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Partially Paradoxist Smarandache Geometries

Howard Iseri
Department of Mathematics and Computer Information Science
Mansfield University
Mansfield, PA 16933

hiseri@mnsfld.edu

Abstract: A paradoxist Smarandache geometry combines Euclidean, hyperbolic, and elliptic geometry into
one space along with other non-Euclidean behaviors of lines that would seem to require a discrete space. A
class of continuous spaces is presented here together with specific examples that exhibit almost alt of these
phenomena and suggest the prospect of a continuous paradoxist geometry.

Introduction

Euclid’s parallel postulate can be formulated to say that given a line / and a point P not on /, there is exactly
one line through P that is parallel to /. An axiom is said to be Smarandachely denied, if it, or one of its
negations, holds in some instances and fails to hold in others within the same space. For example, Euclid’s
parallel postulate would be Smarandachely denied in a geometry that was both Euclidean and non-
Euclidean, or non-Euclidean in at least two different ways. A Smarandache geometry is one that has at
least one Smarandachely denied axiom, and a paradoxist Smarandache geometry, to be described later,
denies Euclid’s parallel postulate in a somewhat exhaustive way.

Euclid’s parallel postulate does not hold in the standard non-Euclidean geometries, the hyperbolic
geometry of Gauss, Lobachevski, and Bolyai and the elliptic geometry of Riemann. These are special cases
of the two-dimensional manifolds of Riemannian geometry. Here the three types of geometry are
characterized by the Gauss curvature, negative curvature for hyperbolic, zero curvature for Euclidean, and
positive curvature for elliptic. In general, the curvature may vary within a particular Riemannian manifold,
so it is possible that the geodesics, the straightest possible curves, will behave like the lines of Euclidean
geometry in one region and like the lines of hyperbolic or elliptic geometry in another. We would expect,
therefore, to find geometries among the Riemannian manifolds that Smarandachely deny Euclid’s parallel
postulate. The models presented here will suggest specific examples, but explicit descriptions would be far
from trivial. '

We will bypass the computational complexities of Riemannian manifolds by turning to a class of geometric
spaces that we will call Smarandache manifolds or S-manifolds. S-manifolds are piecewise linear

manifolds topologically, and they have geodesics that exhibit elliptic, hyperbolic, and Euclidean behavior
similar to those in Riemannian geometry, but that are much easier to construct and describe.

The idea of an S-manifold is based on the hyperbolic paper described in [2} and credited to W. Thurston.
There, the negative curvature of the hyperbolic plane is visualized by taping together seven triangles made
of paper (see Figures 2a and 2b). Squeezing seven equilateral triangles around a vertex, instead of the usual
six seen in a tiling of the plane, forces the paper into a flat saddle shape with the negative curvature
concentrated at the center vertex. By utilizing these “curvature singularities,” our S-manifolds can be flat
(i.e., Euclidean) everywhere else.

Smarandache manifolds

A Smarandache manifold (or S-manifold) is a collection of equilateral triangular disks (triangles) where
every edge is shared by exactly two triangles, and every vertex is shared by five, six, or seven triangles.
The points of the manifold are those of the triangular disks, including all the interior points, edge points,
and vertices. Lines (geodesics) in the manifold are those piecewise linear curves with the following
properties. They are straight in the Euclidean sense within each triangular disk and pair of adjacent
triangular disks (since two triangles will lie flat in the plane). Across a vertex, a line will make two equal
angles (two 150° angles for five triangles, two 180° angles for six triangles, and two 210° angles for seven).

Elliptic Vertices — five triangles



There are five equilateral triangles around an elliptic vertex in an S-manifold. We can take a region around
an elliptic vertex and lay it flay by making a cut as in Figure 1a. Note that the lines are straight within any
pair of adjacent triangles, although the lines appear to bend at the vertex and across the cut. This is only
because we have made a cut and flattened the surface. In the paper model shown in Figure 1b, the lines
curve, but only in a direction perpendicular to the surface. In other words, the lines are as straight as
possible and bend only as they follow the surface. The two lines that do not pass through the central vertex
pass through three adjacent triangles, which would lie flat in the plane, and so are straight in the Euclidean
sense. Note that the fact that the third triangle is shared by both lines forces them to intersect. The middle
line runs along an edge of a triangle and passes through an elliptic vertex, so it bisects the opposite triangle
making two 150° angles (or two-and-a-half triangles). In general, lines passing on either side of an elliptic
vertex will turn towards each other.

Figures 1a and 1b. Lines near an elliptic vertex.

Hyperbelic Vertices — seven triangles

There are seven triangles around a hyperbolic vertex. We can lay a region around a hyperbolic vertex flat
after making cuts as shown in Figure 2a. The middle line runs along an edge, so it bisects the opposite
triangle (and has 210°, or three-and-a-half triangles, on either side of it). The two lines on either side pass
through three adjacent triangles, and are straight as in the elliptic case. Note that the third triangles here are

separated by another triangle, so lines passing on either side of a hyperbolic vertex turn away from each
other.

Figures 2a and 2b. Lines near a hyperbolic vertex.



Paradoxist geometries

We will say that a point P not on a line / is Euclidean with respect to/, if there is exactly one line through
P that is parallel to /. P is elliptic with respect to /, if there are no parallels through P. If there are at least
two parallels through P, then it is hyperbolic. Furthermore, if P is hyperbolic with respect to /, then it is
finitely hyperbelic, if there are only finitely many parallels, and it is regularly hyperbolic, if there are
infinitely many parallels and infinitely many non-parallels. Finally, if there are infinitely many paraliels
and only finitely many non-parallels, then P is extremely hyperbolic, and if all the lines through P are
parallel, then P is completely hyperbolic.

Smarandache called a geometry paradoxist if there are points that are elliptic, Euclidean, finitely
hyperbolic, regularly hyperbolic, and completely hyperbolic [1]. We will add extremely hyperbolic to the
definition of a paradoxist geometry. We will also say that a geometry is semi-paradoxist, if it has
Euclidean, elliptic, and regularly hyperbolic points, and if it lacks only finitely hyperbolic points we will
call it almost paradoxist.

A Semi-Paradoxist Model

This model is constructed by taking a hyperbolic and an elliptic vertex adjacent to each other and
surrounding them with Euclidean vertices to form a space that is topologically equivalent to the plane. A
part of it is shown in Figures 3a and 3b. Let/ be the line through O. With respect to /, we see that the point
P is Euclidean. The line through P shown is parallel to /, and any other line through P clearly intersects /,
since the region to the right and left is essentially Euclidean.

The point @ is elliptic with respect to/. The line shown intersects , as would any other line through Q.

The point R is regularly hyperbolic. The lines shown are parallel to/, and these separate the other infinitely
many parallels from the infinitely many non-parallels.

This S-manifold can be turned into a Riemannian manifold by smoothing the two curvature singularities.
The lines shown in Figures 3a and 3b would stay the same, and only those geodesics passing near the
singularities would be affected by the change.



Figure 3a. Lines in the semi-paradoxist model.

Figure 3b. Lines in the semi-paradoxist model.

An Almest Paradoxist Model

A greater variety in the types of hyperbolic points can be found in an S-manifold with more hyperbolic
vertices. This model has at its center an elliptic vertex surrounded by five more elliptic vertices. Five
Euclidean vertices then surround these elliptic vertices (see Figures 4a and 4b) to form a cylinder with a
cone on top of it. We will call this the silo.

The line / runs around the cylinder (it is a circle). With respect to the line /, the point P is Euclidean, and
the point R is elliptic. '



Figure 4a. Lines in the silo of the almost paradoxist model.

Figures 4b and 4c. Lines in the silo of the almost paradoxist model, and the hyperbolic region around silo.



The entire model is topologically equivalent to the plane, and is completed by extending the bottom of the
silo with hyperbolic vertices. A model made of ZAKS blocksin Figure 4c shows some of the hyperbolic
region extending from the bottom of the silo.

Examples of various types of hyperbolic points are shown in Figures 5a and 5b, which shows some of the
hyperbolic region and the bottom of the silo. The line ! mentioned previously is at the top. With respect to /,
the point Q is regularly hyperbolic. The two lines shown are parallel to/, and they separate the parallels
from the nion-parallels. Out further into the hyperbolic region is the pointQ . The line shown passing
through O and the vertex 7 intersects /. Any line through Q  that misses the vertex J will lie outside of the
two dotted lines, and these will miss the silo entirely. Since only one line through O  intersects I, itisan
extremely hyperbolic point. The nearby pointQ  is completely hyperbolic. We can see this by noticing that
the line through Q0 and 1 will follow the dotted line to the left and miss the silo. All the lines throughQ o
the left of this will also miss the silo. Any line to the right will miss the vertex /, and will run just to the

right of the line through O  and /until it misses the vertex F and tums to the right. These lines will also
miss the silo.
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Figure 5a. Lines in the hyperbolic region near the silo in the almost paradoxist model.
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Figure 5b. Lines in the hyperbolic region near the silo in the almost paradoxist model.

Since this model has elliptic, Euclidean, regularly hyperbolic, extremely hyperbolic, and completely
hyperbolic points, it is almost paradoxist. Note that it follows from the existence of extremely and

- completely hyperbolic points that there are pairs of points that do not lie on a single line. This mode! is
connected, however, and there is always a finite sequence of line segments that connect any particular pair
of points.

Final Remarks

It is relatively easy to construct an S-manifold that is almost paradoxist. The most interesting prospect,
however, is the possibility of an S-manifold with a finitely hyperbolic point. Intuition strongly suggests that
a finitely hyperbolic point could only exist in a discrete space and not in a continuous space like an S-
manifold. A peculiar property of lines in an S-manifold, however, is that a line that passes through a
hyperbolic vertex is isolated from lines that are nearby (sce Figure 2a). This ability to isolate lines suggests
that it may be possible to construct an S-manifold with a finitely hyperbolic point.

References :

1. Chimienti, S. and Bencze, M., Smarandache paradoxist geometry,
www.gallup.unm.edu/~smarandache/prd -geol .txt.

2. Weeks, J., The Shape of Space, Marcel Dekker, New York, 1985.

Acknowledgements
Thanks to the Yahoo Smarandache Geometry Club for the interesting discussions and ideas that lead to this

paper.

Thanks also to Ken Sullins for introducing me to ZAKS blocks and letting me play with his. Ohio Art’s
ZAKS blocks were very important in the development and presentation of these models.

12



ENGINEERING A VISUAL FIELD

Clifford Singer
510 Broome Street, New York, New York 10013, U.SA. Email: CliffordhS@sol.com
betp:/iwww.lastplace. com/EXHIBITS/VIPsuiie/C Singerfindex htm

Abstract: Of the branches of mathematics, geometry has, from the earliest Hellenic period, been given
a curious position that straddles empirical and exact science. lIts standing as an empirical and
appraximate science stems from the practical pursuits of artistic drafting, land surveying and measuring
in general.  From the prominence of visual applications, such as figures and constructions in the
twentieth century Einstein’s General Theory of Relativity holds that the geometry of space-time is
dependent upon physical quantities. On the other hand, earlier on in history, the symmetry and perfect
regularity of certain geometric figures were taken as represemtative of a higher order knowledge than
that afforded by sense experience. Concerns with figures and constructions, instead of with numbers and
compulations, rendered geometry amenable to axiomatic formulation and syllogistic deduction,
establishing a paradigm of demonstrative visual and intuitive knowledge that has spanmed two millennia.

In geometry and as followed in geometrical art there remains a connection that distinguishes
between the unboundedness of spaces as a property of its extent, and special cases of infinite measure over
which distance would be taken is dependent upon particular curvature of lines and spaces. The curvature
of a surface could be defined in terms only of properties dependent solely on the surface itself as being
intrinsic. On the empirical side, Euclidean and non-Euclidean geometries particularly Riemann’s
approach effected the understanding of the relationship between geometry and space, in that it stated the
question whether space is curved or not. Gauss never published his revolutionary ideas on non-Euclidean
geometry, and Bolyai and Lobachevsky are usually credited for their independent discovery of hyperbolic
geometry. Hyperbolic geometry is ofien called Lobachevskian geometry, perhaps because Lobachevsky’s
work weat deeper than Bolyai’s. However, in the decades that followed these discoveries Lobachevsky’s
work met with rather vicious attacks. The decisive figure in the acceptance of non-Euclidean geometry
was Beltrami. In 1868, he discovered that hyperbolic geometry could be given a concrete interpretation,
via differential geometry. For most purposes, differential geometry is the study of curved surfaces by way
of ideas from calculus. Geometries had thus played a part in the emergence and articulation of relativity
theary, especially differential geometry. Within the range of mathematical properties these principles
could be expressed. Philosophically, geometries stress the hypothetical nature of axiomatizing,
contrasting a usual view of mathematical theories as true in some unclear sense. Steadily over the last
hundred years the honor of visual reasoning in mathematics has been dishonored. Although the great
mathanaticianshavebemoblivimstothse&shionsﬂxegeometuinarthaspi&edupthegmmﬂeton
behalf of geometry. So, metageometry is intended to be in line with the hypothetical character of
metaphysics.

Geometric axioms are neither synthetic a priori nor empirical. They are more properly
understood as definitions. Thus when one set of axioms is preferred over another the selection is a matter
of convention. Poincare’s philesophy of science was formed by his approach to mathematics which was
broadly geometric. It is governed by the criteria of simplicity of expression rather than by which geometry
is ultimately correct. A sketch of Kant’s theory of knowledge that defined the existence of mathematical
truths a central pillar to his philosophy. In particular, he rests support on the truths of Euclidean
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geometry. His inability to realize at that time the existence of any other geometry convinced him that it
was the only one. Thereby, the truths demonstrated by Euclidean systems and the existence of a priori
syathetic propositions were a guarantee. The discovery of non-Euclidean geometry opened other variables
for Kant’s arguments. That Euclidean geometry is used to describe the motion of bodies in space, it
makes no sense to ask if physical space is really Euclidean. Discovery in mathematics is similar to the
discovery in the physical sciences whereas the former is a construction of the human mind. The latter
must be considered as an order of nature that is independent of mind. Newton became disenchanted with
his original version of calculus and that of Leibniz and around 1680 had proceeded to develop a third
version of calculus based on geometry. This geometric calculus is the mathematical engine behind
Newton’s Principia.

Conventionalism as geometrical and mathematical truths are created by our choices, not dictated
by or imposed on us by scientific theory. The idea that geometrical truth is truth we create by the
understanding of certain conventions in the discovery of non-Euclidean geometries. Subsequent to this
discovery, Euclidean geometries had been cousidered as a paradigm of a priori knowledge. The further
diswmyofdtanaﬁwsyﬁunsofgm&ymumdﬂmtwi&maﬁnghﬁdemgmeﬂym
dismissed without interfering with rationality. Whether we utilize the Euclidean system or non-Euclidean
systemseanstobeamatteofd:oicefmmdedmpragmatiqconsiderationssuchassimplicityand
convenience. .

The Euclidean, Lobachevsky-Bolyai-Gauss, and Reimannian geometries are united in the same
space, by the Smarandache Geometries, 1969. These geamelries are, therefore partially Euclidean and
partially Non-Euclidean. The geometries in their importance unite and generalize all together and
separate them as well, Hilbert’s relations of incidence, betweenness, and congruence are made clearer
through the negations of Smarandache’s Anti-Geometry. Florentin Smarandache’s geometries fall under
the following categories: Paradoxist Geometry, Non-Geometry, Counter-Projective Geometry, and Anti-
Geometry.

Science provides a fruitful way of expressing the relationships between types or sets of sensations,
enabling reliable predictions to be offered. These sensations of sets of data reflect the world that causes
them or causal determination; 2s a limited objectivity of science that derives from this fact, but science
does not suppose to determine the nature of that underlying world. It is the underlying structure found
through geometry that has driven the world of geometers to artistic expressions. Geometrical art can
throughconventionsanddaoicmwhicharedeterminablebynﬂemayappwrtobeunpirimLhﬂmin
fact postulates that geometers have chosen to select as implicit definitions. The choice to select a
paﬁmhrmtoreprwmtaﬁnhesdofpoﬁxtsmqmﬁresaﬁﬂgmmtasmdmtwhidiissimpler. There
are theories which can be drawn that lead to postulate underlying entities or structures. These abstract
mtitis«rmodekmayseanexplanﬂuy,hksﬁcﬂyspeakingmnomaethmvimn!deﬁmmﬁdfor
calculation.

Abstract entities, are sometimes collected under universal categories, that include mathematical
objects, such as numbers, sets, and geometrical figures, propositions, and relations. Abstracta, are stated
to be abstracted from particulars. Thenhs&actsqmreatrianglehaveoulythepropaﬁsmmon to all
squares or triangles, and none peculiar to any particular square or triangle; that they have not particular
color, size, or specific type whereby they may be used for an artistic purpose. Abstracta are admitted to an
ontology by Quine’s criterion if they must exist in order to make the mechanics of the structure to be real
and true. Properties and relations may be needed to account for resemblance among particulars, such as
the blueness shared amongst all blue things.

Concrete intuition and understanding is a major role in the appreciation of geometry as
intersections both in art and science. This bares great value not only to the participating geometer artists
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but to the scholars for their research. In the presentation of geometry, we can bridge visual intuitive
aspects with visual imagination. In this statement, I have outlined for geometry and art without strict
definitions of concepts or with any actual computations. Thus, the presentation of geometry as a
brushstroke to approach visual intuition should give a much broader range of appreciation to mathematics.

Clifford Singer, 2001 ©
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On Smarandache’s Podaire Theorem

J. Séndor
Babes-Bolyai University, 3400 Cluj, Romania

Let A, B',C" be the feet of the altitudes of an acute-angled triangle ABC
(A" € BC, B' € AC, C’ € AB). Let a',V, ¥ denote the sides of the podaire triangle
A'B'C'. Smarandache’s Podaire theorem [2] (see [1]) states that

Za’b’ < iZaZ Q1)

where a, b, c are the sides of the triangle ABC. Our aim is to improve (1) in the following

Yat<: (Te) <5 (Xe) <1 e @)

First we need the following auxiliary proposition.
Lemma. Let p and p’ denote the semi-perimeters of iriangles ABC and A'B'C’, re-

form:

spectively. Then »
P<

- 3)

N

Proof. Since AC' = bcos A, AB' = ccos A, we get
C'B' = AB® + AC” — 2AB'- AC' - cos A = a® cos? A,
so C'B’' = acos A. Similarly one obtains
A'C'=bcosB, A'B’' =ccosC.
Therefore
,_ 1 rgr_ 1 R . b 4 e
P = ;)-ZA B = §ZacosA = 5251112.4 = 2Rsin Asin BsinC
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(where R is the radius of the circumcircle). By a = 2Rsin A, etc. one has

' )
4 ‘2RH2R"R’

where S = area(ABC). By p= g (r = radius of the incircle) we obtain

T

v=gr 4
Now, Euler’s inequality 2r < R gives relation (3).
- For the proof of (2) we shall apply the standard algebraic inequalities

3(zy + 7z +y2) < (z+y+2)? <32 +y° + 22).

Now, the proof of (2) runs as follows:

1 2 1 1 1
’ 2 N =22 < 252 = = <= 2
2‘11"53(20) NCUES it et S PIL
Remark. Other properties of the podaire triangle are included in a recent paper of
the author ([4]), as well as in his monograph [3].
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On a dual of the Pseudo-Smarandache function

Jozsef Sandor

Babes-Bolyai Univers‘ity, 3400 Cluj-Napoca, Romania :

1 Introduction

In paper [3] we have defined certain generalizations and extensions of the Smaran-
dache function. Let f : N* — N* be an arithmetic function with the following property:
for each n € N* there exists at least a k¥ € N* such that n|f(k). Let

Fy: N" — N° defined by Fy(n) = min{k € N*: n|f(k)}. (1)

This function generalizes many particular functions. For f(k) = k! one gets the

k(k 2+ 1) one has the Pseudo-Smarandache func-

Smarandache function, while for f(k) =
tion Z (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions
as follows: Let g : N* — N* be a function hz;ving the property that for each n > 1 there
exists at least a k > 1 such that g(k)|n.
Let
Gy(n) = max{k € N*: g(k)|n}. . (2)
For g(k) = k! we obtain a dual of the Smarandache function. This particular function,
denoted by us as S. has been studied in the above paper. By putting g(k) = k—(k;—l)
one obtains a dual of the Pseudo-Smarandache function. Let us denote this function,

by analogy by Z.. Our aim is to study certain elementary properties of this arithmetic

function.
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2 The dual of yhe Pseudo-Smarandache function

Let

Z.(n)=max{mEN’: ﬂ";Llhn} 3)

Recall that

Z(n)=min{keN": fdﬁ;—ll}. (4)

First remark that

Z.(1)=1 and Z,.(p)={ 5 op=3 (5)
-l L p#3

where p is an arbitrary prime. Indeed, 2—§ = 3|3 but %m(n;—l- 1)

only for m = 1. More generally, let s > 1 be an integer, and p a prime. Then:

|p for p # 3 is possible

Proposition 1.

s 2, p=3
Z.(p") = _ (6)
1, p#3
m(m+1), i :
Proof. Let ———=|p’. If m = 2M then M(2M + 1)|p® is impossible for M > 1

2
since M and 2M + 1 are relatively prime. For M = 1 one has m = 2 and 3|p® only if

= 3. For m = 2M — 1 we get (2M — 1)M|p*, where for M > 1 we have (M, Q.M— )=1
as above, whxle for M =1 we have m = 1.
The function Z. can take large values too, since remark that for e. g- n = 0(mod6) we
have 32—4 = 6|n, so Z.(n) > 3. More generally, let a be a given positive integer and n
selected such that n = 0(moda(2a + 1)). Then

Z.(n) > 2a. (7)

= a(2a + 1)|n implies Z.(n) > 2a.

f)
Indeed, 23(“;—'*'1)

A similar situation is in

Proposition 2. Let ¢ be a prime such that p=2¢—1isa prime, too. Then

Z.(pq) = p. (8)
19



= pq so clearly Z.(pg) = p.

Proof. g(pT-i-ll '
Remark. Examples are Z,(5-3) = 5, Z.(13-7) = 13, etc. It is a difficult open problem

that for infinitely many g, the number p is prime, too (see e.g. [2]).
Proposition 3. For all n > 1 one has

1< Z.(n) < Z(n). (9)

Proof. By (3) and (4) we can write m(m + l)l | (k + 1) » therefore m(m+1)|k(k+1).
If m > k then clearly m(m + 1) > k{k + 1), a contradxctxon
Corollary. One has the following limits:

A0 p—

27w % m =t (10)

Proof. Put n = p (prime) in the first relation. The first result follows by (6) for s = 1
and the well-known fact that Z (p) = p. Then put n = M when Zx(n) =1 and let

2 7 Z(m)

(5 -2 () -

a(a+1)[k(k+1) .

a — oo.

As we have seen,

Indeed, is true for k = a and is not true for any k < a. In the same

m(m + 1),a(a+ Y is valied for m = a but not for any m > a. The following

manner,
problem arises: Wha.t are the solutions of the equation Z(n) = Z, (n)?

Proposition 4. All solutions of equation Z (n) = Z.(n) can be written in the form

1
( 2-!- ) ( E N.)-
t(t
Proof. Let Z,(n) = Z(n) = t. Then n| ( ;- 1 [n so (t+1) = n. This gives 2 + ¢t —
2n=0o0r (2t +12=8n+1, implying t = ______,811-{-1—1, where 8n + 1 = m2. Here m
(m —1)(m +1) m—1
must be odd, let m =2r +1,son = 3 andt=T.Thenm—l=2r,
m+1=2(r+1) andn:@.
Proposition 5. One has the following limits:
lim {/Z.(n) = lim {/Z(n) = 1. (11)
n—+co n—oo
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Proof. It is known that Z(n) < 2n — 1 with equahty only for n = 2* (see e.g. [5]).

Therefore, from (9) we have

1< Y/Z.(n) < /Z(r) < ¥2n -1,

and by taking n — oo since \7211—-1 —+ 1, the above simple result follows.

As we have seen in (9), uppér bounds for Z(r) give also upper bounds for Z.(n). E.g.
for n = odd, since Z(n) < n — 1, we get aiso Z,.(n) < n — 1. However, this upper bound
is too large. The optimal one is given by:

Proposition 6.
| . Z.(n) < -@l for all n. (12)

m(m+ 1) m(m+ 1)
3 2, so 3
ieem?+m—2n<0. Resolvmg this inequality in the unknown m, easily follows (12).

<n,

Proof. The definition (3) implies with Z,(n) = m that

Inequality (12) cannot be improved since for n = & (p ; 1 (thus for infinitely many n)
we have equality. Indeed,

(,/__Sv’;ﬂm _1) 1= (VEGFDFI-1) /2= 2o+ 1)~ 1)/2 =

Corollary.
. Z,..(Tl) _ - Z‘(n) —_ -
nhm Jn =0, nhm T V2. (13)

Proof. While the first limit is trivial (e.g. for n = prime), the second one is a

consequence of (12). Indeed, (12) implies Z,.(n)/\/ﬁ < \/5(‘ 1+ SLn_ /SL)’ ie
n

Jim Z\/(_) < V2. But this upper limit is exact for n = p_(£2+_1) (p = ).
Similar and other relations on the functions § and Z can be found in [4-5].
An inequality connecting S.(ab) with S.(a) and S.(b) appears in [3]. A similar result
holds for the functions Z and Z,.

Proposition 7. For all a,b > 1 one has

Z.(ab) > max{Z.(a), Z.(b)}, (14)
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Z(ab) 2 max{Z(a), Z(b)} > max{Z. (a) Z.(b)}. (15)

’

Proof. If m = Z,(a), then y]a Since a|ab for a.ll b2 1, clearly w]
implymg Z.(ab) > m = Z,(a). In the same manner, Z, (ab) > Z.,(b), giving (14).

Let now k = Z(ab). Then, by (4) we can write ab| (k+ 1
k(k+1

. By alab it results

) , implying Z(a) < k = Z(ab). Analogously, Z(b) < Z(ab), which via (9) gives

?

a|
(15).
Corollary. Z,(3° - p) > 2 for any integer s > 1 and any prime p. (16)
Indeed, by (14), Z.(3" - p) > max{Z.(3%), Z(p)} = ma.x{2 1} = 2, by (6).
We now consider two 1rra.tlona.l series.

X 1\n-1
Proposition 8. The series Z 2 (n) and Z w are irrational.
n=1 :

Proof. For the first series we a.pply the following irrationality criterion ([6]). Let (va)
be a sequence of nonnegative integers such that

(i) va < n for all large n;

(i) vn < n — 1 for infinitely many n;

(iii) v, > 0 for infinitely many n.

Then Z — is irrational.

n=1
Let v, = Z.(n). Then, by (12) Z.(r) < n — 1 follows from @ <n-1,
i.e. (after some elementary fact, which we omit here) n > 3. Since Z.(n) > 1, conditions
(i)-(iii) are trivially satisfied. |
For the second series we will apply a criterion from [7]:
Let (ax), (be) be sequences of positive integers such that
(1) klalaz ag;
(u) < br < ax (k> k). Then Z( —1)k-t

k=1
Let ax = k, by = Z.(k). Then (i) is trivial, while (i) is é}i_’:%l) < Z.(k) < k.

Here Z.(k) < k for k > 2. Further Z,(k + 1) < (k+1)Z.(k) follows by 1 < Z.(k) and

bx

a;as...ax

is irrational.

Z(k+1)<k+1.
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A NEW EQUATION FOR THE LOAD BALANCE SCHEDULING
BASED ON THE SMARANDACHE F-INFERIOR PART FUNCTION

. . * . . =
Tatiana Tabirca Sabin Tabirca

* University of Manchester, Department of Computer Science

** Univessity College Cork, Department of Computer Science

Abstract. This article represents an extension of [Tabirca, 2000a]. A new
equation for upper bounds is obtained based on the Smarandache f-inferior part
fimction. An example involving upper diagonal matrices is given in order to
illustrate that the new equation provide a better computation.

LINTRODUCTION

Loop imbalance is the most important overhead in many parallel applications. Because loop
structures represents the main source of parallelism, the scheduling of parallel loop iterations
to processors can detcrmine its decreasing. Among the many method for loop scheduling, the
load balance scheduling is a recent one and was proposed by Bull [1998] and developed by
Freeman etal. [(999, 2000). Tabirca [2000] studied this method and proposed an equation
for the case when the work is distributed to all the processors.

Consider that there are p processors denoted in the following by Py, P, ..., £, and a single
parallel loop (see Figure 1.).

do parallel i=1,n
call loop_body(i);
end do

Figure 1. Single Parallel Loop
We also assume that the work of the routine loop_body(i) can be evaluated and is given by

the function w: N — R, where w(i)=w, represents the number of routine’s operations or -

its nnning time (assume that w(0)=0). The total amount of work for the parallel loop is

” .
zw(i). The efficient loop-scheduling algorithm distributes equally this total amount of

i=l
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l n
work on processors such that a processor receives a quantity of work equal to —- Z wiZ).

i=]

Let / and h ; be the lower and upper bounds, j=1,2,..., p, such that processor j executes all

the iterations between /;and h ;- These bounds are found distributing equally the work on

processors by using

h, 1 &
> i) =—- Y wi) (Vi =12,... p). M
i=l} i=l

Moreover, they satisfy the following equations

I, =1. (2.3)
Ay 1 & —_ .
if weknow [, then h, is givenby ) w(i)=—- Y w()=W . @b
- i=l P2 =
L, =h, +1. ’ 2.0

Suppose that Equation (2.b) is computed by a less approximation. This means that if we have
the value /;, then we find hjas follows:

h — Rl ’
h,=h & Zw(i)SW<§w(i) . ©)

=l

The Smarandache f-inferior part function represents a generalisation of the inferior part

function [,]:R—=Z, [x]=k o k<x<k+1.If f:Z >R isastrict increasing function

that satisfies lim f(n)=—co and lim f(n)=co, then the Smarandache finferior part
Ry~ A—)oa

fimction denoted by f; : R — Z is defined by [see www.gallup.unm.edu/~smarandache]
4]

i =ke fl)<x< f(k+1). C))
Tabirca {2000a] presented some Smarandache f-inferior part functions for which

E
f)= Zi “ . They arc presented in the following:

i=}

L: — .
fy=3i = f“(x)=[__':“__ *’2"‘8"]%2& )
FB=3i = £, =]V 20, ©

i=1

= -
where r(x):-.1_+3l3'x_. 3-x + l +3 _3'_):1. _3_3?. +_l..
2 ¥ 2 2 1728 | 2 2 ) 1728
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Tabirca [2000] also proposed an equation for the upper bounds of the load balance scheduling
method based on the Smarandache f-inferior part function. If the work w satisfies certain
conditions [Tabirca, 2000}, then the upper bounds are given by

K =1 =12, o
Moreover, Tabirca [2000a] applied this method to the product between an upper diagonal
matrix and a vector. It was proved that the load balance scheduling method offers the lowest
running time in comparison with other static scheduling methods [T abirca, 2000b).

2. ANEW EQUATION FOR THE UPPER BOUNDS
In this section, 2 new equation for the upper bounds is introduced. Some theoretical
considerations about the new equation and Equation (7) are also made. Consider that

k
f:N—>R is defined by f(k)=2w,., f(0)=0. For the work w, we assume the

i=t

following {Tabirca, 2000]:

Al: w, Sl-zw‘.,j=1,2,...,n.
p

i=1

A2: There are equations for the functions fofy-

Theorem 1. The upper bounds of the load balance scheduling method are given by

B = £ BB+ W) j=12,.0p. ®
Proof. For easiness we denote in the following A ; =hj.2). Equation (3) gives the upper
bounds of the load balance scheduling method. We start from the equation

L] . b k,
D M SH <Y w(i) andadd f(h; )= w, toall the sides
i=lj i=ll i=1

R+l

hzw(i)sf(hj_l)+W<gw(i) .

i=t

Based on the definition of f, we find that &, = f, (f(h,.,) + 7). .

The following theorem illustrates how these bounds are.
Theorem 2. £ < B, j=12,.,p.

Proof. Recall that these two upper bounds satisfy

A &4

Zw,.Sj-W< Zw,. ‘ (9.2)

i=1 i=t
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w2 B+

i‘,w,. SW< Y w. ©.b)

‘-=,}z) i=l§2’
All the sums from Equation (9.b.) are added finding

+ (2 - . h(iz‘ _
2 twk SjiWeYwsjW.

i=1 k=12 i=l

Because k" is the last index satisfying Equation (9.) we find that A D <" holds. o

Consequence: f (h}z)) <f (h}”) <j W, Jj=12,...p.
This consequence obviously comes from the monotony of fand the definition of the bounds.

Now, we have two equations for the upper bounds of the load balance scheduling method.
Equation (8) was obtained naturally by starting from the definition of the load balance. It
reflects that case when several load balances are performed consecutively. Equation (7) was

found by considering the last partial sum that is under j -W . This option does not consider

any load balance such that we expect it to be not quit efficient. Moreover, it is difficult to
predict which equation is the best or is better to use it of a given computation. The best
practical advice is to apply both of them and to choose the one, which gives the lowest times.

3. COMPUTATIONAL RESULTS
In this section we present an example for the load balance scheduling method. This example
deals with the product between an upper diagonal matrix and a vector [Jaja, 1992). All the
computations have been performed on SGI Power Challenge 2000 parallel machine with 16
processors. The dimension of the matrix was n=300. '
DO PARALLEL i=1,n

Yi=a;, %

DO j=2;i

Yi=y:ta;;-x;

END DO
END DO

Figure 2, Parallel Computation for the Upper Matrix — Vector Product.
Recall that a=(q;;), - €M (R) is upper diagonal if a,,=0,i< j. The product

Jj=ln

y=a-x between an upper diagonal matrix a=(a,.‘j)‘_j=f;eM.(R) and a vector

x€ R" is given by

vi=Ya, x,Vi=12.n. (10)
=)
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The paralle] computation of Equation (10) is shown in Figure 2.

The work of iteration # is given by w(i)=i,i=1,2,...n. We have that the total work is

f (n)=2i =—'I$ and W=n—§n—+1-)- The Smarandache f-inferior function is
i=1 P
5 (x)=[ﬁ%} Vx20. Therefore, the upper bounds of the load balance
scheduling method are given by
[ .
14 J1+4. PR
B = —— | i=12p or an
[ n-(n+1
—L+Jl+4-h}3-(h}3+1)+4-—(—-—)
By = 5 J=12,.p. 12

The nmning times for these two types of upper bounds are presented in Table 1. Figure 3
proves that these two types of bounds for the load balance scheduling are comparable the
sare. ’

=] pP=2 P=3 =6 P=8
h f_l) 1.847 1.347 0.987 0.750 0.482
h ;2) 1.842 1.258 0.832 0.639 0.412
Table 1. Times of the computation.
4. FINAL CONCLUSSION

An important remark that can be outlined is the Smarandache inferior part function was
applied successfully to solve an important scheduling problem. Based on it, two equations for
the upper bounds of the load balance sbheduling methods have been found. These equations
have been used to solve the product between an upper diagonal matrix and vector and the
computational times were quite similar. The upper bounds given by the new equation have
provided a better computation for this problem. '
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P=1 P=2 P=3 P=6 P=8

Figure 3. Graphics of the Running Times.
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SOME NEW RESULTS CONCERNING THE SMARANDACHE CEIL
FUNCTION

Sabin Tabirca* Tatiana Tabirca**
*University College Cork, Computer Science Department
*University of Manchester, Computer Science Department

Abstract: In this article we present two new results concerning the Smarandache Ceil
function. The first result proposes an equation for the number of fixed-point number of
the Smarandache ceil function. Based on this result we prove that the average of the

Smarandache ceil function is &(77).

1. INTRODUCTION
In this section we review briefly the main results that are used in this article. These concern the

Smarandache ceil and functions. The Smarandache ceil finction of order k [see
www.gallup.unm edu/~smarandache] is denoted by S,:N*—> N and has the following
definition _

Si(m)y=min{xe N|x* i n}(VneN*). (1)
This was introduced by Smarandache [1993] who proposed many open problems concerning it.

Ibstedt [1997, 1999] studied this function both theoretically and computationally. The main
properties proposed in [Ibstedt, 1997] are presented in the following

(Va,be N*)(a,b)=1=8,(a-b) = S,(a) -S,(b), (2.2)

Si(pl - I =S(p1)-- S(pE )} and (2b)

S(p)= pu V (2.b)

Therefofe, if n=p{'-...- p& is the prime number decomposition of », then the equation of this
function is given by

S.(p ‘---'P:’)zp[?} p[?] 3)

Based on these properties, Ibstedt proposed the following results
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S, (m):S,(n)Vn>1 (4)

n=p, -.-p,>S,(nN=n. (5)

Table 1 shows the values of the Smarandache ceil function of order 2 for n<25.
n S(m [N 50 [N [s,m [N [Sm | S,(n)

1 1 6 6 11 11 16 4 21 21

2 2 7 7 12 6 17 17 22 22

3 3 8 4 13 13 18 6 23 23

4 2 9 3 14 14 19 19 24 12

5 5 10 10 15 15 20 -10 25 5

Table 1. The Smarandache ceil function.

The Mobius function z: N — Z is defined as follows

p)=1 (6.2)
pm=(-1)’ifn=p, -..-p, (6.b)
#(n) =0 otherwise. (6.c)

This is an important function both in Number Theory and Combinatorics because gives two
inversion equations. The first Mobius inversion formula [Chandrasekharan, 1970} is

g(n)=Zf(d)ef(n>=zy<d>-g(§) (7.2)

dn din

while the second Mobius formula is

g(x)=Zf(%)ef(x){p(n)-g(g). (7.b)

nsx
There are several equations concerning series involving the Mobius function [Apostol, 1976].

Among them an important series is
6
3 un) 6 | : (8.3)
that has the following asymptotic form

> ‘y;(‘z"g=i 0(1)- (8.b)

2 +
O<nsx T X

2. THE ASYMPTOTIC DENSITY OF FIXED POINTS
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In this section we present an equation for the asymptotic density of the function S,’s fixed

points. The main result presented can also be found in [Keng, 1981] but we give it a detailed
proof. We start by remarking that the function S » has quit many points. For example, there are

16 fixed points for the first 25 numbers.

Let g(x) be the number of the fixed points less than x: g(x)=#{n<x: S;(n)=n} . We say that

the fixed points have the asymptotic density equ;'«:] toaif im q_(xl =a.

X—>o X

Tbstedt [1997] found that if » is a square free number then it is a fixed point for S, . Actually, the
result holds for any Smarandache ceil function.

Proposition1. n=p, -...- p. =S, (n)=n.

Proof Let n= p{'-...- pZ be the prime number decombosition of n. The following equivalence

gives the proof*
Si(m=nopl-...pl= p[;] e pw <

q, . .

e =a,,i=12, ., soa=1Li=12,. ,s&n=p;..p,.
Therefore, n is a square free number. .

g ‘ d n : f

Proposition 2. (V neN XB. ]n) FE 18 square free. &)
Proof. Firstly, we prove that there is such as divisor. If n= Dy -...- pi the prime number

s 2

decomposition, then d = pL;J e pl?'l satisfies dlz is square free. Actually, di is the
product of all prime numbers that have odd power in the prime number decomposition of n. Now,

) - e n n
we prove that d is unique. Assume that there are distinct divisors such that —

1 2

are square

free. We can write this as follows n=d? - p, -...- p. =d’-q,-..-q,. Let p be a prime number

that does not appear in the both sites p,,..., p, and q,,..,q, (choose that it is in the first). p
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should also appear in the prime number decomposition of d 22 . Therefore, we find that the power

of p is even for the right hand side and odd for the left hand side. .
: GobEl L x
Proposition 3. {0<n<x}=J d*-{i< ;2—: 11s square free}. (10)
d=1

Proof. It is enough to prove this equation just for natural number. Consider #>1 a natural number.

Equation (10) becomes
bal . n .

{12,..,n}=Ud -{zszﬁznssquarefree}. 1

d=1 .

L=
The inclusion {1,2,...,n} 2 U'd?-{i< d_nz :11s square free} is obviously true. A number i< n

d=1
can be written uniquely as i=d” -d, where d SI_\/I—'JS L\/—r;_’ and d, is square free. We find
that it belongs to d2 - {i < Z"Z—: i is square free} , thus Equation (10) holds. .
Consequence: Taking the number of elements in Equation (10) we find

&) -
Lx|= Zq( )Vx>0 (12)

Based on this result and on Equations (7-8) the following theorem is found.

Theorem 4. [Keng] g(x)= ;62—-x+0(J§) (13)

lr) y '
Proof. For x=y?, Equation (12) gives LV _I (—) . The second Mobius inversion
i

formula gives
2 52 Yy 2
q(y )=Zu(i)v[i—2J : (14)
i=1

Equation (14) is transformed based on Equation (8.b) as follows
Ly} 21 bl 32 2 ¥? Ly}
q(¥*)= Zﬂ(l) [ J Z#(i)'(i—z { }J Z#(I) —-Zﬂ(t) { }
i=l1

L (i) 6
=y Z +0(y)—— 4yt 0( )+0(y)—”—y+0(y)

Equation (13) is obtained from the last one by substituting x = y?. *
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ax_6

Consequence: lim > (15

X0 X w

Equation (I5) gives that the asymptotic density for the fixed points of the Smarandache ceil

.6 6 .
function is —-. Because —5 =0.607927..., we find that more than 60% of points are fixed
/4 T .

points. Equation (15) also produces an algorithm for approximating 7z that is described in the
following, '

Step 1. Find the number of fixed points for the Smarandache ceil function S 5.

’6 - X
Step 2. Find the approximation of 7z by using 7 =~ () .
q\x

-3.THE AVERAGE OF THE SMARANDACHE CEIL FUNCTION
In this section we study the ® complexity of the average of the Smarandache ceil function. Let

35,(0)

§k(ﬂ)=L- be the average of the Smarandache ceil function. Recall that
n

f(m)=&gm) if 3C,,C, > 0)Vn>n,)C, - g(n)< f(n) < C, - g(n) [Bach, 199].

Theorem 5. The © —complexity of the average S (n) is given by

Si(n)=0(n). (16)
Proof. This result is obtained from Equation (15). One inequality is obviously obtained as

n

ZSk(i) ) ;i _ n.+1

follows S (n)=-!

n n 2

Because limM = —67 > % » we find that g(x)> %,Vx > x, . Therefore, there are at least 50%

X X T

fixed points. Consider that J =1,i, =2,.,iy, are the fixed points less than n for the
~ Smarandache ceil function. These obviously satisfy i ;2 750=12,..,9(n).

Now, we keep in the average only the fixed points
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q(n) q(n) q(n)

>S0 286 D D

—S—k (n)= i=1 > J=l > J=1 = q(”)'(q(n)‘*‘l)
n n n  n 2:n )

. _ Z’l_ . (ﬁ + ])
Because g(n)>—, we find that Sz(n) Zz—i— =—+— foreach n> x,.

2 2-n 8 4
Therefore, the average function satisfies

§+-}I$§k(n)sg—+%\1n>.xo ' (16)

that gives the @ -complexity is Si (n)=6(n). .

This ©-complexity complexity gives that the average of the Smarandache ceil function is linear.
Unfortunateiy, we have not been able to find more details about the average function behavior.

What is ideally to find is C € G;-,%) such that
Si(n)=C-n+0(n"). )

) .S, ()

S T —

From Equation (17) we find the constant C is C = lim 3

n—oc n n—roo n

Example. For the Smarandache ceil function S, we have found by using a simple

2.5:(0) 2.5:0)
computation that <='—— ~0.3654... and 7 -| =L —— —0.3654 | ~0.038..., which
n n

give the S2(n)~0.3654-n+0.038-vn

This example makes us to believe that the following conjecture holds.

. — -l
Conjecture: There is a constant C € (%,—;—) such that Sx(n)=C-n+ O(nl £y, (18)
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4. CONCLUSSIONS

This article has presented two important results concerning the Smarandache ceil

function. We firstly have established that the asymptotic density of fixed points is —62—
T

Based on this we have found the average function of the Smarandache ceil function
behaves linearly. Based on a simple computation the following Equation (18) has been

conjectured.
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BOUNDING THE SMARANDACHE FUNCTION

MARK FARRIS AND PATRICK MITCHELL

Midwestern State University
Department of Mathematics

Let S(n), for n € N* denote the Smarandache function, then S(n) is defined as the
smallest m € N*, with n|m!. From the definition one can easily deduce that if n =
pI'po?...pe* is the canonical prime factorization of n, then S(n) = max{S(p{*)}, where
the maximum is taken over the i's from 1 to k. This observation illustrates the importance
of being able to calculate the Smarandache function for prime powers. This paper will be
considering that process. We will give an upper and lower bound for S(p*) in Theorem
1.4. A recursive procedure of calculating S(p®) is then given in Proposition 1.8. Before
preceeding we offer these trivial observations:

Observation 1. If p is prime, then S(p) = p.
Observation 2. Ifp is prime, then S(p*) < kp.
Observation 3. p divides S(p*)

Observation 4. Ifp is prime and k < p, then S(p*) = kp.

To see that observation 4 holds, one need only consider the sequence

2,3,4...,p—L,p,p+1,...,2p,2p+1,...,3p,...,kp
and count the elements which have a factor of p.
Define Tp(n) = 2211[#], where [-] represents the greatest integer function. The func-

tion T, counts the number of powers of p in n!. To relate Tp(n) and S(n) note that S(p*)

is the smallest n such that T(n) > a. In other words S(p®) is characterized by

(*) To(S®*)) > a and T,(S(EP*)-1)<a-1.
1
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Lemma 1.0. Forn > 1, Th(n) < ;%
Proof. Tp(n) =32, 2] < 1%L, #* =53 O
Corollary 1.1. (p - 1)a < S(p*) < pa

Recall this basic fact about the p-adic representation of a number n. Given n,p € Z and
P 2 2,n > 0, we can uniquely represent n = Z;';D a;j(n)p’, where each a; € {0,1,2,...,p—

1}.
Lemma 1.2. Tp(n) = p+1(n - Z;?_—o a;(n))

Proof.

T = 3 [5] = 3 [Ee ]

k=1 k=1 pk
- E Z —k aJ(n)p1 _ Z Za](n)p?—k
k=1 k=1 j=k
—ZZa,(n»ﬂ * Za, n)Zp"
=1 k=1

N L3 ame* - 1)
k=1 j=1 p k=1

—— > (ar ()" — ax(n)

k=1

=Y ax(n)) O

p k=0

Lemma 1.3. Ifn > 1 then

1<) aj(n) < (p— 1)[flog,(n)] +1].

=0

Proof. For each a; we have a; < p— 1. Note that in the p-adic expansion of n, aj(n)=0
for all j > [log,(n)]. Thus we have 1 < 322 a;(n) < (p — 1)([log,(n)] +1).

38



BOUNDING THE SMARANDACHE FUNCTION

Now using the characterization * and Lemma 1.2, we get the following

S®*) = > ai(S(™)) > (p-1)a and
=0

(*) S@*)-1-Y a;(SE*) - 1) < (@~ 1)(p-1).

=0
Applying Lemma 1.3 to the first inequality for S{p®), yields a lower bound of

Se)>(p-1a+1.
This lower bound cannot be improved since we obtain equality when a = p + 1, in fact
we achieve equality whenever a = p* + p*~! + ...+ p+1 for t > 1. Now S(p°) is clearly
integer valued, so one may choose to write the lower bound as S(p®) > (p — De.

From the latter inequality (**), we get the following.

SE)<p-De-1)+1+ i a;(S(p*) — 1)

S-Dle-1)+1+ gﬂ_ 1)(Jlog,(S(p*) — 1)] + 1)
= (- Dla-1)+1+(p—1)[log,(S(p*) - )]+ (p-1)
=a(p—1)+ (p— 1)[log,(S(p™) - 1] +1
<a(p—1)+(p—1[log,(pa—1)] +1
<ea(p—-1)+ (p— 1)flog,(pa)] +1
=a(p—1)+ (p—flog,(a) + 1] +1
=a(p—1)+ (- Dllog,(a)] + (p—1) +1
=(p—Dla+1+logy(a)] +1

Theorem 1.4. For any prime p and any integer o, we have

(p-1)a+1<S0%) < (p-1a+1+log,(a)] +1.

