, 2, … , 10} be the group under multiplication 
modulo 11. Z11 \ {0} is a group. This has no subgroups or normal subgroups.  
 
Example 1.1.8: Let G= 〈g / g12=1〉 be the cyclic group of order 12. The series {1} 
⊆ {g6, 1} ⊆ {1, g3, g6, g9} ⊆ G. The series {1} ⊆ {1, g6} ⊆ {1, g2,  g4, g6, g8, g10} ⊆ G.  
 
DEFINITION 1.1.8: Let G be a group with identity e. We say an element x ∈ G 
to be a torsion free element, if for no finite integer n, xn=e. If every element in G 
is torsion free we say G is a torsion free group.  
 
Example 1.1.9: Let G = Q \ {0}; Q the field of rationals. G is a torsion free abelian 
group.  
 
A torsion free group is of infinite order; by the very definition of it. The reader is 
requested to read more about, the composition series in groups as it would be used 
in studying the concept of A.C.C and D.C.C for rings in the context of Smarandache 
notions.  
 
PROBLEMS: 
 

1. Find all the normal subgroups in Sn.  
2. Find all subgroups of the symmetric group S8.  
3. Find only cyclic subgroups of S9.  
4. Can S9 have non-cyclic subgroups?  
5. Find all abelian subgroups of S12.  
6. Find all subgroups in the dihedral group; D2n = {a, b/a2= bn = 1 and bab = a}.  
7. Is D2.3 = {a, b / a2 = b3=1 and bab = a} simple?  
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8. Find the subnormal series of Sn. 
9. Find the normal series of D2n.  

10. Find the subnormal series of G = {g / g2n= 1}. 
11. Can G= 〈g / gp= 1, p a prime〉 have a normal series?  
12. Find the normal series of G= 〈g / g30=1〉.  
 
 
1.2 Semigroups  
 
In this section we introduce the concept of semigroups mainly to study the two 
concepts; Smarandache semigroups and semigroup rings. Several types of semigroups 
are defined and their substructures like ideals and subsemigroups are also defined 
and illustrated with several examples. We expect the reader to have a strong 
background of algebra.  
 
DEFINITION 1.2.1: A semigroup is a set S together with an associative closed 
binary operation ‘.’ defined on it. We shall call (S, .) a semigroup or S a 
semigroup.  
 
Example 1.2.1: (Z+ ∪ {0}, ×); the set of positive integers with zero under 
multiplication is a semigroup.  
 
Example 1.2.2: Sn×m = {(aij)/aij ∈ Z} be the set of all n × m matrices under 
addition. Sn×m is a semigroup.  
 
Example 1.2.3: Sn×n = {(aij) / aij ∈ Z+} be the set of all n × n matrices under 
multiplication. Sn×n is a semigroup.  
 
Example 1.2.4: Let S(n) = {set of all maps from a set  X = {x1, x2 , … , xn} to 
itself}. S(n) under composition of maps is a semigroup.  
 
Example 1.2.5: Z15 = {0, 1, 2, … , 14} is the semigroup under multiplication 
modulo 15.  
 
DEFINITION 1.2.2: Let S be a semigroup. For a, b ∈ S, if we have a . b = b . a, 
we say S is a commutative semigroup.   
 
DEFINITION 1.2.3: Let S be a semigroup. If an element e ∈ S such that a . e =  
e . a = a for all a ∈ S, we say S is a semigroup with identity or a monoid.  
 
If the number of elements in a semigroup is finite we say S is a finite semigroup; 
otherwise S is an infinite semigroup. The semigroup given in examples 1.2.1 and 
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1.2.2 are commutative monoids of infinite order. The semigroup given in example 
1.2.3 is an infinite semigroup which is non-commutative.  
 
Example 1.2.4 is a non-commutative monoid of finite order. The semigroup in 
example 1.2.5 is a commutative monoid of finite order.  
 
DEFINITION 1.2.4: Let (S, .) be a semigroup. A non-empty subset P of S is said 
to be a subsemigroup if (P, .) is a semigroup.  
 
Example 1.2.6: Let Z12 = {0, 1, 2, … , 11} be the monoid under multiplication 
modulo 12. P = {0, 2, 4, 8} is a subsemigroup and P is not a monoid.  
 
Several such examples can be easily got.  
 
DEFINITION 1.2.5: Let S be a semigroup. A non-empty subset P of S is said to 
be a right(left) ideal of S if for all p ∈ P and s ∈ S we have ps ∈ P (sp ∈ P). If P is 
simultaneously both a right and a left ideal we call P an ideal of the semigroup S.  
 
DEFINITION 1.2.6: Let S be a semigroup under multiplication. We say S has 
zero divisors provided 0 ∈ S and a.b = 0 for a ≠ 0, b ≠ 0 in S.  
 
Example 1.2.7: Let Z16 = {0, 1, 2, … , 15} be the semigroup under multiplication. 
Z16 has zero divisors given by  
 

 2.8  ≡ 0 (mod 16) 
 4.4 ≡ 0 (mod 16) 
 8.8 ≡ 0 (mod 16) 
 4.8 ≡ 0 (mod 16). 

 
Now we will define idempotents in semigroups.  
 
DEFINITION 1.2.7: Let S be a semigroup under multiplication. An element s∈ S 
is said to be an idempotent in the semigroup if s2= s.  
 
Example 1.2.8: Let Z10 = {0, 1, 2, … , 9} be the semigroup under multiplication 
modulo 10. Clearly 5 ∈ Z10 is such that 52 ≡ 5 (mod 10), also 62 ≡ 6 (mod 10). 
Thus Z10 has non-trivial idempotents in it. 

 
DEFINITION 1.2.8: Let S be a semigroup with unit 1 i.e., a monoid, we say an 
element x ∈ S is invertible if there exists a y ∈ S such that xy =1.  
 
Example 1.2.9: Let Z12 = {0, 1, 2, … , 11} be the semigroup under multiplication 
modulo 12. Clearly 1 ∈ Z12 and   
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11.11 ≡ 1 (mod 12) 

     5.5 ≡ 1 (mod 12) 
     7.7 ≡ 1 (mod 12). 

 
Thus Z12 has invertible elements.  
 
We give some problems for the reader to solve.  
 
Notation: Throughout this book S(n) will denote the set of all mapping of a set X 
with cardinality n to itself. i.e., X = {1, 2, … , n}; S(n) under the composition of 
mappings is a semigroup. Clearly the number of elements in S(n) = nn. S(n) will be 
addressed in this text as a symmetric semigroup. 
 
For example the semigroup S(3) has 33 i.e., 27 elements in it and S(3) is a non-
commutative monoid  
 









=

321

321
i  

acts as the identity. Now  
 

S(2) = 








































22

21
and

11

21
,

12

21
,

21

21
 

 
is a semigroup under  composition of maps, in fact a monoid of order 4. We will call 
S(n) the symmetric semigroup of order nn by default of terminology.   
 
PROBLEMS:  
 

1. Let S = 
















∪









∈







10

01
}0{\Za/

00

0a
7 . Is S a semigroup under 

multiplication? What is the order of S?  
2. Find a non-commutative semigroup of order 6.  
3. Can a semigroup of order 3 be non-commutative?  
4. Find the smallest non-commutative semigroup.  
5. Is all semigroups of order p, p a prime, a commutative semigroup? Justify. 
6. Find all subsemigroups of the symmetric semigroup S(6).  
7. Find all right ideals of the symmetric semigroup S(9).  
8. Find only ideals of the symmetric semigroup S(10).  
9. Find a semigroup of order 26. (different from Z26).  
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10. Let S3×3 = {(aij) / aij ∈ Z2} i.e., set of all 3 × 3 matrices with entries from Z2 = 
{0,1}. Is S3×3 a semigroup? Find ideals and subsemigroups in S3×3. Does S3×3 
have idempotents? Does S3×3 have zero divisors? Find units in S3×3.  

11. For the semigroup Z12 = {0, 1, 2, 3, … , 11} under multiplication modulo 12. 
Find 

i. Subsemigroups which are not ideals.  
ii. Ideals.  
iii. Zero divisors.  
iv. Idempotents.  
v. Units.  

12. Find in the semigroup S(21) right and left ideals. Does S(21) have 
subsemigroups which are not ideals?  

 
 
1.3 Lattices  
 
In this section we mainly introduce the concept of lattices as we have a well known 
result in ring theory which states that “the set of all two sided ideals of a ring form a 
modular lattice”. As our main motivation for writing this book is to obtain all possible 
Smarandache analogous in ring we want to see how the collection of Smarandache 
ideals and Smarandache subrings look like. Do they form a modular lattice? We 
answer this question in chapter four. So we devote this section to introduce lattices 
and modular lattices.  
 
DEFINITION 1.3.1: Let A and B be two non-empty sets. A relation R from A to B 
is a subset of A × B.  Relations from A to A are called relation on A, for short. If 
(a, b) ∈ R then we write aRb and say that a is in relation R to b. Also if a is not 
in relation R to b we write aR/ b. A relation R on a nonempty set may have some 
of the following properties:  
 
R is reflexive if for all a in A we have aRa.  
 
R is symmetric if for all a, b in A, aRb implies bRa. R is anti symmetric if for all 
a,b in A, aRb and bRa imply a = b.  
 
R is transitive if for all a,b,c in A aRb and bRc imply aRc. A relation R on A is an 
equivalence relation, if R is reflexive, symmetric and transitive.  

 
In this case, [a] = {b ∈ A / aRb} is called the equivalence class of a for any a ∈ A.  
 
DEFINITION 1.3.2: A relation R on a set A is called a partial order (relation) if 
R is reflexive, anti symmetric and transitive. In this case (A, R) is called a 
partially ordered set or poset.  



 15 

 
DEFINITION 1.3.3: A partial order relation ≤  on A is called total order or 
lattice order if for each a, b ∈ A either a ≤  b or b ≤  a; (A, ≤ ) is then called a 
chain or a totally ordered set.  
 
For example {-7, 3, 2, 5, 11} is a totally ordered set under the order ≤.  
 
Let (A, ≤) be a poset. We say a is a greatest element if all other elements are smaller. 
More precisely a ∈ A is called the greatest element of A if for all x ∈ A we have x ≤ a. 
The element b in A is called a smallest element of A if b ≤ x for all x ∈ A. The element 
c ∈ A is called a maximal element of A if c ≤ x implies c = x for all x ∈ A; similarly d 
∈ A is called a minimal element of A if x ≤ d implies x = d for all x ∈ A.  
 
It can be shown that (A, ≤) has almost one greatest and one smallest element. 
However there may be none, one or several maximal or minimal elements. Every 
greatest element is maximal and every smallest element is minimal.  
 
DEFINITION 1.3.4: Let (A, ≤ ) be a poset and B ⊆  A.  
 

a) a ∈ A is called an upper bound of B if and only if for all b ∈ B, b ≤  a.  
 
b) a ∈  A  is called a lower bound of B if and only if for all b ∈  B, a ≤  b.  

 
c) The greatest amongst the lower bounds whenever it exists is called the 

infimum of B, and is denoted by inf B.  
 
d) The least upper bound of B, whenever it exists, is called the supremum of 

B and is denoted by sup B.  
 
DEFINITION 1.3.5: A poset (L, ≤ ) is called lattice ordered if for every pair x, y 
of elements of L, the sup {x, y}and inf {x, y} exist.  
 
DEFINITION 1.3.6: An algebraic lattice (L, ∪, ∩ ) is a nonempty set L with two 
binary operation ∩ (meet) and ∪ (join), which satisfy the following results:  
 

L1  x ∩ y = y ∩ x    x ∪ y = y ∪ x 
L2 x ∩ (y ∩ z) = (x ∩ y) ∩ z  (x ∪ y) ∪ z = x ∪ (y ∪ z) 
L3 x ∩ (y ∪ x) = x    x ∪ (x ∩ y) = x  

 
Two applications of (L3 ) namely x ∩ x = x ∩ (x ∪ (x ∩  x)) = x lead to x ∩ x = 
x and x ∪ x = x. L1 is the commutative law, L2 is the associative law, L3 is the 
absorption law, and L4 is the idempotent law.  
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DEFINITION 1.3.7: A lattice L is called modular if for all x, y, z ∈ L  
 
 x ≤  z imply x ∪ (y ∩ z) = (x ∪ y) ∩ z (modular equation).  
 
Result 1.3.1: The lattice given in the following figure is known as pentagon lattice: 
 
 
 
 
 
 
 
 
 
 
 
 
which is not modular.  
 
Result 1.3.2: The lattice known as diamond lattice (given by figure 1.3.2) is 
modular. 
 
 
 
 
 
 
 
 
 
 
 
 
 
DEFINITION 1.3.8: A lattice L is called distributive if either of the following 
conditions hold for all x, y, z in L.  
 

x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) 
x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z). 

 
The lattice given in Figure 1.3.2 is the smallest modular lattice which is not 
distributive.  
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c 

b 

1 

0 

Figure 1.3.1 

0 

a 

1 

b c 

Figure 1.3.2 
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DEFINITION 1.3.9: A non-empty subset S of a lattice L is called a sublattice of L 
if S is a lattice with respect to the restriction of ∩ and ∪ of L onto S.  
 
Result 1.3.3: Every distributive lattice is modular.  
 
Proof is left for the reader as an exercise.  
 
Result 1.3.4: A lattice is modular if and only if none of its sublattices is isomorphic 
to the pentagon lattice.  
 
 
 
 
 
 
 
 
 
 
 
 
 
We leave the proof as an exercise to the reader.  
 
Now we give some problems:  
 
PROBLEMS:  
 
1. Prove the lattice given in figure 1.3.4  is distributive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Prove the lattice given by Figure 1.3.5. is non-modular. 
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1 

0 
Figure 1.3.3 

Figure 1.3.4 
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3. Is this lattice  

 
 

 
 
 
 
 
 
 
 
 
modular ? 
 
4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is this lattice modular? distributive?  
 
5. Give a modular lattice of order nine which is non-distributive.  

1 
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Figure 1.3.5 
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Figure 1.3.7 
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1.4 Smarandache semigroups  
 
In this section we introduce the notion of Smarandache semigroups (S-semigroups) 
and illustrate them with examples. The main aim of this is that we want to define 
which of the group rings and semigroup rings are Smarandache rings, while doing so 
we would be needing the concept of Smarandache semigroups. As the study of S-
semigroups is very recent one, done by F. Smarandache, R. Padilla and W.B. Vasantha 
Kandasamy [73, 60, 154, 156], we felt it is appropriate that the notion of S-
semigroups is substantiated with examples.  
 
DEFINITION [73, 60]: A Smarandache semigroup (S-semigroup) is defined to 
be a semigroup A such that a proper subset A is a group (with respect to the 
induced operation on A).  
 
DEFINITION [154, 156]: Let A be a S-semigroup. A is said to be a 
Smarandache commutative semigroup (S-commutative semigroup) if the proper 
subset of A which is a group is commutative. If A is a commutative semigroup 
and if A is a S-semigroup then A is obviously a S-commutative semigroup.  
 
Example 1.4.1: Let Z12 = {0, 1, 2, … , 11} be the semigroup under multiplication 
modulo 12. It is a S-semigroup as the proper subset P = {3, 9} is a group with 9 as 
unit; that is the multiplicative identity. That is P is a cyclic group of order 2.  
 
Example 1.4.2: Let S(5) be the symmetric semigroup is a S-semigroup, as S5 ⊂ 
S(5) is the proper subset that is a symmetric group of degree 5. Further S(5) is a S-
commutative semigroup as the element  
 









=

15432

54321
p  

 
generates a cyclic group of order 5.  
 
DEFINITION [154, 156]: Let S be a S-semigroup. A proper subset X of S which 
is a group under the operations of S is said to be a Smarandache normal 
subgroup (S-normal subgroup) of the S-semigroup, if aX ⊆ X and Xa ⊆ X or aX = 
{0} and Xa = {0} for all x ∈ S, if 0 is an element in S.  
 
Example 1.4.3: Let Z10 = {0, 1, 2, … , 9} be the S-semigroup of order 10 under 
multiplication modulo 10. The set X = {2, 4, 6, 8} is a subgroup of Z10 which is a S-
normal subgroup of Z10.  
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PROBLEMS: 
 

1. Show Z15 is a S-semigroup. Can Z15 have S-normal subgroups?  
2. Let S(8) be the symmetric semigroup, prove S(8) is a S-semigroup. Can S(8) 

have S-normal subgroups?  
3. Find all S-normal subgroups of Z24 = {0, 1, 2, … , 23}, the semigroup of 

order 24 under multiplication modulo 24.  
4. Give an example of a S-non-commutative semigroup.  
5. Find the smallest S-semigroup which has nontrivial S-normal subgroups.  
6. Is M3×3 = {(aij) / aij ∈ Z3 = {0,1,2}} a semigroup under matrix 

multiplication; a S-semigroup?  
7. Can M3×3 given in problem 6 have S-normal subgroup? Substantiate your 

answer.  
8. Give an example of a S-semigroup of order 18 having S-normal subgroup.  
9. Can a semigroup of order 19 be a S-semigroup having S-normal subgroups?  

10. Give an example of a S-semigroup of order p, p a prime.  
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Chapter two 

RINGS AND THEIR PROPERTIES  
 
In this chapter we recollect some of the basic properties of rings. This Chapter is 
organized into seven sections. In section one we just recall the definition of ring and 
give some examples. Section two is devoted to the study of special elements like zero 
divisors, units, idempotents nilpotents etc. Study of substructures like subrings, ideals 
and Jacobson radical are introduced in section three. Recollection of the concept of 
homomorphisms and quotient rings are carried out in section four. Special rings like 
polynomical rings, matrix rings, group rings etc are defined in section five. Section six 
introduces modules and the final section is completely devoted to the recollection of 
the rings which satisfy chain conditions. Every section ends with a list of problems to 
be solved by the reader. Finally no claim is made that we have recaptured all facts 
about rings we do not do it in fact the reader is expected to be well versed in ring 
theory.  
 
 
2.1 Definition and Examples  
 
In this section we recall the definition of rings and their basic properties and illustrate 
them with examples. Also the definition of field, integral domain and division ring are 
given.  
 
DEFINITION 2.1.1: A non-empty set R is said to be an associative ring if in R 
are defined two binary operations '+' and '.' respectively such that  
 

1. (R, +) is an additive abelian group.  
2. (R, .) is a semigroup.  
3. a . (b + c) = a . b + a . c and  

(a + b) . c = a . c + b . c for  
all a, b, c ∈ R (the two distributive laws).  

 
It may very well happen that (R, .) is a monoid, that is there is an element 1 in R 
such that a . 1 = 1 . a = a for every a ∈ R, in such cases we shall describe R as a 
ring with unit element.  
 
If the multiplication in R is such that a . b = b . a for every a, b in R, then we call 
R a commutative ring, if a . b ≠ b . a atleast for a pair in R then R is a non-
commutative ring.  
 
Henceforth, we simply represent a . b by ab.   
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Example 2.1.1: Let Z be the set of integers, positive, negative and 0; Z is a 
commutative ring with 1.  
 
Example 2.1.2: Let Zn = {0, 1, 2, … , n – 1) be the ring of integers modulo n. Zn is 
a ring under modulo addition and multiplication. Zn is a commutative ring with unit.  
 
Example 2.1.3: Let Mn×n = {(aij) / aij ∈ Z}, the set all n × n matrices with matrix 
addition and multiplication. Mn×n is a non-commutative ring with unit element.  
 
DEFINITION 2.1.2: Let (R, +, .) be a ring, if (R \ {0}, . ) is an abelian group we 
call R a field.  
 
Notation: Z – denotes the set of integers positive, negative and zero. Q – denotes the 
set of positive and negative rationals with zero R – denotes the set of reals, positive, 
negative with zero. Zn – set of integers modulo n. Zn = {0, 1, 2, … , n-1}, Zp – set of 
integers modulo p, p – prime, Set of complex number of the from a+ib, a, b ∈ R or Q 
or Z is denoted by C.  
 
DEFINITION 2.1.3: If a ring R has a finite number of elements we say R is a 
finite ring, otherwise R is an infinite ring.  
 
DEFINITION 2.1.4: Let R be a ring if mx = x + …+ x (m-times) is zero for 
every x ∈ R, m a positive integer then we say characteristic of R is m. If for no m 
the result is true we say the characteristic of R is 0, denoted by characteristic R is 
0 or characteristic R is m.  
 
Note: The rings given in examples 2.1.1 and 2.1.3 are of characteristic zero where as 
the ring in example 2.1.2 is of characteristic n.  
 
Example 2.1.4: Let Z9 = {0, 1, 2, … , 8}. This is a commutative finite ring of 
characteristic 9 with unit 1.  
 
DEFINITION 2.1.5: Let R be a ring, we say a ≠ 0 ∈ R is a zero divisor, if there 
exists b ∈ R, b ≠ 0, such that a.b = 0.  
 
Example 2.1.5: The ring Z15= {0, 1, 2, … , 14} is of characteristic 15. Clearly for   
3 ≠ 0 ∈ Z15 we have 5 ∈ Z15 such that 3.5 ≡ 0 mod(15) thus Z15 has zero divisor.  
 
But the ring given in example 2.1.1 has no zero divisors. 
 
DEFINITION 2.1.6: Let R be a commutative ring with unit. If R has no zero 
divisors we say R is an integral domain. (The presence of unit is not a must). 
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The ring Z given in example 2.1.1 is an integral domain.  
 
DEFINITION 2.1.7: Let R be a non-commutative ring in which the non-zero 
elements form a group under multiplication, then R is a division ring.  
 
Example 2.1.6: Let P be the set of symbols of the form α0 + α1i + α2j + α3k where 
all the numbers α0, α1,α2 and α3 are real numbers. We declare two such symbols α0 

+ α1i + α2j + α3k and β0 + β1i + β2j + β3k to be equal if and only if αt = βt for t = 
0, 1, 2, 3. In other words to make P into a ring we must define a '+' and a '.' for its 
elements.  
 
To this end for any X = α0 + α1i + α2j + α3k and Y = β0 + β1i + β2j + β3k define X 
+ Y = (α0 + α1i + α2j + α3k) + (β0 + β1i + β2j + β3k) = (α0 + β0) + (α1 + β1)i + 
(α2 + β2)j + (α3 + β3)k and X . Y = (α0 + α1i + α2j + α3k) (β0 + β1i + β2j + β3k) 
= (α0β0 - α1β1 - α2β2 - α3β3) + (α0β1 + α1β0 + α2β3 - α3β2)i + (α0β2 + α2β0 + 
α3β1 - α1β3)j + (α0β3 +  α3β0 + α1β3 - α2β1)k. 
 
We use in the product the following relation i2 = j2 = k2 = –1 = ijk, ij =  –ji  =  k,  jk   
= –kj = i, ki = –ik = j Notice ± i,  ± j, ± k, ± 1 form a non-abelian group of order 8 
under multiplication. 0 + 0i + 0j + 0k = 0 acts as the additive identity 0 of P. 1 = 1 + 
0i + 0j + 0k serves as the unit. If X = α0 + α1i + α2j + α3k then its inverse  
 

β
α

−
β

α
−

β
α

−
β

α
=

kji
Y 3210  

 
where β = α0

2 + α1

2 + α2

2 + α3

2. Clearly X . Y = 1. Thus it can be verified as ij ≠ ji, 
we get a division ring. 
 
Result 1: Every commutative division ring is a field. Left for the reader to prove.  
 
Result 2: A finite integral domain is a field.  
 
It is left for the reader to verify these results.  
 
Example 2.1.7: Let S3×3 = {(aij) / aij ∈ Z10} be the set of all 3 × 3 matrices; S3×3 is 
not a division ring but is a non-commutative ring of characteristic 10.  
 
PROBLEMS:  
 

1. Give an example of a commutative ring of order 12. (where by order of the 
ring R we mean the number of elements in R, denote by o(R) or |R|).  

2. What is the order of the smallest non-commutative ring?  
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3. Can a ring or order 11 be non-commutative?  
4. Find the zero divisors in the ring Z30 = {0, 1, 2, … , 29}.  
5. How many elements does the ring M2×2 = {(aij) / aij ∈ Z4 = {0, 1, 2, 3}}; 

(i.e., set of all 2 × 2 matrices with entries from Z4) contain?  
a. Find zero divisors in M2×2...  
b. Find units in M2×2. 
c. Show AB ≠ BA atleast for a pair A, B ∈ M2×2. 

6. Give an example of a ring of characteristic 0 which has zero divisors.  
7. Find a non-commutative ring of finite order other than the matrix ring.  
8. Does there exist a division ring of characteristic 0? 
9. Does there exist a division ring of characteristic n, n a non-prime? 

10. Find all zero divisors in the ring Z25.  
11. Find a ring of order 10 which has no unit.  
 
 
2.2 Special Elements in Rings.  
 
In this section we mainly introduce the concept of units, idempotents, zero divisors 
and regular elements, we just recall the definition of these concepts and illustrate 
them with examples. All properties and results related to these concepts are left for 
the reader to refer, books on ring theory.  
 
DEFINITION 2.2.1: Let R be a ring, an element x ∈ R \ {0, 1} (if 1 is in R) is 
called an idempotent in R if x2 = x for x ∈ R.  
 
Example 2.2.1: Let Z12 = {0, 1, 2, … , 11} be the ring of integers modulo 12. We 
see 42 ≡ 4 (mod 12) is an idempotent in it.  
 
Example 2.2.2: Let Mn×n = {(aij) / aij ∈ Q – the field of rationals}; Mn×n is a ring 
under matrix addition and matrix multiplication. We have matrices A ∈Mn×n such that 
A2 = A.  
 
For example take n = 3,  
















=

100

000

001

A  

 
is such that A2 = A. Thus we have seen idempotents in case of both a commutative and 
a non-commutative rings.  
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Result: Let R be a ring with 1. If R has a nontrivial idempotent then we have 
nontrivial divisors of zero.  
 
For let x ∈ R \ {0, 1} such that x2 = x so x2 – x = 0 i.e., x(x – 1) = 0 as x ≠ 0 and x ≠ 
1, we have nontrivial zero divisors. We call an element nilpotent if xn = 0 where x ≠ 0 
∈ R and n ≥ 2.  
 
DEFINITION 2.2.2: Let R be a ring with 1. If for x ∈ R  \ {0} there exists a y in 
R with x.y = 1 we say R has units or invertible elements.  
 
Example 2.2.3: Let Q be the field of rationals every element in Q \ {0} is a unit.  
 
Example 2.2.4: Let Z15 = {0, 1, 2, … , 14} be the ring of integers modulo 15, we 
see 142 ≡ 1(mod 15), 42 ≡ 1(mod 15), 8.2 ≡ 1(mod 15). Thus Z15 has nontrivial 
units but not all elements in Z15 are units.  
 
Example 2.2.5: Let M5×5 = {(aij) / aij ∈ Q} be the ring of matrices. Clearly all 
matrices A ∈ M5×5 are such that A is non-singular that is |A| ≠ (0) are invertible.  
 
DEFINITION 2.2.3: Let R be a ring if for s ∈ R we have sr ≠ 0 and rs ≠ 0 for all 
r ≠ 0 ∈ R; then we say s is a regular element of R.  
 
For instance all elements in an integral domain or a field are regular elements.  
 
PROBLEMS:  
 

1. Find all idempotents, zero divisors and units in Z35.  
2. Find the zero divisors and regular elements of the ring M2×2 = {(aij) / aij ∈ Z2 

= {0, 1}}; where M2×2 is the matrix ring.  
3. Find all the regular elements in Z24.  
4. Find only the idempotent matrices of M3×3 = {(aij) / aij ∈ Z3}. 
5. How many regular elements are in M2×2 given in problem 2? 
6. Does Z16 = {0, 1, 2, … , 15} have nilpotents of order 6? 
7. Can a matrix A in M3×3 given in problem 4 have nilpotent elements of order 5? 

Justify your answer.  
8. Give zero divisors in Z12, which are not nilpotents. (for example 62 ≡ 0(mod 

12)). 
9. Can a ring R have only nilpotent element as zero divisor? Justify your answer. 

10. Find all regular elements, nilpotents, zero divisors, idempotents and units of 
the ring Z210.  
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2.3 Substructures of a Ring.  
 
In this section we introduce the concept of ideals, subrings and radicals for rings. We 
only recall the very basic definitions and illustrate them with examples.  
 
DEFINITION 2.3.1: Let R be a ring, a proper subset S or R is said to be a subring 
of R if S itself under the operations of R is a ring. Clearly {0} is a subring.  
 
Example 2.3.1: Let Z15 = {0, 1, 2, … , 14} be the ring of integers modulo 15. S = 
{3, 6, 9, 12, 0} is a subring of Z15.  
 
Example 2.3.2: Let Z be the ring of integers, nZ = {0, ± n, ± 2n, …}, is a subring 
of Z, n any positive integer.  
 
Example 2.3.3: Let M3×3 = {(aij) / aij ∈ Z4 = {0, 1, 2, 3}}. Clearly  
 


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
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
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

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ij

 

is a subring of M3×3.  
 
DEFINITION 2.3.2: Let R be a ring. A nonempty subset I of R is said to be the 
right (left) ideal of R if 
 

1. I is a subgroup of R under addition.  
2. For all r ∈ R and s ∈ I; rs ∈ I.(sr ∈ I).  

 
I is called an ideal; if I is simultaneously both a right and a left ideal of R. If R is 
a commutative ring naturally the concept of right and left ideals coincide.  
 
Example 2.3.4: Let Z be the ring of integers; pZ = {0, ±p, ±2p, …} is an ideal of Z. 
It is to be noted that in any ring R, (0) is an ideal of R; we will call (0) and R as trivial 
ideals of R.  
 
Example 2.3.5: Let Z22 = {0, 1, 2, … , 21} be the ring of integers modulo 22.  
 
Clearly I = {0, 11} is an ideal of Z22. Also P = {0, 2, 4, 6, 8, … , 20} is an ideal of Z22.  
 
Example 2.3.6: Let Z7 = {0, 1, 2, …, 6}, this is a ring. Clearly Z7 has no ideals as Z7 
is a prime field of characteristic 7.  
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The student is expected to note that fields F have no nontrivial ideals. The only trivial 
ideals of F are {0} and F.  
 
Example 2.3.7: Let M2×2 = {(aij) / aij ∈ Z2 = {0, 1}} be the ring. Can M2×2 have 
ideals? It is left as an exercise to find ideals in M2×2.  
 
DEFINITION 2.3.3: Let R be a ring. I an ideal of R, I is said to be a principal 
ideal of R, if it is generated by a single element.  
 
Example 2.3.8: Let Z be the ring of integers, every element p in Z generates an ideal 
pZ, which is principal. 
 
Example 2.3.9: Let Z25 = {0, 1, 2, … , 24} be the ring of integers modulo 25. 〈5〉 = 
{0, 5, 10, 15, 20} is an ideal of Z25 (‘〈5〉’ denotes the ideal generated by 5.) which is 
principal.  
 
DEFINITION 2.3.4: Let R be a ring, I an ideal of R. I is said to be a maximal 
ideal of R; if J is an ideal of R such that I ⊂  J ⊂ R, then either I = J or J = R. We 
similarly define an ideal P of a ring R to be minimal, if S is an ideal of R such 
that (0) ⊂ S ⊂ P then either (0) = S or S = P.  
 
A proper ideal P of a ring R is called prime if for xy ∈ P we have x ∈ P or y ∈ P.  
 
Example 2.3.10: Let Z be the ring of integers. P = 8Z is an ideal. P is not a prime 
ideal as 4.2 ∈ P but both 2 and 4 are not in P.  
 
DEFINITION 2.3.5: Let R be a ring. The intersection of all maximal ideals of a 
commutative ring is called the radical of the ring R denoted by rad (R). This is 
called the Jacobson radical of R. rad R={r ∈ R / 1 - rx is a unit for all x∈R}. Thus 
the radical is the largest ideal K of R such that for all r ∈ R, 1 – r is a unit.  
 
DEFINITION 2.3.6: An ideal I of a ring R is said to be a nil ideal of R if every 
element of I is nilpotent. An ideal I is nilpotent if In = 0 for some n ≥ 1 by In = I . 
I… I, I2 = I. I = {Σxiyi / xi, yi ∈ I} similarly for any power of n.  
 
DEFINITION 2.3.7: A ring R is simple if it has no two sided ideals other than 
(0) and R. It is interesting to note that all fields are trivially simple rings.  
 
PROBLEMS:  
 

1. Find all ideals of Z124.  
2. Can the ring Z24 have Jacobson radical? 
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3. Find all maximal ideals of Z125.  
4. Find a ring in which an ideal which is simultaneously maximal and minimal. 
5. Find two right ideals of Mn×n = {(aij)/ aij ∈ Z12} which are not left ideals. 
6. Let Z210={0, 1, 2, … , 209} be the ring of integers modulo 210 find 

a. Jacobson radical of Z210.  
b. Maximal ideal.  
c. Minimal ideal. 
d. Is every ideal principal?  
e. Does Z210 have prime ideals?  

7. Find subrings which are not ideals in Q.  
8. Can Z210 given in problem 6 have subrings which are not ideals?  
9. Find ideals and subrings of Z25. Are they identical?  

10. Find subrings which are not ideals in M3×3 = {(aij)/ aij ∈ Z6={0, 1, … , 5}}.  
 
 
2.4 Homomorphism and Quotient Rings  
 
In this section we recall the basic concepts of homomorphism and quotient rings and 
give some examples.  
 
DEFINITION 2.4.1: Let R and S be two rings. A mapping f: R→ S is called a 
homomorphism of rings if for all a, b ∈ R we have (1) f(a+b) = f(a) + f(b) and 
(2) f(ab) = f(a) f(b). If f is a homomorphism, it is easy to verify f(0)=0, f(-x) = 
-f(x), and f(1R)= 1S ; in case both rings have identity. In case f(1R)=1S ; we say the 
map f is unitary.  
 
DEFINITION 2.4.2: Let f: R→ S be a ring homomorphism, the kernel of the 
homomorphism f is defined to be the set = {x ∈ R / f(x) = 0} and is denoted by 
Ker f = {x ∈ R / f(x)=0}. 
 
A ring homomorphism f: R→ S is called  
 

1) a monomorphism if f is injective  
2) an epimorphism if f is surjective  
3) an isomorphism if f is bijective  
4) an endomorphism if R = S and  
5) an automorphism if R = S and f is an isomorphism or 

equivalently; we can say a homomorphism f: R→ S is a 
monomorphism if and only if Ker (f) = {0}.  

 
Clearly if f: R→ S is a ring homomorphism.  
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It is left as an exercise for the reader to verify that ker f is always a two sided ideal of 
R.  
 
DEFINITION 2.4.3: Let R be a ring, I be a two sided ideal of R, we make R / I = 
{a + I / a ∈ R} into a ring called the quotient ring of R by defining operations '+' 
and '.' as follows.  
   (a+I) + (b+I) = (a+b) + I for all a, b ∈ R 

 (a+I) + (-a+I) = I.  
 
So R/I is a group under addition, a+I = I for all a ∈ I so I is the additive identity 
of R/I.   
   (r+I) I = I (r+I)=I for all r ∈ R  

 (a+I) (b+I) = ab + I.  
  
So (R / I, +, .) is a ring called the quotient ring. (Here the distributive laws are left 
for the reader to verify).  
 
For any ring homomorphism f: R→S, kernel f denoted by ker f is an ideal of R and 
R/ker f is a ring.  
 
Several properties about quotient rings exists the nice among them is R/I is a field if 
and only if I is a maximal ideal in R. If I is a maximal ideal we call R/I the residue 
field of R at I.  
 
DEFINITION 2.4.4: A ring R with 1 is called a local ring if the set of all non-
units in R is an ideal.  
 
All division rings are local rings.  
 
PROBLEMS:  
 

1. Find a ring homomorphism φ between Z20 and Z18 such that the ker φ≠{0}.  

2. Let f: Z25→ Z16 be a ring homomorphism find the quotient ring 
ferk

Z25 . 

3. Let Z36 = {0, 1, 2, …, 35} be the ring of integers modulo 36. Let I = {2, …, 
34, 0} and J = {3, 9, …, 33, 0} be ideals of Z36. Find the quotient rings Z36/I 
and Z36/J.  

4. Let Z21 = {0, 1, 2, …, 20}. Find an ideal I of Z21 such that Z21/I is a field.  
5. Prove for Z12={0, 1, 2, …, 11}, the ring integers with I = {0, 6}, the quotient 

ring Z12/ I is not a field. 
6. Show in any ring R we can have several quotient rings related to different 

ideals. Illustrate them by an example.  
7. How many quotient rings can be constructed for the ring Z?.  
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8. Give an example of a finite local ring.  
9. Find a homomorphism from f: Z27→ Z18 such that Z27 / ker φ is isomorphic to 

Z18. 
10. Let Z23 and Z19 be two rings. Is it possible to find a homomorphism φ from Z23 

to Z19 such that Z23 /ker φ ≅ Z19. Justify your answer.  
 
 
2.5 Special Rings  
 
In this section we just recall the four types of rings which are specially formed and 
illustrate them with examples. They are polynomial rings, matrix rings, direct product 
of rings, ring of Gaussian integers, group rings and semigroup rings. Examples of 
these rings will help in the study of Smarandache ring. Throughout this section by a 
ring we mean only ring with unit, which is commutative.  
 
DEFINITION 2.5.1: Let R be a commutative ring with unit 1, x be an 
indeterminate, 













≥∈= ∑
=

0iegerint  infinitean or  finiteabe cann,Raxa]x[R i

n

0i

i
i . x0 is 

defined to be 1.  
 
Let p(x) = p0 + p1x + … + pnx

n and q(x) = q0 + q1x + … + qmxm. be elements in 
R[x]. We say p(x) = q(x) if and only if m = n and pi = qi for all i, 0 ≤ i ≤ r. In 
particular a0 + a1x + … + anx

m = 0 if and only if each ai = 0.  
 
Define addition in R[x] by p(x) + q (x) = (p0 + p1x + … + pnx

n) + (q0 + q1x + 
… + qmxm) = (p0 + q0) + (p1 + q1)x + … + qmxm if m > n 

p(x) q(x) = (p0+p1x + … + pnx
n) (q0+q1x + … + qmxm) = p0q0 = (p0q1 + p1q0)x 

+ (p0q2 + p1q1 + p2q0) x2 + … + pn qmxm+n.  

It can be easily verified that R[x] is a commutative ring with unit 1. Elements of R[x] 
are called polynomials and R[x] is a polynomial ring in the indeterminate x with 
coefficients from R.  
 
Example 2.5.1: Let Z be the ring of integers. Z[x] is a polynomial ring in the 
variable x. Z[x] is an integral domain. 

Example 2.5.2: Let Zn be the ring of integers modulo n. Zn[x] is a polynomial ring 
with coefficients from Zn. Zn[x] is a commutative ring with 1 and has zero divisors if n 
is a non-prime.  
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It is interesting to note in the polynomial ring Z[x] every ideal is principal.  
 
Polynomial rings in several variables can also be defined in a similar way. For if R[x] 
is a polynomial ring. Suppose y is another indeterminate then (R[x]) [y] is a 
polynomial ring using the commutative ring R[x] as the ring of quotients for the 
inderterminate y, (we assume xy = yx) denoted by R[x, y]. Suppose x1, …, xn are n 
variables then the polynomial ring in n variables is R[x1, x2, …, xn] where we assume 
xixj = xjxi for 1 ≤ i, j ≤ n.  
 
DEFINITION 2.5.2: Let R be a commutative ring with 1, and n ≥ 1 be an 
integer.  
 
Mn×n = {(aij) / aij ∈ R; 1 ≤ i, j ≤ n} be the set of all n × n matrices with entries in 
R where  
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Define addition and multiplication in Mn×n as follows: (aij) + (bij) = (aij + bij) 

and (aij ) . (bij ) = (cij ) where ∑
=

=
n

1k
kjikij bac for all i, j; 1 ≤ i, j ≤ n. It is easily 

verified that Mn×n is a ring called the matrix ring of order with entries from R.  
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is called the n × n identity matrix of Mn×n. 
 



 32 

It is interesting to note that matrix ring Mn×n is non-commutative and has zero divisors 
idempotents, nilpotents and also units.  
 
Example 2.5.3: Let M2×2 = {(aij) / aij ∈ Z5 = {0, 1, 2, 3, 4}} is a ring . Find units, 
idempotents and zero divisors in M2×2.  
 
DEFINITION 2.5.3: Let R and S be any two rings (not necessarily both R and S 
should be commutative rings with unit). P = R × S be the cartesian product of R 
and S. Define addition and multiplication on P. (x, y) + (x1, y1) = (x + x1, y + 
y1) and (x, y) (x1, y1) = (x x1, y y1) under these operations it is easily verified P is 
a ring called the direct product of the rings R and S.  
 
If we take n rings say R1 , R2 , …, Rn define P = R1 × … × Rn = {(r1, r2, …, rn) / ri 
∈ Rn, i= 1, 2, …,  rn} is the direct product of the n rings R1 , R2 ,  …, Rn.  
 
Example 2.5.4: Let P = Z2 × Z5 = {(a, b) / a ∈Z2 and b ∈ Z5}. P is a direct product 
of rings with 10 elements and has nontrivial zero divisors.  
 
Example 2.5.5: Let S = Z2 × Z × Z9 the direct product of ring. S is an infinite ring 
with zero divisors, S is a commutative ring.  
 
DEFINITION 2.5.4: Consider the subset of C (the complex field) given by Z[i] = 
{a + ib / a, b ∈ Z}. This is the set of integral points whose both coordinates are 
integers. It is easily verified Z[i] is a ring called the ring of Gaussian integers 
where addition and multiplication are given by (a + ib) + (c + id) = (a + c, i(b 
+ d)) and (a + ib) (c + id) = (ac – bd, i(ad + bc)). The unity of Z[i] is 1.  
 
DEFINITION 2.5.5: Consider the set Q[i] = {a + ib / a, b ∈ Q}, Q the field of 
rationals. It is easily verified Q[i] is a ring called the ring of Gaussian numbers; 
in fact Q[i] is a field. It is easy to verify. Z ⊂ Z[i] ⊂ Q[i] ⊂ R [i] = C.  
 
For more about properties of Gaussian rings refer [15]. 
 
The reader may just recall the concept of integral quaternions which was introduced 
in section 2.1. Now we introduce the concept of group rings and semigroup rings.  
 
DEFINITION 2.5.6: Let R be a commutative ring with unit 1 and G be a 
multiplicative group. The group ring, RG of the group G over the ring R consists 
of all finite formal sums of the form ∑α

i
ii g (i-runs over a finite number) 

where αi ∈ R and gi ∈ G satisfying the following conditions:  
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iv) rimi = miri   for all ri ∈ R and mi ∈ G.  
 

v) ∑∑
==

=
n
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ii

n

1i
ii g)rr(grr  for ri, r ∈ R and ∑ ∈ RGgr ii . 

 
RG is a ring with 0 ∈ R as its additive identity. Since 1 ∈ R we have G = 1.G ⊂ G 
and R.e = R ⊆ RG where e is the identity of G. Clearly if we replace the group G 
by a semigroup S we say RS is the semigroup ring of the semigroup S over the ring 
R.  
 
Example 2.5.6: Let Z2 = {0, 1} be the ring and G = 〈g / g5 = 1〉, the group ring Z2G 
is a ring which is commutative and has zero divisors. For g5 + 1 = (g + 1) (1+ g + g2 
+ g3+ g4) = 0.  
 
It is now important to mention if R is a ring and G is any finite group or has elements 
of finite order than the group ring RG has nontrivial zero divisors.  
 
If G is a torsion free abelian group and K a field of characteristic zero, the group ring 
KG has no zero divisors. It is pertinent to mention here till date i.e., even after 60 
years the problem if K is a field of characteristic zero and G a torsion free non-abelian 
group; can the group ring KG have zero divisors remains open, proposed in 1940 by 
G Higman [33].  
 
PROBLEMS:  
 

1. Find ideals in Z7[x], the polynomial ring in the variable x.  
2. Can Z8[x] have zero divisors? Find a maximal ideal in Z8[x].  
3. Let M2×2 = {(aij) / aij ∈ Z8} be the matrix ring. Find   

a. Idempotents in M2×2. 
b. Ideals (right only). 
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c. Zero divisors.  
d. Units.  
e. Subrings which are not ideals.  

4. Let G = S3 and Z3 = {0, 1, 2} find in the group ring Z3S3.  
a. Zero divisors.  
b. Ideals. 
c. Units.  
d. Left ideals.  
e. Idempotents. 
f. What is the order of Z3S3? 

5. Let G = S(4) be the semigroup Z2 = {0, 1} be the field of characteristic 2. Let 
Z2G be the semigroup ring of the semigroup G over Z2. Find   

a. Number of elements in Z2G.  
b. Idempotents in Z2G. 
c. Ideals in Z2G. 

d. Quotient ring 
I
GZ2  for any ideal I of Z2G.  

 
 
2.6  Modules  
 
In this section we just recall the definition of modules and some of its basic properties 
and illustrate them by examples.  
 
DEFINITION 2.6.1: Let R be a ring. An R-module or a left R-module is an 
additive abelian group M having R as a left operator domain such that in 
addition to the requirement r(x + y) = rx + ry. (r ∈ R, x, y ∈ M); for all groups 
with operators, we also have (a+b) x = ax + by, (ab) x = a(bx), IR x = x for a, b 
∈ R and x ∈ M. The elements of M are called vectors and those of the ring R are 
called scalars. The mapping (a, x) → ax of A × M → M is called the scalar 
multiplication in the R-module M. We can define a similar notion called right R-
modules where R acts on the right side of M.  
 
Example 2.6.1: All the additive abelian groups over the ring of integers Z is a Z-
module.  
 
DEFINITION 2.6.2: Let M be an R-module. A subgroup S of the additive group M 
is a submodule, if S itself is an R-module.  
 
DEFINITION 2.6.3: Let M and N be any two R-modules. An R-module 
homomorphism is a mapping φ from M to N such that φ(x + y) = φ(x) + φ(y)   
and φ(αx) = αφ(x) for all x, y ∈ M and α ∈ R.  
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We illustrate this by examples and problems.  
 
Example 2.6.2: Let R be a ring say Z8. Now M = Z8 × Z8 is an abelian group under 
addition, M is a Z8 – module over Z8.  
 
DEFINITION 2.6.4: Let M be a module, M is called a simple module if M ≠ (0) 
and the only submodules of M are (0) and M.  
 
Example 2.6.3: Let R be a ring S = R × R is an R-module. (show M = R × {0} and 
N = {0} × R are not isomorphic as S-modules).  
 
PROBLEMS:  
 
1. Let A and B be two submodules of a module M; prove A ∩ B is a submodule of M.  
2. M = Z × Z × Z × Z × Z is a module over Z.  

1. Find submodules of M. 
2. Find two submodules which are isomorphic in M. 

3. Let S = R × R × R be a module over R. Can S have submodules which are 
isomorphic? 

4. Is S given in example 3, a simple module over R? 
5. Give an example of a simple module.  
 
 
2.7 Rings with chain conditions  
 
In this section we recall the concept of chain conditions in rings; that is the concept of 
Artinian rings and Noetherian rings and illustrate them by examples.  
 
DEFINITION 2.7.1: Let R be a ring. R is said to be left Noetherian or Noetherian 
if the R-modules, Rt is Noetherian. Since the submodules of Rt are the same as left 
ideals of R; therefore this is the same as to say that the ring R satisfies the 
following equivalent conditions.  
 

a. Ascending chain conditions, (A.C.C) on left ideals: If every ascending 
chain M1 ⊂ M2 ⊂ …  of  left ideals of R is stationary.  

 
b. Maximum condition on left ideals: If every non-empty collection of left 

ideals has a maximal member. 
 

c. Finite generations of left ideals every left ideal of R is finitely generated.  
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Similarly a ring R is said to be left Artinian or Artinian if R-modules Rt is 
Artinian; i.e., if the ring R satisfies the following equivalent conditions.  
 

1. Descending chain conditions (D.C.C) on left ideals: If every descending 
chain N1 ⊃ N2 ⊃ …  of left ideals of R is stationary.  

 
2. Minimum condition on left ideals: every non-empty collection of left 

ideals of R has a minimal member. Finally we say that R is right 
Noetherian (respectively right Artinian) if the right R-modules Ai is 
Noetherian (respectively Artinian).  

 
Example 2.7.1: Let Z be the ring of integers; Z is Noetherian but it is not Artinian 
because we have (2) ⊃ (4) ⊃ (8) ⊃ … (n) …; (n) denotes ideals of Z where n ∈ 
Z.  
 
Example 2.7.2: The ring of polynomials in finitely many variables over a Noetherian 
ring is Noetherian. (This is known as Hilbert basis theorem). 
 
Every right Artirian ring is right Noetherian. The converse does not hold good.  
 
PROBLEMS:  
 

1. Show the finite direct product of Noetherian ring is Noetherian.  
2. Is every factor ring of a right Artinian ring, Artinian? Justify your answer. 

3. Show that the ring of all 2 × 2 matrices 







c0

ba
where a, b, c ∈ Q is right 

Noetherian but not left Noetherian. 

4. Show that the ring of all 2 × 2 matrices 







c0

ba
; a is rational b and c are 

reals is right Artinian but not left Artinian.  
5. Is the ring P = Z × Z × Z × Z × Z Artinian? 
6. Prove R[x] is right Noetherian if R is Noetherian. 
7. Show R [x1 , …, xn] is right Noetherian if R is right Noetherian.  
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Chapter three 

SMARANDACHE RINGS AND ITS 
PROPERTIES  
 
This is the main chapter of this book. Here we introduce several new concepts in 
Smarandache rings and recall the definition of Smarandache rings, Smarandache 
ideals and Smarandache subrings as given by Florentin Smarandache. We do not 
indulge in proving any of the classical results in ring theory. For in our opinion as 
there are many texts on ring theory any interested reader can develop all classical 
results and theorem to Smarandache rings. 
 
Several new concepts from ring theory that are not found in textbooks but have 
appeared only as research papers are introduced in this chapter. So at this juncture 
the author makes it very clear that most of the ring theory concepts given in 
undergraduate texts are ignored as they can be treated as exercises once this book is 
mastered. The author felt that when several innovative concepts in ring theory – about 
elements and substructures in rings – which are found only in research papers are 
given Smarandache equivalents, certainly it would be of interest to both Smarandache 
algebraists and ring theorists. Hence this book incorporates both the unique concepts 
of ring theory and their Smarandache analogues. It contains several definitions 
propounded by various authors and also provides an extensive bibliography of these 
papers thereby making it an important piece of work on Smarandache rings.   
 
This chapter is organized into ten sections. Section one defines Smarandache rings of 
level I and II, explains with examples and introduces the concept of Smarandache 
commutative rings. In section two, three, four the author introduces the special 
elements in a ring viz Smarandache units, Smarandache zero divisors and 
Smarandache idempotents. Several important results are given with many illustrative 
examples. The main substructure like S-ideals and S-subring are studied in section 
five leading to the definition of Smarandache simple rings, Smarandache pseudo 
simple rings. Smarandache modules are introduced in section six. Just the 
Smarandache analogue of D.C.C and A.C.C are given in section seven.  
 