We now consider the sharpness of this upper bound. Note that when a = p* — k the
upper bound yields the value (p — 1)p* + 1. As it turns out S(p"k"‘) is one less than this

yield.
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Lemma 1.5. S(p? ~*) = (p— 1)p*, for k > 1.

Proof. Consider

L™ -p*) =3 [p—pfl]

=1
=0" -+ -+ (P )+ (p-1) =pF 1

and
ot k+1 k
P —pt -1
" -pF-1) =] —]
I=1 p
1 , 1 1 1
k k—1 k—1 k—2
= [p* - -]+ - =]+ 1- 2 —
[Pt =7 = I P - ) 1 2
=@ - =D+ P - D+ (p-1-1) 40
=p* - (k+1).

Since T, (p**! — p* — 1) < p*F — k < T, (p*+! — p¥), we have S@*"%) = (p - Dp*. O

Thus we have produced infinitely many values that are within one of the upper bound.
If Wé recall Observation 3, the upper bound should be congruent to 0 mod P- So one could
subtract the rémainder of the upper bound when dividing by p from the upper bound and
make it sharp. We shall omit that task in this paper.

We now turn our attention to answering the question when is S(p®) = p®. Cousider the

following calculations, verification is. left for the reader.
L) =P+ 1+ 4p+1
LE* - =pP+p" 7+ +p-8
L") =" +p7 2+ 4 p+1
L -)=p" "+ 4 4pr1-8

Thus we have S(p*) =P ifpP+pP 1+ . 4 p+1-B<a<pP+pP - +p4 1. If
PPl 4pP 2+ 4p+1 < a< pP+pP 1+ .+p+1- B, then we have pf < S{p™) < pPtL.
We now offer a recursive procedure for calculating S(p®). The following is a technical

lemma that will be used in proving the recursion formula.
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BOUNDING THE SMARANDACHE FUNCTION

Lemma 1.6. Suppose we have p? < r < pP*1, for some 8 > 0, then

Tp(r) = Tp(Pﬂ) + Tp(r — Pﬁ)

Proof.
x ﬂ
56 =3 (5] = LR
B B pB B T—pﬂ
—I;(E)'*‘kz__;l[ o ]

=Tp(Pﬁ)+Tp(r“Pﬂ) O

Lemma 1.7. IfpP 14+ pP 2 4. 4 p+1<a<pP+pP 1+ 4p+1, then S(p*) =
PP + S(po— " P T L)y

Proof. Case 1: Assume that pP 1 +pP24+...4p+1<a<p’+p? 1+ +p+1-3.

S(p®) = min{r|Tp(r) 2 o}
= min{r|T,(r) > a @d PP <r<p?t}
= min{r|Tp(?°) + Tp(r —p#) > o and p* <r <Pt}
=9 +min{r — pP|T,(r - %) 2o~ T,(p°) and 0<r—p? <pf*l—pf}
=p® + min{r|T,(r) > a ~ T,(@#) and 0<r <P —pf =p(p—1)}

=% + 5= 07
=pP 4 S(pa~ TP T D))

Case 2: Assume that pP + 9P 1+ +p+1-B<a<p’+p# 1 +---+p+1. From the
prior calculations of Tp(p?*!) and Tp(pP*! ~ 1) we have the S(p™) = p?*? for any « in this
range. Now consider the right hand side of the equation, p? + S(p®=@ '+ +-+p+1)),
We can restate this expression as p? + S(pt), where p? — 8 < t < p®. From the proof of
Lemma 1.4 we see that T,(p?*! — pP) = p# —1 and T,(p?* —pP — 1) =p? — B — 1, thus
it must be that S(pt) = pP+! — pP. Thercfore the right hand side is pP+1. O
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Clearly this lemma can be repeated as long as o — (PP 1 +... D>pP 1 4...1, 50 we

can strengthen Lemma 1.6.

Proposition 1.8. fd=p’ 1 +p2 4. .4 p+1<a<pP+pf 14 +p+ 1, write

a=gqd+r with 0 <r < d, then S(p™) = qp° + S(p").
Nowpﬂ+pﬂ‘1+---+p+1=pﬁ(1+%+---+;13-) < %. Therefore we get log, & <

logp(pﬁ+---+1) =p+1-log,(p—1) < B +1, and similarly 8- 1 <pP-log,lp—-1) <

log,(a) <B+1,0orlog,a-1< 8 < log, & + 1. Hence the exact value of S(p®) can be

obtained by applying the proposition on the order of log, o times.
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ABSTRACT

In our present short paper we introduce a rather promising modeling paradigm for the
design of artificial learning systems, incorporating crifical trigger mechanism (CTM). We
contend that at various stages of the learning process, such trigger mechanism may be
activated when certain “critical’ points in the learning curve are attained. Such points are
marked by fuzzification of the learner’s decision set. At all other ‘non-critical’ points
where the decision set is crisp, this trigger mechanism lies dormant. We proceed to show
that identification and subsequent incorporation of such trigger mechanisms will be of
substantial help in modeling leaming systems that closely emulate cognitive Iéarning
pattern of the human mind. This is not a complete work in any sense but just an
indication of what is to come - a mere map of the long and challenging road ahead.

Key Words

Artificial Learning Systems, Fuzzy Logic, Cognitive Science, Directed and Non-
directed Interventions

Introduction

The conditioned-reflex experiments of the Russian physiologist Ivan Pavlov and the
American psychologist Edward Thorndike were central to the development of behaviorist
model of learning. However, modern cognitive science favors a logical-computational
model of learning over the rather mechanistic stimulus-response model of traditional
behaviorism. But there need not exist as big a chasm between the approach of traditional
behaviorism and that of modern cognitive psychology as is often made out to be. Gagne
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and Briggs (1974) have already attempted to combine behaviorist principles of learning
with a cognitive theory of leamning named Information-Processing. They believe that the
design of intervention must be undertaken with suitable attention to the conditions under
which learning occurs.

Information-Processing theory regards human leaming as being analogous to a
computer and its ability to store memory. Significant efforts have already been made to
design artificial systems that emulate human leamning and memory. In this regard, the
Memory Extender (ME) personal filing system design is an illustrative example that
immediately springs to mind. As humans we process information mitially with our
senses. This information is either processed into short-term memory or is lost. If this
information is continually re-used it is processed into long-term memory. However, for
this information processing there has to be some initial directed interventions (hard
programming) followed by subsequent non-directed interventions (seft programming).
At times, these two forms of intervention may become mutually inconsistent. It is
especially to deal with such situations that we suggest the incorporation of critical trigger
mechanism (CTM), in order to make the system decide upon a definite course of action.

The Proposed Modeling Paradigm

Let us consider a2 case where an artificial learning system is being trained to emulate
investor behavior. The fundamental operational rule which the system needs to learn is a
simple IF statement — “Buy IF price is rising AND Sell IF price is falling”. But simply
learning this fundamental rule may not enable the system to realistically emulate the
actual behavior of a human investor. The findamental rule is nevertheless important — it
is the initial hard programming bit consisting of a directed intervention. This is the easy
part. But for a realistic simulation, the system must also learn to do some internal
cognitive processing in accordance with one or more subsequent non-directed
interventions — the soft programming bit.

If we are trying to design a system to emulate an individual investor’s fund allocation
behavior then we have to prima facie consider the subtle cognitive factors underlying
such behavior over and above those dictated by hard economic reasoning. The boundary
between the preference sets of an individual investor, for funds allocation between a risk-
free asset and the risky market portfolio, tends to be rather fuzzy as the investor
continually evaluates and shifts his or her position; unless it is a passive buy-and-hold
kind of pertfolio. .

Thus, if the universe of discourse is U = {C, N, A} where C, N and A are three risk
classes “conservative”, “neutral” and “aggressive” respectively, then the fuzzy subset
of U given by P = {x4/C, x2/N, x3/A} is the true preference set for our purposes. Here we
have 0 < (x1, X2, X3) < 1, all the symbols having their usual meanings. Although
theoretically any of the P (x;) values could be equal to unity, in reality it is far more likely
that P (x;) <1 fori=1, 2, 3 Le. the fuzzy subset P is most likely to be subnormal. Also,
similarly, in most real-life cases it is expected that P (x)) > 0 for i = 1, 2, 3 ie. all the
elements of P will be included in its support: supp (P) = {C, N, A,} =U.
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The critical point of analysis is definitely the individual investor’s preference ordering
ie. whether an investor is primarily conservative or primarily aggressive. It is
understandable that a primarily conservative nvestor could behave aggressively at times
and vice versa but in general, their behavior will be in line with their classification. So the
classification often depends on the height of the fuzzy subset P: height (P) = Max,P (x).
So one would think that the risk-neutral class becomes largely superfluous, as investors in
general will tend to get classified as either primarily conservative or primarily aggressive.
However, as already said, in reality, the element N will also generally have a non-zero
degree of membership in the fuzzy subset and hence cannot be dropped.

The fuzziness surrounding investor classification stems from the fuzziness in the
preference relations regarding the allocation of funds between the risk-free and the risky
assets in the optimal portfolio. It may be mathematically described as follows:

Let M be the set of allocation options open to the investor. Then, the fuzzy preference
relation is a fuzzy subset of the M x M space identifiable by the following membership
function:

UR (my, my) = 1; my; is definitely preferred to mj
ce (0.5, 1); m; is somewhat preferred to mj
0.5; point of perfect neutrality
de (0, 0.5); my is somewhat preferred to mi; and
0; m, is definitely preferred to mi

The fuzzy preference relation is assumed to meet the necessary conditions of reciprocity
and transitivity. Then a CTM would be a built-in function in conjunction with the above
membership function, such that, when activated, it would instantaneously convert the
fuzzy preference relation into a crisp preference relation.

As long as a subsequent soft programming is consistent with the initial hard
programming, the decision set will be crisp: the universe of discourse and the crisp
decision subsets being of the following form:

D= {dl, dz voe di... d.};
d={d, d;...d;...dy, (die D) (d; 2 d‘)},
df= {dk{-], itz ooo it «ee dn, (dk+| € D) M (dm & d)}, such thatd N d®= ¢

However, at a point of conflict between the initial hard programming and a subsequent
soft programming, the decision set will be fuzzified with an unchanged universe of
discourse but fuzzy decision subsets of the following form:

D = {dy, d;... di... da};

d= {plldl, pzldz see p;/d; ves p,,/d.,, (di € D), (0 < Pi < 1)},
d¢= {qv/ds, q2/d; ... gi/d; ... g /dy, (di € D), (0< qi < 1)},
suchthatd Nnd®# ¢

Therefore, any function having the potential to be a CTM must be having the following
fundamental characteristics:
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¢ It should be activated if and only if the decision set is fuzzified at any stage in
the learning process
It should, when activated, convert a fuzzy decision set into a crisp decision set
It should mark a critical point on the system learning curve by either advancing
or setting back the learning process

Suppose a novice investor goes on putting more and more of his or her funds in a
particular asset just because it has been steadily outperforming the market index over the
recent past. Then, suddenly one fine day the bubble bursts and our investor is left in the
red with the greater part of his or her equity wiped out. How far will that investor be
inclined to invest in a similar asset in the distant future when such type of assets are
doing great once again? Economic reasoning (hard programming) will encourage the
investor to go with the trend and once again start putting his or her funds on that asset.
But the investor’s cognitive process (soft programming) may not be in tune with the
directed intervention of market economics. This would fuzzify the decision set for the
mvestor. This is where a potential CTM could be activated which ultimately decides
which way the investor would go by de-fuzzifying the decision set.

In case of our investor, if the CTM activation actually hinders learning then he or she
will be inclined to leave that offending asset alone no matter how lucrative an investment
opportunity seems. If on the other hand the CTM activation actually facilitates learning
then the investor will go for that asset once again but adopt a more circumspect approach
— having positively learned from his or her previous misadventure. However, in either
case, the CTM has the effect of de-fuzzifying the investor’s decision set.

The extent of potential impact of the CTM could also be effectively modeled as a fuzzy
function characterized by the universe of discourse {Cs, Cm, Cw} corresponding to
“strong”, “moderate” or “weak” impact respectively, with the governing fuzzy subset
{01/Cs, 62/Cp, 8:/Cw}; (0 < 0y, 02, 8:< 1). An artificial learning system would have an
advantage in this regard as such a system could incorporate the different possible forms
(at varying strengths of impact) of the CTM and perform a what-if analysis to see exactly
how different the individual outcomes are in each case.

The Road Ahead

What we have here is some kind of a hypothesis regarding modeling of artificial learning
systems that emulate the human learning process. As our next step we plan to identify a
potential CTM in human learning behavior specifically in relation to investing. One
prime candidate we feel could be the post-investment cognitive dissonance factor due to
inconsistency in perceived and true worth of an investment, which can and often do
critically affect an investor’s learning behavior. Subsequently, we propose to incorporate
this mechanism in a hybrid neuro-fuzzy system and emulate investor behavior under
different market settings. If results are satisfactory then the approach could be extended
to models covering other facets of human learning behavior. Finally we would need an
effective integration strategy to bring the various models together in a unified whole.
Once this integration is achieved over a fairly large area of human learning, we shall have
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moved one significant step forward in creating the ultimate of all artificial learning
systems — a working model of the human mind.
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THERE ARE INFINITELY MANY SMARANDACHE
DERIVATIONS, INTEGRATIONS AND LUCKY
NUMBERS

Pantelimon Stinici and Gabriela Stinici

March 1, 2002

Abstract

A number is said to be a Smarandache Lucky Number (see [3, 1, 2]) if an incorrect
calculation leads to a correct result. In general, a Smarandache Lucky Method or Algo-
rithm is said to be any incorrect method or algorithm, which leads to a correct result. In
this note we find an infinite sequence of distinct lucky fractions. We also define a lucky
product differentiation and a lucky product intt-egration. For a given function f, we find

all other functions g, which renders the product lucky for differentiation/integration.
Keywords. Smarandache Lucky Numbers, Fractions, Lucky Derivatives, Lucky Integrals

1 Introduction

A nuﬁlber is said to be a Smarandache Lucky Number (see [2]) if an incorrect calculation
leads to a correct result. For example, in the fraction 64/16 if the 6's are incorrectly
cancelled the result 4/1 = 4 is correct. (We exclude trivial examples of the form 400/ 200>
where non-aligned zeros are cancelled.)

In general: The Smarandache Lucky Method/Algorithm /Operation/etc. is said to be
any incorrect method or algorithm or operation, which leads to a correct result. The wrong

calculation is funny, and somehow similarly to the students’ common mistakes, or to produce
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confusions or paradoxes. In [1] (see also [2], [3]), the authors ask the questions: Is the set of
all fractions, where an tncorrect calculation leads to a correct result, finite or infinite? Can
someone give an example of a Smarandache Lucky Derivation, or Integration, or Solution
to a Differential Equation?

In this note we give an infinite class of examples of each type. In fact, given a real-
valued function f, we find all examples for which an incorect differentiation/integration, in

a product with f, leads to a correct answer.

2 Main Results

Let f,g be real-valued functions. Define the incorect differentiation as follows:

do (f(2)-9(=)) _ df(z) dg(a)
dz dz dz

We prove

do(f(z) g(z)) _

Theorem 1. Let f : R = R. The functions g : R — R, satisfying iz

d f(z) - g(z)
f! (l'
g(z) =c- e/f (x)

are given by

dzx

where ¢ s a real constant.

do(f(z) - g(z))
dx

Proof. Since = f'(z)g'(z), we need to find all functions such that

f'(2)g'(z) = f'(z)g(z) + f(z)g (),

by the product rule for differentiation. Thus, we need

¢ @) (f'(@) - [(2) = g(@)f' (@) = T2 =

from which we derive

J 7(1) f(r

glzy=c-e

49



Ezamples.
/ 1 dx

1. Take f(z) =z, then g(z) =c-e/ 1—< =c-eln(1/(1—:‘c))=c-11

-z
2. Take f(z) = z2, then
2z oz 1
L 4z " tm

=c- /22:—3:2 =ce -2  x2-2r - __° _

glz)=c-e c-e EED)ER

From the previous theorem we derive an equivalent result on lucky integration. The

incorect integration is defined by: the integral of a product is the product of integrals.

Theorem 2. Given a real-valued function f, the functions g such that the integral of the

product of f and g is the product of the integral of f and integral of g are given by

/ f(z)
cf(z) f(@) = [ f)dz
f@) - / f@)dz

g(z) =

Proof. Similar to the proof of Theorem 1. 0
Obviously, the previous theorem is an example of a lucky differential equation, as well.

3 There Are an Infinity Number of ... Lucky Numbers

To avoid triviality, we exclude among the lucky numbers, those which are constructed by

padding at the end the same number of zeros in the denominator and numerator of a fixed

b---z
fraction (e.g., %). We also exclude 1’s, that is Zb-- =
The fact that there are an infinity of lucky fractions is not a difficult question (even if
they are not constructed by padding zeros or they come from 1). Our next result proves

that
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99
Theorem 3. Let the fraction (same number of digits). By cancelling as many 9’s

24---99

as we wish (and from any place, for that matter), we still get 4.

Proof. Let n + 1 be the number of digits in the numerator (or denominator) of the given

fraction. We write it as

9.10"+9-10"1+...+9-10+6
24-10"14+9-1072+... +9

_ 3. 10’;—4 _ 10" —4 -
8.10n2+3. 10;(;‘_21-—1 241072 4+ 1072 — 1

_ 10" -4 _

L1

We see that by cancelling any number of digits of 9, we get a fraction of the same form. O
In the same manner we can show (we omit the proof)

3
Theorem 4. Define the fmctions (the numerator has one digit more that the

33
(same number of digits),

denominator), respectively, (same number of dig-

16---

6---6 8 77---75 13---34
its), %6 > (same number of dzgtts) ZQ 9 (same number of dzgzts), 7 3“'334
(same number of 3’s). By cancelling as many 3's, respectively, 6's,9's,6's,9's,7's,3's, as

5 25
we wish, we get the same number, namely 4, respectively, 5, 5,2, 7,4.

Other examples of lucky numbers are given by taking the above fractions and inserting

zeros appropriately. We give

Theorem 5. The following fractions are also lucky numbers

b0--- 0zy
al-- - Qwz

. T R
{same number of zeros), where 1 < a,b,w, z,y,z < 9 are integers, il are the fractions from
wz

b .
the previous theorem equal to {2,5/2,4,5} and - is equal to that same reduced fraction.
Ty 25 .. b 25

When — = - then a,b are not digits, rather they are integers such that — = —
wz a
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You might think that these are the only lucky numbers. That is not so. Our last

theorem will present an infinite number of distinct lucky numbers.

b
Theorem 6. Take any reduced fraction - Then, the following sequence of fractions is a

b0---0b
sequence of lucky numbers 003" Assuming the denominator (numerator) has k more

digits than the numerator (denominator), then the numerator (denominator) has k more

zeros in it. Since — was arbitrary, we have an infinite number of lucky fractions.
a

1
Ezample. Let -ll = 1? Then we build the following sequence of lucky numbers
a

11 11011 110011

S = et
77007 70007 * €
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PROGRAM FOR FINDING OUT NUMBER OF SMARANDACHE DISTINCT
RECIPROCAL PARTITION OF UNITY OF A GIVEN LENGTH
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ABSTRACT: Smarandache Distinct Reciprocal partition of unity for a given length
‘0’ is defined as the number of ways in which unity can be expressed as the sum of
the reciprocals of ‘n distinct numbers. In this note a program in ‘C’ is given.

// This is a program for finding number of distinct reciprocal partitions of unity of a
given length written by K Suresh, Software expert, IKOS , NOIDA , INDIA.

#include<stdio.h>
#include<math.h>
unsigned long TOTAL;

FILE* f;
long double array[100];
unsigned long count = 0;

void try(long double prod, long double sum, unsigned long pos)

{
if{ pos =TOTAL-1)
{
// last element..
long double diff = prod - sum;
if{ diff = 0 ) return;

array[pos] = floorl(prod / diff);
if{ array[pos] > array[pos-1] && array[pos] * diff = prod )
{ ]
fprintf{f, "(%ld) %ld", ++count,(unsigned long)array[0]);
nt i;
for(i= 1; i < TOTAL; i++) fprintf{(f,", %ld", (unsigned long)array[i]);
fprintf(f, "\I’l");
filush(f);
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}

¥
return;
}
long double i;
if{ pos =10)
i=1;
else
i = array[pos-1];

while(1) {
i+
long double new_prod = prod * pow(i, TOTAL-pos);
long-double new sum = (TOTAL-pos) * (new_prod / i);
unsigned long j;
for(j = 0; j < pos; j++) new_sum += new _prod / array[j];
if{ new_sum < new_prod )

break; |

new_prod = prod * i;

array[pos] = i;

new_sum = prod + sum * i;

if{ new_sum >= new_prod ) continue;

try(new_prod, new_sum, pos+1);

return;

main()

{

printf{"Enter no of elements ?");

scanf{("%Id", &TOTAL);

char fname[256];

sprintf{fname, "rec%ld.out", TOTAL);

= fopen(fhame, "w");

fprintf{f, "No of elements = %Id.\n", TOTAL);

try(1, 0, 0);

fHlush(f);

fclose(f);

printf{"Total %Id solutions found.\n", count);
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return 0;
}

Based on the above program the following table is formed.

Length | Number of Distinct Reciprocal Partitions
1 1
2 0
3 1
4 6
6 2320
7 245765
Reference:

[1] “ Amarnath Murthy” , © Smarandache Reciprocal Partition of Unity sets and
sequences’ , SNJ, Vol. 11, No. 1-2-3 , 2000.
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On a problem concerning the Smarandache friendly prime pairs
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Abstract

In this paper a question posed in [1] and concerning the Smarandache
Jriendly prime pairs is analysed.

Introduction
In [1] the Smarandache friendly prime pairs are defined as those prime pairs (p,q) such that:

9

D x=pg )

x=p

where x denote the primes between p and q. In other words the Smarandache friendly prime pairs
are the pairs (p,q) such that the sum of the primes between p and q is equal to the product of p
and q.

As example let’s consider the pair (2,5). In this case 2+3+5=2-5 and then 2 and 5 are
friendly primes. The other three pairs given in the mentioned paper are: (3, 13), (5,31) and (7,53).
Then the following open questions have been posed:

Are there infinitely many friendly prime pairs?
Is there for every prime p a prime q such that (p,q) is a Smarandache friendly prime pair?

In this paper we analyse the last question and a shortcut to explore the first conjecture is
reported.
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Results

First of all let’s analyse the case p=11. Let’s indicate:

q
fAL=Y x and  gULg)=1lq

x=11

where x denotes always the primes between 11 and q.

A computer program with Ubasic software package has been written to calculate the difference
between g(11,q) and f{11,q) for the 164 primes q subsequent to 11. Here below the trend of that
difference.

e — “
g(11,9)-f{11,q) versus f(11,q)

g
7
0 500 1000 1500 2000
f{11.q)
N J
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As we can see the difference starts to increase, arrives to a maximum and then starts to decrease
and once pass the x axis decrease in average linearly. The same thing is true for all the other
primes p.

So for every prime p the search of its friend q can be performed up to:

g@.9)-f(p,q)<-M

where M is a positive constant. »

For the first 1000 primes M has been choosen equal to 10°.
No further friendly prime pair besides those reported in [1] has been found. According to those
experimental results we are enough confident to pose the following conjecture:

Not all the primes have a friend, that is there are prime p such that there isn’t a prime q such
that the (1) is true .

Moreover a furter check of friendly prime pairs for all primes larger than 1000 and
smaller than 10000 has been performed choosing M=1000000.

No further friendly prime pair has been found. Those results seem to point out that the
number of friendly prime pairs is finite.

Question:

Are (2,5), (3,13), (5,31) and (7,53) the only Smarandache friendly prime pairs?

References.

[1] A. Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions
Journal, Vol. 12 N. 1-2-3 Spring 2001

58



SMARANDACHE SEQUENCE OF HAPPY NUMBERS

Shyam Sunder Gupta
Chief Engineer(C), S.E. Railway, Garden Reach
Kolkata - 700043, India

Email: guptasstiredifimail.com

URL: www shyvamsundersupta.com

Abstract:

In this article, we present the results of investigation of Smarandache Concatenate Sequence
formed from the sequence of Happy Numbers and report some primes and other results found
from the sequence

Key words:

Happy numbers, Consecutive happy numbers, H-sequence, Smarandache H-sequence, Reversed
Smarandache H-sequence, Prime, Happy prime, Reversed Smarandache Happy Prime,
Smarandache Happy Prime

1. Introduction:

If you iterate the process of summing the squares of the decimal digits of a number and if
the process terminates in 1, then the original number is called a Happy number [1].

For example:
7 ->49 ->97 -> 130 > 10 > 1, so the number 7 is a happy number.

Let us denote the sequence of Happy numbers as H-sequence. The sequence of Happy
numbers [3], say H={ 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 97
L100 ... }.

2. Smarandache Sequence;

LetS,,8,:,8;:,..., 84, ... beaninfinite integer sequence (termed as S- sequence), then
the Smarandache sequence [4] or Smarandache Concatenated sequence [2] or
Smarandache S-sequence is given by
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S1, §i8s, $iS2S8; ... S18:S8;3 . .. Sa

Also Smarandache Back Concatenated sequence or Reversed Smarandache S-sequence is

Sl, Ssz, S3stl ... Sn. . . S3stl

Smarandache H-Sequence:

Smarandache sequence of Happy numbers or Smarandache H-sequence is the sequence
formed from concatenation of numbers in H-sequence ( Note that H-sequence is the
sequence of Happy numbers). So, Smarandache H-sequence is

1,17, 1710, 171013, 17101319, 1710131923, 171013192328, ............

Let us denote the n™ term of the Smarandache H-sequence by SH(n). So,

SH(1)=1

SH(2)=17

SH(3)=1710

SH(4)=171013 and so on.

Observations on Smarandache H-sequence:

We have investigated Smarandache H-sequence for the following two problems.
How many terms of Smarandache H-sequence are primes?

How many terms of Smarandache H-sequence belongs to the initial H-sequence?
In search of answer to these problems, we find that

There are only 3 primes in the first 1000 terms of Smarandache H-sequence. These are
SH(2) = 17, SH(5) = 17101319 and SH(43), which is 108 digit prime. It may be noted
that SH(1000) consists of 3837 digits.

Open Problem:

Can you find more primes in Smarandache H-sequence and are there infinitely many
such primes?
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b. There are 1429 Happy numbers in first 10000 terms of Smarandache H-sequence and
hence belongs to the initial H-sequence. The first few Happy numbers in the

Smarandache H-sequence are SH(1), SH(11), SH(14), SH(30), SH(31), SH(35), SH(48),

SH(52), SH(62), SH(67), SH(69), SH(71), SH(76), ..., etc.
It may be noted that SH(10000) consists of 48396 digits.
Based on the investigations we state the following:
Conjecture:

About one-seventh of numbers in the Smarandache H-sequence belong to the initial H-

sequence.

In this connection, it is interesting to note that about one-seventh of all numbers are
happy numbers [1].

3.2 Consecutive SH Numbers:

It is known that smallest pair of consecutive happy numbers is 31, 32. The smallest
triple is 1880, 1881, 1882. The smallest example of four and 5 consecutive happy numbers are
7839, 7840, 7841, 7842 and 44488, 44489, 44490, 44491, 44492 respectively. Example of 7
consecutive happy numbers is also known [3]. The question arises as to how many consecutive

terms of Smarandache H-sequence are happy numbers.

Let us define consecutive SH numbers as the consecutive terms of Smarandache H-sequence
which are happy numbers. During investigation of first 10000 terms of Smarandache H-
sequence, we found the following smallest values of consecutive SH numbers:

Smallest pair: SH(30) , SH(31)
- Smallest triple: SH(76), SH(77), SH(78)

Smallest example of four and five consecutive SH numbers are SH(153), SH(154), SH(155),
SH(156) and SH(3821), SH(3822), SH(3823), SH(3824), SH(3825) respectively.

Open Problem:
Can you find the examples of six and seven consecutive SH numbers?

How many consecutive SH numbers can you have?

4.0 Reversed Smarandache H-Sequence:

It is defined as the sequence formed from the concatenation of happy numbers (H-sequence)
written backward ie. in reverse order. So, Reversed Smarandache H-sequence is

1,71, 1071, 131071, 19131071, 2319131071, 282319131071, ....
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Let us denote the n® term of the Reversed Smarandache H-sequence by RSH(n). So,
RSH(1)=1

RSH(2)=71

RSH(3)=1071

RSH(4)=131071 and so on.

4.1 Observations on Reversed Smarandache H-sequence:

Since the digits in each term of Reversed Smarandache H-sequence are same as in Smarandache
H-sequence, hence the observations regarding problem (ii) including conjecture mentioned in
para 3.1 above remains valid in the present case also. So, only observations regarding problem (i)
mentioned in para 3.1 above are given below:

As against only 3 primes in Smarandache H-sequence, we found 8 primes in first 1000 terms of
Reversed Smarandache H-sequence. These primes are:

RSH(2) =71
RSH(4) = 131071

RSH(5) = 19131071

RSH(6) = 2319131071

RSH(10) = 443231282319131071

Other three primes are RSH(31), RSH(255).and RSH(368) which consists of 72, 857 and 1309
digits respectively.
Smarandache Curios:

It is interesting to note that there are three consecutive terms in Reversed Smarandache H-
sequence, which are primes, namely RSH(4), RSH(S) and RSH(6), which is rare in any
Smarandache sequence.

We also note that RSH(31) is prime as well as happy number , so, this can be termed as Reversed
Smarandache Happy Prime. No other happy prime is noted in Reversed Smarandache H-
sequence and Smarandache H-sequence.

Open Problem:

Can you find more primes in Reversed Smarandache H-sequence and are there infinitely many
such primes?
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Abstract
In this paper, a problem posed in [1] by Smarandache concerning the prime
gaps is analysed.

Let's p, be the n-th prime number and d, the following ratio:
d, =B"-+'T‘PA where  n>1

If we indicate with g, = p,., - p, the gap between two consecutive primes, the previous equation
becomes:

d =%

"2
In {1}, Smarandache posed the following questions:

1. Does the sequence d, contain infinite primes?
2. Analyse the distribution of d,

First of all let's observe that H_ is a rational number only for n=1, being p, =2, P> =3. For n>1,
instead, the ratio isa]waysanaturalnumbersincethegapofprimcnmnbers g, is an even number
22 [2]. A

Moreover let's observe that the gap ¢, can be as large as we want. In fact let's n be any integer
greater than one and let's consider the following sequence of consecutive integers:

42, 43, ma4,......., nlvn

Notice that 2 divides the first, 3 divides the second, ..., n divides the n-1st, showing all of these
mumbers are composite. So if p is the largest prime smaller than n1+2 we have g, >n. This proves
our assertion.

Now let’s check the first terms of sequence d, :

n|112]3]4}5
d |0.5 211

Pa|2|3|5(7]11{13]17]19{23129

10

=)
(-]
Wi\o

[
b
()
—f
)
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Here p,is the smallest prime relative to the gap d,. As we can see, for the first 10 terms of
sequence 4, we have 4 primes regardless if those are repeated or not. On the contrary, if we

consider only how many distinct primes we have then this number is 2. So, the Smarandache
question can be split in two sub-questions:

1. How many times the sequence d, takes a prime value?
2. How many distinct primes the sequence d, contains?

Proving both the questions is a very difficult task. Anyway, we can try to understand the behaviour
of sequenced, by using a computer secarch and then get a heuristic argument on the number of
primes within it.

Thanks to an Ubasic code, the counting fimctions p,(¥) and p,(¥) have been calculated for Nup
to 10°.

p1(N)denotes how many timesd, takes a prime value for n<N while p,(¥) denotes the number of
distinct primes in d,, always for n<N . In table 1, the results of the computer search can be found.

In the third column, the number of distinct primes are reported whereas in the second one the
number of all primes regardless of the repetitions are shown.

N # primes  |# distinct primes
10 0 0

100 14 2

1000 107 4

10000 685 7

100000 4927 11
1000000 37484 14
10000000 241286 19
100000000 2413153 24
1000000000 66593597 33

Table 1. Number of primes in d,, for different N values

Let’s analyse the data of column 2. It is very easy to verify that those data grow linearly with N,
that is:

PN =ch)-N (1)

An estimation of ¢(N) can be obtained using the following asymptotic relationship given in [3]:

24,

2N P T
lnz(N) pd. pr2 P2

where hy(d,)/ N is the frequency of d, for n< N and p any prime number.
The constant ¢, is the twin prime constant defined in the following way:

[,_

c,=2- H .....

J = 1.320032
p>2
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By definition of p,(¥) function we have:

2.4,

PV = Z [1 e =

d,=2 ln (N) pad,, p>2

where the above summation is extended on all prime values of d, up to d,, . But the largest gap
d. for a given N can be approximated by [2],[3]:

o =5l ()
and then (2) can be rewritten as:
2y T2
nN)= P dzﬁ e 3
where the function :

Jd,)= H  duid
d, p2 P

has small values of order 1 and then has been replaced by its mean value cl 31
2

Since, as N goes to infinity, the summation:

—h’(N) 2d,

Zeh(N)

is the number of primes in the range 1 to -%-lnz(N), we can write:

1.,
Zh M 24,

Y e M <rmivy)

d,=2

where z(N)is the counting function of prime numbers [2]. Using the Gauss approximation [2] for
it, we have:
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%ln’(N) 2d, 1.1,,2(N)

e WM o 2
iz InG;- In® (W)
and then:
AN~ (W) -N< —,”——
w5 ")
by using (1) and (3), that implies:

1
|
uf w0

According to those experimental data the following conjecture can be posed:

c(N) <

Conjecture A: The sequence d, takes infinite times a prime value.

Let’s now analyse the data reported in table 1, column 3. By using the least square method, we can
clearly see that the best fit is obtained using a logarithmic function like:

P2(N) = c(N)-In(N) C))
where ¢(N) can be estimated using the following approximation:
Py (N) = 7(0.5-In” (V))

being p,(N) the number of primes inthe range 1 to d._ .
Therefore:

In’(N)
—_— -In(N
2-In(0.5-In%(N)) ¢(N)-In)

In(¥)

Nymw—— 2
= M 2-In(0.5-In? (V)

In table 2, the comparison of (4) with calculated values p,(M) shown in table 1 (column 3)is
reported. Notice the good agreement between p,(N) and its estimation as N increase.

According to those data, also p,(N) like p,(N) goes to the infinity as N increase, although p,(A)
more slowly then p,(N) . Then this second conjecture can be posed:

Conjecture B: The sequence d, contains an infinite number of distinct primes
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In?(N)

— < e(N) IV
2-In(0.5-In2(N)) c(N)-In(M)

= e
2-1n(0.5-In2(N))

In table 2, the comparison of (4) with calculated values P2) shown in table 1 (column 3)is
reported. Notice the good agreement between 2 (™) and its estimation as N increase.

According to those data, also 72(V) [ike P1(N) goes to the infinity as N increase, although #2(V)
more slowly then 1Y) Then this second conjecture can be posed:

d,

Conjecture B: The sequence %» contains an infinite number of distinct primes

Py (n) [¢(N)-In(N) ratio

10 0 ]2.719152 0

100 2 14.490828 | 0.445352
1000 4 |7.521271 | 0.531825
10000 7 | 11.31824 | 0.618471
100000 11 | 15.80281 | 0.696079
1000000 14 [20.93572 | 0.668713

10000000 19 |26.69067 | 0.711859
100000000 | 24 | 33.04778 | 0.726221
1000000000 | 33 | 39.9911 | 0.825184

Table2. Comparison of P2 40 with the approximated

formuta SN I0Y) 11 e hird column the ratio
P2(N)/ c(N)-In(N)

Let's analyse now the distribution of 9, as always requested by Smarandache.
Thanks to a Ubasic code the frequency of prime gaps up to N=3601806621 have been calculated.

The plot of those frequencies versus %» for 7>1js reported in Figl. It shows a clear jigsaw pattern

superimposed onto an exponential decay. The jigsaw pattern is due to a double population that is
clearly visible in the two plots of fig 2.

The frequency of ?» for n being a multiple of 3 ( or equivalently for n multiple of 6 for &n)is
always larger than adjacentes differences.
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Prime gap distribution
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Fig 2. Prime gap distribution. The second plot uses a logarithmic
scale for the Y-axis.

According to the conjecture 1 reported in [3] and already mentioned above , the number of pairs
Pns Prn <N with d, =&ﬂ2—¢ is given by:

24,

PI )
(N),,,H N

2d, p>2

Let's f(p):p—_; where p is any prime number greater than 2. As it can be seen in fig 3. this
p—
function approaches 1 quickly, with the maximum vale at p=3.

69



for p>2
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Fig.3: Plot of function f{p) versus p

Being f{p) maximum for p=3 means that #,(d,) has a relative maximum every time 2d, has 3 as
prime factor, that is when 2 d, is a multiple of 3. '
This explains the double population seen in the Fig 2 and then the Jigsaw pattern of the fig 1.

In fig. 4, thedistn'butionofd,,obtaingdbycomputer search and the one estimated with the use of
hy(d,) formula is reported . Notice the very good agreement between them.

-

Frequency (%)

N—

Prime gap distribution
for N<=3601806621
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d=g/2
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Fig 4: Prime gap distribution comparison. The good agreement between the experimental
and the estimated data has to be noticed.
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Abstract: The aim of this article is to propose a Java concurrent program for the
Smarandache fimction based on the equation S(p} -.... p* ) = max{S(p*),...,S(p**)} -

Some results concerning the theoretical complexity of this program are proposed. Finally,
the experimental results of the sequential and Java programs are given in order to
demonstrate the efficiency of the concurrent implementation.

1. INTRODUCTION

In this section the results used in this article are presented briefly. These concern the
Smarandache and the main methods of its computation. The Smarandache function
[Smarandache, 1980] is S: N* — N defined by

S(n) = min{k e N|k!:n} (VneN¥). )
The main propertics of this function are presented in the following
(Va,be N *) (a,b) = 1=8(a - b) = max{S(a),5(5)} @
that gives us .
S(py* ... py ) =max{S(p*),....S(p" )}. €)
An important inequality satisfied by the function S is .
(VaeN*)S(a)Sa, the equality occurring iff a is prime. )

When the number a4 is not prime this inequality can be improved by

(VaeN*:anotpdme)S(a)S%.

During the last few years, several implementation of The Smarandache function have been
proposed. Ibstedt  [1997, 1999] developed an algorithm based on Equation (3). The
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implementation in U Basic provided a efficient and useful program for computing the values of §
for large numbers. Based on it Tbstedt [1997, 1999] studied several conjectures on the
Smarandache function. No study of the thecretical complexity has provided for this algorithm so

far.

The second attempt to develop a program for the Smarandache function was made by Tabirca
[1997]. Tabirca started from Equation (1) and considered the sequence X, = ktmod n. The first
term equal to 0 provides the value S(n). Unfortunately, the C++ implementation of this
algorithm has been proved not to be useful because it cannot be applied for large value of n.
Furthermore, this is not an efficient computation because the value S(n) is computed in

O(S(n)). A study of the average complexity [Tabirca, 1997a, 1998], [Luca, 1999] gave that the

average complexity of this algorithm is O(—b—'-gz—;] )

2. AN EFFICIENT ALGORITHM FOR THE SMARANDACHE FUNCTION
In this section we develop an efficient version of the algorithm proposed by Ibsedt. A theoretical
study of this algorithm is also presented. Equation (3) reduces the computation of S(r7) to the
computation of the values S(p;*),i=1,...,5. The equation [Smarandache, 1980] that gives the
value S(p*)is given by

1 pi ~1 H .

k=) d -——=80p"=34d P ®)

i=} p -1 i=l

This means that if (d,,d,,,...,d;) is the representation of k in the generalized base

.1 p'-1
1,2 L " then (d,,d,,,...d,) is the representation of S(p*) k in the generalized

PR
i
. -1 :
base p,p’,....p'. Denote bl[l]=%—1 and b2[i]=p' the general terms of these two bases.

We remark that the terms of the above generaﬁzed bases satisfied:
bI[11=1,b1i +1]=1+ p- bli] {6)

b2(1]=p, b2[i +1]= p- b2[i]. ™M
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public static long Value (final long p, final long k) {
long 1, j, value=0;
long b1{] = new long [1000]; long b2[] = new long [1000];
b1[0}=1;62[0}-p; ;
for(int 1=0;b1[l]<=k; 1+ {b1[I+1]=1+p*b 1 [I]; b2[I+1]}=p*b2[1];}
for(l—j=1>=0;j-){d=p/b1[j1;p=p%b1 [j];value+=d*b2[j]; }
return value; ”

Figure 1. Java fanction for S(p*).

Equation (5) provides an algorithm that is presented in Figure 1. At the first stage this algorithm
finds the largest / such that 61[7] <k < blf/ +1] and computes the generalized bases 41 and 52.

At the second stage the algorithm determines the representation of & in the base 51 and the value
of this representation in the base b2.

Theorem 1. The complexity of the computation S(p*) is 0(log 2P k).
Proof. Let us remark that the operation number of the function Value is 5-/, where / is the
largest value such that b1[/] < k < b1[/ + 1]. This gives the following equivalences

1_ B
At Y 1<:>p'—ls}’c-(p—1)<p“‘—1«::>

p-1 p-1
op <k-(p-D+1<p™ ol<log, [k-(p-D+1]<l+1
ol=llog, k-(p-D+1)].
Therefore, the number of operations is 5-hogp(k-(p—l)+l)]=0(logp(k- p). .

The computation of S(7)is obtained in two steps. Firstly, the prime number decomposition
n=ph.. .p" is determined and all the values S(p;*),i=1L,..,s are found by using a
calling of the function Value. Secondly, the maximum computation is used to find

max{S(p/),...,S(p¥*)}. A complete description of this algorithm is presented in Figure 2.
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public static long S (final long n) {
long d, valueMax=0, s=-1;
if (n==1) return 0;
long p[] = new long [1000]; long k] = new long [1000]; long valuef] = new long [1000];
for(d=2;d<n;d++) if (n % d = 0){
s++;p[s]=d;for(k[s]=0;n%d=0;k[s}++n/=d);
value[s}=Value(p[s].k[s]);
}
for(j=0;j<=s;j++) if (valueMax<value[j])valueMax=value[j];
return valueMax;

Figure 2. Java function for S(n).

Theorem 2. The complexity of the function S is 0(1 n
‘ ogn
Proof. In order to find the prime number decomposition, all the prime numbers less than 7 should

).

be checked. Thus, at most 7z(n) = O(I_L) checking operations are performed [Bach & Shallit,
. ogn -

1996] to find the prime divisors p, ,..., p, of n. The exponents ...k, of these prime numbers
are found by &, +...+k, divisions. An upper bound for this sum is obtained as follows
n=py-..-p >logn=logpl-... p =log ph + .. +logp’ =
=k;logp, +...+k,-logp, 2k+..+k,,

because each logarithm is greater than 1. Thus, we have k, +...+ &, <logn =O(logn).
The computation of all the values S(pf*),i=1..,s gives a complexity equal to

Zk’gn D;-k;. An upper bound for this sum is provided by the following inequality

i=t
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log,, p, -k, <kthat is tre because of p,.-k,.Sp,."‘. Taking the sum we find

ilog 5 Diki < ik,. =0(logn), therefore the complexity of this computation is O(log 7).
i=1

i=l

Finally, observe that the maximum max{S(p}),....S(p;*)} is determined in s<logn

operations.
n

In conclusion, the complexity of the Smarandache function computation is O ). .

(logn

n=10000 | n=20000 | n=30000 | n=40000 | n=50000 | n=60000 | n=70000 | n=80000
Al]2804 10075 21411 36803 56271 79304 105922 136567
A2]2925 10755 23284 39967 61188 86555 115837 149666

Table 1. Running times for the efficient and Tabirca’s algorithms.

Figure 3. Graphics of the Running Times.

Several remarks can be made after this theorem. Firstly, we have found that finding the prime
divisors of » represents the most expensive operation and this gives the complexity of the

function computation. Secondly, we have obtained an algorithm with the complexity O(l n j .
ogn

Therefore, this is better than the algorithm proposed by Tabirca [1988] that has the average

n

complexity O(l ) . Table 1 shows that this algorithm also offers better running times than the

ogn
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algorithm proposed in [Tabirca, 1997). These two algorithms were implemented in Java and
executed on PENTIUM I machine. The times [milliseconds] of the computation for all the values
S(i) , i=1,...,n were found, where n=10000,....,80000. Row 4 1 gives the times for this efficient
algorithm and row 4 2 gives the times for the algorithm proposed in [Tabirca, 1999]. Another
important remark drawn from Table 1 is that the difference between the times of each column
does not increase faster [see Figure 3]. This is happen because the complexity of the algorithm

proposed by Tabirca [1997] is O(lé,;) .

3. JAVA CONCURRENT ALGORITHM FOR THE SMARANDACHE FUNCTION

In this section we present a Java concurrent program for the computation described in Section 2.
Firstly, remark that many operations of this algorithm can be performed in parallel. Consider that
we know all the prime numbers less than n. Usually, this can be done by using specxa] libraries.

Let p,,...,p, be these numbers. Therefore, we can concurrently execute the computation of the

exponent of p; and the computation of the value S(p)" ).

A Java program may contain sections of code that are executed simultaneously. An independent
section of code is known as a thread or lightweight process [Smith, 1999]. The implementation
presented here is based on equation (3): S(p;*-...- p¥ ) =max{S(p/),...S(p*)}. Each
S(pf*) is calculated concurrently in a thread. On single processor systems, the use of threads
simulates the concurrent execution of some piece of sequential code. The worst case execution
time can be taken as the longest execution time for a single thread. On a multi processor system,
given enough processors, each thread should ideally be allocated to a processor. If there are not
enough processors available, threads will be allocated to processors in groups. Unlike pure
concurrent processes, threads are used to simulate concurrency within a single program. Most
current everyday programs use threads to handle different tasks. When we click a save icon on a
word processing document typically a thread is created to handle the actual saving action. This
allows the user to continue working on the document while another process (thread in this case) is
writing the file to disk.

For the concurrent algorithm consider the Java function for S(n)in Figure 2. Typical areas that

can be executed concurrently can be found in many loops, where successive iterations of the loop
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do not depend on results of previous iterations. In Figure 4, we adapt the for loop (Figure 2) to
execute the Value function (Figure 1), responsible for calculating S(p*), concurrently by

creating and executing a ValueThread object. When all the required threads have begun
execution, the value of max will not be known until they have completed. To detect this, a simple
counter mechanism is employed. As threads are created the counter is incremented and as threads
complete their tasks the counter is decremented. All threads are completed when this coumter

reaches 0.

public long S(long n)
if (0==1) return (long);

Prime decom = new Prime(n);
noPrimes=decom.noPrime();
if (noPrimes == 0)

value = null;
value = new long[noPrimes];

for (int k=0;k<noPrimes;k++)
{
started++;
new ValueThread(decom.getPrime(k), decom.getPow(k), this, k);
}
while (started > 0)
{
i
Thread.yield(Q;
}catch (Exception €)
{
}
}
return max;

Figure 4. Modified Java function for §(77), used to concurrently execute the Value function

As each thread completes its task it executes a callback method, addValue (Figure 5). This
method is declared as synchronized to prevent multiple threads calling the addValue method at
the same time. Should this be allowed to occur, an incorrect value of the number of threads
executing would be created. Execution of this method causes the value array declared in method
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S (Figure 3) to be filled. This value array will only be completely filled after the last thread makes
a call to the addValue method. At this point, the value of max can be determined,

public synchronized void addValue(int k, long val)
{
value[k] = val;
max = value[0];
started—;
if (started == 0)
for (int i=1; i<=k; i++)
if (value[i] > max)
max = value][i];

Figure 5. The addValue method called by a Thread when its task is completed.

This algorithm illustrates how concurrency can be employed to improve execution time. It is also
possible to parallelise the algorithm at a higher level, by executing the function responsible for
calculating each S(77) in an independent thread also. Tests of this mechanism however show that

it is more efficient to only parallelise the execution of @").

The concurrent Java program has been run on a SGI Origin 2000 parallel machine with 16
processors. The execution was done with 1, 2, 4 processors only and the execution times are
shown in Table 1. The first line of Table 1 shows the running times for Algorithm Al on this
machine. The next three lines present the running times for the concurrent Java program when
P=1, p=3 and p=4 processors are used.

n=20000 | n=30000 | 1=40000 | n=50000 | n=60000 | ==70000 n=380000

41 9832 19703 31237 49774 68414 96242 115679

CA (p=1) 9721 19474 30195 49412 68072 95727 115161

CA (p=2) 5786 11238 22872 31928 42825 60326 75659

CA (p=4) 3863 7881 14017 19150 30731 42508 53817

Table 2. Running Times for the Concurrent Program,
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4. CONCLUSSIONS
Several remarks can be drawn after this study. Firstly, Equation (3) represents the source of any
efficient implementation of the Smarandache function. In Section 2 we have proposed a
n
logn

sequential algorithm with the complexity O( ) . We have also proved both theoretically and

practically that this algorithm is better that the algorithm developed in [Tabirca, 1997].

Secondly, we have developed a Java concurrent program in order to decrease the computation
time. Based on the thread technique we have performed concurrently the computation of the

values S(pf*). This concurrent implementation has proved to be better than the sequential one.

Even running with one single processor the times of the concurrent Java program were found
better than the times of the sequential program.
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Appendix A

The full code for the concurrent implementation presented in Section 3.

// Smarandache.java

import java.io.*; '
import java.util. *;

public class Smarandache
{
public Smarandache(}
{
long =0, 1, j;
long val; ,
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
try v
{
System.out.print ("n = ");
n = Integer.parseInt(br.readLine());
}catch (IOException €)
{

System.out.println ("IOException : "+e getMessage());
System.exit(1);
}

Smar sm = new Smar();

Date begin = new Date();
for (i=1; i<=n; i++)

{

}
Date end = new Date();
System.out.println ("Time good is "+ (end.getTime() - begin.getTime()));

?

val = sm.S(i);

}

public static void main (String args[])
{

}

new Smarandache();
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// Smar java

public class Smar
{
private long valuef];
private long max = Long. MIN_VALUE;
private int noPrimes=0;
private int started = 0;

public Smar()
{
}

public long S(long n)
{
if (n=1)
return (long) 0;

Prime decom = new Prime(n);
noPrimes=decom.noPrime();
if (noPrimes == 0)

value = mull;
value = new long[noPrimes};

for (int k=0;k<noPrimes;k++)
{
started++;
}
while (started > 0)
{
i
Thread.yield();
}catch (Exception €)
{
}
}
return max;
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public synchronized void addValue(int k, long val)
{

value[k] = val;
started--;

if (started = 0)
{

max = valuef0];
for (int i=1; i<=k; i++)
if (valuefi] > max)
max = value[i};

//Prime java

public class Prime

{

private int s;
private long p[J=new long [1000];
private int ord[]=new int [1000];

public Prime()
{
s=0;
3
public Prime(long n)
{
long d;
for(d=2,5s=0;d<=n;d++)
ifin%d = 0)
{
plsl=d; \
for(ord[s]=0;;ord[s]++,n=n/d) {if{ln%d!=0)break;};
s++;
}
3
public int noPrime()
{
retum s;
}
public long getPrime(int i)
{
} return pi};
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public int getPow(int 1)

{
return ord{il;
}
}
// ValueThread java
public class ValueThread
{
private long p=0, a=0;
private Smar owner;
private int index = 0;
public ValueThread (long p, long a, Smar owner, int index)
{
this.p = p;
thisa=a;
this.owner = owner;
this.index = index;
run();
}
public long pseuPow(long p, long a)
{
ifa==1)
return (long) 1;
return 1+p*pseuPow(p,a-1);
public long Pow(long p, long a)
{
ifa=1)
return (long) p; .
return p*Pow(p,a-1);
} .
public void run()
{
long rest=a, val=0;
intk, i; ’
for(k=1;pseuPow(p,k)<=a;k++);k~;
for(i=k;i>0;i—)
{
val += Pow(p,i)* (long)(rest / pseuPow(p,i));
rest %= pseuPow(p,i);
}
owner.add Value(index, val);
}
}
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AN INTRODUCTION TO THE SMARANDACHE GEOMETRIES

by L. Kuciuk' and M. Antholy?

Abstract:

In this paper we make a presentation of these exciting geometries and present a model for
a particular one.

Introduction:
An axiom is said Smarandachely denied if the axiom behaves in at least two different

ways within the same space (i.e., validated and invalided, or only invalidated but in
multiple distinct ways).

A Smarandache Geometry is a geometry which has at least one Smarandachely denied
axiom (1969).

Notations:

Let’s note any point, line, plane, space, triangle, etc. in a smarandacheian geometry by s-
point, s-line,

s-plane, s-space, s-triangle respectively in order to distinguish them from other
geometries.

Applications:
Why these hybrid geometries? Because in reality there does not exist isolated

homogeneous spaces, but a mlxture of them, interconnected, and each having a different
structure.

In the Euclidean geometry, also called parabolic geometry, the fifth Euclidean postulate
that there is only one parallel to a given line passing through an exterior point, is kept or
validated.

In the Lobachevsky-Bolyai-Gauss geometry, called hyperbolic geometry, this fifth
Euclidean postulate is invalidated in the following way: there are infinitely many lines
parallels to a given line passing through an exterior point.

While in the Riemannian geometry, called elliptic geometry, the fifth Euclidean postulate
is also invalidated as follows: there is no parallel to a given line passing through an
exterior point.

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian
geometries may be united altogether, in the same space, by some Smarandache
geometries. These last geometries can be partially Euclidean and partially Non-
Euclidean. Howard Iseri [3] constructed a model for this particular Smarandache
geometry, where the Euclidean fifth postulate is replaced by different statements within

! Umvemty of New Mexico, Gallup, NM 87301, E-mail: research@gallup.unm.edu,
2 University of Toronto, Toronto, Canada, E-mall mikeantholy@yahoo.ca.
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the same space, i.e. one parallel, no parallel, infinitely many parallels but all lines passing
through the given point, all lines passing through the given point are parallel.

Let’s consider Hilbert’s 21 axioms of Euclidean geometry. If we Smarandachely deny
one, two, three, and so on, up to 21 axioms respectively, then one gets:

21C1 + 2Ca + 21C3 + _+ 21y =22~ 1=2,097,151
Smarandache geometries, however the number is much higher because one axiom can be
Smarandachely denied in multiple ways.
Similarly, if one Smarandachely denies the axioms of Projective Geometry, etc.

It seems that Smarandache Geometries are connected with the Theory of Relativity
(because they include the Riemannian geometry in a subspace) and with the Parallel
Universes (because they combine separate spaces into one space only) too.

A Smarandache manifold is an n-D manifold that supports a smarandacheian geometry.

Examples:

As a particular case one mentions Howard’s Models [3] where a Smarandache manifold
is a 2-D manifold formed by equilateral triangles such that around a vertex there are 5
(for elliptic), 6 (for Euclidean), and 7 (for hyperbolic) triangles, two by two having in
common a side. Or, more general, an n-D manifold constructed from n-D submanifolds
(which have in common two by two at most one m-D frontier, where m<n) that supports
a Smarandache geometry.

A Mode for a particular Smarandache Geometry:

Let’s consider an Euclidean plane (o) and three non-collinear given points A, B, and C
init. We define as s-points all usual Euclidean points and s-lines any Euclidean line that
passes through one and only one of the points A, B, or C. Thus the geometry formed is
smarandacheian because two axioms are Smarandachely denied:

a) The axiom that through a point exterior to a given line there is only one parallel
passing through it is now replaced by two statements: one parallel, and no parallel.
Examples: '

Let’s take the Euclidean line AB (which is not an s-line according to the definition
because passes through two among the three given points A, B, C), and an s-line noted
(c) that passes through s-point C and is parallel in the Euclidean sense to AB:

- through any s-point not lying on AB there is one s-parallel to (c).

- through any other s-point lying on the Euclidean line AB, there is no s-parallel to (c).

b) And the axiom that through any two distinct points there exist one line
passing through them is now replaced by: one s-line, and no s-line.

Examples:

Using the same notations:

- through any two distinct s-points not lying on Euclidean lines AB, BC, CA, there is one
s-line passing through them;

- through any two distinct s-points lying on AB there is no s-line passing through them.

Miscellanea:
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First International Conference on Smarandache Geometries will be held, between May 3-
5, 2003, at the Griffith University, Queensland Australia, organized by Dr. Jack Allen.
Conference's page is at: hnp Jiat yorku ca’cpi-bin/munca-
caleadar/nublic/displo/eonforence inio
And it is announced at Ditp /Ay uins o
well.

inatlical/nlo/2003 mey3-3 coldepast il as

There is a club too on "Smarandache Geometries" at
hitp/fchibs vahico condelubs/stuarandacheseometiies and everybody is welcome.

For more information see: hitp;//www gallup.unnredu/~sminandache/veonictdes him
or hg:p,/u‘q Le0 1£1;;54_:(,)1!;,_11;1_L,.l_g}gn_of)v{:; omeines hin.
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SMARANDACHE SEMIRINGS AND SEMIFIELDS

W. B. Vasantha Kandasamy
Department of Mathematics
Indian Institute of Technology, Madras
Chennai - 600 036, India.
vasantak@md3.vsnl.net.in

Abstract

In this paper we study the notions of Smarandache
semirings and semifields and obtain some interesting results
about them. We show that not every semiring is a Smarandache
semiring. We similarly prove that not every semifield is a
Smarandache semifield. We give several examples to make the
concept Iucid. Further, we propose an open problem about the
existence of Smarandache semiring S of finite order.

Keywords:  semiring, semificld, semi-algebra, distributive lattice,
Smarandache semirings.

Definition [1] :

A non-empty set S is said to be a semiring if on S is defined two binary closed
operations + and x such that (S, +) is an abelian semigroup with 0 and (S, x) is a
semigroup and multiplication distributes over addition from the left and from the right.

Asemiringisastrictsemiringifx+y=Oimpliesx=y=0. Semiring is
commutative if (S, x) is a commutative semigroup. A commutative semiring is a
semifield if (S, x) has a unit element and x x y=01n S if and only if x = y = 0. For more
properties of semirings please refer [1], [3], [4] and [5].

Definition 1:

The Smarandache semiring is defined [4] to be a semiring S such that a proper

subset A of S is a semifield (with respect to the same induced operation). That is ¢ # A
S.

Example I: Let My = {(ag)/a; € Z" U {0}}. Here, Z" denotes the set of positive
integers. Clearly My, is a semiring with the matrix addition and matrix multiplication.
For consider A = {(ay) | 2j =0, i jand a3 € Z* U {0}}, that is all diagonal matrices with
entries from Z* U {0} . Clearly, A is a semifield. Hence Mi«n is a Smarandache semiring.
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Example 2: Let S be the lattice given by the following figure. Clearly S is a semiring
under min-max operation. S is a Smarandache semiring for A= {1,b, g, h, 0} isa
semifield.

1

Theorem 2:
Every distributive lattice with 0 and 1 is a Smarandache Semiring.

Proof: Any chain connecting 0 and 1 is a lattice which is a semifield for every chain
lattice is a semiring which satisfies all the postulates of a semifield. Hence the claim.

Definition 3:

The Smarandache sub-semiring [4] is defined to be a Smarandache semiring B
which is a proper subset of the Smarandache semiring S.

Example 3: Let My, , be the semiring as in Example 1. Clearly M,y , is a Smarandache
semiring. Now,

Ta” 0 .. .0 0)
0 0. . .0 O
B=4[ . . .. a,and a_, € Z' U{0};
o . . . 0 0
Lo o. . .0 a,)
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is a Smarandache sub-semiring.

a b)

p /1,b,c,d e Z* U {0}} Clearly Ma,; under the matrix
C Y. ) N

Example 4: Let Ma,» = {(

addition and multiplication is a semiring which is not a semifield. But My, is a
(a 0 00
Smarandache semiring for N = { 2 ) /a,beZ*}u{(O Oj}isasemiﬁeld.

\b 0
Theorem 4:
Not all semirings are Smarandache semirings.

Proof : Let S =Z" U {0}. (S, +, x) is a semiring which has no proper semifield contained
in it. Hence the claim.

Definition 5:

The Smarandache semifield [4] is defined to be a semifield (S, +, x) such that a
proper subset of S is a K - semi algebra (with respect with the same induced operations
and an external operation).

Example 5: Let S = Z" U {0}. Now, (S, +, x) is a semifield. Consider p € S, p any prime.
A={0, p, 2p, ...} is a k-semi algebra. So (S, +, x) is a Smarandache semifield.

Consequence 1:

There also exist semifields which are not Smarandache semifields. The following
example illustrates the case.

Example 6: Let S = Q" U {0}. (S, +, x) is a semifield but it is not a Smarandache
semifield.

Example 7: Let S = Z* U {0}. Now (S, +, x) is a semifield. Let S[x] be polynomial
semiring in the variable x. Clearly S[x] is a Smarandache semiring for S is a proper
subset of S[x] is a semifield.
Theorem 5:

Let S be any semifield. Every polynomial semiring is a Smarandache semiring,

Proof: Obvious from the fact S is a semifield contained in S[x].

We now pose an open problem about the very existence of finite semirings and
Smarandache semirings that are not distributive lattices.
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Problem 1:  Does there exist a Smarandache semiring S of finite order? (S is
not a finite distributive lattice)?

Note:

We do not have finite semirings other than finite distributive lattices. Thus the
existence of finite semirings other than finite distributive lattices is an open problem even

in semirings.
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‘The sequence of prime numbers

Sebastidn Martin Ruiz

9 October 2000

This article lets out a law of recurrence in order to obtain the sequence of

prime numbers {px }kzl expressing pryy as a function of py,ps, - -, ps-
Suppose we can find a function Gi(n) with the following property:
-1 if n<prq
Ge(n)=4¢ 0 if n=peq
something if n> pryy

This is a variation of the Smarandache Prime Function [2).
Then we can write down a recurrence formula for p; as follows.
Consider the product:

m

I Gits)

s=pr+1
pr < m < ppyq one has

II 6= I[ (=1 =(-1ye

s=py+41 s=pr+1
Hm2>prys
I] Gy =0
s=pr+1
since Gr(pry1) =0
Hence .
2P mn
Z (=1)™Px H Gi(s) =
m=pi+1 s=pp 41
Pr4+1—1 m 2ps m
= 2 om JT G+ Y (-pm T Gale)
m=p;+1 s=pi+l M=pr41 s=pi+1
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(The second addition is zero since all the products we have the factor Gi(pg41) =
0)

Prgr~1

= Y (=TTl

m=pr+1

=pra1—1—(pe+1)+1=pey1—pe — 1

50 ' - .
pri=p+l+ Yy ()" I Gils)
m=p;+1 s=px+1

which is a recurrence relation for py.

We now show how to find such a function Gi(n) whose definition depends
only on the first k& primes and not on an explicit knowledge of pg.;.

And to do so we define!:

l°gn nlog,, n Iog“ n n

k
Tew)= > 3 - 2 e
f1=0 1= =0 b,

=1

Let’s see the value which Ti(n) takes for all n > 2 integer. We distinguish
two cases:

Case 1: n< prys

The expression p’;‘p;’ = -p’,;" with 4, =0,1,2---log, n i, =0,1,2---log, n
- i =10,1,2---log, n all the values occur 1,2,3,---,n each one of them only
once and moreover some 1more values, strictly greater than n.

We can look at is. If 1 < m < n one obtains that m < pg4; for which
1< m=p{"p3? - p~ < u. From where one deduces that 1 < p® < n and for
0Ly <log, nforalls=1,---,k

Therefore, for i; = a; s=1,2,-.-,k we have the value m. This value only
appeats once, the prime number descomposition of m is unique .

In fact the sums of Ty(n) can be achieved up to the highest power of pi
contained in n instead of log, n.

Therefore one has that

log,, nlog, n log"k n n
k n n n
Ti(n) = E E E H)i' :( l>+(2)+-~+(n)=2n—l
=0 i3=0 =0 v, .
s=1
1Given that i, s=1,2, - -,k only takes integer values one appreciates that the sums of Ti(n)

are until E(log,, n) where E(z) is the greatest integer less than or equal to x.
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since, in the case plipi? - - pi“ would be greater than n one has that:

n

k
I | ="
3=

Case 2: n=pep1

The expression pi‘p;’ . ~-p;;" with i1 =0,1,2-- log, n i3 =0,1,2- --log,. n
i = 0,1,2---log, n the values occur 1,2,3,--- ,Pe+1 — 1 each one of
them only once and moreover some more values, strictly greater than pry;.One
demonstrates in a form similar to case 1. It doesn’t take the value Dr+1 Since it
is coprime with py,p2,---, pe.
Therefore,

Tk(n)=(';>+(g)+--~+<njl ):2"—2

In case 3: n > pry it is not necessary to consider it.
Therefore, one has:

2n—1 if n<pryr
T;_- (n) = " —-2 if = Peyy
somelhing if n> pey

and as a result:

Gi(n) =2" - 2—-Ti(n)

This is the summarized relation of recurrence:
Let’s take p; = 2 and for k > 1 we define:

log,, n log, n log, o« n
k
Ti(n) = E Z e E pr_'
i1 =0 dp=0 ir=0 ; *
=

Gi(n) =2" -2 —-Ti(n)

2pr m
peer=p+14+ Y (0™ J[ Guls)
m=p;+1 s=pr+1
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On & Concatenation Problem

Heary Ibstedt

Abstract: This articic has been inspired by questions asked by Charles Ashbacher
in the Journal of Recreational Mathematics, vol. 29.2. It concerns the
Smarandache Deconstructive Sequence. This sequence is a special case of a more
general concatenation and sequencing procedure which is the subject of this
study. Answers are given to the above questions. The properties of this kind of
sequences are studied with particular emphasis on the divisibility of their terms by
primes, v

1. Introduction

In this article the concatenation of a and b is expressed by a_b or simply ab when
there can be no misunderstanding. Multiple concatenations like abcabcabe will be
expressed by 3(abc).
We consider n different elements (or n objects) arranged (concatenated) one after the
other in the following way to form:

A=a1a;...3,.
Infinitely many objects A, which will be referred to as cycles, are concatenated to
form the chain:

B=aja;...a, a;&;...8, 312:...8,...
B contains identical elements which are at equidistant positions in the chain. Let’s
write B as

B=bibzb;...bx... where by=b; when j=k (mod n), 1<j<n.
An infinte sequence Ci, Cy, Cs, ... Cy, ... is formed by sequentially selecting 1,2,3,
...k, ... elements from the chain B;

Ci=bi=3,

C2=b,by=a,a3 .

Cs=b4bsbs=a4asas (if n<6, if n=5 we would have Cs=asasa;)
The number of elements from the chain B used to form the first k-1 terms of the
sequence C is 14243+ ... +k-1=(k-1)k/2. Hence

P G I I )
However, what is interesting to see is how Cy is expressed in terms of a, ... a,. For
sufficicntly large values of k C; will be composed of three parts:

The first part: F(k)=asa+1...3.
The middle part: M(k)=AA...A. The number of concatenated A’s depends on k.

The last part: Lkyaa,...a,
Hence - GeFROMK)LK) )

The number of elements used to form GG, ... Ckbis (k-1)k/2. Since the number of
elements in A is finite there will be infinitely many terms Cy which have the same first

element a,. u can be determined from ﬂ‘—;%«rl- wmodn) . There can be at most n?
different combinations to form F(k) and L(k). Let C; and C; be two different terms for
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which F(iFF() and L(i)=L(j). They will then be separated by a number m of
complete cycles of length n, i.c.

G-Dj_G-Di

2 2

Let’s write j=Hp and see if p exists so that there is a solution for p which is
independent of i.

(i+p-1)(i+p)-(i-1)i=2mn

i*+2ip+plei-p-+i=2mn

2ip+p’-p=2mn

pX+p(2i-1)=2mn
Ifn is odd we will put p=n to otain n+2i-1, or m=(n+2i-1)/2. If n is even we put p=2n
to obtain m=2n+2i-1. From this we see that the terms Ci have a peculiar periodic
behaviour. The periodicity is p=n for odd n and p=2n for even n. Let’s illustrate this
for =4 and n=5 for which the periodicity will be p=8 and p=5 respectively.

Table 1. n=4. A=abcd. B=abcd abed abed abed. ...

i G Period # F(i) M(@) L()
1 a a

2 be be

3 dab 1 d ab
4 cdab 1 cd ab
5 cdabc - 1 cd abe
6 dabcda 1 d abed a
7 bedabed 1 bed abed

8 abcdabed 1 2(abed)

9 abcdabeda 1 2(abcd) a
10 bedabedabe 1 bed abed abc
11 dabedabedab 2 d 2(abed) ab
12 cdabcdabedab 2 cd 2(abcd) ab
13 cdabcdabedabe 2 cd 2(abcd) abc
14 dabcdabedabeda 2 d 3(abed) a
15 bedabedabedabed 2 bed 3(abcd)

16 abcdabedabedabed 2 4{abcd)

17 abcdabedabedabeda 2 4{abcd) a
18  bcdabedabedabedabe 2 bed 3(abcd) abc
19  dabcdabedabedabedab 3 d 4(abcd) ab
20- cdabcdabedabedabedab 3 cded 4(abcd) ab

Note that the periodicity starts for =3.

Numerals are chosen as elements to illustrate the case n=5. Let’s write i=s+k+pj,
where s is the index of the term preceding the first periodical term, k=1,2,..., p is the
index of members of the period and j is the number of the period (for convenience the
first period is numbered 0). The first part of C; is denoted B(k) and the last part E(k).
Ci is now given by the expression below where q is the number of cycles concatenated
between the first part B(k) and the last part E(k).

Ci=B(k)_qA_E(k), where k is determined from i-s=k (mod p) )}
Table 2. n=5. A=12345. B=123451234512345......
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i G k q FieBk) M  LieEEK
1 1 1
=2 23 2
=0
3 451 1 o0 45 1
4 2345 2 0 2345
5 12345 3 1 12345
6 123451 4 1 12345 i
7 2345123 5 0 2345 123
1
345§ 45123451 1 45 12345 1
4+5j 234512345 2 2345 12345
5+5j 1234512345 3 j+l 2(12345)
6+5j 12345123451 4 2(12345) 1
7+5§ 234512345123 5 2345 12345 123
2
3+5j 4512345123451 1 45 2(12345) 1
4+5j 23451234512345 2 2345  2(12345)

2. The Smarandache Deconstructive Sequence

The Smarandache Deconstructive Sequence of integers [1] is constructed by
sequentially repeating the digits 1 to 9 in the following way

1,23,456,7891,23456,789123,4567891,23456789,123456789,1234567891, ...

The sequence was studied in a booklet by Kashihara {2} and a number of questions on

this sequence were posed by Ashbacher [3]. In thinking about these questions two

observations lead to this study. v

1. Why did Smarandache exclude 0 from the integers used to create the sequence?
Afer all 0 is indispensible in all arithmetics most of which can be done using 0
and 1 only.

2. The process used to create the Deconstructive Sequence is a process which applies
to any set of objects as has been shown in the introduction.

The periodicity and the general expression for terms in the “generalized

deconstructive sequence” shown in the introduction may be the most important results

of this study. These results will now be used to examine the questions raised by

Ashbacher. It is worth noting that these divisibility questions are dealt with in basel0

although only nine digits 1,2,3,4,5,6,7,8,9 are used to express terms in the sequence.

In the last part of this article questions on divisibility will be posed for a

deconstructive sequence generated form A="0123456789".

For i>5 (s=5) any term G; in the sequence is composed by concatenating a first part

B(k), a number q of cycles A”123456789” and a last part E(k), where i=5+k+9j,
k=1,2, ... ,9, j=0, as expressed in (2) and q=j or j+1 as shown in table 3.
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Members of the Smarandache Deconstructive Sequence are now interpreted as
decimal integers. The factorization of B(k) and E(k) is shown in table 3. The last two
columns of this table will be useful later in this article.

Table 3. Factorization of Smarandache Deconstructive Sequence

=5+k+9j
i k B(k) q E(k) Digit sum 3G
?
6+t9° 1 789=3.263 i 123=341 30+j-45 3
7+9§ 2 456789=3-43-3541 j 1 - 40+§-45 No
8+9j 3 23456789 j 44+-45 No
949 4 i+l G+1)45 937+
10495 5 N B 1+Hj+1)45 No
1149 6 23456789 i 123=341 50+j-45 No
1249) 7 456789=3-433541 j  123456=2%3.643  60+j-45 3
13+9j 8 789=3-263 o1 25+(+1)45 No
14+9) 9 23456789 j  123456=2°.3.643  65+j-45 Neo
*) where z depends on j.

Together with the factoization of the cycle A=1223456789=3%.3607-3803 it is now
possible to study some divisibility properties of the sequence. We will first find a
general expression for C; in terms of j and k. For this purpose we introduce:

q(k)=0 for k=1,2,3,6,7,9 and q(k)=1 for k=4,5,8
u(k)=1+Hlogo(E(K)] if E(k) exists otherwise u(k)=0, i.e. u(3)=u(4)=0
8(k)=0 if =0 and q(k)=0 otherwise 8(G.k)~1

With the help of these functions we can now use table 3 to formulate the general
expression
Flrak) -
Coiesj = E(K) + 3G Kk)- A-10%0 . Y107 + B(k)- 107 =(b) A3)

=0

Before dealing with the questions posed by Ashbacher we recall the familiar rules: An
even number is divisible by 2; a number whose last two digits form a number which is
divisible by 4 is divisible by 4. In gencral we have the following:

Theorem. Let N be an n-digit integer such that N>2° then N is divisible by 2% if and
only if the number formed by the o last digits of N is divisible by 2°.
Proof. To begin wwith we note that

If x divides a and x divides b then x divides (a+b).

If x divides one but not the other of a and b the x does not divide (a+b).

If neither a nor b is divisible by x then x may or may not divide (a+b).
Let’s write the n-digit number in the form a-10°+b. We then see from the following
that a-10% is divisible by 2%, :

10=0 (mod 2)

100=0 (mod 4)

1000=2*.5’=0 (mod 2°)
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10%=0 (mod 29
and then

a-10%=0 (mod 2) independent of a.
Now let b be the number formed by the o last digits of N, we then see from the
introductory remark that N is divisible by 2° if and only if the number formed by the
o last digits is divisible by 2°.

Question 1. Does every even element of the Smarandache Deconstructive Sequence
contain at least three instances of the prime 2 as a factor?

Question 2. If we form a sequence from the elements of the Smarandache
Deconstructive Sequence that end in a 6, do the powers of 2 that divide them form a
monotonically increasing sequence?

These two quetions are reelated and are dealt with together. From the previous
analysis we know that all even clements of the Smarandache Deconstructive end in a
6. For i<5 they are:

Cs=456=57.2°

Cs=23456=733.2°
For i>5 they are of the forms:

Ci249; and Ci4+95 which both end in ...789123456.
Examining the numbers formed by the 6, 7 and 8 last digits for divisibility by 2°, 27
and 2® respectively we have: .

123456=2°.3.643

9123456=2"-149-4673

89123456 is not divisible by 2°
From this we conclude that all even Smarandache Deconstructive Sequence elements
for 212 are divisible by 27 and that no elements in the sequence are divisible by
higher powers of 2 than 7.

Answer to Qn 1. Yes
Answer to Qu 2. The sequence is monotonically increasing7for i<12. For i>12 the
powers of 2 that divide even elements remain constant=2’.

Question 3. Let x be the largest integer such that 3"liandythe largest integer such
that ¥|Ci. 1t is true that x is always equal to y?

From table 3 we sce that the only elements C; of the Smarandache Deconstructive
Sequence which are divisible by powers of 3 correspond to i=6+9j, 9+9j or 12+9;.
Furthermore, we see that #=6+9j and Cs.9j are divisible by 3, no more no less. The
same s true for i=12+9j and Cj249;. So the statement holds in these cases. From the
congruences

9+9j=0 (mod 3") for the index of the element

45(1+j)=0 (mod 3") for the corresponding element
we conchlude that x=y.
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Answer: The statement is trae. It is interesting to note that, for example, the 729
digit number Ci,g is divisible by 729.

Question 4. Are there other patterns of divisibility in this sequence?

A search for patterns would continue by examining divisibility by the next lower
primes 5, 7, 11, ... It is obvious from table 3 and the periodicity of the sequence that
there are no elements divisible by 5. Algorithm (3) will prove useful. For each value
of k the value of C; depends on j only. The divisibility by a prime p is therefore
determined by finding out for which values of j and k the congruence Ci=0 (mod p)

) 10%0+a(N _y

holds. We evaluate Zlo" =—~Fl_— and introduce G=10°-1. We note that
pars -

G=3%37.333667. From (3) we now obtain:

G-C; = G-E(k)+(6(,k)-A-+G - B(k))m’"*"""’*"“’

-80,k)-A-10"® 3)
The divisibility of C; by a prime p other than 3, 37 and 333667 is therefore determined
by solutions for j to the congruences G-Ci=0 (mod p) which are of the form

a-(10°) + b= O@modp) 4

Table 4 shows the results from computer implementation of the congruences G-C=0
(mod p) for k=1,2,...9 and p<100. The appearance of clements divisiblc by a prime p
is periodic, the periodicity is given by j=j;+m-d, m=1,2,3, ... .The first element
divisible by p appears for i; corresponding to j;. In general the terms C; divisible by p
are Cs,y.9(,+ma) Where d is specific to the prime p and m=1,2,3, ... . We note from
table 4 that d is either equal to p-1 or a divisor of p-1 except for the case p=37 which -
as we have noted is a factor of A. Indeed this periodicity follows from Euler’s
extension of Fermat’s little theorem because we can write (mod p):

a-(10°)) + b=a.(10°)5*™ + bw a-(10°)* + b for d=p-1 or a divisor of p-1.

Finally we note that the periodicity for p=37 is d&=37, which is found by examining
(3°) modulus 372,
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Table 4. Smarandache Deconstructive elements divisible by p.

p k i ji d p k i1 i d

7 4 18 1 2 47 1 150 16 44

11 4 18 1 2 47 2 250 27 46

13 4 18 1 2 47 3 348 40 46

13 8 22 1 2 47 4 414 45 44

i3 9 14 0 2 47 5 44 4 44

17 1 6 0 16 47 6 164 17 44

17 2 43 4 16 47 7 244 28 44

17 3 44 4 16 47 8 400 43 44

17 4 144 15 14 47 9 - 14 0 46

17 5 100 10 16 53 1 24 2 13

17 é 101 10 16 53 4 117 12 13
17 7 138 14 16 53 7 93 ? 13

17 8 49 4 14 59 1 267 29 58

17 9 ?5 9 16 59 2 n 56 58

19 1 15 1 2 59 3 413 45 58

19 4 18 1 2 59 4 522 57 58

19 7 21 ] 2 59 5 109 11 58

23 1 186 20 22 59 é 1N 0 58

23 2 196 21 22 59 7 255 27 58

23 3 80 8 22 59 8 256 27 58

23 4 198 2} 22 59 9 266 28 58

23 5 118 12 22 61 2 79 8 20

23 é 200 21 22 61 4 180 19 20

23 7 12 0 22 61 é 101 10 20

23 8 184 19 22 67 4 99 10 1A

23 9 14 0 22 67 8 67 é 1

29 1 24 2 28 67 9 32 2 1
29 2 115 12 28 71 1 114 12 35

29 3 197 21 28 71 3 53 5 35

29 4 252 27 28 71 4 315 4 35

29 5 55 5 28 71 5 242 28 35
29 é 137 14 28 71 7 201 21 35

29 7 228 24 28 73 4 72 7 8

29 8 139 14 28 79 4 117 12 13

29 9 113 11 28 83 1 348 38 41

3t 3 26 2 5 83 2 133 14 41

3 4 45 4 5 83 4 349 40 41

31 5 19 L 5 83 é - 236 25 41

37 1 222 24 37 83 7 21 1 4)
37 2 124 13 37 83 8 112 11 41
7 3 98 10 37 83 9 257 27 41

37 4 333 36 37 89 2 97 10 44
37 5 235 25 37 89 4 396 43 44
37 é 209 22 37 89 é 299 32 44
37 7 - 11 11 37 97 1 87 9 32
37 8 13 0 37 97 2 115 12 32
37 9 320 34 37 97 3 107 11 32
41 4 45 4 5 97 4 288 31 32
43 1 33 3 7 97 5 181 19 32
43 4 43 é 7 97 6 173 18 32
43 7 30 2 7 97 7 201 21 32
97 8 202 21 32

97 9 86 8 32
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Question: Table 4 indicates some interesting patterns. For instance, the primes 19, 43
and 53 only divides elements corresponding to k=1, 4 and 7 for j<250 which was set
as an upper limit for this study. Simiarly, the primes 7, 11, 41, 73 and 79 only divides
elements corresponding to k=4. Is 5 the only prime that cannot divide an element of
the Smarandache Deconstructive Sequence?

3. A Deconstructive Sequence generated by the cycle A=0123456789

Instead of sequentially repeating the digits 1-9 as in the case of the Smarandache
Deconstructive Sequence we will use the digits 0-9 to form the corresponding
sequence:

0,12,345,6789,01234,567890,1234567,89012345,678901234,5678901234,
56789012345,678901234567, ... '

In this case the cycle has n=10 elements. As we have seen in the introduction the
sequence then has a period 2n=20. The periodicity starts for i=8. Table 5 shows how,
for i>7, any term C; in the sequence is composed by concatenating a first part B(k), a
number q of cycles A="0123456789” and a last part E(k), where =7+k+20j, k=1,2,
... 20, j>0, as expressed in (2) and q=2j, 2j+1 or 2j+2. In the analysis of the sequence
it is important to distinguish between the cases where E(k)=0, k=6,11,14,19 and cases
where E(k) does not exist, i.e. k=8,12,13,14. In order to cope with this problem we
introduce a function u(k) which will at the same time replace the functions 5(j,k) and
u=l1+HlogcE(k)] used previously. u(k) is defined as shown in table 5. It is now
possible to express C; in a single formula.

qk)+2j-1 .
Ci = Crapan; =E(K)+(A- Y (10°°)" + B(k)- (10') 04211 0%0) &)

=0

The formula for C; was implemented modulus prime numbers less than 100. The
result is shown in table 6. Again we note that the divisibility by a prime p is periodic
with a period d which is equal to p-1 or a divisor of p-1, except for p=11 and p=41
which are factors of 10'°-1. The cases p=3 and 5 have very simple answers and are
not included in table 6.
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Table 5. n=10, A=0123456739

i k B(k) q E(k) u(k)
8+20f 1 89 2j 012345=3.5.823 6
9+20j 2 6789=3.31.73 2j 01234=2.617 5
10420 3 56789=109-521 2j 01234=2-617 5
11420 4 56789=109-521 2j 012345=3.5.823 6
12420 5 1 6789=3.31.73 2j  01234567=127.9721 8§
13420 6 89 2j+1 0 1
14420 7 123456789=32.3607.3803  2j 01234=2-617 5
15420 8 56789=109-521 2j+1 _ 0
16420 9 2j+1 012345=3.5.823 6
17+20; 10 6789=3-31.73 2j+1 012=22.3 3
18420 11  3456789=3.7-97.1697 2j+1 ] 1
19420] 12 123456789=3%-3607-3803  2j+1 0
20420 13 2j+2 0
21420f 14 2j+2 0 1
22+20f 15 123456789=3%.3607-3803  2j+1 012=23 3
23420 16  3456789=3.7-97.1697 2j+1 012345=3.5.823 6
24+20f 17 6789=3-31.73 2j+2 : 0
25+20; 18 2§42 01234=2-617 5
26+20f 19 56789=109-521 2j+2 0 1
27420j 20 123456789=3%.3607-3803  2j+1  01234567<127-9721 8

Table 6. Divisibility of the 10-cycle deconstructive sequence by primes p<97

p k iy i d [ k is j1 d
7 3 30 1 3 11 11 18 0 1
7 6 13 0 3 11 12 219 10 1
7 7 14 0 3 11 13 220 10 11
7 8 15 0 3 11 14 221 10 11
7 11 38 1 3 11 15 202 9 1
7 12 59 2 3 11 16 83 3 1
7 13 60 2 3 11 17 44 1 11
7 14 61 2 3 11 18 185 8 11
7 15 22 0 3 11 19 146 8 1
7 18 45 1 3 11 20 87 3 11
7 19 48 1 3 13 2 49 2 3
7 20 47 1 3 13 3 30 1 3
11 1 88 4 11 13 4 11 o 3
11 2 9 a 11 13 12 59 2 3
11 3 110 5 11 13 13 60 2 3
11 4 211 10 1 13 14 61 2 3
11 5 132 6 11 17 1 48 2 4
11 6 133 6 11 17 5 32 1 4
11 7 74 3 11 17 10 37 1 4
11 8 35 1 11 17 12 79 3 4
11 9 176 8 11 17 13 80 3 4
11 10 137 6 11 17 14 81 3 4
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Table 6, cont. Divisibility of the 10-cycle deconstructive sequence by primes p<97

p k iy j1 d p k iy i1 d
17 16 43 1 4 41 11 678 33 41
19 1 128 6 g 41 12 819 40 41
18 2 149 7 ] 41 13 820 40 41
19 3 90 4 9 41 14 821 40 41
19 4 31 1 ] 41 18 142 6 41
19 5 52 2 g 41 16 703 34 41
19 10 117 5 9 41 17 384 18 41
19 12 179 8 9 41 18 205 9 41
18 13 180 8 9 41 19 206 9 41
19 14 181 8 9 41 20 467 22 41
19 16 83 2 9 43 2 109 S 21
23 1 168 8 11 43 3 210 10 21
23 2 149 7 11 43 4 311 15 21
23 3 110 5 11 43 6 173 8 21
23 4 71 3 11 43 10 217 10 21
23 $ 52 2 11 43 12 419 20 21
23 10 217 10 11 43 13 420 20 21
23 12 219 1Q 11 43 14 421 20 21
23 13 220 10 11 43 16 203 9 21
23 14 221 10 i1 43 20 247 11 21
23 16 223 10 1 47 1 28 1 23
29 2 129 6 7 47 2 69 3 23
29 4 1 0 7 47 3 230 11 23
29 10 97 4 7 47 4 391 19 23
29 12 139 6 7 47 5 432 21 23
29 13 140 6 7 47 6 113 5 23
29 14 141 6 7 47 7 214 10 23
29 16 43 1 7 47 8 15 0 23
31 3 30 1 3 47 9 376 18 23
31 9 56 2 3 47 12 459 22 23
31 12 59 2 3 47 13 460 22 23
31 13 60 2 3 47 14 461 22 23
31 14 61 2 3 47 17 84 3 23
31 17 64 2 3 47 18 445 21 23
37 2 9 0 3 47 19 246 11 23
37 3 30 1 3 47 20 347 16 23
37 4 51 2 3 53 3 130 6 13
37 12 58 2 3 53 12 259 12 13
37 13 60 2 3 53 13 260 12 13
37 14 61 2 3 53 14 261 12 13
41 1 788 39 41 59 2 269 13 29
41 2 589 29 41 59 3 290 14 29
41 3 410 20 41 59 4 3N 15 29
41 4 231 11 41 59 7 474 23 29
41 5 32 1 41 59 8 395 19 29
41 6 353 17 41 59 9 496 24 29
41 7 614 30 41 59 10 297 14 29
41 8 815 30 41 59 11 78 3 29
41 g 436 21 41 59 12 579 28 29
41 10 117 5 41 59 13 580 28 29
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Table 6, cont. Divisibility of the 10-cycle deconstructive sequence by primes p<97

p k is i d p k i i d
58 14 581 28 29 71 8 85 4 7
59 15 502 24 29 71 12 138 6 7
59 16 283 13 29 71 13 140 6 7
59 17 84 3 29 71 14 141 6 7
59 18 185 8 29 71 18 45 1 7
59 19 106 4 29 71 19 26 0 7
61 12 59 2 3 73 7 14 0 2
61 13 60 2 3 73 9 36 1 2
81 14 61 2 3 73 12 39 1 2
67 1 328 16 33 73 13 40 1 2
67 2 509 25 33 73 14 41 1 2

67 3 330 16 33 73 17 44 1 2
67 4 151 7 33 73 19 26 o 2
87 5 332 16 33 79 1 228 11 13
67 8 273 13 33 79 3 130 8 13
87 7 234 11 33 79 5 32 1 13
67 8 95 4 33 79 12 259 12 13
87 g9 56 2 33 79 = 13 260 12 13
67 10 557 27 33 79 14 261 12 13
67 11 378 18 33 83 3 410 20 41
67 12 659 32 33 83 9 476 23 41
67 13 660 32 33 83 12 819 40 41
87 14 661 32 33 83 13 820 40 41
67 15 282 13 33 83 14 821 40 41
67 16 103 4 33 83 17 344 16 41
87 17 604 29 33 89 12 219 10 11
67 18 565 27 33 89 13 220 10 11
67 19 426 20 33 89 14 221 10 11
67 20 387 18 33 97 8 455 22 24
71 1 8 0 7 97 12 479 23 24
71 3 70 3 7 97 13 480 23 24
71 5 132 6 7 97 14 481 23 24
71 7 114 5 7 97 18 25 0 24
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On a Deconcatenation Problem

Henry Ibstedt

Abstract: In a recent study of the Primality of the Smarandache Symmetric
Sequences Sabin and Tatiana Tabirca [1] observed a very high frequency of the
prime factor 333667 in the factorization of the terms of the second order
sequence. The questicn if this prime factor occurs peridically was raised. The odd
behaviour of this and a few other primefactors of this sequence will be explained
and details of the periodic occurence of this and of several other prime factors
will be given.

Definition: The nth term of the Smarandache symmetric sequence of the second order
is defined by S(n)=123...n_n...321 which is to be understood as a concatenation' of
the first n natural numbers concatenated with a concatenation in reverse order of then
first natural numbers.

Factorization and Patterns of Divisibility

The first five terms of the sequence are: 11, 1221, 123321, 12344321, 1234554321.
The number of digits D(n) of S(n) is growing rapidly. It can be found from the
formula:

2(10* —1)
9

D(n) =2k(n+1)— for n in the interval 105'<n<10-1 60

In order to study the repeated occurrance of certain prime factors the table of S(n) for
n<100 produced in [1] has been extended to n<200. Tabirca’s aim was to factorize the
terms S(n) as far as possible which is more ambitious then the aim of the present
calculation which is to find prime factors which are less than 10%. The result is shown
in table 1.

The computer file containing table 1 is analysed in varions ways. Of the 664579
primes which are smaller than 107 only 192 occur in the prime factoriztions of S(n)
for 1<n<200. Of these 192 primes 37 occur more than once. The record holder is
333667, the 28693th prime, which occurs 45 times for 1<n<200 while its neighbours
333647 and 333673 do not even occur once. Obviously there is something to be
explained here. The frequency of the most frequently occurring primes is shown
below..

Table 2. Most frequently occurring primes °

p 3 33367 | 37 41 | 2711 9091 | 11 [ 43 | 73 | 53 87 | 31 | 47
Freq | 132 45 41 41 41 29 25 | 24 ] 14 8 7 6 6

! In this article the concatenation of a and b is written a_b. Muitiplication ab is often made explicit by
writing a.b. When there is no reason for misunderstanding the signs “_" and “.” are omitted. Several
tables contain prime factorizations. Prime factors are given in ascending order, multiplication is
expressed by “.” and the last factor is followed by “.” if the factorization is incomplete or by Fxxx
indicating the number of digits of the last factor. To avoid typing errors all tables are electronically
transferred from the calculation program, which is DOS-based, to the wordprocessor. All editing has
been done either with a spreadsheet program or directly with the text editor, Full page tables have been
placed at the end of the article. A non-proportional font has been used to illustrate the placement of
digits when this has been found useful.
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The distribution of the primes 11, 37, 41, 43, 271, 9091 and 333667 is shown in table
3. It is seen that the occurance patterns are different in the intervals 1<n<9, 10<n<99
and 100<n<200. Indeed the last interval is part of the interval 100<n<999. It would
have been very interesting to include part of the interval 1000<n<9999 but as we can
see from (1) already S(1000) has 5786 digits. Partition lines are drawn in the table to
highlight the different intervals. The less frequent primes are listed in table 4 where
primes occurring more than once are partitioned.

From the pattems in table 3 we can formulate the occurance of these primes in the
intervals 1<n<9, 10<n<99 and 100<n<200, where the formulas for the last interval are
indicative. We note, for example, that 11 is not a factor of any term in the interval
100<n<999. This indicates that the divisibility patterns for the interval 1000<n<9999
and further intervals is a completely open question.

Table 5 shows an analysis of the patterns of occurance of the primes in table 1 by
interval. Note that we only have observations up to n=200. Nevertheless the interval
100<n<999 is used. This will be justified in the further analysis.

Interval r n - Range for j
1<n<.. 3 2+33 j=0,1,.
1<n<.. 35 j=1,2, ..
1<n<9 11 All values of n
10<n<99 12+117 j=0,1, . ,7

20+11j j=0,1, = ,7
100<n<999 None
1<n<9 37 2+33 j=0,1,2
3+35 j=0,1,2
10<Sn<99 12+373 j=0,1,..,28,29
100<n<999 122+373 j=0,1,.,23
136+373 j=0,1,_,23
1<n<9 41 4+53 j=0,1
5 .

10<n<999 14+5j j=0,1,..,197
1<n<9 43 None
10<n<99 11+213 j=0,1,3,4

24+21j §=0,1,2,3

100=n<999 100 .

107+73 3§=0,1,..,127
1<n<9 271 4457 j=0,1
S

10<n<999 14+573 j=0,1,.,197
1<n<999 8091 9+53 j=0,1,.,98
1<n<9 333667 8,9
10<n<99 18+93 j=0,1,..,9

100<n<999 102+373 . j=0,1,.,299

We note that no terms are divisible by 11 for n>100 in the interval 100<n<200 and
that no term is divisible by 43 in the interval 1<n<9. Another remarkable observation
is that the sequence shows exactly the same behaviour for the primes 41 and 271 in
the intervals included in the study. Will they show the same behaviour when n=1000?
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Consider

S(n)=12...n_n...21.
Let p be a divisor of S(n). We will construct a number

N=12...n_0..0_n...21 )
so that p also divides N. What will be the number of zeros? Before discussing this
let’s consider the case p=3.

Case 1, p=3.

In the case p=3 we use the familiar rule that a number is divisible by 3 if and only if
its digit sum is divisible by 3. In this case we can insert as many zeros as we like in
(2) since this does not change the sum of digits. We also note that any integer formed
by concatenation of three consecutive integers is divisible by 3, cf a_a+1_a+2, digit
sum 3a+3. It follows that also a_a+1_a+2_a+2_a+1_a is divisible by 3. For a=n+1 we
insert this instead of the appropriate number of zeros in (2). This means that if S(n)=0
(mod 3) then S(n+3)=0 (mod 3). We have seen that S(2)=0 (mod 3) and S(3)=0 (mod
3). By induction it follows that S(2+3j)=0 (mod 3) for j=1,2,... and S(3j)=0 (mod 3)
. forj=1,2,.... '

We now return to the general case. S(n) is deconcatenated into two numbers 12...n
and n... 21 from which we form the numbers

A=12..n-10"0%® and B=p 21
We note that this is a different way of writing S(n) since indeed A+B=S(n) and that
A+B=0 (mod p). We now form M=A-10°+B where we want to determine s so that
M=0 (mod p). We write M in the form M=A(10°1)+A+B where A+B can be ignored
mod p. We exclude the possibility A=0 (mod p) which is not interesting. This leaves
us with the congruence

M=A(10°1)=0 (mod p)
or

10*-1=0 (mod p)
We are particularly interested in solutions for which

pe {11,37,41,43,271,9091,333667}
By the nature of the problem these solutions are periodic. Only the two first values of
s are given for each prime.

Table 6. 10"-1=0 (mod p)

p 3 11 37 41 43 271 90351 33367
8 1,2 2,4 3,6 5,10 21,42 5,10 10,20 9,18

We note that the result is independent of n. This means that we can use n as a
parameter when searching for a sequence C=n+1_n+2_...n+k_n+k_...n+2_n+1 such
that this is also divisible by p and hence can be inserted in place of the zeros to form
S(n+k) which then fills the condition S(n+k)=0 (mod p). Here k is a multiple of s or
s/2 in case s is even. This explains the results which we have already obtained in a
different way as part of the factorization of S(n) for n<200, see tables 3 and 5. It
remains to explain the periodicity which as we have seen is different in different
intervals 10"<n<10"-1.
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This may be best done by using concrete examples. Let us use the sequences starting
with n=12 for p=37, n=12 and n=20 for p=11 and n=102 for p=333667. At the same
time we will illustrate what we have done above.