In section eight we define Smarandache group rings and Smarandache semi group 
rings as they serve as concrete examples in almost all illustrations. Special elements 
like Smarandache nilpotents, Smarandache semi idempotent, Smarandache pseudo 
commutative pair, S-quasi commutative elements, Smarandache semi nilpotent 
element etc. are introduced in the ninth section. The tenth section is the longest 
section and the main section of this chapter. It introduces over 70 Smarandache 
notions and gives around 40 theorems with 55 illustrative examples.  
 
In several places the author leaves the proof of certain result for the reader as only by 
solving these at each stage can make a researcher well versed in Smarandache ring 
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theory. This section ends with 70 problems which can be easily worked as exercise by 
any studious researcher. Each section starts with a brief introduction.  
 
3.1 Definition of Smarandache Ring with Examples  
 
In this section we recall the definition of the Smarandache rings and illustrate it with 
examples. Smarandache rings were introduced by Florentin Smarandache [73], see 
also Padilla Raul [60], in the year 1998. Several researchers have been working on 
these Smarandache concepts. As we have several books on ring theory and no book 
on Smarandache rings here we venture to write a book on Smarandache-Rings 
distinctly different from usual ring theory books.  
 
DEFINITION [73, 60] : A Smarandache ring (S-ring) is defined to be a ring A, 
such that a proper subset of A is a field with respect to the operations induced. By 
proper subset we understand a set included in A different from the empty set, 
from the unit element if any and from A.  
 
Example 3.1.1: Let F[x] be a polynomial ring over a field F. F[x] is a S-ring.  
 
Example 3.1.2: Let Z12 = {0, 1, 2, …, 11} be a ring. Z12 is a S-ring as A = {0, 4, 8} 
is a field with 4 acting as the unit element.  
 
Example 3.1.3: Z6 = {0, 1, 2, …, 5} is a S-ring; for take A = {0, 2, 4} is a field with 
4 acting as the unit of A.  
 
It is interesting to note that we do not demand the unit of the ring to be the unit of the 
field; further we do not expect all rings to be S-rings.  
 
From now onwards we will call these S-rings as S-ring I. For these rings do not help 
us to define Smarandache commutative ring or like concepts. So we are forced to opt 
for the second level of S-ring.  
 
DEFINITION 3.1.1: Let R be a ring, R is said to be a Smarandache ring of level 
II (S-ring II) if R contains a proper subset A (A ≠ 0) such that  
 

1. A is an additive abelian group.  
2. A is a semigroup under multiplication. 
3. For a, b, ∈ A; a.b = 0 if and only if a = 0 or b = 0.  

 
THEOREM 3.1.1: Let R be S-ring I then R is a S-ring II.  
 
Proof: By the very definition of S-ring I and S-ring II we see every S-ring I is a S-ring II 
for it obviously satisfies all conditions of S-ring II.  
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THEOREM 3.1.2: Every S-ring II need not in general be a S-ring I.  
 
Proof: Take Z[x] the polynomial ring. Z[x] is S-ring II for Z ⊂ Z[x] but Z[x] is not a 
S-ring I.  
 
Thus we have the class of S-ring I to be strictly contained in the class of S-ring II.  
 
DEFINITION 3.1.2:  Let R be a ring, R is said to be a Smarandache commutative 
ring II (S-commutative ring II) if R is a S-ring and there exists at least a proper 
subset A of R which is a field or an integral domain i.e. for all a, b ∈ A we have 
ab = ba. If R has no proper subset A (A ⊂ R) which is a field or an integral 
domain then we say R is a Smarandache non-commutative ring II (S-non-
commutative ring II). 
  
Thus we can simply say R is a S-non-commutative ring II if no proper subset of R is an 
integral domain or a field.  
 
THEOREM 3.1.3: Let R be a ring, R is a S-commutative ring II if and only if R 
has atleast a proper subset, which is an integral domain.  
 
Proof: Given R is a S-commutative ring II, so R has a proper subset A, which is an 
integral domain.  
 
Conversely suppose R has a proper subset A which is an integral domain by the very 
definition of S-ring II, R is a S-commutative ring II.  
 
THEOREM 3.1.4: Let R be a ring, R is said to be a S-non-commutative ring II if 
R has no proper subset A, which is an integral domain, but R has only proper 
subsets, which are division rings.  
 
Proof: For if R has atleast one proper subset which is an integral domain then R will 
be a S-commutative ring II but for R to be a S-ring II, R must have atleast a proper 
subset which is a division ring. Hence the claim.  
 
From these definitions and results we see even if R is a non-commutative ring  still R 
can be a S-commutative ring II.  
 
Example 3.1.4: Let QR={α0 + α1i + α2j + α3k / α0, α1, α2, α3 ∈ Q – the field of 
rationals, i2 = j2 = k2 = –1 = ijk, ij = – ji = k, jk = – kj  = i, ki = –ik = j} be the ring 
of quaternions. 
 
Clearly QR is a S-commutative ring II and QR is also a S-ring I. (QR is non-
commutative) as it has Q ⊂ QR to be a commutative field. 
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DEFINITION 3.1.3: Let R be a ring, R is a S-ring I (or II), we say the 
Smarandache characteristics (S-characteristic) of R is the characteristic of the 
field which is a proper subset of R (and or) the characteristic of the integral 
domain which is a proper subset of R or the characteristic of a division ring 
which is a proper subset of R.  
 
Thus for a ring R which is a S-ring I or S-ring II we can have several S-characteristics 
associated with it.  
 
THEOREM 3.1.5: Let R be a commutative finite ring. If R is a S-ring II then R is 
a S-ring I. 
 
Proof: By the very definition of S-ring I and S-ring II we see they are identical in a 
finite commutative ring as “Every finite integral domain is a field”. Hence the claim.  
 
THEOREM 3.1.6: If R is a S-ring I (or S-ring II) and R[x] is a polynomial ring 
in the indeterminate x over R, then R[x] is a S-ring I (or S-ring II).  
 
Proof: Now R is a S-ring I (S-ring II) so A ⊂ R (A is a field or an integral domain or a 
division ring) so A[x] ⊂ R [x] is an integral domain or a division ring, hence R is S-
ring II or A ⊂ R[x], so if R is a S-ring I so is R[x].  
 
THEOREM 3.1.7: Let F be a field and G any group. Then the group ring FG is a 
S-ring I. 
 
Proof: The result is true as the field F is such that F ⊂ FG. Hence FG is a S-ring I.  
 
THEOREM 3.1.8: Let F be a field and S any semigroup with unit. The semigroup 
ring FS is a S-ring I.  
 
Proof: Left for the reader to prove.  
 
THEOREM 3.1.9: Let Z be the ring of integers and G any group, then the group 
ring ZG is a S-ring II and not a S-ring I.  
 
Proof: Obvious from the fact Z is only an integral domain and Z ⊂ ZG; hence ZG is a 
S-ring II.  
 
COROLLARY: Let Z be the ring of integers and G a non-commutative group (S a 
non-commutative monoid) then the group ring ZG (the semigroup ring ZS) is a 
S-ring II.  
 
Proof: Left for the reader to verify.  
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THEOREM: 3.1.10: Let Mn×n = {(aij ) / aij ∈ Z} be the ring of matrices. Mn×n is a 
S-ring II.  
 
Proof: Consider the matrix, A = {(aii) / aii ∈ Z \ {0} and aii = 0, i ≠ j} ∪(0), (where 
(0) is the zero matrix) that is, A consists of only diagonal matrices. Then A is an 
integral domain, so Mn×n is a S-ring II and not a S-ring I.  
 
PROBLEMS:  
 

1. Give an example of a S-ring II, which is not a S-ring I.  
2. Can a ring with zero divisors be a S-ring I? Justify your answer with examples.  
3. Give an example of a finite S-ring I of order 64.  
4. What is the order of the smallest S-ring I which is non-commutative?  
5. Give an example of a smallest S-ring I.  
6. Find a S-ring I using the semigroup S(5). (By constructing suitable semigroup 

rings).   
7. Let Z3S(4) be the S-ring I. Is Z3 S(4) a S-commutative ring I?  
8. Let Z24 S3 be the group ring of the group S3 over the ring Z24. How many proper 

subsets in Z24 S3 are fields? Is Z24 S3, S-commutative? 
9. Is Z12G where G = 〈g / g12 = 1〉, a S-ring II? Justify your answer.  

10. ZS(n) be the semigroup ring. Is Z S(n) a S-ring I? Justify your claim.  
 
 
3.2 Smarandache units in Rings  
 
In this section we introduce the notion of Smarandache units (S-units) in rings. For 
introducing S-units we don’t require S-ring. S-units are defined for any arbitrary ring 
and interesting results are obtained. We prove that units of the form x2 = 1 can never 
be S-units. We prove every unit in the field of rationals and reals are S-units.  
 
DEFINITIONS 3.2.1: Let R be a ring with unit. We say x ∈ R \ {1} is a 
Smarandache unit (S-unit) if there exists y ∈ R with  
 

1. xy = 1. 
2. There exists a,b in R \ {x, y, 1}.  

i) xa = y or ax = y or  
ii) yb = x or by = x and  
iii) ab = 1.  

 
(2(i) or 2(ii) is satisfied it is enough to make a S-unit). 
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Example 3.2.1: Let Z9 = {0, 1, 2, …, 8} be the ring under multiplication modulo 9, 
2 ∈ Z9 is a S-unit for 5 ∈ Z9 is such that 2.5 ≡ 1 (mod 9) and 7, 4 ∈ Z9 is such that 
2.7 ≡ 5 (mod 9) and 5.4 ≡ 2 (mod 9) with 7.4 ≡ 1 (mod 9). 
 
Example 3.2.2: Let Z5 = {0, 1, 2, 3, 4} be the ring of integers modulo 5. Clearly 3 ∈ 
Z5 is a S-unit in Z5 as 2.3 ≡ 1 (mod 5) and 4 ∈ Z5 is such that 2.4 ≡ 3 (mod 5) and 
3.4 ≡ 2 (mod 5) and 42 ≡ 1 (mod 5).  
 
THEOREM 3.2.1: Every S-unit in a ring is a unit but all units in a ring need not 
in general be S-units. 
 
Proof: Clearly by the very definition of S-unit we see it is a unit, but every unit need not 
be a S-unit. We prove this by an example: Consider the ring. Z9 = {0, 1, 2, …, 8} of 
modulo integers. Clearly 7 is a unit as 7.4 ≡ 1 (mod 9); 7 is not a S-unit in Z9 as we 
cannot find a, b ∈ Z9 \ {7, 4} such that 7a ≡ 4 (mod 9) or 4.b ≡ 7 (mod 5) with ab 
≡1 (mod 9).  
 
Example 3.2.3: Let Z15 = {0, 1, 2, …, 14} be the ring of integers modulo 15. Now 2 
∈ Z15 is a S-unit for 2.8 ≡ 1 (mod 15), 42 ≡ 1 (mod 15) and 2.4 ≡ 8 (mod 15).  
 
It is important to note that when we say x is a S-unit in R we do not say there exist y ≠ 
x in R, but we will prove that x2 = 1 can never be a S-unit so it is not essential to say y 
≠ x in the definition.  
 
Similarly when we take a, b ∈ R \ {x, y, 1} we do not demand a and b to be distinct, a 
= b can also occur. We illustrate this by an example. 
 
Example 3.2.4: Z15 = {0, 1, 2, …, 14} be the ring of integers modulo 15. We have 
42

 ≡ 1 (mod 15) as we cannot find a, b ∈ Z15 such that 4a ≡ 4 (mod 15) or 4b ≡ 4 
(mod 15) with a.b = 1(mod15). 
 
THEOREM 3.2.2: Let R be a ring with unit 1, if x ∈ R \ {1} is a S-unit, with xy 
= 1 then x ≠ y.  
 
Proof: Let x ∈ R \ {1} is a S-unit, so by definition we have xy = 1 such that a, b ∈ R \ 
{x, y, 1} with xa = y or ax = y, (by = x or yb = x) and ab = 1; if x = y then we have x2 
= 1, xa = x, i.e., x2 a = x2 that is a = 1, a contradiction to the very definition of S-unit.  
 
Example 3.2.5: Let R2×2 = {(aij) / aij ∈ Z2 = {0, 1}} be the collection of all 2 × 2 
matrices with entries from Z2 = {0, 1}. R2×2 is a ring under the matrix multiplication 
and matrix addition.  
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In R2×2 we have 
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is the multiplicative identity. To find which of these are S-units. Clearly it can be easily 
verified that  
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are not S-units. It can be verified that none of the elements in R2×2 are S-units but 
R2×2 has 5 distinct units.  
 
From this example we have made the following observations:  
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Now if we do not assume a, b ∈R \ {x, y, 1}; a = 1 or b = 1 can occur in which case  
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thus every element x in a ring R such that x2 = 1 will become a S-unit. Further  
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is an example; if we do not assume a, b ∈ R \ {x, y, 1} and if we take  
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Hence the assumptions in the definition 3.2.1 are important for S-units to be distinctly 
different from units.  
 
THEOREM 3.2.3: Every unit in the ring Zn = {0, 1, …, n–1} is not a S-unit.  
 
Proof: Given Zn is the ring of integers modulo n. We have n – 1  ∈  Zn is such that     
(n – 1)(n – 1) ≡ 1 (mod n) is a unit, which is not a S-unit by theorem 3.2.2. Thus we 
have in a prime field of characteristic p, p a prime every element is a unit but every 
element in Zp is not a S-unit contrary to prime fields of characteristic 0.  
 
THEOREM 3.2.4: Let Q be the field of rationals, every unit in Q is a S-unit.  
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Proof: Q is the field of rationals. To prove every unit in Q is a S-unit in Q. Let m be an 

integer, we know 
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=× . Hence every unit in Q is a S-unit.  

 
In view of this we have the following theorem:  
 
THEOREM 3.2.5: If F is a prime field of characteristic 0 every unit is a S-unit.  
 
Proof: Since all prime fields of characteristic 0 are isomorphic to Q we have the 
result.  
 
Example 3.2.6: Let Q be the field of characteristic 0 and G = {g | g2 = 1}. The 
group ring QG = {α + βg | α, β ∈ Q}. Now g ∈ QG and g2= 1 but g is not a S-unit.  
 
DEFINITION 3.2.2: Let S be a ring, if every element in S is a S-unit then we say 
S is a Smarandache unit domain (S-unit domain).  
 
If S has no S-units, S is said to be a Smarandache unit free ring (S-unit free 
ring).  
 
Example 3.2.7: Q is a S-unit domain.  
 
Example 3.2.8: R is a S-unit domain.  
 
Example 3.2.9:  Zp, p a prime is a S-unit free domain.  
 
PROBLEMS:  
 

1. Find all S-units in Z210.  
2. Find all S-units of the group ring Z2S3.  
3. How many S-units does the semigroup ring Z4S(3) have?  
4. Find those units, which are not S-units in Z24.  
5. Does M3×3 = {(aij ) / aij ∈ Z4 = {0, 1, 2, 3}}, the ring of 3 × 3 matrices have 

S-units? Justify your answer.  
6. Find all S-units in QS8, the group ring of the group S8 over the rational field Q.  
7. Find the S-units in ZS(7); the semigroup ring of the semigroup S(7) over the 

ring  of integers Z.  
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8. Find units in the semigroup ring ZS(7) given in problem 7 which are not S-
units.  

9. Find the S-units of the group ring Z11G where G is the dihedral group given by 
G = {a, b / a2 = b9 = 1, bab = a}.  

10. Find all units in Z11G in problem 9 which are not S-units.  
11. Can the group ring Z3G where G = 〈g / gp = 1〉, p a prime p > 3 have S-units? 

Justify your answer. 
12. Can the group ring ZpG where G = 〈g / gp = 1〉, have S-units? Does ZpG have 

units, which are not S-units?  
 
 
3.3 Smarandache Zero Divisors in Rings  
 
In this section we introduce the concept of Smarandache zero divisors (S-zero 
divisors) in rings and show that every S-zero divisor is a zero divisor but all zero 
divisors are not S-zero divisors.  
 
DEFINITION 3.3.1: Let R be a ring, we say x and y in R is said to be a 
Smarandache zero divisor (S-zero divisor) if xy = 0 and there exists a, b ∈ R \ {0, 
x, y} with  
 

1. xa = 0 or ax = 0. 
2. yb = 0 or by = 0.  
3. ab ≠ 0 or ba ≠ 0. 

 
Example 3.3.1: Let Z20 = {0, 1, 2, …, 19} be the ring of integers modulo 20. 
Clearly 10, 16 is a S-zero divisor, consider 5, 6 ∈ Z20  \ {0} 
 

5 × 16 ≡ 0 (mod 20) 
6 × 10 ≡ 0 (mod 20) 
6 × 5 ≡/  0 (mod 20). 

 
Example 3.3.2: Let Z10 = {0, 1, …, 9} be the ring of integers modulo 10. Clearly 
2.5 ≡ 10 ≡ 0 (mod10) is a zero divisor but is not a S-zero divisor.  
 
THEOREM 3.3.1: Let R be a ring. Every S-zero divisor is a zero divisor but a 
zero divisor in general is not a S-zero divisor.  
 
Proof: By the very definition of S-zero divisor we see if x, y is a S-zero divisor, it is a 
zero divisor. But by example 3.3.2 we see 2.5 ≡ 0 (mod 10) is a zero divisor in Z10 
but it is not a S-zero divisor.  
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Example 3.3.3: Let 








=∈







=× }1,0{Zd,c,b,a

dc

ba
S 222 be the set of all 2 × 2 

matrices with entries from the ring of integers Z2. Clearly S2×2 is the matrix ring. Now  
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Finally  
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is a S-zero divisor of the ring S2×2.  
 
Example 3.3.4: Let R3×3 = {(aij) / aij ∈ Z4 = {0, 1, 2, 3}} be the collection of all    
3 × 3 matrices with entries from Z4. Now R3×3 is a ring under matrix multiplication 
modulo 4. We have 
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in R3×3 is a zero divisor of R3×3. 
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are S-zero divisors in R3×3. 
 
THEOREM 3.3.2: Let R be a non-commutative ring. x, y ∈ R \ {0} be a S-zero 
divisor with a, b ∈ R \ {0, x, y} satisfying the following conditions:  
 

1. ax = 0 and xa ≠ 0.  
2. yb = 0 and by ≠ 0.  
3. ab = 0 and ba ≠ 0.  

 
Then (xa + by)2 = 0, i.e., xa + by is a nilpotent element of R.  
 
Proof: Given x, y ∈ R \ {0} is a S-zero divisor such that xy = 0 = yx. We have a, b ∈ R 
\ {0, x, y} with ax = 0 and xa ≠ 0 and yb = 0 and by ≠ 0 with ab = 0 and ba ≠ 0. 
Consider (xa + by)2 = xaby + byxa + xaxa + byby; using xy = yx = 0, ab = 0, yb = 0 
and ax = 0 we get xa + by to be a nilpotent element of order 2.  
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Now in view of this we have the following nice definition:  
 
DEFINITION 3.3.2: Let R be a commutative ring. If R has no S-zero divisors we 
say R is a Smarandache integral domain (S- integral domain) (Thus we may 
have zero divisors in R what we need is R should not have S-zero divisors).  
 
THEOREM 3.3.3: Let R be an integral domain. Then R is a S- integral domain.  
 
Proof: Obvious by the very definition of S-integral domain.  
 
DEFINITION 3.3.3: Let R be a non-commutative ring. If R has no S-zero 
divisors then we say R is a Smarandache division ring (S-division ring).  
 
(Here also a S-division ring may have zero divisors). We will discuss and use these 
concepts in later chapters.  
 
Examples 3.3.5: Clearly Z4 = {0, 1, 2, 3} is a S-integral domain but is not an 
integral domain as 2.2 ≡ 0  (mod 4).  
 
THEOREM 3.3.4: Every S integral domain in general is not an integral domain.  
 
Proof: By example 3.3.5, Z4 = {0, 1, 2, 3} is not in integral domain but is a S-integral 
domain.  
 
COROLLARY: All division rings are S-division rings.  
 
Proof: By very definition of S-division rings.  
 
Finally the author wishes to state that all zero divisors which occur are only from finite 
zeros. Finite zeros are zeros which occur in finitely constructed structure. 0 ∈ Z ⊂ Q 
⊂ R is not a finite zero. For more about these please refer [159]. 
 
PROBLEMS:  
 

1. Find whether Z24 has S-zero divisors? 
2. Does Z14 have zero divisors, which are not S-zero divisors?  
3. Find whether the group ring Z2S3 has S-zero divisors?  
4. Does the semigroup ring Z12 S(5) have S-zero divisors? Can Z12 S(5) have zero 

divisors which are not S-zero divisors?  
5. Is Z25 = {0, 1, 2, …, 24} an S-integral domain? Justify your answer.  
6. Give an example of S-division ring, which is not a division ring.  
7. Can Z12(3) have nilpotent elements of order 2?  
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8. Find all zero divisors in the semigroup ring Z2 S(4).  
9. Find all S-zero divisors of the group ring Z2S4.  

10. Which ring Z2S4 or Z2S(4) will have more number of S-zero divisors? (Z2S4 and 
Z2S(4) given in problems in 8 and 9).  

 
 
3.4 Smarandache idempotents in Rings  
 
In this section we introduce the concept of Smarandache idempotents and 
Smarandache co-idempotents in rings and prove, if a ring has Smarandache 
idempotents then it has at least two divisors of zero. We prove if G is a finite group 
and K a field of characteristic zero then the group ring KG has nontrivial Smarandache 
idempotents. Finally we show group ring KG of a torsion free abelian group G over a 
field K of characteristic 0 has no Smarandache idempotents.  
 
DEFINITION 3.4.1: Let R be a ring. An element 0 ≠ x ∈ R is a Smarandache 
idempotent (S-idempotent) of R if  
 

1. x2 = x. 
2. There exists a ∈ R \ {x, 1, 0}.  

i. a2 = x and  
ii. xa = a (ax = a) or ax = x (xa = x)  

 
or in (2, ii) is in the mutually exclusive sense.  
 
DEFINITION 3.4.2: Let x ∈ R \ {0, 1} be a Smarandache idempotent of R i.e., x2 

= x and there exists y ∈ R \ {0, 1, x} such that y2 = x and yx = x or xy = y. We 
call ‘y’ the Smarandache co-idempotent (S-co-idempotent) and denote the pair 
by (x, y).  
 
Example 3.4.1: Let Z6 = {0, 1, 2, …, 5} be the ring of integers modulo 6, then 4 ∈ 
Z6 is a S-idempotent of Z6 for 42 ≡ 4 (mod 6) and 2 ∈ Z6 \ {4} is such that 22 ≡ 4(mod 
6) 2.4 ≡ 2 (mod 6). Now 3 ∈ Z6 is such that 32 ≡ 3 (mod 6) but 3 is an idempotent 
of Z6 but is not a S-idempotent of Z6.   
 
THEOREM 3.4.1: Every S-idempotent is an idempotent but every idempotent in 
general is not a S-idempotent.  
 
Proof: By the very definition of S-idempotents we see every S-idempotent is an 
idempotent of the ring R. We see in example 3.4.1, in the ring Z6 = {0, 1, 2, …, 5}, 3 
∈ Z6 is such that 32 ≡3 (mod 6) but is an idempotent which is not an S-idempotent of 
Z6.  



 52 

 
Example 3.4.2: Let Z10 = {0, 1, 2, …, 9} be the ring of integers modulo 10. Now 
the idempotents in Z10 are 5 and 6 for 52 ≡ 5 (mod 10) and 62 ≡ 6 (mod 10). 5 is not 
a S-idempotent but 6 is a S-idempotent, 62 ≡ 6 (mod 10) and 4 ∈ Z10 is such that 42 ≡ 
6 (mod 10) and 4.6 ≡ 4 (mod 10).  
 
THEOREM 3.4.2: Let R be a ring. If R has a S-idempotent then R has atleast 2 
nontrivial zero divisors.  
 
Proof: Let a ∈ R be a S-idempotent, hence a2 = a and there exists b ∈ R \ {a, 0, 1} 
such that b2 = a and ab = b which in turn implies (a – 1) b = 0. Further a2 = a 
implies a (a –1) = 0 (as a ≠ 1 or 0). Clearly b ≠ 0 and a ≠ 1. Hence the claim.  
 
COROLLARY: If R is a commutative ring and if R has S-idempotents then R has 
atleast 3 zero divisors.  
 
Proof: From Theorem 3.4.2 we have two zero divisors. Now a2 – b2 = 0 as a2 = a and 
b2 = a so (a – b)(a + b)= 0 is another zero divisor as a ≠ b. The three zero divisors 
are distinct as b ≠ 1 and a ≠ b. Hence the theorem.  
 
Example 3.4.3: Now consider the ring of integers modulo 12 given by Z12 = {0, 1, 
2, 3, …, 11}. Clearly this ring has two nontrivial idempotents viz 4 and 9, both of 
them are S-idempotents as 42 ≡ 4 (mod 12) and 8 ∈ Z12 is such that 82 ≡ 4 (mod 12) 
and 4.8 ≡ 8 (mod 12). Now 92 ≡ 9(mod 12); 3 ∈ Z12 is such that 32 ≡ 9 (mod 12) 
and 9.3 ≡ 3 (mod 12). Hence the claim. Thus we have rings in which every 
idempotent is also a S-idempotent. 
 
Example 3.4.4: Let Z15 = {0, 1, 2, …, 14} be the ring of integers modulo 15. The 
only nontrivial idempotents of Z15 are 6 and 10. Clearly 6 is a S-idempotent of Z15 as   
9 ∈ Z15 is such that 9 . 6 ≡ 9 (mod 15) and 92 ≡ 6 (mod 15) but 10 is a S-idempotent 
of Z15, as 102 ≡ 10 (mod 15) and 52 ≡ 10 (mod 15) and 5.10 ≡ 5 (mod 15). This 
example says even in the ring of modulo integers every idempotent is not a S-
idempotent.  
 
THEOREM 3.4.3: Let Zn be the ring of integers modulo n. Zn has idempotents 
which are not S-idempotents when n = 2p, where p is a prime. 
 
Proof: Given Zn = {0, 1, 2, …, n –1} is the ring of integers modulo n and n = 2p, 
where p is an odd prime. Now p2 ≡ p (mod 2p) by simple number theoretic 
arguments p2 ≡ p (mod 2p) means as p2 + p ≡ 0 (mod 2p) i.e., p(p + 1) ≡ 0 (mod 
2p). Now p ∈ Z2p is an idempotent but p is not a S-idempotent for there does not exist 
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a m ∈ Z2p \ {p, 0, 1} such that m2 ≡ p and mp ≡ m. But if p is a prime m2 = p is 
impossible. Thus in Z2p, when p is prime, p is an idempotent which is not a S-
idempotent.  
 
Example 3.4.5: Let Z30 = {0, 1, 2, …, 29} be the ring of integers modulo 30. Now 
this ring has 6, 10, 15, 16, 21 and 25 as non-trivial idempotents. 6 ∈ Z30 is a S-
idempotent as 62 ≡ 6(mod 30) and 242 ≡ 6(mod 30), 6.24 ≡ 24(mod 30).  
 
Similarly 10 is a S-idempotent as 20 serves the role of b ∈ Z30 \ {0, 1, 10}. 15 is not a 
S-idempotent. 16 is a S-idempotent with 14 acting as b for 162 ≡ 16(mod 30), 142 ≡ 
16(mod 30) and 14.16 ≡ 14(mod 30) for 21, 9 serves as the element to make 21 a 
S-idempotent. For 25 is a S-idempotent as 5 serves the role of b.  
 
Now we observe the following from this example.  
 

1. All idempotents are not S-idempotents in Z30 as 15 ∈ Z30 is not a S-idempotent.  
2. Idempotents taken in certain pairs adds to 31. For (6, 25), (10, 21) and (15, 

16). The sum of S-idempotent and S-co-idempotents adds to 30. (6, 24), (10, 
20) and (16, 14). 

3. For the idempotent to be S-idempotents we need a, b ∈ Z30 in all case with a2 
≡ a, b2 = a, ab = b we have ‘b’ such that a + b = 30. 

 
These observations leads to a certain open problems which is given in Chapter 5.  
 
Example 3.4.6: Let Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. Z4 has no 
idempotents hence no S-idempotents.  
 
Example 3.4.7: Let Z16 = {0, 1, 2, …, 15} be the ring of integers modulo 16. Z16 
has no idempotents hence no S-idempotents.  
 
Example 3.4.8: Let Z27 =  {0, 1, 2, …, 26}, be the ring of integers modulo 27. 
Clearly it can be verified Z27 has no idempotents and so has no S-idempotents.  
 
Example 3.4.9: Let Z3 = {0, 1, 2} be the prime field of characteristic 3. G = 〈g/ g2 = 
1〉 be the cyclic group of order 2. Z3G = {0, 1, 2, g, 2g, 1 + g, 1 + 2g, 2 + g, 2+2g}. 
Clearly 2 + 2g is a S-idempotent of Z3G as (2 + 2g)2 = 2 + 2g and (2 + 2g) (1 + g) 
= 2 + 2g. Hence the claim.  
 
Example 3.4.10: Let G = 〈g / g2 = 1〉 be the cyclic group of order 2 and Q be the 

field of rationals. QG be the group ring of the group G over Q, )g1(
2
1

+  is an 
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idempotent of QG. 
2
1

b
−

=  (1 + g) ∈ QG is such that )g1(
2
1

b2 += and ab = b. So 

)g1(
2
1

+   is a S-idempotent. 

 
Example 3.4.11: Let S3 = {1, p1, p2, p3, p4, p5} be the symmetric group of degree 3 
where  
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Z2 = {0, 1} be the prime field of characteristic two. Clearly the group ring Z2S3 has 
idempotents which are S-idempotents. Now (1 + p4 + p5)

2 = (1 + p4 + p5) = a take b 
= 1 + p1 + p2 ∈ Z2S3. Now b2 = 1+p4+p5, ab = a. Hence the claim. Now if take for the 
idempotent 1 + p4 + p5 the element p1 + p2 + p3 we will get (p1 + p2 + p3)

2 = 1 + p4 
+ p5 and (1 + p4 + p5)(p1 + p2 + p3) = p1 + p2 + p3.  

 
This leads us to an interesting result that S-co-idempotents are not unique for a given 
idempotent.  
 
THEOREM 3.4.4: Let R be a ring. a ∈ R be a S-idempotent. The S-co-
idempotents of a in general is not unique.  
 
Proof: By an example. Consider example 3.4.11 the S-co-idempotent of 1 + p4 + p5 is 
not unique.  
 
Example 3.4.12: Let Z105 = {0, 1, 2, …, 104} be the ring of integers modulo 105. 
(105 = 3 × 5 × 7). The idempotent in Z105 are 15, 21, 36, 70, 85 and 91. It can be 
verified that all these idempotents are S-idempotents.  
 
Now the S-co-idempotent for 15 is 90, for 21 is 84, 36 it is 69 for 70 the S-co- 
idempotent is 35, for 85 it is 20 and for 91 the S-co-idempotent is 14.  
 
THEOREM 3.4.5: Let F be a field. F has no S-idempotents.  
 
Proof: Since a field has no nontrivial idempotents so a field has no S-idempotents.  
 
THEOREM 3.4.6: Let F be a field of characteristic zero and G any group of finite 
order; the group ring FG has S-idempotents.  
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Proof: Let FG be the group ring of G over F. Given G is of finite order. Two possibilities 
arise; order of G is prime or order of G is not a prime. Let order of G be a prime say p 

then 
p
1+

=α (1 + g + g2 + … + gp–1) is such that α2 = α is an idempotent of FG. 

For take 
p
1−

=α (1 + g + g2 + … + gp–1). Clearly b2 = α and αb = b. Hence the 

claim. If the order of G is finite and not a prime then G has a subgroup say H or order 
m. Then by taking  

∑
∈

=
Hh

i
i

h
m
1

a  

 
is such that a2 = a and take  

∑
∈

−
=

Hh
i

i

h
m

1
b  

 
is such that b2 = a and ab = b. Hence the claim.  
 
THEOREM 3.4.7: Let F be a field of characteristic 0 and G be a group having 
elements of finite order then the group ring FG has idempotents which are S-
idempotents of FG.  
 
Proof: Let FG be the group ring of the group G over F. Given G has elements of finite 

order i.e., g ∈ G is such that gm = 1 (m < ∞). Take )gg1(
m
1

a 1m−+++= K is 

such that  a2  =  a   and if we take )ggg1(
m

1
b 1m2 −++++

−
= K  then b2 = a and 

ab = b. Hence the claim.  
 
THEOREM 3.4.8: Let G be a torsion free abelian group. F a field of 
characteristic zero. The group ring FG has no S-idempotents.  
 
Proof: Given G is a torsion free abelian group and F a field of characteristic zero. The 
group ring FG has no zero divisor, but for a ring to have S-idempotents it is 
guaranteed that the ring should have atleast two zero divisors. So this group ring 
cannot have S-idempotents as FG is a domain.  
 
PROBLEMS:  
 

1. Find all S-idempotents in Z243= {0, 1, 2, …, 242}.  
2. Can Z49 = {0, 1, 2, ..., 48} have nontrivial S-idempotents? 
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3. Find all S-idempotents in the group ring Z7G where G = S7 the symmetric 
group of degree 7.  

4. Can Z3S(4) the semigroup ring of the semigroup S(4) over the ring Z3 have S-
idempotents? Justify your answer.  

5. How many S-idempotents does Z2S(3) the semigroup ring of the semigroup 
S(3) over Z2 have?  

6. Find all idempotents in Z210 = {0, 1, 2, …, 209}, which are not S-idempotents.  
7. Let M3×3 = {(aij ) / aij ∈ Z6} be the ring of all 3 × 3 matrices. Find all S-

idempotents in M3×3.  
8. Can M5×5 = {(aij) / aij ∈ Z11}, the ring of 5 × 5 matrices have idempotents? S-

idempotents? Substantiate your answer.  
9. Find a ring R which has idempotents but not S-idempotents.  

10. Give an example of a ring R in which every idempotent is an S-idempotent. 
 
 
3.5 Substructures in S-rings  
 
In this section we introduce substructures in S-ring I and S-ring II. The notion of 
Smarandache rings, Smarandache ideals and Smarandache pseudo ideals is 
introduced in these S-rings I and II and they are illustrated by examples. Some 
interesting results about them are also obtained in this section.  
 
DEFINITION 3.5.1: Let S be a ring. A proper subset A of S is said to be a 
Smarandache subring (S-subring) of S if A has a proper subset B which is a field 
and A is a subring of S.  
 
THEOREM 3.5.1: Let S be a ring. If S has S-subring then S is a S-ring I.  
 
Proof: Obvious from the fact that the ring has a S-subring A implies A contains a 
subfield which is also a subfield in S, so S is a S-ring I.  
 
Suppose S is a S-ring I, it may not be always possible to obtain a S-subring in S or to 
be more precise every subring of a S-ring I need not in general be a S-subring of S. 
 
Example 3.5.1: Let Z6 = {0, 1, 2, 3, 4, 5} be the ring of integers modulo 6. Z6 is a S-
ring I but Z6 has no S-subring.  
 
Clearly Z8 = {0, 1, 2, 3, 4, 5, 6, 7} has no subsets which are fields so Z8 is not even a 
S-ring I.  
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Example 3.5.2: Let Z12 = {0, 1, 2, …, 10, 11} be the ring of integers modulo 12. 
Z12 is a S-ring. In fact Z12 has S-subring for take P = {0, 2, 4, 6, 8, 10} and A = {0, 4, 
8} is a subfield of Z12. So Z12 has a S-subring.  
 
THEOREM 3.5.2: Let R be S-ring I, R may have subrings but R may not have S-
subrings.  
 
Proof: Let R be a S-ring I, say Z6 = {0, 1, 2, 3, 4, 5} be ring of integers modulo 6. 
Clearly Z6 is a S-ring I which has no S-subrings but has subrings S1 = {0, 3} and S2 = 
{0, 4, 2}.  
 
DEFINITION [73, 60]: The Smarandache ideal is defined as an ideal A such 
that a proper subset of A is a field (with respect with the same induced 
operations). By proper subset we understand a set included in A, different from 
the empty set, from the unit element – if any and from A.  
 
Example 3.5.3: Let Z6 be the S-ring i.e., Z6 = {0, 1, 2, 3, 4, 5}. Clearly I = {0, 3} 
and J = {0, 2, 4} are ideals of Z6 but none of them are S-ideals of Z6.  
 
THEOREM 3.5.3: Let R be a ring if R has S-ideal then R is a S-ring. Conversely if 
R is a S-ring we cannot say every ideal in R is an S-ideal of R.  
 
Proof: Let R be a ring. If R has a S-ideal then we know R has a proper subset A which 
is a field, so R becomes a S-ring.  
 
Now let R be a S-ring to show ideals of R need not be S-ideals of R. We prove by an 
example. Consider Z6 = {0, 1, 2, 3, 4, 5}. This is a S-ring having ideals none of them 
are S-ideals of R.  
 
Example 3.5.4: Let Z10 = {0, 1, 2, …, 9} be the ring of integers modulo 10. Clearly 
Z10 is a S-ring having no S-ideals. 
 
Now we proceed onto define Smarandache pseudo ideals in a S-ring. 
 
DEFINITION 3.5.2: Let (A, +, .) be a S-ring. B be a proper subset of A(B ⊂ A) 
which is a field. A non-empty subset S of A is said to be Smarandache pseudo 
right ideal (S-pseudo right ideal) of A related to B if  
 

1. (S, +) is an additive abelian group.  
2. For b ∈ B and s ∈ S we have s . b ∈ S.  
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On similar lines we define Smarandache pseudo left ideal (S-pseudo left ideal). A 
non-empty subset S of A is said to be a Smarandache pseudo ideal (S-pseudo 
ideal), if S is both a S-pseudo right ideal and S-pseudo left ideal.  
 
Remark: It is important to note that the phrase ‘related to B’ is important for if the 
field B is changed to B1 the same S may not in general be a S-pseudo ideal related to 
B1 also. Thus the S-pseudo ideals are different from usual ideal defined in a ring. 
Further we define S-pseudo ideal only when the ring itself is a S-ring I, otherwise we 
don’t define S-pseudo ideal; for in case of S-ideals the ring by the very definition 
becomes a S-ring.  
 
Example 3.5.5: Let Q[x] be the polynomial ring over the rationals. Clearly Q[x] is a 
S-ring. Consider S = 〈n(x2+1) / n ∈ Q〉 be the set generated under addition. Now  Q.S 
⊂ S and S.Q ⊂ S, so S is a pseudo ideal of Q[x] related to Q.  
 
THEOREM 3.5.4: Let R be any S-ring. Any ideal of R is a S-pseudo ideal of R but 
in general, every S-pseudo ideal of R need not be an ideal of R  
 
Proof: Given R is a S-ring. So φ ≠ B, B ⊂ R, B is a field. Now I is an ideal of R, so IR 
⊂ I and RI ⊂ I. Since B ⊂ R we have BI ⊂ I and IB ⊂ I. Hence I is a S-pseudo ideal 
related to B.  
 
To prove the converse, consider the S-ring given in example 3.5.5. Clearly S is a S-
pseudo ideal but S is not an ideal of Q[x] as x.S is not contained in S. Hence the 
claim.  
 
Example 3.5.6: Let R be the field of reals. R[x] be the polynomial ring. Clearly R[x] 
is a S-ring. Now Q ⊂ R[x] and R ⊂ R[x] are fields contained in R[x]. Consider S= 
〈n(x2+1) / n ∈ Q〉 a group generated additively. Now S is a S-pseudo ideal relative to 
Q but is not a S-pseudo ideal relative to R. Thus this leads to the following result:  
 
THEOREM 3.5.5: Let R be a S-ring. Suppose A and B are two subfields of R; and 
S be a S-pseudo ideal related to A. S need not in general be a S-pseudo ideal 
related to B.  
 
Proof: By an example; in example 3.5.6 we see the set S is a S-pseudo ideal for the 
field Q and is not a S-pseudo ideal under the field of reals R.  
 
Example 3.5.7: Z12 = {0, 1, 2, …, 11} be the ring of integers modulo 12. Clearly 
Z12 is a S-ring for A = {0, 4, 8} is a field in Z12 with 42 ≡ 4 (mod 12) acting as the 
multiplicative identity. Now S = {0, 6} is the S-pseudo ideal related to A. But S is also 
an ideal of Z12. Every ideal of Z12 is also a S-pseudo ideal of Z12 related to A.  
 



 59 

Example 3.5.8: Let M2×2 be the set of 2 × 2 matrices with entries from the prime 
field Z2 = {0, 1}.  
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be the ring of matrices under matrix addition and multiplication modulo 2.  
 
Now M2×2 is a S-ring for  
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is a field of M2×2. Let  
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S is a S-pseudo left ideal related to A but S is not a S-pseudo right ideal related to A for  
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is also a field.  
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is a left ideal related to B but not a right ideal related to B.  
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is a field. Clearly S is not a S-pseudo left ideal with respect to C. But S is a S-pseudo 
right ideal with respect to C. Thus from the above example we obtain the following 
observation which is important to be noted.  
 
Remark: A set S can be a S-pseudo ideal relative to more than one field. For  
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is a S-pseudo left ideal related to both A and B. The same set S is not a S-pseudo left 
ideal with respect to the related field  
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but S is a S-pseudo right ideal related to C.  
 
Thus the same set S can be S-pseudo left ideal or right ideal depending on the related 
field. Clearly S is a S-pseudo ideal related to the field  
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DEFINITION 3.5.3: Let R be a ring. I a S-ideal of R; we say I is a Smarandache 
minimal ideal (S-minimal ideal) of R if we have a J ⊂ I where J is another S-ideal 
of R then J = I is the only ideal.  
 
DEFINITION 3.5.4: Let R be a S-ring and M be a S-ideal of R, we say M is a 
Smarandache maximal ideal (S-maximal ideal) of R if we have another S-ideal N 
such that M ⊂ N ⊂ R then the only possibility is M = N or N = R.  
 
Example 3.5.9: Let Z15 = {0, 1, 2, …, 13, 14} be the ring of integers modulo 15. 
Clearly I = {0, 3, 6, 9, 12} is a S-ideal of Z15 which is also a S-maximal ideal of Z15.  
 
Example 3.5.10: Z14 = {0, 1, 2, 3, 4, …, 11, 12, 13} be the ring of integers modulo 
14. I = {0, 2, 4, 6, 8, 10, 12} is a S-maximal ideal of Z14.  
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Example 3.5.11: Let Z12 = {0, 1, 2, …, 11} be the ring of integers modulo 12. Now 
I = {0, 2, 4, 6, 8, 10} is a S-ideal in fact S-maximal ideal. J = {0, 4, 8} is an ideal 
which is a minimal ideal. Thus we have the concept of S-maximal ideal and no S-
minimal ideal in the ring Z12. 
 
DEFINITION 3.5.5: Let R be a S-ring and I be a S-pseudo ideal related to A. A ⊂ 
R (A is a field). I is said to be a Smarandache minimal pseudo ideal (S-minimal 
pseudo ideal) of R if I1 , is another S-pseudo ideal related to A and (0) ⊂ I1 ⊂ I 
implies I = I1 or I1 = (0) The minimality may vary with the different related 
fields.  
 
DEFINITION 3.5.6: Let R be a S-ring. M is said to be Smarandache maximal 
pseudo ideal (S-maximal pseudo ideal) related to the field A, A ⊂ R if M1 is 
another S-pseudo ideal related to A and if M ⊂ M1 then M = M1.  
 
DEFINITION 3.5.7: Let R be a S-ring, a S-pseudo ideal I related to a field, A,       
A ⊂ R is said to be a Smarandache cyclic pseudo-ideal (S-cyclic pseudo-ideal) 
related to a field A, if I can be generated by a single element.  
 
DEFINITION 3.5.8: Let R be a S-ring, a S-pseudo ideal I of R related to a field A 
is said to be a Smarandache prime pseudo ideal (S-prime pseudo-ideal) related 
to A if x. y ∈ I implies x ∈ I or y ∈ I.  
 
Example 3.5.12: Let Z2 = {0, 1} be the prime field of characteristic 2. Z2[x] be the 
polynomial ring of degree less than or equal to 3, that is Z2[x] = {0, 1, x, x2 …, 1 + 
x, 1 + x2, …, 1 + x + x2 + x3}. Clearly Z2[x] is a S-ring as it contains a field Z2. S = 
{0, (1 + x), (1 + x3), (x + x3)} is a S-pseudo ideal related to Z2 and not related to    
Z2 [x].  
 
Example 3.5.13: Let Z2={0, 1} be the prime field of characteristic two. S3 = {1, p1, 
p2, p3, p4, p5} be the symmetric group of degree 3. Z2S3 be the group ring of the group 
S3 over Z2. Z2S3 is a S-ring. A = {0, p4 + p5} is a field. Let S = {0, 1 + p1 + p2 + p3 + p4 
+ p5} be the subset of Z2S3. S is a S-pseudo ideal related to A and S is also a S-pseudo 
ideal related to Z2.  
 
THEOREM 3.5.6: Let Z2 = {0, 1} be the prime field of characteristic 2, G any 
finite group of order n. Then Z2G has S-pseudo ideals which are ideals of Z2G.  
 
Proof: Take Z2 = {0, 1} a field of characteristic two and the group ring Z2G is a S-ring. 
Let G = {g1, g2, …, gn–1, 1} be the set of all elements of G. S = {0, 1 + g1 + … + gn–1} 
is a S-pseudo ideal related to Z2 and S is also an ideal of Z2G.  
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DEFINITION 3.5.9: Let R be a S-ring II. A is a proper subset of R is a 
Smarandache subring II (S-subring II) of R if A is a subring and A itself is a S-
ring II.  
 
Example 3.5.14: Let Z be the ring of integers; Z is a S-ring II and Z has S-subring II. 
Clearly Z is never a S-ring I or has a S-subring I.  
 
DEFINITION 3.5.10: Let Z[x] be the polynomial ring. Z[x] is a S-ring II. Also 
Z[x] has a S-subring II.  
 
Example 3.5.15: Let pZ = {0, ± p, … ± np, …} be the ring (p > 3 and p a prime) 
2pZ ⊂ pZ and 2pZ is a S-subring II.  
 
DEFINITION 3.5.11: Let R be a S-ring II, a non-empty subset I of R, is said to a 
Smarandache right (left) ideal II (S-right (left) ideal II) of R if  
 

1. I is a S-subring II  
2. Let A ⊂ I be an integral domain or a division ring in I, then ai ∈ I (ia ∈ 

I) for all a ∈ A and i ∈ I. If I is simultaneously S-right ideal II and S-left 
ideal II then I is a Smarandache ideal II (S-ideal II) of R related to A. 

 
DEFINITION 3.5.12: Let R be a ring if R is a S-ring I and has no S-ideals then 
we say R is a Smarandache simple ring I (S-simple ring I).  
 
DEFINITION 3.5.13: Let R be a S-ring if R has no S-pseudo ideals, then we say 
R is a Smarandache pseudo simple ring  (S-pseudo simple ring).   
 
DEFINITION 3.5.14: Let R be a S-ring II, if R has no two sided S-ideals II then 
we say R is a Smarandache simple ring II (S-simple ring II).  
 
Example 3.5.16: Z is not a S-simple ring II.  
 
Example 3.5.17: Z6 = {0, 1, 2, …, 5} is a S-simple ring II.  
 
Example 3.5.18: Let Z12 = {0, 1, 2, …, 10, 11} be the ring of integers modulo 12. 
Z12 is a S-ring II which is not a S-simple ring II.  
 
DEFINITION 3.5.15: Let R be a S-ring I. I an S-ideal of R. R / I = {a + I /a ∈ R} 
is a Smarandache quotient ring I (S- quotient ring I) of R related to I.  
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DEFINITION 3.5.16: Let R be a S-ring. I a S-pseudo ideal of R; R/I = {a + I / a 
∈ R} is a Smarandache pseudo quotient ring (S-pseudo quotient ring) of R 
related to I.  
 
DEFINITION 3.5.17: Let R be a S-ring II, I be a S-ideal II. R / I = {a + I / a ∈ R} 
is defined as the Smarandache quotient ring II (S-quotient ring II) of R. 
 
PROBLEMS:  
 

1. Does Z15 have a S-subring?  
2. Find S-ideals of Z21.  
3. Can every ideal of Z28 be S-ideal? Substantiate your answer.  
4. Prove Z16 cannot have S-ideals.  
5. Find S-subrings II of Z120. 
6. Can S-subring I be S-subring II?  
7. Give an example of a ring R in which S-subring I and S-subring II are 

coincident.  
8. Let Z12 be a S-ring I find a suitable ideal I, so that Z12/I is a S-quotient ring I.  
9. Is Z11 is a S-simple ring? Justify.  

10. Is Z13 a S-ring I? 
11. Is Z19 a S-ring II? 
12. Can Z23be a S-pseudo simple ring? 
13. Find all S-ideals I of Z36.  
14. Can Z36, have S-ideal II?  
15. Find in Z36, S-pseudo ideal II.  
16. Find for the ring Z36   

i. S-quotient ring I. 
ii. S-quotient ring II. 
iii. S-pseudo quotient ring. 

 
 
3.6 Smarandache modules  
 
In this section we recall the definition of Smarandache R-module as given by Florentin 
Smarandache and proceed on to define Smarandache module II and Smarandache 
pseudo module. We illustrate them by examples and give some interesting results 
about them.  
 
DEFINITION [73, 60]: The Smarandache R-module (S-R module) is defined to 
be an R-module (A, +, ×) such that a proper subset of A is a S-algebra (with 
respect to the same induced operations and another ‘×’ operation internal on A) 
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where R is a commutative unitary Smarandache ring and S its proper subset 
which is a field.  
 
Example 3.6.1: Let R[x] be the polynomial ring in the variable x with coefficients 
from the real field R. Q[x] is a S-R module for it is a S-algebra.  
 
Example 3.6.2: Let R = Q × Q × Q be the ring. S = Q × {1} × {1} ⊂ R is a field. A 
= Q × Q × {1} is a S-R module over S.  
 
But one may once again recall the definition of a module: “Let A be a ring. An A-
module or a left A-module is an additive abelian group M having A as a left operator 
i.e., a(x + y) = ax + ay for a ∈ A and x, y ∈ M. Similarly right A-module. If M is 
simultaneously left and right A-module then we say M is a A-module.”  
 
Keeping this in view we can speak of S-modules I first, and then proceed onto define 
S-module II and S-pseudo modules. Now we have in case of S-modules the following 
situations:  
 

1. A S-module relative to a subfield B may fail to be a S-module over some other 
subfield C.  

2. Further we may have S-modules to be S-modules over every subfield.  
 
The study of these concepts is innovative and interesting.  
 
DEFINITION 3.6.1: Let R be a S-ring I. A non-empty set B which is an additive 
abelian group is said to be a Smarandache right (left) module I (S-right(left) 
module I) relative to a S-subring I, A if D ⊂ A where D is a field then DB ⊂ B and 
BD ⊂ B i.e. bd (and db) are in B with b(d + c) = bd + dc for all d, c ∈ D and b ∈ 
B ((d + c)b = db + cb). If B is simultaneously a S-right module I and S-left 
module I over the same relative S-subring I then we say B is a Smarandache 
module I (S-module I).  
 
Example 3.6.3: Let A = (Mn×n, +, x) be the set of n × n matrices with entries from 
Q. Now consider R, the set of reals which is a S-ring. Now A is a S-module over the 
subfield Q. Clearly A is not a S-module over R. Further if we take B = {Mn×n, ×, +} the 
set of all n × n matrices with entries form Z, then we see B is not a S-module over any 
subfield of R. Motivated by this example and to overcome this problem we define S-
module II. 
 