Case 2: n=12, p=37. Period=3. Interval: 10<n<99.

S(n)= 123456789101112 -121110987654321
N= 123456789101112000000000000121110987654321
C= 131415151413

S(n+k)=123456789101112131415151413121110987654321

Let’s look at C which carries the explanation to the periodicity. We write C in the
form
C=101010101010+30405050403
We know that C=0 (mod 37). What about 1010101010107 Let’s write
101010102010=10+10*+10%+.+10*1=(10%2-1) /9=0 (mod 37)
This congruence mod 37 has already been established in table 6. It follows that also
30405050403=0 {mod 37)
and that
%x(101010101010)=0 (mod 37) for x = any integer
Combining these observations we se that
232425252423, 333435353433, - 939495959493=0 (mod 37)

Hence the periodicity is explained.

Case 3a: n=12, p=11. Period=11. Interval; 10<n<99,

S(12)=12_.._12 12_.._21
s(23)=12_.._121314151617181920212223232221201918171615141312_.._21
C= 13141516171819202122232322212019181716151413=

Cl= 10101010101010101010101010101010101010101010+

C2= 3040506070809101112131312111009080706050403

From this we form

2-C1+C2= 23242526272829303132333332313029282726252423

which is NOT what we wanted, but C1=0 (mod1 1) and also C1/10=0 (mod 11).

Hence we form :
2:C1+C1/10+C2=24252627282930313233343433323130292627262524

which is exactly the C-term required to form the next term S(34) of the sequence. For

the next term S(45) the C-term is formed by 3-C142-C1/10+C2 The process is

repeated adding C1+C1/10 to proceed from a C-term to the next until the last term

<100, i.e. S(89) is reached.

Case 3b: n=20, p=11. Period=11. Interval: 10<n<99,

This case does not differ much from the case n=12. We have

S(20)=12_.._20 20_.._21
s(31)=12_.._202122232425262728293031313029282726252423222120_.._21
C= 21222324252627282930313130292827262524232221=

Cl= 10101010101010101010101010101010101010101010+

Cc2= 1020304050607080910111110090807060504030201

The C-term for S(42) is
3-C1+C1/10+C2=32333435363738394041424241403938373635343332

In general C=x-C14+(x-1)-C1/10+C2 for x=3,4,5, ..,8. For x=8 the last term S(97) of
this sequence is reached.
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Case 4: n=102, p=333667. Period=3. Interval: 100<n<999.

S(102)=12_.._101102 102101_.._21
§(105)=12_.._101102103104105105104103102101_.. 21
C= 103104105105104103 =0 (mod 333667)
C1= 100100100100100100 =0 (mod 333667)
c2= 3004005005004003 =0 (mod 333667)

Removing 1 or 2 zeros at the end of C1 does not affect the congruence modulus
333667, we have:
1= 10010010010010010 =0 (mod 333667)
CL' = 1001001001001001 =0 (mod 333667)
We now form the combinations:

x:Cl+y-C1l’ +2-C1’’ +C2=0 (mod 333667)
This, in my mind, is quite remarkable: All 18-digit integers formed by the
concatenation of three consecutive 3-digit integers followed by a concatenation of the
same integers in descending order are divisible by 333667, example
376377378378377376=0 (mod 333667). As far as the C-terms are concerned all S(n)
in the range 100<n<999 could be divisible by 333667, but they are not. Why? It is
because $(100) and S(101) are not divisible by 333667. Consequently n=100+3k and
101+3k can not be used for insertion of an appropriate C-value as we did in the case
of S(102). This completes the explanation of the remarkable fact that every third term
S(102+3j) in the range 100<n<999 is divisible by 333667.

These three cases have shown what causes the periodicity of the divisibility of the
Smarandache symmetric sequence of the second order by primes. The mechanism is
the same for the other periodic sequences.

Beyond 1000

We have seen that numbers of the type:
1010101010, 100100100.100, 10001000..1000, etc

play an important role. Such numbers have been factorized and the occurrence of our
favorite primes 11, 37, ..., 333667 have been listed in table 7. In this table a number
like 100100100100 has been abbreviated 4(100) or q(E), where q and E are listed in
separate columns. '

Question 1. Does the sequence of terms S(n) divisible by 333667 continue beyond
10007

Although S(n) was partially factorized only up n=200 we have been able to draw
conclusions on divisibility up n=1000. The last term that we have found divisible by
333667 is S(999). Two conditions must be met for there to be a sequence of terms
divisible by p=333667 in the interval 1000<n<9999.

Condition 1. There must exist a number 10001000...1000 divisible by 333667 to
ensure the periodicity as we have seen in our case studies.

In table 7 we find q=9, E=1000. This means that the periodicity will be 9 — if it exists,
i.e. condition 1 is met.
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Condition 2. There must exist a term S(n) with n=1000 divisible by 333667 which
will constitute the first term of the sequence.

The last term for n<1000 which is divisible by 333667 is $(999) from which we build
$(108)=12.999_1000_-_1008_1008_.1000_999-.21

where we deconcatenate 100010011002...10081008...10011000 which is divisible by
333667 and provides the C-term (as introduced in the case studies) needed to generate
the sequence, i.e. condition 2 is met. ,

We conclude that S(1008+9j)=0 (mod 333667) for j=0,1,2, ... 999. The last term in
this sequence is S(9999). From table 7 we see that there could be a sequence with the
period 9 in the interval 10000<n<99999 and a sequence with period 3 in the interval
100000<n<999999. It is not difficult to verify that the above conditions are filled also
in these intervals. This means that we have:

S(1008+9j)=0 (mod 333667) for j=01,2,...,999, i.e. 10°<n<10%1
S(10008+9j)=0 (mod 333667) for j=01,2,...,9999, i.e. 10*<n<10°-1

S(100002+3j)=0 (mod 333667) for j=01,2,...,99999, i.e. 10°<n<10°-1

It is one of the fascinations with large numbers to find such properties. This
extraordinary property of the prime 333667 in relation to the Smarandache symmetric
sequence probably holds for n>10°, It easy to loose contact with reality when plying
with numbers like this. We have $(999999)=0 (mod 333667). What does this number
5(999999) look like? Applying (1) we find that the number of digits D(999999) of
5(999999) is »
D(999999)=2-6-10%-2-(10%-)/9=11777778

Let’s write this number with 80 digits per line, 60 lines per page, using both sides of
the paper. We will need 1226 sheets of paper ~ more that 2 reams!

Question 2. Why is there no sequence of S(n) divisible by 11 in the interval
100<n<999?

Condition]. We must have a sequence of the form 100100.. divisible Hy 11 to ensure
the periodicity. As we can see from table 7 the sequence 100100 fills the condition
and we would have a periodicity equal to 2 if the next condition is met.

Condition 2. There must exist a term S(n) with n>100 divisible by 11 which would
constitute the first term of the sequence. This time let’s use a nice property of the
prime 11:

10°=(-1)* (mod 11) -
Let’s deconcatenate the number a_b corresponding to the concatenation of the
numbers a and b: We have: ’
[ -a+b if 1+[logyeb] is odd
a_b=a-10"Mee?] 4 p

| a+b if 1+{logiob] is even
Let’s first consider a deconcatenated middle part of S(n) where the concatenation is

done with three-digit integers. For convienience I have chosen a concrete example -
the generalization should pose no problem
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273274275275274273=2-7+3~2+7-4+42-7+5-2+7-5+2-T+4-2+7-3=0 (r:iod 11)
L R D o T e

It is easy to see that this property holds independent of the length of the sequence
above and whether it start on + or -. It is also easy to understand that equivalent
results are obtained for other primes although factors other than +1 and —1 will enter
into the picture.

We now retum to the question of finding the first term of the sequence. We must start
from n=97 since S(97) it the last term for which we know that S(n)=0 (mod 11). We
form:

9899100101.n_n.1011009998=2 (mod 11) independent of n<1000.
e e D I L R

This means that S(n)=2 (mod 11) for 100<n<999 and explains why there is no
sequence divisible by 11 in this interval.

Question 3. Will there be a sequence divisible by 11 in the interval 1000<n<9999?

Condition 1. A sequence 10001000...1000 divisible by 11 exists and would provide a
period of 11, se table 7.

Condition 2. We need to find one value n 21000 for which S(n)=0 (mod 11). We
have seen that $(999)=2 (mod 11). We now look at the sequences following S(999).
Since $(999)=2 (mod 9) we need to insert a sequence 10001001..m_m...10011000=9
(mod 11) so that S(m)=0 (mod 11). Unfortunately m does not exist as we will see
below . :

10001000=2 (mod 11)
R R o
1 1
1000100110011000=2. (mod 11)
L R
1 1 1 1

1 1 ’
100010011002100210011000=0 (mod 11)
R e kb t SR :
1 1 1 1 1 1

1 2 2 1
10001001100210031003100210011000=-4=7 (mod 11)
LB R L e e s et Tt T R SIS
1 1 1 1 1 1 1 1

1 2 3 3 2 1

Continuing this way we find that the residues form the period 2,2,0,7,1,4,5.4,1,7,0.
We needed a residue to be 9 in order to build sequences divisible by 9. We conclude
that S(n) is not divisible by 11 in the interval 1000<n<9999.

Trying to do the above analysis with the computer programs used in the early part of
this study causes overflow because the large integers involved. However, changing
the approach and performing calculations modulus 11 posed no problems. The above
method was preferred for clarity of presentation.
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Epilog

There are many other questions that may be interesting to look into. This is left to the
reader. The author’s main interest in this has been to develop means by which it is
possible to identify some properties of large numbers other than the so frequently
asked question as to whether a big number is a prime or not. There are two important
ways to generate large numbers that I found particularly interesting — iteration and
concatenation. In this article the author has drawn on work done previously,
references below. In both these areas very large numbers may be generated for which
it may be impossible to find any practical use — the methods are often more important
than the results.
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Table 1. Prime factors of S(n) which are less than 10°

a Prime factors of S(n) n Prime factors of S(n)

1 11 51 3.37.1847.F180

2 3.11.37 52 F190

3 3.11.37.101 53 3%,11.43.26539.17341993.F178

4 11.41.101.271 54 33.37.41.151.271.347.463.9091.333667.F174

5 3.7.11.13.37.41.271 S5 €7.F200

6 3.7.11.13.37.239.4649 56 3.11.F204

7 11.73.101.137.239.4649 57 3.31.37.F206

8 32,11.37.73.101.137.333667 58 227.9007.20903089.F200

9 3%,11.37.41.271.9091.333667 59 3.41.97.271.9091.F207

10 F22 60 3.37.3368803.F213

11 3.43.97.548687.F1¢6 61 91719497.F218

12 3.11.31.37.61.92869187.F1S 62 3%,1693.F225

13 109.3391.3631.F24 63 3%.37.305603.333667.9136499.F213

14 3.41.271.9091.290971.F24 64 11.41.271.9091.F229

15 3.37.661.F37 65 3.839.F238

16 F46 66 3.37.43.F242

17 3.F48 67 117.109.467.3023.4755497.F233

18 3%.37.1301.333667.6038161.87958883.] 68 3.97.5843.F247

F28

19 41.271.9091.F50 69 3.37.41.271.787.9091.716549.19208653.F232

20 3.11.97.128819.F53 70 F262

21 3.37.983.F61 71 3.F265

22 67.773.F65 72 3%.31.37.61.163.333667.77696693.F248

23 3.11.7691.F68 73 379.323201.F266

24 3.37.41.43.271.9091.165857.F61 74 3.412.432.179.271.9091.8912921.?255

25 227.2287.33871.611999.F66 75 3.11.37.443.F276

26 3%.163.5711.68432503.F70 76 1109.F283

27 33.31.37.333667.481549.F74 77 3.10034243.F282

28 146273.608521.¥F83 78 3.11.37.71.41549.F284

29 3.41.271.9091.F89 79 41.271.9091.F290

30 3.37.5167.F96 80 3.F300

31 11%.4673.F99 81 35.37.333667.4274969.F289

32 3.43.1021.F104 82 F310

33 3.37.881.F109 83 3.20399.5433473.F302

34 11.41.271.9091.F109 84 3.37%.41.271.9091.F306

35 32,3209.F117 85 1783.627041.F313

36 3%.37.333667.68697367.F110 86 3.11.F324

37 F130 87 3.31.37.43.F324

38 3.1913.12007.58417.597269.63800419.] 88 67.257.46229.F325

F107

39 3.37.41.271.347.9091.23473.F121 89 32.11.41.271.9091.653659.76310887.F314

40 F142 90 3%,37.244861.333667.F328

41 3.156841,F140 91 173.F343

42 3.11.31.37.61.20070529.F136 92 3.F349

43 71.5087.F148 93 3.37.1637.F348

44 32.41.271.9091.1553479.?142 94 41.271.5091.10671481.F343

45 3%.11.37.43.333667.F151 95 3.43.2833.F356

46 F166 96 3.37.683.F361

47.3.F169 97 11.26974499.F361

48 3.37.173.60373.F165 98 3%.1299169.F367

49 41.271.929.9091.34613.F162 99 32.37.41.271.2767.9091.263273.333667.4814
17.F347

50 3.167.1788.9923.F172 100 43.47.53.83.683.3533.4919.F367
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Table 1 continued

n Prime factors of S(m) n Prime factors of S(n)
101 3.F389 151 47.5783.405869.F679
102 3.149.21613.106949.333667.F378 152 32.53.F693
103 45823.F397 153 3%.359.39623.333667.7192681.F681
104 3.41.271.28813.F399 154 41.73.271.487.14843.F695
105 3.47.333667.11046661.F399 155 3.14717.F709
106 73.167.F416 156 3.43.601.1289.14153.333667.1479589.11337¢C
23.F689
107 3’.43.1447.1741.28649.161039.}?406 157 F726
108 3%.569.333667.F422 158 3.45055933.F723
109 41.271.367.9091.F427 159 3.37.41.271.347.9091.333667.F719
110 3.F443 160 97.179.1277.F736 )
111 3.313.333667.F441 161 3%.3251.75193.496283.F734
112 F456 162 3*.73.26881.28723.333667 .3211357.F731
113 3.53.71.2617.52081.F449 163 43.1663.F757
114 3.41.43.73.271. 333667.?454 164 3.41.271.136319.F758
115 2309.F470 165 3.53.83.919.184859.333667.3014983.F749
116 3.F479 166 1367.1454371.F770
117 3%,333667.4975757.F472 167 3.F785
118 167.11243.13457.414367.F476 168 3.19913.333667.F781
119 3.41.271.9091.132059.182657.F479 169 41.271.2273_.9091.F786
120 3.1511,7351.20431.167611.333667.572282{170 3°.43.73.967.F796
99.F473
121 43.501233.F502 171 3%.333667.F803
122 3.37.73.2659.F508 172 643.96293.325681.7607669.F795
123 3.112207.333667.F511 173 3.37.F820
124 41.83.271.367.37441.F514 174 3.41.271.19423.333667.F813
125 3.F533 175 3607.20131291.F823
126 32.53.333667.395107.972347.F520 176 3.F839
127 FS46 177 3.43.173.333667.}?836
128 3.43.97.179.181.347.F540 178 53.73.11527.461317.F¥838
129 3.41.271.9091.333667.F544 179 3%.41.271.1033.9091.F846
130 73.313.275083.F554 180 32.2861.26267.333667. 1894601.F843
131 3.263.12511.210491.95558129.F549 181 F870
132 3.333667.F570 182 3.83.2417.F870
133 FS82 - 183 3.71.1097.333667.F871
134 3%,41.173.271.P580 184 41.43.271.F882
135 3%.43.59.333667.F583 185 3.317371.F888
136 37.F598 186 3.73.333667.F892
137 3.F605 187 F390s6
138 3.73.28817.333667.F599 188 3°.181.1129.5179.F901
139 41.53.271.9091.19433.F604 189 3%.41.271.9091.13627.333667.F898
140 3.380623.F618 . 190 194087.P918
141 3.83.257.1091.333667.29618101.F609 191 3.43.53.401.F923
142 43 .F634 192 3.47.97.333667.14445391.F919
143 3%.8922281.F634 193 59.F940 ‘
144 3%.41.59.271.1493.333667.F632 194 3.41.73.271.487.42643.F934
145 977.22811.5199703.F640 195 3.179533.333667.F942
146 3.47.73.F656 196 37.661.F955
147 3.1483.2341.333667.F653 197 3%.47.18427.6309143.32954969.F944
148 71.14271083.47655077.F655 198 32.43%.333667.F962
149 3.41.43.271.9091.F667 199 41.271.9091.10151.719779.F960
150 3.333667.F678 200 3.4409.F979
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Table 3. Smarandache Symmetric Sequence of Second Order: The most frequently
oceurring prime factors.

# 11 digfp g 37 diff] 4 47 dirff g 43 st 4 291 &ff| § 9091 ILE| F 333867 it
1 11 2 37 4 41 11 43 4 271 9 95091 8 333667

2 11 113 37 1}5 41 1§24 43 13|55 271 1] 14 5091 5| 9 333667 1

3 12 1|5 37 2|9 41 4 |32 43 8|9 271 4 | 19 9091 5 { 18 333687 9

4 11 1]6 37 1([14 41 5 |45 43 13[34 271 5 | 24 9051 5 | 27 333667 9

5 11 18 37 2}19 41 5 |53 43 8 {19 271 5 | 29 9091 5 | 36 333667 9

6 11 1|9 37 1}24 41 5|66 43 13|24 271 5 | 34 9091 5 | 45 333667 o9

7 11 1112 37 3|29 41 5 ]74 43 8 |29 271 5| 39 9091 5 | 54 333667 9

8 11 1 |15 37 3 |34 41 5 |87 43 13|34 271 S5 | 44 9091 5 | 63 333667 9

S 11 1 {18 37 3 {39 41 5 |95 43 8 |39 271 5| 49 9091 5 | 72 333667 o

12 11 3 |21 37 3 |44 41 5 [100 43 5 |44 271 5 | 54 9091 S | 81 333667 9

20 11 8 |24 37 3 |49 41 5 |107 43 7 |49 271 5] s9 9081 5 | 90 333667 9

23 11 3 |27 37 3 |54 41 5 |114 43 7 |54 271 5 | 64 9091 5| 99 333667 9

31 11 8 |30 37 3|59 41 5 [121 43 7 |59 271 S | 69 9091 5 |102 333667 3

34 11 3§33 37 3 )64 41 S [128 43 7 {64 271 5 | 74 9091 5 |105 333667 3

42 11 8 |36 37 3 |69 41 5 |135 43 7 |69 271 5 | 79 9091 S5 | 108 333867 3

45 11 3 |39 37 3 {74 41 5 [142 43 7 |74 271 s | 84 5091 5 |111 333667 3

53 11 8 |42 37 3 179 41 5 149 43 7 |79 271 5 | 89 9081 5 | 114 333667 3

56 11 3 145 37 3 |84 41 5 (156 43 7 [84 271 5 | 94 9091 S |117 333667 3

64 11 8 |48 37 3 |89 41 s |163 43 7 |89 271 s | 99 9091 5 |120 333667 3

67 11 3 |51 37 3 {94 41 5 |170 43 7 }94 271 5 [109 5091 10]123 333667 3

75 11 8 |54 37 3 {99 41 5 |177 43 7 |99 271 5 |119 9091 10! 126 333667 3

78 11 3 |57 37 3 [104 41 5 |184 43 7 [104 271 5 | 129 9091 10| 129 333667 3

86 11 8 j60 37 3 /109 41 5 |191 43 7 109 271 5 | 139 %091 10132 333667 3

89 11 3 |63 37 3 114 41 5 |198 43 7 114 271 5 | 149 %091 10] 135 333667 3

97 11 8 |66 37 3 {119 41 5 119 271 5 | 159 9091 10| 138 333667 3

‘ 65 37 3 [|124 41 s 124 271 5 {169 9091 10| 141 333667 3

72 37 3 |129 41 s 129 271 5 }179 9091 10| 144 333667 3

75 37 3 |134 41 5 134 271 5 | 189 9091 10147 333667 3

78 37 3 {139 41 s 139 271 5 | 199 9091 10| 150 333667 3

81 37 3 {144 41 5 144 271 S5 153 333667 3

84 37 3 |149 41 s 149 271 5 156 333667 3

87 37 3 [154 41 5 154 271 S 159 333667 3

90 37 3 [159 41 s 159 271 5 162 333667 3

93 37 3 |164 41 S 164 271 5 165 333667 3

- 96 37 3 [169 41 5 169 271 5 168 333667 3

99 37 3 |174 41 s 174 271 5 171 333667 3

122 37 230179 41 s 179 271 S 174 333667 3

136 37 14 |184 41 5 184 271 S 177 333667 3

159 37 23[189 41 5 189 271 S 180 333667 3

173 37 14 |134 41 s 194 271 S 183 333667 3

196 37 23199 41 5 199 271 5 186 333667 3

’ 189 333667 3

192 333667 3

195 333667 3

198 333667 3
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Table 4.

Smarandache Symmetric Sequence of Second Order:
occurring prime factors.

Less frequently

# p d|# p d|# p df # p 4l & P # pr dl # P

5 7 7 73 50 167 15 661 147 2341 154 14843 24 165857
6 7 1] 8 73 1][106 167 56|196 s61 182 2417 197 18427 120 167611
5§ 13 106 73 98]118 167 12} 96 683 113 2617 174 19423 195 179533
6 13 1)114 73 848 173 100 683 122 26SS 139 19433 119 182657
1z 31 122 73 8 {91 173 43|22 773 99 2767 168 19913 165 184859
27 31 15(130 73 8 |134 173 43]69 787 95 2833 83 20399 190 194087
42 31 15|138 73 8177 173 43|65 839 180 2861 120 20431 131 2104381
57 31 15146 73 8|74 179 33 881 67 3023 102 21613 80 244861
72 31 15{154 73 8128 179 S54[165 919 35 3209 145 22811 99 263273
87 31 15|162 73 8 160 179 32|49 929 161 3251 39 23473 130 275083
100 47 170 73 8 }128 181 170 967 13 3391 180 26267 14 290971
105 47 s5}178 73 8 |188 181 145 977 100 3533 53 26539 63 305603
146 47 41)]186 73 8] 25 227 21 983 175 3607 162 26881 185 317371
151 47 5194 73 8|58 227 32 1021 13 3631 107 28649 73 323201
192 47 41100 83 6 239 179 1033 200 4409 162 28723 172 325681
197 47 S|124 83 24| 7 239 141 1091 6 4649 104 28813 140 380623
100 53 141 83 17| 88 257 183 1097 7 4649 138 28817 126 395107
113 S3 13]|165 83 24]141 257 76 1109 31 4673 25 33871 151 405869
126 53 13]182 83 17{131 263 188 1129 100 4919 49 34613 118 414367
139 S3 13}11 897 111 313 160 1277 43 5087 124 37441 178 461317
152 53 13{20 97 9 |130 313 156 1289 30 5167 153 39623 99 481417
165 53 13]S9 97 39} 39 347 18 1301 188 5179 78 41549 27 481549
178 53 13|/ 68 97 9|54 347 15]166 1367 26 S711 194 42643 161 496283
191 s3 13]128 97 60|128 347 74[107 1447 151 5783 103 45823 121 501233
135 59 160 97 32{159 347 31147 1483 68 5843 88 46229 11 548687
144 S9 91]192 97 32[|153 359 144 1493 120 7351 113 52081 38 597269
193 59 49 3 101 109 367 120 1511 23 7691 38 58417 28 608521
12 61 4 101 124 367 93 1637 58 9007 48 60373 25 611999
42 61 30f 7 101 3}73 379 163 1663 50 9%23 161 75193 85 627041
72 61 30|/ 8 101 1 |191 401 62 1693 199 10151 172 96293 89 653659
22 67 13 109 75 443 107 1741 118 11243 102 106949 69 716549
55 67 33|67 109 54 463 85 1783 178 11527 123 112207 199 719779
88 67 331 7 137 67 467 S0 1789 38 12007 20 128819 126 972347
43 71 8 137 154 487 51 1847 131 12511 119 132059

78 71 35102 149 194 487 38 1912 118 13457 164 136319
113 71 35| 54 151 108 569 169 2273 189 13627 28 146273
148 71 35| 26 163 156 601 25 2287 156 14153 41 i56841
183 71 35} 72 163 172 643 115 2309 155 14717 107 161039
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Table 7. Prime factors of g(E) and

occurrence of selected primes

q B Prime factors <350000 Selected primes
2 10 2.5.101

3 10 2,3.5.7.13.37 37

4 10 2.5.73.101.137

5 10 2.5.41.271.9091 41,271,9091
6 10 2.3.5.7.13.37.101.9901 37,9091

7 10 2.5.239.4649.

8 10 2.5.17.73.101.137.

9 10 2.3%.5.7.13.19.37.52579.333667 333667

10 10 2,5.41.101.271.3541.9091.27961 41,271,9091
11 10 2.5.11.23.4093.8779.21645. 11

12 10 2.3.5.7.13.37.73.101.137.9901. a7

13 10 2.5.53.79.859.

14 10 2.5.29.101.239.281.4649.

15 10 2.3.5.7.13.31.37.41.211.241.271.2161.9091. 37,41,271,9091
16 10 2.5.17.73.101.137.353.449.641.1409.69857.

2 100 2°.5%.7.11.13 11

3 100 2%.3.5%,333667 333667

4 100 2%.5%.7.11.13,101.9901 11

5 100 2%.5%.31.41.271. 41,271

6 100 2%.3.5%,7,11.13,19.52579.333667 11,333667

7 100 2%.5%.43.239.1933.4649. 43

8 100 22.5%.7.11.13.73.101.137.9901. 11,73

9 100 2%,3%,5%.757.3313667. 333667

10 100 2%.5%.7.11.13.31.41.211.241.271.2161.9091. 11,41,271,9091
11 100 2% .52,67.21649.

12 100 2?.3.5%.7.11.13.19.101.9901.52579.333667. 11,333667

2 1000 2°.5%,73,137

3 1000 2%.3.5%,7.13.37.99%01 37

4 1000 2*.5%,17.73.137.

5 1000 2%.5%.41.271.3541.9091.27961 41,271,9091
6 1000 2*.3.5%,7.13.37.73.137.9901. 37

7 1000 2°.5%.29.239.281.4649.

8 1000 2%.5%.17.73.137.353.449.641.1409.69857.

9 1000 2%.32.5%.7.13.19.37.9301.52579.333667. 37,333667
10 1000 2°.3.5%.41.73.137.271.3541.9091.27961. 41,271,9091
11 1000 27.5%.11.23.89.4093.8779.21649. 11

2 10000 2%.5%.11.9091 11,5091

3 10000 2%.3.5%.31.37. 37

4 10000 2%.5%.11.101.3541.9091.27961 11,9091

5 10000 2%.5%.21401.25601.

6 10000 2*.3.5%.7.11.13.31.37.211.241.2161.9091. 11,37,9091
7 10000 2%.5%.71.239.4649.123551.

8 10000 2*.5%.11.73.101.137.3541.9091.27961. 11,9091

9 10000 2%.3.5%.31.37.238681.333667. 37,333667

2 100000 2°.5°,101.9901

3 100000 2%.3.5°.19.52579.333667 333667

4 100000 2%.5%.73.101.137.9901. .

5 100000 2°.5%.31.41.211.241.271.2161.9081.. 41,271,9091
6 100000 2%.3.5%.19.101.9901.52579.333667.. 333667

7 100000 2°.5%.7.43.127.239.1933.2689.4649.. 43

8 100000 25.5%.17.73.101.137.9901..

[} 100000 25.32.5%,19.757.52579.333667. . 333667
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THE SMARANDACHE FRIENDLY NATURAL
NUMBER PAIRS

Maohua Le

Abstract. In this paper we completely determinate all the
Smarandache friendly natural number pairs.

Key words: Smarandache friendly natural number pair, Pell
equation, positive integer solution

Let Z, N be the sets of all integers and positive integers
respectively. Let a, b be two positive integers with a<<b. Then the pair
(a, b) is called a Smarandache friendly natural number pair if
(1) at(atl)t->-+b=ab.

For example, (1, 1), (3, 6), (15, 35), (85, 204) are Smarandache
friendly natural number pairs. In [2], Murthy showed that there exist
infinitely many such pairs. In this paper we shall completely

determinate all Smarandache friendly natural number pairs.
Let

(2) a=1++2, p=1-2.

For any positive integer n, let

©) PO)=2{a" + "), Q)= —=(a” - ")
2 242

Notice that 1+/2 and (1 +2 )2 =3+22 are the fundamental

solutions of Pell equations
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(4) x*-2y*=-1,x, yEN,
and
(5) _ x>-2y’=1,x,yEN,
respectively. By [1, Chapter 8], we obtain the following two lemmas
immediately.
Lemma 1. All solutions (x, y) of (4) are given by
(6) x=PQ2m+1), y=Q(2m+1), mE€Z, m=0.
Lemma 2. All solutions (x,y) of (5) are given by
(7 . x=P(2m), y= Q(2m), mEN.
We now prove a genéral result as follows.
Theorem. If (a, b) is a Smarandache friendly natural number pair,

then either
(8) a=(P2m+1)+2Q02m+1))Q2m +1),
b=(P(2m+1)+2Q2m+1))P2m+1)+QQ2m+1)),meZ,m=0
or
9) a=(P(2m)+Q(2m))P(2m),
b=(P(2m)+ Q(2m)YP(2m)+ 2Q(2m)),m e N.
Proof. Let (a, b) be a Smarandache friendly natural number pair.

Since
(10) a+(@+D)+...+b=(1+2+...+b)-(1+2+...+(a—1)

=%b(b+1)—%a(a—1)=%(b+a)(b—a+l),

we get from (1) that
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(11) (bta)(b-at+1)=2ab.
Let d=gcd(a, b). Then we have

(12) a=da,, b=db,,
where a,, b, are positive integers satisfying
(13) a,<b,, gcd (a,, b))=1.

Substitute (12) into (11), we get
(14) (b, +a, Xd(b, - a,)+1)=2dab,.

Since gecd (a,, b;)=1 by (13), we get gcd (a,b,, a,+b,)=1.

Similarly, we have gcd (d, d(b,-a,)+1)=1. Hence, we get from (14) that
(15) djp, +a,, abd(b, —a)+1.

Therefore, by (14) and (15), we obtain either

(16) bta=d, d(b,-a,)+1=2qa,b,
or
(17) bta=2d, d(b\-a))*1=a,b,

If (16) holds, then we have
(18)  d(b,—a)+1=(b,+a,Xb —a,)+1=b>—a’ +1=2ab,.

whence we get
(19) (6, —a,) -2a% =-1.

It implies that (x, y)=(b,-a,, a,) is a solution of (4). Thus, by Lemma 1,
we get (8) by (16).
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If (17) holds, then we have
(20)  d(p - a,)+l=%(b, +a,Xb —a)+1= %(bﬁ —al)+l=ab,

Since ged (ay, b,)=1 by (13), we see from (17) that both a, and b, are
odd. If implies that (b,-a,)/2 is a positive integer. By (20), we get

b -a Y
(21) af—z( '2 '] =1.

We find from (21) that (x, y)=(a,, (b;-a,)/2) is a solution of (5). Thus,

by Lemma 2, we obtain (9) by (17). The theorem is proved.
References

[1] Mordell, L. J., Diophantine equations, London: Academic Press,

1968.
[2] Murthy, A., Smarandache friendly numbers and a few more

sequences, Smarandache Notions J., 2001, 12: 264-267.

Department of Mathematics
Zhanjiang Normal College
Zhanjing, Guangdong

P. R. CHINA

123



ON THE 17-th SMARANDACHE’S PROBLEM
Krassimir T. Atanassov
CLBME - Bulg. Academy of Sci., and MRL, P.0.Box 12, Sofia-1113, Bulgaria,
e-mail: krat@bgcict.acad.bg
krat@argo.bas.bg

The 17-th problem from [1] (see also 22-nd problem from [2]) is the following:

17. Smarandache’s digital products:

0.1,2,3,4,56,7,8,90,1,2,3,4,56,7,8,9,0,2,4,6,8,19,12, 14, 16, 18,

0,3,6,9,12,15,18,21, 24,27,0, 4,8, 12, 16, 20, 24, 28, 32, 36,0,5,10, 15,20, 25...

(dy(n) is the product of digits.)

Let the fixed natural number n have the form n = @103.-.ax, where ay,40,,...,a¢ €
{0,1,...,9} and a; > 1. Therefore,

k
n= Zailoi'l.

=1

Hence, k = [log;yn] + 1 and

a1(n) = a1 =[],

_ n— a110"‘1
ax(n) =ap = [—ﬁ;:r— )

_ n — a; 1051 — g,10%-2
a3(n) = a3 = | = ls

— 1051 — - ak_2102}
10 o

Qflog, o n]+1 (n) Ea=n-— 0110’:.1 - . — ap_310.

n
Ologyon} (1) = @1 =
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Obviously, k, ay, as, ..., ax are functions only of n. Therefore,

flogyonj+1

b= 11 a).
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ON THE 46-th SMARANDACHE'’S PROBLEM
Krassimir T. Atanassov
CLBME - Bulg. Academy of Sci., and MRL, P.0.Bax 12, Sofia-1113, Bulgaria,
e-mail: krat@bgcict.acad.bg
krat@argo.bas.bg

The 46-th problem from [1] is the following:

Smarandache’s prime additive complements:
1, 07 0’ 1, 07 17 07 3’ 2’ 1, 07 1’ 0’ 3’ 21 17 01 1’ 0, ,31 2’ 1’ 07 1’ 0’ 5’4’ 3, 2’ 170’ 1, 0’

5,4,3,2,1,0,3,2,1,0,5,4,3,2,1,0, ...

(For each n to find the smallest k such that n + k is prime.)

Obviously, the members of the above sequence are differences between first prime num-
ber bigger or equal to the current natural number n and the same n. It is well known that
the number of primes smaller or equal to n is 7(n). Therefore, the prime number smaller
or equal to n is pen). Hence, the prime number bigger or equal to 7 is the next prime
number, i.e., Px(n)41. Finally, the n-th member of the above sequence will be equal to

Px(n)+1 — N, if n is not a prime number
0, otherwise
We shall note that in [2] the author gives the following new formula Dn for every natural
number n:
C(n)
Pn= ) sg(n—n(3)),

=0

where C(n) = ["—2—*'—%&] (for C(n) see [3]) and

b, ifz<0
sg(z) = L feso’
, ifz>
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ON THE DIVISOR PRODUCTS AND
PROPER DIVISOR PRODUCTS SEQUENCES*

Livu HONGYAN AND ZHANG WENPENG

Department of Mathematics, Northwest University
Xi’an, Shaanxi, P.R.China

ABSTRACT. Let n be a positive integer, pg(n) denotes the product of all positive
divisors of n, gg(n) denotes the product of all proper divisors of n. In this paper,
we study the properties of the sequences {ps(n)} and {gg(n)}, and prove that the
Makowski & Schinzel conjecture hold for the sequences {p4(n)} and {ga4(n)}.

1. INTRODUCTION .

Let n be a positive integer, pa(n) denotes.the product of all positive divisors of
n. That is, pa(n) = Hd. For example, p4a(1) = 1, pa(2) = 2, pa(3) = 3, pa(4) = 8,
din

pd(5) =5, pa(6) =36, ---, pa(p) = p, ---. qa(n) denoctes the product of all proper

divisors of n. That is, gs(n) = d. For example, ¢4(1) = 1, ¢u(2) = 1,
. din,d<n :

94(3) = 1, qua(4) = 2, qua(5) = 1, ¢a(6) = 6, ---. In problem 25 and 26 of [1],

Professor F.Smarandach asked us to study the properties of the sequences {pa(n)}
and {ga(n)}. About this problem, it seems that none had studied it, at least we
have not seen such a paper before. In this paper. we use the elementary inethods
to study the properties of the sequences {ps(n)} and {g4(n)}, and prove that the
Makowski & Schinzel conjecture hold for pa(n) and gg(n). That is, we shall prove
the following:

Theorem 1. For any positive integer n, we have the inequality

7 ($(pa(n))) 2 Fpaln),

where ¢(k) is the Euler’s function and o(k) is the divisor sum function.

Theorem 2. For any positive integer n, we have the inequality

: 1
g (8(qa(n))) 2 5qa(n).

Key words and phrases. Makowski & Schinzel conjecture; Divisor and proper divisor product.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.

128



2. SOME LEMMAS

To complete the proof of the Theorems, we need the following two Lemmas:

Lemma 1. For any positive integer n, we have the identities

and gg(n)=n"z |
where d(n) = Z 1 s the diwvisor function.

d|n
Proof. From the definition of ps(n) we know that

pa(n) =] d= H—-

dln din

So by this formula we have

(1) p3(n) = H n =ni™,

din

From (1) we immediately get
d(n

pa(n)=n"2

14
ga(n) = H d= dln =n 1,
din,d<n

and

This completes the proof of Lemma 1.

Lemma 2. For any positive integer n, let n = p‘l”‘p;’- Py with a; > 2 (1 =
L,2,---,8), pi(7 = 1,2,--- ,5) are some different primes with p; < py < --- < p,,
then we have the estimate

o (9(n)) > .

Proof. From the properties of the Euler’s function we have

é(n) = &(p*)o(p3?)- - (p%*)

(2) =pr TP T e — Wpe = 1)+ (pa — 1),
Let (p1 — 1) po —1)--(ps — 1) = p1 p9 ’q{‘q?- -q;*, where 3; > 0, i =
L,2,-- s, 21,5=12,--- ;tand q; < @2 < - < ¢ are different primes. Then
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from (2) we have

i 81— - =1 1 T e
a(¢(n))=a’(pf‘+“ 1pgz+ﬂ2 1'__p:a+l3 1q11q22,,,qt)

. . i+1
3 p?’x'l'ﬁx — 1 t q;1+ —_ 1

gi—1

=1

1 —
s I_TM t 1 IR

-+ + 2 s t P; 9;
:ptln ﬂ1p§2 ﬂ2---p§+'3q1r’q£2---q{ II . ll J]
= Pl =TT

il
=3
[
oy
{
Q
‘_'{_ —
»
\_/
o
—
- |
|
wly
I»—a hatl [
+

=1 Jj=1 95
s 1 : 1 1
=n 1-— 1+ —+- 4+ =
i=1 ( p?'+ﬂ' ) 11;‘[1 ( J qu>
s
1
>n 1-—
- i+06;
i=1 ( p; ? >

This completes the proof of Lemma 2.

3. PrROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. First we prove
Theorem 1. We separate n into prime and composite number two cases. If n is a
prime, then d(n) = 2. This time by Lemma 1 we have

din)
pi(n)=n"2 =n.

Hence, from this formula and ¢(n) = n — 1 we immediately get
1

c(d(pa(n))) =0(n—-1)= Y d>n-122 = >pyn).
djn—1 - -



If n is a composite number, then d(n) > 3. If d(n) = 3, we have n = p?, where p is
a prime. So that

d{n)

(3) pa(n)=n"7 =pi® =pd

From Lemma 2 and (3) we can easily get the inequality

o (B(paln) = o (6 (57) > 5P > 3

=

pa(n).

If d(n) > 4, let ps(n) = nst = pitpy? - pge with pp < p; < -+ < ps, then we
have a; > 2,1 =1,2,--- ,s. So from Lemma 2 we immediately obtain the inequality

o (¢ (pa(m))) = —gpa(rn) > Spulr).

This completes the proof of Theorem 1.
The proof of Theorem 2. We also separate n into two cases. If n is a prime,

then we have
i) _

ga(n)=n"7 =1

From this formula we have
1
o (#(ga(n))) =12 Sgaln).

If n is a composite number, we have d(n) > 3, then we discuss the following four
cases. First, if d(n) = 3, then n = p?, where p is a prime. So we have

dn) _ _
ga(n)=n"7 1 =p"" " =p.

From this formula and the proof of Theorem 1 we easily get

7 (8 (aa(n))) 2 50

Second, if d(n) = 4, from Lemma 1 we may get

d(n) -1

(4) ga(n) =n"7T " =n

and n = p® or n = p;p2, where p,p; and p are primes with p; < p;. If n = P2,
from (4) and Lemma 2 we have

a (¢ (ga(n))) = o (¢(n)) = o (¢(p”))

1 1
(5) > §p3 = saun).
If n = pyp2. we consider p; = 2 and p; > 2 two cases. If 2 =p, < py, then p» — 1
is an even number. Supposing p — 1 = p‘f‘pgqurl coegt with @1 < g2 < -+ < gy,
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gi(z = 1,2,--- ,t) are different primesand r; > 1 (j =1,2,--- ,1), /1 > 1, f2 2 0.
Note that the proof of Lemma 2 and (4) we can obtain

o (¢(ga(n))) = o ($(n))

S () (e

(l-p%) (1-5)

2n(l~- Z)(l - g)

Q = 4d(n).

If2 < p1 < pa, then both p; —1 and p; — 1 are even numbers. Let (p; —1)(pz—1) =
Ph pzﬁqu"q;2 gyt with 1 < ¢ < -+ < ¢q4,qi(t = 1,2,--- ,t) are different primes
and r; > 1(y = 1,2,--+,t),51,P2 =2 0, then we have ¢ = 2 and r; > 2. So from
the proof of Lemma 2 and (4) we have

o (¢ (ga(n))) = o (¢(n))
=T (1= o ) 1L (14 2+ )

j=1 2

(1-2) (_)
(1-30—1_) (1+§)(1+5)
|

-
il
o

v v
3 3
e e

-
[
[

v
3
jam b

v

3
ov e i

oy

!

N’

v
- 3
5
™

Vv
I
[Yw)

B
3

j ——4

(7)

Combining (5), (6) and (7) we obtain

I
V)

7 ($(aan))) > Sauln) i d(n) =4

Third, if d(n) = 5, we have n = p*, where p is a prime. Then from Lemma 1
and Lemma 2 we immediately get

o (6(qa(n))) =0 (o (p%)) >



Finaly, if d(n) > 6, then from Lemma 1 and Lemma 2 we can easily obtain

1
o (8 (qa(n)) 2 3qa(n).
This completes the proof of Theorem 2.
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SOME SMARANDACHE-TYPE MULTIPLICATIVE FUNCTIONS

Henry Bottomley
s Léydon Close, London SE16 5PF, United Kingdom
E-mail: SE16@pbtinternet.com

This note considers eleven particular families of interrelated multiplicative functions,
many of which are listed in Smarandache's problems.

These are multiplicative in the sense that a function f{n) has the property that for any two
coprime positive integers a and b, i.e. with a highest common factor (also known as
greatest common divisor) of 1, then Ra*b)=f{a)*b). It immediately follows that f{1)=1
unless all other values of f{n) are 0. An example is d(n), the number of divisors of n. This
multiplicative property allows such functions to be uniquely defined on the positive
integers by describing the values for positive integer powers of primes. d(p')=i+1 if >0;
so d(60) = d(2*#3'*5") = 2+1)*(1+1)*(1+1) = 12.

Unlike d(n), the sequences described below are a restricted subset of all multiplicative
functions. In all of the cases considered here, f{p’y=p®” for some fimction g which does

not depend on p.

f gDeﬁnition _' Mnltiplicatize with pMi-
;Am(n) ‘Number of solutidns to x* == 0 (mod n)  i~ceiling[i/m]
Ba(n) [Largest m” power dividing n__ _ m*floorfim] _

|
|
Ca() [m" root of largest mth power dividingn | floor[ym]
!Dm(n) -Em"‘ power-free part of n f ~ i-m*floor{i/m]

F) oo n power st tngaien | mcelingn] forfim)
Gul) (‘gﬁ;‘;g‘b‘;f;‘;:f;?nﬁ‘pop;;e;g‘iﬁﬁjﬁg; celinglim-floorfim]

th ivi !
H.(n) !irlrlmﬁlﬁztt jI(I;n (}:louv;c;e (rils;;sﬂale byAn (Smarendache m*ceiling[i/m] ;
0 oo G oot Oy | el
Kn(n) ‘Lareest m™ power-free number dividing n : min(i,m-1) I
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e |(Smarandache m" power residues)

ro

'n divided by largest m® power-free mumber
dividingn =~~~

;Lm(n) max(0,i-mt+1)

Relationships between the functions

Some of these definitions may appear to be similar; for example Dn(n) and Ky(n), but for
m>2 all of the functions are distinct (for some values of n given m). The following
relationships follow immediately from the definitions:

Bun(0)=Cu(n)™ 1)
0=Bu(n)*Dun(n)  (2)
Fu(0)=Den(0)*En(n) (3)
Fr(n)=Gu(n)” @
Hu()=n*Ew(n)  (5)
Hun(0)=Bu(n)*Fu(n) (6)
Hu(0)=Jun(n)" Q)
"Ku(@)*La(n)  (8)

These can also be combined to form new relationships; for exémple from (1), (4) and (7)
we have

Jn(m)=Cn(n)*Gunfn) (9)
Further relationships can also be derived easily. For example, looking at An(n), a number
x has the property x™==0 (mod n) if and only if X" is divisible by n or in other words a

multiple of Hy(n), ie. X is a multiple of Jn(n). But J(n) divides into n, so we have the
pretty result that: '

n=I(n)*Ax(n) (10)

We could go on to construct a wide variety of further relationships, such as using (5), (7)
and (10) to produce:

™' =En(n)*An(n)” (11)

but instead we will note that Cp,(n) and J(n) are sufficient to produce all of the functions
from An(n) through to Jn(n):

An(0)=10/Jn(n) (12)
Br(n)=Cm(n)”
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Corl)=Cn(n)
Du(0)=1/Cun(n)™ (13)
En(n)=Jn(n)"/n (14)
Fu(@)=(Jm(m)/Ca(m)™ (15)
Gl 0)=Jm(0)/Cun(n)  (16)
He(0)=Ton(m)™

In(0)=Jm(n)

Clearly we could have done something similar by choosing one element each from two of
the sets {A,E,H,J}, {B,C,D}, and {F,G}. The choice of C and I is partly based on the
following attractive property which further deepens the multiplicative nature of these
functions. -

If m=a*b then:
Ca(n)=Cy(Co(n)) (17)
In(=l(Ju(m))  (18)

Duplicate functions when m=2 ...

When m=2, D,(n) is square-free and F,(n) is the smallest square which is a multiple of
Da(n), so

Fa(o)=Da(n)” (19)
Using (3) and (4) we then have:
| D(@)=Ez(n)~G: (@) (20)
and from (13) and (14) we have
| n=Cy(m)* () (21)
so from (10) we get

Ax(m)=Cs(n) (22)

... and when m=1

If =1, all the functions described either produce 1 or n. The analogue of (20) is still true
with
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D(n)=Ei(n)=Gi(n)=1 (23)
but curiously the analogue of (22) is not, since:

Ai(n)=1 (24)
Ci(@y=n (25)

The two remaining functions
All this leaves two slightly different functions to be considered: Ky,(n) and Ly,(n). They
have little connection with the other sequences except for the fact that since Gp(n) is
square-free, and divides Dy(n), En(n), Fn(n), and Gi(n), none of which have any factor
which is a higher power than m, we get:
Gn(0)=Tn(Den(0)) =T B )T ea(Fa(12))=Iiu Ginl(1) =Ko (Din(0))=K 2 (Emi(m))=K2(Fin(m) )=K2(Gimfm)) (26)

and so with (8) and (10)

1/ Gin()=An(Dr(0)FAR(En()=An(Fu(0))=An(Gun(0)=L2(Dn(0))=L2(Ex(m) )=La(Fu(n)=L2(Gu(n)) (27)

We also have the related convergence property that for any y, there is a z (e.g.
floor[logz(n)]) for which .

Gu(n)=Ju(n)=Kz(n) for any n<=y and any m>z (28)
An(n)=Lx(n) for any n<=y and any m>z 29

There is a simple relation where

Lu(n)=La(Ls(n)) if m+1=a+b and a,b>0 (29)

and in particular
Ln(n)=Lm1(L2(n)) f m>1 (30)
Ls(n)=La(L2(n)) (B
La(n)=La(La(L2(n))) (32)
so with (8) we also have

Kn(n)=Ke(0)*Ko(0/Kp(n)) if m+1=atband ab>0  (33)
Kan(0)=Ken-1(0) * Ko (0K () if m>1 G4
K3(n)=Ka(n)*Ka(0/Ko(n)) | (35)
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Ka(n)=Ka(m) *Ka(0/Ka(n))* K- (0/(K2(n) *K2(/K2(n)))) (36)

Recording the functions

The values of all these functions for n up from n=1 to about 70 or more are listed in Neil
Sioane's Online Encviopedia of integer Sequences for m=2, 3 and 4:

m—l m=2 m=3 m=4 m>—x and n<2*
@ 1 /ACCO188 A000189 {AGO0190 L@
'Bm(n); n A008833'A008834 A008835] 1.
Cu(n)| n |ACCDISS 'A053150 A053164] 1
Du(n): 1 _JA0T913 A050985A053165] n |
Eu()| 1 [AGOIO13 AGHSTOS [A0S6555 | Ka@hn |
Fu(o); 1 |AOSS491 |AOS6551 /A0S6553 | Ko@)
‘G,,.(n) 1 |A07913A056552 [A0S6554]  Ko(m)
Hu(n): n !A0531431A0531491A053167]  Ko@)”
"J,,,(n) ’*A019554 [A010555/A053166!  Kp(m) |
Ka(m)| 1 |A007947|A007948 |A058035] n
La()| n |AQ03557 |A062378 | AG62379 | 1
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THE PSEUDO-SMARANDACHE FUNCTION

David Gorski
137 William Street
East Williston, NY 11596
(516)742-9388
Gorfam@Worldnet.att.net

Abstract:

- The Pseudo-Smarandache Function is part of number theory. The function comes from the
Smarandache Function. The Pseudo-Smarandache Function is represented by Z(n) where n
represents any natural number. The value for a given Z(n) is the smallest integer such that
142+3+ .. . + Z(n) is divisible by n. Within the Pseudo-Smarandache Function, there are several
formulas which make it easier to find the Z(n) values.

Formulas have been developed for most numbers including:
a) p, where p equals a prime number greater than two;
b) b, where p equals a prime number, x equals a natural number, and b=p";
¢) x, where x equals a natural number, if x/2 equals an odd number greater than two;
d) x, where x equals a natural number, if x/3 equals a prime number greater than three.

Therefore, formulas exist in the Pseudo-Smarandache Function for all values of b except for the
following: :
a) x, where x = a natural number, if x/3 = a nonprime number whose factorization is not
35 : '
b) multiples of four that are not powers of two.

All of these formulas are proven, and their use greatly reduces the effort needed to find Z(n)
values.

Keywords:
Smarandache Function, Pseudo-Smarandache Function, Number Theory, Z(n), g(d), g[Z(n)].

Introduction.

The Smarandache (sma-ran-da-ke) Functions, Sequences, Numbers, Series, Constants,
Factors, Continued Fractions, Infinite Products are a branch of number theory. There are very
interesting patterns within these functions, many worth studying sequences. The name “Pseudo-
Smarandache Function” comes from the Smarandache function. [2] The Smarandache Function
was named after a Romanian mathematician and poet, Florentin Smarandache. [1] The
Smarandache Function is represented as S(n) where n is any natural number. S(n) is defined as the
smallest m, where m represents any natural number, such that m! is divisible by n.

To be put simply, the Smarandache Function differs from the Pseudo-Smarandache Function in
that in the Smarandache Function, multiplication is used in the form of factorials; in the Pseudo
-Smarandache Function, addition is used in the place of the multiplication. The
Pseudo-Smarandache Function is represented by Z(n) where n represents all natural numbers. The
value for a given Z(n) is the smallest integer such that 1+2+3+ . . . + Z(n) is divisible by n. '
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Background

As previously stated, the value for a given Z(n) is the smallest
integer such that 1+2+3+ . . . + Z(n) is divisible by n. Because
consecutive numbers are being added, the sum of 1+2+3+. .. +Z(n) is
a triangle number. Triangle numbers are numbers that can be written in
the form [d(d+1)}/2 where d equals any natural number. When written
in this form, two consecutive numbers must be present in the
numerator. In order to better explain the Z(n) function, the g(d)
function has been introduced where g(d)=[d(d+1)}/2.

Figure 1: The first ten g(d) values.
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Z(n) glZ(n)]

1 1 1

2 3 6

3 2 3

4 7 28

5 4 10

6 3 6

7 6 21

8 15 120

9 8 36
10 4 10
11 10 55
12 8 36
13 12 78
14 7 28
15 5 15
16 31 496
17 16| 136
18 8 36
19 18 171
20| 15| 120

Figure 2: The first 20 Z(n)
and g[Z(n)]
values.

g[Z(n)] values are defined as g(d) values where d
equals Z(n). Because of this, it is important to note that all
g[Z(n)] values are g(d) values but special ones because they
correspond to a particular n value. Since g(d)=[d(d+1)]/2,
8lZ(m)[H{Z(n)[Z(n)+1}/2]. Because g(d) is evenly divisible by
n, and all g[Z(n)] are also g(d) values, g[Z(n)] is evenly
divisible by n. Therefore, the expression [Z(n)[Z(n)+1]/2] can
be shortened to n*k (where k is any natural number). If k=x/2
(where x is any natural number) then
[Z(n)[Z(n)+1]/2]=(n*x)/2, and the “general form” for a
g[Z(n)] value is (n*x)/2. Again, since (n*x)/2 represents a
g(d) value, it must contain all of the characteristics of g(d)
values. As said before, all g(d) values, when written in the
form [d(d+1)]/2, must be able to have two consecutive
numbers in their numerator. Therefore, in the expression
(n*x)/2, n and x must be consecutive, or they must be able to
be factored and rearranged to yield two consecutive numbers.
For some values of n, g[Z(n)J=(n*x)/2 where x is much less
than n (and they aren’t consecutive). This is possible because
for certain number combinations n and x can be factored and
rearranged in a way that makes them consecutive. For
example, Z(n=12) is 8, and g[Z(12)] is 36. This works
because the original equation was (12*6)/2=36, but after
factoring and rearranging 12 and 6, the equation can be
rewritten as (8*9)/2=36.

The Pseudo-Smarandache Function specifies that only
positive numbers are used. However, what if both d and n
were less than zero? g(d) would then represent the sum of the
numbers from d to —1. Under these circumstances, Z(n)
values are the same as the Z(n) values in the “regular” system
(where all numbers are greater than one) except they are
negated. This means that Z(-n)=-[Z(n)]. This occurs because
between the positive system and the negative system, the g(d)
values are also the same, just negated. For example,
g(4y=4+3+2+1=10 and g(-4)= -4+ -3+ -2+ -1=-10. Therefore,
the first g(d) value which is evenly divisible by a given value
of n won’t change between the positive system and the
negative system.
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Theorem 1

If ‘p’ is a prime number greater than two, then Z(p)=p-1

Example:
P Z(p)
2
4
6
11 10
13 12
17 16
19 18
23 22
27 26
29 28

Figure 3: The first 10 Z(p)

values.

Proof:

Since we are dealing with specific p values, rather than
saying g[Z(n)]=(n*x)/2, we can now say g[j(p)|=(p*x)/2.
Therefore, all that must be found is the lowest value of x that is
consecutive to p, or the lowest value of x that can be factored
and rearranged to be consecutive to p. Since p is prime, it has
no natural factors other than one and itself. Therefore, the
lowest value of x that is consecutive to p is p-1. Therefore

Z(p)=p-1.

Theorem 2

If x equals any natural number, p equals a prime number greater than two, and b equals p*, then

Example:
b Z(b)

3
9

27 26

81 80

243 242

729 728

Z(by=b-1
b Z(b) b Z(b)

5 4 7 6

25 24 49 43

125] 124 343 342

625 624 2401 2400
3125 3124 16807] 16806
15625| 15624 117649 117648

Figure 4: the first Z(b) values for different primes.
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Proof:

The proof for this theorem is similar to the proof of theorem 2. Again, the g(d) function is
made up of the product of two consecutive numbers divided by two. Since b’s roots are the same,
it is impossible for something other than one less than b itself to produce to consecutive natural
numbers (even when factored and rearranged). For example, g[Z(25)]=(25*x)/2. When trying to
find numbers less than 24 which can be rearranged to make two consecutive natural numbers this
becomes gfZ(25)]=(5*5*x)/2. There is no possible value of x (that is less than 24) that can be
factored and multiplied into 5*5 to make two consecutive natural numbers. This is because 5 and
5 are prime and equal. They can’t be factored as is because the have no divisors. Also, there is no
value of x that can be multiplied and rearranged into 5*5, again, because they are prime and equal.

Theorem 3

If x equals two to any natural power, then Z(x)=2x-1.

Example:
Proof-
X Z(x)
> 3 According to past logic, it may seem like Z,(x) would equal
x-1. However, the logic changes when dealing with even numbers.
4 7 The reason Z(x)=x-1 is because (x-1)/2 can not be an integral value
8 15 because x-1 is odd (any odd number divided by two yields a number
16 31 with a decimal). Therefore, [x(x-1)}/2 is not an even multiple of x. In
order to solve this problem, the numerator has to be multiplied by two.
32 63 In a sense, an extra two is multiplied into the equation so that when the
64 127 whole equation is divided by two, the two that was multiplied in is the
two that is divided out. That way, it won’t effect the “important™ part
128 255 of the equation, the numerator, containing the factor of x. Therefore,
256 511 the new equation becomes 2[x(x-1)}/2, or [2x(x-1)])/2. The only
312 1023 numbers consecutive to 2x are 2x-1 and 2x+1. Therefore, the smallest
two consecutive numbers are 2x-1 and 2x.
1024 2047 Therefore, Z(x)=2x-1.
2048 4095
4096 8191
8192 16383
16384 32767
32768 65535

Figure 5: The first six Z(x)
values.
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Theorem 4

If j’ is any natural number where j/2 equals an odd number greater than two then

Example:
i ZG) 2 |G2)-1
6 3 3 2

10 4 5 4
14 7 7 6
18 8 9 8
22 11} 11 10
26 121 13 12
30f 151 15 14
34 16/ 17 16
38 19 19 18
42 20 21 20
46 23] 23 22
50f 24 25 24
54 271 27 26
58 28] 29 28
62| 31} 31 30
66| 32| 33 32
Figure 6: The first

twenty j(z) values.

%— 1 % ~1is evenly divisble by 4
ZG) =57 .
é, —é— —1is not evenly divisble by 4

Proof:

When finding the smallest two consecutive numbers that
can be made from a j value, start by writing the general form but
instead of writing n substitute j in its place. That means
8lZ(1)]=(*x)/2. The next step is to factor j as far as possible
making it easier to see what x must be. This means that
glZ()]=(2*j/2*x)/2. Since the equation is divided by two, if left
alone as g[Z(j)]=(2*j/2*x)/2, the boldface 2 would get divided out.
This falsely indicates that j/2*x (what is remaining after the
boldface 2 is divided out) is evenly divisible by j for every natural
number value of x. However, j/2*x isn’t always evenly divisible
by j for every natural number value of x. The two that was Just
divided out must be kept in the equation so that one of the factors
of the g(d) value being made isj. In order to fix this the whole
equation must be multiplied by two so that every value of x is
evenly divisible by j. In a sense, an extra two is multiplied into the
equation so that so that when the whole equation is divided by two,
the two that was multiplied in is the two that gets divided out.
That way, it won’t effect the “important” part of the equation
containing the factor of two. Therefore it becomes
g[Z(]=(2*2*)/2*£)/2 where f represents any natural number. This
is done so that even when divided by two there is still one factor of
j- At this point, it looks as though the lowest consecutive integers
that can be made from g[Z(j)]=(2*2*j/2*1) are (j/2) and(j/2)-1.
However, this is only sometimes the case. This is where the
formula changes for every other value of j. If (j/2)-1 is evenly
divisible by the 2%2’ (4), then Z(j)=(/2)-1. However, if (j/2)-1 is
not evenly divisible by 4, then the next lowest integer consecutive
to /2 is (/2)+1. (Note: If(j/2)-1 is not evenly divisible by 4,

then the next lowest integer consecutive to j/2 is (j/2)+1. (Note: If (3/2)-1 is not evenly divisible by
four, then (j/2)+1 must be evenly divisible by 4 because 4 is evenly divisible by every other multiple of
two.) Therefore, if (j/2)-1 is not evenly divisible by 4 then glZO)I=IG2)G/2)+111/2 or Z(G)=/2.

Theorem §

If‘p’ is any natural number where p/3 equals a prime number greater than 3 then

p p .. . s

— -1, =-Lis evenly divisible by 3

T/im) — J3 3 ]5 y y
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Example:

P Z(p) (p/3 |(p/3)-1

15 5 5

21 6 7 6 Proof:

33 11 11 10

39 12| 13 2 The proof for this theorem is very similar to the proof for
theorem 4. Since p values are being dealt with, p must be

51 1717 16 substituted into the general form. Therefore, g[Z(p)]=(p*x)/2.

57 18] 19 18 Since what made p is already known, p can be factored further so

o 23| 23 >3 that g[Z(p)]=(3*p/3*x)/2. At this point it looks like the

consecutive numbers that will be made out of (the numerator)
87 28 29 28 3*p/3*x are p/3 and (p/3)-1 (this is because the greatest value
93| 31| 31 30 already in the numerator is p/3). However, this is only sometimes
the case. When p/3-1 is divisible by 3, the consecutive integers in
11 36 37 36| the numerator are p/3 and (p/3)-1. This means that Z(py=p/3-1 if
p/3-1 is evenly divisible by 3. However, if p/3-1 is not divisible by
Figure 7: The first ten three, the next smallest number that is consecutive to p/3 is
Z(p) values. (p/3)+1. If (p/3)-1 is not divisible by 3 then (p/3)+1 must be

) divisible by 3 (see *1 for proof of this statement). Therefore, the
consecutive numbers in the numerator are p/3 and (p/3)+1. This
means that Z(p) = p/3 if (p/3)-1 is not evenly divisible by three.

Note: Although there is a similar formula for some multiples of the first two primes, this formula
does not exist for the next prime number, 5.

z *1 —“If (p/3)-1 is not divisible by 3, then (p/3)+1 must be divisible by 3.”
4
5 | In the table to the left, the underlined values are those that are divisible by
6 three. The bold numbers are those that are divisible by two (even). Since p/3 is
_;— prime it cannot be divisible by three. Therefore, the p/3 values must fall
—— somewhere between the underlined numbers. This leaves numbers like 4,5,7,8,
._§_ 10, 11, etc. Out of these numbers, the only numbers where the number before (or
19 (p/3)-1) is not divisible by three are the numbers that precede the multiples of
10 three. This means that the p/3 values must be the numbers like 5, 8, 11, etc.
111 Since all of these p/3 values precede multiples of 3, (p/3)+1 must be divisible by 3
W if (p/3)-1 is not divisible by 3.
g
Figure 10
Theorem 6
If ‘n’ equals any natural number, Z(n)=n.
Proof:

Theorem 6: Part A
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Ifr is any natural odd number, Z(r)xl
Proof:

When r is substituted into the general form, g[Z(r)=[r*(r-1)]/2. Since r is odd r-1 is even.
Therefore, when r-1 is divided by two, an integral value is produced. Therefore, (r*r-1)/2 is an

even multiple of r and it is also a g(d) value. Because of this, Z(r)xl. Since Z(r)x1, Z(r)=r.
Theorem 6: Part B
If v is an natural even number, Z(v)=v.
Proof:

If Z(v) = v, the general form would appear as the following: g[Z(v)]=[v(v+1)]/2. This is
not possible because if v is even then v+1 is odd. When v+1 is divided by two, a non-integral
value is produced. Therefore, (v*v+1)/2 is not an integral multiple of v. Therefore, Z(v)=v.

Theorem 7

If w is any natural number except for numbers whose prime factorization equals 2 to any power,
Z(w)<w.

Proof

As in several other proofs, this proof can be broken down into two separate parts, a part for
r values (r is any natural odd number) and one for v values (v is any natural even number). As

proven in Theorem 6: Part A, Z(r)xcl. This proves that Z(r) is less than r.

For v values, v must be substituted into the general form in order to be able to see patterns.
Therefore, g[Z(v)]=(v*x)/2. Since v is even it must be divisible by two. Therefore, v can be
factored making g[Z(v)]=[2*(v/2)*x]/2. Since the numerator is being divided by two, when done
with the division, one whole factor of v will not always be left. Therefore, an extra two must be
multiplied into the equation so that even when divided by two, there is still one whole factor of v

left. Therefore, g[Z(v)][4*(v/2)*x]/2. At this point, the equation can be simplified to

g[Z(V]¥x. Therefore, x=v-1, and Z(v)<v-1. Z(v) is less than v-1 rather than less than or equal
to v-1 because as proven in theorem 4, Z(v)=v-1.
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Conclusion

n Z(n) n/3 [n Z(n)

12 8 9 27 8
20 15 15) 45

24 15 21} 63 27
28 7 250 75 24
36 8 331 99 44
40 15 35] 105 14
44 32 ' 45| 135 54
48 32 49| 147 48
52 39 55| 165 44
56 48 65| 195 39

Figure 8 Figure 9

Through researching the relationships between different groups of natural numbers, patterns and
formulas have been developed to find Z(n) values for most numbers. Formulas have been developed for
most numbers including:

a) p, where p equals a prime number greater than two

b) b, where p equals a prime number, x equals a natural number, and b=p*

c) x, where x equals a natural number, if x/2 equals an odd number greater than two

d) x, where x equals a natural number, if x/3 equals a prime number greater than three

In fact there are only two remaining groups of numbers for which there are no formulas or
shortcuts. Formulas exist in the Pseudo-Smarandache Function for all values of b except for the
following:

a) multiples of four that that are not powers of two (figure 8)

b) x, where x = a natural number, ifx/3 =a nonprime number whose factorization is not 3*

(figure9)

If p equals a prime number greater than two then Z(p)=p-1. If p equals a prime number greater than two,
x equals a natural number, and b=p* then Z(b)=b-1. However, if p=2 then Z(b)=2b-1. Ifx equals a
natural number, and x/2 equals an odd number greater than two then if (x/2)-1 is evenly divisible by four
then Z(x)=(x/2)-1. Otherwise, if x/2-1 is not evenly divisible by four then Z(x)=z2. Ifxequalsa

natural number, and x/3 equals a prime number greater than three then if (x/3)-1 is evenly divisible by
three then Z(x)=(x/3)-1. Otherwise, if x/3-1 is not evenly divisible by three then Z(x)y=x/3. All of these
formulas are proven, and their use greatly reduces the effort needed to find Z(n) values.
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ON THE SYMMETRIC SEQUENCE
AND ITS SOME PROPERTIES*

ZHANG WENPENG

Research Center for Basic Science, Xi’an Jiaotong University
Xi’an, Shaanxi, P.R.China .

ABSTRACT. The main purpose of this paper is to prove that there is only one
prime among the symmetric sequence. Thisjsolved the problem 17 of Professor
F.Smarandache in [1]. &'L m)/? /Ipa,r%z L; ZEE )

1. INTRODUCTION

For any positive integer n, we define the symmetric sequence {S(n)} as fol-
lows: S(1) =1, §(2) = 11, 5(3) = 121, S(4) = 1221, S5(5) = 12321, S(6) =
123321, 5(7) = 1234321, S(8) = 12344321, ------ . In problem 17 of [1], Profes-
sor F.Smarandache asked us to solve such a problem: How many primes are there
among these numbers? This problem is interesting, because it can help us to find
some new symmetric primes. In this paper, we shall study this problem, and give
an exact answer. That is, we shall prove the following conclusion:

Theorem. For any positive integer n > 2, we have the decomposition

fngq

n n+1
123---(n~1)an(n —-1)---321 = 11.--1x 11---1;

n n

., —— ——
123---(n—-1)n(n—-1)---321=11---1x11---1.
From this theorem we may immediately deduce the following two corollaries: ‘

Corollary 1. There is only one prime among the symmeiric sequence, That is,

A
5(2) = 11. . F 1
Corollary 2. For any positive integer n“:.S,'(2n — 1) is a perfect square number.

That 1s,

S(2n—-1)=123---(n—1)n(n ~1)--- 321

n n

——
=11---1x11---1.

Key words and jzhrases. The symmetric sequence: Primes: A problem of F.Smarandache.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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2. PROOF OF THE THEOREM

In this section, we complete the proof of the theorems. First we let

S1 = {11,1221,123321,--- .. 123 (n=1)nn(n —1)---321,---... 3, f@, n 9
and
Sy = {1.121,12321,.-. ... 123 (n = 1)n(n —1)---321,-- 3 3&/\, m <9,

Then it is clear that

{S$(n)} = 81| J S..
For any poéitive integer m € {S(n)}, we have m € S; orm € Sy. If m € Si, then
there exists a positive integer n such that m = 123. .- (n—=1)nn(n~-1)-.-321. So
that :
m=10""""+2x 1072 £ ... 4 n x 10"
+nx10" 1+ (n—1)x 10" 2 +...2x 10+ 1
= [10""71 +2% 10°" 2 + ... 4 n) x 107]

+[nx 10" 4 (n—) x 10" + .. 2 x 10+ 1]

(1) = S + Si2.

Now we compute S;; and Syq in (1) respectively. Note that

9511 = 10511 — S11 = 10°" +2 x 10" 1 4 ... x 107!

— 1071 2% 10272 ... _p x 10"
=10%" 4+ 10> + 102"~ 2 L ... £ 10"t _ 5, x 10
0% -1
= 10"+ x —nx 10"

and

9512 =10512 = S12 =n X 10" + (n — 1) x 10"~ 4+ ...2 % 102 + 10
—nx10" '~ (n-1)x10"%~-...2x10~1
=nx10"-10""1 102 ~...10-1

10" -1
=nx 10" - .

9

So that we have

, 1 ‘
(2) Su= Tl [10°"+1 _9n x 107 — 10"+
and
1
(3) Si12 = —8—1-[971 x 10" —10™ + 1].
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Combining (1), (2) and (3) we have

m = S11 + Si2

gli x [10°"+! — 9n x 10" ~ 10™H1] 4 81—1 [97 x 10™ — 10™ + 1]

(1021 —107*! — 10" + 1)

1
81
1
8_. 10n )(On-H )
n n+1

o — e N——
11---1x11---1.

(4)
If m € S5, then there exists a positive integer n such that

m=123---(n—-1)n(rn—-1)---321
Similarly, we also have the identity

m=10""24+2x10>"% +... + n x 10*!
+(rn=-1)x10" 24+ (n-2)x10" 3 +--.2x10+1

1 2n_ _ nn-1 l n—=1 _ n
81(0 10™ — 9n x 10 )+81(9nx10 10™ + 1)

10" -1 2 /—L\ r—'/L
(5) == =11.. Ix1l.--1.

Now the theorem 1 follows from (4) and (5). (_p}d«%\gv

From theorem 1 we know that S(n) is a composite number, if n > 3, Note that
S(1) = 1 and S(2) = 11 (a prime), we may immediately deduce the theorem 2.
This completes the proof of the theorems.
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ON THE PERMUTATION SEQUENCE
AND ITS SOME PROPERTIES*

ZHANG WENPENG

Research Center for Basic Science, Xi'an Jiaotong University
Xi’an, Shaanxi, P.R.China

ABSTRACT. The main purpose of this paper is to prove that there is no any perfect
power among the permutation sequence: 12, 1342, 135642, 13578642, 13579108642,

------ - Thisjanswered the question 20 of F.Smarandach in [1].
for <A | partatly

¢

1. INTRODUCTION

For any positive integer n, we define the permutation sequence {P(n)} as follows:
P(1) = 12, P(2) = 1342, P(3) = 135642, P(4) = 13578642, P(5) = 13579108642,
------ y P(n) = 1385---(2n — 1)(2n)(2n — 2)---42, -----.,. In problem 20 of 1],
Professor F.Smarandach asked us to answer such a question: Is there any perfect
power among these numbers? Conjecture: no! This problem is interesting, because
1t can help us to find some new properties of permutation sequence. In this paper,
we shall study the properties of the permutation sequence P(n), and proved that
the F.Smarandach conjecture is true. This solved the problem 20 of (1], and more,
we also obtained some new divisible properties of P(n). That is, we shall prove the
following conclusion: : :

Theorem. There is no any perfect power among permutation sequence, and

n n

1 — ——
P(n) = & (11-10°" ~13-10" +2) = 1.~ Tx152. 3, feh m LT,

2.. PROOF OF THE THEOREM
In this section, we complete the proof of the Theorem. First for any positive
integer n, we have
P(n) =10""14+3x 10> 24 ... 4 (2n — 1) x 10"
+2nx 10"+ (2n—2)x 10" 2+ .. 4 x 10+ 2
= [10""71 +3 x 10" 2 4. + (2n — 1) x 10"]
+[2nx 10" +(2n —2) x 1072 4+ -4 x 10 + 2]

Key words and phrases. Permutation sequence; Perfect power; A problem of F.Smarandach.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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(1) =S + 5.
Now we compute S; and S, in (1) respectively. Note that
95, =1051 - S1 =10*" +3 x 10** 1 ... (2n — 1) x 10™*!
— 1077 -8 x 102 — .. (20— 1) x 10"
=107 +2x 1071 £ 2 x 10772 4 ... 1 9 x 107+! (2n ~1) x 107

101 —1

=102 4+ 2 x 10™*1 x —(2n—1) x 10™

and ‘
9S, =105, — S, =2nx10"+(2n—2)x 10" 1 4+ ... 4 x 10° + 2 x 10
21 x 10" —(2n - 2)x 10" 2 — ... 4 x 10 — 2
=2nx10"-2x 10" —2x10"2_...9x10—9
10"~ 1
=2nx10"——2x R
So that
(2) S = 8% x [11 x 10" — 18n x 10™ — 11 x 107]
and ‘ .
3) S2= - [18n x 10" ~2 x 10" 4 9].

81
Thus combining (1), (2) and (3) we have

_ 1
Pn)=5 45, = a7 [11 x 10*" — 18n x 10" — 11 x 107]

1
+ 57 [187 x 10" -2 x 10" 4 9]

n n

1 In n —— =
(4) | _81(11 10°" - 13- 10 +2)=11---1x122 2'4»97'[

From (4) we can easily find that 2 [ P(n), but 41 P(n), if nmt P(n)
can not be a perfect power, if n > 2. In fact, if we assume P(n) be a perfect power,
then P(n) = m*, for some positive integer m > 2 and k > 2. Since 2 | P(n), so
that m must be an even number. Thus we have 4| P(n). This contradiction with
41 P(n), if n > 2. Note that P(1) is not a perfect power, so that P(n) can be a

perfect power for all n > 1 5 gls completes the proof of the Theorem.
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A NUMBER THEORETIC FUNCTION
AND ITS MEAN VALUE PROPERTY*

Liv HONGYAN AND ZHANG WENPENG
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ABSTRACT. Let p be a prime, n be any positive integer, a(n,p) denotes the power
of p in the factorization of n!. In this paper, we study the asymptotic properties of

the mean value Z a(n, p), and give an interesting asymptotic formula for it.
psn

1. INTRODUCTION

Let p be a prime, e,(n) denotes the largest exponent ( of power p ) which divides

n, a(n,p) = Z ep(k). In problem 68 of [1], Professor F.Smarandach asked us to
: k<n

study the properties of the sequences e,(n). This problem is interesting because
there are close relations between ep(n) and the factorization of n!. In fact, a(n, p)
is the power of p in the factorization of n!. In this paper, we use the elementary
methods to study the asymptotic properties of the mean value Z a(n,p), and give

p<n
an interesting asymptotic formula for it. That is, we shall prove the following:

Theorem. For any prime p and any fized positive integer n, we have the asymp-
totic formula

n n n n
,p)=nlnlnn+en+cg—+c2——+--+eax—+0 —)
Za(n p)=n * 111171_*— ‘Inn Lln"n In*+in
psn .
where k is any fized positive integer, ¢; (1 = 1,2,---,) are some computable con-
stants.

2. PROOF OF THE THEOREM

In this section, we complete the proof of the Theorem. First for any prime p and
any fixed positive integer n, we let a(n,p) denote the sum of the base p digits of n.
That is, if n = a1p™ + ap™ + - -+ + asp™ with ay > ag—; > -+ > a3 > 0, where

8
1<a;<p-1,1=1,2,---,3, then a{n,p) = Za;, and for this number theoretic
=1

function, we have the following two simple Lemmas:

Key words and phrases. A new number theoretic function; Mean value; Asymptotic formula.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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Lemma 1. For any integer n > 1, we have the identity

+oo
_ _ n{ 1
ap(n) = a(n) = ; [EJ =3 (n —a(n,p)),

where [z] denotes the greatest integer not exceeding z.

Proof. From the properties of [z] we know that

[1} _ [alp"‘ + azp*? +---+asp°’$J
pi pi

S
Zajp"”'"i, far; <i<ag
rd
0, if i > a,.

So from this formula we have _

“+oo +o0
_ n a1p”! + agp®? + .- + a,p%e
=3 [5] - [,

=1 =1 p'
s Qa5 s
=D D ap T =3 g (14 p+p’ 4 +p% )
- pYi—1 1 O o
= a- = > (ajp™ ~a)
=1 p=l p-14
1
=~ (n—a(n,p)).

This completes the proof of Lemma 1.

Lemma 2. For any positive integer n, we have the estimate

a(n,p) < glnlpl Inn.

Proof. Let n = a;p® +app®* +--- + asp® with @y > ag_; > -+ > a; > 0, where
1<a;<p—-1,1=1,2,---,s. Then from the definition of a(n, p) we have

3

(1) aln,p) =2 @ <Y (p-1)=(p-1)s.

i=1
On the other hand, using the mathematical induction we can easily get the inequal-
ity . ' :
n=a;p™ + ap®* + --- + a;p® > a,p°,
or

In(n/a,) < Inn

2 3 < .
) °= Inp “lnp
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Combining (1) and (2) we immediately get the estimate

p—1

np lnn.

a(n,p) <

This proves Lemma. 2.
Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. First,
we separate the summation in the Theorem into two parts.

(3) Za(n,p)z Z a(n,p) + Z a{n, p).

p<n p<Vvm Vi<p<n

For the first part, from Lemma 1 we have

1
Y. atmp)= 3 —“g(i-alnp)

r<VE p<vR
- Z (p P(P—1)> gzaz&];)
(mimatro(z) p
v a(n,
@) =n</% %dw(m)+A+O(—\/1—h.)> —pgﬁH.

where n(z) denotes the number of all prime not exceeding z. For 7(z), we have
the asymptotic formula

®) e +O<1n+%>
and
/;/T—l.%dﬂ(:c) (\\//__) é Wi:) dz

1 ar VR

aa - 1
= 2 . O —F——
hl\/7—l+ln2\/r_z+ 1’°\/‘+ (mk+1\/ﬁ)+/g zlnz

M Tl o]
+a2/§ zln’z Tk G 3 zln*tlz ’ In*t1p

2 2

dz

ai a2 a2i
Inn ln2 oot ln n In ln"
a2k 1
+-+—0+4+0 ( - )
In*n In*+1p
asy a3z as 1
l B4+ == O ——).
(6) =lnlnn+ —i—1 n+1 n+ +1nk77+ (lnk“n)
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From Lemma 2 we have

L D OF TS P

Inp I
p<vi b p<vi 0P p<vm P p<v/m

‘Combining (4), (6) and (7) we obtain

n n
Za(n,p)=nlnlnn+c0n+azl—+a327
p<\/17 lnn ln“n,

n
®) beo o i+ 0 ().

For the second part, we have

> 0= £ ER- 5 - 2 5

Vr<p<n vn<p<n i=1 Vn<p<n Vn<p<nm<2

=2 X 1= ¥ (v(3)-mvm)

m<VR VR<p< & m</n

3w (Z) - als(va).

m<\/n

(9)

i

Applying Euler’s summation formula ( see [2] Theorem 3.1 ) a.nd the expansion into
power-series we have

‘ 1 1
Z m(lnn —lnm)r Z mlnrn(l—l—“ﬂ)’

m</n m<y/n

Z Z r—l+s) 11‘13 m

= 3+r
per gy mln

_+z°:°<r—1+s> Z In°m

- s=0 r—1 m</n m ]_n‘9+r n
+oo (r—1+3 s+1

—Z(r;i) In®" ' n tdypy +0 In°n
P ].Ils (3 + 1))3"—1 2 \/E

k

di; ln’n.>
= - 0 .
Z In'n * ( vn

=r—1
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From this and (5) we get

. L ta ! .
= m(lnn —lam) * Pmlan —Tam) T

1 1
+ Gk m(lnn — Inm)k+1 +0 (m(ln n — Inm)k+2 >)
b b 1
=n<b0+_1+i+...+ kk +0< ))

Inn  In®n In®n Inf+1p,
(10)
n n n n
=bon+blm+bzgz—n+"'+bk1nkn +O<lnTln)
and |
n n n n
[‘/ﬂ?r(\/ﬁ) = m_ﬁ+azm+---+akm+0 (Fl\/r—z)
’ n n n n
(11) ——a4lm+a4zm+"'+a4km+0(m).
Combining (9), (10) and (11) we have
n n n n v
U9 2 etmp)=boteng bt 40 ().
Vn<p<n
From (3), (8) and (12) we obtain the asymptotic formula
n n n’ n
;a(n,p)=n1nlnn+cn+clEr—z+021nTn+-~+cklnkn +0 (m)

This completes the proof of the Theorem.
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An introduction to the Smarandache Square Complementary function

Felice Russo

Via A. Infante
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Abstract
In this paper the main properties of Smarandache Square Complementary
function has been analysed. Several problems still unsolved are reported too.

The Smarandache square complementary function is defined as [4L[5])

Ssc(ny=m
where m is the smallest value such that 77 is 3 perfect square,

Example: forn=8, m is equal 2 because this is the least value such that -7 js a perfect square.

The first 100 values of Ssc(n) function follows:

n Ssc(n) n Ssc(n) n Ssc(n) n Ssc{n)
1 1 26 26 51 51 76 18
2 2 27 3 52 i3 77 717
3 3 28 7 53 53 78 78
4 1 29 29 54 6 79 79
S 5 30 30 55 55 80 5

6 6 31 31 56 14 81 1

7 7 32 2 57 57 82 82
8 2 33 33 58 58 83 83
9 1 34 34 59 59 84 21
10 10 35 35 60 15 85 8S
11 11 36 1 61 61 86 86
12 3 37 37 62 62 87 87
13 13 38 38 63 7 88 22
14 14 39 39 64 1 89 89
15 15 40 10 65 65 S0 10
16 1 41 41 66 66 91 91
17 17 42 42 67 67 92 23
18 2 43 43 68 1?7 83 83
19 19 44 11 69 €9 94 54
20 5 45 S 70 70 ) 95 95
21 21 46 46 71 71 96 6

22 22 47 47 72 2 97 97
23 23 48 3 73 73 98 2

24 6 49 1 74 74 99 11
25 1 50 2 75 3 100 1

Let's start to explore some properties of this function.
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2
Theorem 1: S5¢()=1 L pore n=1,234..

In factif %=1 isa perfect square by definition the smallest integer m such that 7k is 3
perfect square is m=1.

Theorem 2: Ssc(p)=p where p is any prime number

In fact in this case the smallest m such that ™ P is a perfect square can be only m=p.

| 1 ifniseven

Theorem 3: S5¢(P") = where p is any prime number.
| p ifnisodd

First of all let's analyse the even case. We can write:

2

and then the smallest m such that P~ "™ is a perfect square is 1.

Let's suppose now that nis odd. We can write:

and then the smallest integer m such that P "M s a perfect square is given by m=p.

a b _c xy\ __ . odd(a) odd(b) | oddc) = ,odd(x)
Theorem 4: SS¢(P*+¢" 5" eeeee t)=p 9 s wetf where p,q,s, ...t are

distinct primes and the odd function is defined as:

| 1 ifnisodd
odd(n)=
| 0 ifniseven

161



Direct consequence of theorem 3.
Theorem 5: The Ssc(n) function is multiplicative, i.e. if (n,m)=1 then Ssc(n - m) = Ssc(n)- Ssc(m)

» =p%.g° ¢ . .
Without loss of generality let's suppose that =P "9 apnd m=5°-1° where p. q, 5, t are distinct
primes. Then: ‘

Ssc(n-m) = Ssc(p® -q° - 5% 1) = p*HD) . goH®) | godd(e) podid)

according to the theorem 4.

On the contrary:
Ssc(n) = Ssc(p*® .qb) = podd(a) . qoda'(b)
Ssc(m) = Ssc(s® -19) = 74 ., posdd)

This implies that: S$¢(7-m) = Ssc(n)-Ssc(m) o

Theorem 6: Jf "=P° " e P* oy Ssc(n) = Ssc(p*)- Ssc(p*)-......- Sse( p*)

where p is
any prime number.

According to the theorem 4:
Ssc(n) = p*@ . poh . p
and:

Ssc(p®)= p*a
Ssc(p®) = p*®

and so on. Then:

Ssc(n) = Sse(p®)- Sse(p*)-......-Ssc(p*) ged

Theorem 7: Ssc(n)=n ifn is squarefree, that is if the prime factors of n are all distinct. All prime
numbers, of course are trivially squarefree [3].

Without loss of generality let's suppose that "= P9 where p and q are two distinct primes.
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According to the theorems 5 and 3:

Ssc(n) = Ssc(p-q) = Ssc(p)-Sse{g) =p-g=n  geq

Theorem 8: The Ssc(n) function is not additive..:
In fact for example: Ssc(3+4)=Ssc(7)=7<>Ssc(3)+Ssc(4)=3+1=4

Anyway we can find numbers m and n such that the function Ssc(n) is additive. In fact if:

m and n are squarefree
k=m-+n is squarefree.

then Ssc(n) is additive.
In fact in this case Ssc(m+n)=Ssc(k}=k=m+n and Ssc(m)=m Ssc(n)=n according to theorem 7.

- 1
Theorem 9: = 55" giverges

In fact:

= 1 & 1 &1
i Iy ormed

m=l Pz 7~2P  where p is any prime number.

So the sum of inverese of Ssc(n) function diverges due to the well known divergence of series [3]:

sl
=2 p
Theorem 10: Ssc(n)>0 wheren=1,234...
This theorem is a direct consequence of Ssc(n) function definition. In fact for any n the smallest m

such that "7 is a perfect square cannot be equal to zero otherwise ™°7=0 and zero isnot a
perfect square.

— Ssc(n)

Theorem 11: =~ "  diverges

163



In fact being S5¢() 21 ;¢ implies that:

i Ssc(n) >i 1

n=] n nel 1

and as known the sum of reciprocal of integers diverges. [3]

Theorem 12: Ssc(n)<n

Direct consequence of theorem 4.

Theorem 13: The range of Ssc(n) function is the set of squarefree numbers.

According to the theorem 4 for any integer n the function Ssc(n) generates a squarefree number.
0< Sse(n) <1

Theorem 14: n Jor n>=1

Direct consequence of theorems 12 and 10.

Sse(n)
Theorem 15: " is not distributed uniformly in the interval ]0,1]

Sse(n) _,
If n is squarefree then Ssc(n)=n that implies 7

. a b
If n is not squarefree let's suppose without loss of generality that =P °? where p and qare
primes.

Then:

Ssc(n) _ Ssc(p®)- Ssc(p*)
n - pa . qb

We can have 4 different cases.
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1)aevenand b even

Ssc(n) _ Ssc(p®)- Ssc(p*) __r 1
n r"-q g’ 4
2)aodd and b odd
Ssc(n) _ Sse(p*)-Sse(p®) _ pog _ 1 _1
n - - pa'qb _pa.qb—pcrl.qb—l Z
3)aodd and b even
Sse(n) _ Ssc(p®)-Sse(p’) __p1 _ 1 _1
n pa .qb pa .qb pa—l _qb 4
4)aeven and b odd
Analogously to the case 3 .

This prove the theorem because we don't have any point of Ssc(n) function in the interval 11/4,1{

Theorem 16: For any arbitrary real number & > 0, there is some number n>=1 such that:

Ssc(n) <e
n

Without loss of generality let's suppose that g = p, - p, where D, and p, are primes such that

1 <¢& and ¢ is any real number grater than zero. Now take a number n such that:

n=p-py
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For a, and a, odd:

SSC(”)___ b P, - 1 < 1
et pet  piep,

a

n  plp;

<&

For a, anda, even:

Ssc(n) 1 |
n Py pp,

<¢&

For a, odd and a, even (or viceversa):

Ssc(n)= 1 . 1 < 1 <e

n b - py an'—l ‘P> PP,

Theorem 17: Ssc(p,#)= p,# where p,# is the product of first k primes (primorial) [3].

The theorem is a direct consequence of theorem 7 being Pi# asquarefree number.

Theorem 18:  The equation

Ssc(n) -1
n

has an infinite number of solutions.

The theorem is a direct consequence of theorem 2 and the well-known fact that there is an
infinite number of prime numbers [6]

Theorem 19: The repeated iteration of the Ssc(n) function will terminate always in a fixed point
(see [3] for definition of a fixed point ).

According to the theorem 13 the application of Scc function to any n will produce always a
squarefree number and according to the theorem 7 the repeated application of Ssc to this squarefree
number will produce always the same number.
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Theorem 20: The diophantine equation Ssc(n)=Ssc(n+1) has no solutions.

We must distinguish three cases:

1) n and n+1 squarefree
2) n and n+1 not squareefree
3) n squarefree and n+1 no squarefree and viceversa

Case 1. According to the theorem 7 Ssc(n)=n and Ssc(n+1)y=n+1 that implies
that Ssc(n)<>Ssc(n+1)

Case 2. Withou loss of generality let's suppose that:

n=pa_qb
a b c ,d
n+l=p®-q" +1=5°-t

where p,q,s and t are distinct primes.

According to the theorem 4: 7

Ssc(n) = Ssc(p” - ¢*) = p™» . g*4b
Ssc(n+1) = Ssc(s® -1?) = g4 . sl

and then Ssc(n)<>Ssc{n+1)

Case 3. Without loss of generality let's suppose that n= p-q. Then:

- Ssc(n)=S8sc(p-q)=p-q
Ssc(n+1)=Ssc(p-q+1) = Ssc(s® -1*) = s° _ poddld)

supposing that n+1$p-q+1=s“-t“

This prove completely the theorem.
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6 5\/ Jfor any positive integer N.

N .
Theorem 21: " Ssc(k) >
k=1 z

The theorem is very easy to prove. In fact the sum of first N values of Ssc function can be separated
into two parts:

i Ssc(k,)+ }lv:‘ Ssc(k,)

el b

where the first sum extend over all k, squarefree numbers and the second one over all k, not
squarefree numbers.

According to the Hardy and Wright result [3], the asymptotic number Q(n) of squarefree numbers
< N is given by:

6-N
O(N) = ——
T
and then;

iSsc(k) = g:Ssc(k, )+ f:sSc(k, )> §7_;_21!
=1 k=1

k=1

because according to the theorem 7, Ssc(k,) = k, and the sum of first N squarefree numbers is
always greater or equal to the number Q(N) of squarefree numbers< N , namely:

;k, > O(N)

N
Theorem 22: )" Ssc(k) > 5
k=l *

2
f\/ Jor any positive integer N.
n

V)

In fact:

N N N N

2. Ssc(k) =) Ssc(k')+ Y. Sse(p) > " Sse(p)
t'=1 =2

k=] p=2
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because by theorem 2, Ssc(p)=p. But according to the result of Bach and Shallit [3], the sum of
first N primes is asymptotically equal to:

N2
2-In(N)

and this completes the proof.

Ssc(n+1) % and Ssc(n)
A Ssc(n) Ssc(n+1)
integer number have an infinite number of solutions.

Theorem 23: The diophantine equations =k where k is any

Let's suppose that n is a perfect square. In this case according to the theorem 1 we have:

Ssclntl) _ coctn+1)=k
Ssc(n)
On the contrary if n+1 is a perfect square then:

Ssc(n)

Sscna1) - Sse(my =k

Problems.

1) Is the difference |Ssc(n+1)-Ssc(n)| bounded or unbounded?
2) Is the Ssc(n) function a Lipschitz function ?
A function is said a Lipschitz function [3] if:

| Ssc(m)— Ssc(k)|
|m—k|

2M  where M is any integer

3) Study the function FSsc(n)=m. Here m is rthe number of different integers k such that Ssc(k)=n.
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4) Solve the equations Ssc(n)=Ssc(n+1)+Ssc(n+2) and Ssc(n)+Ssc(n+1)=Ssc(n+2). Is the number
of solutions finite or infinite?

5) Find all the values of n such that Ssc(n) = Ssc(n +1)- Ssc(n +2)
6) Solve the equation Ssc(n)-Ssc(n+1) = Ssc(n +2)
7) Solve the equation Ssc(n)-Ssc(n+1) = Ssc(n+2)- Ssc(n +3)

8) Find all the values of n such that S(n)* + Z(n)* = Ssc(n)* where S(n) is the Smarandache
function [1], Z(n) the pseudo-Smarandache funtion [2] and k any integer.

9) Find the smallest k such that between Ssc(n) and Ssc(k-+n), for n>1, there is at least a prime.

10) Find all the vatues of n such that Ssc(Z(n))-Z(Ssc(n))=0 where Z is the Pseudo Smarandache
function [2].

11) Study the functions Ssc(Z(n)), Z(Ssc(n)) and Ssc{Z(n))-Z(Ssc(n)).

12) Evaluate &1%% where O(k) = " In(Ssc(n))

13) Are there m, n, k non-null positive integers for which Ssc(m-n)=m"* - Ssc(n)?

14) Study the convergence of the Smarandache Square compolementary harmonic series:

= 1
; Ssc’ (n)

where >0 and belongstoR

15) Study the convergence of the series:
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i xm»l X,
Ssc(x,,)

n=l

where x, is any increasing sequence such that limx, =
n—rw

16) Evaluate:
Z": In(Ssc(k))
lim k=2 1n(k)
Ll n

Is this limit convergent to some known mathematical constant?
17) Solve the functional equation:
Ssc(n)” +Ssc(n)™ +........ +8Sse(n)=n
where r is an integer > 2.
18) What about the functional equation:
Sse(n)" +Sse(n)™ +....... +Ssc(n)=k-n

where r and k are two integers > 2.

1
9) Evaluate E i L
: ) ! k=l ( 1) SSC(k)

Z Ssc(n)?
20) Evaluate 2

poof
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21) Evaluate:

: 1 1|
) D) 7(Sse(n)

for f{n) equal to the Smarandache function S(n) [1] and to the Pseudo Smarandache function Z(n)
[21 '
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ON THE PRIMITIVE NUMBERS OF
POWER P AND ITS ASYMPTOTIC PROPERTY*

ZHANG WENPENG AND LIU DUANSEN

Research Center for Basic Science, Xi’an Jiaotong University
Xi’an, Shaanxi, P.R.China
Institute of Mathematics, Shangluo Teacher’s College
Shangzhou, Shaanxi, P.R.China

ABSTRACT. Let p be a prime, n be any positive integer, S,(n) denotes the smallest
integer such that S,(n)! is divisible by p*. In this paper, we study the asymptotic
properties of Sp(n), and give an interesting asymptotic formula for it.

1. INTRODUCTION

Let p be a prime, n be any positive integer, Sp(n) denotes the smallest integer
such that S,(n)! is divisible by p*. For example, S3(1) = 3, S3(2) = 6, S3(3) =
S3(4) =9, -----. - In problem 49 of book [1], Professor F.Smarandache ask us
to study the properties of the sequence {Sp(n)}. About this problem, it appears
that no one had studied it yet, at least, we have not seen such a paper before. The
problem is interesting because it can help us to calculate the Smarandache function.
In this paper, we use the elementary methods to study the asymptotic properties
of Sy(n), and give an interesting asymptotic formula for it. That is, we shall prove
the following:

Theorem. For any fized prime p and any positive integer n, we have the asymp-
totic formula

Sp(n)=(p-1n+0 (_p_ -11111) .
Inp

From this theorem we may immediately deduce the following:

Corollary. For any positive integer n, we have the asymptotic formulas
a) S2(nj=n+0(lan);

b) Si(n) =2n+ O (Inn).

Key words and phrases. F.Smarandache problem; Primitive numbers: Asymptotic formula.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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2. PROOF OF THE THEOREM

In this section, we complete the proof of the Theorem. First for any fixed prime

p and any positive integer n, we let a(n, p) denote the sum of the base p digits of n.