DEFINITION 3.6.2: Let R be a S-ring II. We say a non-empty set B which is an 
additive abelian group is said to be a Smarandache right (left) module II (S-right 
(left) module II) relative to a S-subring II, A if D ⊂ A where D is a division ring 
or an integral domain, then DB ⊂ B and BD ⊂ B; i.e., bd(and db) are in B. with 
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b(d + c) = bd + bc ∀ d, c ∈ D and b ∈ B ((d + c) b = db + cb). If B is 
simultaneously a S-right module II and S-left module II over the same relative S-
subring II then we say B is a Smarandache module II (S-module II).  
 
Example 3.6.4: Let Z be a S-ring II, M = M2×2 = {(aij) / aij ∈ 2Z}. M is a S-module 
II related to the S-ring II. A = 2Z. Clearly M is also a S-module II over the S-subring II, 
A1 = 4Z or A2 = 8Z, but M is also S-module II over any Ap= pZ. Thus M2×2 is a S-
module II over any S-subring II of Z 
 
Example 3.6.5: Let Z[x] be the S-ring II, M = Z[x], the polynomial ring with only 
polynomials of even degree. Then M is a S-module II over the S-subring Z but M is not 
a S-module II over the S-subring, Y = {all polynomial of odd degree over Z}, if we 
take; A = {all odd degree polynomial with coefficient from 2Z} as the integral 
domain. Thus we see in case of S-module we see every S-ideal II is a S-module II.  
 
DEFINITION 3.6.3: Let (A, +, .) be a S-ring. B be a proper subset of A (B ⊂ A) 
which is a field. A set M is said to be a Smarandache pseudo right (left) module 
(S-pseudo right(left) module)of A related to B if  
 

1. (M, +) is an additive abelian group  
2. For b ∈ B and m ∈ M m.b ∈ M (b.m ∈ M)  
3. (m1 + m2)b = m1b + m2.b, (b.(m1+m2)=bm1+bm2) for m1,m2 ∈ M and b 

∈ B. If M is simultaneously a S-pseudo right module and S-pseudo left 
module, we say M is a Smarandache pseudo module (S-pseudo module) 
related to B.  

 
Here also we wish to state if M1 is a S-pseudo module related to B, M1 need not be S-
pseudo module related to some other subfield B1 of A. Thus we see we can have 
different S-pseudo modules associated with different subfields in a ring.  
 
Example 3.6.6: Let Z24 = {0, 1, …, 23} be the ring of integers modulo 24. I = {0, 
2, 4, 6, …, 22} is an S-pseudo ideal II as well as, S-pseudo module of Z24. For {0, 8, 
16} is a subfield of characteristic 3. 162 ≡ 16 (mod 24), 16 × 8 ≡ 8 (mod 24). 8 × 8 
≡ 16 (mod 24). Z24[x] is a S-pseudo module related to the field P = {0, 8, 16} ⊂ Z24  
 
Example 3.6.7: Let Z2S4 be the group ring  of the symmetric group of degree 4 over 
the field Z2. M = {0, Σg, g ∈ S4}(Σg denotes the sum of all elements from S4). M is a 
S-module II over Z2. M is a S-M-module II over Z2A4 Clearly M is also a S-ideal II and 
S-pseudo ideal of Z2S4.  
 
It is left as an exercise for the reader to find in Z2S4 : 

1. S-right module II. 



 66 

2. S module II.  
3. S-pseudo module II for different fields in Z2S4.  

 
PROBLEMS:  
 

1. For the S-ring Z24. Find  
i. S-modules I, 
ii. S-modules II and  
iii. S-pseudo modules.  

2. Find for the ring Z[x] (The polynomial ring with coefficient from Z), the S-
module II. Can Z[x] have S-module I? Justify your answer.  

3. Let Mn×n = {(aij) / aij ∈ Z} be the collection of all n × n matrices with entries 
from Z. Can Mn×n have S-pseudo modules? Substantiate your answer.  

4. Let Mn×n = {(aij) / aij ∈ Q} be the collection of all n × n matrices with entries 
from Q. Can Mn×n have  

i. S-module I? 
ii. S-module II? 
iii. S-pseudo module?. 

Can the same abelian group A be such that it is simultaneously S-module I, S- 
module II and S-pseudo module?  

5. Can the ring in problem 4 have S-right module I over a subfield A which are 
not S-left module I over the subfield A? 

6. Let ZS3 be the group ring of the symmetric group S3 over the ring of integers Z. 
Can ZS3 have S-module I? Find in ZS3, S-right module II and S-left pseudo 
module.  

7. Let ZS(4) be the semigroup ring of the symmetric semigroup S(4). Find a S-
left module II in ZS(4) which is not a S-right module II over the same S-
subring II.  

8. Does there exist an example of a ring in which no S-ideal I is a S-module I?  
9. Does there exist a S-ring II in which every S-ideal II is a S-module II?  
10. Give a S-pseudo module for the ring R = Q × Q.  
11. Let R = Q × Q × Q × Q × Z be the ring. Find  

i. S-pseudo module. 
ii. S-module I. 
iii. S-module II of R.  

12. For the ring QG where G is the Dihedral group, G = D2n = {a, b / a2 = bn = 1; 
bab  = a}, Find  

i. S-right module I. 
ii. S-right module II. 
iii. S-right pseudo module. 
iv. S-module II. 
v. An S-ideal II which is a S-module II.  

 



 67 

 
3.7 Rings satisfying S-A.C.C and S-D.C.C 
 
In this section we define the concepts of Smarandache A.C.C and Smarandache D.C.C 
and obtain some interesting results about them. The chapter ends with several 
problems for the reader to solve.  
 
We know the ring  

A = 







ZQ

0Q
 

 
is the best known example of a ring that is Noetherian on the right but not Noetherian 
on the left. The reader is entrusted to find such examples in case of S-Noetherian 
rings. For very recent work on Artinian modules over a matrix ring refer [64].  
 
DEFINITION 3.7.1: Let R be a ring, we say the ring R satisfies the Smarandache 
ascending chain condition (S-A.C.C for brevity) if for every ascending chain of S-
ideals Ij of R; that is I1 ⊂ I2 ⊂ I3 ⊂ … is stationary in the sense that for some 
integer p ≥ 1, Ir = Ir+1 = … . Similarly R is said to have the Smarandache 
descending chain condition (S-D.C.C for brevity) if every descending chain N1 ⊃ 
N2 ⊃ … ⊃ Nk ⊃ … of S-ideals Nj of R is stationary. Similarly one can define 
Smarandache-A.C.C and Smarandache D.C.C for S-right ideals and S-left ideals of 
a ring.  
 
DEFINITION 3.7.2: A ring R is said to be Smarandache left Noetherian (or just 
Smarandache Noetherian)(S-Notherian) if the S-A.C.C on S-left ideals (or on S-
ideals) is satisfied.  
 
DEFINITION 3.7.3: A ring R is said to be Smarandache left Artinian (or just 
Smarandache Artinian)(S-Artinian) if for the S-left ideals (or S-ideals) of R 
satisfies the S-D.C.C condition.  
 
Remark: It is interesting to note that the matrix ring A = Mn×n over a division ring K 
is Noetherian as well as Artirian but we do not know whether Mn×n is S-Noetherian or 
S-Artinian.  
 
Example 3.7.1: Let Z6 = {0, 1, 2, …, 5} be the ring of integers modulo 6. Z6 is a S-
ring but has no S-ideals.  
 
Example 3.7.2: Let Z12 be the ring of integers modulo 12. The ideals of Z12 are {0}, 
I1 = {0, 2, 4, 6, 8, 10}, I2 = {0, 3, 6, 9}, I3 = {0, 6}, I4 = {0, 4, 8}. I2 is not an S-ideal, 
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I1 is an S-ideal for A = {0, 4, 8} is a field in I1, so we have (0) ⊂ I1 ⊂ Z12 is the S-
A.C.C condition on the ring. I2 is not even an S-ideal of Z12.  
 
Example 3.7.3: Z2G be the group ring where G = 〈g / g12 = 1〉. The ideals of Z2G are 
I0 = {0, (1 + g + … + g11)} which is not an S-ideal, I2 = Augmentation ideal of Z2G; 
I2  is a S-ideal for {0, g8 + g4} is a field of characteristic two. We have (0) ⊂ I2 ⊂ Z2G 
so Z2G satisfies S-A.C.C condition.  
 
PROBLEMS: 
 

1. Find S-ideals of Z60.  
2. Does the group ring Z2S5 have S-ideals?  
3. Prove all augmentation ideals in Z2G are S-ideals (G a finite group).  
4. Can Z3S(4) have S-ideals?  
5. Give an example of a group ring, which satisfies S-A.C.C.  
6. Give an example of a group ring, which is not S-Artinian.  
7. Give an example of a semigroup ring, which is S-Noetherian.  
8. Find an example of a group ring, which is S-Noetherian.  
9. Illustrate by an example a semigroup ring that can be S-Artinian.  

10. Find a semigroup ring, which is not S-Noetherian.  
11. Is the semigroup ring Z20 S(4) S-Noetherian? Justify.  
12. Can Z12S3 be S-Artinian? Prove your claim.  
 
 
3.8 Some Special Types of Rings  
 
The main motivation of this section is the introduction of the class of Smarandache 
semigroup rings, Smarandache group rings and give conditions for group rings and 
semigroup rings to be Smarandache rings. If RG happens to be group ring which is a 
S-ring it may still fail to be Smarandache group ring. Likewise a semigroup ring KS 
may be a S-ring but it may fail to be Smarandache semigroup ring for the semigroup S 
may not be S-semigroup. Further the concrete class of rings are reals R, rationals Q, 
integers Z, modulo integers Zn, ring of matrices and polynomial rings but when we get 
to class of group rings and semigroup rings over those rings with standard well 
known groups and semigroups we get a very wide class of nice rings with varying 
properties.  
 
Finally we get only from these ring a class of non-commutative rings apart from the 
ring of matrices. That is why we have taken special care not only to introduce group 
rings and semigroup rings in chapter I but also define Smarandache notions of these 
in this section. This section also discusses about matrix rings.  
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THEOREM 3.8.1: Let R be a field and G any group. The group ring RG is a S-
ring.  
 
Proof: Since R ⊂ RG and R is a field; RG is a S-ring.  
 
Example 3.8.1: Let Z5S3 be the group ring. Clearly Z5S3 is a S-ring.  
 
All group rings are not in general S-rings by an example.  
 
Example 3.8.2: Let Z4G be the group ring where G = 〈g / g2 = 1〉; clearly the group 
ring Z4G is not a S-ring.  
 
THEOREM 3.8.2: Let K be a field and S any semigroup with identity; KS the 
semigroup ring is a S-ring.  
 
Proof: Since K is a field and KS is a ring such that K ⊂ KS, is a S-ring.  
 
All semigroup rings are not in general S-rings. The reader is requested to prove this. 
 
DEFINITION [73, 60]: Let S be any semigroup. We say S is a Smarandache 
semigroup (S-semigroup) if S has a proper subset A which is a group under the 
operations of S. 
 
 We define Smarandache semigroup rings as follows.  
 
DEFINITION 3.8.1: Let S be a semigroup, which is a S-semigroup and K, any 
field the semigroup ring KS is called a Smarandache semigroup ring (S-
semigroup ring). So we see when a semigroup ring contains a group ring as a 
proper subset we call KS the Smarandache semigroup ring. It is to be noted that 
when we say KS is a Smarandache semigroup ring we do not demand KS to be a S-
ring.  
 
Example 3.8.3: Let S = {0, 1, a, b} be a semigroup given by the following table:  
 

∗ 0 1 a b 
0 0 0 0 0 
1 0 1 a b 
a 0 a 0 a 
b 0 b a 1 

 
Hence S is a S-semigroup. For {1, b} is a group in S.  
 
Consider Z4S the semigroup ring clearly; Z4S is a S-semigroup ring which is not a S-
ring.  
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THEOREM 3.8.3: All S-semigroup rings in general are not S-rings.  
 
Proof: By an example the semigroup ring Z4S is not a S-ring but it is a S-semigroup 
ring.  
 
Group rings are not S-semigroup rings for by the very definition of S-semigroup we 
take only a semigroup.  
 
DEFINITION 3.8.2: Let G be a group and K a S-ring. The group ring KG is called 
the Smarandache group ring (S-group ring).  
 
Note: K is only a S-ring.  
 
Now the group ring KG when K is a field is always a S-ring. We see for the ring Z and G 
any group. ZG is not a S-group ring for Z is not a S-ring I.  
 
THEOREM 3.8.4: Let K be any commutative ring with 1 or any field. S(n) the 
symmetric semigroup. KS(n) is a S-semigroup ring.  
 
Proof: We know S(n) for any integer n, is a S-semigroup as Sn is the symmetric group 
of degree n is a proper subset which is a group. Hence the claim.  
 
THEOREM 3.8.5: ZnG is a S-group ring for any group G where Zn is a ring such 
that there exist a m ∈ Zn with m2 ≡ m (mod n) and m + m ≡ 0 (mod n).  
 
Proof: ZnG is a S-group ring as Zn becomes a S-ring when m ∈ Zn, is such that m2 ≡ m 
(mod n) and m + m ≡ 0 (mod n) as A = {0, m} is a subfield of Zn. Hence the 
theorem.  
 
THEOREM 3.8.6: Let Mn×n = {(aij  ) / aij ∈ F, F a field or a S-ring} be the ring of 
n × n matrices. Mn×n is a S-ring.  
 
Proof: Let A = {(aij) / a11 ≠ 0 and all aij are zero aij ∈ F if F is a field or aij ∈ B if F is a 
S-ring where B ⊂ F is the subfield of F} ∪ {(0)}. {(0)} denotes the n × n zero 
matrix. It is easily verified that A is a subfield in Mn×n. Hence Mn×n is a S-ring.  
 
It is interesting to note when Mn×n takes its entries from Zn the ring of integers modulo 
n when n is a composite number, we may have several more results.  
 
This is a non-commutative S-ring, hence we can study S-right ideals, S-left ideals and 
concepts purely related to the non-commutative rings.  
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Example 3.8.4: Let M2×2 = {(aij) / aij ∈ Z2 = {0, 1}}, clearly M2×2 is a S-ring.  
 
Example 3.8.5: Let ZS(4) be the S-semigroup ring. Can ZS(4) have a proper subset 
which is a field?  
 
Example 3.8.6: Find for the group ring Z6S3 a proper subset which is a field, apart 
from the fields A1 = {0, 3} and A2 = {0, 2, 4}.  
 
Example 3.8.7: Find any proper subset which is a field in the group ring Z2S(3) 
apart from Z2 = {0, 1}.  
 
PROBLEMS:  
 

1. Prove Z12S5 is a S-group ring.  
2. Show Z2S(7) is a S-semigroup ring. (Hint: To prove this show S(7) has a 

proper subset which is a subgroup).  
3. Z7S5 is a S-ring. Justify.  
4. Find all the proper subsets which are fields in the group ring Z3S4.  
5. Does M2×2 = {(aij) / aij ∈ Z4} have proper subsets which are fields? Is M2×2 a 

S-ring? Justify your answer.  
6. Prove M3×3 = {(aij) / aij ∈ Z6} is a S-ring.  
7. Find all proper subsets which are fields in Z3G where G = 〈g / g7 = 1〉.  
8. How many proper subsets in Z3S(3) are fields?  
9. Does there exist a S-semigroup ring which is not a S-ring?  

10. Give an example of S-semigroup ring of order 64 which is a S-ring.  
11. In the matrix ring Mn×n = {(aij) /  aij ∈ Z}, can we find a subset P ⊂ Mn×n such 

that P is a field?  
 
 
3.9 Special elements in S-rings  
 
In this section we introduce the concepts of Smarandache nilpotent elements, 
Smarandache semi idempotents, Smarandache pseudo commutative pair, 
Smarandache-pseudo commutative ring, Smarandache strongly regular rings 
Smarandache quasi-commutative ring and finally the concept of Smarandache 
nilpotent elements. Several properties enjoyed by these Smarandache notions are 
proved and some of them are illustrated by examples and several of them are left as 
an exercise for the reader.  
 
DEFINITION 3.9.1: Let R be a ring. A nilpotent element 0 ≠ x ∈ R is said to be a 
Smarandache nilpotent element (S-nilpotent element) if xn

 = 0 and there exists a 
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y ∈ R \ {0, x} such that xry = 0 or yxs = 0, r, s > 0 and ym ≠ 0 for any integers m > 
1.  
 
Example 3.9.1: Let Z12 = {0, 1, 2, 3, …, 11} be the ring of integers modulo 12. 
Clearly 62 ≡ 0 (mod 12), 6 .8 ≡ 0  (mod 12). But 8m ≡/  0 (mod 12) for any m > 0 as 
83 ≡ 8(mod 12). Thus 6 is a S-nilpotent element of Z12.  
 
Example 3.9.2: Let Z8 = {0, 1, 2, 3, …, 7} be ring the of integers modulo 8. 23 ≡ 0 
(mod 8), 42 ≡ 0 (mod 8)and 63 ≡ 0 (mod 8). These are nilpotents but none of them 
are S-nilpotents.  
 
In view of this we have the following theorem:  
 
THEOREM 3.9.1: Let R be a ring. Every S-nilpotent element of R is a nilpotent 
element of R. But in general every nilpotent element of R need not be S-nilpotent 
element of R.  
 
Proof: By the very definition of S-nilpotent element we see every S-nilpotent element is 
a nilpotent element of R. But all nilpotents in general need not be S-nilpotents. By 
example 3.9.2 we see the theorem is evident. 
 
DEFINITION [24]: An element α ≠ 0 of a ring R is called semi idempotent if 
and only if α is not in any proper two sided ideal of R generated by α2 – α; i.e., α 
∉ R(α2 – α) R or R = R(α2 – α)R. 0 is also counted among semi idempotents.  
 
Now we proceed onto define Smarandache -semi idempotents.  
 
DEFINITION 3.9.2: Let R be a ring an element α ∈ R \ {0} is said to be a 
Smarandache- semi idempotent I (S-semi idempotent I), if the ideal generated by 
(α2 – α) that is R (α2 – α) R is a S-ideal I and α ∉ R (α2 – α)R or R = R(α2 – 
α) R. We say α is a Smarandache semi idempotent II (S-semi idempotent II) if 
the ideal generated by α2 – α i.e., R(α2 – α)R is a S-ideal II and α ∉ R(α2 – α)R 
or R = R(α2 – α)R.  
 
THEOREM 3.9.2: Every semi idempotent of a ring R in general need not be a S-
semi idempotent of R.  
 
Proof: Let Z24 = {0, 1, 2, …, 23} be the ring of integers modulo 24. 4 ∈ Z24 is a semi 
idempotent. For α = 42 – 4 generates an ideal I = {0, 12}. Clearly I is not a S-ideal so 
4 is not S-semi idempotent but 4 is only a semi idmepotent. Thus every semi 
idempotent need not in general be a S-semi idempotent.  
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THEOREM 3.9.3: Let R be a ring every S-semi idempotent I is a semi-
idempotent of R.  
 
Proof: We know if α ∈ R \ {0} is a S-semi idempotent. Then α ∉ R(α2  – α) R or R 
= R(α2 – α)R where R(α2  – α)R is an S-ideal I of R. But all S-ideals are ideals. 
Hence the claim.  
 
Example 3.9.3: Let Z24 = {0, 1, 2, …, 23} be the ring of integers modulo 24. 5 ∈ 
Z24 is a S-semi idempotent I of Z24. For consider the ideal generated by α2  – α = 52 – 
5 = 20. 〈α2 – α〉 = 〈20〉 = {0, 20, 16, 12, 4, 8} = I. Clearly (0, 8, 16) = J ⊂ I is a 
field isomorphic to the prime field of characteristic 3. 162 ≡ 16(mod 24) acts as unit. 
5 ∉ I so 5 is a S-semi idempotent I of Z24.  
 
DEFINITION [151]: Let R be a non-commutative ring. A pair of distinct 
elements x, y ∈ R different from the identity of R which are such that xy = yx is 
said to be a pseudo commutative pair of R if xay = yax for all a ∈ R. If in a ring 
R every commutative pair happens to be a pseudo commutative pair of R then R 
is said to be a pseudo commutative ring.  
 
Clearly every commutative ring is trivially pseudo commutative.  
 
DEFINITION 3.9.3: Let R be ring with A, a S-subring of R. A pair of elements x, 
y ∈ A which are such that xy = yx is said to be a Smarandache pseudo 
commutative pair (S-pseudo commutative pair) of R if xay = yax for all a ∈ A. If 
in a S-subring A, every commuting pair happens to be a S-pseudo commutative 
pair of A then A is said to be a Smarandache pseudo commutative ring (S-pseudo 
commutative ring).  
 
THEOREM 3.9.4: Let R be a ring if R is a S-pseudo commutative ring then R is a 
S-ring.  
 
Proof: Follows from the fact that if R is a S-pseudo commutative ring then R has a S-
subring which immediately by the definition of S-subring makes R is a S-ring.  
 
DEFINITION [151]: Let R be a non-commutative ring. A commuting distinct 
pair of elements x, y ∈ R is said to be pseudo commutative with respect to a non-
empty subset S of R if xsy = ysx for all s ∈ S.  
 
DEFINITION 3.9.4: Let R be a non-commutative ring. A commuting distinct 
pair of elements x, y in R is said to be Smarandache pseudo commutative pair 
(S-pseudo commutative pair) with respect to a S-subring B of R, if xsy = ysx for 
all s ∈ B.  
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THEOREM 3.9.5: Let R be a ring having a commuting pair, which is a S-pseudo 
commutative then R is a S-ring.  
 
Proof: By the very definition of the S-pseudo commutative pair we see the ring R must 
be a S-ring.  
 
It is left as an exercise for the reader to show if R is a S-ring having a commuting pair 
still R need not be S-pseudo commutative.  
 
THEOREM 3.9.6: Let ZpSn be a group ring of the group Sn over the prime field Zp. 
ZpSn is S-pseudo commutative ring.  
 
Proof: Now ZpSn is a S-ring. A = ZpB where  
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is a subgroup of Sn is a S-subring of ZpSn. Now take  
 









=

n...4132

n...4321
x and 








=

n...4213

n...4321
y  

 
we see xy = yx in ZpSn and xay = yax for all a ∈ ZpB = A. Hence the claim.  
 
THEOREM 3.9.7: A S-pseudo commutative ring need not in general be a pseudo 
commutative ring.  
 
Proof: The example given in theorem 3.9.6 viz. the group ring ZpSn is a S-pseudo 
commutative ring but it is clearly not a pseudo commutative ring, hence the claim.  
 
THEOREM 3.9.8: Let R be a ring. If Z(R) denotes the center of R and Z(R) is a S-
subring R, which is nontrivial then R is a S-pseudo commutative ring.  
 
Proof: By the very definition of S-pseudo commutative ring we see R satisfies the 
conditions in the theorem 3.9.6; hence R is a S-pseudo commutative ring.  
 
DEFINITION [48]: Let R be a ring. For every x, y ∈ R if we have (xy)n = xy for 
some integer, n = n(xy) > 1 then R is called a strongly regular ring.  
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DEFINITION 3.9.5: Let R be a ring. We say R is a Smarandache strongly regular 
ring (S-strongly regular ring) if R contains a S-subring B such that for every x,y 
in B we have (xy)n = xy for some integer n = n(x,y) >1.  
 
We have the following interesting result.  
 
THEOREM 3.9.9: Let R be a ring which is strongly regular ring then R is a S-
strongly regular ring provided R has non-trivial S-subring.  
 
Proof: Obvious by the very definition of strongly regular ring and S-strongly regular 
ring.  
 
THEOREM 3.9.10: Let Zp be the prime field and S be an ordered semigroup with 
identity then the semigroup ring ZnS is a S-strongly regular ring and not a 
strongly regular ring.  
 
Proof: ZpS is the semigroup ring. Now Zp is a S-subring of ZpS. Clearly ZpS is a S-
strongly regular ring.  
 
Now ZpS is not a strongly regular ring. For given S is an ordered semigroup with 1. Let 
α, β ∈ RS with α = Σaisi and β = Σβjhj 1 ≤ j ≤ m, 1 ≤ i ≤ n, αi ≠ 0 and βj ≠ 0. s1. 
…, sn and h1 ,…, hm are assumed to be distinct and  
 

 s1 < s2 <…< sn  
 h1 < h2 <…< hm. 

 
It is given S is an ordered semigroup. So in (αβ)p we have (s1h1)

p to be the least 
element and (snhm)p to be the largest element. Hence (αβ)p ≠ αβ. p > 1. Thus the 
semigroup ring is not a strongly regular ring only a S-strongly regular ring.  
 
DEFINITION [39]: Let R be a ring, R is called quasi commutative if ab = bγa for 
every pair of elements a, b ∈ R and γ > 1.  
 
THEOREM [130]: Let R be a quasi commutative ring. Then for every pair of 
elements a, b ∈ R there exists s ∈ R such that a2b = bs2.  
 
Proof: Given R is a quasi commutative ring so ab = bγa for every pair of elements a,b 
in R, γ ≥ 1. Now ab = bγa. a2b = abγa = ab(bγ – 1a) = bγa.bγ-1a. = b (bγ – 1a)2= bs2 
where s ∈ R.  
 



 76 

THEOREM [130]: Let R be a ring in which we have a pair of elements a, b ∈ R 
such that there exists an s ∈ R  with a2b = bs2 then we need not have ab = bγa in 
R for some γ > 1. 
  
Proof: By an example. Let Z2 = {0, 1} be the prime field of characteristic two and  
 

,
231

321
p,

312

321
eS 13 








=













==  

            ,
312

321
p,

123

321
p 32 








=








=  

                       







=

132

321
p4   and  













=

213

321
p5 . 

 
Let Z2S3 be the group ring of the group S3 over Z2. p1p2 = p2

γp1 is not possible for any 
γ for if γ is even. p1p2 = p5 ≠ ep1 = p1 if γ is odd then p2

γ = p2 so p2p1 = p4 and p4 ≠ 
p5. Hence Z2S3 is not quasi commutative.  
 
DEFINITION 3.9.6: Let R be a ring. We say R is a Smarandache quasi-
commutative ring (S-quasi commutative ring) if for any S-subring, A of R we 
have ab = bγa for every a, b ∈ A; γ ≥ 1.  
 
THEOREM 3.9.11: If R is a S-quasi commutative ring then R is S-ring.  
 
Proof: Obvious by the very definition of S-quasi commutative ring.  
 
THEOREM 3.9.12: Every S-ring in general is not S-quasi commutative.  
 
Proof: The ring Z6={0, 1, 2, 3, 4, 5} is a S-ring. This has no S-subring so the very 
concept of S-quasi commutative cannot be defined.  
 
THEOREM 3.9.13: Let G be a torsion free non-abelian group R be any S-ring 
which is quasi commutative. The group ring RG is S-quasi commutative.  
 
Proof: Given R is quasi commutative and is a S-ring so R is S-quasi commutative. Now 
R ⊂ RG, so R is a S-subring which is quasi commutative; hence RG is a S-quasi 
commutative ring. 
 
DEFINITION [140]: An element x of an associative ring R is called semi 
nilpotent if xn – x is a nilpotent element of R. If xn – x = 0 we say x is a trivial 
semi nilpotent.  
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THEOREM [140]: If x is a nilpotent element of a ring R then x is a semi 
nilpotent element of R.  
 
Proof: Given x ∈ R is nilpotent so xn = 0 clearly xn– x = –x so (–x)n = 0 hence our 
claim.  
 
THEOREM [140]: Let R be a ring an unit in R can also be semi nilpotent.  
 
Proof: Let Z2G be the group ring of the group G = 〈g / g2 = 1〉 over the field Z2 = {0, 
1}. Clearly g ∈ Z2G is such that g2 = 1, so g is a unit of Z2G but g2 – g = 1 + g is 
nilpotent as (1 + g)2 =  0; hence the claim.  
 
THEOREM [140]: Let R be a ring every idempotent in R is semi nilpotent.  
 
Proof: It is left for the reader to prove.  
 
THEOREM [140]: Let K be a field of characteristic 0. G, a torsion free abelian 
group 
. The group ring KG has no nontrivial semi nilpotents.  
 
Proof: Since KG is a domain KG has no zero divisors; so it cannot have semi 
nilpotents.  
 
DEFINITION 3.9.7: Let R be a ring. An element x ∈ R is a Smarandache semi 
nilpotent (S-semi nilpotent) if xn – x is S-nilpotent.  
 
Example 3.9.4: Can the ring Z24 have S-semi nilpotents?  
 
PROBLEMS:  
 

1. Find S-nilpotents in the commutative ring Z15.  
2. Find S-nilpotents of the group ring Z2S3.  
3. Can the semigroup ring Z3S(4) have S-nilpotent? Justify your claim. 
4. Find for Z30 = {0, 1, 2, …, 29} the ring of integers modulo 30, all S-semi 

idempotents.  
5. Does Z3S5 have S-idempotents? 
6. Find all S-semi idempotents of the semigroup ring Z7S(3).  
7. Can the ring M5×5 = {(aij) / aij ∈ Z4} have S-semi idempotents? If so find them.  
8. Prove Z11S5 is a S-pseudo commutative ring.  
9. Give an example of a S-commutative ring.  

10. Is the group ring Z7S3 a S-strongly regular ring? 
11. Is Z25S3 a S-quasi commutative ring?  
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12. Can Z27 have S-nilpotents?  
 
 

3.10 Special Properties about Smarandache rings  
 
In this section we introduce special properties about Smarandache rings, which are 
not found in any book. The sole purpose of this section is to define over seventy new 
Smarandache notions on rings and these concepts illustrated with examples. The 
vitality of this section is the recollection of several ring theoretical concepts which are 
interesting and give a Smarandache-ic equivalent of them. Thus this section will not 
only attract Smarandache researchers but also ring theorist. Finally it ends with 70 
problems for the reader to solve to get involved and through with these concepts.  
 
DEFINITION ([88]): A ring R is said to be reduced, if R has no non-zero 
nilpotent elements.  
 
Example 3.10.1: Z the ring of integers is a reduced ring.  
 
Example 3.10.2: Zp[x] the polynomial ring with coefficients from Zp, p a prime is a 
reduced ring.  
 
Example 3.10.3: Z12 = {0, 1, 2, …, 11} the ring of integers modulo 12 is not a 
reduced ring for 62 ≡ 0 (mod12).  
 
DEFINITION 3.10.1: Let R be a ring. R is said to be a Smarandache reduced 
ring (S-reduced ring) if R has no S-nilpotent elements.  
 
Example 3.10.4: Z4 =  {0, 1, 2, 3} the ring of integers modulo 4 is a S-reduced 
ring. For it has no S-nilpotent elements. 
 
Example 3.10.5: Z9 = {0, 1, 2, …, 8} the ring of integers modulo 9 is a S-reduced 
ring for it has no S-nilpotents only nilpotents, viz. 32 ≡ 0(mod 9) and 62 ≡ 0 (mod 9).  
 
THEOREM 3.10.1: Let R be a reduced ring then R is a S-reduced ring. If R is a 
S-reduced ring then R need not be a reduced ring.  
 
Proof: If R is a reduced ring R has no nilpotents so R cannot have S-nilpotents so R is 
a S-reduced ring. 
 
Conversely if R is a S-reduced ring, R need not be a reduced ring. For the rings Z4 and 
Z9 are S-reduced rings but clearly Z4 and Z9 are not reduced rings.  
 
DEFINITION [68]: A ring R is a zero square ring if x2 = 0 for all x ∈ R.   
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DEFINITION 3.10.2: Let R be a ring. We say R is a Smarandache zero square 
ring (S-zero square ring) if R has S-subring A having a subring B contained in A 
which is a zero square ring.  
 
Example 3.10.6: Let Z12 = {0, 1, 2, 3, …, 11} be the ring of integers modulo 12. I 
= {0, 2, 4, 6, 8, 10} is a subring which is a S-subring as {0, 8, 4} is a field. Now P = 
{0, 6} is a zero square subring in I so Z12 is a S-zero square ring, but clearly Z12 is not 
a zero square ring.  
 
THEOREM 3.10.2: Every zero square ring is never a S-zero square ring.  
 
Proof: Given R is a zero square ring so a2 = 0 for every a ∈ R. So if R has a S-subring 
say A, then A must have a subset which is a field, so in A we cannot have a2 = 0 for all 
a ∈ A. Hence the claim.   
 
THEOREM 3.10.3: Every S-zero square ring  is never a zero square ring.  
 
Proof: For if R is a S-zero square ring it has a proper subset which is a field and in a 
field we cannot have a2 = 0 for all a ∈ R. This substantiated by an example 3.10.6 the 
ring Z12 is a S-zero square ring. But clearly Z12 is not a zero square ring. For we have 
several elements in Z12 whose square is not zero.  
 
Example 3.10.7: Let Z12 be the ring and G any group; Z12G be the group ring of G 
over Z12. Z12G is also a S-zero square ring; in view of this we have the following 
theorem.  
 
THEOREM 3.10.4: Let R be a S-commutative ring of characteristic 0. If R is a S-
zero square ring then in R we have xy = 0 for all x, y ∈ A; A the subring of the S-
subring B of R.  
 
Proof: We have R is a S-zero square ring; so x2 = 0 for all x ∈ A, A the subring of the 
S-subring B of R. We have A ⊂ R. Let x, y  ∈ A. Now (x + y)2= 0 i.e., 2xy = 0 so xy = 
0; hence the claim.  
 
THEOREM 3.10.5: Let be a ring. If R is not a S-commutative ring and if R is a 
S-zero square ring with A the subring of the S-subring B of R is also non-
commutative, then every pair in A is anti-commutative.  
 
Proof: Let R be a S-zero square ring i.e., R has a S-subring B such that A ⊂ B where A 
is a subring of B, is a zero square ring.  
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If A is non-commutative but is a zero square ring so we have x2=0 ∀ x ∈A. So (x + 
y)2 = 0 using x2 = y2 = 0 we have xy + yx = 0. So elements in A are anti-commutative.  
 
THEOREM 3.10.6:  Let R be a commutative ring with 1 of characteristic 0. G a 
commutative group (or S a commutative semigroup with 1). RG (RS) is a S-zero 
square ring if and only if A2 = 0 where A is a subring of a S-subring B of RG (i.e. 
A ⊂ B ⊂ RG).  
 
Proof: If RG (RS) is a S-zero square ring then we have A ⊂ B ⊂ RG (RS) where A is a 
subring of B where B is a S-subring of RG. We have A to be a zero square ring by 
theorem 3.10.4, x. y = 0 for all x, y ∈ A. Hence A2 = 0. Conversely if A2 = 0 and A is a 
subring of the S-subring B of RG we have RG to be a S-zero square ring.  
 
Now we leave it as an exercise to the reader the case when G is a non-commutative 
group.    
 
DEFINITION [94]:  Let R be ring. R is called a inner zero square ring if every 
proper subring of R is a zero square ring.  
 
Example 3.10.8: Z4 = {0, 1, 2, 3} is a inner zero square ring as {0, 2} is the only 
subring, and it is a zero square ring.  
 
Now we proceed on to define Smarandache inner zero square ring.  
 
DEFINITION 3.10.3: Let R be a ring. If every S-subring A of R has a subring B ⊂ 
A such that B is an inner zero square ring then we say R is a Smarandache inner 
square ring (S-inner square ring).  
 
Example 3.10.9: Z12 = {0, 1, 2, …, 11} is a S-inner zero square ring. For the S-
subring A1 of Z12, A1 = {0, 2, 4, 6, 8, 10}, has B = {0, 6} to be an inner zero square 
ring. Clearly Z12 is not an inner zero square ring but is a S-inner square ring.  
 
In view of this we have the following.  
 
THEOREM 3.10.7: Let R be a inner zero square ring then, R in general need not 
be a S-inner zero square ring. Further if R be a S-inner zero square ring. R is not 
an inner zero square ring.  
 
Proof: By the above example, now even if R is a inner zero square ring we may not 
have R to be a S-inner zero square ring for if R is to have S-subring A ⊂ R then A 
should contain a field as a proper subset. So if R is a S-inner zero square ring R is 
never a inner zero square ring.  
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We define Smarandache weak inner zero square ring.  
 
DEFINITION 3.10.4: Let R be a ring. We say R is a Smarandache weak inner 
zero square ring (S-weak inner zero square ring) if R has atleast a S-subring A ⊂ 
R such that a subring B of A is a zero square ring.  
 
THEOREM 3.10.8: Let R be a S-inner zero square ring. Then R is a S-weak 
inner zero square ring.  
 
Proof: Let R be a S-inner zero square ring then obviously by the very definition, R is a 
S-weak inner zero square ring.  
 
THEOREM 3.10.9: Let G be any group and R a S-inner zero square ring. The 
group ring RG is a S-weak inner zero square ring.  
 
Proof: Since R ⊂ RG; we have R to be S-inner zero square ring so RG is a S-weak 
inner zero square ring.  
 
Example 3.10.10: Let G be a torsion free abelian group and R a S-inner zero square 
ring. The group ring RG is only a S-weak inner zero square ring.  
 
The concept of S-inner zero square ring is important as we see a same S-subring;  has 
two subsets one a field one a zero square ring. Except for Smarandache notions, this 
is an impossibility in the same substructure.  
 
In case of semigroup ring we have the following theorem for which we need to define 
a new Smarandache notion about semigroups.  
 
DEFINITION 3.10.5: Let S be a multiplicative semigroup with 0, we say S is a 
Smarandache null semigroup (S-null semigroup) if we have a proper 
subsemigroup P ⊂ S such that in P we have 
  

1. p2= 0 for every p ∈ P and  
2. pi pj = pj  pi = 0 for every pi, pj ∈ P.  

 
We say S is a Smarandache strong null semigroup (S-strong null semigroup) if 
every subsemigroup P of S satisfies 1 and 2.  
 
Example 3.10.11: Let Z4 = {0, 1, 2, 3} be the semigroup under multiplication 
modulo 4. Z4 is a S-null semigroup; for {0, 2} = P is such that 22 ≡ 0(mod 4).  
 
Example 3.10.12: Let Z6 = {0, 1, 2, 3, 4, 5} be the semigroup under multiplication 
modulo 6. Z6 is not a S-null semigroup.  
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Example 3.10.13: Let Z8 = {0, 1, 2, …, 7} be the semigroup under multiplication 
modulo 8. P = {0, 4} is such that 42 ≡ 0(mod 8) so Z8 is a S-null semigroup.  
 
DEFINITION 3.10.6: Let R be a ring. R is said to be a Smarandache null ring 
(S-null ring) if R has a S-subring A and A has a subring P such that in P we have  
 

1. p2= 0 for all p ∈ P. 
2. pi  pj = pj  pi = 0 for all pi  pj ∈ P.  

 
Thus S-null ring localizes the null ring property.  
 
THEOREM 3.10.10: Let R be a commutative ring of characteristic zero. R is a 
S-zero square ring if and only if R is S-null ring.  
 
Proof: Left for the reader to prove.  
 
It is also important to state, if R is a non-commutative ring, the above result may not 
in general be true.  
 
Example 3.10.14: Let Z24 = {0, 1, 2, …, 23} be the ring of integers modulo 24. 
Clearly A = {0, 2, 4, 6, 8, …, 20, 22} is a S-subring of Z24. Z24 is a S-null ring as B = 
{0, 12} is a null ring in A.  
 
THEOREM 3.10.11: The semigroup ring RS is a S-zero square ring if and only if 
1 or 2 or 3 is true.  
 

1. R is a S-null ring and S any semigroup.  
2. R is any S-zero square commutative ring of characteristic zero and S any 

commutative semigroup.  
3. R any ring and S a S-null semigroup.  

 
The proof is left as an exercise to the reader as the proof requires vitally only the 
definitions and a logical use of them.  
 
A recent paper [27] which studies strictly wild algebras with radical square zero may 
give more innovative ideas when applied to Smarandache concepts.  
 
DEFINITION [29]: A ring R is said to be a p-ring if xp = x and px = 0 for every x 
∈ R. 
 
 We define here Smarandache p-rings as follows.  
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DEFINITION 3.10.7: Let R be a ring. R is said to be a Smarandache p-ring (S-p-
ring) if R is a S-ring and R has a subring P such that xp = x and px = 0 for every x 
∈ P.  
 
THEOREM 3.10.12: Let G be the cyclic group of order p-1 and Zp be the ring of 
integers modulo p, p a prime. The group ring ZpG is a S-p-ring.  
 
Proof: ZpG is obviously a S-ring for we have Zp ⊂ ZpG  and Zp to be such that xp = x 
and px = 0, so the group ring is a S-p-ring.  
 
THEOREM 3.10.13: Let R be a S-p-ring; R need not be a p-ring.  
 
Proof: Let G be any group and Z12 = {0, 1, 2, …, 11} be the ring. The group ring Z12G 
is a S-ring; consider A = {0, 4, 8} ⊂ {0, 2, 4, … , 10} ⊂ Z12G. A is a p-ring for p = 3. 
So Z12G is a S-p-ring which is not a p-ring.  
 
In view of this we have the following.  
 
THEOREM 3.10.14: Let G be any torsion free group. Let R be a S-ring if R is a 
S-p-ring then the group ring RG is a S-p-ring.  
 
Proof: Since given R is a S-ring which is a S-p-ring we see A ⊂ R is a subring such that 
xp = x and px = 0 for all x ∈ A. Now consider A ⊂ R ⊂ RG, so RG is a S-p-ring. Thus 
we see the group ring RG is not a p-ring but it is a S-p-ring.  
 
THEOREM 3.10.15: Let R be a S-ring which is a S-p-ring. P any semigroup, the 
semigroup ring RP is a S-p-ring if and only if P has identity.  
 
Proof: Given R is S-p-ring let A ⊂ R be a S-subring of R. We see in A, xp = x and px = 
0 for all x ∈ A. Now if 1 ∈ P then, A ⊂ R. 1 ⊂ RP; so RP is a S-p-ring. If 1 ∉ P then 
even if R is a S-p-ring. RP in general is not a S-p-ring so RP is a S-p-ring if and only if 
1 ∈ P for any semigroup P.  
 
DEFINITION [95]: A ring R is called an E-ring if x2n = x and 2x = 0 for every x 
in R and n a positive integer. The minimal such n is called the degree of the E-
ring. It is interesting to note that an E-ring of degree 1 is a Boolean ring.  
 
Now we proceed on to define Smarandache E-ring.  
 
DEFINITION 3.10.8: Let R be a ring. P a subring of A and A a S-subring of R. if 
for all x ∈ P, x2n = x and 2x = 0 then we say R is a Smarandache E-ring (S-E-
ring).  
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THEOREM 3.10.16: Let R be a S-E-ring then R is a S-ring.  
 
Proof: Follows by the very definition of S-E-ring.  
 
THEOREM 3.10.17: Let R be E-ring. If R has S-subring then R is a S-E-ring.  
 
Proof: Obvious by the very definition of S-E-rings and E-rings.  
 
Example 3.10.15: Consider the group ring Z2S3 of the group S3 over the ring Z2. P = 
{0, p1 + p2 + p3, 1 + p4 + p5, 1 + p1 + p2 + p3 + p4 + p5} be a S-subring of Z2S3. P is 
a subring, which is E-ring so Z2S3 is a S-E-ring. But Z2S3 is not an E-ring as (1 + p1)

2 = 
0 in Z2S3.. 
 
THEOREM 3.10.18: Let R be a S-E-ring, then R in general is not an E-ring.  
 
Proof: The above example 3.10.12 is a S-E-ring which is clearly not a E-ring as (1 + 
p1)

2 = 0 and 1 + p1 ∈ Z2S3.  
 
DEFINITION [46]: Let R be ring. R is said to be a pre J-ring if anb = abn for any 
pair a, b ∈ R and n a positive integer.  
 
To localize this property we now define Smarandache pre J-ring as follows:  
 
DEFINITION 3.10.9: Let R be a ring. P a subring of a S-subring A of R. We say R 
is a Smarandache pre J-ring (S-pre J-ring) if for every pair a, b ∈ P we have anb = 
abn for some positive integer n.  
 
Example 3.10.16: Let Z12 = {0, 1, 2, …, 11} be the ring of integers modulo 12. S = 
{0, 2, 4, 6, 8, 10} is a S-subring. But S is a pre J-ring. So Z12 is a S-pre J-ring.  
 
Example 3.10.17: Let Z12G be the group ring of the group G = S3 over Z12. Z12G is a 
S-pre J-ring.  
 
THEOREM 3.10.19: Let R be S-pre J-ring and G any group. The group ring RG is 
a S-pre J-ring.  
 
Proof: Since R is a S-pre J-ring, we have S ⊂ R such that S is a S-subring which has a 
subring to be a pre J-ring. So S.1 ⊂ R.1 ⊂ RG. Hence for any group G, RG is a S-pre J-
ring. It is important to note RG in general is not a pre J-ring.  
 
THEOREM 3.10.20: Let R be a S-pre J-ring and P any semigroup with identity. 
The semigroup ring RP is a S-pre J-ring.  
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Proof: Obvious from the fact if S ⊂ R and S a S-subring which has a subring P to be a 
pre J-ring, then S ⊂ R ⊂ RP. So RP is a S-pre J-ring.  
 
DEFINITION 3.10.10: Let R be a ring. R is said to be a Smarandache semi 
prime ring (S-semi prime ring) if and only if R has no non-zero S-ideal I(II) with 
square zero.  
 
We have the following nice theorem about S-ring I.  
 
THEOREM 3.10.21: Let R be a ring, if R has a S-ideal I then R is a S-semi prime 
ring.  
 
Proof: Follows from the fact that if R has a S-ideal I say A then A has a subset which is 
a field so A2 = (0) is impossible. Hence the claim.  
 
In view of this we have the following.  
 
THEOREM 3.10.22: All non-simple S-ring I are S-semi prime.  
 
Proof: Follows from the definition. Left for the reader to prove.  
 
DEFINITION [42]: A commutative ring with 1 is called a Marot ring if each 
regular ideal of R is generated by a regular element of R. (The author means by a 
regular element a non-zero divisor and by a regular ideal the elements of the 
ideal must be non-zero divisors).  
 
For more about Marot rings please refer [42]. We define Smarandache Marot rings as 
follows.  
 
DEFINITION 3.10.11: Let R be a ring. If every S-ideal I or (S-ideal II) of R is 
generated by a regular element and these ideals are regular then we call R 
Smarandache Marot ring (S-Marot ring).  
 
Example 3.10.18: Z the ring of integers is a S-Marot ring.  
 
Example 3.10.19: Let Z10 = {0, 1, 2, …, 9}. Z10 is a S-Marot ring. For the only S-
ideals of Z10 is {0, 2, 4, 6, 8} which is regular. 
 
For more about semigroup rings, which are Marot rings please refer [96].  
 
DEFINITION [102]: Let R be a ring. S a proper subring of R. Let I ≠ {0} be a 
proper subset of S. I is called a subsemi ideal of R, related to the subring S if and 
only if I is a proper ideal of S and not an ideal of R.  
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DEFINITION [102]: The ring R which contains a subsemi ideal is called a 
subsemi ideal ring.  
 
Example 3.10.20: Let Z2 = {0, 1} be the prime field of characteristic 2. G = 〈g / g4 
= 1〉 The group ring Z2G is a subsemi ideal ring. Let H = 〈1, g2〉 now I = 〈0, 1 + g2〉 is 
an ideal of the group ring Z2H and is not an ideal of Z2G. 
 
THEOREM [102]: Let G be any finite group, having a proper sub group H. Then 
the group ring KG is a subsemi ideal ring.  
 
Proof: Let H = {1, h1, …, hn} be the subgroup of G. Then I = {0, r (1 + h1 +…+ hn) 
/ r ∈ K} is an ideal of KH where KH is a subring of KG and I need not be an ideal of 
KG. Hence KG is a subsemi ideal ring.  
 
THEOREM [102]: Let G be an infinite group having atleast one element g ≠ e of 
finite order. Then for any field K; the group ring KG is a subsemi ideal ring.  
 
Proof: Given g ∈ G, g ≠ e and gm = 1. Let H = 〈g〉 the cyclic group generated by H. KH 
is a subring of KG and I = 〈0, k(1 + g + … +gm – 1 )/ k ∈ K〉 is an ideal of KH and not 
an ideal of KG. Hence the claim.  
 
Now we define Smarandache subsemi ideal and Smarandache subsemi ideal rings.  
 
DEFINITION 3.10.12: Let R be a ring. Let A be a S-subring I or II of R. Let I ⊂ A 
be an S-ideal I or II of the S-subring A. Then I is called the Smarandache sub semi 
ideal I or II (S-sub semi ideal)(I must not be an ideal of R).  
 
DEFINITION 3.10.13: Let R be a ring if R has a S-subsemi ideal I (II) then we 
say the ring R is a Smarandache subsemi ideal ring (S-subsemi ideal ring).  
 
Using the theorem of [102] and the definition of S-subsemi ideal and S-subsemi ideal 
ring the reader is requested to construct examples and related theorems.  
 
Next we define yet another new notion called Smarandache pre-Boolean ring. A ring R 
is pre-Boolean ring if xy (x + y) = 0 for every x and y in R.  
 
DEFINITION 3.10.14: Let R be a ring. R is said to be a Smarandache pre 
Boolean (S-pre Boolean) ring if R is a S-ring and has a subring A ⊂ R where for 
all x, y ∈ A we have xy (x + y) = 0.  
 
THEOREM 3.10.23: Let R be a S-ring; if A ⊂ R is a S-subring then A does not 
satisfy xy (x + y)= 0 for all x, y ∈ A.  
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Proof: Since if A itself is a S-subring A contains a field so xy (x + y) = 0 may not be 
possible for all x, y ∈ A unless x + y = 0 for all x, y ∈ A. Hence the claim.  
 
That is why in the definition of S-pre Boolean ring, we demand R to be a S-ring and A 
a subring not necessarily a S-subring.  
 
THEOREM 3.10.24: Let R be a pre-Boolean ring then R is never a S-pre-
Boolean ring  
 
Proof: R is a pre Boolean ring then we have xy (x + y) = 0 for all x, y ∈ R. So R 
cannot contain a proper subset, A which is a field. For xy (x + y)= 0 forces x + y = 0 
or xy is a zero divisor. 
 
DEFINITION [5]: A ring R is called filial if the relation ideal in R is transitive, 
that is if a subring J is an ideal in a subring I, and I is an ideal in R, then J is an 
ideal of R.  
 
We define Smarandache filial ring as follows.  
 
DEFINITION 3.10.15: Let R be a ring. We say R is a Smarandache filial ring (S-
filial ring) if the relation S-ideal in R is transitive, that is if a S-subring, J is an S-
ideal in a S-subring I and I is a S-ideal of R, then J is an S-ideal of R.  
 
Example 3.10.21: Let R = Z2 × Z2 × Z2 be a ring. J = 〈(0, 0, 0)(0, 0, 1)〉 is an ideal 
in I = 〈(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)〉 but I is an ideal of R and we see J is an 
ideal of R. Hence R is a filial ring.  
 