That is, if n = a;p° + asp®* + - -- + asp™ with oy > as—1 > --- > a1 > 0, where
3

1<ai<p-1,i=1,2,.-- s, then a(n,p) = Za;, and for this number theoretic
i=1
function, we have the following two simple Lemmas:

Lemma 1. For any integer n > 1, we have the identity

ay(n) = ofn) = f 2] = e atnn,

where [z] denotes the greatest integer not ezceeding z.

Proof. From the properties of [z] we know that

n] _ [@p™ 4 ap™? + - + agp*
Pl P!

( < .
—J Eajpaj_', if ag—y <i<ap

yd
L 0, if 1 > a,.
So from this formula we have
+oo +oo o1 (o2 o
_ n a1p=t + aap™* + - -- + agp™
am=) |2 =5 ,. ]
i=1 p =1 P
3 aj s .
:ZZajpaj“k =Z‘1] (1 +P+P2+"'+paj_l)
j=1 k=1 j=1
> paj —1 1 > A
=> g =-—7> (a;p% ~qj)
j=1 p-1 p—1 i=1
"~ (n - a(n,p))
= n-— ]
- a{n,p

This completes the proof of Lemma 1.

Lemma 2. For any positive integer n with pln, we have the estimate

a(n,p) < E’; Inn.

Proof. Let n = a;p® + azp®? + --- 4+ a,p™ with Qs > g1 >+ > ay > 1, where
1<a;<p-1,71=1,2,--- 5. Then from the definition of a(n,p) we have

(1) a(n,p)=) a; <y (p—1)=(p-1)s.
=1 =1
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On the other hand, using the mathematical induction we can easily get the inequal-
ity
n = alpal +a2p°'2 +--+ aspa" 2 asps’

In(n/as) < Inn
Inp ~Ilnp

(2) . s<
Combining (1) and (2) we immediately get the estimate

a(n,p) < f;lnn.

This proves the Lemma 2. ~

Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. For
any fixed prime p and any positive integer n, let Sp(n) =k = a; - p™* + a2 - p®* +
«o- 4 ag - p% with g > as—1 > --- > a3 > 0 under the base p. Then from the
definition of Sp(n) we know that p*|k! and p™ { (k — 1)!, so that a; > 1. Note that
the factorization of k! into prime powers is

k!l = Hrqc’"(k),

g<k

+oo
k
where H denotes the product over all prime < k, and a,(k) = Z [-——} From
‘ qt
g<k =1
Lemma 1 we immediately get the inequality

ap(k) — a1 < n < ap(k)
" L (k= a(k,p) — a1 <n < —— (k—a(k,p))
p—l . P 1 _p—l »P))-
l.e.
(p-n+alk,p)<k<(p—1)n+alk,p)+(p—1)(e1 —1).

Combining this inequality and Lemma 2 we obtain the asymptotic formula

k=(p—i)n+0'<lniplnk> =(p-1)n+0 (-Ep;hm).

This completes the proof of the Theorem.
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ON A EQUATION OF SMARANDACHE
AND ITS INTEGER SOLUTIONS*

ZHANG WENPENG

Department of Mathematics, Northwest University
Xi’an, Shaanxi, P.R.China

ABSTRACT. Let Q denotes the set of all rational numbers, a € Q\ {-1,0,1}. The
rnain purpose of this paper is to prove that the equation

i1
z-ax +—-a” =2a
T

has one and only one integer solution z = 1. This solved a problem of Smarandache
in book [1].

1. INTRODUCTION

Let @ denotes the set of all rational numbers, ¢ € @\ {—1,0,1}. In problem 50
of book [1], Professor F.Smarandache ask us to solve the equation

Lo

T-a

+

8|

-a® = 2a. (1)

About this problem, it appears that no one had studied it yet, at least, we have
not seen such a result before. The problem is interesting because it can help us
to understand some new indefinite equations. In this paper, we use elementary
method and analysis method to study the equation (1), and prove the following
conclusion:

Theorem. For all a € Q\ {—1.0,1}, the equation

1 v .
z-ar + —-a® =2u
x

has one and only one integer solution x = 1.

Key words and phrases. F.Smarandache equation; Integer solution; One and only one solution.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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2. PROOF OF THE THEOREM

In this section, we use elementary methods and the Rolle’s Theorem in math-
ematical analysis to complete the proof of the Theorem. First we prove that the
Theorem holds for @ > 1. In fact in this case, let & is an integer solution of (1), we
must have z > 0. Then using the inequality |u| + |[v| > 24/|u] - |v| we have

1
1 It
a*>2-4fz-az-=-at=2-a 2 >2.q,
T

L
Tr-az +

8]

and the equality holds if and only if z = 1. This proved that for a > 1, the equation

(1) has one and only one integer solution z = 1.
Now we consider 0 < a < 1. Let zq is any integer solution of (1), then from

equation (1) we know that zo > 0. To prove zp = 1, we suppose Tp # 1, let
) ) 1
0 < 79 < 1 (the proof for case o > 1 is the same as for 0 < zg < 1), then — > 1,
To
we define the function f(z) as follows:

1
f(:z:)::z:-a‘;'+-—'a”—-2a
T

: : o : 1
It is clear that f(z) is a continuous function in the closed interval [l‘g, —] , and
. To

’ 1
a derivable function in the open interval (zo, ——>, and more f(z¢) = f(—l) =
To I
f(1) = 0. So from the Rolle’s Theorem in mathematical analysis we know that
: 1
f'(z) must have two zero points in the open interval (zo, — }, and f"(z) must
I )

have one zero point in the same open interval. But from the definition of f(z) we
have

1 1 . 1
f'(:t):a}i——;'a%-lna—;i-a’-i—-;-az-lna
and
1 2 1 1
f"(:r):—E-a%-lnza—{-—3 a®* —=-a*-lna— = -a*-lna+=-a°-In*a
et T = i T
1 2 2 1
=x—s-a'rl'-ln2a+;c—§-a”+;_;-ar-lnz+f-az-lnza

1
>0, o (20,2,
zo

1 B
where we have used 0 < a < 1 and In - > 0. This contradiction with that f"(x)

.. . 1 .
must have one zero point in the open interval (zg, —) This proved that the
. Zo

Theorem holds for 0 < a < 1.
If ¢ < 0 and a # —1, and equation (1) has an integer solution z, then |r| must
be an odd number, because negative number has no real square root. So in this
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case, the equation (1) become the following equation:

1
a| = 2a=—z-a% - ~-0" =~z (-1)% [l — = (-1)7 - |af"

Then from the above conclusion we know that the Theorem is also holds. This
completes the proof of the Theorem.

Note. In fact from the process of the proof of the Theorem we can easily find that
we have proved a more general conclusion:

Theorem. Let R denotes the set of all real numbers. For any a € R\ {-1,0,1},

the equation
1
z-a% +~-a® =2
z

has one and only one integer solution z = 1; It has one and only one real number
solution z =1, if a > 0.
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A NEW SEQUENCE RELATED SMARANDACHE
SEQUENCES AND ITS MEAN VALUE FORMULA*

ZHANG WENPENG

Research Center for Basic Science, Xi’an Jiaotong University
Xi’an, Shaanxi, P.R.China

ABSTRACT. Let n be any positive integer, a(n) denotes the product of all non-zero
digits in base 10. For natural £ > 2 and arbitrary fixed exponent m € N, let

Am(z) = Z a™(n). The main purpose of this paper is to give two exact calculating
nlz

formulas for 4;(z) and A2(z).

L. INTRODUCTION

For any positive integer n, let b(n) denotes the product of base 10 digits of n.
For example, 5(1) = 1, b(2)=2,---, 5(10) = 0, 511) = 1, ----. In problem 22
of book [1], Professor F.Smaradache ask us to study the properties of sequence
{b(n)}. About this problem, it appears that no one had studied it yet, at least, we
have not seen such a paper before. The problem is interesting because it can help
us to find some new distribution properties of the base 10 digits. In this paper,
we consider another sequence {a(n)}, which related to Smarandache sequences.
Let a(n) denotes the product of all non-zero digits in base 10 of n. For example,
a(l) =1, a(2) = 2, a(12) = 2, ---, a(28) = 16, a(1023) = 6,------ . For natural
number x > 2 and arbitrary fixed exponent m € N, let

An(z) =) a™(n). (1)

n<z

The main purpose of this paper is to study the calculating problem of A,,(z), and
use elementary methods to deduce two exact calculating formulas for Ai(z) and
Az(z). That is, we shall prove the following:

Theorem. For any positive integer z, let = a110** + a310%2 + -+ + 4,10 with
ki >k > >k;2>20andl1 <qg; <9,i= 2,3,---,s5. Then we have the
calculating formulas :

b 2
aias---ag ai —a; +2 1 e
Al(r) = - 99 Z 3 <45+ [m:l) ’46" 1;
- i=1 Ha. : : ’
J
j=t

Key words and phreses. F.Smarandache sequence; The base 10 digits; Calculating formula.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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2,2...,2 % 9.3 _ a2 .
- aja;---a; 2a] — 3af +a; +6 5 1 oepki=1
Aa(e) = == Zl H ) 285+ | 7| ) 28657,
1= a2
j
i=i

where [z] denotes the greatest integer not ezceeding z.

For general integer m > 3, using our methods we can also give an exact calcu-
lating formula for A,,(z). That is, we have the calculating formula

An(z) = a;na;n ceeay Z 1 +sBm(ai) ([kz i_ 1] + Bm(10)> 1+ Bm(lo))k;—l i

=1 m
H a;
Jj=i

where a; as the definition as in the above Theorem, and B,,(N) = Z n™.
1<n<N

2. PROOF OF THE THEOREM
In this section, we complete the proof of the Theorem. First we need following
two simple Lemmas. _
Lemma 1. For any integer k > 1 and 1 < ¢ < 9, we have the identities
a) A;(10F) =45.46F 1,
-1
b) Aj(c-10%)=45. (1 + (CT)C) L4651,

Proof. We first prove a) of Lemma 1 by induction. For k = 1, we have Ay(10%) =
A1(10) =142+ --- +9 = 45. So that the identity
A1(10%) = 3 a(n) =45- 4651 (2)
n<10*%

holds for £k = 1. Assume (2) is true for k = m > 1. Then by the inductive
assumption we have

A0 = Y a(n) + > an)

n<9-10™ 9:-10m<n<10m+!1

=4,(9-10M+ ¥ a(n+9-10m)
0<n<10m

=41(9-10™)+9- > a(n)

0<n<10™

=41(9-10™)+9- Y a(n)

n<1om
= A1(9-10™)+9- 4;(10™)
=A:1(8-10™)+9- A (10™) + 8- 4,(10™)
=(1+1+2434+4+5+6+7+8+9)- 4;(10™)
=46- 4,(10™)
=45-46™.
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That is, (2) is true for ¥ = m + 1. This proves the first part of Lemma 1.
The second part b) follows from a) of Lemma 1 and the recurrence formula

‘4.1(0 ‘ 10k) =

n<(c—1)-10k

n<(c—1)-10*

Z a(n) +

>

a(n)

(c=1)-10¥<n<c-10%

> an)+ > aln+(c—1)-10%)

0<n<10*

Z a(n)+ (c—1)- Z a(n)

n<{c—1)-10%

= A1((c—1)-10%) + (c — 1) - A;(10).

This completes the proof of Lemma 1.

n<10k

Lemma 2. For any integer k> 1 and 1 < c < 9, we have the identities
c) Az(10%) = 28528651

d) As(a-10%)=285- [1 +

(a —1)a(2a - 1)

6

J . 28651,

Proof. Note that A2(10) = 285. The Lemma 2 can be deduced by Lemma 1,
induction and the recurrence formula

A (108 = > aP(n) +

n<9-10% 9-10 <n<10%+!

Z a*(n) + Z a’(n +9-10%)

n<9-10% 0<n<10*

Z a*(n)+9%- Z a®(n)

0<n<10k

Il

n<9-10%

A2(9-10%) 4+ 92 . 4,(10%)

2.

a*(n)

=(1+1%+22 4 ... +9%). 4,(10%)

286 - A,(10%).

This completes the proof of Lemma 2.

Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem.

For any positive integer z, let z = a; - 10" + q, -

10%2 + ... 4 q, - 10% with

ky > ky > -+ > ky > 0 under the base 10. Then applying Lemma 1 repeatedly we

have

Ai(z) = Z a(n) +

n<ay-10%1

= Ai(a; - 105) +

= A1(611 . 10k‘) +(11 .

Z a(n)

a1-10M1 <n<z

Z a(n + ap - 10%)

0<n<z—a;-10%1

2.

0<n<r—a;-10%1

181

a(n)



= Ai(a; - 10M) + ay - 4y (z — a; - 1051)
= 4i(a1 - 10") + a1 - Ay(a2 - 10%2) + ayap - Ay(z — a1 - 104 — gy - 10%2)

8
I S L ML R

aiQip1---a

s (1+ (a;—zl)ai) ) 1 -
=a1a2---as;ﬁs— 45 4 m}>46' .
i= Hai

j=i

This proves the first part of the Theorem.
Applying Lemma 2 and the first part of the Theorem repeatedly we have

A(z)= Y d¥(n)+ Y d(n)

n<ai-10*1 a;-10k1 <n<z
= Az(al . 10k1) + Z (12(7'1 +a; - 10k1)
0<n<zr—a;-10%1
=4y(ar-10%) +al- Y 2(n)
0<n<z—a;-10%1
= Az(a1 :10%) + a2 - As(z —ap - 10%) _
= Ag(al . 10"‘) +af . Az(ag . 10’:2) + afag . Az(z —4ag - 10"‘ — a4y - 10"'-’)

.........

i 2

2.2 .,
=3 82 4(a; - 10%)

s
i=1 2
I14
=i

2.2 2

_ aiaf---a? ZS: 2af—3iz?+a,-+6 (285+ [kiljl> . 9ggki~1

2
j=i

This completes the proof of the second part of the Theorem.
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Five Properties of the Smarandache Double Factorial Function

Felice Russo

Via A. Infante 7
67051 Avezzano (Aq) Italy
Selice.russo@katamail com

Abstract

In this paper some properties of the Smarandache double factorial
JSunction have been analyzed.

In [1], [2], [3] and [4] the Smarandache double factorial Sdf{n) function is defined as the smallest
number such that Sdf{n)!! is divisible by n, where the double factorial by definition is given by

[6]:

m!! = 1x3x5x...m, ifm is odd;
m!! = 2x4x6x...m, if m is even.

In [2] several properties of that function have been analyzed. In this paper five new
properties are reported.

1. Sdf(p***)=p® where p=2-k+1 is any prime and k any integer

Let's consider the prime p =2k +1. Then:

1-3-5-7-......... P3P e SP - p* =m- p*** where m is any integer.

This because the number of terms multiples of p up to p* are k+1 and the last term

contains two times p.
Then p? is the least value such that 1-3-5-7-9-...... p* is divisible by p**2.

2. Sdf(p*)=3- p where p is any odd prime.
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In fact for any odd p we have:

1-3-5-7-....op-......3p=m-p* where m is any integer.

> oo (557 s

10" -1

) where n is any integer >1 and k=3,5,7,9

Let's suppose that Sd/( )= m then:

1-3.5-7-....... -m=a-(109_1) where a is any integer. But in the previous

multiplication there are factors multiple of 3,5,7 and 9 and then:

1-3-5-7-...m=ak -(109-1) where a' is any integer and k=3,5,7,9. Then:

de{k.[IO"—ID=m=Sd/(IO" - J
9 | 9
10" -1 10" -1 v . .
4. Sd/‘(k( 5 D =Sd/{2-( 5 D where n is any integer >1 and k=2,4,6,8
10" —-1
Let's suppose that Saf(z-( 5 )] =m then:

2-4.6-8-......m =a-2-(109_1J where a is any integer. But in the previous
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multiplication there are factors multiple of 4, 6 and 8 and then:

2-4-6-8-..... -m=a'-2-k-(%) where a' is any integer and k=4,6,8.

5. Sdf(p™)=(2-m=1)-p for p>(2m-1). Here m is any integer and p any
odd prime.

This is a generalization of property number 2 reported above.
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ON A PROBLEM OF F. SMARANDACHE*

ZHANG WENPENG AND YI YUAN

Research Center for Basic Science, Xi'an J iaotong University

Xi'an, Shaanxi, P.R.China

ABSTRACT. Let d;{n) denotes the sum of the base 10 digits of n € N. For natural
z 2 2 and arbitrary fixed exponent m € N, let Am(z) = Z d}*{n). The main

i nlz
purpose of this paper is to give two exact calculating formulas for A;(z) and A, (z).

1. INTRODUCTION

For any positive integer n, let d,(n) denotes the sum of the base 10 digits of n.
For example, ds(0) =0, ds(1) = 1, dy(2) = 2, - -, ds(11) = 2,ds(12) = 3,------ . In
problem 21 of book [1], Professor F.Smaradache ask us to study the properties of
sequence {d,(n)}. For natural number z > 2 and arbitrary fixed exponent m € N,

let
Am(z) =) " dP(n). (1)

n<z

The main purpose of this paper is to study the calculating problem of An(z), and
use elementary methods to deduce two exact calculating formulas for A4,;(z) and
A>(z). That is, we shall prove the following;:

Theorem. For any positive integer x, let x = a; 105 + a10%2 + ... 4 as10% with
ki > k> o > ky>0and1 <a; £9,1=23,---.s. Then we have the
calculating formulas

- 9 i i+1 ..
Al(x):Zai. ;k‘+za1— a ;‘ '10/“;
=1 = j=1 =
. o Ii.‘,' 1k,’ 3 k, ) : i — X i 1 y
Ag(:l:):Zai. %ﬂ"‘%(ai*l)-{-Za?—(‘la 6)(0 +1) 10k
d s i—1
S R D I >
=2 Jj=t 7=1

For general integer m > 3, using our methods we can also give an exact calcu-
lating formula for A,,(z). But in these cases, the computations are more complex.

Key words and phrases. F.Smarandache problem: Sum of base 10 digits: Calculating formula.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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2. PROOF OF THE THEOREM

In this section, we complete the proof of the Theorem. First we need following
two simple Lemmas.

Lemma 1. For any integer k > 0, we have the identities
a)  A,(10%) = g-k -10%;

/9 a-1

b)  Aj(a-10%) = <§k +—

<

)-a-lOk, 1<a<09.

Proof. We first prove a) of Lemma 1 by induction. For k¥ = 0 and 1, we have
A1(10°) = A1(1) = 0, A1(10Y) = 4,(10) = 45. So that the identity

41107 = D dy(n) =
n<10¥
holds for k¥ = 0 and 1. Assume (2) is true for ¥ = m — 1. Then by the inductive

assumption we have

A(I0M) = ) dy(n)+ > dy(n)

| ©

k.10 (2)

N

b

n<9-.1gm-1 9-10m—1<ngiom
=4(9-10™" )+ Y dy(n+9-10m71)
0<n<10™ -1 o
=A41(9-10™ )+ D" (dy(n)+9)
0<n<10™~1
=A1(9-10"7) +9-10m 7 + Y dy(n)
n<10™m-1

= A1(9-10™71) +9-10™! + 4,(10™7Y)
= A1(8-10™71) + (8 +9) - 10™1 + 24,(10™7Y)

=(1+2+3+4+5+64+7+8+9)-10™1 +104,(10™1)

9 m 9 m-—1
=3-10"+10- 5 (m—-1)-10

9
=Z.m-10™
2 m

That is, (2) is true for ¥ = m. This proves the first part of Lemma 1.
The second part b) follows from a) of Lemma 1 and the recurrence formula

Aia-10%) = > dyn)+ > dy(n)

n<(a—1)-10% (a—1)-10¥<n<a-10%

= Y dm+ Y dfn+(a—1) 10%)

n<(e—1)-10* 0<n<10%

> a(n)+(a—1)-10F + > di(n)
n<{a-1)-10% n<10*
= A1((a = 1)-10%) + (@ ~ 1) - 10* + 4,(10%).

187



This completes the proof of Lemma 1.

Lemma 2. For any integer k > 0 and 1 < a <9, we have the identities

. 8lk .
¢) 4p(10%) = SLEFI :33-1;-10‘;
o [k(81k+33) Ok 1) (2a-1 .
d) Ag(a~101‘)=[L4+—32+7(a—1)+(a l)éa ) a- 10%,

Proof. These results can be deduced by Lemma 1, induction and the recurrence
formula

A= N dEm+ Y B

n<9-10% 9:10*<n<10k+1

= ) &+ Y d(n+9-10%)

n<9-10% 0<n<i10k

= Y d(n)+ Y (dy(n)+9)®
n<9-10% 0<n<10k

= A2(9 - 10%) + 92 - 10% + 184,(10%) + A,(10%)

= 1042(10%) + (1> +22 + -+ 9%) - 10F +2- (1 + 2+ - - + 9)4,(10%)

9 .

= 104,(10%) + 52—7 -10%*1 190 5 k- 10°
1 .

= 1045(10%) + -‘2—7 105 §2— k- 1051

This completes the proof of Lemma 2.

Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem.
For any positive integer z, let z = a; - 10 + a5 - 10%2 + ... & a, - 10% with
k1 > k2 > --- >k, > 0 under the base 10. Then applying Lemma 1 repeatedly we
have

Alm)= Y dm)+ > di(n)

n<ay-10*1 a1-10¥1<n<z
= A;(a; - 10%) + > dy(n + a; - 10%1)
0<n<z—ay-10%1
= Ay(a; - 10%) + Y (ds(n) +a)
0<n<z—a;-10%1
= A1(a; -105) + ay(z — a; - 10%) + > do(n)
0<n<z~a;-10%1
= Ar(a; - 10M) + a;(z — a; - 10%) + 4y (z — a; - 10%1)
= Aj(ay - 10) + Ay (as - 10*2) + ay (z — a; - 1071)
+az(xr —ay - 10M —ay - 10%) + 4, (2 — a; - 10% — qp - 10F2)
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=3 Ay(a - 10% )+Z i%-lOki)
= -1 j=1 _

s 9 a; —1 k: > ki =
i=1 ' ‘

i

- - =2 71=1

=Zs: (gki‘f'i:ai“ 1) -a; - 10%,
i=1 \ ~ i=1 - :

This proves the first part of the Theorem.
Applying Lemma 2 and the first part of the Theorem repeatedly we have

A@)= ) dm+ Y @)
n<ay-10F1 a1-10¥1<n<z
= As(a; - 10%) + > d2(n + ay - 10%)
0<n<z—a; 1051
= Az(al . 10k1) —+ Z (ds(n) + ay )2
0<n<z—a;-10%1
= A(a; -10F) + Z (d%(n) + 2a, “dy(n) + a?)
0<n<r—ay-10*%1
= Ay(a1 -10%) + o - (2 — ay - 10%)
+2a141(z — a1 - 10) + Ay(z — a4 - 10%1)

—ZAz(a, 10k)+Za2(x—Z - 105 )+Z2a,A1($—ZaJ 10%)

=1 =1
_Z[E&’f?’_?%r (e~ 1)+ (‘_I)SC’?'_ )]-ai-m""

s i—1 s i—1
+> ;- 10%. (Zaf) + Y (9% +a; —1)-a; - 10% . (Z aj)

=2 1=1 =2 =1

(8. (Z>

S k(81L +33) —(a, 1)+Z 4a,~—1)(a,‘+1)J.ai.10ki

=1

i=2 j=i

3 K] i—1
+) a; (9k; — a; = 1)10% + 2} o;10% ( a,->.

This completes the proof of the second part of the Theorem.
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On the Smarandache Lucas base and related counting function®

Wenpeng Zhang
Research Center for Basic Science, Xi'an Jiaotong University

Xi’an Shaanxi, People’s Republic of China

1. INTRODUCTION AND RESULTS

As usual, the Lucas sequence {L,} and the Fibonacci sequence {F,} (n =

0, 1,A2, ..., ) are defined by the second-order linear recurrence sequences
Lyyo=Lny+ Ly and  Fhyo =Fopy + F

forn >0, Ly =2,L; =1, Fy =0 and F; = 1. These sequences play a very impor-
tant role in the studies of the theory and application of mathemai:ics. Therefore, the
various properties of L,, and F,, were investigated by many authors. For example,
R. L. Duncan {1] and L. Kuipers [2] proved that (log F},) is uniformly distributed
mod 1. H.London and R.Finkelstein [3] studied the Fibonacci and Lucas numbers
which are perfect powers. The author [4] obtained some identities involving the
Fibonacci numbers.

In this paper, we introduce a new counting function a(m) related to the Lucas
numbers, then use élemenfa.ry methods to give an exact calculating formula for
its mean value. First we consider the Smarandache’s generalized base, Professor
F.Smarandach defined over the set of natural numbers the following infinite gener-
alized base: 1 =go < g1 <--- <gi <--- . He proved that every positive integer N
may be uniquely written in the Smarandache Generalized Base as:

R 5 ir1 — 1
N= E ¢;igi. with 0<q; < [gli—}
: g:

=0

1 This work is supported by the N.S.F. and P.N.S.F. of P.R.China.
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(integer part) for ¢ = 0,1,--- ,n. and of course @, > 1, in the following way: if
gn SN < gnt1,then N =gn +715if g <71 < g1, thenry = gy + 19, m < n;
and so on untill one obtains a rest r; = 0.

This base is important for partitions. If we take the g; as the Lucas sequence,
then we can get a particular base, for convenience, we refer to it as a Smaran-
dache Lucas base. Then any positive integer m may be uniquely written in the
Smarandache Lucas base as:

n
m= Za;Li, withalla; =0or 1, (1)
i=1
That is, any positive integer may be written as a sum of Lucas numbers. Now for
n
an integer m = Z a;L;, we define the counting function alm)=a;+ay+---+a,.
The main purpoiszlof this paper is to study the distribution properties of a(m), and
present a calculating formula for the mean value
A(N)= ) a'(n), r=1, 2. (2)
n<N .

That is, we prove the following two main conclusions:

Theorem 1. For any positive integer k, we have the calculating formulae

ALy = ) a(n) = kFiq

n<L;

and

Ag(Ly) = Z[(k = 1)(k —2)Le—z + 5(k — 1) F_p + T(k — 1)Fi_3 + 3F_,] .

1
5

Theorem 2. For any positive integer N, let N = Ly, + Lg, + --- + Lg, with

ki > ko > -+ >k, under the Smarandache Lucas base. Then we have
Ar1(N) = Ai(Li, )+ N = Ly, + A1(N — Ly,)

and

A(N) = Ag(»Lkl-) + N — L, + 42(N — Ly )+24(N - L))
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Further,

A1(N) =} [k + (6~ 1)Ly

=1
For any positive integer r > 3, using our methods we can also give an exact

calculating formula for Ar(Li). But in these cases, the computations are more

complex.

2. PROOF OF THE "THEOREMS

In this section, we complete the proof of the Theorems. F irst we prove Theorem
1 by induction. For k = 1, 2, we have Ai(Ly) = A;1(1) = 0, Ai(Lz) = 41(3) =2
and Fy =0, 2F; = 2. So that the identity

A(Le)= ) an) = kF;_, (3)
n<Llg

holds for k = 1 and 2. Assume (3) is true for all k <'m — 1. Then by the inductive
assumption we have

Alm)= Y am+ Y )

n<Lm_1 Lm-1_<,n<Lm

=A1 (L) + Z a(n + Lm_y)
0Sn<Lm_2

=Ai(Lm-1)+ Y (a(n)+1)

OSTI(Lm_g
=AiLm-1)+Lmat Y aln)

n<Lly,_»

=A1(Lpm—1) + 4, (Lm—2)+ Ly_s
=(m—-1)Fn_,+ (m—-2)F,_; + L
=m(Fm—o+ Frno3) — Fp_y — 2Fn_3+ Lm_»
=mFp_ . —Fp_y — Fp_s + Ly |
= mFm—]v
where we have used the identity Fipooy + Fp_3 = Lin—3. That is, (3) is true for

k = m. This proves the first part of Theorem 1.
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Now we prove the second part ‘of Theorem 1. For k = y 2, note that 1 = F} =

s+ F_;or F_; =1, we have Ag(Ll) = .4.2(1) =0, A‘_)(LZ) = A2(3) =2 and

0, ifk=1;

1
= (k= 1)(k = 2)Lr—2 +5(k = 1)Fies + 7(k — 1)Fr_3 + 3F_4] = I
5 | 2, k=2

So that the identity
1 (
) As(Ly) = 5 (k= 1)k =2)Lr—a +5(k — 1)Fr_g + 7(k — 1)Fr_3 + 3Fi-1]  (4)

holds for k = 1, 2. Assume (4) is true for all ¥ < m — 1. Then by the inductive
assumption, the first part of Theorem 1 and note that L,,_; + 2Lp—9 = 5Fn_;

and Fi,_y + 2F,,—92 = L,,_1, we have

A(ln)= Y d@)+ > d(n)

n<Ly_1 Lm—lsn<Lm
=As(Lm-1)+ Y. d*(n+Lmy)
0<n<Lm_»
=4(Lm-1)+ Y, (a(n)+1)
’ OSn<Lm_z
=4s(Im1)+ D (a*(n) +2a(n) +1)
0<n<Lm_2

= As(Lm-1) + Z a*(n) +2 Z a(n) + Lm—2
n<Lm_2 n<Lm_2
= AZ(Lm—l) + A2(Lm—-2) + 2A1(Lm—2) + Lm—2
= -;; [(m — 2)(m — 3)Lom_s + 5(m — 2) Fr_s + T(m — 2) Fin—s + 3Fm_3)]
+ % [(m — 3)( — 4)Lon—s + 5(m — 3)Fonsg +7(m — 3)Fom_s + 3Fom_3]
+ 2(1’71 - 2)Fm—3 + L2

[(m = 1)(m = 2)Lm—3 + 5(m — 1) Fom_s + T(m — 1)Fr_s + 3Fm ]

[ F

+ % (m—=1)(m—=2)Lm_y +5(m —1)Fp_y +7(m — 1)Fm—s + 3F 3]
- é 2(m —1)Lp_3 +(4m —10)L iy +5Fm—3 + TFm—y + 10Fm_4
+ 14F 5] +2(m —2)Fn 34+ Lm_y

[(m—=1)m~-2)Ln2+5(m—1)Fn-2 +7(m—1)Fpn_3 +3Fn,_1]

|
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1
—_ -5 [2(1‘71 — 2)(me3 + 2Lm_4) - 2Lm_4 + 5(Fm_3 + 2 m—4)

+ T(Fm—4 + 2Fm—-5)] + 2(771 - Q)Fm—(! + Lm-—2

[(m—=1)m —=2)Lm-s+5(m = 1)Fm_2 + 7(m — 1)Fp_3 + 3F -]

1
- -5-' [10(771 - Q)Fm__;; - 2Lm——4 -+ 5Lm—3 + 7Lm—4]

U]

+2(m = 2)Fn34 Ln_s

1
= g [(m - 1)(m - 2)Lym—s + S5(m —1)Fp_2 + (m - 1) Fph_3 + 3Fm—].
That is, (4) is true for k¥ = m. This completes the proof of Theorem 1.

Proof of Theorem 2. Note that N = Ly, 4+ Lg, +---+ Ly, , applying Theorem 1 we

have

Ai(N) = Z a(n) + Z a(n)

n<Lk, Ly, <n<N

=AML+ S an)

Lk’_ <n<N

=A(Le)+ >, a(n+Ly)
0Sn<N—Lkl

=4i(Le)+ Y, (a(n)+1)

0<n<N—Ly,
= A1(Le,)+ A1(N =Ly, )+ N — Ly, .

As(N) = z a*(n) + Z a*(n)

0<n<L; L;. <n<N
1 1=

=Ao(Le)+ Y, a’(n+Ly)
0$n<N—Lk1

=A(Le)+ Y (a(n)+2a(n) +1)
) OSrL<N---L;cl

= Ao(Lp, )+ N — Ly, + Ay(N — L) + 24:(N — Ly,).

This proves the first part of Theorem 2.
The final formula in Theorem 2 can be proved using induction on s and the

recursion formulae. This completes the proof of Theorem 2.
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On a Generalized Bisector Theorem
J. Sandor

Babes-Bolyai University, 3400 Cluj, Romania
In the book [1] by Smarandache (see also [2]) appears the following generalization of
the well-known bisector theorem.
Let AM be a cevian of the triangle which forms the angles 4 and v with the sides AB
and AC, respectively. Then ‘_
A7 25 Sy (76)

We wish to mention here that relation (1) also appeared in my book (3] on page
112, where it is used for a generalization of Steiner’s theorem. Namely, the following result
holds true (see Theorem 25 in page 112):

Let AD and AE be two cevians (D, E € (BC)) forming angles «, 8 with the sides
AB, AC, respectively. If A<90°and a < B, then

BD-BE‘<AB2
CD-CE — AC*

(77)

Indeed, by applying the area resp. trigonometrical formulas of the area of a triangle,

we get
BD A(ABD)  ABsina
CD ~ A(ACD) ACSsin(A - )

(i.e. relation (1) with u = @, v = § — ). Similarly one has

BE _ ABsin(4-f)
CE~ ~ ACsimp

Therefore

BD-BE (AB)Zsina sin(A4 — §) (78)

CD-CE \AC/ sinf sm(A-a)
Now, identity (3), by 0 < a < < 90° and 0 < A— < A—a < 90° gives immediately
relation (2). This solution appears in [3]. For @ = § one has

BD-BE (AB)2

CD.CE - \ac (79)

which is the classical Steiner theorem. When D = E, this gives the well known bisector

theorem.
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On a Conjecture of F. Smarandache

Wang Yang'?  Zhang Hong Li'*
(1. Department of Mathematics, Northwest University; 2.Department of Mathematics, Nanyang
Teacher’s College, Henan China 473061, 3.Xi’an Finance and Accounting School, Xi’an Shanxi

China 710048)

Abstract:  The main purpose of this paper is to solve a problem generated by Professor
F.Smarandache.

Key word: Permutation sequence; k-power.

Let n be a positive integer, n is called a k—power if n=m*, where k and m are positive
integer, and k>2. Obviously, ifnis a k-power, p is éprime, then we have p‘|n, if pjn.

In his book “Only Problems, not Solutions”, Professor F.Smarandache defined a
permutation sequence: 12, 1342, 135642, 13578642, 13579108642, 135791112108642,
135791]131412108642,13579111315161412108642‘,135791 113151718161412108642,.. .,
and generated a conjecture: there is | no any k-power among these numbers. The main
purpose of this paper is to prove that this conjecture is true.

Suppose there is a k-power a(n) among the permutation sequence. Noting the fact:
12=22x3, we may immediately get: a(n)> 1342>1 0000. For the last two digits of a(n) is 42,
S0 we have a(n)E42(modIOO)

Noting that 4/100, we may immediately deduce : a(n)=42=2(mod4).

So we get 2|a(n), 44a(n). However, 2 is a prime, then 4|a(n) contradicts with Ha(n). So
a(n) is not a k-power.

This complete the proof of the conjecture.
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Paradoxes Review

Feng Liu
Dept. of Management Science and Engineering,
Shaanxi Economics and Trade Institute (South Campus), South Cuihua Road, Xi'an, Shaanxi, 710061, P. R. China
| E-mail: youchul@finmu.edu.cn
Abmutzlcameacrossoneofﬁ:eSmarandachedivinepamdoxesandfcltverysu'onglyﬂmitis.really our
Buddhist’s obligation to help understand the underlyingn-uﬂn.Thugnemalotoftoughestpoints in the cultural

diﬂ'erenoe,anditwil]bethemostdifﬁcultjobtomchthemutual point as neutrality. What I can do is to try our
best and find cooperation. Limited 1o the time, I just put a few as my first review.

Keywords: Buddhism, Daoism, Neutrosophy, Democracy, Illusion, Cause-effect, Neutrosephic Logic

1 Smarandache Divine Paradoxzes st

Divine Paradox (I): Can God commit suicide?
IdemthwMMkmﬂhthdm«dqhe&eGodhn«mﬁm
lfGodcancommitslﬁcide,ﬂnnGoddia-bmmeHehasmpmveit,ﬂlqtefomﬁodknmimmortaL

ldnmhmu&ehwdﬂuﬂtyinhgic :
e nmmmmintbemgmm&meishiswmomisbody.
® Whenwerefertoﬂnetumlspirh,thﬂeismsﬁddeataﬂ—itismerelymmnsiom
® Whenwereﬁetmthebody,itisaauallynmhim,justomofhiscbtheaGod’somnipmimpﬁestha
hemdungehisclothesathiswiﬂ.l‘haeﬁre,dmeisnoaﬂcidehhh.
memmgawapmfonndmmiqmﬁlmrﬂtoMasterDhmma,thth'sthof
nndcnﬁminmmammgﬁommmamamsmwmmhom,mmjmming
ﬁumﬂxewatclaimedhereallysawﬂ\eMastergoingtothewct.Tohisastonishment,theunperor
daddadmmmnbmvuify.smmthe&mdshm&t,t!meisnothingmorethnnashiningshoeinit
that sent forth radiant light.
There can be countless figures of the same Bodhisattva simultaneously exist, according to the
. sutras (Ven. Chin Kung [1]). :
(SimeVen.MamChinKnngisaBuddﬁstmmk,lﬁsBuddhistmeisChinngmdhissumame
'nthemi&done:Sakymmﬁ,normallymtmmﬁoned)
® Howcva',tln'eisslicideuammwebeﬁcve,sothepmblanbeooma:whethuGodmshowns
such a manner.

1.2 God Eves to save us, not to kill us
] Asﬂ)egeatstteacha,tbu‘eisnoﬂﬁngsiﬂyataﬂinhismind.Howmwecompzeoursﬂlinmswith
God?
a) Evuyomisbmugm:pbyhispaqmmdthesocietywimwﬂmdmoil—ﬁompmgmmy,
birth, to breeding, nurturing..., theysuﬂ‘n‘edeve:ythingjustfa'ﬂ!eﬁm:reofhim.wmnsiny
deadwhenheismtwillingto&cediﬂ‘iaﬂﬁosﬂmhisparentsdeahwithfordecads?Hemustbe
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crazy. How can we image God as crazy? Nor even a psychologically healthy person.

b) Although God can change his clothes at his will, but he can never even think of such a manner:
once we assume he showed, he would be as silly as us, and if millions of people followed this
silliness, who would be the murderer?

) The same silliness truly happens in present China where millions of innocent people believed in a
cheater of Buddhism—Li Hongzhi and his Falungong.

®  God signifies the supreme power and mighty of mercy.

a) Just because compassion constitutes the nature of genius people, God never allows suicide,
instead, he saves people from death.

b) For the well-disciplined Buddhists, neither do they commit suicide, nor kill even eat animals.
Instead, they often free captive animals from death.

1.3 God lives for all flesh, not for himself .
® Whenever we ask whether God can show us in the manner of death? Sure, but never for himself, he
suffers and dies for every being: to save us all.

1.4 The consequesnce of suicide is definitely shown fn the life after death and in the following cycles of life as
well
® Muchmorecanweleam&omBuddlismdntbmitswholcﬁeorymﬂrcame—eﬁ'eaphmmenaof
our daily routines, and the destiny fies just in this.

2,

Smarandache Social Paradox:

In a democracy should the nondemocratic ideas be allowed?

a) Kys,mﬁemuhmmaﬁcidmsmdhwed,&momnmhsadmmyanymm.ﬂbemndemouaﬁc
ideas may overturn the society.) ‘

b) Ifno,i.aoﬂlaidenarenouﬂowed-cventhosenondemoaaﬁc-,thenonenothasademoa‘acyeither,
because the freedom of speech is restricted.

Democracy and nondemocracy coexist in one contradiction
®  There is no truth actually, just because there is prejudice.

a) The supreme truth lies in its void nature: Dao in Daoism, the wisdom in Buddhism. Dao is void in
thatwhencvq-wespukoftheorderofmn,wbaweimagineeannevabebao(infenedﬁ-om
Daodejing, B. Wang, X. Guo). So is Buddha: he is not shown in any kind of forms like figure,
image, the truth, the ideal, etc., what we sce is merely our phantasm, not real (the Diamond Sutra,
Ven. Chin Kung [1]). He is ideal just because be doesn’t pursuit idealness.

b) Wheneverwespeakofuuﬁl,compamﬁveto&!semerely,likeposiﬁvetonegative,goodtobad,
wisemm,Blﬂdhistwsytomraxnmm(hxferredﬁ'omDaodejing,B.ng,X.Guo).

c) Tbreisaﬂymestepbetwenm!hmdpnjudice.Tmhbewmesprejudicewhenkkm
believed regardless of constraint of situations.

©®  There is no absolute democracy.

a) Asshownabove,whenwemenﬁondemocracxwerelatcwnmdemocracymo:wecallﬁ)r
democracy because there is dictatorship.

b) Absolute democracy has no meaning — if it had, it were self-contradictory: just as the paradox
shows. .
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©®  There needs neutrality between them as balance.

a) Absolute democracy allows self-centered societies to expand, the outcome must be conflicts. It is
even worse in the expansion of heresy, e.g., in Hitler’s Nazi Reich in which most of the people are
cheated. The democracy tumned out to be a dictatorship.

b) There is no absolute dictatorship either. Absolute dictatorship against people’s will definitely lead
toitsbeingovertlrown,andtlmaoca'dingmpeople'swmeahleadtoprosperitytoo(inﬂ:e'!‘ang
dynasty of China the emperor even invited Buddhism from India even when Chine had its own
deep rooted cultures). _

c) Absolute democracy/dictatorship will definitely lead to the negation of itself. This is one of the
&emhﬁﬁuofbmism:ﬁngswmdcvdophmeoppmimdreaimwhenmeybememmg
reflected in neutrosophy as the Law of Inverse Effect (F. Smarandache).

(L)} mmﬁtysodayisbmedmﬂlebﬂmbuwemmuetwoﬁms,waZedongadvmmﬂu

’ unity of democracy and centralism, i.c., democratic centralism in his theory. However he never
implemented it due to some effect, e.g., he launched the Cultural Revolution.

b) Smarandache’s I1lusion: .

Suppose you travel to a third world country, forexampleRomania.YouuﬁveindleapiulchyofBuehaut,
late in the night, and want to exchange a $100 bill to the country’s currencies, which are called "lei”. All exchange
oﬂicesmdosed.Abeddﬁmappmm-dwopomywmadnngeywﬁﬂ.Hekatﬁeﬁ

YougivehimtheSlOObiﬂ.hegivcsyouﬂnequivalentinﬂ:ecamky’scwrency, ie. 25,000 lei. But the laws
ofﬂleeomdonaaﬂowexchngeonthemnt,andboﬂlofyoukmwit
Thethiefcxiu'polia!',mﬁgivaywtbcdoﬂambwkwﬁhmehniwbﬂewﬁhﬁeo&ahmdﬁwsbmkhk
lei, and runs out vanishing behind a building.

The thief has cheated you. ;
Takmbysmwisgymdon&mﬁmwhﬂhdlnppﬁmdlooﬁnghmhmdcxpeahgmmbmka
$100 bill, actually you see a $1 bill... in your mind, in the very first seconds, it appears the illusion that the $100

bill changed, under your eyes, into a $1 bill!

3.1 There is ne absolute fact .
OneﬁmeiungdynastyofChina,ﬂnFiﬂhPﬁr&mhoanddhismmmnmdtohisdiscipladntevuyone
write a verse to show his insight of the Buddhist wisdom.
Atthis,ﬂ\emosteiigl'bleoneplmaxwdonmewallﬁ:eme:
Our body be a Bodhi tree,
Our mind a mirror bright,
Clean and polish frequently,
Let no dust alight.
Just as a choreman in the mill of the temple, Huineng answered it with his own:
There is no Bodhi tree,
Nor stand of a mirror bright,
Since all is void,
Where can the dust alight?

3.2 There is fact, but merely beliefs created by ourselves
®  Let’s follow the sutra (adapted from [2]):
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HuinengarrivedataTempleinGuangzbouwhereapemmwsbeingblownbywind.Two
morks who happened to see the pennant were debating what was in motion, the wind or the pennant.
Huinengheardﬂ:eirdiscmsionmdsaid:“ltwasneitherﬂ:ewindnortbepenmmWhatactmlly
moved were your own minds.” Overhearing this conversation, the assembly (a lecture was to begin)
were startled at Huineng’s knowledge and outstanding views.
®  When we see pennant and wind we will naturally believe we are right in our consciousness, however it
is subjective. In other words, what we call “the objective world” can never absolutely be objective at all,
®  Whenever be believe we are objective, this belief however is subjective too.
@ In fact, all these things are merely our mental creations (called illusions in Buddhism) that in turn cheat
owr consciousness: There is neither pennant nor wind, but our mental creations.
® Theﬁgnre“you”inﬂ)epm'adoxhscreatedtwodiﬁ'eremthings:SlOOcmencyﬁrstandthenaSlnote,
andheabsohitelybelievedinboﬂlofhisawﬁomsepmmely.Aslhemult,hebelievubothm
simultaneously true. But in fact neither is true - they are afl his beliefs.
®  The world is made up of our subjective beliefs that in turn cheat our consciousness. This is in fact a
®  Everyone can extricate himself out of this maze, said Sakyamuni and all the Buddhas, Bodhisattvas
aromdtheuniverse,dxeirmmbetisasmmyasthatofthesandsintheGanga(Limitl&sLifeSmra,
Ven. Chin Kung [1]).
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THE EQUATION  a?(k+2, S(n))= a*(k+1, S(n))+ a*(k, S(m))
Xigeng Chen

Abstract. For any positive integer a, let S(a) be the Smarandache
fﬁnction of a. For any positive integers r and b, let @ (r, b) be the first
r digits of 5. In this paper we prove that the title equation has no
positive integer solutions (», k).

Key words: Smarandache function, diophantine equation

Let N be the set of all positive integers. For any positive integer a,

let S(a) be the Smarandache function of a. For any positive integer

(1 . b=t ---1,t,

with s digits, let

(2) a(r,b)=t,--t_,,
be the first r digits of 5. Recently, Bencze [1] proposed the following
problem:

Problem Determine all solutions (», k) of the equation
G  a’(k+2,Sn)=a(k+1,5(n)+a(k,S(n)),nkeN.

In this paper we cbmpletely solve the above-mentioned problem
as follows.

Theorem The equation (3) has no solutions (», k).

Proof. Let (n, k) be a sélution of (3). It is a well known fact that

S(n) is a positive integer (see [2]). Let 5=S(n). We may assume that b
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has s digits as (1). For any positive integer r, by the definition (2) of
a(r, b), we have |
A
a(r b), if r2s.
If k> s-1, then from (4) we get a (k+2, b)= a (k+1, b). Hence, by
(3), we obtain  a (%, b)=0, a contradiction.
If k<s-1, then from (4) we get

(5) a(k+2,6)210-a(k +1,b).
Hence, by (3) and (5), we get A
(6) \ 99-a*(k+1,b)< &’ (k,b).

However, we see from (4) that a (k+1, b)= a (k, b). Therefore, (6) is

impossible. Thus, the equation (3) has no solutions (», k).
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THE EQUALITY B(k +2,S(n))= A2(k +1,S(n))+ B*(k,S(n))
Xingen Chen

Abstract. For any positive integer a, let S(a) be the Smarandache
function of a. For any positive integer r and b, let £ (r, b) be the last r
digits of 4. In this paper we determine all positive integer pairs (», k)
for which the title equality holds.

Key words: Smarandache function, digit, equality

For any positive integer a, let S(a) be the Smarandache function

of a. For any positive integer

¢y b=t -1t
with s digits, let
) Blr.b)=t, -t

be the last r digits of 4. Recently, Bencze [1] proposed the following
problem:

Problem Determine all positive integer pairs (», k) for which
3) Bk +2,5(m)=B*(k +1,5(n)) + B*(k,S(m)).

In this paper we completely solve the above-mentioned problem
as follows.

Theorem A positive integer pair (n, k) satisfies (3) if and only if

n satisfy
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4) S(n)=10"?¢ +10%4,
where ¢ is a nonnegative integer, d is a positive integer with 1 <d<C9.

By the definition of the Smarandache function (see [2]), we have
S(m!)=m for any positive integer m. Therefore, by the above theorem,
we obtain the following corollary immediately.

Corollary For any fixed positive integer k, there exists infinitely
many positive integers
(5) n=(10"2c+10*d),c20,d =12,--- 9,

Satisfying (3).

The proof of Theorem Let (n, k) be a positive integer pair
satisfying (3), and let 4=S(n). Then 5 is a positive integer. We may
assume that b has s digits as (1). For any positive integer r, by the
definition (2) of B(r, b), we have

(6) 0< B(r,5)<10"
and
(7) Blr+1,6)=B(r,b)+10"¢ ,.
If £,,,70, then from (6) and (7) we get
(8) Pk +2,6)> Bk +1,6)+ 10" >B(k +1,b)+ Bk, b)
It implies that
© Bk +2,6)>p7(k +1,6)+ B*(k,b),

which contradicts (3).

If #,.,=0, then from (7) we get
(10 | Bl +2,b)= Ak +1,b).
Substitute (10) into (3), we get B (k b)=0. It implies that t="=1=0
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by (2). Thus, b=S(n) satisfies (4). The theorem is proved.
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ON THE SMARANDACHE DOUBLE
FACTORIAL FUNCTION

Maochua Le

Abstract. In this paper we discuss various problems and
conjectures concerned the Smarandache double factorial function.
Keywords: Smarandache double factorial function, inequality,

- infinite series, infinite product, diophantine equation

For any positive integer n, the Smarandache double factorial
function Sdf(n) is defined as the least positive integer m such that m!!
is divisible by #, where

24..m, if 2|m,
mil=
1.3...m, if 2|m.
In this paper we shall discuss various problems and conjectures concemed

Sdfin).

1. The valua of Sdf{n)

By the definition of Sdf{n), we have Sdf{1)=1 and Sdfin)>1 if n
>1. We now give three general results as follows.

Theorem 1.1. If 2 }n and
(1.0 n=p/'py...p
is the factorization of n, where p|, p,, ***, p, are distinct odd primes

and a,, a,, ***, a, are positive integers, then
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(1.2) Sdf (n) = max{Sdf(pp ), Sdf (ps: )., Saf (p2 ))
Proof. Let = sgf(P*) for i=1, 2, *, k. Then we get 2.} m,
(i=1,2, -, k) and
(1.3) pomWi=12,. . k.
Furthur let m=max(m,, m,, *-*, m,). Then we have
(1.4) mMm\, i=1,2, - k.

Therefore, by (1.3) and (1.4), we get
(1.5) plmLi=12,...,k.

Notice that p,, p,, ***, p, are distinct odd primes. We have
(1.6) ged(p, py)=L1<i<j <k
Thus, by (1.‘1), (1.5) and (1.6), we obtain n|m!!. It implies that
(1.7) Sdf(n)y<m.
On the other hand, by the definition of m, if Sdf{(n)<m, then there
exists a prime power P;' (1 <j< k) such that
(1.8) p; | Sdf(m.
By (1.1) and (1.8), we get n | Sdf(n)!!, a contradiction. Therefore, -by
(1.7), we obtain Sdf{n)=m. It implies that (1.2) holds. The theorem is
proved.
Theorem 1.2. If 2|n and
(1.9) n=2°n,,

where a, n, are positive integers with 2 bn,, then
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(1.10) - Sdfin)<max(Sdfi2%), 25df(n))).

Proof. Let m=Sdf(2°) and m,=Sdf(n,). Then we have
(1.11) 2%my!l, mylm 1. 7
Since (2m1)i!=2.4'"(2m,)=2"" *m!=2" e m N (m-1!, we get m!N|2m)!!.
It implies that
(1.12) m|2m ).
Let m=max(m,, 2m,). Then we have m!|m!! and (2m,)!!|m!!. Since
ged (29, ny)=1, we see from (1.9), (1.11) and (1.12) that njm!!. Thus,
we obtain Sdfin)<m. It implies that (1.10) holds. The theorem is
proved.

Theorem 1.3. Let a, b be two positive integers. Then we have
Sdf (a) + Sdf (b), if 2|a and 2|6,

(1.13) Sdf (ab) <4 Sdf (a)+25df (b), if 2|a and 2|5,
' 25df (a) + 2Sdf (b)~1, if 2|a and 2|b.

Proof. By Theorem 4.13 of [4], if 2|a and 2|b, then

(1.14) Sdfla)y=2r, Sdf(b)=2s,
where r, s are positive integers. We see from (1.14) that
(1.15) al(2r)!t, bj(2s)!.
Notice that
(L16) @r+25)1t 27 (r+s)! _ (r+s)!=[l‘+s}
@rit@sH)t (2% MR- sy rls r
r+s r+s
where ( . ] is a binomial coefficient. Since ( . ) is a positive

integer, we see from (1.16) that
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(1.17) @2rt2s)t@2r+2s)!!
Thus, by (1.15) and (1.17), we get ab|(2r+2s)!!. It implies that

(1.18) Sdf(ab)<2r+2s, if 2|a and 2/b.
If 2|a and 245, then

(1.19) Sdfia)=2r, Sdf(b)=2s+1,

where a is a positive integer and s is a nonnegative integer. By (1.19),

we get |

(1.20) al(2r)!!, bj(2s+1)!1.

Notice that

(1.21) (2r+4s+2)!!= 225, (r+2s+1)! 2% s
2rt@2s+nn 27t 28 +1)!
_ 93, s!(r +2s +1)! e, s!(r +2s+ 1)1

ri(2s+1) r

We find from (1.21) that

(1.22) 2PHN@s+D)N(2r+4s+2)!1.
Thus, by (1.20) and (1.22), we obtain ab|(2r+4s+2)!!. It implies that
(1.23) Sdflaby<2r+4s+2, if 2/a and 2|b.
If2laand 2| b, then »
(1.24) Sdflay=2r+1, Sdfb)=2s+1,
where r, s are nonnegative integers. By (1.24), we get
(1.25) al(2r+1)1, bl(2s+1)!1.
Notice that
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(4r+4s+300  (dr+4s+3)1 210 (@2s)!
Cr+DU2s+DI @r+4s+2)0 2r+1)! Q2s+1)!
(4r +4s +3)! 27 7l 2% sl
T2 0 1254 D) (2r+ 1) (25 + 1)
rls! 4r+45+3
T (2r +25+12r +1,25 + 1)’

(1.26)

4r+4s+3
where {5, 2¢41 2,41 25+1) iS@ polynomial coefficient. Since

[ 4r +4s+3

is a positive integer and (2r+1)!!, (2s+1)!!
2r+25+1,2r+1,2s+1) P s _ ( I )

are odd integers, we see from (1.26) that

(1.27) 2r+)2s+)N|(4r+4s+3)1T
Thus, by (1.25) and (1.27), we get ab|(4r+4s+3)!!. It implies that
(1.28) Sdflab)<4r+4s+3,if2 |aand 2 | b.

The combination of (1.18), (1.23) and (1.28) yields (1.13). The »
theorem is proved.

Theorem 1.4 Let p be a prime and let a be a positive integer. The
we have
(1.29) | PISAp?).

Proof. Let m=Sdf(p”). By Theorem 4.13 of [4], if p=2, then m is
even. Hence, (1.29) holds for p=2. If p>2, then m is an odd integer
with
(1.30) pim!!
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We now suppose that p | m. Let ¢ be the greatest odd integer such that ¢
<m and pjt. Then we have
(1.31) mi=tl(t+2)*+(m-2)m,
where 2, --+, m-2, m are integers satisfying p+(++2):**(m-2)m. Therefore,
by (1.30) and (1.31), we get
(1.32) | Pl
By (1.32), we get m=Sdf(p?)<t<m, a contradiction. Thus, we obtain
plm. The theorem is proved.

Theorem 1.5 Let p be the least prime divisor of #. Then we have
(1.33) Sdf(n)=p.

Proof. Let m=Sdfin). By Theorem 4.13 of [4], if 2|n, then p=2

and m is an even integer. So we get (1.33).

If2|n,let n=p’pr ...pgt » where py, py, ***, p, are distinct odd
primes and a,, a,, ***, g, are positive integers. By Theorem 1.1, we get
(134) m=max(Sdf(p ) saf (pg:)...5a(p )}
Further, by Theorem 1.4, we have p; | Sdf (pf) fori=1,2, -, k.
It implies that Sdf(pf’ ) >p, fori=l,2, -, k. Thus, by (1.34), we

obtain

(1.35) ' m=Zmin(p,, p,, ***, D)=
The theorem is proved.

Theorem 1.6 For any positive integer n, we have
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n, if n=12,

2n, if n>2.
Proof. Let m=Sdf(n!). Then (1.36) holds for n=1, 2. If n>2, then

both n! and m are even. Since (2n)!!=2"n!, we get

(1.36) Sdf(n!)z{

(1.37) m<2n.

If m<2n, then m=2n-2r, where r is a positive integer. Since m=Sdf{n!),
_ ' ’l-f. _ ’ n-r

(138) (2n 2r)!.= 2" (n-r)! _ 2
n! n! (n=r+1)...(n=Dn

must be an integer. But, since either #-1 or # is an odd integer great
than 1, it is impossible by (1.38). Thus, by (1.37), we obtain m=2n.
The theorem is proved.

Theorem 1.7 The equality

(1.39) Sdf(n)y=n
holds if and only if # satisfies one of the following conditions:
(1) »=1,09.

(ii) n=p, where p is a prime.

(iii) n=2p, where p is a prime.

Proof. Let m=Sdfin). If 2 | n, let n=p'p;'...p* be the
factorization of n. By Theorem 1.1, we (1.34). Further, by Theorem
4.7 of [4], we have
(1.40) Sdf(p* )< p,i=1,2,.. k.

Therefore, by (1.34) and (1.40), we obtain
(1.41) mSmax(p,‘",pf’,...,pZ*)

It implies that if £> 1, then m<<n. If k=1 and (1.39) holds, then
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(1.42) m = Sdf(p )= po.
By Theorem 4.1 of [4], (1.42) holds for a=1. Since 2 | n, p, is an odd
prime. By Theorem 1.3, if (1.42) holds, then we have

(143)pf = m = Saf (pf" )= Sdf (p,p,...p.) < 2a; Sdf(p)~1=2a,p, -1
Since p, =3, (1.43) is impossible for a,>2. If a,=2, then from (1.43)
weget o
(1.44) pi'<4py-1,
whence we obtain p,=3. Thus, (1.39) holds for an odd integer » if and
only if n=1.9 or p, where p is an odd prime.

If 2|n, then n can be rewritten as (1.9), where #, is an odd integer
with n,2>1. By Theorem 1.2, if (1.39) holds, then we have
(1.45) n=2n, < max(Sdfi2°), 25df(n,)).
We see from (1.45) that if (1.39) holds, then either n,=1 or a=1.

When n=1, we get from (1.39) that a=1 or 2. When a=1, we get,
(1.46) 2n=Sdf(2n,).
It is a well known fact that if », is not an odd prime, then there exists a
positive integer ¢ such that t<<n, and n,| ¢!. Since (2))!1=2' « 1!, we get
(1.47) Sdf(2n))<2t<2n,,
a contradiction. Therefore, n, must be an odd prime. In this case, if
Sdf(2n)<2n,, then Sdf(2n,)=2n,-2r, where r is a positive integer. But,
since
(2n, - 2r ! 2% (n, ) 2% (g~ )

2n, 2n, n,

(1.48)

is not an integer, it is impossible. Thus, (1.39) holds for an even
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integer if and only if #=2p, where p is a prime. The theorem is proved.

2. The inequalities concerned Sdf{(n)

Let n be a positive integer. In [4], Russo posed the following
problems and conjectures.

2.1)

n n
< -

Sdf(n) 8
Problem 2.1. Is the inequality

true for any n?
Problem 2.2. Is the inequality
2.2) Sdf (n) - 1

0.73
n n

true for any n?
Problem 2.3. Is the inequality

(2.3) _ b
, n- Sdf (n)
true for any n?
(2.4) —1—+ 1 <n™*
n Sdf(n)

Problem 2.4. Is the inequality
true for any n with n>2?
Conjecture 2.1. For any positive number ¢, there exist some »
such that
2.5) S ()
n
In this respect, Russo [4] showed that if #n<X1000, then the
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inequalities (2.1), (2.2), (2.3) and (2.4) are true. We now completely
solve the above-mentioned questions as follows.

Theorem 2.1. For any positive integer #, the inequality (2.1) is
true. ‘ '

Proof. We may assume that »>1000. Since m!!<<945 for m=1,
2, -+, 9,if n>1000, then Sdfin)=10. So we have '

n n n

Safen 10 87
It ifnplies that (2.1) holds. The theorem is proved.

(2.6)

‘The above theorem shows that the answer of Problem 2.1 is “yes”.

In order to solve Problems 2.2, 2.3 and 2.4, we introduce the
following result.

Theorem 2.2. If n=(2r)!!, where r is a positive integer withr ==
20, then

2.7 Sdfin)<<n®!,
Proof. We now suppose that
(2.8) - Sdfn)=n.

Since n=(2r)!!, we get Sdf(n)=2r. Substitute it into (2.8), we obtain
that if »==20, then -

(2.9) 2r2(Q2r)In)*1=20 10 =020,

By the Strling theorem (see [1]), we have

(2.10) | r!>\/-_2m;(£)

Since r=20, we get r/e>/r . Hence, by (2.9) and (2.10), we obtain

r
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(2.11) 2rZ4(r)* > 4095 =4y,
a contradiction. Thus, we get (2.7). The theorem is proved.

By the above theorem, we obtain the following corollary immediately.

Corollary 2.1. If n=(2r)!!, where r is a positive integer with »=
20, then the inequalities (2.2), (2.3) and (2.4) are false.

The above corollary means that the answers of Problems 2.2, 2.3
and 2.4 are “no”.

Theorem 2.3. For any positive number € , there exist some
positive integers # satisfy (2.5).

Proof. Let n=(2r)!!, where r is a positive integer with r=20. By

Theorem 2.2, we have

(2.12) Sdf(n)<n°‘l: 1

09"
n n n

By (2.12), we get

¥y —> n

(2.13) 0.

Thus, by (2.13), the theorem is proved.

By the above theorem, we see that Conjecture 2.1 is true.

3. The difference |Sdf{n+1)-Sdf(n)|

In [4], Russo posed the following problem.
Problem 3.1. Is the difference |Sdf{n+1)-Sdf(n)] bounded or

unbounded?
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We now solve this problem as follows.

Theorem 3.1. The difference |Sdf{n+1)-Sdf(n)| is unbounded.

Proof. Let m be a positive integer, and let p be a prime. Further
let ord (p, m!) denote the order of p in m. For any positive integer a, it

is a well known fact that

3.) ord(p, al) = E[—a—].
k=l pk

(see Theorem 1.11.1 of [3]).

Let r be a positive integer. Then we have

(3.2) 27=2 ¢ 4-+-27=2% » 2711
where
(3.3) s=2r

By (3.1), (3.2) and (3.3), we get
(34)  ord(2, 2"11)=2""+ord(2, 27 1)=2" (2 M e 424 ] )=2" |
Let n=2', where t=2". Then, by (3.4), we get
(3.5) Sdf(n)=2"+2
On the other hand, then #+1=2"+1 is a Fermat number. By the
proof of Theorem 5.12.1 of [3], every prime divisor g of n+1 is the

- form g=2""'I+1, where / is a positive integer. It implies that

(3.6) _ q=2""+1.
Since #+1 is an odd integer, by Theorem 1.4, we get from (3.6) that
(3.7) Sdfint+1)=qg=2""+1.

We see from (3.8) that the difference |Sdf{in+1)-Sdf(n)| is unbounded.

Thus, the theorem is proved.

220



4. Some infinite series and products concerned Sdf{n)

In [4], Russo posed the following problems.

Problem 4.1. Evaluate the infinite series

(4.1) s=3 D
"1 Sdf (n)
Problem 4.2. Evaluate the infinite product
(42) P=fi——.
=\ Sdf (n)

We now solve the above-mentioned problems as follows.
Theorem 4.1, S=,
Proof. For any nonnegative integer m, let
-1 1
+ . :
Sdf(2m+1)  =8df(2'(2m +1))
By (4.1) and (4.3), we get

8

(4.3) g(m)=

(4.4) S= % g(m).
We see from (4.3) that
(4.5) g(0)=-1+ ! + ! + L +...
Sdf(2) Sdf(4) Sdf(8)
=—1+l+l+l+l+...>1.
2 4 4 6 6

For positive integer m, let =Sdf{2m+1). Then ¢ is an odd integer with ¢
=3. Notice that 2m+1|t!! and

(4.6) (2)11=2" 11,

We get from (4.6) that 22m+1)|(20)!! for j=1, 2, -+, ¢. It implies that
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(4.7) S 2m+1) <2t j=1,2, -, ¢.

Therefore, by (4.3) and (4.7), we obtain
‘ 1 1 1 1 1
4.8 S —t =t — —=—,
(48) e T YA Y

On the other hand, by Theorem 4.7 of [4], we have r<2m+1. By (4.8),

we get
1
4.9 >
(49) 8>  am+1)
Thus, by (4.4), (4.5) and (4.9), we obtain
(4.10) s>lyg 1

- —— =
6 m=12(2m+1)
The theorem is proved.
Theorem 4.2, P=0.
Proof. Since Sdfin)>1 if n>1, by (4.2), we get p=0 immediately.

The theorem is proved.

5. The diophantine equations concerned Sdf{n)

Let N be the set of all positive integers. In [4], Russo posed the
following problems.

Problem 5.1 Find all the solutions 7 of the equation

(5.1) Sdf(n)!=Sdf{n!), nEN.
Problem 5.2 [s the equation
(5.2) (Sdfin))Y=k = Sdfink), n, kEN, n>1, k>1

have solutions (n, k)?

Problem 5.3 Is the equation
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(5.3) Sdfimn)=m* * Sdfim), m, n, k<EN

have solutions (m, n, k)?
We now completely solve the above-mentioned problems as follows.
Theorem 5.1 The equation (5.1) has only the solutions n=1, 2, 3.
Proof. Clearly, (5.1) has solutions #»=1, 2, 3. We suppose that (5.1)

has a solution » with n>3. By Theorem 1.6, if n>>2, then

(5.4) ' Sdf(n)!=2n.
Substitute (5.4) into (5.1), we get
(5.9) Sdf(n)!=2n.

Let m=Sdfin). If n>3 and 2 | n, then n=5, m=5 and 4|m!.
However, since 2||2n, (5.5) is impossible.
If n>3 and 2|n, then m=2t, where is a positive integer with t>1.

From (5.5), we get

(5.6) 21)!=2n.
Since m=Sdf(n), we have n|(2¢)!!. It implies that
@) 2.2t 2.2 2

n @) @HNERE-DIY (221!
must be an integer. But, since > 1, it is impossible. Thus, (5.1) has no
solutions »n with n>3. The theorem is proved.
Theorem 5.2 The equation (5.2) has .only the solutions (n, £)=(2,
4)and (3, 3).
Proof. Let (n, k) be a solution of (5.2). Further, let m=Sdf{n). By

Theorem 1.3, we get
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(5.7 Sdf(nk)<<2 « Sdfin)+2 « Sdfik) =2(m+k).
Hence, by (5.2) and (5.7), we obtain
(5.8) m*<2k(m+k), m>1, k> 1.

If m=2, then from (5.8) we get £<<6. Notice that n=2 if m=2. We
find from (5.2) that if m=2 and k=<6, then (5.2) has only the solution
(n, B=(2, 4)

If m=3, then from (5.8) we get k<<3. Since »=3 if m=3. We see
from (5.2) that if m=2 and k<3, then (5.2) has only the solution (»,
k=(3, 3)

If m=4, then from (5.8) we get k<<2. Notice that n=4 or 8 if m=4
and #=5 or 15 if m=5. Then (5.2) has no solution (n, k). Thus, (5.2)
has only the solutions (#, £)=(2, 4) and (3.3). The theorem is proved.

Théorem 5.3. All the solutions (m, n, k) of (5.3) are given in the
following four classes:

(i) m=1, n and k are positive integers.

(i) n=1, k=1, m=1, 9, p or 2p, where p is a prime.

(iii) m=2, k=1, nis 2 or an odd integer with n=>1.

(iv) m=3, k=1, n=3.

Proof. If m=1, then (5.3) holds for any positive integers » and k.
By Theorem 1.7, if #=1, then from (5.3) we get (ii). Thus, (i) and (ii)
are proved.

Let (m, n, k) be a solution of (5.3) satisfying m>1 and n>1. By

Theorem 1.3, if 2|m and 2|n, then we have
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(5.9) Sdfimn)<Sdf{im)+Sdf(n). 7
Further, by Theorem 4.7 of [4], Sdfim)<m. Therefore, by (5.3) and
(5.9), we obtain
(5.10) m=(m*-1)Sdf(n).
When n=2, we get from (5.10) that m=2 and k=1.
When n>>2, we get Sdf(n)=4 and (5.10) is impossible.
If 2|m and 2 | n, then
61D Sdfimn) < Sdf(im)+2 « Sdf(n).
Notice that m=2, n is an odd integer with n=3, Sdf{(n)=3. We obtain
from (5.3) and (5.11) that
(5.12) m == Sdfim) =(m"-2)Sdf(n) =3(m*-2) =3(m-2).
From (5.12), we get m=2. Then, by (5.3), we obtain

(5.13) Sdf(2ny=2* « Sdfin).
Since Sdf(2n)<2n, we see from (5.13) that /=1 and
(5.14) Sdf(2n)=2 « Sdfin).

Notice that (5.14) holds for any odd fnteger n with n=1. We get (iii).

If 2 | m and 2|n, then we have

(5.15) Sdfimn)<2 * Sdfm)+Sdf(n).
By (5.3) and (5.15), we get
(5.16) 2m=2 « Sdfim)=(m*-1) * Sdfin).

When n=2, we see from (5.16) that m=3 and k=1. When n>2, we get
from (5.16) that 2m=4(m*-1)=4(m-1)>2m, a contradiction.
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If 2 | m and 2 | n, then we have
(5.17) Sdfimn)<2 « Sdfim)+2 « Sdfin)-1.
By (5.3) and (5.17), we get
(5.18) 2m-122 * Sdfim)-1=(mt-2) * Sdfn)=3(m*-2).
It implies that =1 and m=3 or 5. Wher m=3 and =1, we get from (5.3)
that
(5.19) Sdfi3n)=3 * Sdfin).
Since Sdf(3n)<Sdf(n)+6, we find from (5.19) that »=3. Thus, we get
(iv). When m=5 and k=1, we have
(5.20) Sdf(5n)=5 = Sdf(n).
Since Sdf(5n)< Sdf(n)+10, (5.20) is impossible. To sum up, the
theorem is proved.
Let p be a prime, and let M(p) denote the number of solutions x of

the equation

(5.21) Sdf(x)=p, xEN.
Recently, Johnson showed that if p is an odd prime, then
(5.22) N(p)=27372,

Unfortunately, the above-mentioned result is false. For example, by
(5.22), we get N(19)=2%=256. However, the fact is that N(19)=240. We
now give a general result as follows.

Theorem 5.4. For any positive integer ¢, let p(¢) denote the 1th
odd prime. If p=p(f), then
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(5.23) N(p)=Ti(a()+D)

where

(5.24) a(i):mg;(l:(i(;))zm }_[(A’(’p‘(s;{ 2D,,-=1,2,...,:—1.

Proof. Let x be a solution of (5.21). It is an obvious fact that
(5.25) x=dp.

where d is a divisor of (p-2)!!. So we have

(5.26) Mp)y=d((p-2)!),

where d((p-2)!!) is the number of distinct divisors d of (p-2)!!.
By the definition of (p-2)!!, we have

(5.27) (p-2)!1=(p(1)Y"D(p(2))@-++(p(t-1))"*",

where
5.28 a(D)=ord(p(i), (p-2)!), i=1, 2, ===, t-1.
(5.28)
Notice thet
—2)!
(5.29) (p-2=— P=D
(p-3)12 (P - 3),
2 !
2
We get

2
Therefore, by Theorem 1.11.1 of [3], we see from (5.28) and (5.30)
that a(i) (=1, 2, -+, t-1) satisfy (5.24). Further, by Theorem 273 of
[2], we get from (5.27) that

(5.30)0rd(p(0), (p - 2)1) =ord(p(i),(p~ 2)1) - ord(pa),(ﬁ—“—"’-)!}

227



(5.31) d((p-2)") = fr:xl'(a(i) +1).
Thus, by (5.26), we obtain (5.23). The theorem is proved.
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ON THE PSEUDO-SMARANDACHE
SQUAREFREE FUNCTION

Maohua Le

Abstract. In this paper we discuss various problems and conjectures
concered the pseudo-Smarandache squarefree function.
Keywords: pseudo-Smarandache squarefree function, difference,
- infinite series, infinite product, diophantine equation

For any positive integer », the pseudo-Smarandache squarefree
function ZW{(n) is defined as the least positive integer m such that m”
is divisible by n. In this paper we shall discuss various problems and
conjectures concered ZW(n).

1. The value onW(n)

By the definition of ZW(n), we have ZW(1)=1. For n>1, we give
a general result as follows.

Theoren 1.1. If n>1, then ZW(n)=pp,-:'p,, where p,, p,, ***, p;
are distinct prime divisors of n.

Proof. Let m=Z‘W(n). Let p,, p5, ***, p, be distinct prime divisors
of n. Since n|m", we get pjm for i=1, 2, ---, k. It implies that p,p,-*
Pum and
(1.1) m=ppyp,.

On the other hand, let i) (=1, 2, -*-, k) denote the order of p;

(=1, 2, -+, k) in n. Then we have
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logn
log p;
Thus, we see from (1.2) that (pp,---p,)" is divisible by ». It implies
that

(1.3) MSp\py Py
The combination of (1.1) and (1.3) yields m= p,p,**'p, . The theorem

(1.2) r(i) <

<n,i=12,...,k.

is proved.

2. The difference |ZW(n+1)-ZW(n))

In [3], Russo given the following two conjectures.

Conjecture 2.1. The difference |ZW(n+1)-ZW(n)| is unbounded.

Conjecture 2.2. ZW(n) is not a Lipschitz function.

In this respect, Russo [3] showed that if the Lehmer-Schinzel
conjecture concered Fermat numbers is true (see [2]), then Conjectures
2.1 and 2.2 are true. However, the Lehmer-Schinzel conjecture is not
resolved as yet. We now completely verify the above-mentioned
conjectures as follows.

Theorem 2.1. The difference |ZW(n+1)-ZW(n)| is unbounded.
Proof. Let p be an odd prime. Let #=2°-1, and let g be a prime
divisor of n. By a well known result of Birkhoff and Vandiver [1], we

have ¢g=2Ip+1, where [ is a positive integer. Therefore, by Theorem 1.1,

we get

(2.1) ZW(ny=ZW(2P-1)=q=2Ip+1=2p+1.
On the other hand, apply Theorem 1.1 again, we get

(2.2) ZW(nt1)=ZW(2r)=2.
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By (2.1) and (2.2), we obtain
(2.3) |[ZW(n+1)-ZW(n)|=2p-1.
Notice that there exist infinitely many odd primes p. Thus, we find
from (2.3) that the difference |ZW(n+1)-ZW(n)| is unbounded. The
theorem is proved. |

As a direct consequence of Theorem 2.1, we obtain the following
corollary.

Corollary 2.1. ZW(n) is not a Lipschitz function.

3. The sum and product of the reciprocal of ZW(n)

Let R be the set of all real numbers. In [3], Russo posed the
following two problems.
Problem 3.1. Evaluate the infinite product
= 1
=1 .
n=t ZW (n)

Problem 3.2. Study the convergence of the infinite series

(.1

(3.2) S(a)= ,a€eR,a>0.

""( ( )
We now completely solve the above-mentioned problems as
follows.
Theorem 3.1. P=0.
Proof. By Theorem 1.1, we get ZW(n)>1 for any positive integer
n with n>1. Thus, by (3.1), we obtain P=0 immediately. The theorem
1s proved.

Theorem 3.2. For any positive number a, S(a) is divergence.
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Proof. we get from (3.1) that

s

(3.3) S(a)=% 1 >5

" (ZW ()
By Theorem 1.1, we have
(3.4 ZW(2"=2
for any positive integer r. Substitute (3.4) into (3.3), we get

35) S(a)=§l% =c0.

We find from (3.5) that S(a) is divergence. The theorem is proved.

zw( )y

4. Diophantine equations concerning ZW(n)

Let N be the set of all positive integers. In [3], Russo posed the
following problems concerned diophantine equations.
Problem 4.1. Find all solutions # of the equation

4.1) LW(n)y=ZW(n+1)ZW(n+2), nEN.
Problem 4.2. Solve the equation

(4.2) ZW(n). ZW(nt+1)=ZW(n+2), nEN.
Problem 4.3. Solve the equation

(4.3) ZW(n). ZW(n+1)=ZW(n+2). ZW(n+3), nEN.
Problem 4.4. Solve the equation

(4.4) ZW(mn)y=m*ZW(n), m, n, kEN.
Problem 4.5. Solve the equation

(4.5) (ZW(n)Y=k. ZW(kn), k, n€EN, k>1,n>1.

Problem 4.6. Solve the equation
(4.6) (ZW(n))+ZW(n)) '+ -+ZW(n)=n, k, nEN, k>1.
In this respect, Russo [3] showed that (4.1), (4.2) and (4.3) have

232



no solutions » with n=<1000, and (4.6) has no solutions (n, k)
satisfying n<1000 and k<X5. We now completely solve the above-
mentioned problems as follows.

Theorem 4.1. The equation (4.1) has no solutions #.

Proof. Let n be a solution of (4.1). Further let p be a prime
divisor of n+1. By Theorem 1.1, we get p|ZW(n+1). Therefore, by
(4.1), we get p|ZW(n). It implies that p is also a prime divisor of .
However, since gecd (n, n+1)=1,‘ it is impossible. The theorem is
proved.

By the same method as in the proof of Theorem 4.1, we can prove
the following theorem without any difficult.

Theorem 4.2. The equation (4.2) has no solutions #.

Theorem 4.3. The equation (4.3) has no solutions 7.

Proof. Let n be a solution of (4.3). Further let p,, p,, ***, p, and qi
92 ***, g, be distinct prime divisors of n(n+1) and (n+2)(n+3)
respectively. We may assume that
(4.7) Di<py<r<p;,q,<q,;<-<gq,

Since ged (n, n+1)=ged (n+2, nt3)=1, by Theorem 1.1, we get
ZW(n). ZW(n+1)=p\p,*p,

4.8) ZW(nt2). ZW(n+3)=q,q,""*q,

Substitute (4.8) into (4.3), we obtain

(4.9) PPy Py,

By (4.7) and (4.9), we get k=t and

(4.10) p=q, i=1,2, - k.

Since ged (m+1, n+2)=1, if 2|n and p; (1<5/<<k) is a prime divisor
of n+l1, then from (4.10) we see that p; is an odd prime with p|n+3.
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Since ged (n+1, n+3)=1 if 2| n, it is impossible.

Similarly, if 2 | » and ¢; (i<;j<:k) is a prime divisor of n+2, then
g; is an odd prime with gj{n. However, since (n, n+2)=1if 2 | n, it is
impossible. Thus, (4.3) has no solutions ». The theorem is proved.

Theorem 4.4. The equation (4.4) has infinitely many solutions (.
n, k). Moreover, every solution (m, n, k) of (4.4) can be expressed as
(4.11) | m=p\p,***p,, "=t, k=1,
where p|, p,, ***, p, are distinct primes, ¢ is a positive integer with gcd
(m, t)=1.

Proof. Let (m, n, k) be a solution of (4.4). Further let d=gcd (m,
n). By Theorem 1.1, we get from (4.4) that

(4.12) ZW (mn) = ZW(g.n) = ZW(%:—).ZW(;?) = m* ZW (n).
Since ZW(n)70, we obtain from (4.12) that
(4.13) ZW(S—) =m".

Furthermore, since m=ZW(m), we see from (4.13) that k=d=1 and
m=p\p,***D,, Where p,, p,, ***, p, are distinct primes. Thus, the solution
(m, n, k) can be expressed as (4.11). The theorem is proved.
Theorem 4.5. The equation (4.5) has infinitely many solutions (n,
k). Moreover, every solution (n, k) of (4.5) can be expressed as
(4.14) n=2", k=2, r&N. .
Proof. Let (n, k) be a solution of (4.5). Further let d=gcd (n, k).
" By Theorem 1.1, we get from (4.5) that

(4.15)  ZW(nk)= kZW(n.S) = kZW(n).ZW(—S) = (ZW(n))".
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Since ZW(n)#0 and k> 1, by (4.15), we obtain

(4.16) kZW(§)=(ZW(n))"".
Since n>1, we find from (4.16) that k and » have the same prime
divisors.

Let p,, p,, ***, p, be distinct prime divisors of »n. Then we have
ZW(n)=pp,**p,. Since ZW(k/d)<k, we get from (4.16) that

(4.17) k> kZW(S) =ZWn)" =(p,p,...p,)"".
Since k>1, by (4.17), we obtain =1 and either |

(4.18) k=3, p,=3,

or

(4.19) k=2, p,=2.

Recall that k and » have the same prime divisors. If (4.18) holds, then
ZW(kidy=ZW(1)=1 and (4,16) is impossible. If (4.19) holds, then the
solution (n, k) can be expressed as (4.14). Thus, the Theorem is
proved.

Theorem 4.6. The equation (4.6) has no solutions (n, k).

Proof. Let (n, k) be a solution of (4.6). Further let m=ZW(n), and let p,,
P» °*°, p, be distinct prime divisors of n. By Theorem 1.1, we have

(4.20) n=p'py-..p s ZW(n)=pp,...p,
where q,, a,, -**, a, are positive integers. Substitute (4.20) into (4.6),
we get

a-l _a,-

(4.21) lfplpz...p, +...+(ppy...p) = pi peT L pa
Since ged (1, pypy---p)=1, we find from (4.21) that a,=a,="*-=a=1. It
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implies that 4=1, a contradiction. Thus, (4.6) has no solutions (», k).

The theorem is proved.
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THE EQUATION S(1.2)+8(2.3)+- -+S(n(,z+1))=S(n(n+1)(zz+2)/3)
Maohua Le

Abstract. For any positive integer q, let S(a) be the Smarandache
function of a. In this paper we prove that the title equation has only
the solution »=1.

Key words: Smarandache function, diophantine equation

Let N be the set of all positive integers. For any positive integer a,
let S(a) be the Smarandache function of a. Recently, Bencze [1]
proposed the following problem:

Problem Solve the equation
(1) St-2)+s(2 3)+---+ S{n(n + 1))= S(%n(n+ 1Xn+ 2)),11 eN.

In this paper we completely solve the above-mentioned problem
as follows.

Theorem The equation (1) has only the solution #=1.

Proof By the definition of the Smarandache function (see [2]), we
have S(1)=1, S(2)=2 and
(2) S(a)=3, a=3.
Since §(1.2)=5(1.2.3/3)=5(2), the equation (1) has a solution #=1.

Let n be a solution of (1) with n>1. Then, by (2), we get

@) S(-2)+8@-3)++S(r(n+1)22+3(n—1)=3n—1.
Therefore, by (1) and (3), we obtain |
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(4) S(—;n(n+l)(n+2))23n-l.

On the other hand, since (#+2)!=1.2:**n(n+1)(n+2), we get

©) %n(n+l)(n+2)l(n+2)!.
We see from (5) that
(6) | SG n(n+1)(n+ 2)) <n+2.

The combination of (4) and (6) yields
) n+223n-~1,
whence we get n<3/2<2. Since n=2, it is impossible. Thus, (1) has

no solutions 7 with n>>1. The theorem is proved.
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SOME CONJECTURES ON PRIMES ( I)

Maohua Le

Abstract. For any complex number x, let exp(x)=¢*. For any

positive integer n, let p, be the nth prime. In this paper we prove that

cxp(, [(n+ 1 )/ Dot )/ exp(, |p,/n )< exp(m )/ exp(\/3/—2 )

Key words: prime, inequality.

For any complex number x, let exp(x)=¢”. For any positive integer
n, let p, be the nth prime. Recently, Russo [2] proposed the following
conjecture:

Conjecture For any positive integer »,

Af2) ~f)
o) Al

In [2], Russo verified (1) for p,<10". In this paper we completely

@

solve the above-mentioned conjecture as follows.
Theorem For any positive integer n, the inequality (1) holds.
Proof We may assume that p,>10". Then we have n>1000.
It is a well known fact that
2) p>nlogn,
for any positive integer n (see [1]). By (2), we get
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3) exp(‘/}z )> exp(\[l@ )> exp(,/logl 000)> exp(2.6).

On the other hand, since p,,;>n+1, we get

4 exp(\/g - \/§+ fn il 1)<exp(\/g - \/g + 1J<exp(l.5)
Pru

The combination of (3) and (4) yields

©) exp(\[i: )> ex‘{\g _\EJFF}

Thus, by (5), we get (1) immediately. The theorem is proved.
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SOME CONJECTURES ON PRIMES (1)

Maochua Le

 Abstract. For any positive integer n, let p, be the nth prime.

In this paper we give a countef-example for the inequality

cxp(, /in +1 5/ Dol )/ exp(, Ip,/n kexp(m )/ exp(\/m )

Key words: prime, inequality

For any positive integer », let p, be the nth prime. Recently,
Russo [3] proposed the following conjecture:

Conjecture For any positive integer #,
W pu- )= paf< S+ 1P

In [3], Russo verified the equality (1) holds for p,<10". However,
we shall show that (1) is false for some n.

Let p, and p,., be twin primes. Then we have

(2) pn+l=pn+2'
If (1) holds, then from (2) we get
3) P, - 2n< —;-—(n +\\1)9/5°.

It is a well known fact that
(4 - p,>nlogn
for any positive integer n (see [2]). Therefore, by (3) and (4), we

obtain

241



5 A n(logn—2)<%(n+1)9/5°,n>6.

By [11, p,=297.2°%-1 and p,+1=297.2%%+1 are twin primes.
Then we have n>10'. Therefore, (5) is impossible. Thus, the

inequality (1) is false for some ».
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SOME CONJECTURES ON PRIMES (ITI)

Maohua Le

Abstract. For any positive integer n, let p, be the nth prime.

In this paper we prove that the equality

(\/;): —logp,., )/(\/;n: - logp”)z (\/5 - logS)/(\/g - log3)for any n.

Key words: prime, inequality.

For any positive integer », let p, be the nth prime. Recently,
Russo [2] proposed the following conjecture: -

Conjecture For any positive integer n,

(1) 'J—p_n - logplt+! > \/§~ logs
: Py —logp, J5-log3’
In [2], Russo verified the equality (1) holds for p,<X10’. In this

paper, we completely solve the above-mentioned problem as

follows.
Theorem For any positive integer n, the equality (1) holds.
Proof We may assume that p,>10". Since
V3 - log5
J5 - log3
if (1) is false, then from (2) we get
3) Jp,<logp,, +0.1/p,,,.
It is a well known fact that

(2) <0.11,
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(4) pn+l<2pn
for any positive integer n (see [1, Theorem 245]). Substitute (4)

into (3), we obtain

(5) 0.84./p,<log(2p, )
However, (5) is impossible for p,>10". Thus, the theorem is

proved.
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SMARANDACHE COSETS

W. B. Vasantha Kandasamy

Abstract

This paper aims to study the Smarandache cosets and derive some interesting
results about them. We prove the classical Lagranges theorem for
Smarandache semigroup is not true and that there does not exist a one-to-one
correspondence between any two right cosets. We also show that the classical _
theorems cannot be extended to all Smarandache semigroups. This leads to the
definition of Smarandache Lagrange semigroup, Smarandache p Sylow
subgroup and Smarandache Cauchy elements. Further if we restrict ourselves
to the subgroup of the Smarandache semigroup all results would follow
trivially hence the Smarandache coset would become a trivial definition.

Keywords:

Smarandache cosets, Smarandache Lagrange semigroups, Smarandache p-
Sylow subgroups, Smarandache Cauchy element, Smarandache Normal
subgroups and Smarandache quotient groups.

Definition [2]): The Smarandache semigroup is defined to be a semigroup A
such that a proper subset of A is a group (with respect to the same induced
operation). ‘

Definition 1. Let A be a Smarandache semigroup. A is said to be a
commutative Smarandache semigroup if the proper subset of A that is a group
is commutative.

If A is a commutative semigroup and if A is a Smarandache semigroup then A
is obviously a commutative Smarandache semigroup.

Definition 2. Let A be a Smarandache semigroup. H c A be a group under the
same operations of A. For any a € A the Smarandache right coset is Ha= {ha
/'h € H}. Ha is called the Smarandache right coset of H in A. Similarly left
coset of H in A can be defined.

Example I: Let Zi; = {0, 1, 2, ..., 11} be the Smarandache semigroup under
multiplication modulo 12. Clearly Z;; is a commutative Smarandache
semigroup. Let A = {3,9} be a subgroup of Z;; under multiplication. 9> = 9
(mod 12) acts as identity with respect to multiplication. For 4 € Z;; the right
(left) coset of A in Z,2 is 4A = {0}. For 1 € Z, the right (left) coset of A in Z;,
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is 1A = {3, 9}. Hence we see the number of elements in nA is not the same for
each n € Z;,.

Example 2. Z5= {0, 1, 2, ..., 8} be the commutative Smarandache semigroup
under multiplication modulo 9. A = {1, 8} and A, = {2, 4, 1, 5, 7, 8} are the
subgroups of Zs. Clearly order of A does not divide 9. Also order of A; does
not divide 9.

Example 3. Let S denote the set of all mappings from a 3-element set to itself,
Clearly number of elements in S is 27. S is a semigroup under the composition
of maps.

Now S contains S; the symmetric group of permutations of degree 3. The order
of Ssis 6. Clearly 6 does not divide order of S.

Thus we see from the above examples that the classical Lagrange theorem for
groups do not hold good for Smarandache semigroups. It is important to
mention here that the classical Cayley theorem for groups could be extended to

the case of Smarandache semigroups. This result is proved in [3]. For more
details please refer [3]. Thus:

Definition 3. Let S be a finite Smarandache semigroup. If the order of every
subgroup of S divides the order of S then we say S is a Smarandache Lagrange

semigroup.

Example 4. Let Zs = {0, 1, 2, 3} be the semigroup under multiplication. A =
{1, 3} is the only subgroup of Z;. Clearly |A}/4. Hence Z4 is a Smarandache
Lagranges semigroup.

But we see most of the Smarandache semigroups are not Smarandache
Lagrange semigroup. So one has:

Definition 4. Let S be a finite Smarandache semigroup. If there exists at least
one group, i.e. a proper subset having the same operations in S, whose order
divides the order of S, then we say that S is a weakly Smarandache Lagrange

semigroup.

Theorem 5. Every Smarandache Lagrange semigroup is a weakly
Smarandache Lagrange semigroup and not conversely.

Proof. By the very definition 3 and 4 we see that every Smarandache Lagrange
semigroup is a weakly Smarandache Lagrange semigroup.

To prove the converse is not true consider the Smarandache semigroup given in
Example 3. 6 does not divide 27 so S is not a Smarandache Lagrange
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12 312 3 1)13 1 2

order 3. Clearly 3 divides 27. Thus S is a weakly Smarandache Lagrange
semigroup.

semigroup but S contains subgroup say {(1 2 3}(1 2 3),(1 2 3)} of

Thus the class of Smarandache Lagrange semigroup is strictly contained in the
class of weakly Smarandache Lagrange semigroup.

Theorem 6. Let S = {1, 2, ..., n}, n> 3, be the set with n natural elements, S(n)
the semigroup of mappings of the set S to itself. Clearly S(n) is a semigroup
under the composition of mapping. S(n) is a weakly Smarandache Lagrange

semigroup.

Proof: Clearly order of S(n) = n". S, the symmetric group of order n!. Given n
> 3, n! does not divide n" for

n times 2! times
—,—
n® nx---xn nx---XN

n 1234--n-1n 12--n-1

Now since (n -1, n) = 1, that isn - 1 and n are relatively prime. We see n! does
not divide n". Hence the class of Smarandache semigroups S(n), n > 3, are
weakly Smarandache Lagrange semigroup.

Corollary. S(n) , n =2, is a Smarandache Lagrange semigroup.

Proof: Let n = 2. Then S(n) = {C ?)’G 2)(; f}(: ;J} IS()| =4. S, =

{G i}(; ?)} is the symmetric group of degree 2 and |S;| divides 4°. Hence

the claim.

Now the natural question would be: does there exist a Smarandache semigroup,
which are not a Smarandache Lagrange semigroup and weakly Smarandache
Lagrange semigroup? The answer is yes. The Smarandache semigroup Zy =
{0, 1, 2, .., 8} under multiplication given in example 2 does not have
subgroups which divides 9, hence the claim.

Now to consider the converse of the classical Lagrange theorem we see that
there is no relation between the divisor of the order of the Smarandache
semigroup S and the order of the subgroup S contains. The example is quite
interesting.
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Example 5: Let Zyp = {0, 1, 2, ..., 9} be the semigroup of order 10. Clearly Z;,
is 2 Smarandache semigroup. The subgroups of Zio are A; = {1, 9} , A2 = {2, 4,
6, 8} and A3z = {1, 3, 7, 9}, As = {4, 6}. Thus 4 does not divide 10, which
contradicts Lagrange’s theorem (that the order of a subgroup divides the order
of the group) in the case of Smarandache semigroup. Also Z;o has subgroups
of order 5 leading to a contradiction of the classical Sylow theorem (which
states that if p® divides the order of the group G then G has a subgroup of order
p”) again in the case of Smarandache semigroup. This forces us to define
Smarandache p-Sylow subgroups of the Smarandache semigroup.

Definition 7. Let S be a finite Smarandache semigroup. Let p be a prime such
that p divides the order of S. If there exists a subgroup A in S of order p or p' (t
>1) we say that S has a Smarandache p-Sylow subgroup.

Note. It is important to see that p* needs not to divide the order of S, that is
evident from Example 5, but p should divide the order of S.

Example 6. Let Zis= {0, 1, 2, ..., 15} be the Smarandache semigroup of order
16 =2% 'I‘hesubgmupsofzmareA; {1, 15}, A2={1,3,9,11}, As={1, 5,

9,13}, and A= {1,3,5,7,9,11, 13, 15} of order 2, 4, and 8 respectively.
Clearly the subgroup A is the Smarandache 2-Sylow subgroup of Z;s.

The Sylow classical theorems are left as open problems in case of
Smarandache p-Sylow subgroups of a Smarandache semigroup.

Problem 1. Let S be a finite Smarandache semigroup. If p/|S| and S has
Smarandache p-Sylow subgroup. Are these Smarandache p-Sylow subgroups
conjugate to each other?

Problem 2. Let S be a finite Smarandache semigroup. If p divides order of S
and S has Smarandache p-Sylow subgroups. How many Smarandache p-Sylow
subgroups exist in S$?

Let S be a finite Smarandache semigroup of order n. Let a € S now for some r
> 1, ifa’ = | then in general r does not divide n.

Example 7. Let S = {1, 2, 3, 4, 5} be the set with 5 elements S (5) be the
semigroup of mappings of S to itself. S(5) is a Smarandache semigroup for
S(5) contains Ss the permutation group of degree 5. Clearly |S(5)| = 5°. Now

I'2345 123 4 5)
. Cl 1 = j 7
(2 3 41 5) € 5(5). Clearly (2 3 41 SJ identity element of S(5),

but 4 does not divide |S(5)| = 5°. Thus we define Smarandache Cauchy
element.
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Definition 8. Let S be a finite Smarandache semigroup. An elementa € A, A
c S, A the subgroup of S, is said to be a Smarandache Cauchy element of S if
a’ =1 (r>1), | unit element of A, and r divides the order of S; otherwise a is
not a Smarandache Cauchy element.

Problem 3. Can we find conditions on the Smarandache semigroup S so that
every element in S is a Smarandache Cauchy element of S?

Problem 4. Let Z, be the Smarandache semigroup under usual multiplication
modulo n. Is every element in every subgroup of Z, is a Cauchy element of Z,?
(n is not a prime.)

Remark: Zn = {0, 1, 2, .., n-1} is a Smarandache semigroup under
multiplication. Clearly every x in Z, is such that X" = 1 (r > 1), but we do not
whether every element in every subgroup will satisfy this condition. This is
because the subgroups may not have 1 e Z, as the identity element.

Definition 9. Let S be a finite Smarandache semigroup, if every element in
every subgroup of S is a Smarandache Cauchy element; then we say S is a
Smarandache Cauchy semigroup.