DEFINITION [100]: A ring R is called an n-ideal ring if for every set of n-
distinct ideals I1, I2, …, In of R and for every set of n-distinct elements x1, x2, …, 
xn ∈ R \ (I1 ∪ I2 ∪ … ∪ In) we have 〈x1 ∪ I1 ∪ I2 ∪ … ∪ In〉 = 〈x2 ∪ I1 ∪ I2 ∪ 
… ∪ In〉  = … =  〈xn ∪ I1 ∪ I2 ∪ … ∪ In〉, where 〈 〉 denotes the ideal generated 
by xi ∪ I1 ∪ I2 ∪ … ∪ In, 1≤ i ≤ n. (By an ideal we mean only a two sided 
ideal).  
 
Now we proceed on to define Smarandache n-ideal rings.  
 
DEFINITION 3.10.16: Let R be a ring. We say R is a Smarandache n-ideal ring 
(S-n-ideal ring) if for every set of n-distinct S-ideal I (II), I1, … , In of R and for 
every distinct set of n elements x1, x2, … , xn ∈ R \ (I1 ∪ I2 ∪ … ∪ In) we have 
〈x1 ∪ I1 ∪ I2 ∪ … ∪ In〉 = 〈x2 ∪ I1 ∪ I2 ∪ … ∪ In 〉 = … = 〈xn ∪ I1 ∪ … ∪ In〉 
denotes the S-ideal generated by x1 ∪ I1 ∪ I2 ∪ … ∪ In; 1 ≤ i ≤ n.  
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Example 3.10.22: Let Z12 = {0, 1, 2, …, 11} be the ring of integers modulo 12. Z12 
is a 3-ideal ring and a 4-ideal ring. Z12 is not a S-n-ideal ring for Z12 has only one S-
ideal. 
 
Example 3.10.23: Let Z15 = {0, 1, 2, …, 14}. The ideals of Z15 are {0, 5, 10} and 
{0, 3, 6, 9, 12}; clearly Z15 is not a S-2 ideal ring.  
 
DEFINITION [21]: A non-empty set S of a ring R is called a generalized left 
semi ideal of R if S is closed under addition and x2s is in S for any s ∈ S and x ∈ 
R. Similarly one can define generalized right semi ideal and the generalized 
semi-ideal when it is both a generalized left and right semi ideal.  
 
Now we define the concept of Smarandache right (left) generalized semi-ideal and 
Smarandache generalized semi-ideal.  
 
DEFINITION 3.10.17: Let R be a S-ring I. A generalized right (left) semi ideal I 
of the S-ring R are called Smarandache generalized right (left) semi ideals (S-
generalized right (left) ideals). The Smarandache generalized semi-ideal (S-
generalized semi-ideal) is one which is both a S-generalized left and right semi-
ideal. 
  
If R is a S-ring and R has generalized semi-ideal I, then I is called the 
Smarandache generalized semi-ideal (S-generalized semi-ideal).  
 
THEOREM 3.10.25: Let R be a ring; if R is a S-ring having generalized semi-
ideals then R has S-generalized semi-ideals.  
 
Proof: By the very definition the result follows.  
 
THEOREM 3.10.26: All rings which are generalized semi-ideal rings need not 
in general be S-generalized semi-ideal rings.  
 
Proof: By example. Z4 = {0, 1, 2, 3} is not a S-ring. Here Z4 has a generalized semi-
ideal but Z4 is not a S-generalized semi-ideal ring.  
 
Example 3.10.24: Let Z2 = {0, 1} and G = 〈g / g4 = 1〉 be the group. The group 
ring Z2G is a S-ring. I = {0, 1 + g2} is not a S-ideal but is a S-generalized semi-ideal of 
Z2G. 
 
THEOREM 3.10.27: Let K be a non-prime real field of characteristic zero. K has 
S-generalized semi-ideals.  
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Proof: K is a non-prime field so K has subfield. Hence K is a S-ring. Take S = K+ ∪ 
{0} only positive elements. S is closed with respect to addition. For any s ∈ S and x ∈ 
K; x2s  ∈ S. Hence the claim.  
 
If K is a complex field the result may not be true.  
 
DEFINITION [25]: A ring A is s-weakly regular if for each a ∈ A, a ∈ aAa2A.  
 
Example 3.10.25: Let G = 〈g / g2 = 1〉 and Z2 = {0, 1}. The group ring Z2G is not  s-
weakly regular ring. 
 
DEFINITION 3.10.18: Let R be a ring. A be a S-subring of R. We say R is 
Smarandache s-weakly regular (S-s-weakly regular) ring if for each a ∈ A.  a ∈ 
aAa2A.  
 
DEFINITION [77]: Let R be a ring. A right ideal I of R is said to be quasi 
reflexive if whenever A and B are two right ideals of R with AB ⊂ I then BA ⊂ I.  
 
A ring R is said to be right quasi reflexive if (0) is a right quasi reflexive ideal of R. 
Similarly one defines the concept of left quasi reflexive ring. Semi prime rings are left 
and right quasi reflexive.  
 
One knows the group ring KG is left and right quasi reflexive where K is a field of 
characteristic 0. The result follows from the fact the group rings KG is semi prime. For 
more about these results please refer [61, 62]. We just recall: a ring R is semi prime 
if and only if R contains no non-zero ideal with square zero. We define Smarandache 
semi prime rings.  
 
DEFINITION [77]: A ring R to be strongly sub commutative if every right ideal 
of it is right quasi reflexive. (A right ideal I of a ring R is called right quasi 
reflexive if whenever A and B are right ideals of R with AB ⊂ I then BA ⊂ I).  
 
We define Smarandache strongly sub commutative rings.  
 
DEFINITION 3.10.19: Let R be a ring. R is said to be a Smarandache strongly 
sub commutative (S-strongly sub commutative) if every S-right ideal I(II) of it is 
right quasi reflexive.  
 
DEFINITION [7]: A commutative ring R is said to be a Chinese ring if given 
elements a, b ∈ R and ideals I, J ⊂ R such that a ≡ b (I + J) there exists c ∈ R 
such that c ≡ a (I) and c ≡ b (J), c ≡ a (I) implies 〈I, a〉 ≡ 〈I, c〉 i.e., generated by I 
+ a and I + c, for more about Chinese rings refer Aubert.  
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DEFINITION 3.10.20: Let R be a ring. R is said to be a Smarandache Chinese 
ring (S-chinese rings) I(II) if given elements a ,b ∈ R and S-ideal I(II) in R such 
that 〈 I ∪ J ∪ a〉 = 〈 I ∪  J ∪ b〉  there exist an element c ∈ R such that 〈 I ∪ a〉 = 
〈 I ∪ c〉 and 〈  J ∪ b〉 = 〈  J ∪ c〉.  
 
Example 3.10.26: Let Z2 = {0, 1} be the prime field of characteristic two. S = {a, b, 
0 / a2 = a, b2 = b, ab = ba = 0}. Clearly Z2S, the semigroup ring is a S-Chinese ring I.  
 
The author has defined group rings, which is a direct sum of subrings.  
 
DEFINITION [105]: A group ring RG is s-decomposable if RG = S1 + … + Sr 
where Si's are subrings of RG with Si ∩ Sj = R and every element in RG has a 
unique representation as a sum.  
 
Example 3.10.27: Let Z2S3 be the group ring of the group S3 over the field Z2={0,1}. 
Let  
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be the subgroups of S3. Then Z2S3 = Z2H1 + Z2H2 + Z2H3 + Z2H4 as a direct sum of 
subrings. Z2Hi ∩ Z2Hj = Z2, i ≠ j for 1 ≤ i, j ≤ 4.  
 
Now the author defines strongly s-decompsable group rings.  
 
DEFINITION 3.10.21: Let RG the group ring of the group G over the ring R. RG 
is strongly s-decomposable if RG = S1 + … + Sr with Si ∩ Sj = {0, 1} or {0} and 
every element of RG has a unique representation as a sum of elements from S1, 
S2, …, Sr.  
 
Now we define Smarandache s-decompossible and Smarandache strongly s-
decomposable ring as follows:  
 
DEFINITION 3.10.22: Let RG be the group ring of the group G over the ring R. 
We say RG is Smarandache s-decomposable (S-s-decomposable) if RG = S1 + … 
+ Sr where Si are subrings such that atleast one of the Si is a S-subring of RG with 
Si ∩ Sj = R and every element of RG has a unique representation as a sum of 
elements from S1, S2 , …, Sr .  
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THEOREM 3.10.28: Let RG be the group ring such that R is any field and if RG 
is s-decomposable then RG is S-s-decomposable.  
 
Proof: Since R is a field we see every subring Si contains R as a subset so every 
subring Si is a S-subring of RG so if RG is s-decomposable then it is a S-s-
decomposable. 
 
DEFINITION 3.10.23: The group ring RG is Smarandache strongly s-
decomposable (S-strongly s-decomposable) if RG is strongly s-decomposable in 
which at least one of the Si’s is a S-subring of RG.  
 
THEOREM 3.10.29: If RG is S-strongly s-decomposable then RG is strongly s-
decomposable.  
 
Proof: Obvious by the very definitions of S-strongly s-decomposable and strongly s-
decomposable.  
 
DEFINITION [105]: The group ring RG is weakly s-decomposable if we can find 
subrings S1, …, Sr of RG with RG = S1 + … + Sr such that Si ∩ Sj = G; i ≠  j.  
 
DEFINITION 3.10.24: The group ring RG is Smarandache weakly s-
decomposable (S-weakly decomposable) if we can find subrings S1, S2 , …, Sr  of 
RG of which atleast one of the Si's is a S-subring of RG with RG = S1 + S2 + … + 
Sr and Si ∩ Sj = G; if i ≠ j.  
 
The reader is requested to develop relations between weakly s-decomposable and S-
weakly s-decomposable group rings. They are also advised to formulate definitions in 
case of semigroup rings and study them.  
 
DEFINITION [108]:  Let R be a ring not necessarily commutative. Let L denote 
the collection of all right ideals of R.  
 
If (A + B) (A + C) (A + D) = A + BC (A + D) + BD (A + C) + DC (A + B)∗ for all 
right ideals A, B, C, D in L; where A+B denotes the right ideal generated by A ∪ B 
and AB denotes A ∩ B. Then we call R a strong right s-ring. 
 
* - This identity is known as the supermodular identity and such lattices are 
known as supermodular lattices [36].  
 
The motivation for doing so is from [23], for he called the lattice of ideals, which is 
distributive to be the strong right D-domain.  
 
We define Smarandache strong right s-ring.  
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DEFINITION 3.10.25: Let R be a ring not necessarily commutative. Let L 
denote the collection all right ideals of R if (A + B) (A + C) (A + D) = A + BC (A 
+ D) + BD (A + C) + DC (A + B) for all right ideals A, B, C, D ∈ L of which one of 
the ideals must be a S-right ideal I(II), then we say R is a Smarandache strong 
right s-ring (S-strong right s-ring).  
 
Example 3.10.28: Let Z2 = {0, 1} be the ring of integers modulo 2 and S = {1, a, b 
/ a2 = a, b2 = b, ab = a, ba = b, 1.a = 1.a = a and 1.b = b.1 = b} be the 
multiplicative semigroup. The semigroup ring Z2S is a S-strong right s-ring, for the 
ideals of Z2S are A1 = {0, a}, A2 = {0, b}, A3 = {0, a + b}, A4 = {1, 1 + a, 1 + b, a + 
b} and A5 = {0, a, b, a + b} of these 5 right ideals any four of them will be S-ideal I, 
so Z2S is a S-strong right s-ring.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DEFINITION 3.10.26: Let R be a ring if all the right ideals form a distributive 
lattice and if in this collection of right ideals we have atleast a right ideal to be a 
S-ideal I(II) then we call the ring R as the Smarandache strong right D-domain 
(S-strong right D-domain).   
 
THEOREM 3.10.30: Every S-strong right-D-ring is a S-strong right s-ring. 
 
Proof: By the very definition; the collection of ideals have S-ideals I(II) so if we put D 
= C in the supermodular identity we get the result.  
 
THEOREM 3.10.31: If the set of right ideals in a S-strong right s-ring is not a S-
strong right D-ring it does not imply the set of two sided ideals of this ring is not 
a D-ring.  

{0, 1 + a, 1 + b, a + b} 

{0, a + b } 

{0} 

{0, b} 
{a, 0} 

{0, a, b, a + b} 

Z2S 

Figure 3.10.1 
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Proof: By an example. Clearly the ideals do not form a S-D-ring. Now consider the set 
of two sided ideals of Z2S given in example 3.10.28.  
 
   B3 = {0, 1 + a, 1 + b, a + b} 

 B2 = {0, a, b, a + b},  
B1 = {0, a + b}  

 
form a distributive lattice so the ring is a S-strong-D-ring.  
 
THEOREM 3.10.32: If the set of right ideals of a ring R is not a S-strong r-ring 
still it does not imply the set of two sided ideals is not a S-strong-r-s-ring.  
 
Proof: By an example consider Z2 = {0, 1} and S = {a, b, c, 1 / a2 = a, b2 = b, c2 = c, 
ab = a, ba = b, ca = c, cb = c, ac = a, bc = b, 1.a = a.1 = a, 1.c = c.1 = c, 1.b = b.1 
= b} be the multiplicative semigroup. Z2S be the semigroup ring of S over Z2  

 

Take A = {0, 1 + a + b + c, b + c, a + c, a + b, 1 + a, 1 + c, 1 + b}, B = {0, a}, C = 
{0, b}, D = {0, a + b + c} be the right ideals of Z2S. Clearly (A + B) (A + C) (A + D) 
= Z2S, A + BC (A + D) + CD (A + B) + DB (A + C) = A. Since Z2S ≠ AZ2S is not a S-
strong-r-s-ring.  
 
Consider the two-sided ideals of Z2S.  
 
A = {0, a + b + c}, B = {0, a + b, a + c, b + c}, C = {1 + a + b + c, a + b, a + c, b 
+ c, 1 + a, 1 + b, 1 + c, 0} and D = {a, b, c, a + b, a +c, b + c, a + b + c, 0}. 
Clearly the set A, B, C, D, {0}, Z2S form a supermodular lattice given by the following 
diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
N.Jacobson calls a ring R to be a J-ring if xn = x for every x ∈ R, n an integer, n > 1, 
we motivated by this define Smarandache J-ring as follows:  
 

A 

D 

Z2S 

{0} 

B 

C 

Figure 3.10.2 
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DEFINITION 3.10.27: Let R be a ring. R is a said to be a Smarandache J-ring 
(S-J-ring) if R has a S-subring A such that for all a ∈ A we have an = a, n > 1 (n 
an integer).  
 
In view this we have the following.  
 
THEOREM 3.10.33: Let R be a J-ring. If R has S-subring then R is a S-J-ring.  
 
Proof: Obvious by the very definition of J-ring and S-J-ring. It is well know that all J-
rings are commutative but we see a S-J-ring need not be commutative.  
 
Example 3.10.29: Let Z2S3 be the group ring of the group S3 over Z2. Z2S3 is a S-J-
ring. For Z2S3 contains a S-subring A = {0, p1 + p2 + p3, 1 + p4 + p5, 1 + p1 + p2 + p3 
+ p4 + p5}. It is easily verified A is J-ring so Z2S3 is a S-J-ring. Hence the claim.  
 
THEOREM 3.10.34: Let Zn be a S-ring. S is a semigroup such that si.sj = 0 if i ≠ 
j si.si = si. Then the semigroup ring ZnS is a S-J-ring.  
 
Proof: It is left for the reader to verify. 
  
The author has defined for any ring R the strong ideal property as follows.  
 
DEFINITION [122]: Let R be a ring. If every distinct pair of ideals of R generate 
R, then the set of ideals of R is said to satisfy the strong ideal property.  
 
DEFINITION [122]: Let R be a ring; if every distinct pair of subrings of R 
generate R then the set of subrings of R is said to satisfy the strong subring 
property.  
 
DEFINITION [122]: Let R be a ring. If {Im } denote the collection of all ideals 
and {Sn } the collection of all subrings and if 〈 Sj, Ij / Ij ∈ {Im } and Sj ∈ {Sn }〉 
generate R for every pair (Sj, Ij ) ∈ {Sn } × {Im } then we say the subrings and 
ideals of R satisfy the strong subring ideal property. 
 
Example 3.10.30: Let G = 〈g / g2 = 1〉 and Z2 = {0, 1} be the ring of integers 
modulo 2. The group ring Z2G satisfies strong subring property but does not satisfy 
strong ideal property. But Z2G satisfies strong subring ideal property as S1 = {0, 1} 
and I1 = {0, 1 + g} be the subring and ideal of Z2S. We see S1 ∪ I1 generates Z2G.  
 
Example 3.10.31: Let G = 〈g/ g3 = 1〉 be the cyclic group of order three and Z2 = 
{0, 1} be the ring of integers modulo 2. The group ring Z2G = {1, 0, g, g2, 1 + g, 1 + 
g2, g + g2, 1 + g + g2}. The subrings of Z2G are S1 = {0, 1}, S2 = {0, 1 + g + g2}, S3 = 
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{0, g + g2}, S4 = {0, 1 + g, 1 + g2, g + g2} and S5 = {0, 1, g + g2, g + g2 + 1}. The 
ideals of Z2G are I1 = {0, 1 + g + g2}, I2 = {0, 1 + g, 1 + g2, g + g2}; thus clearly Z2G 
satisfies strong ideal property. It is easily verified that Z2G does not satisfy strong 
subring property further Z2G does not satisfy the strong subring ideal property.  
 
THEOREM [122]: Let R be a ring. R does not satisfy strong subring property 
even if a pair of subrings Si, Sj ∈ {Sn } is such that Si ⊂ Sj or Sj ⊂ Si.  
 
Proof: Since Si, Sj ∈ {Sn} if Si ⊂ Sj or Sj ⊂ Si then 〈Si, Sj〉 = Sj if Si ⊂ Sj and 〈Si, Sj〉 = Si 
if Sj ⊂ Si. 
 
THEOREM [122]: Let R be a ring. R is not a strong ideal ring if there exists a 
pair of ideals I1, I2 such that I1 ⊂ I2 or I2 ⊂ I1.  
 
Proof: As in case of subrings.  
 
Now we define S-strong ideal rings, S-strong subring rings and S-strong subring ideal 
rings.  
 
DEFINITION 3.10.28: Let R be a ring. Let {Si } denote the collection of all S-
subrings of R. We say R is a Smarandache strong subring ring (S-strong subring 
ring) if every pair of S-subrings of R generate R.  
 
DEFINITION 3.10.29: Let R be a ring. Let {Ij} denote the collection of all S-
ideals of R. We say R is a Smarandache strong ideal ring (S-strong ideal ring) if 
every pair of S-ideals of R generate R.  
 
DEFINITION 3.10.30: Let R be a ring. {Si} and {Ij} denote the collection of all 
S-subrings and S-ideals of R. if every pair {Si, Ij} generate R then we say R is a 
Smarandache strong subring ideal (S-strong subring ideal) ring. If we do not 
have S-subrings and S-ideals in a ring then we do not have the concept of S-
strong subring ideal or S-strong ideal ring or S-strong subring ring.  
 
Example 3.10.32: Let Z6 = {0, 1, 2, 3, 4, 5} be the ring of integers modulo 6. S1 = 
{0, 3} and S2 = {0, 2, 4} are subrings as well as ideals. Clearly Z6 is not a S-strong 
ideal ring and not a S-strong subring ring and not a S-strong subring ideal ring, since 
this ring has no proper S-subrings or S-ideals.  
 
Example 3.10.33: Let Z2S3 be the group ring of the group S3 over Z2. Clearly Z2S3 is 
not a strong subring. For take the two distinct subrings, S1 = {0, 1 + p1} and S2 = {0, 
1 + p2}. 〈S1, S2〉 = {0, 1 + p1, 1 + p2, p1 + p2, p4 + p5, p2 + 1 + p1 + p5, 1 + p1 + p2 + 
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p4, p1 + p4 + p5 + p2 , …} ≠ Z2S3 as in 〈S1, S2〉 i.e., the ring generated by S1 and S2 we 
cannot find elements whose support is odd i.e., single term, sum of three terms or 
sum of five terms. Hence Z2S3 is not a strong subring ring. Also Z2S3 is not a strong 
ideal ring. For take I1 = {0, 1 + p1 + p2 + … + p5} and I2 = {0, 1 + p4 + p5, p1 + p2 
+ p3, 1 + p1 + p2 + p3 + p4 + p5}, 〈I1 ∪ I2〉 does not generate Z2S3. Hence the claim.  
 
Is Z2S3 a S-strong ideal ring?  
 
Z2S3 = 〈Z2H1 ∪ Z2H3〉 where H1 = 〈1, p1〉 and H2 = 〈1, p4, p5〉 are subgroups of Z2S3. 
Clearly both Z2H1 and Z2H3 are S-subrings of Z2S3. The S-subrings of Z2S3 are A = {0, 1 
+ p1 + p2 + p3 + p4 + p5, p4 + p5 + 1, p1 + p2 + p3} for {0, 1 + p1 + p2 + p3 + p4 + 
p5} acts as the proper subset which is a subfield of A ⊂ Z2S3. Also B = {0, 1, p1, 1 + 
p1} is a S-subring of Z2S3. Similarly we have S-subrings B1 = {0, 1, p2, 1 + p2}, B3 = 
{0, 1, p3, 1 + p3}, it is once again easily verified 〈B1∪B3 〉 = Z2S3.  
 
Now the natural question is, will every pair of S-subrings generate Z2S3. To this end we 
propose some open problems in chapter 5 and define a weaker Smarandache 
concept.  
 
DEFINITION 3.10.31: Let R be a ring; we say R is a Smarandache weak ideal 
(S-weak ideal) ring if there exists a pair of distinct S-ideals I1 , I2 in R which 
generate R i.e., R = 〈 I1 ∪ I2 〉.  
 
DEFINITION 3.10.32: Let R be a ring; we say R is a Smarandache weak subring 
(S-weak subring) ring if there exists a distinct pair of S-subrings S1 , S2 in R 
which generate R. i.e., R = 〈 S1 ∪ S2 〉.  
 
DEFINITION 3.10.33: Let R be a ring we say R is a Smarandache weak subring 
ideal (S-weak subring ideal) ring if there exist an S-ideal I and S-subring A 
(which is not an S-ideal) such that I ∪ A generate R i.e., R=〈 I ∪ A 〉.  
 
The following three results can be easily verified; hence the proof is left as an exercise 
to the reader.  
 
THEOREM 3.10.35: Let R be a ring.  
 

1. Every S-strong ideal ring is a S-weak ideal ring.  
2. Every S-strong subring ring is a S-weak subring ring  
3. Every S-strong subring ideal ring is a S-weak subring ideal ring.  

 
Further we leave it as an exercise to the reader to obtain examples to show S-weak 
structures in general are not S-strong structures.  
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Example 3.10.34: Let Q be the field of rationals. S3 be the group of degree 3. QS3 is 
a S-weak subring ring. For A1 = QH1 and A2 = QH2 are S-subrings and QS3 = 〈QH1 ∪ 
QH2〉.  
 
DEFINITION [123]: Let R be a ring we say R is a weakly Boolean ring if xn(α) = 
x for all x ∈ R and, for some natural number n(α) > 1.  
 
Example 3.10.35: Zp = {0, 1, …, p–1} be the prime field of characteristic p. 
Clearly Zp is a weakly Boolean ring.  
 
Now we proceed on to define Smarandache weakly Boolean ring.  
 
DEFINITION 3.10.34: Let R be a ring we say R is a Smarandache weakly 
Boolean ring (S-weakly Boolean ring) if we have a S-subring A of R such that A is 
a weakly Boolean ring.  
 
Example 3.10.36: Let Z15 = {0, 1, 2, …, 14} where G = 〈g / g2 = 1〉. Clearly the 
group ring Z15G is not a weakly Boolean ring. But Z15G is a S-weakly Boolean ring. For 
take B = {0, 5, 10}; BG is a S-subring of Z15G which is a S-weakly Boolean ring but 
Z15G is not a weakly Boolean ring.  
 
DEFINITION [67]: R is a weakly regular ring if for each right (left) ideal I of R; 
we have I2 = I.  
 
Example 3.10.37: Let Z2 = {0, 1} be the prime field of characteristic two and G = 
〈g / g3 = 1〉 be the cyclic group of order 3. The group ring Z2G is weakly regular. For 
I1 ={0, 1 + g + g2}, I2 = {0, 1 + g, 1 + g2, g + g2} are such that I1

2 = I1 and I2

2 = I2. 
Hence the claim.  
 
Now we see all ideals I in every ring need not satisfy I2 = I.  
 
Example 3.10.38: Z2 = {0, 1} be the prime field of characteristic 2 and G = 〈g / g2 
= 1〉, the group ring; Z2G = {0, 1, g, 1 + g}. The ideal I = {0, 1 + g} is such that I2 = 
{0}. So Z2G is not a weakly regular ring.  
 
DEFINITION 3.10.35: Let R be a ring, we say R is a Smarandache weakly 
regular ring (S-weakly regular ring) if each S- right (left) ideal I of R satisfies I2 
= I. 
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DEFINITION 3.10.36: Let R be a ring. If R has atleast one S-ideal I such that I2 
= I then we say R is a Smarandache weakly weak regular ring (S-weakly weak 
regular ring).  
 
It is easily verified that : 
 
THEOREM 3.10.36: Let R be a S-weakly regular ring then R is a S-weakly weak 
regular ring.  
 
DEFINITION [1]: A ring R of characteristic p is said to be a pre-p-ring if xpy = 
xyp for every x, y ∈ R.  
 
DEFINITION 3.10.37: Let R be a ring of characteristic p; R is said to be a 
Smarandache pre-p-ring (S-pre-p ring) if R has a nontrivial S-subring A such 
that a subring B of A is a pre-p-ring i.e., in B we have xpy = xyp for all x, y ∈ B.  
 
Example 3.10.39: Let Z2 = {0, 1} be the prime field of characteristic 2 and G = 〈g 
/g6 = 1〉. The group ring Z2G is a S-pre-p-ring for take A = {0, 1, 2g3, 1 + g3, 2g3, 2 + 
g3, 2g3 + 1, 2g3 + 2}. So Z2G is a S-pre-p-ring.  
 
DEFINITION [22]: Let R be a commutative ring, an ideal I of a ring R is said to 
be the multiplication ideal if for each ideal J ⊂ I we have J= IC for some ideal C.  
 
DEFINITION 3.10.38: Let R be a S-commutative ring. An S-ideal I of R is said 
to be the Smarandache multiplication ideal (S-multiplication ideal) if for each S-
ideal  J ⊂ I  there is  J = IC  for some S-ideal C in R. 
 
DEFINITION [134]: A two sided ideal I of a non-commutative ring R is called a 
right multiplication ideal, if for each right ideal J ⊆ I there is J = IC for some 
right ideal C in R.  
 
DEFINITION [134]: Let R be a ring. A right ideal I of a non-commutative ring 
is called a right multiplication right ideal if for each right ideal J ⊂ I there is J = 
IC for some right ideal C in R.  
 
DEFINITION [134]: Let R be a ring. If every proper two sided ideal of R is a 
right multiplication ideal of R then we call R as a right multiplication ideal ring.  
 
DEFINITION 3.10.39: Let R be a ring. If every proper two sided S-ideals of R is 
a right multiplication ideal of R. We call the ring as a Smarandache right 
multiplication ideal ring (S-right multiplication ideal ring)  
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DEFINITION [3]: Let R be a partially ordered ring without non-zero nilpotents. 
R is said to be a f-ring if and only if for any a ∈ R, there exists a1, a2 in R with a1 
> 0, a2 > 0, a = a1 – a2 and a1a2 = a2a1 = 0.  
 
We define Smarandache f-rings as follows.  
 
DEFINITION 3.10.40: Let R be a ring. Let A be a S-subring of R. R is said to be 
a Smarandache f-ring (S-f-ring) if and only if A is a partially ordered ring 
without non-zero nilpotents and for any a ∈ A we have a1, a2 in R with a1 ≥ 0, a2 
≥ 0, a = a1 – a2 and a1a2 = a2a1 = 0. 
 
DEFINITION [20]: Let R be a ring. R is said to be a chain ring if the set of ideals 
of R is totally ordered by inclusion.  
 
For more properties about chain rings please refer [20].  
 
THEOREM [121]: Let Z2 = {0, 1} be the prime field of characteristic 2. G = 〈g / 
gp = 1〉 and p an odd prime. The group ring Z2G is not a chain ring.  
 
Proof: Consider I = {0, 1 + g + … + gp–1} and J = the augmentation ideal of Z2G. 
Clearly I and J are ideals such that they are not comparable so Z2G is not a chain ring.  
 
THEOREM [121]: Let G = 〈g / gp+1 = 1〉 be a cyclic group of order p + 1, Zp be 
the prime field of characteristic p. The group ring ZpG is not a chain ring.  
 
Proof: Consider the ideals I = {0, n(1 + g + g2 + … +gp)}, 1 ≤ n ≤ p-1 and J the 
augmentation ideal. Clearly I and J are not comparable; so ZpG is not a chain ring.  
 
THEOREM [103]: Let Zp be the prime field and G be a finite group of order n, 
such that (n, p) = 1. Then the group ring ZpG is not a chain ring.  
 
Proof: Take J = {0, t(1 + g +… + gn-1)}, 1 ≤ t ≤ p –1 and J the augmentation ideal. I 
and J are incomparable so ZpG is not a chain ring.  
 
DEFINITION [103]: Let R be a ring. R is said to be a strictly right chain ring 
only when the right ideals of R is ordered by inclusion. 
  
DEFINITION 3.10.41: Let R be a ring. If the set of S-ideals of R is totally 
ordered by inclusion, then we say R is a Smarandache chain ring (S-chain ring).  
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DEFINITION 3.10.42: Let R be a ring. If the set of all S-right ideal of R is totally 
ordered by inclusion then we say R is a Smarandache right chain ring (S-right 
chain ring).  
 
DEFINITION 3.10.43: Let R be a ring, A, a S-subring of R. If the set of S-ideals 
of the S-subring A of R is totally ordered by inclusion then the ring is said to be 
Smarandache weakly chain ring (S-weakly chain ring).  
 
THEOREM 3.10.37: Let R be a ring, if R is a S-weakly chain ring then R need 
not be a S-chain ring.  
 
Proof: By an example the above result can be proved.  
 
DEFINITION [127]: Let R be a ring, 0 ≠ I be an ideal of R. If for any nontrivial 
ideal X and Y of R X ≠ Y we have 〈X ∩ I, Y ∩ I〉 = 〈X, Y〉 ∩ I then I is called the 
obedient ideal of R.  
 
Example 3.10.40: Let Z12 = {0, 1, 2, …, 11},  I = {0, 6} is an obedient ideal of Z12 
for if we take X = {0, 4, 8} and Y = {3, 6, 9, 0} two ideals of Z12. We see 〈X ∩ I, Y ∩ 
I〉 = 〈0, 0, 6〉 {0, 6} = I, 〈X, Y〉 ∩ I = Z12 ∩ I = {0, 6}. Hence the claim.  
 
DEFINITION [127]: If every ideal I of a ring R is an obedient ideal of R, then 
we say R is an ideally obedient ring.  
 
DEFINITION 3.10.44: Let R be a ring. Let I be an S-ideal of R. We say I is a 
Smarandache obedient ideal (S-obedient ideal) of R if we have two ideals X, Y in 
R, X ≠ Y such that 〈X ∩ I, I ∩ Y〉 = 〈Xi ,  Y〉 ∩ I.  
 
Note: We do not demand that X and Y to be S-ideals of R. It is sufficient if they are 
distinct ideals but we demand I to be a S-ideal of R.  
 
DEFINITION 3.10.45: Let R be a ring, if every S-ideal I of R is a S-obedient 
ideal of R then we say R is a Smarandache ideally obedient ring. (S-ideally 
obedient ring)  
 
DEFINITION [49]: Let R be an associative ring in which for every x, y in R there 
exists a positive integer n = n(x, y)>1 such that either (xy – yx)n = xy – yx or 
(xy + yx)n = xy + yx.  
 
In honour of Lin we call these rings as Lin rings. For more about these structures 
please refer [49].  
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THEOREM [129]: Let F be a field and G any finite non-abelian group. If the 
group ring FG is a Lin ring then  
 

1. It has zero divisors  
2. FG is a Lin ring having elements of finite order.  

 
Proof: Given FG is a ring which is a Lin ring. Hence (xy – yx)n = xy – yx or (xy + yx)n 
= xy + yx. Now (xy – yx)n = xy – yx implies (xy – yx) [(xy – yx)n-1–1] = 0. Since xy 
≠ yx; we have if FG is a Lin ring, FG has zero divisors provided (xy – yx)n-1 ≠ 1. Clearly 
if the ring FG has no zero divisors then FG has elements of finite order i.e., (xy – yx)n-1 
= 1 for atleast some pairs x, y ∈ FG.  
 
THEOREM [129]: If FG is the group ring of a non-commutative group G over 
the field F. FG has zero divisors or elements of finite order then FG is not in 
general a Lin Ring.  
 
Proof: By an example. Consider Z2 = {0, 1} be the prime field of characteristic two 
and S3 be the symmetric group of degree three.  
 
To show Z2S3 is not a Lin ring, it is sufficient to prove that there exists atleast a pair of 
elements x, y in Z2S3 such that (xy + yx)n ≠ xy + yx. Consider p2, p4 ∈ Z2S3. Clearly 
p2p4 + p4p2 = p1 + p3 and (p1 + p3)

2 = p4 + p5. Since (p4 + p5)
2 = p4 + p5. We have 

(p1 + p3)
n; for no integer n>1 can be equal to p1 + p3. Hence Z2S3 is not a Lin ring.  

 
In view of this we can prove.  
 
THEOREM [129]: Let Z2 = {0, 1} and Sn be the permutation group of degree n. 
The group ring Z2Sn is not a Lin ring.  
 
The proof of this theorem is left for the reader as an exercise.  
 
Now we proceed onto define Smarandache Lin rings.  
 
DEFINITION 3.10.46: Let R be a ring. R is said to be a Smarandache Lin ring 
(S-Lin ring) if R contains a S-subring B such that B is a Lin-ring. We do not 
demand every element of R to satisfy the Lin identity viz 
 

 (xy – yx)n =  xy – yx or  
 (xy + yx)n = xy + yx.  

 
but only if elements of B satisfy the Lin identity then it makes R a S-Lin ring.  
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THEOREM 3.10.38: Let R be a Lin ring having a S-subring then R is a S-Lin 
ring.  
 
Proof: Follows from the very definition of S-Lin ring and Lin ring.  
 
THEOREM 3.10.39: Let R be S-Lin ring then R is a S-ring.  
 
Proof: By the very definition of S-Lin ring it should have a S-subring so R will be a S-
ring.  
 
DEFINITION [160]: A ring R with 1 is said to satisfy the right super ore 
condition if for any r, s ∈ R there is some r' ∈ R such that rs = sr'.  
 
For more about these concepts please refer [160, 126].  
 
THEOREM [126]: Let F be any field or a ring and G = Sn, n ≥ 3 be the 
symmetric group of degree 3. FSn does not satisfy super ore condition.  
 
Proof: To show FSn does not satisfy super ore condition it is enough if we show for 
some x, y ∈ FSn we have xy = yα is not true for any α ∈ FSn. 
 
Take  
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Clearly yx = xτ for no τ ∈ FSn; hence the claim.  
 
DEFINITION 3.10.47: Let R be a ring. We say R satisfies Smarandache super 
ore condition (S-super ore condition) if R has a S-subring A and for every pair x, 
y ∈ A we have r ∈ R such that xy = yr.  
 
THEOREM 3.10.40: Let R be a ring which satisfies super ore condition. If R has 
a S-subring then R satisfies the S-super ore condition.  
 
Proof: By the very definition of S-subring and S-super ore condition the results are 
easily proved.  
 
DEFINITION [138]: Let R be a ring. R is said to be ideally strong, if every 
subring of R not containing identity is an ideal of R.  
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Example 3.10.41: Let Z2G be the group ring of the group G = 〈g / g2 = 1〉 over Z2. 
Z2G is an ideally strong ring.  
 
THEOREM [138]: Let Z2 = {0, 1} and G = 〈g / g2n = 1〉. The group ring Z2G is not 
an ideally strong ring.  
 
Proof: The set S = {0, 1 + gn} is a subring of Z2G but is not an ideal of Z2G. Hence the 
claim.  
 
DEFINITION 3.10.48: Let R be a ring. We say R is a Smarandache ideally strong 
(S-ideally strong) ring if every S-subring of R is a S-ideal of R.  
 
DEFINITION [137]: Let R be a ring; {Ij } be the collection of all ideals of R. R is 
said to be a I*-ring if every pair of ideals I1, I2 ∈ {Ij } in R and for every a ∈ R \ 
(I1∪ I2 ) we have 〈a ∪ I1 〉 = 〈 a ∪  I2 〉 where 〈〉 denotes the ideal generated by a 
and Ij ,  j = 1, 2.  
 
Example 3.10.42: Z12 = {0, 1, 2, …, 11} ring of integers modulo 12, is not a I* 
ring for I1 = {0, 6} and I2 = {0, 4, 8} are two ideals of Z12 and we have 〈3 ∪ I1〉 = {0, 
3, 6, 9} where as 〈3 ∪ I2〉 = Z12.  
 
DEFINITION 3.10.49: Let R be a ring {Ai } be the collection of all S-ideals of R. 
If for every pair of ideals A1 , A2 ∈ {Ai } we have for every x ∈ R \ {A1∪ A2}, 〈 Ai  ∪ 
x〉 = 〈A2∪ x〉 and they generate S-ideals of R, then we say R is a Smarandache I∗-
ring ( S-I* ring).  
 
DEFINITION 3.10.50: Let R be a ring {Ai} be the collection of all S-ideals of R if 
for A1, A2 ∈ {Ai}, we have some x ∈ R \ {A1 ∪ A2} such that 〈A1 ∪ x〉 = 〈A2 ∪  x〉 
are S-ideals of R then we say R is a Smarandache weakly I*-ring (S-weakly I∗-
ring).  
 
THEOREM 3.10.41: All S-I* rings are S-weakly I*-rings.  
 
Proof: Follows by the very definitions of S-I* ring and S-weakly I*-ring.  
 
Here we demand the ideals generated by 〈Ai  ∪ x〉 to be S-ideals. Further we have the 
following.  
 
THEOREM 3.10.42: If R is a S-I* ring or a S-weakly I*-ring then R is a S-ring.  
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Proof: Follows from the fact that for R to be a S-I* ring or S-weakly I* ring; R must 
contain nontrivial S-ideals which in turn will imply R is a S-ring.  
 
DEFINITION [136]: Let P and V be any two non-isomorphic finite rings, if 
there exists non-maximal ideals I of P and J of V such that P/I is isomorphic to 
V/J. The finite rings P and Q are called Q-rings.  
 
Example 3.10.43: Let Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. Z8 = {0, 1, 
2, …, 7} be the ring of integers modulo 8. Z8 / J ≅ Z4 / I where J = {0, 4} and I = 〈0〉. 
So Z4 and Z8 are Q rings. Similarly we can prove Z6 and Z12 are also Q-rings.  
 
THEOREM [136]: Let Zn = {0, 1, 2, …, n – 1} , be the ring of integers modulo 
n, n not a prime then Zn is always a Q-ring.  
 
Proof: Left for the reader as an exercise to prove.  
 
DEFINITION [136]: Suppose R is a ring such that all of its ideals are maximal 
and if we have R /〈0〉 is isomorphic to some ring then we call R a weakly Q-ring.  
 
DEFINITION 3.10.51: Let R be a ring. A a S-ideal of R. R/A is defined as the 
Smarandache quotient ring (S-quotient ring) related to the S-ideal A.  
 
DEFINITION 3.10.52: Let R and S be two rings; if we have S-ideals A and B of R 
and S respectively, such that the Smarandache quotient ring R/A is S-isomorphic 
with the Smarandache quotient ring S/B then we say the ring R is a Smarandache 
Q-ring (S-Q-ring).  
 
We assume the S-ideals A and B need not be S-maximal ideals of R and S respectively.  
 
DEFINITION [13]: A ring R is called a F-ring if there is a finite set X of non-
zero elements in R such that aR ∩ X ≠ φ for any non-zero a in R. If in addition X 
is contained in the center of R; R is called a FZ-ring.  
 
Example 3.10.44: Let Z2 = {0, 1} be the field and G = 〈g / g2 = 1〉. The group ring 
Z2G is a F-ring, X = {1 + g} ⊂ Z2G. Clearly a.Z2G ∩ X ≠ φ for any non-zero a in Z2G.  
 
THEOREM [135]: Let Z2 = (0, 1) be the field of characteristic 2 and Sn be the 
symmetric group of degree n. The group ring Z2Sn is a F-ring.  
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a ∈ Z2Sn \ {0};  aZ2Sn ∩ X  ≠ φ; hence Z2Sn is a F-ring.  
 
DEFINITION 3.10.53: Let R be any ring; A a S-subring of R. We say R is a 
Smarandache F-ring (S-F-ring) if we have a subset X in R and a non-zero b ∈ R 
such that bA ∩ X ≠ φ. It is pertinent to mention here that we need not take X as a 
subset of A but nothing is lost even if we take X to be a subset of A. Similarly b 
can be in A or in R.  
 
DEFINITION [145]: Let R be a ring we say an element a ∈ R \ {0, 2} is an SS 
element if a2 = a + a.  
 
DEFINITION [145]: Let R be a ring if R has atleast one SS-element other than 0 
and 2 then we say R is a SS-ring.  
 
Now we proceed onto define Smarandache SS-elements.  
 
DEFINITION 3.10.54: Let R be a ring an element x ∈ R is said to be a 
Smarandache SS element (SSS-element) of R if there exists y ∈ R \ {x} with x.y = 
x + y.  
 
Example 3.10.45: Let Z10 = {0, 1, 2, …, 9} be the ring of integers modulo 10.  4.8 
≡ 4 + 8 (mod 10). So 4 is a SSS element of Z10.  
 
DEFINITION 3.10.55: Let R be a ring if R has atleast one nontrivial 
Smarandache SS-element we call R a SSS ring.  
 
Example 3.10.46: Z14 is a SSS-ring for 4, is a SSS-element as 4 + 6 ≡ 4.6 ≡ 10 
(mod 14).  
 
Example 3.10.47: Let Z15 = {0, 1, 2, …, 14} be the ring of integer modulo 15, 3 is 
a SSS element for 3.9 ≡ 3 + 9 ≡ 12 (mod 15).  
 
Example 3.10.48: Z9 be the ring of integers modulo 9. 3.6  ≡ 3 + 6 ≡ 0 (mod 9), 
5.8 ≡ 5 + 8 ≡ 4 (mod 9). This ring has two SSS-elements.  
 
Example 3.10.49: Z8 has SSS-element.  
 
Here we solve the problem proposed by [16]: “He asks whether there exists a 
commutative ring R with the property satisfying the following condition: R2 = R and a 
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+ a = 0 = a2 for all a ∈ R. Now if R is a commutative ring in which x2 = 0 for all x 
∈R then we have xy = 0 for all x, y ∈ R or characteristic R = 2. For (x + y)2 = 0 but 
x2 + y2 + 2xy = 0 so xy = 0 for all x, y ∈ R or characteristic of R is two. So we prove 
that such rings do not exist. For the rings R, which satisfy the given condition, cannot 
contain 1, the identity. Secondly R2 = R is impossible as a + a = a2 = 0 so R2 = {0}. 
Hence the claim; thus the answer to the question in [16] is answered in the negative.  
 
DEFINITION [35]: Let R be a ring. A subring S ≠ {0} of R is said to be a trivial 
subring of R of S2 = (0).  
 
Example 3.10.50: Let Z2G be the group ring of the group G = 〈g / g2n = 1〉 over Z2. 
This has trivial subrings, for S = {0, 1 + g + … + g2n–1} is such that S2 = (0) and S1 
= (1 + gn, 0) is such that S1

2=(0).  
 
DEFINITION 3.10.56: Let R be a ring, we say R has a Smarandache trivial 
subring (S-trivial subring) if R has a S-subring A such that A has a subring B (B 
⊂ A) with B2 = (0).  
 
We have to make this form of definition as S-subring A has a subfield in it, so A2 = {0} 
is impossible, so to overcome this we have to define a subring B ⊂ A such that B2 = 
(0).  
 
We leave it for the reader to obtain some interesting results in this direction.  
 
DEFINITION [65]: Let R be a ring, we say R is a γn-ring, n > 1, n an integer if 
xn – x is an idempotent for all x ∈ R.  
 
Example 3.10.51: Let Z2 = {0, 1} be the field and G = 〈g / g3=1〉, the group ring 
Z2G is a γn-ring. For more about γn-ring refer [65].  
 
DEFINITION 3.10.57: Let R be a ring. If xn – x is a S-idempotent for some 
integer n > 1, for all x ∈ R then we say R is a Smarandache γn-ring (S-γn ring).  
 
It is left for the reader to obtain some nice examples of S-γn-rings.  
 
THEOREM 3.10.43: Let R be a field of characteristic 0 and G be a torsion free 
abelian group. The group ring KG is not a S-γn-ring.  
 
Proof: KG is a domain, hence the claim.  
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The concept of demi modules is a generalization of modules. For every module is a 
demi module and not conversely. To define demi module we define demi subring.  
 
DEFINITION [148]: Let R be a commutative ring with unit. A non-empty subset 
V of R is said to be a demi subring of R if V is closed with respect to '+' and '.' of 
R.  
 
Example 3.10.52: Let Z be the ring of integers, Z+ is a demi subring (Z+ set of 
positive integers).  
 
Example 3.10.53: Let Zp = {0, 1, 2, …, p – 1}, p a prime, Zp does not have a demi 
subring.  
 
DEFINITION [148]: Let R be a commutative ring with unity; P is said to be a 
demi module over R if P is a semigroup under '+' and '.' and there exists a 
nontrivial demi subring V of R such that for every v∈ V and p ∈ P, vp and pv ∈ P; 
0 ∈ P and v(p1 + p2)= vp1+vp2 , v1(v2 p) = (v1v2 )p. for p1 , p2, p ∈ P; v1, v2 , v ∈ V.  
 
DEFINITION [148]: Let R be a commutative ring and let P be a demi module 
relative to the demi subring V. Then a non-empty subset T of P is a subdemi 
module, if T is a demi module for the same demi subring.  
 
DEFINITION 3.10.58: Let R be a commutative ring with 1. A subset S of R is 
said to be a Smarandache demi subring (S-demi subring) of R if 
 

1. (S, +) is a Smarandache semigroup.  
2. (S, .) is a Smarandache semigroup.  

 
THEOREM 3.10.44: All S-demi subrings of the ring are demi subrings.  
 
Proof: Left as an exercise for the reader.  
 
DEFINITION 3.10.59: Let R be a commutative ring with 1. P is said to be 
Smarandache demi module (S-demi module) over R if  
 

1. P is a S-semigroup under + and ‘.’.  
2. There exists a nontrivial S-demi subring V of R such that for every p ∈ 

P and v ∈ V, vp and pv ∈ P  
3. v(p1 + p2) = vp1 + vp2.  
4. v(v1 p) = (vv1 ) p for all p1 , p2 , p ∈ P and v, v1 ∈ V.  

 
THEOREM 3.10.45: Let R be a ring; P be a S-demi module relative to V, then P 
is a demi module relative to V, V a subring of R.  
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Proof: Left as an exercise for the reader to prove.  
 
DEFINITION 3.10.60: Let R be a ring. P a S-demi module relative the S-demi 
subring V of R. A non-empty subset T of P is said to be a Smarandache subdemi 
module (S-subdemi module) if T is a Smarandache demi module for the same S-
demi subring.  
 
The reader is requested to obtain nice results in this direction.  
 
DEFINITION [63]: Let R be a ring, R is said to be locally unitary if for each x ∈ 
R there exists an idempotent e ∈ R for which ex = xe = x.  
 
Here we define semiunitary ring using semi idempotents.  
 
DEFINITION [152]: Let R be a ring. R is said to be locally semiunitary if for 
each x ∈ R there exists a semi idempotent s ∈ R such that xs = sx = x.  
 
THEOREM [152]: Let R be a locally unitary ring then R is a locally semiunitary 
ring.  
 
Proof: By the very definition of locally unitary ring and locally semiunitary ring the 
result follows.  
 
THEOREM [152]: A locally semiunitary ring in general is not locally unitary 
ring.  
 
Proof: By an example; Z2 = {0, 1} be the field of characteristic two and G = 〈g /g2 = 
1〉. The group ring Z2G = {0, 1, g, 1 + g} is locally semiunitary for (1 + g) g = g(1 + 
g) = 1 + g where g is not an idempotent as g2 = 1. Thus Z2G is not locally unitary.   
 
DEFINITION 3.10.61: Let R be a ring if for every element x ∈ R there exists a 
S-idempotent e in R such that xe = ex = x. Then we call the ring R a 
Smarandache locally unitary ring (S-locally unitary ring).  
 
DEFINITION 3.10.62: Let R be a ring. If for every x ∈ R there exists a S-semi 
idempotent s of R such that xs = sx = x then we call the ring R a Smarandache 
locally semiunitary ring (S-locally semi unitary ring).  
 
DEFINITION [151]: Let (R, +, .) be a ring. A non-empty subset S of R is called a 
closed net of R if S is a closed set of R under the operation ‘.’ and is generated by 
a single element. That is S is a semigroup under multiplication ‘.’. 
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DEFINITION [151]: Let (R, +, .) be a ring. If R is contained in a finite union of 
closed nets of R then we say the ring R has a closed net.  
 
DEFINITION [151]: Let R be a ring we say R is a CN-ring if R = ∪ Si where Si's 
are closed nets such that Si ∩ Sj = φ or {1} or {0} if i ≠  j and 1 ∈ R and Si ∩ Sj = 
Si if i = j and each Si is a nontrivial closed net of R.  
 
Example 3.10.54: Let Z8 = {0, 1, 2, …, 7} be the ring of integers modulo 8. Clearly 
R is not a CN-ring for take S1 = {4, 6}, S2 = {1, 3}, S3 = {5, 1}, S4 = {1, 7} and S5 = 
{0, 2, 4}. Easily verified. 
 
DEFINITION [151]: Let R be a ring. If R ⊂ ∪ Si with Si ∩ Sj ≠ φ or {1}. Then we 
say R is a weakly CN-ring.  
 
We have rings which may not even be a weakly CN-ring. 
 
Example 3.10.55: Let Z9 = {0, 1, 2, …, 8} be the ring of integers modulo 9. It is 
easily verified Z9 is a CN-ring. For S1 = {0, 3}, S2 = {0, 6} and S3 = {2, 4, 8, 7, 5, 1} 
closed nets of Z9.  
 
THEOREM [151]: Every CN-ring is a weakly CN-ring. But a weakly CN-ring in 
general is not a CN-ring.  
 
Proof: Left as an exercise to the reader. 
 
THEOREM [151]:  Zp be the prime field of characteristic p. Zp is not a CN-ring 
and not even a weakly CN-ring.  
 
Proof: Left for the reader to prove.  
 
Now we proceed onto define Smarandache CN-rings and Smarandache weakly CN-
rings to this end we define Smarandache closed net in rings.  
 
DEFINITION 3.10.63: Let R be a ring, we say a subset S of R is said to be 
Smarandache closed net (S-closed net) if  
 

1. S is a semigroup.  
2. S is a S-semigroup.  

 
From this we easily see that all S-closed nets are closed nets but every closed net in 
general is not a S-closed net.  
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DEFINITION 3.10.64: Let R be a ring. If R is contained in the finite union of S-
closed nets of R then we say the ring R has a Smarandache closed net (S-closed 
net).  
 
DEFINITION 3.10.65: Let R be a ring, we say R is a Smarandache CN-ring (S-
CN-ring) if R = ∪ Si where Si’s are S-closed nets such that Si ∩ Sj = A, i ≠ j, A ≠ Si 
or A ≠ Sj where A is a subgroup of Si. 
 
DEFINITION 3.10.66: Let R a ring, if R ⊂ ∪ Si where Si's are Smarandache 
closed nets then we say R is a Smarandache weakly CN-ring (S-weakly CN ring).  
 
THEOREM 3.10.46: Let R be a S-CN-ring. Then R is a weakly CN-ring.  
 
Proof: By the very definition the result is straight forward.  
 
THEOREM 3.10.47: Every S-weakly CN-ring is a weakly CN-ring and not 
conversely.  
 
Proof: It can be proved by simple working, hence left for the reader as an exercise.  
 
DEFINITION [153]: Let R be a ring. A subset M of R with |M| ≤ 2, |M + M| ≤ 2 
and |M2| ≤ 2 is called the tight subset of R.  
 
DEFINITION [153]: Let R be a ring. R is said to be a tight ring if we can find a 
subset M of R which is a tight subset of R.  
 
Example 3.10.56: Let G = 〈g / g2=1〉 and Z2={0, 1} the ring of integers modulo 2. 
The group ring Z2G is a tight ring for it has the tight subset M = {0, 1 + g} such that 
|M| ≤ 2, |M + M| ≤ 2 and |M2 |  ≤ 2.  
 
DEFINITION [153]: Let R be a ring R; is said to be a strong tight ring if every 
subset M with |M| ≤  2 of R is a tight subset of R.  
 
Example 3.10.57: The group ring R = Z2G where G = 〈g / g2 = 1〉 is a strong tight 
ring.  
 
THEOREM [153]: Every strong tight ring is a tight ring but every tight ring need 
not be a strong tight ring.  
 
Proof: By the very definition of tight ring and strong tight ring. To prove the converse 
we see Z8 = {0, 1, 2, …, 7} is a tight ring which is not a strong tight ring.  
 
THEOREM [153]: No ring of characteristic 0 is a tight ring.  
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Proof: Left as an exercise for the reader to prove.  
 
DEFINITION [153]: Let R be a ring; R is said to be r-tight ring i.e., Tr-ring, r ≥ 2 
if R contains a subset M with |M| ≤ r implies |M + M| ≤ r and |M2| ≤ r. Clearly 
when r = 2 we get the tight ring.  
 
Every Tr-ring is a Ti-ring for all i ≤ r. Thus we have T-ring ⊂ T3-ring ⊂ … ⊂  Tr-
ring.  
 
THEOREM [153]: Every T2 ring is a T3 ring but all T3 rings need not be T2-rings.  
 
Proof: By the very definition every T2 ring is a T3 ring, to prove the converse we give an 
example. Consider Z9 = {0, 1, 2, …, 8}, is a T3-ring but it is not a T2-ring.  
 
THEOREM [153]: The ring of integers is not a Ti-ring for any finite i ≥ 2.  
 
Proof: Left for the reader as an exercise to prove.  
 
DEFINITION 3.10.67: Let R be a ring we say a non-empty subset M of R is said 
to be a Smarandache tight set (S-tight set) if  
 

1. M contains a subset S where S is a semigroup under '.' of R. 
2. If |M| ≤  2, |M + M| ≤ 2, |M2| ≤  2.  

 
DEFINITION 3.10.68: Let R be a ring. R is said to be a Smarandache tight ring 
(S-tight ring) if we can find a subset M of R which is a S-tight set of R.  
 
THEOREM 3.10.48: Every S-tight set of R is a tight set of R.  
 
Proof: Obvious by the very definitions.  
 
THEOREM 3.10.49: Every S-tight ring R, is a tight ring.  
 
Proof: Left as an exercise to the reader to prove.  
 
DEFINITION 3.10.69: Let R be a ring, R is said to be Smarandache strong tight 
ring (S-strong tight ring) if every subset M of R is a S-tight set of R.  
 
DEFINITION 3.10.70: Let R be a ring, R is said to be Smarandache r-tight ring 
or a S-Tr ring r ≥ 2 if R contains a subset M with |M| ≤ r,  |M + M| ≤ r, |M2|< r and 
M is a S-tight set of R.  
 



 112 

Now we proceed on to define the concept of finite quaternion rings and skew fields as 
this concept would help in defining in chapter IV Smarandache rings of level II and 
Smarandache mixed direct product of rings.  
 
DEFINITION [149]: Let Zn be the ring of integers modulo n. Let P = {p0 + p1i + 
p2j + p3k / p0, p1, p2, p3 ∈ Zn, n finite, n > 2} Define ‘+’ and ‘.’ on P as follows  
 
 X = p0 + p1i + p2j + p3k  and  
 Y = q0 + q1i + q2j + q3k  be in P  
 X + Y = (p0 + q0) + (p1 + q1)i + (p2+ q2)j +(p3 + q3)k.  

X .Y = (p0 + p1i + p2j + p3k)(q0 + q1i + q2j + q3k) = [p0q0 + (n – 1) p1q1 + 
(n – 1) p2q2 + (n – 1) p3q3]+ (p0q1 + p1q0 (n – 1) + p3q2 + p2q3)i + (p0q2 + p2q0 + 
(n – 1)p1q3 + p3q1)j + (p0q3 + p3q0 + p1q3 + (n-1)p3q1)k  
 
where i2 = j2 = k2 = (n – 1)= ijk and ij = (n – 1)ji = k where ji = (n – 1) kj = i 
and ki = (n – 1) ik = j.  
 
Clearly in P, 0 = 0 + 0i + 0J + 0k is the identity with respect to '+' and 1=1 + 0i 
+ 0j + 0k is the identity with respect to '.'.  
 
Now P is a ring called the ring of real quaternion of characteristic ni n a finite 
prime. If n is a composite number then we have P to be a ring with divisors of 
zero.  
 
THEOREM [149]: Let P = {α0 + α1i + α2 j + α3 k / α0, α1, α2, α3 ∈ Zp = {0, 1, 2, 
…, p – 1} be defined as above. Then P is a prime skew field. 
 
Proof: Please refer [149] for proof. 
 
THEOREM [149]: Let P = {α0 + α1i + α2 j + α3 k / α0, α1,α3, α2 ∈ Zn = {0, 1, 2, 
…, n – 1}} ring of integers modulo n, n a composite number with i2 = j2 = k2 = n 
– 1 = ijk. ij = (n – 1)ji = k and so on. Then P is a ring with divisors of zero.  
 
Proof: Left as an exercise for the reader to prove.  
 
Let P be a ring defined as above. Let G = {α0 + α1i + α2j + α3k / α0, α1, α2, α3 = m 
where m is a zero divisor in Zn, α0, α1, α2, α3 ∈ Zn} denote the set of nilpotent 
elements of P or zero divisors of P.  
 
Let V = {α0 + α1i + α2j + α3k / α0 + α1 + α2 + α3= t where t is a unit in Zn; α0, α1, 
α2, α3 ∈ Zn} denote the set of all units of P. Then it has been verified if n = pr where 



 113 

p is a prime then P = G ∪ V. In view of this we propose a few problems in Chapter 5, 
using the notation P, G and V.   
 
PROBLEMS:  
 

1. Is Z25 the ring of integers modulo 25 a reduced ring?  
2. Find all the S-nilpotent elements of the group ring Z4S3.  
3. Test whether the semigroup ring Z6S(4) is a reduced ring.  
4. Find all S-nilpotent elements in QS(5), the semigroup ring of the semigroup 

S(5)over the field of rationals Q.   
5. Is Z14 a S-zero square ring? 
6. Can a S-zero square ring be of order 19? 
7. Is the group ring Z12S4 a S-zero square ring? 
8. Give an example of a S-null semigroup.  
9. Is Z32 a S-null ring? 

10. Prove Z36 is a S-null ring.  
11. Prove the group ring Z7G, for any group G is a S-p ring. 
12. Show the semigroup ring Z3S(5) is a S-p-ring.  
13. Give an example of a semigroup ring, which is a S-E ring.  
14. Is the group ring Z2S4 a S-E-ring?  
15. Is Z8 a S-pre J-ring? 
16. Is the semigroup ring Z12S(5) a S-pre J-ring?  
17. Show Z24 is a S-inner zero square ring.  
18. Give an example of a S-inner square ring which is not an inner zero square 

ring.  
19. Is Z24 a S-weak inner zero square ring? 
20. Give an example of S-semi prime ring.  
21. Is Z14 a S-Marot ring?  
22. Prove or disprove: Z15 is a S-Marot ring.  
23. Is Z7G, where G = 〈g / g8 = 1〉 is a S-subsemi ideal ring? 
24. Give an example of a S-pre-Boolean ring.  
25. Is R = Z3 × Z3 × Z3 a S-filial ring?  
26. Show Z21 is a S-ideal ring.  
27. Give an example of a S-generalized ideal ring.  
28. Is the group ring Z2S3 a S-s-weakly regular ring? 
29. Illustrate by an example the S-strongly sub commutative ring.  
30. Give an example of a S-Chinese ring of finite order.  
31. Give an example of group ring which is S-strongly s-decomposable.  
32. Illustrate the definition of S-strong right D-domain by an example.  
33. Show the group ring Z2S4 is a S-J-ring.  
34. Can Z2S3 be a S-strong subring ring?  
35. Is Z7S2 a S-strong ideal ring? 
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36. Prove Z7 is a S-weakly Boolean ring.  
37. Give an example of a S-pre p-ring.  
38. Illustrate by an example S-multiplication right ideal.  
39. Is Z16 a S-f-ring?  
40. Give a pair of S-obedient ideals in Z26.  
41. Illustrate by an example the S-obedient ideal ring. 
42. Show Z2S4 is not a S-Lin ring.  
43. Can M2×2 = {(aij) / aij  ∈Z4} be a S-Lin ring?  
44. Illustrate the definition of S-super ore condition in a ring by an example.  
45. Show Z2G, where G = 〈g / g8 =1〉 is not a S-ideally strong ring. 
46. Can Z24 be a S-I*-ring? 
47. Prove the group ring Z2S6 is a S-F-ring. 
48. Can Z22 have SSS-elements? 
49. Show by an example, a ring, which is not a S-γn-ring. 
50. Give an example of a S-γn-ring.  
51. Give a ring R which has a S-demi subring.  
52. Is the group ring Z7S4, S-locally semiunitary? 
53. Can the semigroup ring Z6S(3) be S-locally unitary? 
54. Does there exist a locally unitary ring, which is not S-locally unitary? 
55. Does there exist a locally semiunitary ring, which is not a S-locally semiunitary 

ring? 
56. Give an example of a weakly CN-ring, which is not a CN-ring.  
57. Prove Z11 is not even a weakly CN-ring. 
58. Is Z24 a CN-ring? Justify your answer.  
59. Find whether Z2S3 is a S-CN-ring.  
60. Give an example of a CN-ring, which is not a S-CN-ring.  
61. Give an example of a weakly CN-ring, which is not a S-weakly CN-ring.  
62. Prove in a E-ring every prime ideal is maximal.  
63. Is the semigroup ring Z2S(5) an E-ring? 
64. Is the group ring Z7S3 a E-ring?  
65. Give an example of a 5-tight ring which is not a 2-tight ring 
66. Show by an example that a tight ring in general is not a S-tight ring.  
67. Show by an example that a tight set in general is not a S-tight set of R.  
68. Give an example of a semi idempotent in a ring R that is not S-semi 

idempotent.  
69. Give an example of a ring in which every set is a S-tight set.  
70. Give an example of a division ring of order 81.  



 115 

Chapter four 
 

SOME NEW NOTIONS ON  
SMARANDACHE RINGS 
 
In this chapter we introduce several new notions and concepts in ring theory to 
Smarandache rings. This chapter is organized into five sections. In section one we 
introduce the concept of Smarandache mixed direct product of rings which alone 
helps us in the building of Smarandache rings of level II, which is dealt in section two. 
It is noteworthy and important here that several concepts enjoyed by the ring 
introduced by researchers in different nations have not been consolidated or taken 
notice of by many books on ring theory. So in this book section three, four and five 
are especially devoted to the recalling of these concepts and also simultaneously 
defining the Smarandache analogue of them. The concepts which are taken from 
different researchers in ring theory are listed in the references/bibliography. Thus at 
this juncture it is pertinent to mention this book will become an attraction 
simultaneously to both the ring theorist and Smarandache algebraist. 
 
Section three of this chapter separately gives the introduction and study of elements 
which enjoy new special properties in a ring like magnifying elements, shrinking 
elements, semi idempotents and so on. The localization or the Smarandache 
analaogue is carefully brought out at every stage.  
 
Section four is devoted to the study of new or special properties enjoyed by the 
substructure of a S-ring like subsets, semigroup (with respect to '+' or '.') 
subgroups, subrings, ideals etc. 
 
Many new concepts are defined and Smarandache analogue of them are obtained. The 
importance of these Smarandache analogue or Smarandache notions is that even 
when a ring fails to enjoy certain property fully, it can enjoy the same property 
sectionally. So except for these Smarandache notions such local study or a sectional 
study in a ring would be impossible.  
 
The final section of the chapter entitled miscellaneous properties of Smarandache 
ring introduces and studies several concepts; the prominent among them are 
hyperrings, lattice substructures of S-ideals, S-rings etc.  
 
4.1 Smarandache Mixed Direct Product Rings 
 
In this section we define what are called Smarandache mixed direct product rings. 
Only this concept of rings paves way for the introduction of S-rings of level II. For a 
ring to be a S-ring of level I where we have not mentioned level I we see the ring 
should contain a subset which is a field. This condition makes the ring of integers Z, 
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the field of rationals to be useless in the analysis of S-rings. So we have used S-ring 
level II to overcome this problem, which is done by introducing the concept of 
Smarandache mixed direct products. We just recall the definition of S-ring II, S-
subring II and S-ideal II.  
 
DEFINITION 4.1.1: Let R = R1 × R2 where R1 is a ring and R2 is an integral 
domain or a division ring. Clearly this product is called the Smarandache mixed 
direct product (S-mixed direct product) of two rings which is easily verified to be 
a ring.  
 
It is to be noted if both R1 and R2 are just rings then we don't call the direct product 
as a Smarandache mixed direct product. We extend it to any number of rings and 
integral domains or division rings.  
 
DEFINITION 4.1.2: Let R = R1 × R2 × … × Rn is called the Smarandache mixed 
direct product of n-rings (S-mixed direct product of n-rings) if and only if at 
least one or some of the Ri's is an integral domain or a division ring.  
 
Example 4.1.1: Let R = Z × Q. R is a S-mixed direct product of rings. Clearly R is a 
S-ring as {1} × Q is a field contained in R.  
 
Example 4.1.2: Let R = Z × R2 where R2 = {0, 2} modulo 4. Clearly R is a S-mixed 
direct product of rings, but R is not a S-ring.  
 
Example 4.1.3: Let R = ZS3 × Z. Clearly R is a S-mixed direct product of rings but is 
not a S-ring.  
 
DEFINITION 4.1.3: Let R be a ring. R is called a Smarandache ring of level II or 
in short S-ring II if R contains an integral domain or a division ring.  
 
Example 4.1.4: ZS3 the group ring is a S-ring II, for Z ⊆ ZS3 is an integral domain.  
 
Example 4.1.5: Z is a S-ring II and never a S-ring I.  
 
Example 4.1.6: R = Z × Z × Z is a S-ring II and never a S-ring I.  
 
THEOREM 4.1.1: Every S-ring I is a S-ring II and not conversely. 
 
Proof: By the very definition of S-ring I and S-ring II we see every S-ring I is a S-ring II 
as all fields are trivially integral domains or division rings.  
 
To prove the converse we give the following example. The ring of integers Z is a S-ring 
II but is never a Smarandache ring I. Hence the theorem.  
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THEOREM 4.1.2: Z[x], the polynomial ring is a S-ring II.  
 
Proof: Easily verified. 
 
THEOREM 4.1.3: The class of rings Zp, p a prime are not S-ring I or S-ring II. 
 
Proof: Obvious by the very definition, as Zp has no non-trivial subfields.  
 
THEOREM 4.1.4: Q the field of rationals is not a S-ring but is a S-ring II.   
 
Proof: Q has no proper subsets which is a field so is not a S-ring, but Z ⊂ Q is an 
integral domain so Q is a S-ring II.  
 
COROLLARY :  Q[x] is a S-ring I and S-ring II.  
 
Proof: Obvious as Q ⊂ Q[x]. 
 
DEFINITION 4.1.4: Let R be a ring. We say a subset A of R is said to have a 
Smarandache subring of level II (S-subring II) if  
 

1. A is a subring of R. 
2. A has a proper subset P where P is an integral domain or a division ring 

under the operations of R.  
 
Example 4.1.7: Let Z be the ring. Z a S-subring of level II for take A = 2Z, A is a 
subring and P = 8Z is an integral domain contained in A. Hence the claim.  
 
THEOREM 4.1.5: Let R be a ring which has a S-subring II then R is a S-ring II.  
 
Proof: Since R contains a S-subring II, say A and has a proper subset P which is an 
integral domain or a division ring, we see P ⊂ A ⊂ R so P ⊂ R. Hence R is a S-ring II.  
 
THEOREM 4.1.6: Let R be a S-ring II then R need not in general have a S-
subring II.  
 
Proof: Consider Z6 = {0, 1, 2, …, 5}. Clearly A = {0, 2, 4} is a field so Z6 is a S-ring II 
but Z6 has no proper subring which contains an integral domain or a field or a 
division ring. Thus Z6 doesn't contain a S-subring II but Z6 is a S-ring II. 
 
Example 4.1.8: Let R = Z6 × Z clearly R has S-subring II.  
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Example 4.1.9: Let R = Z × Z × Z8, R has S-subring II and no S-subring I. In fact R 
is not a S-ring only a S-ring II.  
 
DEFINITION 4.1.5: Let R be a ring. A non-empty subset I of R is said to be a 
Smarandache ideal of level II (S-ideal II) if  
 

1. I is a S-subring II.  
2. ri and ir ∈ I for all r ∈ R and i ∈ I. 

 
The notion of Smarandache right/ left ideal of level II can be defined as in the 
case of right/ left ideals.  
 
Example 4.1.10: Let Z be the ring of integers, Z has S-ideal II.  
 
THEOREM 4.1.7: Let R be a ring if R has a S-ideal II, then R is a S-ring II.  
 
Proof: By the very definition of S-ring II and S-ideal II, the result follows:  
 
THEOREM 4.1.8: Let R be a S-ring II, R need not have S-ideal II. 
 
Proof: By an example. Consider the ring Z6 = {0, 1, 2, 3, 4, 5}. Clearly Z6 is a S-ring II 
but Z6 has no S-ideal II.  
 
It is left as an exercise for the reader to prove the following theorem: 
 
THEOREM 4.1.9: Every S-ideal II is a S-subring II and not conversely.  
 
It is to be noted that as in the case of S-rings the notion of S-idempotents, S-units and 
S-zero divisors are defined we do not see any distinction of them in case of S-rings I 
or S-ring II. 
 
PROBLEMS: 
 

1. Show S = Z6× Q is a S-ring II. Find a S-subring.  
2. Is R = Z8 × Z8  a S-ring II? Substantiate your claim.  
3. Give an example of a S-ring II which is not a S-ring I (Examples should be 

other than the ones discussed in this section). 
4. Can M2×2 = {(aij ) /aij ∈ Z3}, the ring of 3 × 3 matrices with entries from Z3 

be a S-ring II? 
5. Does M2×2 given in problem 4 have  

a. S-ideal II? 
b. S-subring II? 

6. Give an example of a S-subring II which is not an S-ideal II.  
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7. Can the group ring Z8S3 be a S-ring II? Justify your answer.  
8. Prove Z7S(3) is a S-ring II. Find an S-ideal II of Z7S(3).  
9. Can Z7S(3) have S-ideals I? 

10. Find an S-subring II which is not an S- ideal II of R = Z6 × Z7 × Z2.  
 
 
4.2 Smarandache rings of level II 
 
In the previous section we just defined the concept of S-ring II. Here we discuss some 
important and interesting properties about them and we illustrate them by examples. 
We request the reader to find and introduce and study all the properties existing in S-
ring I to the case of S-ring II. Though we had introduced S-commutative rings in 
Chapter III we recall it in this section. 
 
DEFINITION 4.2.1: Let R be a S-ring II. We say R is a Smarandache 
commutative ring II (S-commutative ring II) if R has a proper subset A where A is 
a S-subring II and A is a commutative ring.  
 
Example 4.2.1: Let R = ZS3. The ring R is non-commutative. Clearly R is a S-ring II. 
But R is a S-commutative ring II. 
 
THEOREM 4.2.1: If R is a commutative ring and has a S-subring II then R is a 
S-commutative ring II.  
 
Proof: Left for the reader to verify as it is an easy consequence of the definition.  
 
THEOREM 4.2.2: Let R be a ring. If R is a S-commutative ring II then R in 
general need not be a commutative ring.  
 
Proof: The ring Z2S3 = R given in example 4.2.1 is a non-commutative ring but R is 
clearly a S-commutative ring.  
 
S-mixed direct product of rings will help us to get several examples of such rings.  
 
DEFINITION 4.2.2: Let R be a ring. If every S-subring II of R happens to be a 
commutative subring then we say R to be a S-strongly commutative ring II. (S-
strongly commutative ring II) 
 
THEOREM 4.2.3: Every S-strongly commutative ring II is a S-commutative ring 
II and not conversely.  
 
Proof: Follows from the very definitions of these concepts. We prove the converse by 
an example. Let R = ZS4. Clearly the group ring ZS4 is not a commutative ring but it is 
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a S-commutative ring II. Further ZS4 is not a S-strongly commutative ring II as ZA4 is a 
S-subring II but ZA4 is not commutative. Hence the claim. 
 
Thus we have the following relational chain. That is all commutative rings with S-
subrings II are both S-commutative rings II and S-strongly commutative rings II.  
 
The proof of the following theorem is left as an exercise to the reader. 
 
THEOREM 4.2.4: Let R be a ring. If R has S-ideal II then it need not imply R has 
a S-ideal I. 
 
While defining the concept of A.C.C. and D.C.C. to S-ring of level II, i.e. in case of 
Smarandache A.C.C. (S.A.C.C) on rings of level II we consider only chain of S-ideals 
II. Similarly for Smarandache D.C.C. (S.D.C.C) on rings of level II we take only S-
ideals II. So it is easily seen even if a ring satisfies A.C.C. or D.C.C. on ideals it need 
not have any relevance for S.A.C.C. or S.D.C.C. of level II on S-ideals II. 
 
DEFINITION 4.2.3: Let R be a ring. A be a S-ideal II of R. We say A is a 
Smarandache maximal ideal II (S-maximal ideal II) of R if A ⊆ S ⊆ R where S is 
another S-ideal II of R then either S = A or S = R.  
 
DEFINITION 4.2.4: Let R be a ring. A be a S-ideal II of R. We say A is a S-
minimal ideal II (S-minimal ideal II) of R if for any S-ideal II B of R if B ⊆ A ⊆ R 
implies B = A or B is empty. 
 
DEFINITION 4.2.5: Let R be a ring. Let A be a S-ideal II of R; we say A is a 
Smarandache principal ideal II (S-principal ideal II) of R if A is itself a principal 
ideal of R.  
 
DEFINITION 4.2.6: Let R be a ring. A be a S-ideal II of R. A is said to be a S-
prime ideal if A is a prime ideal of R.  
 
DEFINITION 4.2.7: Let R and R1 be two Smarandache rings II. We say a map φ : 
R → R1 is a Smarandache ring homomorphism II (S-ring homomorphism II) if φ 
restricted to the integral domain or division rings A and A1 of R and R1 
respectively is a integral domain homomorphism or division ring 
homomorphisms i.e. φ (a + b) = φ (a) + φ (b), and φ(ab) = φ(a)φ(b) for all a, 
b ∈ A. φ may or may not be even defined on other elements of R. φ the 
Smarandache ring homomorphism II, is a Smarandache ring isomorphism II if φ 
: A → A1 is an isomorphism from A to A1.  
 
From this we see certainly the kernel of any homomorphism will be an ideal. "Is it a 
S-ideal I or S-ideal II?" is an open problem for the reader to solve.  
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DEFINITION 4.2.8: Let R be a ring. I be a S-ideal II of R. The Smarandache 
quotient ring II (S-quotient ring II) is defined as R / I (R / I defined in a similar 
way as that of quotient rings).  
 
Once again will R / I given in definition 4.2.8 be a S-ring II is an open problem. It may 
be or it may not be. If I is a maximal ideal and R / I is not a prime ring certainly R / I 
is a S-ring I as well as S-ring II.  
 
The polynomial rings P[x] will be S-rings II provided P is a S-ring I or S-ring II. The 
question, when are matrix rings Mn×n S-ring I or S-ring II is yet another interesting 
study. 
 
PROBLEMS: 
 

1. Can M4×4 = {(aij )/ aij ∈ Z} be a S-commutative ring II? 
2. Can M4×4 in problem 1 have S-subring II? 
3. Find conditions on the group ring ZpG to have  

i. S-subrings II. 
ii. S-ideals II. 

Give at least examples of group rings which have S-subrings II and S-ideals II. 
4. Give an example of a S-subring II which is not a S-ideal II. 
5. Does there exist a ring in which all S-subrings II are S-ideals II? 
6. Does there exist a ring in which all subrings are 

i. S-subrings I? 
ii. S-subrings II? 

7. Is M2×2 = {(aij )/ aij ∈ Z4} a S-ring II? 
8. Does the ring M2×2 given in problem 7 have  

i. S-subrings II? 
ii. S-ideals II? 

9. Can M3×3 = {(aij )/ aij ∈ Z7} be a S-ring II? Does it have S-subring II which are 
not S-ideals II? 

10. Find all S-subrings II and S-ideal II for the mixed direct product R = Z7 × Z8 × 
Z12.        

 
 
4.3 Some New Smarandache elements and their properties 
 
This section is completely devoted to the study of properties of elements in rings and 
their Smarandache analogue. Several properties introduced on elements of a ring are 
not found in any ring theory texts but only in research papers published by journals. 
So some of these concepts, which may be really good, do not find adequate 
importance among researchers in ring theory. So this section uses these and gives a 
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Smarandache analogue so that not only a Smarandache algebraist but any researcher/ 
student in ring theory can find it useful and interesting. We define in rings new 
notions like super idempotent, shrinkable element, dispotent element, super-related 
elements, magnifying element, friendly and non-friendly shrinkable and magnifying 
element, n-like ring and the Smarandache analogue of them.  
 
DEFINITION 4.3.1: Let R be a ring. An element 0 ≠ α ∈ R is called a super 
idempotent of R, if α2 – α is an idempotent of R.  
 
THEOREM 4.3.1: If a ring R has nontrivial super idempotents then it has 
nontrivial idempotents.  
 
Proof: By the very definition the result follows.  
 
Example 4.3.1: Let Z2 = {0, 1} and G  =  〈g / g3  = 1〉. Z2G be the group ring, (1 + 
g2) ∈ Z2G is a super idempotent for (1 + g2)2 – (1 + g2) = 1 + g + 1 + g2 = (g + 
g2). Now (g + g2)2 = g2+ g, hence 1 + g2 is a super idempotent which is not an 
idempotent.  
 
THEOREM 4.3.2: Let R be a ring. Every super idempotent in general need not be 
an idempotent of R. 
  
Proof: By an example; in example 4.3.1, 1 + g2 is a super idempotent which is not an 
idempotent as (1 + g2)2 = 1 + g.  
 
THEOREM 4.3.3: Let R be a ring. An element 0 ≠ α ∈ R is a nontrivial super 
idempotent if and only if either α(α3  – 2α2 + 1) = 0 or α3 – 2α2 + 1 = 0.  
 
Proof: Given 0 ≠ α ∈ R is a nontrivial super idempotent of R. So [(α2  – α)]2  =  α2  
– α i.e α4  – 2α3 + α2  – α2 + α = 0  i.e.  α4  – 2α3 + α = 0  i.e.  α(α3  – 2α2 + 
1) = 0 or α3  – 2α2 + 1 = 0. Hence the claim.  
 
Conversely if for some α ≠ 0 in R we have α(α3  – 2α2 + 1) = 0 or α3  – 2α2 + 1 = 
0. We get α4  – 2α3 + α = 0 add to this α2 on both sides so that α4  – 2α3 + α + α2 
= α2 i.e. α4  – 2α3 + α2 = α2  – α i.e. (α2  – α)2 = α2  – α. Hence the claim.  
 
THEOREM 4.3.4: Let R be a ring; α ≠ 0 in R be a super idempotent then either 
α or α  – 1 is a zero divisor or α(α  – 1) = 1 is a unit in R.  
 
Proof: From the above theorem we have α(α3  – 2α2 + 1) = 0 so α is a zero divisor. 
If α is not a zero divisor then we have α3 – 2α2 + 1 = 0 that is α3 – α2 + 1 – α2 = 0.  
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α2(α  – 1) – (α2  – 1) = 0 
α2(α  – 1) – (α  – 1) (α + 1) = 0 

  
i.e. (α  – 1) [α2  – (α + 1)] =  0, so either α  – 1 is a zero divisor or α2  – (α + 1)  
=  0. If α2  – α  – 1  =  0 then we have α(α  – 1)  =  1. Hence the claim.  
 
THEOREM 4.3.5: Let G be torsion free abelian group and R any field. The group 
ring KG has no nontrivial super idempotents.  
 
Proof: We know by theorem 4.3.4, if KG has super idempotents then it has nontrivial 
zero divisors or units, but KG is a domain. Hence KG has no super idempotents.  
 
DEFINITION 4.3.2: Let R be a ring 0 ≠ α ∈ R is called a Smarandache super 
idempotent (S-super idempotent) if α2  – α is a S-idempotent of R.  
 
Thus we see superidempotents guarantees the existence of zero divisors or units. 
Obtain analogous results for S-super idempotents as S-idempotents are introduced 
and studied in chapter 3.  
 
Example 4.3.2: Let Z12 be the ring of integers modulo 12. 5 ∈ Z12 is such that 52 – 5  
= 25 + 20 = 45 = 9. Now (52 – 5)2 ≡ 52 – 5 (mod 12), here 5 is unit of Z12. 5 is a 
super idempotent of Z12 which is also a unit. All units of Z12 are not super idempotents 
for 7 is a unit but 7 is not a super idempotent of Z12.  
 
Now we proceed onto define a new relation in rings called superrelated elements of a 
ring and also we define Smarandache superrelated elements of a ring. Such relations 
bring in a interrelation between elements in a ring.  
 
DEFINITION 4.3.3: Let R be a ring. An element a ∈ R is said to be weakly 
superrelated if there exists atleast three distinct elements b, c, d in R such that (a 
+ b)(a + c) (a + d) =  a + bc (a + d) + cd (a + b)  +  bd (a + c).  
 
Example 4.3.3: Let Z3 = {0, 1, 2} and G = 〈g /g2 = 1〉. Consider the group ring Z3G. 
2 + 2g ∈ Z3G is weakly superrelated element of Z3G. For take b = 1, c = g + 1 and d 
= 1 + 2g. We see 2 + 2g satisfies the condition for it to be superrelated.  
 
DEFINITION 4.3.4: Let R be a ring. An element x ∈ R is said to be a 
superrelated element of R if (x + a)(x + b) (x + c) =  x  +  bc(x + a) + ab(x + 
c) + ac(x + b) for all a, b, c ∈ R.  
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Example 4.3.4: Let Z2 = (0, 1) be the prime field of characteristic two, G any 
group. The element 0 of Z2G is a superrelated element. For (0 + a)(0 + b)(0 + c) = 
abc,   0 + abc + abc + abc = abc as characteristic of Z2G is two.  
 
THEOREM 4.3.6: Let R be a ring of characteristic two then 0 is a superrelated 
element of R.  
 
Proof: Left for the reader to prove.  
 
THEOREM 4.3.7: Every superrelated element of R is a weakly superrelated 
element of R but every weakly superrelated element of R in general need not be a 
superrelated element of R.  
 
Proof: Follows from the very definition of superrelated element and weakly 
superrelated element of R.  
 
The reader is requested to prove the converse by giving examples.  
 
DEFINITION 4.3.5: Let R be a ring. R is said to be weakly superrelated ring if 
every element of R is a weakly superrelated element of R.  
 
DEFINITION 4.3.6: Let R be a ring. R is said to be a superrelated ring if every 
element of R is a superrelated element of R.  
 
THEOREM 4.3.8: Every superrelated ring is a weakly superrelated ring.  
 
Proof: Obvious.  
 
THEOREM 4.3.9: Let ZG be the group ring. ZG is not a weakly superrelated ring.  
 
Proof: 0 ∈ ZG is such that 0 cannot be weakly superrelated as the identity becomes 
αβγ = 3αβγ.  
 
Now we proceed to define the Smarandache analogue.  
 
DEFINITION 4.3.7: Let R be a ring an element x in R is said to be a 
Smarandache weakly superrelated (S-weakly superrelated) in R if there exists α, 
β, γ ∈ A such that (x + α)(x + β)(x + γ) = x + αβ(x + γ) + αγ(x + β) + βγ(x 
+ α) where A is a S-subring of R. Note if R has no S-subring but R is a S-ring then 
we say x in R is Smarandache weakly superrelated in R.  
 
DEFINITION 4.3.8: Let R be a ring. An element x in R is said to be a 
Smarandache superrelated in R if for all α, β, γ ∈ A, where A is a S-subring such 
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that (x + α)(x + β) (x + γ) = x + αβ(x + γ) αγ(x + β) + βγ(x + α). If R has 
no S-subring but R is a S-ring then we say x ∈ R is a Smarandache superrelated 
in R.  
 
THEOREM 4.3.10: If R is a superrelated ring and if R is a S-ring then R is a S-
superrelated ring.  
 
Proof: Easily proved by using definitions and properties of superrelated elements.  
 
THEOREM 4.3.11: If R is a superrelated ring and if R has a S-subring then R is 
S-superrelated ring.  
 
Proof: Straight forward.  
 
DEFINITION [28]: A ring R is said to be bisimple if it has more than one 
element and satisfies the following conditions:  
 

1. For any a ∈ R we have a ∈ aR ∩ Ra.  
2. For any non-zero a, b ∈ R there is some c ∈ R such that aR = cR and 

Rc = Rb.  
 
For more about bisimple rings please refer [28].  
 
Example 4.3.5: Let G = 〈g / g2 = 1〉 and Z2 = {0, 1} be the prime field of 
characteristic two. Z2G = {0, 1, g, 1 + g} is the group ring. For any g, 1 + g ∈ Z2G 
there is no c in Z2G such that Z2Gc = Z2G(1 + g), cZ2G = gZ2g. Thus Z2G is not 
bisimple,  but for 1, g ∈ Z2G we have no c in Z2G such that  
  

c . Z2G  =  g . Z2G and  
 Z2G . 1  =  Z2G . c.  

 
THEOREM 4.3.12: Let G = 〈 g/gn  = 1〉 and Z2 = {0, 1}. The group ring Z2G is not 
bisimple.  
 
Proof: Left for the reader to prove.  
 
DEFINITION 4.3.9: Let R be a ring, we call R semi bisimple if for any a, b ∈ R 
we have c ∈ R such that aR = cR and Rb = Rc.  
 
THEOREM 4.3.13: Let R be a zero square ring. R is semi bisimple.  
 
Proof: Obvious as in R, ab = 0 for all a, b ∈ R.  
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DEFINITION 4.3.10: Let R be a ring. R is said to be weakly bisimple if for every 
a ∈ R, a ∈ aR ∩ Ra and for every pair of elements a, b ∈ R aR ⊂ cR and Rb ⊂ 
Rc.  
 
THEOREM 4.3.14: A weakly bisimple ring need not in general be bisimple.  
 
Proof: Consider the ring Z6 = {0, 1, 2, 3, 4, 5}. Clearly for every a ∈ Z6 as 1 ∈ Z6,  
{(1, 2); c = 5}, …,  {(2, 4); c = 5}; it is easily verified Z6 is weakly bisimple.  
 
Remark: A ring without 1 can be weakly bisimple.  
 
Example 4.3.6: Let P = {0, 2, 4, 6} modulo 8. Clearly P has no unit it is easily 
verified P is weakly bisimple and not bisimple.  
 
DEFINITION 4.3.11: Let R be a ring, we say R is Smarandache bisimple (S-
bisimple) if it has more than one element and satisfies the following conditions:  
 

1. For any a ∈ A we have a ∈ aA ∩ Aa where A is a S-subring.  
2. For any non-zero a, b ∈ A (A a S-subring) there is some c ∈ A such that 

aA = cA and Ac = Ab. 
 
DEFINITION 4.3.12: Let R be a ring, we call R a Smarandache semi bisimple 
(S-semi bisimple) if for any a, b ∈ A where A is a S-subring, we have c ∈ A such 
that aA = cA and Ab = Ac.  
 
DEFINITION 4.3.13: Let R be a ring not necessarily commutative. R is said to 
be a Smarandache weakly bisimple (S-weakly bisimple) if for every a ∈ A, A a S-
subring of R we have a ∈ aA ∩ Aa and for every pair of elements a, b ∈ A, aA ⊂ 
cA and Ab ⊂ Ac for some c ∈ A.  
 
All properties parallel to bisimple rings can also be studied and obtained with 
modification for S-bisimple rings, S-weakly bisimple rings and S-semi bisimple rings.  
 
Now we proceed onto define trisimple ring and S-trisimple rings.  
 
DEFINITION 4.3.14: Let R be a ring. R is said to be trisimple if R has more than 
one element and satisfies the following conditions:  
 

1. For any a ∈ R, a∈ aR ∩ Ra ∩ aRa. 
2. For any non-zero a, b ∈ R there is some c ∈ R such that aR = cR and Rc = 

Rb.  
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THEOREM 4.3.15: Let R be a commutative ring with 1. If a ∈ R is such that a2 
= 0 then R is not trisimple.  
 
Proof: Left for the reader to verify.  
 
THEOREM 4.3.16: Let Z12 = {0, 1} and Sn the permutation group of degree n. 
The group ring Z2Sn is not trisimple.  
 
Proof: Take 1 + p ∈ Z2Sn where  
 

nS
n...4312

n...4321
p ∈








=  

 
p2 = 1 and (1 + p)2 = 0 so Z2Sn is not trisimple.  
 
Now we define semi trisimple rings.  
 
DEFINITION 4.3.15: Let R be a ring. R is said to be a semi trisimple if for any a 
∈ R; a ∈ Ra ∩ aR ∩ aRa the second condition need not be true.  
 
DEFINITION 4.3.16: Let R be a ring. If for any a ∈ A where A is a S-subring, we 
have a ∈ aA ∩ Aa ∩ aAa and for any non-zero a, b ∈ A there is some c ∈ R such 
that aA = cA and Ac = Ab then we call R a Smarandache trisimple ring (S-
trisimple ring).  
 
DEFINITION 4.3.17: Let R be a ring. R is said to be Smarandache semi 
trisimple (S-semi trisimple) if R has a S-subring A such that for any a ∈ A we 
have a∈ aA ∩ Aa ∩ aAa. 
 
THEOREM 4.3.17: The group ring Z2S3 is not S-trisimple ring.  
 
Proof: Follows easily.  
 
Example 4.3.7: The ring of integers Z is not S-semi trisimple.  
 
Now we proceed on to define n-like rings.  
 
DEFINITION [34]: A ring R is called a generalized n-like ring if R satisfies: 
(xy)n – xyn  – xny + xy = 0; for all x, y ∈ R. If characteristic of R = n, R is called a 
n-like ring.  
 
Example 4.3.8: The group ring Z2G where G = 〈g/ g2 = 1〉 is a 2-like ring.  
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Example 4.3.9: The group ring Z2S3 is not a n-like ring.  
 
THEOREM 4.3.18: The group ring KG of a torsion free abelian group G over any 
field K is not a n-like ring.  
 
Proof: Take g, h ∈ G ⊂ KG clearly if (gh)n– gnh – ghn + gh = 0 implies gh [(gh)n – 1 – 

gn– 1 – hn – 1 + 1] = 0  since  gh   ≠   0  we  see  gn – 1 hn – 1  –  gn – 1  –  hn – 1 + 1 = 0;  
i.e. gn – 1  [hn – 1 – 1] – [hn – 1  – 1] = 0 that is (hn  – 1  – 1)(gn  – 1  – 1) = 0 which is 
impossible as G is torsion free. Hence the claim.  
 
THEOREM 4.3.19: Let Z2 = {0} and G = 〈 g / gn   =  1〉. The group ring Z2G is a 
(n –1)-like ring.  
 
Proof: Left as an exercise for the reader to verify.  
 
DEFINITION 4.3.18: Let R be a ring we say R is a Smarandache n-like ring (S-
n-like ring) if R has a proper S-subring. A of R such that (xy)n  – xyn  – xny + xy 
= 0 for all x, y ∈ A.  
 
THEOREM 4.3.20: R is a n-like ring with a S-subring A ⊆ R (A ≠ R) then R is a 
S-n-like ring.  
 
Proof: Follows from the very definition.  
 
Construct an example of a S-n- like ring, which is not a n -like ring.  
 
Now we proceed on to define triple identity in rings which is analogous to the identity; 
xn + yn = zn for x, y, z integers; the famous last theorem of Fermat.  
 
DEFINITION 4.3.19: Let R be a ring. If there exists a triple {υ, ν, ω} ∈ R \ {0} 
such that υ, ν and ω are distinct elements of R \ {0} which satisfy the identity νn 
+  ωn  =  υn (n > 1), we call R a triple identity ring or TI- ring.  
 
Example 4.3.10: Let Z6 = {0, 1, 2, …, 5} be the ring of integers modulo 6. It is 
easily verified Z6 is a TI- ring.  
 
Example 4.3.11: The ring Z7 is a TI -ring for 24 + 54 = 44, 34 = 24 + 54 and so on. 
 
Example 4.3.12: The group ring Z2S3 is a TI-ring. For p3

2 + (p4 + p5)
2  =  (1 + p4 + 

p5)
2 and p1

2 + (p4 + p5)
2  =  (1 + p4 + p5)

2.  
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DEFINITION 4.3.20: Let R be a ring we say R is a Smarandache TI-ring (S-TI-
ring) if R has a S-subring, A and in A we have 3 distinct elements,υ, ν, ω such 
that υn + ωn = νn.  
 
The reader is requested to prove the following theorems:  
 
THEOREM 4.3.21: If R is a S-TI-ring then R is a TI-ring.  
 
THEOREM 4.3.22: Z2S3 is a S-TI-ring.  
 
Now we proceed onto define the concept of power joined ring and their Smarandache 
analogue.  
 
Now in case of integers (a, b) = 1, an = bm is impossible but we have such identities 
to be true in ring so we proceed on to define such related elements to be power 
joined elements.  
 
DEFINITION 4.3.21: Let R be a ring. If for every a ∈ R there exists atleast one b 
∈ R, (b ≠ a) such that am = bn for some positive integers m and n then we say R 
is a power joined ring.  
 
Example 4.3.13: Let Z5 = {0, 1, 2, 3, 4} be the ring of integers modulo 5. Z5 is a 
power joined ring.  
 
Example 4.3.14: Let Z2 = {0, 1} and G = 〈g/g3 = 1〉. The group ring Z2G is not 
power joined as 1 + g + g2 ∈ Z2G cannot be represented as a power of some other 
element as (1 + g + g2)2 =  1 + g + g2. But this does not imply no idempotents can 
be expressible as power joined elements.  
 
Example 4.3.15: Let Z3G be the group ring where G = 〈g / g2 = 1〉. Clearly (2 + 
2g)2 = 2 + 2g, but we have 2 + 2g = (1 + g)2. Hence the claim.  
 
DEFINITION 4.3.22: Let R be a ring if for every x ∈ R there exists some y ∈ R 
such that xm = yn for some integers m and n and if the integers m and n happen 
to be the same for all x, y ∈ R we say R is a (m, n)–power joined ring.  
 
THEOREM 4.3.23: A Boolean ring can never be a power joined ring.  
 
Proof: Left as an exercise.  
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DEFINITION 4.3.23: Let R be a ring in which we have for every x ∈ R there 
exists y ∈ R such that xm = ym (x ≠ y) and m ≥ 2. Then we say R is a uniformly 
power joined ring.  
 
THEOREM 4.3.24: Every prime field K = Zp of characteristic p, p ≠ 2 is a power 
joined ring.  
 
Proof: Obvious by the definition of K = Zp.  
 
Now we proceed onto define Smarandache analogue.  
 
DEFINITION 4.3.24: Let R be a ring. If for every a ∈ A ⊂ R where A is S-subring 
there exists b ∈ A such that am = bn for some positive integers m and n then we 
say R is a Smarandache power joined ring (S-power joined ring).  
 
DEFINITION 4.3.25: Let R be a ring. If for every x ∈ A ⊂ R there exist some y ∈ 
A ⊂ R such that xm = yn where A is a S-subring of R then we say the ring R is a 
Smarandache-(m, n)-power joined ring (S-(m, n)-power joined ring). 
 
DEFINITION 4.3.26: Let R be a ring if for every x ∈ A ⊂ R where A is a S-
subring there exists some y ∈ A ⊂ R such that xm = ym (x ≠ y) and m ≥ 2. Then 
we say R is a Smarandache uniformly power joined ring (S-uniformly power 
joined ring).  
 
THEOREM 4.3.25: If R is a ring which is power joined, then R is a S-power 
joined ring only if for x ∈ A ⊂ R, y also belongs to A. If y ∉ A then R cannot be a 
S-power joined ring.  
 
Proof: We seek the proof to be supplied by the reader.  
 
Thus we see the Smarandache notions in this case has made R a locally power joined 
ring.  
 
Now we discuss about the types of commutativity right commutativity and quasi 
commutativity and obtain the Smarandache analogue.  
 
DEFINITION 4.3.27: Let R be a ring. If for every pair of elements a, b in R we 
have ab = (ba)r,  r ≥ 1 then we say R is conditionally commutative. If r = 1 for all 
a, b ∈ R, then R is obviously commutative. Thus every commutative ring R is 
conditionally commutative.  
 
If in a ring we have a pair of elements a, b ∈ R such that ab = (ba)r; r ≥ 1 we say 
the pair is conditionally commutative.  
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We can define a group G to be conditionally commutative if xy = (yx)n,  n ≥ 1 for 
every x, y ∈ G.  
 
By our Smarandache notions we will localize the property.  
 
DEFINITION 4.3.28: Let R be a ring. We say R is a Smarandache conditionally 
commutative ring (S-conditionally commutative ring) if for every x, y ∈ A where 
A is a S-subring of R, we have xy =  (yx)n for n ≥ 1.  
 
THEOREM 4.3.26: If R is a conditionally commutative ring having a S-subring 
then R is a S-conditionally commutative ring.  
 
Proof: Follows from the very definitions.  
 
However it is left for the reader to construct an example of a S-conditionally 
commutative ring which is not a conditionally commutative ring. Yet another 
interesting result is semi right commutativity of rings which leads to give conditions 
for the existence of zero divisors.  
 
DEFINITION 4.3.29: Let R be a ring. R is said to be a strongly semi right 
commutative ring if for every triple of elements x, y, z we have atleast one of the 
following three equalities to be true.  
 

i. xy  =  zyx (or yx = zxy).  
ii. yz  =  xzy (or zy  =  xyz).  

iii. zx  =  yxz (or xz  =  yzx). 
 

We can define a strongly semi right commutative triple x, y, z ∈ R if atleast one 
of the following three equalities is true.  
 

i. xy  =  yxz (or yx  =  xyz) or  
ii. yz  =  zyx (or zy  =  yzx) or  

iii. zx  =  xzy (or xz  =  zxy).  
 
Similarly we can define strongly semi left commutative ring in a similar way.  

  
THEOREM 4.3.27: No commutative ring without divisors of zero is strongly 
semi right commutative.  
 
Proof: Obvious from the very definition, for if x ≠ 1 or 0, y ≠ 0 or 1, z ≠ 0 or 1 where 
R is commutative. If R is strongly semi right commutative then we have xy = zyx so 
that xy = zyx = z(xy) as xy = yx we have (1 – z) xy = 0 x ≠ 0, y ≠ 0 and z ≠ 0. So (1–
z) xy = 0 must be a zero divisor.  
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DEFINITION 4.3.30: Let R be a ring. R is said to be a Smarandache strongly 
semi right commutative ring (S-strongly semi right commutative ring) if for 
every triple of elements x, y, z in A, A a S-subring of R we have atleast one of the 
following three equalities to be true.  
 

i. xy  =  zyx (or yx = zxy) or 
ii. yz  =  xzy (or zy  =  xyz) or  
iii. zx  =  yxz (or xz  =  yzx).  

 
Similarly we define Smarandache strongly semi left commutative ring (S-strongly 
semi left commutative triple) if for every triple x, y, z ∈ A; A a S-subring of R if at 
least one of the following three equalities is true.  
 

i. xy  =  yxz (or yx  =  xyz) or  
ii. yz  =  zyx (or zy  =  yzx) or 
iii. zx  =  xzy (or xz  =  zxy). 

 
Finally we define a Smarandache strongly semi right (left) commutative triple 
(S-strongly semi right (left) commutative triple) only when the triple x, y, z 
satisfies the above conditions the elements must be only from a proper S-subring 
A of R.  
 
Now we proceed on to define right commutativity in rings.  
 
DEFINITION 4.3.31: Let R be a ring. R is said to be strongly right commutative 
if a(xy) = a(yx) for all a, x, y ∈R.  
 
Similarly we define a ring R to be strongly left commutative if (xy)a = (yx)a. for 
all a, x, y ∈R.  
 
THEOREM 4.3.28: Every strongly right or left non-commutative ring has 
nontrivial divisors of zero. 
 
Proof: From the definitions we have for a, x, y ∈R; xya = (yx)a in both case this 
implies (xy  – yx) a = 0 or a (xy  – yx) = 0 as xy ≠ yx and a ≠ 0 we have non-trivial 
zero divisors in R.  
 
THEOREM 4.3.29: A group ring KG of a group G over any field K can never be a 
strongly right (left) commutative ring.  
 
Proof: If a, x, y ∈ G ⊂ KG, then axy = ayx forces xy = yx.  
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Thus it is important to note that this property can only be defined for rings and never 
for groups. Now we proceed onto define Smarandache analogue.  
 
DEFINITION 4.3.32: Let R be a ring we say R is a Smarandache strongly right 
commutative (S-strongly right commutative) ring if a(xy) = a(yx) for all a, x, y 
∈ A where A is a proper S-subring of R. Similarly we define Smarandache strongly 
left commutative elements.  
 
The goodness about the Smarandache structures is that we saw no group rings can be 
strongly right (left) commutative, but we see the following theorem:  
 
THEOREM 4.3.30: Let R be a S-ring and G any group. RG is a S-strongly right 
(left) commutative ring provided the following holds good:  
 

i. R is a right (left) commutative ring.  
ii. R is a S-strongly right (left) commutative ring.  

 
Proof: Clearly by the very definition of Smarandache strongly right (left) commutative 
ring, we get the theorem to be true under the given conditions.  
 