Theorem 10. Let S(n) be the Smarandache semigroup for some positive
integer n. S(n) is not a Smarandache Cauchy semigroup.

Proof: Clearly S, is a subgroup of S (n). We know |S (n)] =n"and |S,|= n .
But S, contains elements x of order (n-1), and (n-1) does not divide n". So S (n)
is not a Smarandache Cauchy semigroup.

Thus we see the concept of the classical theorem on Cauchy group cannot be
extended to finite Smarandache semigroups.

Theorem 11. There does not exist in general a one-to-one correspondence
between any two Smarandache right cosets of A in a Smarandache semigroup
S.

Proof: We prove this by the following example. Let S=Z;0= {0, 1, 2, ...,9}. A
= {1, 9} is a subgroup of S. A, = {2, 4, 6, 8} is a subgroup of S. 3A = {3,7}
and 5A = {5}. Also 5A; = {0} and 3A; = A;. So there is no one-to-one
correspondence between Smarandache cosets in a Smarandache semigroup.

Theorem 12. The Smarandache right cosets of A in a Smarandache semigroup

S does not in general partition S into either equivalence classes of same order
or does not partition S at all.
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Proof: Consider Zo given in the proof of Theorem 12. Now for A = {1, 9} the
subgroup of Zo that is the coset division of Zjo by A are {0}, {5}, {1, 9},
{2.8}, {3, 7} and {4, 6}. So A partitions S as cosets the Smarandache
semigroup into equivalence classes but of different length. But for A, =
{2,4,6,8} is a subgroup of Zjo. 6 acts as the identity in A,. Now the coset of
division of Zio by A; is {2,4,6,8} and {0} only. Hence this subsets do not
partition Z[o.

Problem 5. Does there exist any Smarandache semigroup S such that there is
one-to-one correspondence between cosets of A in S?

Now we proceed to define Smarandache double cosets of a Smarandache
semigroup S.

Definition 13. Let S be a Smarandache semigroup. A = Sand B c S be any
two proper subgroups of S. For x € S define AXB= {axb/a e A, b € B}. AxB
is called a Smarandache double coset of A and Bin S.

Example 8: Let Zyo = {0, 1, 2, .., 9}. A= {1, 9} and B = {2, 4, 6, 8} be
subgroups of the commutative Smarandache semigroup of order 10. Take x =5
then AxB = {0}. Take x =3 then AxB = {2, 4, 6, 8}. Forx =7, AxB = {2, 4, 6,
8}. Thus Zyo is not divided into equivalence classes by Smarandache double
cosets hence we have the following theorem.

Theorem 14. Smarandache double coset relation on Smarandache semigroup S
is not an equivalence relation on S.

Definition 15. Let S be a Smarandache semigroup. Let A be a proper subset of
S that is a group under the operations of S. We say A is a Smarandache normal
subgroup of the Smarandache semigroup S if XA — A and Ax c A orxA = {0}
and Ax= {0} forall x € Sif 0 is an element in S.

Note. As in case of normal subgroups we cannot define xAx'= A for everyx €
S, x! may not exist. Secondly if we restrict our study only to the subgroup A it
has nothing to do with Smarandache semigroup for every result is true in A as
A is a group.

Example 9. LetZ,,={0,1,2,...,9} be a Smarandache semigroup of order 10.
A = {2,4,6,8} is a subgroup of Z,o which is a Smarandache normal subgroup of
Zyo. It is interesting to note that that order of the normal subgroup of a
Smarandache semigroup needs in general not to divide the order of the
Smarandache semigroup. So if we try to define a Smarandache quotient group
it will not be in general a group.
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Definition 16. Let S be a Smarandache semigroup and A a Smarandache
normal subgroup of S. The Smarandache quotient group of the Smarandache

semigroup S is —i—:{Ax/xeS}.

Note.% in general is not a group, it is only a semigroup. Further, as in classical
group theory, the number of elements in % or in A or in S look in general not

to be related. Earlier example of Zo, |Zio| = 10, |A| = 4 and sz_l =2 proves

this note.
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SMARANDACHE LOOPS

W. B. Vasantha Kandasamy

Abstract

In this paper we study the notion of Smarandache loops.

We obtain some interesting results about them. The notion of
Smarandache semigroups homomorphism is studied as well in
this paper. Using the definition of homomorphism of
Smarandache semigroups we give the classical theorem of
Cayley for Smarandache semigroups. We also analyze the
Smarandache loop homomorphism. We pose the problem of
Jfinding a Cayley theorem for Smarandache loops. Finally we
show that all Smarandache loops L,(m) for n > 3, n odd,
varying n and appropriate m have isomorphic subgroups.

Keywords:

Loops, Bruck Loop, Bol loop, Moufang loop, Smarandache loop, power
associative loop, right or left alternative loop, Smarandache semigroup
homomorphism, Smarandache loop homomorphism.

Definition [1, Bruck]:

A non-empty set L is said to form a loop if on L is defined a binary operation
called product denoted by 'e' such that

1. Fora,beL,wehaveaebel

2. ThercexistsanelementeeLsuchthataoe=e-a=aforallaeL(ecalled
identity element of L)

3. For every ordered pair (a,b) € L x L there exists a unique pair (x, y) € L x L such
thataex=bandyea=b.

By a loop, we mean only a finite loop and the operation "' need not always be

associative for a loop. A loop is said to be a Moufang Loop if it satisfies any one of the
following identity.

L. (xy)z=) = (x(yz))x
2. ((x)2)y=x(y(zy))
3. x((xz) = ((xy)x)z

forallx,y,ze L.
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A loop L is said to be Bruck Loop if x(yx)z = x(y(xz)) and (xy)' = x"'y" for all x,
¥, z € L. L is a Bol Loop if (xy)2)y = x((yz)y) for all x, y, z € L. L is a right
alternative loop if (xy)y = x(vy) for all x, y € L and left alternative if (xx)y = x(xy). L
is said to be an alternative loop if it is both a right and a left alternative loop. A loop L
is said to be power associative if every element generates a subgroup. L is said to be
di-associative if every 2 elements of L generates a subgroup. Let L,(m )= (e, 1,2,3,
- » 1) be a set where n> 3, n is odd and m is a positive integer such that (m,n)=1 and
(m-1 ,n)=1 with m <n. Define on L,(m) a binary operation 'e' as follows .

1. esi=iee=iforallie Ly(m)

2. isji=foralli e Ly(m)

3. i0j=twheret=(mj-(m-1)i)(modn)forallinel.,.(m)i;tj,i;teandj;te.
Lu(m) is a loop.
We call this a new class of loops.

For more about loops and its properties please refer to [1], [S] , [61, [7], [8], [9],
[10],[11], [12] and [13].

Definition 1:

The Smarandache Loop is defined to be a loop L such that a proper subset A of Lisa
subgroup (with respect to the same induced operation). That is ¢ £ A L.

Example 1

Let L be a loop given by the following table

® Clarl @& ja|a)as|a | ay
a C la | aJafa|as| a | ar
a | € A | A |3 | a3 | a7 | a4
CE 1l & as € | | a jag| a4 | a

Q| d | & € | & | a4 | a3 | as
a | a4 | 3 | a3 | a7 C | | as | az
a7 @ | a | a | a4 | a e a | ag
A4 | 3 | 8 gl ajas | a € as
ar | a7 | a4 | a | as | a | a | a; -

L is a Smarandache loop. For the pair (e, a2) is a subgroup of L.
Theorem 2

Every power associative loop is a Smarandache loop.
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Proof

By definition of a power associative loop every element in L generates a
subgroup in L. Hence the proof.

Theorem 3
Every di-associative loop is a Smarandache loop.
Proof

Since in a di-associative loop L every two elements of L generate a subgroup in L.
So every di - associative loop has subgroups, hence L is a Smarandache loop.

Theorem 4

Every loop Ly(m) for n >3, n an odd integer. (n,m) = (n, m-1) = 1withm<nisa
Smarandache loop.

Proof

Since L,(m) is power associative we have for every a in Ly(m) is such that a*> = e,
{a,e} forms a subgroup for every a in L,(m). Hence the claim. Thus it is interesting to
note that for every odd integer n there exists a class of Smarandache loops of order n+
1. For a given n > 3, n odd we can have more than one integer m, m < n such that
(m,n) = ( m-1, n) = 1. For instance when n = 5 we have only 3 Smarandache loops
given by Ls(2), Ls(3) and Ls(4).

Definition 5

The Smarandache Bol loop is defined to be a loop L such that a proper subset A of L is
a Bol loop ( with respect to the same induced operation ). That is ¢ #AcS.

Note 1 - Similarly is defined Smarandache Bruck loop, Smarandache Moufang loop
and Smarandache right ( left ) alternative loop.

Note 2- In definition 5 we insist that A should be a subloop of L and not a subgroup of
L. For every subgroup is a subloop but a subloop in general is not a subgroup. Further
every subgroup will certainly be a Moufang loop, Bol loop, Bruck loop and right( left)
alternative loop, since in a group the operation is associative. Hence only we make the
definition little rigid so that automatically we will not have all Smarandache loops to
be Smarandache Bol loop, Smarandache Bruck loop, Smarandache Moufang loop and
Smarandache right (left) alternative loop. -

Theorem 6

Every Bol loop is a Smarandache Bol loop but every Smarandache Bol loop is not a
Bol loop.
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Proof

Clearly every Bol loop is a Smarandache Bol loop as every subloop of a Bol loop
is a Bol loop. But a Smarandache Bol loop L is one which has a proper subset A
which is a Bol loop. Hence L need not in general be a Bol loop.

Definition 7

Let S and S’ be two Smarandache semigroups. A map ¢ from S to S’ is said to be a
Smarandache semigroup homomorphism if ¢ restricted to a subgroup A S and A’
< §' is a group homomorphism, thatis ¢ : A< S — A’ S’ is a group homomorphism.
The Smarandache semigroup homomorphism is an isomorphism if $:A—> A’ isone
to one and onto.

Similarly, one can define Smarandache semigroup automorphism on S.

Theorem 8

Let N be any set finite or infinite. S(N) denote the set of all mappings of N to itself,
S(N) is a semigroup under the composition of mappings. S(N), for every N, is a
Smarandache semigroup.

Proof

S(N) is a semigroup under the composition of mappings. Now let A(N) denote
the set of all one to one mappings of N. Clearly ¢ = AN) < S(N) and AN) is a
subgroup of S(N) under the operation of composition of mappings, that is A(N) is the
permutation group of degree N. Hence S(N) is a Smarandache semigroup for all N> 1.

Example 2

Let S = {set of all maps from the set (1, 2, 3, 4) to itself} and S’ = {set of all map
from the set (1, 2, 3, 4, 5, 6) to itself}. Clearly S and S’ are Smarandache semigroups.
For A = S, is the permutation subgroup of S and A’ = S is also the permutation
subgroup of S'. Define the map ¢ : S — S', $(A) = B’ = {set of all permutations of (1,
2, 3, 4) keeping the positions of 5 and 6 fixed} c A’. Clearly ¢ is a Smarandache
semigroup homomorphism.

From the definition of Smarandache semigroup homomorphism one can give the
modified form of the classical Cayley’s theorem for groups to Smarandache
semigroups.

Theorem 9 (Cayley's Theorem for Smarandache semigroups)

Every Smarandache semigroup is isomorphic to a Smarandache semigroup of
mappings of a set N to itself, for some appropriate set N.
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Proof

Let S be a Smarandache semigroup. That is there exists a set A, which is a proper
subset of S, such that A is a group (under the operations of S ), that is ¢=A cS. Now
let N be any set and S(N) denotes the set of all mappings from N to N. Clearly S(N) is
a Smarandache semigroup. Now using the classical Cayley' s theorem for groups we
can always have an isomorphism from A to a subgroup of S(N) for an appropriate N.
Hence the theorem.

Thus by defining the notion of Smarandache semigroups one is able to extend the
classical theorem of Cayley. Now we are interested to finding the appropriate
formulation of Cayley's theorem for loops.

It is important to mention here that loops do not satisfy Cayley's theorem but for
Smarandache loops the notion of Cayley's theorem unlike Smarandache semigroups is
an open problem.

Definition 10

Let L and L' be two Smarandache loops with A and A’ its subgroups respectively. A
map ¢ from L to L' is called Smarandache loop homomorphism if ¢ restricted to A is
mapped to a subgroup A’ of L', that is ¢ : A — A’ is a group homomorphism. The
concept of Smarandache loop homomorphism and automorphism are defined in a
similar way.

Problem 1  Prove or disprove that every Smarandache loop L is isomorphic with a
Smarandache Loop L' or equivalently

Problem2  Can aloop L’ be constructed having a proper appropriate subset A’ of
L’ such that A’ is a desired subgroup ¢ A’ c L’ ?

Problem3  Characterize all Smarandache loops which have isomorphic subgroups ?

Example 3

Let Ls(3) be a Smarandache loop given by the following table

WAl [l
—lWlalo (NN

A=l (i wWlw

Nl [=jWinji]d
RN IE - SEI L IR RS

i —{o e
wlisdlwiNl~|lolo
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and L(3) is another Smarandache loop given by the following table

A=Wl |Qlo [l

MININO O\ =W S

—lWRla Q]|

WA= [Nl WwW| W
O =W O
O INIBRIN={WIWn[(N]

WD QNN D ||

NI DD WIN(-=la]e
Qlo|u|slwlvi=]lo e

These two loops have isomorphic subgroup, for Ly(3) and Ls(3) have subgroups of
order 2.

Theorem 11

All Smarandache loops L,(m), where n > 3 , n odd, for varying n and appropriate m,
have isomorphic subgroups.

Proof

All Smarandache loops L.(m) have subgroups of order 2. Hence they have
isomorphic subgroups.

Note- This does not mean L,(m) cannot have subgroups of order other than two. the
main concern is that all loops Lu(m) have subgroups of order 2.
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Abstract

The aim of this article is to present a discrete model for histogram shaping. This is
an important image transformation with several practical applications. The model that is
proposed is based on a generalization of the inferior part function. Finally, an algorithm
based on this model is developed.

Key Words: histogram, histogram shaping, discrete random variable.

1 Introduction

Histogram equalization or histogram flattening is one of the most important nonlinear point
operations. This transformation aims to distribute uniformly the gray levels of the input image
such that the histogram of the output image is flat. Histogram equalization has been studied
for many years (see [1], [3], [4]) and many practical applications have been proposed so far. A
direct generalization of this transformation is represented by histogram shaping or histogram
specification (see (1], [3]). The idea of histogram shaping is to transform the input image
into one which has histogram of a specific shape. Obviously, when the output shape is flat,
histogram equalization is obtained. Both histogram equalization and histogram shaping have
become classical image transformations, therefore it has been quite difficult to find the initial
reference source. One of the earliest references about is [2).

The mathematical model of histogram equalization and shaping is based on stochastic ap-
proach. Let us consider that the input digital image is f = (fiz: i=12,..,n; j=1,2,..,m)
where

1<fi; <G

represents the gray value of pixel (4, 7). The probability or frequency of gray level k € 1,...,G is

defined by o

where #{(1,7) : f(i,7) = k} gives the number of pixel with the gray level equal to k. Based on
these probabilities, the digital image f can be considered a discrete random variable

=1,..,G, (1)

(1 2 .. G
”f‘(p,(l) 2@ - pf(G)) @

for which ch’;l ps(k) = 1. Recall that the cumulative probability distribution of Dy is
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k
P {1,2,...G} = [0,1], Pr(k) =3 ps(0). (3)
=0

A more productive approach is to consider the digital image as a continuous random variable p IE
[0,00) — [0,1] such that f° ps(z)dz = 1. In this case the cumulative probability distribution is

Py : [0,00) — [0,1), Py(z) = /0 *ps(t)dt.

Based on this continuous model the histogram shaping transformation can be defined more
easily. Consider that the input digital image f is transformed such that the histogram of the
output image g has a shape given by the cumulative distribution Q : [0,00) — [0,1). The
equation that gives histogram shaping is [3]

9=Q7 (). (4)

The main inconvenience arising form Equation(4) is represented by the inverse function QL.
Firstly, because the calculation of Q~! might not be easier even for simple shapes. Secondly, we
cannot define Q=1 for the discrete case therefore it would be difficult to apply (4) to a discrete

' computation. Perhaps, this is the real reason for seeing no discrete models for histogram shaping.
In the following we will propose a discrete model for this transformation.

2 The Superior Smarandache f-Part

In order to propose an equation for the discrete case, we have to find a substitute for Q1. This
is given by the Superior Smarandache f-Part , which represents a direct generalization of the
classical ceiling function. Smarandache proposed [5] a generalization of the ceiling function as
following. Consider that f : Z — R an increasing function such that limy . f(n) = —00 and
limn o f(m) = co. The Superior Smarandache f-Part associated with f is fI : B — Z defined
by

)=k & fk—-1) <z < f(k).

Smarandache studied this function in relation to some functions of N umber Theory and proposed
several conjectures on them [6]. Tabirca also studied the Superior Smarandache f-Part [7] when
f(n) = %44 and proposed equations for fI when a = 0,1,2. Tabirca also applied this
function to static parallel loop scheduling [8].

Now, we propose a version of the Superior Smarandache f-Part for our discrete case. Consider
that f : {1,2,...,G} — (0,1] is an increasing function such that J(G) = 1. We also consider
that this function is extended to 0 with f(0) =0. The Superior Smarandache f-Part associated
with f is fl1: (0,1] — {1,..., G} defined by

@)=k & flk—1) <z < f(k), Vz e, 1]. (5)

This function is also extended in 0 by f0(0) = 0.
Some properties of the function fU are proposed in the following.

Theorem 1

k) =k, VE€{1,2,..,G}. (6)
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Proof The proof is based on the definition of f! and on the double inequality
fk=1) < f(k) < f(k).

®

Theorem 2
221 (@) <z +sup(f(k+1) - F(®), Vz € (0,1]. (7

Proof

Let us denote k = fI(z). The definition of fll provides f(k — 1) <z < f(k). From this
equation, it directly follows that z < f(fI(x)). ‘
The second part of Equation (7) comes from the following implication:

fR)<fk)+z—fk-1)=>
1 (@) <z+su(7k) - (k- 1).
®
Based on these properties, the histogram shaping model of the discrete case is proposed.
3 Histogram Shaping for the Discrete Case
Consider that the input image f = (f;;: i=1,2,...,n; J=1,2,...,m) is transformed into the
output image g = (g5 : i=1,2,...,n; j =1,2,...,m) such that the histogram of g has a certain

shape. Let us presume that the shape of the output histogram is given by the discrete random
variable

1 2 .. G
ph:(pf.(l) M@ - m(G) ) ®)

where ¢ pu(k) = 1.
The general equation of histogram shaping is similar with Equation (4) but P,l,] is used in
place of P, Let consider that the equation of image g is

96,3) = PL(P{(fG, 7)), ¥ (i,5) € {1, ey} x {1,2, .., m}. (9)

We prove that the cumulative probability distribution of g is very close to the cumulative
probability distribution of A.

Theorem 3
Py(k) = Pr (PF (Pu (k) , VK € {1,2,..,G}. (10)

Proof The proof is given by the following transformations:

k
Py(k) =Prlgli, ) <k = > Pr[Pl(Pi(fG,0)) =1] =
=1,
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k
= S PrlPull - 1) < Py(f(i, 1)) < PaQ)] =
=1

k
=Y Pr[P] (Pl - 1)) < PR(Pr(£(i,5))) < PR (Pu(D)] =
I=1

k
= > Pr[{f(id) < P} (P} = {7, 5) < PR (Rut - 1)}] =

1

(Pr [1G.5) < PP - Pr [16,9) < B} Pt - 1))]) =
I

l=
k
=1

=3 (P (P} ) - By (PY (Pat - 1)) =

I=1
= Py (P} (Pu(k))) — Py (P} (Pu(0)))
Since Py (P} (Pa(0))) =0 we find that Py(k) = P; (P} (Pu(K))) holds.
o

From Theorems 2 and 3 the following equation is directly obtained.

Pu(k) < Py(k) < Pu(k) +sup (Pr(j +1) — Py(§)), VK €{0,1,..,G —1}. (11)

Equation (11) provides an estimation of the gap between the quantities P, (k) and P,(k). When
sup; (P(j + 1) — Ps(j)) is smaller these two quantities are very close. Although Equation (11)
does not give a perfect equality we can say that the histogram of the image g has the shape very
close to h.

The algorithm based on this model firstly finds the functions Py, Py and PJ. Secondly,
Equation (9) is applied to obtain the value g(i, §) for each pair (2,7). A full description of this
algorithm is presented below.

Inputs:

n,m - the image sizes.

f=(f[i,j]: i=1,...,n; j=1,...,m) - the input image.

p_h=(p_h[i]: i=1,...,G) — the desired shape.
OQutput:

g=(gli,jl: i=1,...,n; j=1,...,m) - the input image.
double P_h{(int k){

double 8=0;

if (k<=0 || k>G) return 0;

for(int i=1;i<=k;i++)s=s+p_h[i];

return s;

}

int P_h_Inv(double x){
int k;

if (x<=0 |1 x>1) return 0O;
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Figure 1: Lenna’s picture 1.

for (k=0;P_h (k)<=x;k++);
return k-1;

double P_f(int k){
double s=0, p_f[G];
if (k<=0 || k>G) return 0;
for(int i=1;i<=G;i++)p_f[i]=0;
for(int i=1;i<=n;i++)for(int 3=1;3<=m; j+$)p_£[£[i,j]11=p_£[£[i,j11+1./(n*m);
for(int i=1;i<=k;i++) s=s+p_h[i];
return s;
}
int [J[ Hist_Shaping(int n, int m, int fFO0)
int g[n][m];
for(int i=1ji<=n;i++)for(int j=1;j<=m;j++)
gli,jl = P_h_Inv(P_£(£[i,j1));
return g;

In order to show that the algorithm performs well we consider an example presented in [1].
Histogram shaping can be used to compare two images of the same scene, which have been taken
under different lighting conditions. When the histogram of the first image is shaped to match
in the histogram of the second image, the lighting effects might be eliminated.

Consider that we have the images presented Figures 1 and 2. They are two different Lenna’s
images where the second one has a poor lighting. Each image also contains the histogram for
the red channel. The histogram shaping algorithm was applied to transform the second image
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Figure 2: Lenna’s picture 2.

according to the histogram of the first image. Figure 3 shows the resulting image which is the
same as the first image. Moreover, the histograms of the first and third images are very alike
with similar positions for peaks and valleys.

4 Conclusions

This article has introduced a discrete model for the histogram shaping transformation. The
model that has been proposed uses the Smarandache ceiling function and is based on the equation
g= P,[,] (P¢(f)). A example has been also presented in order to prove that the method is viable.
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On an additive analogue of the function S

Jézsef Sandor

Babeg-Bolyai University, 3400 Cluj-Napoca, Romania

The function S, and its dual S, are defined by
S(n) =min{m € N: n|m!};
Si(n) =max{m € N: mlln} (seee.g. [1])

We now define the following ”additive analogue”, which is defined on a subset of real

numbers.
Let
S(z)=min{m eN: z<ml}, ze(1,00) (1)
as well as, its dual
Si(z)=max{meN: mI <z}, z€[l,00). @

Clearly, S(z) = m if z € ((m — 1), m!] for m > 2 (for m = 1 it is not defined, as
0! = 1! = 1), therefore this function is defined for z > 1.

In the same manner, S.(z) =m if z € [m!,(m+ 1)) for m > 1, i.e. S, : [1,00) = N
(while S': (1, 00) — N).

It is immediate that

S(z) = Sz +1, if ze &, (k+1)) (k> 1) 3)
S.(z), if z=(k+1)! (k>1)
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Therefore, S.(z) + 1 > S(z) > S.(z), and it will be sufficient to study the function
S.(z).

The following simple properties of S, are immediate:

1° S, is surjective and an increasing function

2° 5, is continuous for all z € [1, 00)\ 4, where A = {k!, k > 2}, and since :11/1‘12' S.(z) =
k-1, }1\1113! S.(z) =k (k 2 2), S, is continuous from the right in z = k! (k> 2), but it is
not continuous from the left. |

S.(z) — S.(k))

3° S, is differentiable on (1,00) \ 4, and since ﬁ\’,% = 0, it has a right-

z— k!
derivative in AU {1}.
4° S, is Riemann integrable in [a, b} C R for all a < b.
a) If [a, ] C [K!, (K + 1)!) (E > 1), then clearly
b
/ S.(z)dz = k(b a) @)

b) On the other hand, since

n (k+1)! (k+2)! (k+i-k)!
L=+ e s /
kt k! (k+1)1 (k+1-k-1)!
(where | > k are positive integers), and by
(k+1)! _ ’
/ Su(@)dz = K(k + 1) ~ K] = K2 - kt 5)
Kt

we get
u

S.(z)dz =K® - k! + (B+1*(k+ D!+ + [+~ k= DRk + (I — k —1)] (6)
k!

¢) Now, if a € [k!, (k+1)1], b € !, + 1)1), by

b (k+1)! l k
L=l
[ [ (k+1)! i
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and (4), (5), (6), we get:

be,(x)dx =k[(k+1)1—al+ (k+ Dk + 1)l +...+

HE+1+(—k=2)Pk+1+ -k ~-2)] +1b~1) (7)

We now prove the following

Theorem 1.
logz
loglogz

S.(z) ~ (z — o0) (®)

Proof. We need the following

z,
Lemma. Let r, > 0, y, > 0, y—" — a > 0 (finite) as n — oo, where z,,,y, — 0o
n

(n — 00). Then
log z,,
log s

-1 (n— o). 9

Proof. lo ? — loga, ie. logz, — logy = loga + £(n), with g(n) = 0 (n — 00). So
logzn _y_loga  e(n) 0. o0.0-0
log yn logy,  logyn

nlog log n!

log n!

1;

Lemma 2. a)

logn!
by ——27% _
) log(n + 1)! -
loglogn!

K log log(n + 1)!

Proof. a) Since n! ~ Ce™"n™*Y/2 (Stirling’s formula), clearly logn! ~ nlogn, so b)

follows by l_o—gl(c;g_*il) ~ 1 ((9), since nL—i-l ~ 1). Now c) is a consequence of b) by the

—lasn— o (10)

Lemma. Again by the Lemma, and logn! ~ nlogn we get

loglogn! ~ log(nlogn) = logn + loglogn ~ logn

and a) follows.
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Now, from the proof of (8), remark that

nloglogn!  S.(z)loglogz < nloglog(n + 1)!
log(n + 1)! logx logn!

and the result follows by (10).
1

Theorem 2. The series ZW is convergent for a > 1 and divergent for
n=1 *
a<l.
Proof. By Theorem 1,
logn logn
S < B——
loglogn ( )< loglogn

(A,B > 0) for n > ng > 1, therefore it will be sufficient to study the convergence of
i (loglogn)=

n(logn)e

n2nog

The function f(z) = (loglog z)?/z(log =)™ has a derivative given by
z*(log z)* f'(z) = (loglog z)**(log £)*"![1 - (loglog 7)(log z + )]

implying that f'(z) < O for all sufficiently large = and all @ € R. Thus [ is strictly
decreasing for z > ;. By the Cauchy condensation criterion ([2]) we know that E ay &
Z2“a2n (where «» means that the two series have the same type of convergence) for

(az) strictly decreasing, a,, > 0. Now, with a,, = (loglog n)%/n(logn)® we have to study

2n (log log 2”)“ logn+a @
ot b =1 =
Z 27 (log 27)= « Z b , Where a,b are constants (a oglog?2, b

a
log 2). Arguing as above, (b,) defined by b, = (loﬁiE

S ) is a strictly positive, strictly
decreasing sequence, so again by Cauchy’s criterion
2" (log 2™ + a)* 2%(nb + 2'nb+a)* \
S e 3 0T 5 -Ta
n2>mg n2mgp (2 + b) * n>my (Qn + b)u n2mg

1
Now, Jim % = Foer

the theorem for o # 1. But for & = 1 we get the series Z

by an easy computation, so D’Alembert’s criterion proves
2%(nb+a)

b which is clearly

divergent.
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RESUMO: Em 1993, Smarandache propés que nio h& uma velocidade limite na
natureza, baseado no paradoxo EPR-Bell (Einstein, Podolsky, Rosen, Bell). Embora
pareca que este paradoxo foi resolvido recentemente, ainda ha vérias outras evidéncias
que nos guiam a acreditar que a hipdtese de Smarandache esta correta na mecanica
quintica e até nas teorias de unificago. Se a hipétese de Smarandache revelar-se
verdadeira em qualquer circunstincia, alguns aspectos da fisica moderna terio que se
“reajustar” para concordar com a hipétese de Smarandache. Em adi¢do, quando o
significado da hipdtese de Smarandache tornar-se totalmente entendido, uma revolugio
na tecnologia, especialmente nas comunicagdes, ir4 surgir.

L. EVIDENCIAS DE FENOMENOS SUPERLUMINAIS E A HIPOTESE DE
SMARANDACHE

Aparentemente foi Sommerfeld quem primeiro notou a possivel existénecia de
particulas mais rdpidas que a luz, mais tarde chamadas de tachyons por Feinberg [1].
Todavia, tachyons possuem massa imaginaria, assim nunca foram detectados
experimentalmente. Por massa imagindria entendemos uma massa proibida pela teoria da
relatividade. Entretanto, a relatividade nfio proibe diretamente a existéncia de particulas
superluminais sem massa, como o féton, mas sugere que fendmenos superluminais
culminariam em viagem no tempo. Entdo, muitos fisicos assumiram que fendémenos
superluminais ndo existem no universo, outra forma teriamos que explicar todos os
paradoxos do tipo “mate o seu avé™ [2]. Um famoso exemplo de paradoxo deste tipo é o
problema de causalidade.

A ser publicado, Smarandache Hypothesis: E videérce;a Implications and Applications em “Smarandache
Notions Journal™, Vol. 12, 4, University of New Mexico, 2 convite de Dr. Minh Perez.
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Mesmo assim, a mecénica quéntica sugere que movimentos superluminais existem. De
fato, ha hipéteses da existéncia obrigatéria de movimentos superluminais na natureza [3,
4]. O paradoxo EPR-Bell é o mais famoso exemplo. Ponderando sobre este paradoxo,
Smarandache propds em 1993, em uma palestra a0 Brasil, que nfo ha tal velocidade
limite no universo, como postulado por Einstein [5]. Parece que este paradoxo foi
recentemente resolvido por L. E. Szabé [6]. Mesmo assim, ainda h4 virias evidéncias de
velocidades infinitas (comunicagdio instantinea) no universo, como veremos brevemente.,

L1. A Teoria de Rodrigues-Maiorino

Estudando soluges das equacdes de Maxwell e Dirac-Weyl, Waldyr Rodrigues Jr. e
José Maiorino foram capazes de propor uma teoria unificada para construgio de
velocidades arbitrdrias na natureza (por arbitréria entende-se 0 < v < ¢) em 1997 {11
Eles também sugeriram que ndo h4 tal velocidade limite no universo, assim a hipétese de
Smarandache pdde ser promovida a teoria como teoria de Smarandache-Rodrigues-
Maiorino (SRM). :

Fato nico da teoria de Rodrigues-Maiorino € que o principio da relatividade especial
sofre uma quebra, entretanto, mesmo construgSes relativisticas da mecinica quantica,
como a equaciio de Dirac, concordam plenamente com fenémenos superluminais. De
acordo com a teoria de Rodrigues-Maiorino, até mesmo um conjunto bem posicionado de
espelhos pode acelerar uma onda eletromagnética a velocidades superiores a da luz. Essa
afirmag8o foi mais tarde confirmada por Saari e Reivelt (1997) [8], que produziram uma
onda X (nomeada desta forma por J. Y. Lu, um contribuidor de Rodrigues) usando uma
lampada de xenénio interceptada com um conjunto de lentes e orificios.

A teoria SRM é uma construgio matemitica pura e forte da equaciio de onda
relativistica que nos indica que nio hi nenhuma velocidade limite no universo.

L 2. Experimentos Superluminais

Muitos experimentos, principalmente modos evanescentes, resultam em propagagio
superluminal. O primeiro modo evanescente bem sucedido foi obtido em 1992 por Nimtz
[9]. Nimtz produziu um sinal 4.34¢, e mais tarde um sinal FM 4.7¢ com a 40" sinfonia de

Mozart. Esse sucesso de Nimtz seria mais tarde superado por outros resultados até 8§
vezes mais rdpidos que a constante c.

No caso do experimento de Nimtz niio estd claro s¢ ele viola o paradoxo de
causalidade. Em contrapartida, L. J. Wang, A. Kuzmich e A. Dogariu recentemente
publicaram um extraordinério resultado de dispersio andmala o qual um pulso de luz foi
acelerado 310 + 5 vezes a velocidade da luz, sem violar o paradoxo de causalidade,
portanto resultando em viagem no tempo! Na pritica, isto significa que um pulso de luz
propagando pela célula de vapor atdmico aparece na saida muito antes de ter propagado a

mesma distincia no vicuo e o pico do pulso parece sair da célula antes mesmo de entrar
[10].
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1.3. Revis3o da Velocidade da Gravidade

A teoria geral da relatividade postula que a velocidade da gravidade € a mesma que a
constante c¢. Porém, se a velocidade da luz nfo € a velocidade limite do universo, nio
seria hora de revisar este postulado? Van Flandern publicou alguns resultados astrofisicos
que indicam que a gravidade ¢ superluminal [11]. Observagdes de algumas galixias feitas
pela NASA sugerem que algumas galdxias estio girando com velocidade superluminal
[12].

Os dados de Van Flandern foram mais tardes explicados por uma teoria que ndo usava
de movimentos superluminais por Ibison, Puthoff ¢ S. R. Little [13]. Ainda assim,
observagdes de simais superluminais vindo de galixias permanece inexplicadas pelo
ponto de vista subluminal.

1.4. Tachyons

Alguns modelos da teoria de supercordas, nossa mais promissora candidata para teoria
unificada da fisica, inclui tachyons, as particulas habeis de viajar mais rdpido que a luz.
Mesmo assim, fisicos encontraram uma maneira de “cortar” a teoria de maneira que as
solugbes de tachyons desaparecem; alguns outros, como Freedman, defendem que a
teoria de supercordas nio deveria ser cortada de tal forma em absoluto [1]. A teoria das
supercordas € provavelmente o melhor campo para o estudo de tachyons, pois ndo ird
forgar o uso do artificio de massa imaginaria. Prof. Michio Kaku comparou a idéia de
mais dimensdes em fisica a um esquema de matrizes em seun Hyperspace. Imagine uma
matriz 4x4 a qual temos dentro a teoria da relatividade e outra matriz 4x4 onde temos o
Modelo Padrio. Se construirmos uma matriz maior, digamos 8x8, seriamos capaz entio
de incluir ambas a mecnica quintica e a relatividade em uma (mica matriz. Esta & a idéia
principal de unificagio a partir da adi¢io de mais dimensdes. Da mesma maneira,
trabalhando apenas com matrizes 4x4 ndo temos espago suficiente para trabalhar com
tachyons. Todavia, em uma matriz maior terfamos o espago necessrio para encontrar
construgdes sélidas de modelos de tachyons. '

Tachyons j& foram, de uma maneira obscura, observados em chuveiros de ar de raios
cdsmicos.

II. IMPLICAGOES E APLICACOES

De acordo com a teoria de Rodrigues-Maiorino a conseqiéncia da existéncia de
fendmenos superluminais seria a quebra do principio da relatividade, mas ndo
precisariamos alterar nada na mecinica quintica. Mais precisamente, nos parece que ¢é a
mecdnica quintica quem esti banindo a antiga teoria relativistica segundo a teoria SRM.
Apesar disso, na realidade a teoria da relatividade aceita algum tipo de comunicagio
supertuminal que resulta em viagem no tempo, como Wang e seus contribuidores
mostraram.

273



Talvez nés poderemos, num futuro distante, enviar mensagens para o futuro ou
passado. De qualquer forma, fenémenos superluminais teriam uma aplicagio mais
realista com comunicag8o local, pois de acordo com a teoria Rodrigues-Maiorino, a onda
X € fechada no sentido que ela ndo perde energia enquanto viaja. Entio, uma mensagem
de rddio superluminal de onda X chegaria a seu destino com quase a mesma condi¢o em
que foi enviada e ninguém, exceto o destino, poderia espiar o contetido da mensagem. A
invenco de um tal transmissor superluminal seria de grande poder associado a pastilha
para desviar a luz em 90° do MIT na manufatura de fibras épticas.

III. CONCLUSAO

Os varios experimentos ¢ teorias s6lidas que nascem da mecanica quéntica envolvendo
fendmenos superluminais sio alto-niveis de indicagdo da hipétese de Smarandache que
nfio hd tal velocidade limite na natureza. Isto implica em uma quebra do postulado da
relatividade de Einstein, mas ndo em nenhum campo da mecénica quéntica, até mesmo na
funcdo de onda relativistica. Como em nossa evolugio chegou um tempo em que a
mecanica newtoniana ndo era suficiente para compreender alguns novos aspectos da
natureza, talvez se aproxima um tempo em que a teoria da relatividade de Einstein deve
ser deixada de lado, pois entdo a mecanica quintica ird governar.

AGRADECIMENTOS: Dr. Minh Perez da American Reasearch Press pelo convite,
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SUPERLUMINALS AND THE SPEED OF LIGHT

Jason WRIGHT*

Abstract: This brief paper was submitted as partial require-
ment for a Chemistry course. The topic was recommended to
Dr. Kamala Sharma*.

Key Concepts: superluminals, locality/nonlocality, mechanistic/
nonmechanistic, Smarandache Hypothesis.

Definitions;
Superluminals are phenomena capable of greater than light
speed.

Locality is the assumption that change in physical systems
requires presence of mechanistic links between cause and effect.

Nonlocality is that which is displayed by physical systems in
which change evidently happens without such mechanical links.

Mechanistic is direct physical contact (push-and-pull intcractions)
between parts of dynamic systems characteristic of machines.

Nonmechanistic is nonphysical interaction between parts of a
dynamic system characteristic of superluminals.

For more than a century, an argument has been carried on concerning which is a

more accurate picture, or model, of the workings of the universe. Basic to this argument

is the difference between the view of the world presented to us by classical (Newtonian)

physics and quantum physics. Classical physics held sway on a macroscopic scale until

Max Planck discovered that on the very small scale, quantum mechanics was more

accurate than classical mechanics could provide. Central to this argument were

*University of New Mexico, Gallup, New Mexico, USA.
*Jason Wright, P.O. Box 1647, Gallup, NM 87305
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physicists like Planck, Einstein, Hizenburg, Scheodinger, Bohr, Bohm, and a number of
others. Most basic to this controversy is how action at a distance can occur, e.g., how
does the sun hold the planets in place without any mechanical means of doing so.
Einstein did not agree with Newton’s theory of gravitation, because there was no
evidence, and still isn’t, of any force acting across space to hold the planets near the sun.
Einstein developed his own theory of gravitation to give a much more mechanical view
of gravitation. The sun influences the space, warps the space, near it, so that the planets
roll around the sun much as marbles would roll around a tightly stretched sheet with
some sort of indentation in the middle of it.

Einstein’s theory of gravitation was as good or better than Newton’s, however, on
the subatomic level, motions could not be accounted for accurately without a new theory:
Quantum Mechanics. With Quantum physics a new wrinkle was added to the discussion.
It appeared that particles could communicate at a greater than light speed. Einstein
thought this possibility absurd, and he and a couple of his assistants came up with a
thought experiment (EPR) to refute the possibility that speeds greater than light could
occur. Being convinced that the speed of light was the top speed of the universe, Einstein
imagined two particles with opposite spins could change their relative spins only if
somehow they communicated at greater than the speed of light. Since he had already
absolutely accepted the speed of light as the maximum velocity in the universe, he had to
conclude that this instantaneous communication between the spinning particles was
absurd, or absolutely impossible. Seems like sort of a circular argument.

Paralleling this mechanistic/nonmechanistic debate was the concept of locality/
nonlocality. Local was used as synonymous with mechanical and nonlocality with non-
mechanical. Bell argued that if we could show that the notion of “local” did not exist at
the subatomic level, then speeds scemingly occurring at greater than light would be
explainable. Le., if some things in the universe are really nonlocal, then communication
could occur instantly, because they would not involve time or space. These
instantaneous messengers came to be called superluminals. Bell’s experiments proved
the existence of superluminals, and, hence, Bohr’s view of mechanics was proven right,
and Einstein’s view wrong. There can be nonmechanistic action at a distance at the
subatomic level, if you can show some sort of communication without regard for time
and space.

In our macroscopic world we live in a universe of “locality” but on the subatomic,
microscopic world, all localities can be taken as the same locality, and, therefore, non-
local. On a large scale our world seems to be very mechanistic, i.e., things have to touch
and move things through space and time for anything to happen, whereas, on the small
scale, subatomic level, things are still capable of behaving as they did at the big bang,
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i:c., they all were at the same place at the same time: All places were one place and all
?vr:rfone time. Therefore, if subatomic particles have retained their big bang behavior,
and experiments are showing that they do, then these particles are communicating at
faster than light velocities, because they don’t have to traverse any time or space. Super-
luminal communication does seem to be possible, i.e., communication unrelated to any
particular velocity.

Dr. Florentin Smarandache argues in his paper, “There Is No Speed Barrier In
The Universe,” called “Smarandache Hypothesis,” that paired entangled particles
(photons) communicate nstantly concermning their mdmdual states, i.e., measuring one
immediately determines the measurcment of the other no matter how far separated. His
conclusion had to be that this sort of subatomic particle behavior must be taken as sound
evidence that, on the quantum level, there is no restraining finite speed. Even after Bell’s
inequality experiment, which extended the Einstein — Podolsky — Rosen (EPR) thought
experiment, that has shown conclusively that there has to be phenomena interacting at
greater than light speed, there is criticism of Dr. Smarandache’s paradox. The criticisms
go like this: “While it is truc that modern experiments have demonstrated the existence
of types of measurable superluminal phenomena, none of these experiments are m con-
flict with causality or special relativity since no information or physical object actually
travels at speeds greater than light to produce the observed phenomena.” It scerms casy
enough for these criticisms to say “no information” is moving from particle to particle or
that these particles are not “physical objects,” but, then, what is happening between them,
and what are they. The point is 'that something is occurring at greater than light speed,
called “superluminals,” and it has been measured. It may be better for us to say that there
is some sort of “interaction” between subatornic particles happening at greater than light

speed, however, whatever we call it, it exists, and, therefore, we have to amend our view

of light speed as the maximum universal velocity.
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Various experimental apparatus were designed essentially with the same premise, that
of splitting up certain qualities or characteristics of different kinds of particles. The
results at the detector were startling and very difficult to explain unless at the
quantum level one assumed communication, or some sort of interaction, between the
particles at a greater than light speed. John Stewart Bell’s experiments have swept away
the assmpﬁom on the microscopic level, because we now have proof. However, that has
been an enormous, almost overwhelming discovery, because it shows us that nature can
behave in a totally noncommonsensical manner. Things do work on one another without
touching and without regard for time or space. This finding has been abhorrent to many
physicists, including Einstein, however, he was wrong in his belief in a totally
A mechanistic world. A great deal of our world is quite concealed from us, and our lab
work on it, and our mathematics, reveal that in the very small subatomic world, things
behave according to laws and a logic very different from the laws and logic of the very
large world of people, and, planets, and galaxies. This is difficult for many of us to
accept, but assumptions were made about the operations of the universe, and some of
these assumptions are being shown wrong. In a similar way we believed for a very long
time, we assumed, that the carth was the center of our solar system. We now have to
alter our thinking relative to another ﬁmdamen';al matter.

An even more crucial arca of concern relative to the issue of superluminals, a
much more findamental area of phﬁics that was illuminated by experiments developed
for testing for the possibly of superluminals, is the ongoing debate over whether the
universe is a totally mechanistic one (classical/Newtonian/local) or is it in some sense

non-mechanistic (nonlocal). John Stewart Bell, an Irish physicist, worked out
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experiments to test the classical assumption that nature works in a strictly “local,”
mechanistic way. The results of these experiments revealed that the classical assumption
was wrong — nature is in some sense nonlocal (nonmechanistic), and, hence, the
possibility of effects occurring between subatomic particles at a speed greater than light,
is quite real. David Bohm, another physicist who spent much of his life studying this
surprising side of nature, remarked near the end of his life, “Quantum strangeness is a
keyhole through which we have caught a first glimpse of another side of nature, one in
which the universe is neither deployed across vast reaches of space and time nor harbors
many “things”. Rather it is one, interwoven thing, which incorporaies space and time but
in some sense subordinates them (e.g. superlumninals) perhaps by treating them as
important but non-fundamental aspects of the interface between the universe and the

observer who investigates it.”
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Faster than light?

Felice Russo
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Abstract
The hypothesis formulated by Smarandache on the possibility that no
barriers exist in the Universe for an object to travel at any speed is here
shortly analyzed.

In 1980, contrarily to what previously postulated by Einstein, Smarandache, according to the EPR
paradox, formulated the hypothesis that no barriers exist in the Universe for an object (or particle
or information or energy) to travel at any speed.

Recently, EPR-type experiments (entanglement and tunneling) have been carried out which prove
that quantum mechanics is "non-local” and that the speed of light can be overcome. In fact, these
experiments have highlighted that "space-time" separated systems, which previously had mutually
interacted, are anyhow connected and such a connectién is instantaneous, discriminating and not
attenuated.

Instantaneousness is not new in PHysics. It suffices mentioning the Newtonian Physics where the
instantaneousness of the force of gravity is hypothesized. However, gravity decreases with the
square of distance and such an interaction acts on all of the masses in the Universe, contrarily to
what "non-local” mechanics seems to do.

Ifit is possible to travel at speeds greater than that of light, is it possible to exchange information
faster than the speed of light? The answer is no. It has been demonstrated that even if it was
possible to transmit information into the space at speeds greater than that of light the receiver is
not capable to correctly reconstruct the sent information. Therefore, the Einstein principle of
causality is not violated: consequently, 1t is not possible to detect an effect earlier than its cause.
To exchange information at speeds greater than that of light, the Schroedinger's equation must be
admitred slightly non-linear. So far. all of the dedicated experiments have proved exactly the

contrary. However. the Physics of Chaos has highlighted that nature, which until a few vears ago
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was thought to be linear, prefers instead showing itself through highly non-linear phenomena and
that the linear ones constitute a rare exception. So, why shall we believe that, on an atomic scale
where quantum mechanics applies, nature should follow linear relationships ?

Moreover, is it actually true that relativity prevents from any possibility that objects exist which
travel at a speed greater than that of light ? Actually, relativity states that it is not possible to
accelerate an object up to a speed greater than that of light since this would need to rely on all of
the energy of the Universe; in fact, as the speed of the object increases its mass gets greater and
greater. On the other hand, relativity does not prevent the possibility that cbjects exist with a
speed greater than that of light, such as in specific reactions where tardions (v<c) can originate
tachions (v>c). In such a case, a particle does not need to be accelerated to a speed greater than
that of light since it already exists with a speed greater than "c". The only problem with tachions is
that these hypothetical particles should posses an imaginary mass that is too strong of an
assumption from a physical point of view. Several unsuccessful experiments have been carried out
so far with the aim to find tachions (i.e., through the attempt to detect Cerenkov's radiation that
should be emitted by the ones that travel at a speed greater than that of light)

This might mean that:

1) tachions do not exist
2) tachions interact only rather weakly with matter (capture rate less than that of neutrinos) and
therefore it is complicated to detect them.

3) Necessary energies to generate tachions are too high for the performances of present

accelerators.

In summary, the emerging "non-local” quantum mechanics seems to con-validate the Smarandache
Hypothesis, without violating Einstein's "causality" principle. The relativity theory will need to be
completely re-written if proofs are brought that Schroedinger's equation is weakly "non-linear"; in
which case. information could be transmitted faster than light.

Unfortunately. it is not possible to resolve this dispute for the moment; all of the hypothesis

remain still valid.
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Thomas Koshy, “Elementary Number Theory with Appilcations”, 2002

The best Elementary Number Theory textbook for students
Reviewer: M. Perz from USA

I recommend it for all College and University students taking number theory classes. The book is concise,
well documented, easily understandable, up to date with the last developments in the field, and with very
nice examples and attractive proposed problems. I read this textbook without letting if off my hands - like a
detective novel or an exciting story.
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