We see in rings, we can have centre but not notions analogues to commutator in 
groups; here we proceed onto define a new concept called quasi semi commutator 
and the quasi semi commutative element.  
 
DEFINITION 4.3.33: Let R be a ring. An element x ∈ R is said to be quasi semi 
commutative if there exists y ∈ R (y ≠ 0) such that (xy  – yx) commutes with 
every element of x. Trivially if y = 0 then we have xy  – yx = 0 which commutes 
with every element of R. 
 
DEFINITION 4.3.34: Let R be a ring. For a quasi-semi commutative element x 
of R we define the quasi semi-commutator to be the set of all p ∈ R such that xp 
– px commutes with every element of R and denote it by Q(x) i.e. Q(x) = {p ∈ R 
/ xp – px commutes with every element of R}. Clearly Q(x) ≠ φ for 0, 1 ∈ Q(x), if 
R is a ring with 1.  
 
DEFINITION 4.3.35: Let R be a ring. R is said to be a quasi semi commutative 
ring if every element in R is quasi semi commutative. Every commutative ring is 
obviously quasi semi commutative.  
 
DEFINITION 4.3.36: Let R be a ring. The quasi semi center of R denoted by 
Q(x) = {x ∈ R / xp  – px is quasi semi commutative}; clearly Q(R) ≠ φ. 
 
THEOREM 4.3.31: Let R be a non-commutative ring. Z(R) denote the center of 
R. Then we have Z(R) ⊂ Q(R).  
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Proof: Clearly Z(R) = {x ∈ R / xy = yx for all y ∈ R} Now Q(R) = {x ∈ R / xy – yx 
commutes with every element of R}. So Z(R) ⊂ Q(R) as xy – yx = 0 for all x ∈ Z(R).  
 
DEFINITION 4.3.37: Let R be a ring. An element x ∈ A ⊆ R where A is a S-
subring of R is said to be a Smarandache quasi semi commutative (S-quasi semi 
commutative) if there exists y ∈ A (y ≠ 0) such that xy – yx commutes with 
every element of A.  
 
DEFINITION 4.3.38: Let R be a ring, x ∈ A ⊂ R (A a S-subring of R) is a 
Smarandache quasi semi commutative element (S-quasi semi commutative 
element) of R if x is quasi semi commutative for some y ∈ A. The Smarandache 
semi commutator (S-semi commutator) of x denoted by SQ(x)  =  {p ∈ A / xp – 
px commutes with every element of A}. R is said to be a Smarandache quasi semi 
commutative ring (S-quasi semi-commutative ring) if for every element in A (A 
⊂ R) (A a S-subring) is a S-quasi semi commutative.  
 
DEFINITION 4.3.39: Let R be a ring. The S-quasi semi center (S-quasi semi 
center) of R denoted by SQ(R) = {x ∈ A / xp  – px is S-quasi semi commutative}.  
 
The reader is requested to derive interesting results about these concepts.  
 
The concept of magnifying and shrinking elements in a ring is an interesting feature. 
However the notion of magnifying elements was introduced to semigroups by 
researchers. We introduce them to rings.  
 
DEFINITION 4.3.40: Let R be a ring. v is called left magnifying element of R (v 
need not be in R) if for some proper subset M of R we have vM = R.  
 
Similarly we define right magnifying element of R. In case of commutative rings 
the notion of right and left magnifying elements coincide. Even if R is a non-
commutative ring we may have vM = Mv = R that is v may serve as a magnifying 
element.  
 
If v is in R we say v is a friendly magnifying element of R; if v ∉ R still vM = Mv = 
R for some proper subset M in R then we say v is a non-friendly magnifying 
element of R. The concept of friendly and non-friendly magnifying elements plays 
a vital role only when we define the Smarandache notions of them.  
 
Example 4.3.16: Let Z be the ring of integers Let P = {0, ±2,  ±4,  …}. Clearly P is 
a proper subset of Z. Take v = 1/2 clearly v ∉ Z but v . P = P . v = Z so v is a non-
friendly magnifying element of Z.  
 



 135 

Now the nontrivial question is why should one study only magnifying elements so we 
introduce the concept of shrinking elements of a ring.  
 
DEFINITION 4.3.41: Let R be a ring. An element x of R is called a shrinking 
element of R if xR = P where P is a proper subset of R. If x ∈ R we say x is a 
friendly shrinking element; otherwise we say x is a non-friendly shrinking 
element of R. The concept of shrinking element is, in a way, just the opposite of 
magnifying elements.  
 
Here also the concept of right shrinking, left shrinking and shrinking can be defined 
as in the case of magnifying elements.  
 
DEFINITION 4.3.42: If in a ring, if every element other than unity shrinks R, 
we call the ring R as a shrinkable ring (i.e. xR ≠ R for x ∈ R).  
 
THEOREM 4.3.32: A field has no shrinkable elements other than {0}.  
 
Proof: Obvious by the very definition.  
 
THEOREM 4.3.33: Let KG be the group ring of the group G over the field K. G a 
finite group. The group ring has shrinkable elements.  
 
Proof: Take α = (1 + g1 + … + gn) where {1, g1, …, gn} = G then αKG ≠ KG; hence 
KG has shrinkable elements.  
 
Now we localize this property.  
 
DEFINITION 4.3.43: Let R be a ring. A ⊂ R be a proper S-subring of R. An 
element v is called Smarandache left magnifying (S-left magnifying) element of R 
if vM = A for some proper subset M of A, we say v is Smarandache right 
magnifying (S-right magnifying) if M1v = A for some proper subset M1 of A. v is 
said to be Smarandache magnifying (S-magnifying) if vM  =  Mv = A for some M 
a proper subset of A. If v ∈ A, then v is said to be a Smarandache friendly 
magnifying (S-friendly magnifying) element. If v ∉ A we call v a Smarandache 
non-friendly magnifying (S-non-friendly magnifying) element even if v ∈ R \ A 
we still call v a S-non-friendly magnifying element.  
 
DEFINITION 4.3.44: Let R be a ring. An element x is called a Smarandache left 
shrinking element (S-left shrinking element) of R if for some S-subring A of R we 
have proper subset M of R such that xA = M (M ≠ A)or M ≠ R. We define similarly 
Smarandache right shrinking (S-right shrinking) and Smarandache shrinking (S-
shrinking) if xA = Ax = M.  
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If x ∈ A we call x a Smarandache friendly shrinking element (S-friendly 
shrinking element); if x ∉ A we call x a Smarandache non-friendly shrinking 
element (S-non-friendly shrinking element).  
 
Obtain analogues and interesting results about S-shrinking and magnifying elements 
of a ring R.  
 
Finally we conclude this section by just defining some new concepts viz. semiunit, 
dispotent elements of a ring and a dispotent ring.  
 
DEFINITION 4.3.45: Let R be a commutative ring with unit 1. An element x of 
R is said to be a semiunit of R if there exists y ∈ R such that (x + 1)(y + 1) = 1.  
 
This method can make even zero divisors and idempotents into semiunits hence the 
study of them is important or to be more specific it makes nilpotent elements into 
semiunits. For example consider the ring Z12.  
 
Example 4.3.17: Let Z12 be the ring of integers modulo 12. 6 is a zero divisor but 6 
is also a semiunit of Z12 for (6 + 1)(6 + 1) ≡ 1 (mod 12).  
 
THEOREM 4.3.34: Let R be a ring. An element x is a semiunit if and only if 
there exists y ∈ R with x + y + xy = 0, y ≠ 0.  
 
Proof: (x + 1)(y + 1) = 1 forces xy + x + y = 0. Now if xy + x + y = 0 then we have 
x + y + xy + 1 = 1 forcing (x + 1)(y + 1)  = 1. Hence the claim.  
 
In case of rings, which are non-commutative, we can also define right semiunit and 
left semiunit and obtain similar characterizations about them.  
 
Example 4.3.18: Let Z6 = {0, 1, 2, 3, 4, 5}, 4 ∈ Z6 is an idempotent of R. But 4 is 
also a semiunit as (4 + 1)(4 + 1) ≡ 1 (mod 6). 
 
Thus we see nilpotents, zero divisors and idempotents can be semiunits of R.  
 
THEOREM 4.3.35: Let K be a field of characteristic 0. Every element is a 
semiunit.  
 
Proof: Let x ∈ K. Consider  
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Hence the claim.  
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DEFINITION 4.3.46: Let R be a ring; x ∈ R is said to be a Smarandache 
semiunit (S-semiunit) if there exists y ∈ R such that x + 1 and y + 1 are S-unit 
of R. 
 
The reader is advised to develop interesting results as the notion of S-units are dealt in 
an entire section in chapter 3 of this book.  
 
[72] had defined the concept of dispotent semigroups. Here we define dispotent rings 
and their Smarandache analogue.  
 
DEFINITION [72]: A semigroup S is a dispotent semigroup if and only if it has 
exactly two idempotents.  
 
DEFINITION 4.3.47: Let R be a ring. R is said to be a dispotent ring if R has 
exactly two nontrivial idempotents.  
 
Example 4.3.19: Let Z2G be the group ring where G = 〈g / g2 = 1〉. This group ring 
has only two idempotents viz., 1 + g + g2 and g + g2.  
 
Example 4.3.20: Z18 is a dispotent ring.  
 
Example 4.3.21: Z3Sn is not a dispotent ring.  
 
DEFINITION 4.3.48: Let R be a ring if R has a proper S-subring A of R such that 
the S-subring A has only two S-idempotents then we call R a Smarandache 
dispotent ring (S-dispotent ring).  
 
The study of S-idempotents has been carried out in a sole section in chapter 3 of this 
book. The reader is requested to study and get some interesting results.  
 
DEFINITION 4.3.49: Let R be a S-ring. If every S-subring A of R has exactly two 
S-idempotents then we say R is a Smarandache strong dispotent ring (S-strong 
dispotent ring).  
 
Can we obtain any relation between S-dispotent rings and S-strong dispotent rings.  
 
PROBLEMS:  
 

1. Does the ring Z24 have super idempotents? 
2. Find whether the group ring Z3A4 has super idempotents?  
3. Can the ring Z26have S-super idempotents? 
4. Can the semigroup ring Z2S(3) have S-super idempotents? 
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5. Prove a S-superrelated ring in general need not be a superrelated ring.  
6. Give an example of a S-weakly superrelated ring which is not a weakly 

superrelated ring.  
7. Give an example of a bisimple ring.  
8. Can Zn be a weakly bisimple ring? 
9. Give an example of S-bisimple ring.  

10. Can Zn for any suitable n be S-weakly bisimple? Justify.  
11. Give an example of  

i. trisimple ring.  
ii. S-trisimple ring.  

12. Find a S-semi trisimple ring which is not a S-trisimple ring.  
13. Is Z5S(3) a  

i. S-trisimple?  
ii. S-semi trisimple?  
iii. Trisimple? 
iv. Semi trisimple?  

14. Prove Z2G where G = 〈g /g6 = 1〉 is a 7-like ring.  
15. Give an example of a semigroup ring which is a n-like ring.  
16. Can ring of matrices with entries from Z2 be a n-like ring for any suitable n? 
17. Prove Z2S4, the group ring, is a TI-ring.  
18. Prove the semigroup ring; Z2S(3) is a  

i. TI-ring. 
ii. Smarandache TI- ring. 

19. Give an example of a power joined ring which is not a S-power joined ring.  
20. Is Z9 a S-power joined ring? Justify.  
21. Can we say Z15 is a (m, n) power joined ring or S-(m, n) power joined ring?  
22. Is Z2S4 a S-conditionally commutative ring? Justify. 
23. Can Z2S(3) be a conditionally commutative ring? Prove your answer. 
24. Give an example of a S-conditionally commutative ring which is not a 

conditionally commutative ring.  
25. Prove Z2S3 has atleast a S-semi commutative triple? 
26. Can Z2S3 be a strongly semi commutative ring? 
27. Does Z3S(4) have a  

i. Strongly semi commutative triple?  
ii. S-strongly semi commutative triple? 

28. Give an example of a strongly right (or left) commutative ring.  
29. Give an example of a S-strongly right (or left) commutative ring which is not a 

strongly right (or left) commutative ring.  
30. Is Z2S3 a quasi semi commutative?  
31. Can Z3S(4) be S-quasi commutative? Can the group ring Z3S5 have  

i. S-shrinking elements? 
ii. magnifying elements? 

32. Can the group ring QG have  
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i. semiunits?  
ii. S-semiunits? (Q field of rationals)? 

33. Can Z6S(4) have  
i. semiunits?  
ii. S-semiunits?  

Find them if they exist.  
34. Is Z2n, n a prime be a dispotent ring?  
35. Can Z22 be a S-dispotent ring? Justify or substantiate your claim.  
 
 
4.4 New Smarandache substructure and their properties 
 
Here we introduce the notions of quasi ordering, semi nilpotent, normal elements in a 
ring, normal ring, G-ring, S-J ring, n-c-s rings, co-rings, iso-rings and their 
Smarandache analogues leading to several interesting localized properties on the 
substructures.  
 
DEFINITION 4.4.1: A sum quasi ordering in a ring R is a subset T of R 
satisfying the condition T + T ⊂ T.  
 
DEFINITION 4.4.2: A product quasi ordering in a ring R is a subset U of R 
satisfying the condition U . U ⊂ U.  
 
DEFINITION 4.4.3: A quasi ordering in a ring R is a subset I of R which is both 
a sum quasi ordering and a product quasi ordering.  
 
Example 4.4.1: Let Z2G be the group ring of the group G = 〈g / g2 = 1〉 over Z2. I = 
{0, g} is a sum quasi ordering set which is clearly not a product quasi ordering set.    
J = {0, 1 + g} is both a sum and a product quasi ordering set.  
 
Now we proceed on to define Smarandache analogue.  
 
DEFINITION 4.4.4: Let R be a ring, we say the set T is a Smarandache sum 
quasi ordering (S-sum quasi ordering) on R.   
 

a. If T has a proper subset P, (P ⊂ T) and P is a semigroup under 
addition. 

b. P + P ⊂ T.  
 
DEFINITION 4.4.5: Let R be a ring we say a subset U of R is a Smarandache 
product quasi ordering (S-product quasi ordering) on R if  
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a. U contains a proper subset X such that X is a semigroup under 
multiplication.  

b. X . X  ⊂ U. 
 
DEFINITION 4.4.6: Let R be a ring. A subset Y of R is said to be a Smarandache 
quasi ordering (S-quasi ordering) on R if Y is simultaneous a S-sum quasi 
ordering and a Smarandache product quasi ordering.  
 
Note: We can have for Y the set, a proper subset P ⊂ Y, P an additive semigroup and Z 
⊂ Y where Z is a multiplicative semigroup and P in general need not be the same as 
Z.  
 
Example 4.4.2: Let Z2S3 be the group ring of the group S3 over Z2. Take I = {0, p1 + 
p2 + p3, 1 + p4 + p5, p5 + p4 + p3 + p2 + p1 + 1}, P = {0, 1 + p4 + p5} is a semigroup 
under addition, P is also a semigroup under multiplication. Clearly Z2S3 has a S-quasi 
ordering in it.  
 
Example 4.4.3: Let Z4Sn be the group ring. Take A = {ΣαIsi  /αi ∈ {0, 2}}. The set A 
is both S-quasi sum ordering as well S-quasi product ordering. Thus Z4Sn has a S-
quasi ordering on it.  
 
THEOREM 4.4.1: Let Z2Sn be the group ring. Then Z2Sn is a S-sum quasi ordering 
as well as S-product quasi ordering.  
 
Proof: It is left for the reader to verify.  
 
Now we proceed on to define a new concept called Smarandache semi nilpotent 
ideals.  
 
DEFINITION [24]: An ideal I of R is semi nilpotent if each ring generated by a 
finite set of elements belonging to the ideal I is nilpotent. An ideal, which is not 
nilpotent, is called semi regular.  
 
Nilpotent ideals are nil. 
 
DEFINITION 4.4.7: Let R be a ring. An S-ideal I of R is Smarandache semi 
nilpotent (S-semi nilpotent) if each ring generated by a finite set of elements 
belonging to the S-ideal which forms a subring A, contained in I is nilpotent.  
 
THEOREM 4.4.2: Let K be any field and G a torsion free abelian group. KG has 
no non- zero S-semi nilpotent ideals.  
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Proof: KG has no zero divisors, hence no nilpotents as semi nilpotent ideals are nil. So 
KG has no non-zero semi nilpotent ideals.  
 
DEFINITION 4.4.8: Let R be a ring. If R is an ideal which is not Smarandache 
semi nilpotent then we call the non-S-semi nilpotent ideal to be Smarandache 
semi regular (S-semi regular).  
 
DEFINITION 4.4.9: Let R be a ring. M a proper subring of R. I is called a sub 
semi ideal of R related to M if and only if I is a proper ideal of M. A ring 
containing a sub semi ideal is called a sub semi ideal ring.  
 
An analogue to this is defined for Smarandache rings.  
 
DEFINITION 4.4.10: Let R be a ring. M be a S-subring of R. I is called the 
Smarandache subsemi ideal (S-subsemi ideal) of the ring R related to the S-
subring M if and only if I is a proper S-ideal of M and not an S-ideal of R.  
 
Example 4.4.4: Let Z2 = {0, 1} and S = {g, h, k, 1 / g5 = g, k2 = k, 1.g = g.1 = g,  
h3 = h,  gh = g = hg,  hk = kh = k gk = kg = k} be a semigroup. Z2S is the 
semigroup ring. Take M = 〈 g, h, 1〉 ⊂ S, Z2M is a S-subring and Z2 I where I = 〈 g, 1〉  
is an S-ideal of Z2M.  
 
Now we proceed onto define normal elements in a ring, normal ring and obtain a 
Smarandache analogue.  
 
DEFINITION 4.4.11: Let R be a ring an element α ∈ R \ {0, 1} is called a 
normal element of R if αR = Rα.  
 
DEFINITION 4.4.12: Let R be a ring, if αR = Rα for every α ∈ R, we say R is a 
normal ring.  
 
Now we just recall the definition of normal semigroups [69]. 
 
DEFINITION [69]: Let S be a semigroup, if for every α ∈ S we have αS = Sα 
then S is called a normal semigroup.  
 
Using this definition we define Smarandache normal semigroup as follows.  
 
DEFINITION 4.4.13: Let S be a S-semigroup with A a proper subset of S which 
is a group. If αA = Aα for all α ∈ S then S is a Smarandache normal semigroup 
(S-normal semigroup).  
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DEFINITION 4.4.14: Let R be a ring, X be a S-subring of R. We say R is a 
Smarandache normal ring (S-normal ring) if αX = Xα for all α ∈ R.  
 
DEFINITION 4.4.15: Let R be a ring; R is said to be a Smarandache strongly 
normal ring (S-strongly normal ring) if every S-subring X of R is such that αX = 
Xα for all α ∈ R.  
 
THEOREM 4.4.3: Let K be a field and S a normal semigroup then KS the 
semigroup ring is a normal ring.  
 
Proof: Given αS = Sα for all α ∈ S. Hence αKS = KSα for every α ∈ KS thus KS is a 
normal ring.  
 
THEOREM 4.4.4: Let R be a ring. Z(R) be the nontrivial center of R and if Z(R) 
is a S-subring then R is a S-normal ring . 
 
Proof: By simple techniques we can obtain the result.  
 
The author has defined the concept of a G-ring.  
 
DEFINITION 4.4.16: Let R be a ring if for every additive subgroup S of R we 
have rS = Sr = S for every (r ≠ 0) then we call R a G-ring.  
 
DEFINITION 4.4.17: Let R be a ring. If for every additive subgroup S of R we 
have rS = Sr for every r ∈ R (r ≠ 0) then we call R a weakly G-ring.  
 
Example 4.4.5: Let Z4 = {0, 1, 2, 3} and S = {0, 2}; now Sr = rS = S thus Z4 is a G-
ring.  
 
Example 4.4.6: Let Z2 = {0, 1} and G = 〈g/g2 = 1〉. The group ring Z2G is a weakly 
G- ring for {0, 1, g, g + 1},  {0, 1},  {0, g} and {0, g + 1} are subgroups of Z2G under 
addition. Clearly only S = {0, 1 + g} is such that rS = Sr = S for every r ≠ 0. {0, 1} 
and {0, g} are such that Sr = rS. Thus Z2G is a weakly G-ring.  
 
THEOREM 4.4.5: Let R be a ring. Every G-ring is a weakly G-ring but a weakly G-
ring is not a G-ring.  
 
Proof: By definition and example 4.4.6 given above.  
 
Now we proceed on to define Smarandache analogue.  
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DEFINITION 4.4.18: Let R be a ring. If for every S-semigroup, P under addition 
we have rP = Pr = P for every r ∈ R(r ≠ 0) then we call R a Smarandache G-ring 
(S-G-ring).  
 
DEFINITION 4.4.19: Let R be a ring. If for every additive S-semigroup P of R 
and for every r ∈ R we have rP = Pr then we call R a Smarandache weakly G- ring 
(S-weakly G-ring).  
 
THEOREM 4.4.6: Every S-G-ring is a S-weakly G-ring and not conversely.  
 
Proof: Left for the reader to verify.  
 
Example 4.4.7: Let M3×3 = {(aij) / ai ∈ Z4} be the ring of 3×3 matrices with entries 
from the ring of integers modulo 4. Take  
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P3×3 is a S-semigroup under ‘+’ clearly M3x3 is not a Smarandache G-ring. Take  
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P'3×3 is S-Semigroup ring. M3×3 is not a G-ring.  
 
We define a new property in ring called special identity ring or in short SI -ring.  
 
DEFINITION 4.4.20: Let R be a ring. Let S denote the collection of all proper 
subrings of R. If (S1 + S2 )(S2 + S3 ) = S1(S2 + S3 ) + S3(S1 + S2 ) + S2  for all S1 , S2 , 
S3 ∈ S we say R is a SI-ring.  
 
The Smarandache analogue would be  
 
DEFINITION 4.4.21: Let R be a ring. S denote the set of all proper S-subrings of 
R. If (S1 + S2 )(S2 + S3 ) = S1(S2 + S3 ) + S2 + S3(S1 + S2 ) for all S1 , S2 , S3 ∈ S then 
we say R is a Smarandache SI-ring (S-SI-ring).  
 
Example 4.4.8: Z12 = {0, 1, 2, …, 11}, the ring of integers modulo 12 is not a SI-
ring.  
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Example 4.4.9: Let Z2G be the group ring, where Z2 = {0, 1} and G = 〈g / g4 = 1〉. 
Z2G is a SI- ring.  
 
Example 4.4.10: Let Z2 = {0, 1} and S = {1, a, b / a2 = a,  b2 = b, ab = a,  ba = b,  
1.a = a.1 = a,  1.b = b.1 = b}. It can be checked Z2S, the semigroup ring is a SI-ring.  
 
Example 4.4.11: Z12 = {0, 1, 2, …, 11} is trivially a S-SI-ring as this ring has only 
one S-subring viz S = {0, 2, 4, 6, 8, 10}.  
 
Example 4.4.12: Z2 = {0, 1} and G = 〈g / g4 = 1〉, the group ring Z2G is not a S-SI-
ring as it has no S-subrings.  
 
Now we introduce the concept of n-closed additive subgroups in a ring.  
 
DEFINITION 4.4.22: Let R be a ring, if every nonempty additive subgroup A of 
R is an n-closed additive subgroup of R i.e., An ⊂ A (n > 1) then we say R is a n- 
closed additive subgroup ring (n-c- s ring).  
 
Example 4.4.13: Let Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. S = {0, 2} is 
an additive subgroup such that S2 ⊂ S so Z4 is a n-c-s ring.  
 
Example 4.4.14: Let Z2 = {0, 1} and  
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be the symmetric group of degree 3. Z2S3 is the group ring which is not a n-c-s ring 
for A = {0, p1 + p5} is a group but An ⊄ A, n > 1.  
 
In view of this we have the following theorem: 
 
THEOREM 4.4.7: Let Z2 = {0, 1} and Sn be the symmetric group of degree n. The 
group ring Z2Sn is not a n-c-s ring.  
 
Proof: By taking S = {0, p + q} where  
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we have S is an additive subgroup. But Sr ⊂ S for r > 1.  
 
THEOREM 4.4.8: Z2 Sm contains n-c-s subgroups for n = 2, 4, …, m.  
 
Proof: Let S = {0, α} where α = 1 + si where si permutes only an even number of 
elements, (1 + si)

I = 0. So Si ⊆ S. If si permutes odd number of elements then 
(1+si)

I+1 = 1 + si, thus if S = {0, (1 + si )} we have Si
ι + 1 ⊂ Si. Hence the claim.  

 
THEOREM 4.4.9: Let Z2 = {0, 1} and G be a torsion free group. No subgroup of 
the form {0, g / g ∈ G} is a n-c-s subgroup of Z2G.  
 
Proof: Follows from the fact G is a torsion free group.  
 
Now we hint at the Smarandache analogue of these definitions.  
 
DEFINITION 4.4.23: Let R be a ring. If for every additive Smarandache 
semigroup A of R we have An ⊂ A (n > 1) then we say R is a Smarandache n-
closed additive subgroup ring. (S-n-closed additive subgroup ring).  
 
Example 4.4.15: Let Z2G be the group ring where G = 〈g / g6 = 1〉. Take A = {0, g4, 
g2 + g4, 1 + g4, 1 + g2 + g4, 1 + g2, 1, g2}; yet clearly A is a S-semigroup, An ⊂ A (n > 
1). Hence A is S-additive subgroup of Z2G. It is easily verified Z2G is not a S-n-closed 
additive subgroup ring.  
 
We introduce yet another new concept called co-rings.  
 
DEFINITION 4.4.24: Let R be a ring with identity 1. Two subrings A and B of 
same order in R is said to be conjugate if there exists some x ∈ R such that A = 
xBx – 1. 
 
DEFINITION 4.4.25: Let R be a ring with 1. R is said to be a conjugate ring (co-
ring) if every distinct pair of subrings of same order are conjugate.  
 
DEFINITION 4.4.26: Let R be a ring, R is said to be a weak co-ring if there is 
atleast one pair of distinct subrings of same order which are conjugate to each 
other.  
 
THEOREM 4.4.10: Every co-ring is a weak co-ring.  
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Proof: Obvious by the very definition.  
 
DEFINITION 4.4.27: Let R be a ring. A ring in which every pair of distinct 
subrings of same order are isomorphic is called an iso ring.  
 
DEFINITION 4.4.28: Let R be a ring. R is called a weak-iso-ring if there exists 
atleast a pair of distinct subrings of same order which are isomorphic.  
 
THEOREM 4.4.11: Every iso-ring is a weak iso ring.  
 
Proof: Obvious by the very definition. 
 
Recall from [2]. 
 
DEFINITION [2]: An arbitrary group G is called a B-group if any two subgroups 
of same order are conjugate and G is a iso group if any two subgroups of same 
order are isomorphic.  
 
Example 4.4.16: Let G = 〈g / g2 = 1〉 and Z3 = {0, 1, 2} be the prime field of 
characteristic 3. Z3G be the group ring. It is easily verified Z3G is an iso-ring but is not 
a co-ring.  
 
In view of this example we propose open problems in chapter 5 of this book.  
 
THEOREM 4.4.12: Let Z2 = {0, 1} and Sn be the symmetric group of degree n. 
The group ring Z2 Sn is a weak co-ring and a weak iso-ring.  
 
Proof: To prove this we have to find two subrings in Z2S3 which are isomorphic and 
two subrings which are conjugate. To this end consider the subrings A = {0, 1 + p2} 
and B = {0, 1 + p1} where  
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Clearly A and B are isomorphic as subrings. Take X = {1 + q1 , 0} and Y = {0, 1 + q2} 
where  
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Thus X and Y are conjugate subrings; hence Z2Sn is a weak co-ring. 
 
THEOREM 4.4.13: Let F be any ring or a field and G a B-group then the group 
ring FG is a weak co-ring and a weak iso-ring.  
 
Proof: Left as an exercise for the reader to prove.  
 
Now we proceed onto define Smarandache co-ring and Smarandache iso-ring. 
 
DEFINITION 4.4.29: Let R be a ring if two S-subrings of R of same order are 
conjugate then we say R is a Smarandache weak co-ring (S-weak co-ring).  
 
DEFINITION 4.4.30: Let R be a ring if every pair of S-subrings of same order 
are conjugate then we say R is a Smarandache co-ring (S-co-ring).  
 
DEFINITION 4.4.31: Let R be a ring, if every pair of S-subrings of same order 
are isomorphic then we say R is a Smarandache iso ring (S-iso-ring).  
 
DEFINITION 4.4.32: Let R be a ring if R has a pair of S-subrings of same order 
that are isomorphic then we say R is a Smarandache weak iso ring (S-weak iso-
ring).  
 
The following two theorems are left for the reader to prove as an exercise.  
 
THEOREM 4.4.14: Every S-co-ring is a S-weak co-ring.  
 
THEOREM 4.4.15: Every S-iso-ring is a S-weak iso-ring. 
 
We propose simple problems at the end of this section as well as difficult problems in 
the last chapter for the reader to solve.  
 
DEFINITION [24]: A ring is e-primitive if every nonzero ideal in R contains a 
nonzero idempotent element.  
 
Example 4.4.17: Let Z2 = {0, 1} and S = {0, 1, a, b / a2 = 0, b2 = 1, ab = ba = a}. 
The semigroup ring Z2S is not e-primitive.  
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Example 4.4.18: The ring Z12 = {0, 1, 2, …, 11} is not e-primitive. For ideals of Z12 
are I1 = {0, 4, 8}, I2 = {0, 2, 4, 6, 8, 10}, I3 = {0, 3, 6, 9} and I4 = {0, 6}. All the 
ideals I1, I2 and I3 are e-primitive where as I4 = {0, 6} is not e-primitive.  
 
DEFINITION 4.4.33: Let R be ring. If R has atleast one ideal which has an 
idempotent in it then we say R is weakly e-primitive.  
 
Example 4.4.19: The ring Z12 is weakly e-primitive.  
 
DEFINITION 4.4.34: Let R be a ring. If every nonzero S-ideal in R contains a 
nonzero S-idempotent then R is Smarandache e-primitive (S-e-primitive).  
 
DEFINITION 4.4.35: Let R be a ring. If R has atleast one nonzero S-ideal in R, 
which contains a nonzero S-idempotent then we say R is a Smarandache weakly 
e-primitive (S-weakly e-primitive).  
 
THEOREM 4.4.16: Every S-e-primitive ideal is S-weakly e-primitive.  
 
Proof: Left as an exercise for the reader to prove.  
 
THEOREM 4.4.17: Let R be a field of characteristic 0 and G be a torsion free 
abelian group. The group ring KG is never  
 

1. Weakly e-primitive.  
2. S-weakly e-primitive.  

 
Proof: Obvious from the fact that KG has no nontrivial idempotents; as KG is a domain 
hence has no S-idempotents.  
 
DEFINITION [161]: Let R be a ring. If M ≠ 0 is an additive subgroup of a ring R 
with zero divisors then M is an SV-group, in case x . y = 0 for all x, y ∈ M and 
LR(M) ∩ RR(M) ⊂ M (LR and RR are the left and right annihilators).  
 
We weaken this concept and define weakly SV-group as follows.  
 
DEFINITION 4.4.36: Let R be a ring. If M ≠ 0 is an additive subgroup of a ring 
R with zero divisors then we call M a weakly SV-group.  
 
Example 4.4.20 : Z6 = {0, 1, 2, 3, 4, 5} is not even a weakly SV-group.  
 
Example 4.4.21: Z12 = {0, 1, 2, …, 11} is a weakly SV group. For M = {0, 2, 4, 6, 
8} is such that  
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2.6 ≡ 0 (mod 12) 
4.6 ≡ 0 (mod 12) 
8.6 ≡ 0 (mod 12). 

 
Now we proceed on to define Smarandache parallel.  
 
DEFINITION 4.4.37: Let R be a ring. If M ≠ 0 be a S-semigroup under addition 
of the ring R. M is called a Smarandache SV-group (S-SV group) if in case x . y = 
0 for all x, y∈ M and LR(M) ∩ RR(M)⊆  M.  
 
DEFINITION 4.4.38: Let R be a ring. If M ≠ 0 be a S-semigroup under addition 
with S-zero divisors then we call M a Smarandache weakly SV-group (S-weakly 
SV-group).  
 
THEOREM 4.4.18: Let R be a SV group then R is a S-weakly SV group only when 
every divisor in M is a S-zero divisor.  
 
Proof: Left for the reader to verify using definitions.  
 
THEOREM 4.4.19: ZpG where Zp is a prime field of characteristic p and G = 
〈g/g2p = 1〉 be the group ring. Then ZpG is a weakly SV-group and a S-weakly SV-
group only when all zero divisors in the subgroup are S-zero divisor. 
 
Proof: Take H = {1, g2, g4, …, g2p  – 2}. Now ZpH is a weakly SV-group. ZpG is a S-
weakly SV-group only if all zero divisor in ZH are S-zero divisor.  
 
Now we define radix for rings which once again uses additive subgroup.  
 
DEFINITION [19]: An additive subgroup S of a commutative ring R is called a 
Radix provided tx3 and (t3  – t)x2 + t2x are in S for every x in S and for every t in 
R.  
 
Example 4.4.22: Let Z2 = (0, 1) be the field of integers. G = 〈g/g2 = 1〉, {0, 1 + g} 
is not a radix of Z2G. {0, 1} is not a radix of Z2G.  
 
DEFINITION 4.4.39: Let R be a non-commutative ring. Let S be an additive 
subgroup of R. S is said to be a left radix of R if tx3,  (t3  – t) x2 + t2x are in S for 
every t ∈ R and every x ∈ S. Similarly we define right radix of R if x3t, x2(t2 – t)  
+  xt2 are in S for every x ∈ S and t ∈ R. S is called a radix, if S is both a left and 
right radix of R.  
 
Example 4.4.23: Every right ideal I of a ring R is a right radix of R.  
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THEOREM 4.4.20: Let Z2 = {0, 1} be the field of integers modulo 2 and G be a 
cyclic group of even order then Z2 G has a radix which is not an ideal of Z2G.  
 
Proof: Let G = 〈g / g2n = 1〉 and Z2 = {0, 1} Take S = {0, 1 + g2 + g4 + … + g2n  – 1}. 
Clearly S is a radix which is not an ideal of Z2G.  
 
THEOREM 4.4.21: Let R be a ring then x be an element which annihilates every 
element of R. Then S = 〈{0, x}〉 is a radix of R.  
 
Proof: Obvious. 
 
Now we proceed in to define Smarandache radix for a ring.  
 
DEFINITION 4.4.40: Let R be a commutative ring. An additive S-semigroup S of 
R is said to be a Smarandache radix (S-radix) of R is x3t,  (t2  – t)x2 + xt2 are in S 
for every x ∈ S and t ∈ R. If R is a non-commutative ring then for any S-
semigroup S of R we say R has Smarandache left radix (S-left radix) if tx3, (t2– 
t)x2  +  t2x are in S for every x ∈ S and t ∈ R. Similarly we define Smarandache 
right radix (S-right radix) of R. If S is simultaneously a S-left radix and S-right 
radix of a non-commutative ring then we say R has a S-radix.  
 
THEOREM 4.4.22: Let R be a ring and S a radix of R. S in general is not a S-
radix.  
 
Proof: By an example. Consider Z2G where Z2 = {0, 1} and G = 〈g / g8 = 1〉. The 
group ring has H = {0, 1 + g2 + g4 + g6} to be radix of Z2G but H is not a S-radix as H 
is not a S-semigroup.  
 
THEOREM 4.4.23: Let R be a ring, if H is a S-radix of R then H is a radix of R.  
 
Proof: Clear from the very definitions of the radix and S-radix.  
 
[4] has defined rings which has γ-semigroups and obtained some interesting results 
about them.  
 
DEFINITION [4]: A multiplicative semigroup M of a ring R is a γ-semigroup if 
for each a ∈ M, the additive subgroup of R generated by a is contained in M.  
 
Example 4.4.24: Let Z2 = {0, 1} and G = 〈g / g2 = 1〉. The group ring Z2G has γ-
semigroup. For M = {0, 1 + g} is a γ-semigroup of Z2G.  
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THEOREM 4.4.24: Let G be a group having an element of finite order and Z2 = 
{0, 1}. The group ring Z2G has γ-semigroup. 
 
Proof: Let g ∈ G such that gn = 1. Then M = {0, 1 + g + g2 + … + gn  – 1} is a γ-
semigroup.  
 
THEOREM 4.4.25: Let S(n) be the semigroup and Z2 = {0, 1}. The semigroup 
ring Z2 S(n) has γ-semigroup.  
 
Proof: We know Sn ⊂ S(n), by the above theorem (4.4.24). S(n) has elements of 
finite order; hence Z2S(n) has γ-semigroup.  
 
THEOREM 4.4.26: Every group ring KG is a γ-semigroup.  
 
Proof: Given KG is the group ring. Two cases arise  
 

1. G has elements of finite order. 
2. G has no elements of finite order.  

 
If G has elements of finite order then we see by theorem 4.4.25; KG has γ-semigroup. 
If G has no elements of finite order take g ∈ G and let H be the infinite cyclic group 
generated by g. Then KH is a γ-semigroup of KG.  
 
DEFINITION 4.4.41: Let R be a ring. A multiplicative S-semigroup M of R is a 
Smarandache γ-semigroup (S-γ-semigroup) if for each a ∈ M the additive 
subgroup of R generated by a is contained in M.  
 
THEOREM 4.4.27: Let R be a ring; if M is a S-γ-semigroup of R, then M is a γ- 
semigroup of R.  
 
Proof: Easily derived from the definitions.  
 
THEOREM 4.4.28: Let R be a ring; if M is a γ-semigroup of R then M need not in 
general be a S-γ- semigroup of R.  
 
Proof: By an example. Let Z2G be the group ring with G = {g/g2 = 1}; M = {0, 1 + g} 
is a γ-semigroup of Z2G, but M is not a S-γ-semigroup of Z2G.  
 
Now we proceed on to define yet another new concept called δ-semigroups.  
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DEFINITION 4.4.42: Let R be a ring. A non-empty multiplicative semigroup M 
not containing 1 is called a δ-semigroup if for every a ∈ M; the ideal of R 
generated by a is such that aR ⊂ M and Ra ⊂ M.  
 
Example 4.4.25: Let Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. Clearly M = 
{0, 2} is a δ-semigroup.  
 
DEFINITION 4.4.43: Let R be a ring. R is called a δ-semigroup ring (δ-s-ring) 
if for every multiplicative semigroup M of R not containing 1, M is a δ-
semigroup.  
 
Example 4.4.26: Let Z4 = {0, 1, 2, 3}, Z4 is a δ-s-ring.  
 
Example 4.4.27: Z2G where G = 〈g / g2 = 1〉 is a δ-s-ring.  
 
THEOREM 4.4.29: A field can never have δ-semigroups.  
 
Proof: Obvious by the very structure of fields.  
 
Example 4.4.28: Z12 = {0, 1, 2, …, 11}, Z12 is not a δ-s-ring.  
 
THEOREM 4.4.30: Let G be a finite group and K any field. The group ring KG 
has δ-semigroup.  
 
Proof: Take M = {0, cΣgi / c ∈ K} where cΣgi = c(1 + g1 + g2 + … + gn) such that 
G = {1, g1, …, gn}  ; clearly M is a δ-semigroup.  
 
DEFINITION 4.4.44: Let R be a ring. A non-empty multiplicative S-semigroup 
M not containing 1 of R (unit of R) is called a Smarandache δ-semigroup (S-δ-
semigroup) if for every a ∈ M, the ideal generated by a is contained in M.  
 
Example 4.4.29: Z12 = {0, 1, 2, 3, …, 11} be the ring of integers modulo 12. M = 
{0, 2, 4, 6, 8, 10} is a S-δ-semigroup for A = {4, 8} is a group with 4 as identity. M is 
a S-δ-semigroup.  
 
THEOREM 4.4.31: Let R be a ring. If M is a S-δ-semigroup then M is a δ-
semigroup.  
 
Proof: Obvious by the very definition.  
 
THEOREM 4.4.32: Let R be a ring, if M is a δ -semigroup; M in general is not a 
S-δ - semigroup.  
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Proof: By an example, Z4 = {0, 1, 2, 3} is in fact a δ-s-ring but no δ semigroup of Z4 
is a S-δ semigroup of Z4. 
 
DEFINITION 4.4.45: Let R be a ring. R is called a Smarandache δ-semigroup 
ring (S-δ-s-ring) if every S-δ-semigroup under multiplication of R is a S-δ- 
semigroup. 
 
Now we recall the concept of SG-rings which also makes use of multiplicative 
semigroup.  
 
DEFINITION 4.4.46: Let R be a ring. R is said to be a SG-ring if R = ∪Si where 
Si’s are multiplicative semigroups and Si   ∩ Sj = φ, if i ≠ j.  
 
Example 4.4.30: Let Z2G be the group ring where G = 〈g / g2 = 1〉; Z2G = S1 ∪ S2 
where S1 = {0, 1 + g} and S2 = {1, g}, so Z2G is a SG-ring.  
 
DEFINITION 4.4.47: Let R be a ring. R is said to be a weakly SG-ring if R =∪ Si 
and Si ∩ Sj ≠ φ even if i ≠  j.  
 
Example 4.4.31: Let Z8 = {0, 1, 2, …, 7} be the ring of integers modulo 8. Z8 is a 
weakly SG-ring. For Z8 = {0, 2, 4} ∪ {1, 3} ∪ {1, 5} ∪ {1, 7} ∪ {0, 2, 4, 6} = {1, 
3} ∪ {1, 5} ∪ {1, 7} ∪ {0, 2, 4, 6}. Hence the claim.  
 
THEOREM 4.4.33: Every SG-ring is a weakly SG-ring but not conversely.  
 
Proof: Obvious by the very definition. Z8 is not a SG-ring but only a weakly SG-ring.  
 
Example 4.4.32: Let Z7 = {0, 1, 2, …, 6} be the ring of integers modulo 7. Z7 is not 
a weakly SG-ring.  
 
DEFINITION 4.4.48: Let R be a ring. R is said to be a Smarandache SG-ring (S-
SG-ring) if R = ∪ Si where Si are multiplicative S-semigroups such that Si ∩ Sj = 
φ if i ≠  j.  
 
DEFINITION 4.4.49: Let R be a ring. R is said to be a Smarandache weakly SG-
ring (S-weakly SG-ring) if R = ∪ Si where Si's are S-multiplicative semigroups 
and Si ∩ Sj ≠ φ even if i ≠ j.  
 
THEOREM 4.4.34: Let R be a SG-ring. Then R need not in general be a S-SG-
ring.  
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Proof: By an example; clearly the group ring Z2G is a SG-ring but is not a S-SG-ring.  
 
THEOREM 4.4.35: If R is a S-SG-ring then R is a SG-ring.  
 
Proof: By the very definition of these concepts the result follows.  
 
Another interesting property about multiplicative semigroups is:  
 
DEFINITION 4.4.50: Let R be a ring. Let M be a multiplicative semigroup; we 
say R has a 0-semigroup if S 2 = {0} and idempotent semigroup if S 2 = S.  
 
A ring which has every multiplicative semigroup to be either a 0-semigroup or an 
idempotent semigroup is called a ZI-ring. If R has atleast a 0-semigroup and an 
idempotent semigroup then we call R a weak ZI-ring.  
 
THEOREM 4.4.36: Every ZI-ring is a weak ZI-ring.  
 
The proof is left as an exercise to the reader.  
 
DEFINITION 4.4.51: Let R be a ring if in R every multiplicative semigroup M 
which is a S-semigroup is such that M 

2 = M or if M has a sub semigroup N such 
that N 2 = 0, then we call R a Smarandache ZI-ring (S-ZI-ring). If R has atleast a 
S-semigroup which is such that M 2 = M and has a S-semigroup which has a 
subsemigroup N such that N 2 = 0 then we say R is a Smarandache weakly ZI-ring 
(S-weakly ZI-ring).  
 
THEOREM 4.4.37: If R is a Boolean ring. Then R has multiplicative semigroups 
M such that M 2 = M.  
 
Proof: Obvious by the very definition of Boolean ring R; a2 = a for all a ∈ R.  
 
DEFINITION 4.4.52: Let R be a ring, if R has a multiplicative semigroup M, 
which has nontrivial idempotents or nontrivial nilpotents or both nontrivial 
idempotents and nilpotents or S 2 = S or S 2 = {0} then we call the ring R pseudo 
ZI-ring. We say M is a Smarandache pseudo ZI-ring (S-pseudo ZI-ring) if M is a 
multiplicative Smarandache semigroup which has nilpotents or S-idempotents, 
or S2 = S or S2 = {0} or has both nilpotents and S-idempotents.   
 
THEOREM 4.4.38: If R is a ZI-ring then R is a pseudo ZI ring.  
 
Proof: Left for the reader to verify.  
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Example 4.4.33: Let Z12 = {0, 1, 2, …, 11}. Now M1 = {0, 4, 8},  M2 = {0, 2, 4, 6, 
8, 10}, M3 = {0, 6} and M4 = {0, 3, 6, 9} are semigroups under multiplication where 
M3

2 = {0}; M1, M2 and M4 are S-semigroups. We see Z12 is a S-pseudo ZI-ring as all 
the S-semigroups M1, M2 and M4 have both nilpotents and idempotents, for 62 ≡ 0 
(mod 12), 92 ≡ 9 (mod 12) is such tht 32 ≡ 9 (mod 12) and 3.9 ≡ 3 (mod 12) and 
42 ≡ 4 (mod 12), 82 ≡ 4 (mod 12) and 4.8 ≡ 8(mod 12).  
 
Now we proceed to define square sets in rings.  
 
DEFINITION 4.4.53: Let R be ring. A non-empty subset A of R, | A | > 1 is said 
to be a square set of R if for every a ∈ A there exists atleast one b ∈ R (b ≠ a) 
such that a = b2.  
 
Example 4.4.34: Let Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. A = {0, 1} 
is a square set of Z4 as 0 ≡ 22(mod 4) and 1 ≡ 32(mod 4), 02 ≡ 0 and 12 = 1 are called 
trivial forms.  
 
Example 4.4.35: Let Zp be the prime field of characteristic p. A = {1} is not a 
square set though we have (p  – 1)2 ≡ 1 (mod p).  
 
THEOREM 4.4.39: Let Z be the ring of integers the square set A of Z is non-
empty. 
 
Proof: A  =  {n2 / n ∈ Z} ≠ φ. For {9, 4, 25, 36} = A. 3 ∈ Z is such that 32 = 9, 3 ∈ Z 
is such that 22 = 4, 5 ∈ Z is such that 52 = 25, 6 ∈ Z is such that 62 = 36 and so on.  
 
THEOREM 4.4.40: Let K be a field of characteristic 0 and G a torsion free 
abelian group. The group ring KG has a square set which is non-empty.  
 
Proof: Left for the reader to prove using the fact KG is a domain.  
 
DEFINITION 4.4.54: Let R be a ring. R is said to have a Smarandache square 
set (S-square set) A if | A| > 1 and A is an additive S-semigroup and a ∈ A is such 
that there exist r ∈ R with a = r2.  
 
Example 4.4.36: Let Z16 = {0, 1, 2, …, 14, 15} be the ring of integers modulo 16. 
{1, 4} = A, is a square set for 92 ≡ 1(mod 16) and 142 ≡ 4 (mod 16). It is easily 
verified 72 ≡ 1 (mod 16) and 102 ≡ 4 (mod 16). Thus a single element can have 
several representations. But we see Z16 has no S-square set.  
 
THEOREM 4.4.41: Let R be a ring, if A is a S-square set of R then A is a square 
set of R and not conversely.  
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Proof: Given A ⊂ R is a S-square set for A is a semigroup under addition and A is a 
square set.  
 
The square set in general need not be a S-square set for in Z16 given in example 
4.4.36; A = {1, 4} is a square set but is not a S-square set.  
 
DEFINITION [66]: If R is a ring and 0 ≠ r ∈ R then a non-empty subset X of R 
is said to be a (right) insulator for r in R if the right annihilator rR  = {rx / x ∈ 
X} = 0. If every non-zero element of R has a finite insulator the author calls the 
ring R to be (right) strongly prime i.e.,  A non-zero ring R is said to be (right) 
strongly prime if every non-zero element of R has finite insulator.  
 
THEOREM 4.4.42: Let G be a torsion free abelian group and K any field of 
characteristic zero. No element in KG have insulators.  
 
Proof: Follows from the fact KG is a domain.  
 
DEFINITION 4.4.55: Let R be a ring. We say 0 ≠ r ∈ R is called a Smarandache 
insulator (S-insulator) if for r there exists a non-empty subset X of R where X is a 
S-semigroup under addition and the right annihilator rR = ({rx / x ∈ X})  =  0. A 
non-zero ring R is said to be Smarandache strongly prime (S-strongly prime) if 
every non-zero element of R has a finite S-insulator.  
 
Obtain interesting results about them.  
 
DEFINITION 4.4.56: Let R be a commutative ring and P an additive subgroup 
of R.P is called the n-capacitor group of R if xnP ⊂ P for every x ∈ R and n ≥ 1 
and n a positive integer.  
 
Example 4.4.37: Let Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. P = {0, 2} 
is a n-capacitor group of Z4.  
 
Example 4.4.38: Let R be a ring. Every ideal I of R is called the n- capacitor group 
of R.   
 
Example 4.4.39: Let Z2G be the group ring of the group G = 〈g / g3 = 1〉. K = {0, 1 
+ g} and I = {0, 1 + g2} are 3k-capacitor group of the group ring, k > 1.  
 
THEOREM 4.4.43: Let Z2G be the group ring where G = 〈 g / gp = 1〉. The group 
ring Z2G has pk-capacitor group for k = 1, 2, 3, … . 
 
Proof: Let I = {0, 1 + g + … + gp – 1 } is  pk capacitor group for k = 1, 2, 3, … .  
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THEOREM 4.4.44: Let F be a field of characteristic two and G = 〈 g/gn = 1〉  be 
the cyclic group of degree n. The group ring KG has n-capacitor groups which are 
not ideals, {(n, 2) = 1 and n not a prime}.  
 
Proof: Left for the reader to verify.  
 
THEOREM 4.4.45: Let G be a torsion free abelian group and K a field of 
characteristic zero. ZG the group ring has no n capacitor groups other than the 
ideals.  
 
Proof: We know all ideals are n-capacitor groups. But KG has no n-capacitor group. 
For if P is a subgroup; for all x ∈ KG we have xnP ⊄ P.  
 
Now we define relative Smarandache notions.  
 
DEFINITION 4.4.57: Let R be a commutative group and P an additive S-
semigroup of R. P is called a Smarandache n-capacitor group (S-n-capacitor 
group) of R if xnp ⊆ P for every x ∈ R and n ≥ 1 and n a positive integer.  
 
THEOREM 4.4.46: Let R be a commutative ring. If R has S-n-capacitor group 
then R has n-capacitor group.  
 
Proof: Follows by the definition.  
 
Just for the sake of completeness we give the definition of semiring as it used to define 
semiorder in rings. 
 
DEFINITION [50]: Let S be a non-empty set on which is defined two binary 
operation '+' and '.' such that the following are true. 
 

1. (S, +) is a monoid with 0 as the additive idenitity. 
2. (S, .) is a semigroup under '.' . 
3. s(a + b) = sa + sb and (a + b)s = as + bs for all a, b, s ∈ S 

 
then (S, +, .) is a semiring. A proper subset A of S is a subsemiring if (A, +, .) is 
itself a semiring. 
 
DEFINITION 4.4.58: Let R be a ring with identity. A non-empty subset S of R is 
a semi order in R if S satisfies the following conditions:  
 

1. (S, +) is a semigroup with identity with respect to the operation + of R.  
2. (S, .) is a semigroup ‘.’ the operation of R that is (S, +, .) is a semiring in 

R which we call as the subsemiring of R.  
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3. For every nonzero divisor of S the inverse whenever exists is in R.  
4. Any x ∈ R is of the form x = sy or x = zs1 for some s, s1∈ S and some y, z 

in R.  
 
If such a nontrivial S in R exists we call R a semi order ring or a so-ring.  
 
Example 4.4.40: Let Z be the ring of integers Z = Z +  ∪ Z  –  ∪ {0}. S = Z + ∪ {0} is 
a semiring which is a semi order in Z. So Z is a so-ring. 
 
THEOREM 4.4.47: Every field F of characteristic zero is a so-ring.  
 
Proof: Obvious by the definition.  
 
DEFINITION 4.4.59: Let R be a ring. A nonempty subset S of R is a 
Smarandache semi order (S-semi order) in R if S satisfies for the following 
conditions.  
 

1. (S, +) is a S-semigroup with identity with respect to ‘+’ the operation in R  
2. (S, .) is a S-semigroup ‘.’ the operation of R and (S, +, .) is a S-semiring 

in R.  
3. For every nonzero divisor of S the inverse whenever exists is in R.  
4. Any x ∈ R is of the form x = sy or x = zs1 for some s, s1∈ S and some y, z 

∈ R.  
 
For more about S-semigroups and S-semirings please refer [154, 156, 157]. 
 
THEOREM 4.4.48: Every S-semi order is a semi order and not conversely.  
 
Proof: Follows easily by the definitions; hence left for the reader as an exercise.  
 
DEFINITION 4.4.60: Let R be a ring. A subset I of R which is closed under '+' of 
R is called the square ring ideal of R if r2i ∈ I and ir2  ∈ I for all i ∈ I and ∀ r ∈ 
R.  
 
Example 4.4.41: Let Z2G be the group ring where G = 〈g / g2 = 1〉; I = {0, g} is a 
square ideal ring of Z2G.  
 
DEFINITION 4.4.61: Let R be a ring. A subset I of R which is closed under '+' is 
called a n-ring ideal of R if rni ∈ I and irn ∈ I for all i ∈ I and r ∈ R (n > 1, n a 
positive integer).  
 
It is important to note that even if n = 1 we see I is not an ideal of R.  
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THEOREM 4.4.49: Let Z2 = {0, 1} and G = 〈 g / g2n = 1〉. The group ring Z2G is a 
2n-ring ideal of R.  
 
Proof: Take any I = {0, g}; such that g ∈ G. Clearly s2ni ∈ I and is2n ∈ I for all i ∈ I 
and s ∈ Z2G.  
 
THEOREM 4.4.50: Let G be a torsion free abelian group and K any field. No 
finite subset of KG even closed under addition is a n-ring ideal for any n.  
 
Proof: Easily evident from the fact that G is torsion free abelian.  
 
Now we proceed on to define the Smarandache analogue.  
 
DEFINITION 4.4.62: Let R be a ring. A subset I of R which is a S-semigroup 
under ‘+’ of R is called the Smarandache square ring ideal (S-square ring ideal) 
of R if ir2 and r2i ∈ I for all i ∈ I and r ∈ R.  
 
DEFINITION 4.4.63: Let R be a ring. A subset I of R which is a S-semigroup 
under ‘+’ is called the Smarandache n-ring ideal (S-n-ring) of R if for all i ∈ I 
and r ∈ R we have rni and irn ∈ I.  
 
Obtain examples and some interesting results. The following theorem can be easily 
proved.  
 
THEOREM 4.4.51: Let R be a ring. If I is a S-square ideal of R then I is a square 
ideal of R.  
 
DEFINITION 4.4.64: Let R be a ring. An ideal I of R is said to be quasi nilpotent 
if I does not contain any semi idempotent elements.  
 
Example 4.4.42: Let Z2G be the group ring where G = 〈g/ g2 = 1〉; clearly the ideal 
I = {0, 1 + g} has no semi idempotents so I is quasi nilpotent.  
 
DEFINITION 4.4.65: Let R be a ring. A S-ideal I of R is said to be Smarandache 
quasi nilpotent (S-quasi nilpotent) if I does not contain any S-semi idempotents.  
 
Example 4.4.43: Z6G be the group ring of the group G = 〈g/g2 = 1〉 over the ring of 
integers modulo 6; Z6 = {0, 1, 2, …, 5}; clearly Z6 has S-ideals HG where H = {0, 3} 
which is also a S-quasi nilpotent of Z6G.  
 
DEFINITION [24]: Gray defined a radical ideal as follows: A subset P of a ring R 
is a radical if  
 



 160 

1. P is an ideal.  
2. P is a nil ideal.  
3. R/P has no nonzero nilpotent right ideals.  

 
The sum of all ideals in R satisfying 1) and 2) is the upper radical of R and is 
denoted by ∪ (R). The intersection of all those ideals in R satisfying 1) and 3) is 
the lower radical of R. L(R).  
 
For more about radical ideals please refer [24].  
 
Example 4.4.44: The group ring Z2G where G = 〈g / g2 = 1〉 is a radical ideal. It is 
important to note that even the subideal of a radical ideal in general need not be a 
radical ideal.  
 
Example 4.4.45: Let Z2G be the group ring where G = 〈g / g3 = 1〉. Z2G has no 
proper radical ideals as Z2G has no nilpotent elements so it cannot have nil ideals 
hence the claim.  
 
DEFINITION 4.4.66: Let R be a ring. The Smarandache radical ideal (S-radical 
ideal) P of R is defined as follows:  
 

1. P is a S-ideal of R. 
2. S ⊂ P where S is a subideal of P is a nil ideal.  
3. R / P has no non-zero nilpotent right ideals. 

 
The sum of all S-ideal of R satisfying 1) and 2) is called the Smarandache upper 
radical (S-upper radical) of R and is denoted by S( ∪ (R)). The intersection of 
all those S-ideals in R satisfying 1) and 3) is the Smarandache lower radical (S-
lower radical) of R denoted by S(L(R)).  
 
The reader is requested to study radical ideals and S-radical ideals of a ring R.  
 
THEOREM 4.4.52: The group ring KG of the torsion free abelian group G over 
any field K has no   
 

1. radical ideals.  
2. S-radical ideals.  

 
Proof: Follows from the fact that KG has no nilpotent or zero divisors as KG is a 
domain.  
 
DEFINITION 4.4.67: Let R be a ring. A be an additively closed subset of R. For 
a, b ∈ R,  a, b ∉ A. We say a is right A related to b if a ∈ Ab; a is said to be left A 
related to b if a ∈ bA. If a is both right and left A related to b then we say a is A 
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related to b. Obviously in case of commutative rings the notion of right and left 
related coincides.  
 
Example 4.4.46: Let Z2S3 be the group ring. Take A = {0, p5}; p1 ∈ Ap2 = {0, p1} So 
p1 is right A related to p2 but p1 is not left A related to p2.  
 
DEFINITION 4.4.68: Let R be a ring. A be a semigroup with respect to '+'. For a, 
b ∈ R (a, b ∉ A) we say a is both way related to b (or a and b related with respect 
to A or relative to A) if a ∈ Ab and b ∈ Aa.  
 
THEOREM 4.4.53: Every prime field of characteristic p is relation free.  
 
Proof: Left for the reader to prove.  
 
THEOREM 4.4.54: Let R the field of reals. No pair in R can be related.  
 
Proof: Left for the reader to verify.  
 
DEFINITION 4.4.69: Let R be a ring. A be a S-semigroup under  '+'. For a, b ∈ 
R and a, b ∉ A; we say a is Smarandache right related (S-right related) to b if a ∈ 
Ab. a is said to be Smarandache left related (S-left related) if a ∈ bA; if a is both 
Smarandache right and left related to b then we say a is Smarandache A related to 
b (S-A related to b).  
 
DEFINITION 4.4.70: Let R be a ring. A be a S-semigroup under addition. For a, 
b ∈ R,  a, b ∉ A we say a is both way related to b (or a and b are related with 
respect to A) with respect to A if a ∈ Ab and b ∈ Aa. The pair (a, b) is called also 
as a Smarandache related pair (S-related pair). 
 
Obtain interesting results about S-related pairs. On similar lines when we replace the 
semigroup under addition by a subring we define a relation called subring relation on 
R. When a ring has this relation the ring has nontrivial divisors of zero (and) or units. 
 
DEFINITION 4.4.71: Let R be a ring. A pair of elements x, y ∈ R is said to have 
a subring right link relation if there exists a subring M of R in R \ {x, y} i.e.,  M ⊆ 
R \ {x, y} such that x ∈ My and y ∈ Mx. Similarly subring left link relation if x ∈ 
yM and y ∈ xM. If it has both a left and a right link relation for the same subring 
M then we have x and y have a subring link relation and is denoted by xMy.  
 
Example 4.4.47: Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. No pair of 
elements in Z4 has a subring link relation.  
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THEOREM 4.4.55: Let R be a ring. M a subring such that x, y ∈ R \ M are 
subring link related. Then R has nontrivial divisors of zero or a unit.  
 
Proof: Let x, y ∈ R with x and y ∉ M, where M is a subring such that x ∈ yM and y ∈ 
xM that is x = yt and y = xu for some u, t ∈ M so that x = xut leading to x(1 – ut) = 
0. The two possibilities are either x(1 – ut) = 0 is a zero divisor or ut = 1, then R has 
a unit.  
 
Example 4.4.48: Let Z6 = {0, 1, 2, …, 5} be the ring of integers modulo 6. M = {0, 
2, 4} is a subring of Z6. Z6 \ {0, 4, 2} has no pair which is linked.  
 
Example 4.4.49: Let Z2S3 be the group ring. The element p4 and p5 cannot be 
subring related through any subring.  
 
DEFINITION 4.4.72: Let R be a ring. We say a pair x, y in R has a weakly 
subring link with a subring P in R \ {x, y} if either y ∈ Px or x ∈ Py, ‘or’ in the 
strictly mutually exclusive sense and we have subring Q,  Q ≠ P such that y ∈ Qx 
(or x ∈ Qy).  
 
DEFINITION 4.4.73: Let R be a ring. We say a pair x, y ∈ R is said to be one 
way weakly subring link related if we have a subring P ⊂  R \ {x, y} such that x ∈ 
Py and for no subring S ⊂ R \ {x, y} we have y ∈ Sx.  
 
DEFINITION 4.4.74: Let R be a ring a pair x, y ∈ R is said to have a 
Smarandache subring right link relation (S-subring right link relation) if there 
exists a S-subring P in R \ {x, y} such that x ∈ Px and y∈ Py. Similarly 
Smarandache subring left link relation (S-subring left link relation) if x ∈ yP 
and y ∈ xP. If it has both a Smarandache left and right link relation for the same 
S-subring P then we say x and y have a Smarandache subring link (S-subring 
link). 
 
We say x, y ∈ R is Smarandache weak subring link (S-weak subring link) with a 
S-subring P in R \ {x, y} if either x ∈ Py or y ∈ Px (‘or’ in strictly mutually 
exclusive sense) we have a S-subring Q ≠ P such that y ∈ Qx (or x ∈ Qy). We say 
a pair x, y ∈ R is said to be Smarandache one way weakly subring link related 
(S-one way weakly subring link related) if we have a S-subring P ⊂ R \ {x, y} 
such that x ∈ Py and for no subring Q ⊆ R \ {x, y} we have y ∈ Qx.  
 
Thus we see that subring link relation between a pair of elements in a ring leads to 
either zero divisor or units leading to the following:  
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THEOREM 4.4.56: Let KG be the group ring of a torsion free abelian group G 
and K any field, the group ring KG has no pair which is subring linked.  
 
Proof: Obvious from the fact a pair is subring link related forces zero divisors or units 
and as KG has no zero divisors or units. KG cannot have a pair which is subring 
linked.  
 
The same result holds good in case of S-subring related pairs. Now the subrings of a 
ring are studied but no inter relation between them are studied. Here we define a 
concept called essential subrings and we feel the study of Smarandache essential 
subrings will throw more light on the S-subrings of a ring. With this view we just 
define the concept of essential subrings.  
 
DEFINITION 4.4.75: Let R be a ring. A subring A of R is said to be an essential 
subring of R, if intersection of A with every other subrings of R is zero. By subring 
we mean only proper subrings.  
 
DEFINITION 4.4.76: Let R be a ring if every subring of R is an essential subring 
of R then we call R an essential ring. 
 
DEFINITION 4.4.77: Let R be a ring. A be a S-subring of R. A is said to be a 
Smarandache essential subring (S-essential subring) of R if the intersection of 
every other S-subring is zero. By S-subring we mean only proper S-subrings.  
 
DEFINITION 4.4.78: Let R be a ring. If every S-subring of R is S-essential S-
subring then we call R a Smarandache essential ring (S-essential ring).  
 
DEFINITION 4.4.79: Let R be a ring. If for a pair of subrings P and Q of R there 
exists a subring T of R (T ≠ R) such that the subrings generated by PT and TQ are 
equal i.e. 〈 PT〉 = 〈 TQ〉, then we say the pair of subrings are stabilized subrings 
and T is called the stabilizer subring of P and Q.  
 
DEFINITION 4.4.80: Let R be a ring. A pair of subrings A and B of R is said to 
be a stable pair if there exists a subring C of R (C ≠ R) such that C ∩ A = C ∩ B 
and 〈C ∪ A〉 = 〈C ∪ B〉 where 〈 〉 denote generated by C ∪ A and C ∪ B. C is 
called the stability subring for the stable pair of subrings.  
 
THEOREM 4.4.57: Let R be a ring. If the subring A, B of R is a stable pair then 
A, B is a stabilized pair and not conversely.  
 
Proof: Follows by the very definition of these two concepts. To prove the converse is 
not true, consider the ring Z12 = {0, 1, 2, …, 11} be the ring of integers modulo 12. 
S1 = {0, 6}, S2 = {0, 6, 3, 9}, S3 = {0, 4, 8} and S4 = {0, 2, 4, 6, 8, 10}. The subrings 
S3 and S4 is a stabilized pair but it is not a stable pair. Hence the claim.  
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DEFINITION 4.4.81: Let R be a ring. If every pair of subrings of R is a stable 
pair then we say R is a stable ring.  
 
DEFINITION 4.4.82: Let R be a ring. If for a pair of S-subrings P and Q of R 
there exists a S-subring T of R (T ≠ R) such that the S-subrings generated by PT 
and TQ are equal i.e. 〈 PT〉 = 〈 TQ〉 then we say the pair P and Q is a Smarandache 
stabilized pair (S-stabilized pair) and T is called the Smarandache stabilizer (S-
stabilizer) of P and Q.  
 
DEFINITION 4.4.83: Let R be a ring. A pair of S-subrings A, B of R is said to be 
a Smarandache stable pair (S-stable pair) if there exists a S-subring C of R (C ≠ 
R) such that C ∪ A = C ∪ B and 〈 C ∪ A〉 = 〈 C ∪ B〉 where 〈 〉 means the subring 
generated by C ∪ A and C ∪ B; C is called the Smarandache stability S-subring 
(S-stability S-subring) for the Smarandache stable pair (S-stable pair) A and B.  
 
DEFINITION 4.4.84: Let R be a ring if every pair of S-subrings of R is S-stable 
pair then we say R is a Smarandache stable ring (S-stable ring).  
 
It is left for the reader to prove that the following theorem:  
 
THEOREM 4.4.58: Every S-stable ring is a S-stabilized ring.  
 
PROBLEMS:  
 

1. Does Z8S(5) have a S-quasi ordering?  
2. Can Z5S3 have a S-product quasi ordering?  
3. Find a set A in Z7S5 which has S-sum quasi ordering but A is not product quasi 

ordering.  
4. Find the S-semi regular ideal of Z5S3.  
5. Can the semigroup ring Z8S(5) have  

i. S-semi nilpotent ideals? 
ii. Semi nilpotent ideals?  
iii. S-Semi regular ideals?  
iv. Semi regular ideals?  

6. Find whether the group ring Z7D26 have  
i. S-semi nilpotent ideals.  
ii. S-semi regular ideals where D26 = {a, b/a2 = b6 = 1,  bab = a}.  

7. Is the semi group ring Z3S(5) a  
i. S-Sub semi ideal ring? 
ii. Sub semi ideal ring?  

8. Can the group ring Z7S4 be a  
i. S-sub semi ideal ring?  



 165 

ii. Sub semi ideal ring?  
9. Can the semigroup ring Z6S(4) be a  

i. normal ring?  
ii. S-normal ring? 

10. Is the ring Z22 a 
i. normal ring?  
ii. S-normal ring?  

11. Is Z19 a 
i. normal ring?  
ii. S-normal ring?  

12. Give an example of S-weakly G-ring.  
13. Is Z8S3 a S-G-ring?  
14. Is a Boolean ring a weakly G-ring?  
15. Is Z6S3 a n-closed subgroup ring? 
16. Can Z3G where G = 〈g / g3 = 1〉 be a n-closed subgroup ring? 
17. Give an example of a S-n-closed subgroup ring.  
18. Give an example of a S-n-closed subgroup ring which is not a n-closed 

subgroup ring.  
19. Give an example of a ring which is a co-ring.  
20. Is Z20 a weak co-ring? 
21. Can Z2S3 be a S-weak iso-ring? 
22. Give an example of a S-weak iso-ring which is not a S-iso-ring.  
23. Give an example of S-co-ring.  
24. Is the semigroup ring Z4S(3) a  

i. S-co-ring? 
ii. S-iso-ring? 
iii. S-weak iso-ring?  

25. Is the ring Z27 S-e-primitive? 
26. Can Z27 be atleast e-primitive? 
27. Give an example of a weakly e-primitive ring which is not e-primitive. 
28. Can the group ring Z3S4 be  

i. e-primitive?  
ii. S-e-primitive?  
iii. S-weakly primitive?  
iv. Weakly e-primitive?  

29. Give an example of a ring which is a S-weakly SV-group.  
30. Is Z24 a S-SV-group? 
31. Can Z27 be a SV-group?  
32. Give an example of a ring which has S-radix.  
33. Can Z28 have a radix? 
34. Give an example of ring which has a radix which is not a S-radix.  
35. Prove Z2S4 has a γ-semigroup.  
36. Prove Z3S(3) has a γ-semigroup.  
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37. Give an example of a ring which has no γ-semigroup.  
38. Can M3×3  =  {(aij ) / aij ∈ Z12} the ring of 3 × 3 matrices have γ-semigroup? 
39. Give an example of a ring which has δ-semigroups. 
40. Does Z24 have  

i. δ-semigroups? 
ii. S-δ semigroups? 

41. Is Z24 a SG-ring? 
42. Give an example of a S-SG ring.  
43. Can Z15 be a weakly SG-ring? 
44. Show Z20 is a pseudo ZI ring?  
45. Is the ring Z20 a S-pseudo ZI-ring? 
46. Will (ZG)2 = ZG when G is torsion free abelian? 
47. Prove (KG)2 = KG, if K is a field of characteristic zero and G is torsion free 

abelian.  
48. Give an example of a ring R which has S-square set.  
49. Give an example of a ring R in which every square set is a S-square set.  
50. Find an example of a ring which has nontrivial insulators.  
51. Give a nontrivial example of a ring which has S-insulators.  
52. Can the group ring Z5(S4) be a  

i. S-semi order ring?  
ii. Semi order ring?  

53. Can the group ring Z3G where G = 〈g / g9 = 1〉 have  
i. S-n-capacitor group? 
ii. n-capacitor group?  

54. Give an example of a semi order ring which is not a S-semi order ring.  
55. Give an example of a ring which has n-ideals but no S-n-ideals.  
56. Can Z24 be a square ideal ring? 
57. Is Z24 a S-square ideal ring?  
58. Does the group ring Z2G where G = 〈g / g2n = 1〉 have a  

i. quasi nilpotent ideals?  
ii. S-quasi nilpotents ideal?  

59. Does the semigroup ring Z3(S(4)) have  
i. radical ideal?  
ii. upper radical ideal?  
iii. S-radical ideal?  
iv. lower S-radical ideal?  

60. Give an example of a ring which has only radical ideals and does not contain 
S-radical ideals.  

61. Can the group ring Z2Sn have  
i. Smarandache related pairs?  
ii. Related pair? (related to any semigroup under  '+' ).  

62. Can Z28 have a pair which is  
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i. subring linked? 
ii. S-subring linked? 

63. Does Z2Sn contain at least one essential subring?  
64. Is Z2G,  where G = 〈g / g27 = 1〉, a S-essential ring?  
65. Can Z2S(n) have at least one S-essential subring?  
66. Does there exist a stabilized pair of subrings in Z24? 
67. Can Z12 be a S-stable ring?  
68. Give an example of a stable ring which is not a S-stable ring.  
69. Is the semigroup ring Z2S(n) a stable ring?  
70. Can the semigroup ring Z2S(n) be a S-stable ring?  
 
 
4.5 Miscellaneous properties about Smarandache Rings 
 
In this section we introduce several important properties to Smarandache rings like 
hyperrings, Hamiltonian rings, Jk-group rings, structure of fixed support in group 
rings, quasi distributivity, the lattice of S-ideals and S-subrings of a ring and show the 
lattice of S-ideals of a ring in general is not a modular lattice.  
 
In this section several new very recently introduced concepts like, integrally closed 
semigroup (or rings), system of local units, π-regular rings, generalized stable ring 
are given together with their Smarandache analogue.   
 
[18] introduces the concept of hypergroups using modulo integers that is for, groups 
under addition. Here we introduce hyperrings and Smarandache hyperrings I and 
Smarandache hyperrings II. 
 
DEFINITION 4.5.1: Let Zn

 be the ring of integers modulo n. The hyperring (Zn, 
q) (q ≤ n) obtained from Zn by defining x + y = (x + y, x + y + q) and x . y = 
(x.y, x.y.q) denoted by (Zn , q, +) and (Zn , q, .) respectively is a subset of Zn×n. We 
say the hyperring (Zn, q) has a ring structure only when (Zn, q, +) [(Zn, q, .)] 
which is a subset of Zn×n is a ring under component wise '+' and ' .' modulo n. 
(Zn, q, +) may partition Zn × Zn or (Zn, q, .) may partition Zn × Zn for varying q ∈ 
Zn.  
 
Example 4.5.1: Let Z4 = {0, 1, 2, 3} be a ring of integers modulo 4. The hyperrings 
for all q ∈ Z4 under '+' are  
 

{Z4, 3, +} = {(0, 3), (1, 0), (2, 1), (3, 2)} 
{Z4, 2, +} = {(0, 2), (1, 3), (2, 0), (3, 1)} 
{Z4, 1, +} = {(0, 1}, (1, 2), (2, 3), (3, 0)} 
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{Z4, 0, +} = {(0, 0), (1, 1), (2, 2), (3, 3)} 
 
{Z4, q, '+'} partitions Z4 × Z4. {Z4, +, 0} is a subring all others are not even closed 
under '+'.  
 
The hyperrings for all q ∈ Z4 under '.' are 
 

(Z4, 3, .) = {(0, 0), (1, 3), (2, 2), (3, 1)} 
(Z4, 2, .) = {(0, 0), (1, 2), (2, 0), (3, 2)} 
(Z4, 1, .) = {(0, 0), (1, 1), (2, 2), (3, 3)} 
(Z4, 0, .) = {(0, 0), (1, 0), (2, 0), (3, 0)} 

 
Thus we see Z4 × Z4 is not properly partitioned by  (Z4, q, '.') defined by x.y = {(x.y, 
x.y.r)/ r ∈ Z4} and {Z4, 1, .} and {Z4, 0, .} are the only subrings of Z4 × Z4.  
 
THEOREM 4.5.1: Let Zn be a ring of integers modulo n.  
 

1. (Zn, 1, .), (Z, 0, .) and {Zn, 0, +} are the only subrings of Zn × Zn.  
2. Zn × Zn is never partitioned by the operation '.' . 
3. (Zn, 1, .) = {Zn, 0, +}. 

 
Proof: (Zn, 1, .) = {(x.y, x.y.1) / x, y ∈ Zn}. It is easily verified (Zn, 1, .) is a subring  
for (Zn, 1, .) = {(0, 0), (1, 1), (2, 2), …, (n – 1, n – 1)}. (Zn, 0, .)= {(x.y, x.y.0) / 
x, y ∈ Zn} is a subring of Zn × Zn. It is easily verified as (Zn, 0, .) = {(0, 0), (1, 0), (2, 
0), …, (n – 1, 0).}. Now {Zn, +, 0} = {(0, 0), (1, 1), (2, 2), …, (n – 1, n – 1)} = 
(Zn, 1, .) is a subring of Zn × Zn.  
 
DEFINITION 4.5.2: Let Zn be a ring with A to be S-subring of Zn. Define the 
Smarandache hyperring I (S-hyperring I) to be a subring of A × A given by for any 
q ∈  A. (A, q, +) = { (a1 + a2 , a1 + a2 + q) / a1 , a2 ∈  A} and (A,  q , . ) = {(a1 . a2 , 
a1 . a2 . q)/ a2, a1 ∈ A}. Similarly we define Smarandache hyperring II for any S-
subring II of B.  
 
[40] defines a ring R to be a generalized Hamiltonian ring if every non-zero subring 
of R includes a non-zero ideal of R.  
 
Example 4.5.2: Let Z be the ring of integers. Z is a generalized Hamiltonian ring.  
 
THEOREM 4.5.2: Let KG be the group ring of the group G over any field K. The 
group ring KG is not a generalized Hamiltonian ring.  
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Proof: For K ⊂ KG is a subring which cannot include any ideal. Hence the claim.  
 
THEOREM 4.5.3: Suppose the group ring RG is Hamiltonian then we see R is 
Hamiltonian.  
 
Proof: Follows from the fact that R ⊂ RG is a subring of RG so R should be a ring in 
which every non-zero subring includes a non-zero ideal. Hence the claim.  
 
DEFINITION 4.5.3: Let R be a ring. We say R is a Smarandache Hamiltonian 
ring (S-Hamiltonian ring) if every S-subring includes a non-zero S-ideal. 
 
DEFINITION 4.5.4: Let R be a ring we say R is a Smarandache Hamiltonian 
ring II (S-Hamiltonian ring II) if every S-subring II includes a non-zero S-ideal 
II.  
 
THEOREM 4.5.4: Every S-Hamiltonian ring I is a S-Hamiltonian ring II and not 
conversely. 
 
Proof: By the very definition of S-subrings I and S-subrings II and S-ideals I and S-
ideals II. The result is true. For the converse consider the ring Z. Clearly Z is a 
Smarandache Hamiltonian II and is not Smarandache Hamiltonian I.  
 
We just recall in a group ring KG or in a semigroup ring KS we define for any α ∈ KG 
(or KS) |supp α| = {gi/ αi ≠ 0} where α = ∑αigi and |supp α| denotes the number 
of elements in α which has non-zero coefficients. It is a subset of G(or S). For more 
about these ideas please refer [61, 62]. 
 
DEFINITION 4.5.5: Let RG be a group ring of a group G over the ring R. Let N = 
{α ∈ RG / |supp α| = n}, n a fixed positive integer. If 0 is adjoined with N and if 
N ∪ {0} becomes a subring of RG we call N a fixed support subring of the group 
ring RG or n-subring of RG. (The same holds good for semigroup rings). 
 
Example 4.5.3: Let Z2G be the group ring of the group G = S3 over Z2. N = {p4 + p5, 
1 + p4, 1 + p5 / |supp α| = 2}; N ∪ {0} is a 2-subring of Z2G. Similarly M = {1 + p4 + 
p5 / |supp α| = 3} adjoined with 0 gives a 3-subring of Z2G.  
 
DEFINITION 4.5.6: Let RG be the group ring of the group G over the ring R, if A 
= {α / |supp α| = n}, n a fixed number is a semigroup under multiplication then 
N is called the fixed support semigroup of the group ring RG or the n-
subsemigroup of RG.  
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Example 4.5.4: Let Z2G be the group ring of the group G = 〈g / g3 = 1〉. Clearly P = 
{1 + g, 1 + g2, g + g2} and P1 = {1 + g + g2} are 2-subsemigroup and 3-
subsemigroup of Z2G respectively.  
 
DEFINITION 4.5.7: Let RG be the group ring of the group G over the ring R. Let 
H = {α / |supp α| = m}, m a fixed integer. If H is a subgroup under 
multiplication after adjoining the identity 1 then we call H the fixed support 
subgroup of the group ring RG or m-subgroup of RG.  
 
THEOREM 4.5.5: Every group ring RG has a 1-fixed support subgroup.  
 
Proof: Take G = {g / g ∈ G, |g| = 1}. Clearly G is a 1-fixed support subgroup. 
 
THEOREM 4.5.6: Let KS be the semigroup ring. We have S = {α / |supp α| = 1 
and α ∈ S} is a 1-fixed subsemigroup.  
 
Proof: Obvious by the very definition of KS.  
 
By using Smarandache notions we can combine the concept of fixed support of 
subgroup and fixed support of subsemigroup. 
 
DEFINITION 4.5.8: Let RG be the group ring. Let N = {α ∈ RG/ |supp α| = n}, n 
a fixed positive integer. If 0 adjoined in N becomes a S-subring of RG we call N a 
Smarandache fixed support subring (S-fixed support subring) of the group ring 
RG or S-n-subring of RG.  
 
DEFINITION 4.5.9: Let RG be the group ring of the group G over the ring R if S 
= {α / |supp α| = n}, n a fixed number is a S-semigroup under multiplication 
then we call the set S to be the Smarandache fixed support of the group ring (S-
fixed support of the group ring).  
 
Obtain interesting results about these concepts and study them.  
 
DEFINITION [44]: A ring R is said to be semi-connected if the center of R 
contains a finite number of idempotents.  
 
THEOREM 4.5.7: A group ring KG of a finite group G over a field K is semi-
connected.  
 
Proof: Obvious from the fact that K is a field and KG has idempotents as G is finite. 
Hence KG is semi-connected.  
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DEFINITION 4.5.10: Let R be a ring. We say R is Smarandache semi-connected 
(S-semi-connected) if the center of R contains a finite number of S-idempotents.  
 
Once again as the main motive of this book is for researchers to develop 
Smarandache concepts we leave it for the reader to study this concept and get some 
nice results and examples of rings which are Smarandache semi-connected.  
 
THEOREM 4.5.8: Let R be a S-semi-connected ring then R is semi-connected.  
 
Proof: Follows from the very definitions of these notions.  
 
[70] had defined the concept of Jk-ring and has studied them.  
 
DEFINITION [70]:  Let R be a ring, k a fixed positive integer. We say R is a Jk-
ring if for each x1, x2 , …, xk of R there exists a n = n(x1, x2 , …, xk ) > 1 such 
that (x1x2…xk )

n = x1 … xk .  
 
For more about Jk rings please refer [70].  
 
THEOREM 4.5.9: The group ring Z2Sn is not a Jk-ring (k > 1).  
 
Proof: Left for the reader to verify. For 1 + p1 ∈ Z2Sn where  
 

p1 = 







n...4312

n...4321
. 

 
Clearly (1 + p1)

2 = 0. [(1 + p1)(1 + p1) … (1 + p1)]n = 0 ≠ 1 + p1. Hence the 
claim.  
 
THEOREM 4.5.10: Let G be a torsion free abelian group and K any field. The 
group ring KG is not a Jk-ring.  
 
Proof: Obvious from the fact for, if we take g1, g2, …, gn ∈ G ⊂ KG then for no k > 1 
we have (g1 … gn)

K = g1…gn as G is torsion free abelian.  
 
DEFINITION 4.5.11: Let R be a ring. We say R is a Smarandache Jk-ring (S-Jk 
ring) if R contains a S-subring A, (A ≠ R but A ⊂ R) such that A is a Jk-ring. 
 
THEOREM 4.5.11: Let R be a ring if R is a Jk ring and has a non-trivial S-
subring. Then R is a S-Jk-ring.  



 172 

 
Proof: Obvious by the very definitions.  
 
Now we proceed onto find the nature of the lattice of the substructure of a ring. We 
know the set of all two-sided ideals of a ring form a modular lattice. Now we are 
interested in studying the following:  
 

1. Let R be a finite ring. M denote the collection of all S-subrings of R including 
{0} and R. What is the lattice structure of M?  

 
2. If we replace S-subring of R by S-subrings II of R, what is the structure of the 

lattice? Will it be distributive? modular? or non-modular? 
 

3. Let R be a ring M = {Set of all S-ideals of R}. What is the lattice structure of M?  
 
We assume {0} and the ring R are trivially S-ideals, S-subrings, S-ideal II and S-
subring II which act as the least and the greatest element of the lattice respectively.  
 
Example 4.5.5: Let R = Z7 ×Z9 be a ring, the S-subrings of R are {{0}, R, Z7 × {0}, 
Z7 × {0, 3, 6}}. The lattice diagram is a 4 element chain lattice which is distributive 
and hence modular.  
 
 
 
 
 
 
 
 
 
Clearly these S-subrings are also S-ideals of R.  
 
Example 4.5.6: Let R = Z3 × Z12 × Z7 be the S-mixed direct product of rings. The S-
subrings of R, are 

A1  =  Z3 × {0} × Z7 
A2 = Z3 × Z12 × {0} 
A3  = Z3 × {0, 6} × {0} 
A4  = Z3 × {0, 4, 8} × {0} 
A5  = Z3 × {0, 3, 6, 9} × {0} 
A6  = Z3 × {0, 2, 4, …, 10} × {0} 
A7  = Z3 × {0, 6} × Z7 
A8  = Z3 × {0, 3, 6, 9} × Z7 
A9  = Z3 × {0, 4, 8} × Z7 

R 

Z7 × {0, 3, 6} 

Z7 × {0} 

{0} 

Figure 4.5.1 
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A10  = Z3 × {0, 2, …, 10} × Z7 
A11  =  {0} × Z12 × {0} 
A12  =  {0} × {0, 2, 4, …, 10} × {0} 
A13  = {0} × Z12 × Z7 
A14  =  {0} × {0, 6} × Z7 
A15  =  {0} × {0, 4, 8} × Z7 
A16 =  {0} × {0, 3, 9, 6} × Z7 
A17  =  {0} × {0, 2, …, 10} × Z7 
A18  =  R and 
A0  =  {0} 

 
Thus we get S = {A0, A1, …, A18} the collection of S-subrings of R. This is easily 
verified to be also S-ideals of R. The lattice representation of them is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A13 

A18 

A2 

A8 

A5 

A3 

A16 

A7 

A14 

A6 

A10 

A17 
A11 

A9 

A1 A4 A15 
A12 

A0 

Figure 4.5.2 
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The set N = {{0}, A3, A7, A15, A10} forms a pentagon lattice which is non-modular.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hence N = {{0}, A7, A3, A15, A10} and forms a sublattice which is a pentagon lattice.  
 
Thus in case of S-rings the set of S-ideals in general will not form a modular lattice 
which is a marked difference between ideals of a ring and S-ideals of a ring. 
 
DEFINITION [57]: Let L be a lattice. L is said to be a quasi distributive lattice if 
for all x, y, z, u in L, satisfies the following: 
 
(x ∪ y) ∩ (z ∪ u) = {x ∩ (z ∪ u)} ∪ {y ∩ (z ∪ u)} ∪ {z ∩ (x ∪ y)} ∪ {u ∩ 
(x ∪ y)} and (x ∩ y) ∪ (x ∩ u) = {x ∪ (z ∩ u)} ∩ {y ∪ (z ∩ u)} ∩ {u ∪ (x 
∩ y)} ∩ {z ∪ (x ∪ y)}. 
 
Example 4.5.7: Let Z12 = {0, 1, …, 11} be the ring. For S = H0 = {0}, H1 = {0, 6}, 
H2 = {0, 3, 6, 9}, H3 = {0, 4, 8}, H4 = {0, 2, 4, 8, 6, 10} and H5= Z12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A7 

A3 

A10 

A0 

A15 

Figure 4.5.3 

H4 

H3 H1 

H2 

{0} 

H5 

Figure 4.5.4 



 175 

 
The reader is advised to verify whether the ideals form a quasi distributive lattice.  
 
Example 4.5.8: The lattice of ideals of Z16 is a quasi distributive lattice in fact a 
chain lattice. Left for the reader to draw the lattice diagram.  
 
Example 4.5.9: Given the lattice diagram of the ring given by the S-mixed direct 
product of rings; R= Z3 × Z12. The S-subrings of R are A0 = {0} × {0}, A1 = {0} × {0, 
2, 4, 6, 8, 10}, A2 = {0} × Z12, A3 = Z3 × {0, 6}, A4 = Z3 × {0, 4, 8}, A5 = Z3 × {0, 3, 
6, 9}, A6 = Z3 × {0, 2, 6, 4, 8 10}, A7 = Z3 × Z12 = R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test whether this lattice satisfies the quasi distributive identity 
 
DEFINITION [26]: An element a ∈ R, R a ring is called clean if it can be 
expressed as the sum of an idempotent and a unit in R.  
 
A ring is called a clean ring if every element of R is clean.  
 
It has been shown by [26] that "If e is an idempotent in a ring R such that both eRe 
and (1 – e)R(1 – e) are clean rings then R is a clean ring.  
 
DEFINITION 4.5.12: Let R be a ring. An element a ∈ A where A is a S-subring of 
R is said to be a Smarandache clean (S-clean) element of R if it can be expressed 
as the sum of an idempotent and a unit in R. A ring R is called a Smarandache 
clean ring (S-clean ring) if every element of R is S-clean.  
 
Thus for a ring R to be a S-clean ring it is sufficient if R has a S-subring A which 
is a S-clean ring. We do not demand the whole ring to be clean but it is localized.  

A7 = R 

A5 

A3 

A2 

A1 

A0 

A4 

A6 

Figure 4.5.5 
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THEOREM 4.5.12: Let R be a ring. If R has a S-subring and R is a clean ring 
then R is a S-clean ring.  
 
Proof: Obvious by the very definitions of clean ring and S-clean ring.  
 
Example 4.5.10: Let Z6 = {0, 1, 2, …, 5}. In this ring every element other than 0 
and 1 are clean. But Z6 is not a S-clean ring.  
 
Further all clean rings R need not be S-clean for that ring R may not have a S-subring. 
Now we proceed onto define a concept viz. Smarandache strongly clean rings.  
 
DEFINITION 4.5.13: Let R be a ring. We say a ∈ R is a Smarandache strongly 
clean (S-s-clean) element if a can be written as a sum of a S-idempotent and a 
S-unit in R. If every a ∈ R is S-s-clean then we call R a Smarandache strongly 
clean ring (S-strongly clean ring).  
 
Here it is important to note that R need not be a S-ring.  
 
Further we leave the following theorems for the reader to prove.  
 
THEOREM 4.5.13: If R is S-s-clean ring then it is a clean ring.  
 
THEOREM 4.5.14: Every S-s-clean ring need not be a S-clean ring.  
 
DEFINITION [53]: Let S be a semigroup. S is integrally closed if nα ∈ S for some 
integer n ∈ N implies α ∈ S.  
 
[53] has studied the integral closure of semigroup rings. We now proceed onto 
define Smarandache integrally closed rings.  
 
DEFINITION 4.5.14: Let S be a S-semigroup. We say S is a Smarandache 
integrally closed semigroup (S-integrally closed semigroup) if S has a S-
subsemigroup A which is such that whenever nα ∈ A, n some integer and α ∈ A.  
 
DEFINITION 4.5.15: Let R be a ring we say R is an integrally closed ring if R 
has a subset M, such that M is a multiplicatively closed semigroup and M is an 
integrally closed semigroup.  
 
DEFINITION 4.5.16: Let R be a ring. We say the ring R is Smarandache 
integrally closed (S-integrally closed) ring if R contains a S-semigroup M, M ⊂ R 
under multiplication and S is an S-integrally closed semigroup. 
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DEFINITION [58]: A subset E of a semigroup S is called a system of local units 
if and only if the following conditions are satisfied:  
 

1. E consists of commuting idempotents.  
2. For any x ∈ S there exists e ∈ E such that xe = ex = x.  

 
We proceed onto define the concept of Smarandache local units of a semigroup, local 
units of a ring and Smarandache local units of a ring.  
 
DEFINITION 4.5.17: Let S be a S-semigroup. A subset M of S is called a 
Smarandache system of local units (S-system of local units) if and only if the 
following conditions are satisfied: 
 

1. M consists of commuting S-idempotents 
2. For any x ∈ S there exists e ∈ M such that ex = xe = x.  

 
DEFINITION 4.5.18: Let R be a ring. A subset P of R is said to be a system of 
local units if and only if the following conditions are satisfied:  
 

1. P consists of commuting idempotents. 
2. For any r ∈ R there exists p ∈ P such that px = xp = x.  

 
We define Smarandache system of local units. 
 
DEFINITION 4.5.19: Let R be a S-ring. A subset M of R is called a Smarandache 
system of local units (S-system of local units) if and only if the following 
conditions are satisfied:  
 

1. M consists of commuting S-idempotents. 
2. For any s ∈ R there exists e ∈ M such se = es = s.  

 
The reader is advised to develop Morita equivalence on semigroups with systems of 
local units.  
 
A ring (or semigroup) R is said to be π-regular if some power of every element is von 
Neumann regular. If a power of every element in R belongs to a subgroup of R, R is 
said to be uniformly π regular [8]. This paper [8] is a piece of nice research and the 
greatness of the paper lies in its extensive bibliography and the reader is advised to 
develop the Smarandache concepts about regularity. 
 
DEFINITION [162]: Let S be an additive subgroup of a finite ring R and 
suppose that either S is a subring or S is semisimple. Each of the following 
conditions are equivalent to S being a subideal of R.  
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1. S is a subideal of the ring generated by S and r for all r ∈ R  
2. S ∩ T is a subideal of T for all 2-generator subrings T of R.  
3. For all s ∈ S and r ∈ R there is a positive integer n such that both (sr)n 

and r(sr)n lie in S.  
 
DEFINITION [162]: A subring S of R is said to be a subideal if there is a finite 
chain.  
 
S = Rm ⊆ Rm –1 ⊆ … ⊆ = R such that Ri   is an ideal of Ri–1   for i = 1, 2, …, m.  
 
Now we proceed onto define the Smarandache analogue.  
 
DEFINITION 4.5.20: Let A be an additive S-semigroup of a finite ring R and 
suppose that either P ⊂ A (P a subgroup of A) is a S-subring or P is semisimple. 
Each of the following conditions are equivalent to P being a Smarandache 
subideal (S-subideal) of R.  
 

1. P is a S-subideal of the ring generated by P and r for all r ∈ R. 
2. P ∩ T is a S-subideal of T for all 2 generator S-subrings T of R.  
3. For all s ∈ P and r ∈ R there is a positive integer n such that (sr)n and 

r(sr)n lie in P.  
  
DEFINITION [163]: A ring R is called weakly periodic if for every x in R can be 
written x = a + b where a is nilpotent and b potent in the sense that bn(b) for 
some integer n(b) > 1.   
 
DEFINITION 4.5.21: A S-subring A of R is said to be a S-subideal if there is a 
finite chain.  
 
A = Rm ⊆ Rm – 1 ⊆ … ⊆ R such that Ri is an S-ideal of Ri – 1  for i = 1, 2, …, m. 
 
DEFINITION 4.5.22: A S-ring R is called Smarandache weakly periodic (S-
weakly periodic) if every x in R can be written in the form x = a + b where a is S-
nilpotent and b potent in the sense that bn(b) = b for some integer n(b) > 1.  
 
The study of stable and stabilizer in rings was introduced earlier. Now we give here 
the concept of generalized stable ring as given by [12]. 
 
DEFINITION [12]: Let R be an associative ring with 1. K(R) be the set {x ∈ R / 
there exists s, t in R such that sxt = 1}. The author defines R to be a generalized 
stable ring provided that aR + bR = R with a, b ∈ R implies a + by ∈ K(R) for 
some y ∈ R.  
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DEFINITION [12]: A ring R satisfies n-stable range condition for whenever a1 , 
a2 , …, an+1 ∈ R with a1 R + … + an+1 R = R there exists elements b1 , b2 , …, bn in 
R such that (a1 + an+1 b1)R + … + (an + an+1 bn)R = R.  
 
DEFINITION [12]: R has stable range 1 if and only if whenever a, b ∈ R with ab 
and ba strongly π-regular the Drazin inverses of ab and ba are conjugate via a 
unit of R.  
 
For more about stable range please refer [12].  
 
Now when we replace R by a S-ring we get the corresponding results but for stable 
range 1 the Smarandache analogue is as follows:  
 
DEFINITION 4.5.23: Let R be a ring. R is said to be a Smarandache stable range 
I (S-stable range I) if and only if whenever a, b ∈ R with ab and ba strongly π-
regular the Drazin inverses of ab and ba are conjugate via a S-unit of R.  
 
Thus we request the reader to develop all these concepts and do research on 
Smarandache notions on π-regular elements as it has not been carried out in this 
book.  
 
PROBLEMS:  
 

1. Find a S-hyperring II of the ring Z24.  
2. Find the hyperring of Z22. 
3. Can the group ring Z18 have S-hyperring II which is not S-hyperring I? Justify 

your claim.  
4. Does the semigroup ring Z3S(4) have 

i. Fixed support subring? 
ii. Fixed support subsemigroup? 
iii. S-fixed support subring? 

5. Find a fixed support subring of Z2S4.  
6. Can Z2S4 have S-fixed support subsemigroup? 
7. Give an example of a ring which is semi-connected but not S-semi-connected.  
8. Is the group ring Z4S7  

i. semi-connected? 
ii. S-semi-connected? Justify your claim. 

9. Give a non-trivial example of a Jk-ring. 
10. Give an example of a S-Jk ring which is not a Jk ring.  
11. Find the lattice of S-ideals and S-subrings for the ring R = Z8× Z3 × Z16 × Z7. 
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12. For the S-mixed direct product ring R = Z10 × Z7 draw the lattice of S-ideals. 
Does it satisfy quasi-distributive lattice identity?   

13. Give an example of a clean ring of order 18.  
14. Show by an example a clean ring need not be a S-clean ring. 
15. Is Z20 = {0, 1, 2, …, 19} the semigroup under multiplication  

i. integrally closed? 
ii. S-integrally closed? 

16. Can the group ring Z3S5 be  
i. integrally closed? 
ii. S-integrally closed? 

17. Give an example of a semigroup which has system of local units. 
18. A semigroup which can never have a system of local units (Will Z+ under 

multiplication be a system of local units). 
19. Can the ring Z5S3 have system of  

i. local units? 
ii. S-local units? 

20. Give an example of a weakly periodic ring. 
21. Show by an example a S-ring which is not weakly periodic. 
22. Is Z40 a clean ring? 
23. Can Z25 be a S-clean ring? 
24. Give an example of a S-clean ring which is not clean.  
25. Give an example of a clean ring which is not S-clean. 
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Chapter five  
 

SUGGESTED PROBLEMS 
 
This section is completely devoted to introducing several problems for researchers 
both in ring theory and Smarandache ring theory. Some of the problems are relatively 
simple and easily solvable whereas many problems can be treated as serious research 
problems. This chapter has 203 problems which are engrossing and an innovative 
researcher would certainly find them interesting.  
 
Except for the classical zero divisor conjecture (problem) for group rings (1940) we 
have not repeated or included any of the open problems from other texts. Several 
problems are termed as characteristly by which we mean only to obtain a necessary 
and sufficient condition for the results to be true. If the student/ researcher has solved 
all problems at the end of each section in each chapter then certainly the researcher 
will not only find problems interesting but may solve them. As the reader is advised to 
have a good background in algebra in general and ring theory in particular. Several of 
the problems are characterization of S-group rings and S-semigroup rings.  
 
Finally we state that this book gives importance to problems not only related to units, 
idempotents, zero divisors but those special elements like semi-idempotents, semi-
units, super-idempotents etc. which indirectly guarantee the existence of units, zero-
divisors, idempotents, etc. Likewise, not only study of ideals or subrings are studied 
and their related problems discussed but importance is given to substructure like 
additive/ multiplicative subgroups of ring, additive/ multiplicative semigroups and S-
semigroups, S-ideals, S-subrings and so on. 
 
Thus this chapter will be a boon to all researchers in Smarandache algebra and in 
ring theory.  
 
Problems: 
 
1. Obtain a necessary and sufficient condition for a unit to be a S-unit in a ring R (R is 
not a field).  
 
2. Characterize those rings R in which every unit is a S-unit (R is not a field).  
 
3. Characterize those rings R in which no unit of R is a S-unit of R.  
 
4. Find conditions on the group G so that the group ring KG has S-units (K any field).  
 
5. Find conditions on the semigroup ring FS so that FS has units which are S-units.  
 
6. Characterize those fields of characteristic 0 in which every unit is not a S-unit.  
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7. Characterize those group rings in which every zero divisor is a S-zero divisor. 
 
8. Characterize those rings which have zero divisiors but no S-zero divisors.  
 
9. Characterize those semigroup rings.  
 

a. In which every zero divisor is a S-zero divisor.  
b. No zero divisor is a S-zero divisor.  

 
10. Characterize those S-integral domains which are not integral domains.  
 
11. Does there exist S-division rings which are not division rings?  
 
12. Let G be a torsion free non-abelian group, R any field of characterize 0; can KG 
have S-idempotents? (The existence of S-idempotents in KG will force one to settle the 
problem of zero divisor conjecture, for it would imply the existence of zero divisor in 
KG which is an open problem from the year 1940). This is an equivalent formulation 
of the zero divisor conjecture.  
 
13. Characterize those rings in which every idempotent is a S-idempotent.  
 
14. Characterize those rings in which no idempotent is a S-idempotent.  
 
15. Prove in any ring Zn (Ring of integers modulo n). If a is a S-idempotent and b a S-
co-idempotent of a then a + b ≡ n(mod n).  
 
16. Characterize those rings R in which every S-idempotent has a unique S-co-
idempotent.  
 

17. Can np
Z ={0, 1, 2, …, pn – 1} the ring of integers modulo p

n
 ; p a prime, n ≥ 2 

have S-idempotents? Characterize them.  
 
18. Let Zn be the ring of integers modulo n. n = p1p2p3 (p1,p2,p3 are 3 distinct primes) 
of which atleast one is an even prime.  
 

a. Can Zn have only 6 idempotents of which 5 are S-
idempotents?  

b. If p1, p2 and p3 are all odd primes, can we prove Zn has 6 
idempotents all of which are S-idempotents?  
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19. Find the number of idempotents in Zn={0, 1, 2, …, n – 1} (where 
m21

m21 p...ppn ααα= , pi are distinct primes; αI > 1) which are S-idempotents.  
 
20. Let ZnG be the group ring of the group G over the ring Zn.  
 

a. Characterize those group rings ZnG (by giving conditions on 
Zn and/or on G) so that every idempotent in ZnG is an S-
idempotent of ZnG. 

b. No idempotent in ZnG is a S-idempotent.  
 
21. Let ZnS be the semigroup ring of a semigroup S over the ring Zn 
 

a. Characterize those semigroup so that in ZnS, every 
idempotent is a S-idempotent.  

b. No idempotent in ZnS is a S-idempotent.  
 
22. Characterize those rings R in which every ideal is a S-ideal I. 
 
23. Characterize those rings in which no ideal is a S-ideal I. 
 
24. Obtain conditions on rings R so that the concept of S-ideal I and S-subring I 
coincide. 
 
25. Can we say the concept of S-rings I and S-rings II coincide on finite rings?  
 
26. Can we say all rings Zn are both S-ring I and S-ring II? 
 
27. Characterize all rings R which are S-ring II and not S-ring I. (Note – Don’t take Z 
or Z[x] or matrices over Z or direct product of Z). 
 
28. Determine those S-rings which have only S-pseudo ideals and no S-ideals I or S-
ideals II.  
 
29. Describe mathematically those group rings which are not  
 

a. S-simple rings I.  
b. S-simple rings II.  
c. S-pseudo simple rings.  

 
30. Characterize those rings R in which an S-module I M, related to a field F ⊂ R is S-
module I for all fields contained in R.  
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31. Do there exist rings R in which all modules M which is a S-module I is also a S-
module II?  
 
32. In a ring R, can the concept of S-module II coincide with S-pseudo module?  
 
33. Does there exist rings for which S-module II can never be defined? If such rings 
exists, characterize them.  
 
34. Characterize those class of rings which are S-strong right S-rings.  
 
35. Characterize those class of rings which are precisely S-strong right D-rings.  
 

36. Does there exist a two sided ideal of order 2
!n

p  in the group ring ZpSn? 

 
a. When p is a prime and p/n! 
b. When p is a prime and (p, n!) = 1.  
c. When p is a composite number and (p, n!) = 1.  
d. When p is a composite number and (p, n!) = d.  

 
(Remark. The group ring Z2S3 has no two sided ideals of order 8 but has a right ideal 
of order 8. Further the group ring Z2S3 has two sided ideals of order 2,4,16 and 32 
where the order of Z2S3 is 64 but has no two sided ideals of order 8). Now we 
propose the following: 
 
37. Does there exist a two-sided S-ideal I and II of order 2/!np  in the group ring ZpSn? 

 
The conditions mentioned as four cases in problems 36 should be discussed in the 
case of S-ideals.  
 
38. Study the same problems given in 36 and 37 in case of right ideals, S-right ideals I 
(II), left ideals and S-left ideals I (II).  
 
39. Characterize those group rings which are S-J-rings. [we see Z2S3 is a S-J-rings can 
we say all rings ZpSn will be S-J-ring. Find conditions on p and n, so that the group 
ring ZpSn is a S-J-ring].  
 
40. Obtain conditions on the semigroup S and on the ring R so that the semigroup 
ring RS is a S-J-ring.  
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41. Let Zn be the ring of integers modulo n. Sm be the symmetric group of degree m. 
Let ZnSm be the group ring of the group Sm over Zn. Is ZnSm a S-strong subring? Discuss 
the cases  

a. When n= m = p (p a prime).  
b. When n= m = non-prime.  
c. When (n,m) = 1. 
d. When (n,m) = p, n > m p – prime.  
e. When (n,m) = d, d any non-prime integer.  

 
42. Study problem 41 for S-ideals; i.e., is ZnSm a S-strong ideal ring?  
 
43. When will ZnSm be a S-strong subring ideal ring?  
 
44. Find conditions on Zn and Sm, so that the group ring ZnSm is a S-weakly Boolean 
ring.  
 
45. Let Zn be the ring of integers modulo n which is a S-ring. Characterize those rings 
Zn which are S-weakly Boolean.  
 
(Hint: Z6={0,1,2,3,4,5} is a S-ring which is not a S-weakly Boolean ring.)  
 
The group ring Z15 G where G={g/g2=1}, Z15 = {0, 1, 2, 3, …, 14} is a S-weakly 
Boolean ring for it has the S-subring BG where B={0,5,10}.  
 
46. Characterize those group rings ZnSm which are S-right multiplication ideal ring.  
 
47. Characterize those semigroup rings ZnS(m) (S(m) – symmetric semigroup) 
which are S-right multiplication ideal ring. Discuss atleast the cases  
 

a. When m = n,  
b. (m, n) = 1, 
c. n odd prime, m a multiple of n.  
d. (m, n) = d (d, a non-prime).  

 
48. Characterize those semigroup rings ZnS(m) which are S-weakly Boolean rings?  
 
49. Characterize those group rings ZnSm which are S-pseudo commutative.  
 
50. Characterize those group rings ZnSn which have a pair which is S-pseudo 
commutative relative to a S-subring.  
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(Hint: Should discuss when n is a prime and n is a non-prime m is prime or a power 
of a prime and m a non-prime and finally (n, m) = n or (n, m) = m, (n, m) = 1 and 
(n, m) = d, d < n, d < m).  
 
51. Characterize those semigroup rings ZnS(m) which are S-pseudo commutative.  
 
52. Do we have semigroup rings Zn S(m) which has a pair which is S-pseudo 
commutative relative to a S-subring? Classify and characterize those semigroup rings.  
 
53. Let Zn be a prime field or a ring of integers modulo n. Sm be the symmetric group 
of degree n. Characterize the group ring ZnSm so that it is  
 

a. Strictly right chain ring. 
b. Chain ring.  

 
(Hint: Use conditions on n and m as (n, m)=1, n prime, m composite, (m, n) = 1 
both m and n prime n ≠ m, (n, m) = n or m). 
 
54. Characterize those rings which are ideally obedient rings.  
 
55. Characterize those rings which do not have any obedient ideals.  
 
56. Characterize those rings which are S-ideally obedient rings.  
 
57. Characterize those ring which has  
 

a. S-obedient ideals.  
b. which has S-ideals but none of them are S-obedient ideals.  

 
58. Characterize those group rings which are S-strongly clean rings.  
 
59. Characterize those semigroup rings which are  
 

a. S-ideally obedient rings.  
b. Ideally obedient rings.  
c. S-clean rings 
d. Clean rings 

 
60. Characterize those group rings  
 

a. Which are Lin rings.  
b. Which are S-Lin rings.  

 
61. Characterize those semigroup rings  
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a. Which are Lin ring.  
b. Which are not Lin rings.  

 
62. Characterize those rings R which are S-Lin rings (R not a group rings a semigroup 
ring).  
 
63. Find the class of group rings KG (by giving conditions on the group G and on the 
field or ring K) so that they are S-Lin rings.  
 
64. Find the class of semigroup rings FS (S a semigroup, F a commutative ring with 1 
or a field) which are S-Lin rings.  
 
65. Let G be torsion free non-abelian group and F any field or a commutative ring with 
1. Can the group ring FG satisfy super ore conditions?  
 
66. Characterize those rings which does not satisfy super ore condition but satisfies S-
super ore condition.  
 
67. Obtain a necessary and sufficient condition for a group ring FG to be an ideally 
strong ring.  
 
68. Characterize those semigroup rings RS where R is a ring and S a semigroup which 
are  

a. Ideally strong.  
b. Which are not ideally strong.  

 
69. Characterize those rings which are S-ideally strong rings.  
 
70. Find conditions on the group G and on the ring R so that the group ring RG is 
both ideally strong and a S-ideally strong ring.  
 
71. Study the same problem of characterization when the group G is replaced by a 
semigroup.  
 
72. Is Zp Sm a Q-ring? Discuss all the possible cases when   
 

a. p a prime.  
b. p/m.  
c. (p, q) = 1.  
d. p = 2 and m a prime.  

 
73. Will the semigroup ring ZpSm be a Q-ring  
 

a. p a prime m non-prime (p, m) = 1. 
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b. (p, m) = d (p need not be a prime).  
c. p = 2 m any integer. 
d. (p, q) = 1 p and q primes ?  

 
74. Characterize those rings which are Q-rings.  
 
75. Characterize those group rings which are S-Q-rings.  
 
76. Characterize those semigroup rings which are both Q-rings and S-Q-rings.  
 
77. Can the ring Mnxn = {(aij) / aij ∈ Zm, m not a prime} be  
 

a. a Q-ring (m = n and m ≠ n)? 
b. a S-Q-ring (m = n, and m ≠ n)?  

 
78. Is the group ring ZpSn a F-ring, p an odd prime? 
 
79. Classify those group rings which are S-F-rings.  
 
80. Can the semigroup ring ZpS(n) be a F-ring, p an odd prime?  
 
81. Classify those semigroup rings which are S-F rings and F-rings.  
 
82. Can a group ring KG where K is a field of characteristic 0 and G a torsion free 
non-abelian group have semi nilpotent elements. (The solution to this problem is 
equivalent to the zero divisor conjecture in group rings proposed in 1940; can KG 
have zero divisors if G is a torsion free non-abelian group?)  
 
83. Let Zp be the prime field of characteristic p (p > 2) and G = 〈g / gq=1〉 be a cyclic 
group of order q.  
 

a. If (p, q) = 1, can the group ring ZpG have nontrivial semi 
nilpotent elements?  

b. If p/q, can the group ring ZpG have nontrivial semi nilpotent 
elements?  

 
(We see the group ring Z2G has semi nilpotents where G = 〈g/g2 = 1〉. We also observe 
that if G = 〈g/g3 = 1〉 then the group ring Z2G has no nontrivial semi nilpotents).  
  
84. Let Zn={0, 2, 3, …, n – 1} be the ring of integers modulo n. Find conditions on n 
so that Zn is a SSS ring. Find the maximum number of SS-elements in Zn. (Hint: Z9={0, 
1, 2, … , 8} has 4-SSS elements or 2 pairs of SS elements viz (3,6) and (5,8)).  
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85. Can we have a ring R in which all elements in R \ {0,1} are SS-elements?  
 
86. Let G be a torsion free non-abelian group, K any field. Can KG have nontrivial S-
subrings?  
 
87. Let G be a torsion free non-abelian group and K any field of characteristic zero. 
Can KG be  
 

a. Locally semiunitary? 
b. Locally unitary?  

 
88. Characterize those group rings KG which are  
 

a. S-locally unitary.  
b. S-locally semiunitary. 
c. Locally semiunitary.  

 
89. Characterize those semigroup rings KS which are  
 

a. S-locally unitary.  
b. S-locally semiunitary.  
c. Locally unitary. 

 
90. Let G be a torsion free non-abelian group and K a field of characteristic 0.  
 

a. Can KG be S-semiunitary?  
b. Can KG be S-unitary?  

 
91. Let G be a torsion free group and K any field. Can the group ring KG be a  
 

a. CN ring?  
b. Weakly CN ring?  

 
92. Characterize those group rings KG which are  
 

a. S-weakly CN ring. 
b. S-CN ring.  
c. Weakly CN-ring. 

 
93. Characterize those group rings which are  
 

a. Tight rings.  
b. S-Tight rings.  

 
94. Characterize those rings R which are  
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a. Never a tight ring.  
b. Never a S-tight ring.  
c. S-tight ring. 

 
95. Let G be a torsion free non-abelian group and K any field of characterize 0. Can 
the group ring KG be a γn-ring? 
 
96. Let G be a torsion free non-abelian group and K any field of characterize 0. Can 
the group ring KG be a S-γn-ring?  
 
97. Characterize those semigroup rings KS that are S-γn-rings.  
 
98. What is the condition on the group G and on the field K so that the group ring KG 
has  
 

a. S-demi subrings? 
b. Demi subrings?  

 
(Study the above problem in case of semigroup rings KS).  
 
99. Give any nice characterization theorem for the S-demimodules to exists for the 
group ring KG.  
 
100. Let P={α0 + α1i +α2j + α3k / α0, α1, α2, α3  ∈ Zn; n a composite number}; Can 
we have P=G ∪ V? 
 
101. Can P have idempotents other than the ones given in Zn? 
 
102. Can we say by using Zp, p a prime we can construct P which is a finite division 
ring of dimension p4, p an odd prime?  
 
103. Use P given in problem 100 to define some interesting and innovative 
Smarandache notions on rings.  
 
104. Characterize those S-group rings which are S-Artinian. 
 
105. Characterize those S-semigroup rings which are S-Artinian.  
 
106. Determine the class of group rings which are S-Noetherian.  
 
107. Does there exist a class of semigroup rings which are S-Noetherian?  
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108. Let the group ring RG be any S-ring. Depending on G and on R is it possible to 
find the number of proper subsets of RG which are fields. (Hint: Study this in case of 
ZnSm and QSm). 
 
109. Let RS be a S-semigroup ring. R any field and S a S-semigroup.  
 

a. Does there exist a method by which the number of proper 
subsets which are fields can be found out?  

b. Characterize those S-semigroup rings which has no proper 
subset which is a field (For ZS(3) is S-semigroup ring 
which has no proper set which is a field).  

 
110. Characterize the ideals in the ring Zn, n a composite number so that Zn has  
 

a. S-ideals. 
b. S-A.C.C. condition is satisfied. 
c. no S-ideals. 

 
111. Characterize those group rings ZnSn which satisfy S-A.C.C. condition.  
 
112. Characterize those semigroup rings ZnS(m) which satisfy S-A.C.C. II on ideals. 
 
113. Characterize those group rings (semigroup rings) which satisfy both A.C.C. and 
S.A.C.C. II. 
 
114. Characterize those group rings (semigroup rings) which satisfy both S-D.C.C. II 
and D.C.C.  
 
115. Does there exist a ring R which cannot be S-quasi ordered? 
 
116. Let K be any field. G a torsion free non-abelian group. Can KG have  
 

a. non-trivial semi nilpotent ideals? 
b. non-trivial S-semi nilpotent ideals? 

 
117. Can the group ring ZpG (G-finite group) have non-trivial S-semi nilpotent ideals? 
 
118. Can the semigroup ring ZpS(n) have non-trivial S-semi nilpotent ideals?  
 
119. Let ZpG  be the group ring and G is a p-group. Does ZpG have non-trivial S-semi 
nilpotent ideals not including ω(ZpG)?  
 
120. Characterize those rings which are  
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a. S-subsemiideal rings.  
b. subsemiideal rings. 
 

121. Give a necessary and sufficient condition for the group ring to be  
 

a. S-subsemi ideal rings. 
b. subsemi ideal rings 

 
122. Characterize those semigroup rings which are  

 
a. S-subsemi ideal rings. 
b. subsemi ideal rings. 

 
123. Obtain conditions on a ring R so that every subsemi ideal ring is a S-subsemi 
ideal.  
 
124. Can KG the group ring where K is a field and G a torsion free non-abelian group 
have non-trivial super-idempotents?  
 
125. Obtain conditions on the group G and on the ring R so that the group ring RG 
has non-trivial super idempotents.  
 
126. Does the group ring ZpG when G is a cyclic group of order q have non-trivial 
super-idempotents when: 
 

a. (p, q) = 1. 
b. p/q. 
c. p = q. 
d. (p, q) = d. 

 
127. Can the semigroup ring ZpS(n) have non-trivial S-super-idempotents?  
 
128. Study problems 124 to 126 in the context of S-super idempotents.  
 
129. Characterize those normal rings which are not S-normal rings.  
 
130. Characterize those normal rings which are S-normal rings.  
 
131. Classify those group rings which are  
 

a. normal rings. 
b. S-normal rings. 

 
132. Characterize those semigroup rings which are  
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a. normal rings. 
b. S-normal rings. 

 
133. Characterize those group rings which are  
 

a. S-SI rings. 
b. SI rings. 

 
134. Study problem 133 in case of semigroup rings. 
 
135. Classify those SI-rings which are S-SI-rings and those S-SI-rings which are SI-
rings.  
 
136. Can KG where K is a field and G a torsion free non-abelian group be a  
 

a. n-c-s-ring. 
b. S-n-c-s ring. 

 
137. Characterize those group rings ZnSm which are  
 

a. n-c-s ring. 
b. S-n-c-s ring.  

 
by varying n and m as   

 
a. (n, m) = 1. 
b. n/m. 
c. (n, m) = d. 
d. n prime, m prime. 
e. n prime, m a non-prime. 

 
138. Characterize those semigroup rings ZnS(m) which are  
 

a. n-c-s rings. 
b. S-n-c-s rings. 

 
under the conditions mentioned in problem 137. 
 
139. Let G be a cyclic group of order p, p a prime and Zg be the prime field of 
characteristic q such that (p, q) = 1. Is ZpG an iso-ring? Can ZpG be a co-ring? If p/q 
will ZpG be an iso-ring and co-ring? If q is not a prime will ZpG be a co-ring and an iso 
ring?  
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140. Obtain conditions for the group ring ZpSn to be a  
 

a. iso-ring. 
b. co-ring. 
c. not a co-ring. 
d. not an iso-ring. 

 
(by imposing conditions p and n). 

 
141. Characterize those semigroup rings ZnS(m) which are  
 

a. S-co-rings. 
b. S-weak co-rings.  
c. S-iso-rings. 
d. S-weak iso-rings. 

 
142. Find condition on n and m so in the group ring ZnSm we have  
 

a. S-co-rings. 
b. S-weak co-rings. 
c. S-iso-rings. 
d. S-weak iso-rings. 

 
143. Let K be a field of characteristic zero and G a torsion free non-abelian group. 
Can KG the group ring be  
 

a. S-e-primitive? 
b. At least S-weakly e-primitive?  
c. e-primitive? 
d. At least weakly e-primitive?  

 
144. Characterize those group rings ZpG which are  
 

a. S-weakly e-primitive 
b. weakly e-primitive. 
c. e-primitive. 
d. S-e-primitive. 

 
145. Characterize those semigroup rings ZpS(m) which are  
 

a. e-primitive. 
b. S-e-primitive. 
c. S-weakly e-primitive. 
d. weakly e-primitive. 
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146. Obtain conditions on the ring R and the group G so that the group ring RG can 
have  
 

a. SV-group. 
b. Weakly SV-group. 
c. S-SV-group. 
d. S-Weakly SV-group. 

 
147.  Let R be a ring and S a semigroup. Obtain conditions on R and S so that the 
semigroup ring is a  
 

a. S-SV group and  
b. not a SV group.  

 
148. Let K be a field and G be a torsion free non-abelian group  
 

a. Can KG have SV – group? 
b. Can KG have WSV groups?  
c. S-SV-groups? 
d. S-weakly SV-groups? 

 
149. Let K be a field of characteristic 0 and G be a torsion free non-abelian group. 
Can KG have S-radix? Can KG have radix? 
 
150. Classify those rings R in which no radix is a S-radix. 
 
151. Classify those rings which has no S-radix and no radix.  
 
152. Classify those rings in which every δ-semigroup (under multiplication) is a S-δ-
semigroup.  
 
153. Characterize those group rings which are  
 

a. SG-ring. 
b. weakly SG-ring. 
c. S-SG-ring. 
d. S-weakly SG-ring. 

 
154. Study and characterize those semigroup rings which are SG-rings/ S-SG rings/ S-
weakly SG ring/ weakly SG-rings.  
 
155. Classify those rings which are SG-rings and also S-SG rings.  
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156. Let KG be the group ring of the torsion free non-abelian group G and K the field 
of characteristic 0. Can KG be a  
 

a. ZI ring? 
b. S-ZI ring? 
c. Weakly ZI ring? 
d. S-weakly ZI ring? 
e. pseudo ZI ring? 

 
157. Characterize or classify all semigroup rings ZnS(P) that are  
 

a. pseudo ZI ring. 
b. S-pseudo ZI ring. 
c. ZI ring. 
d. S-ZI ring. 

 
158. Let K be a field of characteristic 0 and G a torsion free non-abelian group. Can 
the group ring KG have non-empty square sets? 
 
159. Let K be a prime field of characteristic zero and G a torsion free non-abelian 
group. Can the group ring KG have insulators? 
 
160. Let Zn be the ring of integers modulo n and G be an abelian group. When does 
the group ring ZnG have n-capacitor groups 
 

a. If (|G|, n) = 1. 
b. If (n, |G|) ≠ 1. 
c. If n/|G|. 

 
161. Characterize those group rings (semigroup rings) in which all n-capacitor 
groups are S-n-capacitor groups. 
 
162. If R is a ring without nilpotent elements of order 2. Does it imply R is trisimple? 
 
163. ZpG  be the group ring where G = 〈g / gn = 1〉. Can ZpG be trisimple if (p, n) = 1, 
(p, n) = d and (p, n) = p?  
 
164. Characterize those group rings and semigroup rings which are 
 

a. Trisimple. 
b. S-trisimple. 
c. S-semi trisimple. 

 
165. Can Z be a S-semi-order ring? 



 197 

 
166. Give a complete characterization of group rings (semigroup rings) which are  
 

a. so-ring. 
b. S-so-ring. 

 
167. Let Zp be the prime field of characteristic p. G = 〈g/ gq = 1〉. ZpG be the group 
ring. For what values of p and q will the group ring ZpG be a  
 

a. Square ideal ring? 
b. S-square ideal ring? 
c. S-n-ideal ring? 
d. n-ideal ring? 

 
168. Let G be a torsion free non-abelian group and K any field. Can the group ring KG 
be a  
 

a. Square ideal ring? 
b. S-square ideal ring? 
c. S-n-ideal ring? 
d. n-ideal ring? 

 
169. Characterize those group rings (semigroup rings or rings) in which all square 
ideals are S-square ideals and all n-ideals are S-n-ideals.  
 
170. Let G be a torsion free non-abelian group. K any field of characteristic 0 or p. 
Can the group ring KG be a n-like ring for any n? 
 
171. Let Zp be a prime field of characteristic p, p ≠ 2 and G = 〈g / gq = 1〉. Is the 
group ring ZpG a n-like ring  
 

a. when (p, q) = 1? 
b. p = q? 
c. p is a multiple of q or q is multiple of p. 

 
172. Let G be a finite group. K any field of characteristic 0. Can KG the group ring be a  
 

a. TI ring? 
b. S-TI ring? 

 
173. Let G be a torsion free group and K any field characteristic zero or p. Can the 
group ring KG be a  
 

a. TI ring? 
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b. S-TI-ring? 
 
174. Characterize those rings which are power joined is also S-power joined.  
 
175. Obtain a necessary and sufficient condition for the (m, n) (uniformly) power 
joined ring to be S-(m, n) (uniformly) power joined. 
 
176. Characterize those group rings and semigroup rings which  
 

a. has quasi nilpotent ideals. 
b. S-quasi nilpotent ideals 

 
177. Characterize those group rings (semigroup rings) which have  
 

a. radical ideals. 
b. S-radical ideals. 

 
178. Characterize those group rings (semigroup rings) in which  
 

a. radical ideal coincides with upper radical. 
b. S-radical ideals which coincides with S-upper radical. 

 
179. Does there exist a method by which we can find whether the ring contains at 
least a  
 

a. related pair? 
b. S-related pair? 
 

180. For what group G, the group ring QG (Q the field of rationals) has related pairs. 
 
181. Can we ever find a ring R in which subring link relation happens to be an 
equivalence relation?  
 
182. Can reals or ring of integers have pairs which are subring linked? 
 
183. Characterize those group rings (semigroup rings) in which at least a pair can be 
 

a. Subring linked. 
b. S-subring linked.  

 
184. Characterize those rings in which both the notions of  
  

a. stable and stabilized pair of subrings coincide. 
b. S-stable and S-stabilized pair of subring coincides. 
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185. Classify those rings which are 
 

a. stable rings. 
b. S-stable rings. 

 
186. Can a torsion free non-abelian group be conditionally commutative? 
 
187. Let G is a conditionally commutative group and R a conditionally commutative 
ring. Can the group ring RG be a conditionally commutative ring? 
 
188. Let RG be a group ring; obtain a necessary and sufficient condition so that the 
group ring RG is a generalized Hamiltonian ring. 
 
189. Characterize those semigroup rings RS so that they are generalized Hamiltonian 
rings. 
 
190. Classify those group rings and semigroup rings which are  
 

a. S-Hamiltonian. 
b. S-Hamiltonian II. 

 
191. Classify those rings in which every S-Hamiltonian II is also S-Hamiltonian I. 
 
192. Characterize those group rings (semigroup rings) which has fixed support 
subring. 
 
193. Classify those group rings (semigroup rings) which has fixed support 
semigroup.  
 
194. Classify those group rings (semigroup rings) which have S-fixed support 
subring.  
 
195. Classify those group rings (semigroup rings) which are  
 

a. semi connected. 
b. S-semi-connected. 

 
196. Classify those rings which are  
 

a. Jk ring. 
b. S-Jk ring. 

 
197. Find conditions on the ring so that every S-Jk-ring is a Jk ring and every Jk ring is 
a S-Jk-ring.  
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198. Find conditions on the ring R to have the S-ideals I and S-ideals II to be modular.  
 
199. Find conditions on the ring so that all S-ideals II are S-subrings.  
 
200. Find those S-rings whose S-subrings forms a quasi distributive lattice.  
 
201. Characterize those S-mixed direct product rings using only modulo rings which 
has the  
 

a. lattice of S-ideals to be a quasi distributive lattice. 
b. lattice of S-subrings to be a quasi distributive lattice.  
c. those rings in which all S-ideals form a modular lattice.  

 
202. Does there exist a ring R in which every triple x, y, z ∈ R \ {0} satisfies the 
identity xn + yn = zn; n > 1, 2. 
 
203. Find Smarandache analogue of classical theorems in ring theory.  
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Additive semigroup, 140 
Additive subgroup, 142, 144-145, 148-151,  
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 right, 148, 156 
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 left, 36 
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 right, 36 
Ascending Chain Condition (A.C.C), see A.C.C. 
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 S-semi, 126, 138 
 S-weakly, 126, 138 
 weakly, 126, 138 
Binary operation, 11, 15, 21, 157 
Boolean ring, 83 
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 S-pre-Boolean, 86-87 
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 descending (D.C.C.), 10, 35, 37, 191 
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 S ascending II, (S.A.C.C. II), 191 
 S-descending (S-D.C.C.), 191 
 S-descending II (S.D.C.C. II), 191 
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 element, 175 
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 S-clean ring, 175-176, 180 
 S-s-clean element, 176, 186 
 S-strongly clean ring, 176, 186 
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CN-ring, 109, 114 
Co-ring, 139, 145-146, 193-194 
Complex field, 32 
Conditionally commutative, 130-131,138,199 
Conjugate subring, 147 
Cyclic group, 8-10, 19, 53, 83, 86, 94, 97,  
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Demi module, 107-108 
Demi subring, 107-108, 190 
Descending Chain Condition (D.C.C.), see  
 Chain Condition 
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Direct product of rings, 30, 32  
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Dispotent ring, 136-137, 139 
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f-ring, 99, 201 
F-ring, 104-105, 135, 188, 201 
Field, definition of, 22 
Finite 
 ring, definition of, 22 
 semigroup, 11 
 group, definition of, 7 
Filial ring, 87, 201 
Fixed support semigroup, 169, 199 
Fixed support subgroup, 170 
Fixed support subring, 169-170, 179, 199 
Friendly magnifying element, 134 
Friendly shrinking element, 135 
FZ-ring, 104 
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γ-semigroup, definition of, 150 
γn –ring, definition of, 106 
G-ring, 139, 142 
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Gaussian ring, 32, 210 
Generalized Hamiltonian ring, 168, 199, 203 
Generalized n-like ring, 127  
Generalized semi-ideal, 88, 202, 207 
Generalized stable ring, 167, 178, 201 
Group ring, definition of, 32 
Group 
 abelian, see Abelian group 
 alternating, see Alternating group 
 commutative, definition of, 8; see also  
  Abelian group 
 cyclic, see Cyclic group  
 dihedral, see Dihedral group 
 finite, definition of, see Finite group 
 infinite, definition of, 7-8 
 n-capacitor, 156-157, 196 
 non-abelian, 8, 23, 33, 101   
 non-commutative, 9, 40, 80, 101 
 normal series, 10 
 normal subgroups, 9-10 
 permutation group, 8, 101, 127 
 simple, definition of, 8 

 SV-group, 148, 165, 195 
 subgroup, definition of, 9 
 subnormal series, 9-10 
 symmetric, 8, 10, 54, 61, 64-66, 70,  
 101-104, 144, 185, 206 
 torsion free element, 10 
 torsion free, 10 
 torsion free abelian, 10, 33, 51, 55, 77,  
  81, 106, 123, 128, 140, 148, 155- 
  157, 159-163, 166, 171  
 torsion free non-abelian, 33, 76, 187- 
  197 
 weakly SV-group, 148-149, 195 

 
H 

 
Hamiltonian ring, 167-168, 199, 203 
HIGMAN. G., 33, 203 
Homomorphism 
 automorphism, see Automorphism 
 division ring, see Division ring  
  homomorphism 
 endomorphism, see Endomorphism 
 epimorphism, see Epimorphism 
 integral domain, 120  
 isomorphism, 28 
 kernel of, 28, 120 
 monomorphism, 28 
 ring, 28 
 R-module, 34 
 S-ring homomorphism II, 120 
Hyperring, 115, 167-168, 179 
 

I 
 
I∗-ring, 103 
Inner zero square ring, 80 
Insulator, 156, 196 
Integral domain, 21-23, 25, 30, 39-41, 50,  
 62, 64-65, 117, 120, 182 
Integral domain homomorphism, see 
Homomorphism 
Integrally closed ring, 176 
Integrally closed semigroup, 167, 176 
Iso-ring, 139, 146-147, 193-194 
Isomorphism, see Homomorphism 
Ideal 
 augmentation, see Augumentation ideal 
 left, 12, 14, 26, 28, 34-36, 59, 184 
 maximal, definition of, 27 
 minimal, definition of, 27 
 multiplication ideal, 98, 209 



 214 

 nil, 27, 160  
 nilpotent, 140 
 prime, 27-28, 114, 120 
 principal, 27 
 right, 12, 14, 26, 28, 34, 184  
 S-ideal, 57-63, 65-68, 72-73, 85-88, 95- 
  100, 103, 114-120, 158, 160-169,  
  183, 185, 200,  
 S-maximal ideal, 60-61, 104  
 S-maximal ideal II, 120 
 S-minimal ideal, 60-61  
 S-minimal ideal II, 120 
 S-pseudo, 58, 60-63, 65, 183 
 S-pseudo left, 58-60 
 S-pseudo right, 57-60 
Ideally obedient ring, 100, 186 

 
J 
 

J-ring, 93-94 
Jk-ring, 171, 179, 200 
JACOBSON. N., 93, 203 
Jacobson radical, 27-28 
 

K 
 
Kernel, see Homomorphism 
 

L 
 
Lattices 
 algebraic, see Algebraic lattice  
 chain, see Chain lattice 
 diamond, see Diamond lattice 
 distributive, see Distributive lattice 
 modular, 14, 16-18, 91-93, 167, 172,  
  174, 200-201, 203, 206, 208 
 pentagon, 16, 17, 174 
 quasi distributive,174-175, 200 
 sublattice, 17, 174 
 supermodular, 91-93, 203 
Left commutative element, 133 
Left ideal, see Ideal 
LIN. J. S., 100 
Lin ring, 100-102, 186-187 
Local ring, 29-30 
Locally semi unitary, 211 
Locally unitary, 108, 114, 189 
Lower radical, 160 
 

 
 

M 
 

(m, n) power joined ring, 129, 138 
Marot ring, 85, 113, 203, 207 
Maximal ideal, see Ideal 
Minimal ideal, see Ideal  
Modular lattice, see Lattice 
Module 
 left, definition of, 34 
 homomorphism, see Homomorphism 
 right, definition of, 34 
 simple, 35 
 submodule, 34-35 
Monoid, 11-13, 40, 157 
Monomorphism, see Homomorphism 
Multiplication ideal, see Ideal 
Multiplicative semigroup, 81, 92-93, 140,  
 150, 152-154, 181  
 

N 
 
n-capacitor group, see Group 
n-c-s ring, 139, 144, 193 
n-c-s subgroup, 145 
n-ideal ring, 87, 197, 207 
n-like ring, 123, 127-128, 138, 197, 203 
n-ring ideal, 159 
n-stable range, 179 
Nilpotent element, 25, 37, 49, 50, 71-72, 76- 
 78, 136, 160, 196 
Noetherian, 35-36, 67-68 
Non-friendly magnifying element, 134 
Non-friendly shrinking element, 134 
Normal  
 ring, 141-142, 165, 192-193 
 semigroup, 141-142, 205 
 subgroup, 9-10, 19-20 
 

O 
 

Obedient ideal, 100, 186, 209 
Ordered set 
 chain order, 15 
 partial ordered set (poset), 14 
 lattice ordered, 15 
 totally ordered, 15 
 
 P 
 
PADILLA RAUL, 19, 37-38, 63, 204 
Pentagon lattice, see Lattice 
Permutation group, see Group 
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Polynomial ring, 30-31, 33, 38-40, 58, 61- 
 62, 64-68, 78, 117, 121, 210 
Power joined ring, 129-130 
Pre J-ring, 84, 204 
Pre-Boolean ring, see Boolean ring 
Pre-p-ring, 98 
Prime field, 44-45, 54, 61, 73, 86, 89-90, 97- 
 99, 101, 109, 124-125, 130, 149, 155,  
 161, 186, 188, 193, 196-197 
Prime ideal, see Ideal 
Prime skew field, 112   
Principal ideal, see Ideal 
P-ring, 82-83, 206 
Product quasi ordering, see Quasi ordering 
Pseudo commutative pair, 37, 71, 73 
Pseudo ZI-ring, 154, 166, 196 

 
Q 
 

Q-ring, 104, 187-188 
Quasi commutative, 75-76 
Quasi distributive lattice, see Lattice 
Quasi nilpotent, 159, 166  
Quasi ordering 
 product, 139 
 sum, 139 
Quasi semi center, 133 
Quasi semi commutator, 133 
Quasi semi commutative ring, 133-134 
Quaternion, 32, 39, 112, 210 
Quotient ring, 21, 28-29, 34, 62-63, 104,  
 121, 212 
 

R 
 

R-module homomorphism, see 
Homomorphism 
Radical ideal, 159-160, 166, 198 
Radix, 149-150, 165, 195 
Reduced ring, 78, 113 
Regular element, 24-25, 85, 179 
Relation 
 anti-symmetric, 14 
 reflexive, 14 
 symmetric, 14 
 transitive, 14 
Right related, 159 
Right super ore condition, 102 
Ring 
 γn-ring, see γn-ring 
 Artinian, see Artinian ring 
 associative, see Associative ring 

 chain, see Chain ring 
 Chinese, see Chinese ring 
 closed net, see Closed net 
 CN-ring, see CN-ring 
 co-ring, see Co-ring 
 demi module, see Demi module 
 demi subring, see Demi subring 
 direct product of, see Direct product 
 dispotent, see Dispotent ring 
 e-primitive, see e-primitive ring 
 E-ring, see E-ring 
 filial, see Filial ring 
 finite, see Finite ring 
 f-ring, see f-ring 
 F-ring, see F-ring 
 FZ-ring, see FZ-ring 
 G-ring, see G-ring 
 Gaussian, see Gaussian integers 
 I∗- ring, see I∗-ring 
 ideally obedient, see Ideally obedient 
   ring 
 infinite, see Infinite ring 
 iso-ring, see Iso-ring 
 J-ring, see J-ring 
 local, see Local ring 
 locally semi unitary, see Locally semi  
  unitary 
 locally unitary, see Locally unitary 
 multiplication ideal, see Multiplication  
  ideal ring 
 n-c-s-ring, 144, 193 
 n-ideal ring, see n-ideal ring 
 Noetherian, see Noetherian ring 
 polynomial, see Polynomial ring 
 pre p-ring, see Pre p-ring 
 p-ring, see p-ring 
 Q-ring, see Q-ring 
 quasi reflexive, see Quasi reflexive 
 quotient ring, see Quotient ring 
 ring homomorphism, see  
  Homomorphism 
 ring of quaternions, 39 
 ring with A.C.C, see Chain condition 
 ring with D.C.C, see Chain condition 
 semi prime, 85, 89  
 semigroup ring, definition of, 33 
 simple, 27, 37 
 so-ring, 158  
 SS-ring, 105, 210  
 strictly right chain, 99, 186 
 strong right D-ring (domain), 91-93 
 strong right s-ring, 91-92, 208 
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 strong tight, 110, 111 
 strongly regular, 74-75 
 strongly s-decomposable, 90, 113 
 strongly sub commutative, 89, 113 
 subring, definition of, 26 
 super ore condition, 102, 187, 209 
 s-weakly regular, 89 
 TI-ring, 128-129, 138  
 tight, 110-111, 114, 189-190, 211  
 Ti-ring, 111 
 trisimple, 126-127, 138 
 trivial subring, 106 
 weak co-ring, 145-146, 165 
 weak iso ring, 146-147 
 weak ZI-ring, 154 
 weakly Boolean ring, see Boolean ring 
 weakly CN-ring, see CN-ring 
 weakly G-ring, 142, 165 
 weakly periodic, 178, 180, 211 
 weakly Q-ring, 104 
 weakly regular, 97 
 weakly SG-ring, 153, 166, 195  
 weakly subring link related, 162  
  

S 
 
s-decomposable, 90-91, 113 
Semi bisimple, see Bisimple 
Semi-connected, 170-171, 179, 199, 203 
Semi ideal, 88 
Semi nilpotent, 76-77, 139-141, 164, 188,  
 191, 210 
Semi regular, 140, 164 
Semigroup 
 commutative, 11, 13, 19-20, 82 
 finite, 11 
 ideal, 12 
 idempotent, 12 
 infinite, 11-12 
 invertible element, 12 
 left ideal, 12 
 multiplicative (semigroup under  
  multiplication), 81, 92-93, 140, 150,  

 152-154, 181 
 non-commutative, 13 
 right ideal, 12 
 with identity, see Monoid 
 smallest element, 
 subsemigroup, 11-14, 81, 154, 169-170,  
  179, 201 
 symmetric, 13, 19-20, 66, 70 
 zero divisor, 12, 14 
Semigroup ring, 7, 11, 19, 33-34, 40, 45, 50,  

56, 66-75, 80-84, 90-94, 113-114, 138, 
141-147, 151, 153, 164-170, 179, 181-
200  

Semiorder, 157 
Semiring, 157-158 
Semisimple, 177-178 
Semiunit, 136, 139, 181 
SG-ring, see Ring 
Shrinking element, 134-135 
SI-ring, see Ring 
Square ring ideal, 158 
Stabilized subring, 163 
Stable pair, 163-164 
Stable ring, 164, 167, 178, 199 
Strictly right chain ring, see Ring 
Strong ideal property, 94-95 
Strong ideal ring, see Ring 
Strong right D-domain, 91, 113 
Strong right s-ring, see Ring 
Strong subring ideal property, 94-95 
Strong subring property, 94-95 
Strong tight ring, see Ring 
Strongly left commutative, 132-133 
Strongly prime, 156 
Strongly regular ring, see Ring 
Strongly right commutative, 132-133 
Strongly semi left commutative, 131-132 
Strongly semi right commutative, 131-132 
Strongly sub commutative, see Ring 
Sub semi ideal, 141 
Sub semi ideal ring, 141, 164-165 
Subfield, 56-57, 64-66, 70, 96, 106, 117 
Subideal, 160, 178 
Sublattice, see Lattice 
Subring left link relation, 161 
Subring link relation, 161-162, 198 
Subring right link relation, 161 
Subsemiring, 157 
Sum quasi ordering, see Quasi ordering 
Super idempotent, 122-123, 137, 192 
Supermodular identity, 91-92 
Supermodular lattice, see Lattice 
Superrelated, 123-125, 138 
SV-group, see Group 
S-weakly regular ring, see Ring 
System of local units, 167, 177, 180 

 
SMARANDACHE STRUCTURES 
 

S-(m, n) power joined, 130, 138 
S-γn-ring, 106 
S-γ-semigroup, 151 
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S-δ-semigroup, 153 
S-A.C.C, see Chain Condition  
S-bisimple, see Bisimple 
S-chain ring, 99-100 
S-characteristic, see Characteristic 
S-Chinese ring, see Chinese ring 
S-clean element, see Clean 
S-clean ring, see Clean 
S-closed net, 109-110 
S-CN-ring, 110, 114 
S-co idempotent, 51, 53-54, 182 
S-co-ring, 147, 165, 194 
S-commutative ring, 41, 77, 79 
S-commutative ring II, 39, 119-120 
S-commutative semigroup, 19 
S-conditionally commutative, 131, 138 
S-cyclic pseudo ideal, 61 
S-D.C.C, see Chain Condition  
S-demi module, 107-108 
S-demi subring, 107-108, 114, 190 
S-dispotent, 137, 139 
S-division ring, 50, 182 
S-e-primitive, 148,165, 194 
S-E-ring, 83-84, 113 
S-essential ring, 163, 167 
S-essential subring, 163, 167 
S-F ring, 188 
S-filial ring, 87, 113 
S-fixed support subring, 170, 179, 199 
S-friendly magnifying element, 135 
S-friendly shrinking element, 135 
S-f-ring, 99, 105, 188 
S-generalized left semi-ideal, 88 
S-generalized right semi-ideal, 88 
S-generalized semi-ideal, 88 
S-G-ring, 143, 165 
S-group ring, 70-71, 181, 190 
S-Hamiltonian ring II, 169 
S-Hamiltonian ring, 169 
S-Homomorphism II, see Homomorphism 
S-hyperring, 168, 179 
S-I∗-ring, 114 
S-ideal, see Ideal  
S-ideal II, 62-63, 65-66, 72, 85, 115, 118,  
 169, 172 
S-ideally obedient ring, 100, 186 
S-idempotent, 51-56, 106, 108, 118, 123,  
 137, 148, 171, 176, 182-183 
S-inner zero square, 80-81, 113  
S-insulator, 156, 166 
S-integral domain, 50, 182 
S-integrally closed ring, 176, 180 

S-integrally closed semigroup, 176, 180 
S-iso-ring, 147, 165, 194 
S-Jk-ring, 171, 199 
S-J-ring, 94, 113, 184  
S-left Artinian, 67 
S-left module, 64-66 
S-left module II, 64 
S-left Noetherian, 67 
S-left radix, 150 
S-left related, 161 
S-left shrinking element, 135 
S-left-module, 64, 66 
S-Lin ring, 101-102, 114, 186-187  
S-locally semi unitary ring, 108 
S-locally unitary, 108, 114, 189 
S-lower radical, 160 
S-magnifying element, 135 
S-Marot ring, 85, 113 
S-maximal ideal II, see Ideal 
S-maximal ideal, see Ideal 
S-maximal pseudo ideal, 61 
S-minimal ideal II, see Ideal 
S-minimal ideal, see Ideal 
S-minimal pseudo ideal, 61 
S-mixed direct product of n-rings, 116 
S-mixed direct product, 116, 119, 172, 175,  
 180, 200 
S-multiplication ideal, 98 
S-n-capacitor, 157, 166, 196 
S-n-closed additive subgroup ring, 145 
S-n-closed subgroup ring, 165 
S-n-ideal, 87-88, 166, 197 
S-nilpotent element, 71 
S-nilpotent, 71-72, 77-78, 113, 178 
S-n-like ring, 128 
S-non-commutative ring II, 39 
S-non-friendly magnifying element, 135 
S-non-friendly shrinking element, 136 
S-normal ring, 142, 168, 192-193 
S-normal semigroup, 141 
S-normal subgroup, 19-20 
S-n-ring, 159  
S-null ring, 82, 113 
S-null semigroup, 81-82, 113 
S-obedient ideal, 100, 114, 186 
S-one way weakly subring link, 226  
S-power joined ring, 130, 138 
S-pre Boolean ring, see Boolean ring 
S-pre J-ring, 84-85, 113 
S-pre p-ring, 114 
S-prime pseudo ideal, 61 
S-prime pseudo left ideal, 61 
S-prime pseudo right ideal, 61 



 218 

S-principal ideal II, 120 
S-p-ring, 83, 113 
S-product quasi ordering, 139-140, 164 
S-pseudo commutative pair, 73-74 
S-pseudo commutative ring, 73-74, 77 
S-pseudo left ideal, 57-58, 60  
S-pseudo left module, 65 
S-pseudo ideal, see Ideal 
S-pseudo module, 65-66, 184 
S-pseudo prime ideal, 61 
S-pseudo right ideal, 57-58, 60  
S-pseudo right module, 65 
S-pseudo simple ring, 62-63, 183 
S-pseudo ZI-ring, 154-155, 166 
S-Q-ring, 104 
S-quasi commutative, 37, 76-77, 138 
S-quasi commutative ring, 76-77 
S-quasi nilpotent, 159, 166, 198 
S-quasi ordering, 140, 164 
S-quasi semi commutative, 134 
S-quotient ring, 63, 104 
S-quotient ring II, 63, 121 
S-R-left module, 63 
S-R-right module, 63 
S-radical ideal, 160, 166, 198 
S-radix, 150, 165, 195 
S-reduced ring, 78, 113 
S-related pair, 161, 198 
S-right module II, 64, 66 
S-right module, 64, 66 
S-right radix, 150  
S-right related, 161 
S-right shrinking, 135 
S-ring homomorphism, 120 
S-ring II, 39-41, 62-66, 116-119, 121, 183 
S-ring isomorphism II, 120 
S-ring, definition of, 38 
S-R-module, 63 
S-r-tight rings, 111  
S-s-decomposable, 90, 91 
S-semi bisimple, 126 
S-semi commutative triple, 138  
S-semi commutator, 134 
S-semi connected, 171 
S-semi idempotent II, 72  
S-semi idempotent, 72-73, 77, 108, 159 
S-semi nilpotent, 77, 140, 164, 191 
S-semi order, 158, 166  
S-semi prime ring, 85, 113 
S-semi regular, 141, 164 
S-semigroup ring, 69-71, 143, 181, 190-191 
S-semigroup, 19-20, 68-70, 107, 109, 141,  
 143, 145, 149-161, 176, 181, 190, 194 

S-semiunit, 137, 139 
S-SG-ring, 153-154, 195 
S-shrinking element, 135-136, 138 
S-SI ring, 143-144, 193 
S-simple ring II, 62, 183 
S-simple ring, 62-63, 183 
S-square ring ideal, 159 
S-square set, 155-156, 166 
SSS-element, 105, 114 
SSS-ring, 105 
S-stability S-subring, 164 
S-stabilized pair, 164, 198 
S-stabilizer, 164 
S-stable range I, 179 
S-stable ring, 164, 167, 199 
S-strong D-domain, 92-93 
S-strong dispotent element, 137 
S-strong ideal ring, 95-96, 113  
S-strong null semigroup, 81 
S-strong right D-domain, 92  
S-strong right s-ring, 92, 184 
S-strong subring ideal ring, 95-96, 185 
S-strong subring ring, 95-96, 113 
S-strong tight ring, 111 
S-strongly clean element, see Clean, S-s-clean  
 element 
S-strongly commutative ring II, 119, 120 
S-strongly commutative, 119, 120 
S-strongly normal ring, 142 
S-strongly normal, 142 
S-strongly prime, 156 
S-strongly regular ring, 75-77  
S-strongly s-decomposable, 91, 113 
S-strongly semi left commutative, 132 
S-strongly semi left commutative, 132 
S-strongly semi right commutative, 132 
S-strongly semi right commutative, 132 
S-strongly sub commutative, 89, 113 
S-subdemi module, 108 
S-subideal, 178 
S-subring left link relation, 162 
S-subring link relation, 162 
S-subring right link relation, 162 
S-subring, 37, 56-57, 63-64, 70, 74-76, 79- 
 84, 90, 94-106, 116-118, 124-137, 142- 
 143, 147, 162-189, 198 
S-subring II, 62-64, 116-117, 119-121 
S-subsemi ideal ring, 86, 113, 192 
S-subsemi ideal, 86, 141, 192 
S-sum quasi ordering, 139-140, 164 
S-super idempotent, 123, 137, 192 
S-super ore condition, 102, 114, 187 
S-super related, 125, 138 
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S-s-weakly regular, 89, 113 
S-system of local units, 177 
S-tight ring, 111, 114, 189-190 
S-tight set, 111, 114 
S-TI-ring, 129, 198 
S-trisimple, 126-127, 138, 196 
S-trivial subring, 106 
S-Tr-ring, 111 
S-uniformly power joined ring, 130 
S-unit domain, 45 
S-unit free domain, 45  
S-unit free ring, 45 
S-unit, 41-46, 118, 137, 176, 179, 181-182 
S-upper radical, 160, 198 
S-weak co-ring, 147, 194 
S-weak ideal ring, 96 
S-weak inner zero square ring, 81, 113 
S-weak iso-ring, 147, 165, 194 
S-weak subring ideal ring, 96 
S-weak subring link, 162 
S-weak subring ring, 96, 97 
S-weakly bisimple, see Bisimple 
S-weakly chain ring, 100 
S-weakly CN-ring, 110, 114 
S-weakly e-primitive, 148, 194 
S-weakly G-ring, 143, 165 
S-weakly I∗-ring, 103 
S-weakly periodic, 178 
S-weakly regular, 97-98 
S-weakly s-decomposable, 91 
S-weakly SG-ring, 153, 195 
S-weakly superrelated, 124, 138 
S-weakly SV group, 149 
S-weakly ZI-ring, 154 
S-zero divisor, 46-51, 118, 149, 182 
S-zero square ring, 79-80, 82, 113 
S-ZI-ring, 154 
  

T 
 
Tight ring, see Ring 
Tight subset, 110 

Ti-ring, see Ring 
Torsion free abelian group, see Group 
Torsion free non-abeian group, see Group 
Trisimple ring, see Ring 
 semi, see Ring 
 S-trisimple, see S-trisimple ring 
 S-semi, see S-semitrisimple ring 
Trivial subring, see Ring 

 
U 

 
Uniformly power joined ring, 130  
Upper radical, 160, 198 
 
 W 
 
Weak co-ring, see Ring 
Weak iso-ring, see Ring 
Weak ZI ring, see Ring 
Weakly bisimple, see Bisimple 
Weakly Boolean ring, see Boolean 
Weakly e-primitive, 148, 165, 194 
Weakly G-ring, 142, 165 
Weakly periodic ring, see Ring 
Weakly Q-ring, see Ring 
Weakly regular ring, see Ring 
Weakly SG-ring, see Ring 
Weakly subring link related, see Ring 
Weakly superrelated, 123-124 
Weakly SV-group, see Group 
 

Z 
 

Zero divisor, 12, 14, 21, 22, 24-25, 30-37,  
 41, 46, 50-55, 87, 101, 112, 122-123,  
 131, 136, 141, 148-149, 158, 160, 162- 
 163, 181-182, 206, 208, 211  
Zero matrix, 41, 70 
Zero square ring, 78-79, 205-206 
ZI-ring, 154 
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Definition: 
Generally, in any human field, a Smarandache Structure on a set A means a weak 
structure W on A such that there exists a proper subset B which is embedded 
with a stronger structure S. 
By proper subset one understands a set included in A, different from the empty 
set, from the unit element if any, and from A. 
 
These types of structures occur in our every day’s life, that’s why we study them 
in this book. 
 
Thus, as two particular cases: 
 
A Smarandache ring of level I (S-ring I) is a ring R that contains a proper subset 
that is a field with respect to the operations induced.  
 
A Smarandache ring of level II (S-ring II) is a ring R that contains a proper 
subset A that verifies:   

• A is an additive abelian group;  
• A is a semigroup under multiplication; 
• For a, b ∈ A, a·b = 0 if and only if a = 0 or b = 0.  
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