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FACTORS AND PRIMES IN TWO SMARANDACHE
SEQUENCES

RALF W. STEPHAN

ABSTRACT. Using a personal computer and freely available software, the au-
thor factored some members of the Smarandache consecutive sequence and
the reverse Smarandache sequence. Nearly complete factorizations are given
up to Sm(80) and RSm(80). Both sequences were excessively searched for
prime members, with only one prime found up to Sm(840) and RSm(750):
RSm(82)= 828180 -- - 10987654321.

1. INTRODUCTION

Both the Smarandache consecutive sequence, and the reverse Smarandache se-
quence are described in [S93]. Throughout this article, Sm(n) denotes the nth
member of the consecutive sequence, and RSm(n) the nth member of the reverse
sequence, e.g. Sm(11)=1234567891011, and RSm(11)=1110987654321.

The Fundamental Theorem of Arithmetic states that every n € N, n > 1 can be
written as a product p1p2ps - . - pi of a finite number of primes. This " factarization”
is unique for 7 if the p; are ordered by size. A proof can be found in [R85].

Factorization of large numbers has rapidly advanced in the past decades, both
through better algorithms and faster hardware. Although there is still no polynomial-
time algorithm known for finding prime factors p, of composite numbers n = [] pg,
several methods have been developed that allow factoring of numbers with 100
digits or more within reasonable time:

e the elliptic curve method (ECM) by Lenstra [L87], with enhancements by
Montgomery [M87][M92] and others, has found factors with up to 49 digits,
as of April 1998. Its running time depends on the size of the unknown p, and
only slightly on the size of n.

¢ the quadratic sieve [S87] and the number field sieve [L.L93]. The running
time of these methods depends on the size of n. Factors with 60-70 digits are
frequently found by NFSNet!.

For logp >» 50 and logn/logp ~ 2, sieving methods are faster than ECM.
Because ECM time depends on p, which is unknown from the start, it is difficult
to predict when a factor will be found. Therefore, when fully factoring a large
number, one tries to eliminate small factors first, using conventional sieving and
other methods, then ane looks for factors with 20, 30, and 40 digits using ECM, and
finally, if there is enough computing power, one of the sieving methods is applied.

The primality of the factors and the remaining numbers is usually shown first
through a probabilistic test [K81] that has a small enough failure probability like
27%. Such a prime is called a probable prime. Proving primality can be done using
number theory or the ECPP method by Atkin/Morain [AM93].

L URL: nttp://ww.dataplex.net/NFSKat/
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In the following, p, denotes a probable prime of n digits, P, is a proven prime
with n digits, and ¢, means a composite number with n digits.

2. FREE SOFTWARE

For computations with large numbers, it is not necessary to buy one of the well
known Computer Algebra software packages like Maple or Mathematica. There are
several multiprecision libraries freely available that can be used with the program-
ming language C. The advantage of using one of these libraries is that they are
usually by an order of magnitude faster than interpreted code when compared on
the same machine [Z98].

For factoring, we used science0? and GMP-ECM3. To write the program far finding
prime members of Sm(n) and RSm(n), we used the GMP* multiprecision library. For
proving primality of RSm(82), we used ECPP°.

3. FACTORIZATION RESULTS

We used science0 to eliminate small factors of Sm(n) and RSm(n) with 1 <
n < 80, and GMP-ECM to find factors of up to about 40 digits. The system is a
Pentium 200 MHz running Linux®.

The timings we measured for reducing the probability of a factor with specific
size to 1/e are given in the following table:

logp|logn| Bl |curves| time

20 | 40 | 1.5-10°| 100 |7 minutes
30 | 60 | 3-10°5 | 780 | 23 hours
40 | 80 | 4-10° | 4800 | 107 days

TABLE 1. Time to find p with probability 1 — 1/e on a Pentium
200 MHz using GMP-ECM under Linux

All remaining composites were searched with ECM parameter B1=40000 and
200 curves were computed. Therefore, the probability of a remaining factor with
less than 24 digits is less than 1/e. No primes were proven. The following tables
list the results.

2URL: http://uwu.parfsci.com

3URL: http://wwv.loria.fr/ zizmersma/records/ecanet .htal

4URL: http://vuv.matematik.su.se/"tege/gup/

S URL: nttp://lix.polytechnique.fr/ morain/Prgms/ecpp.english.html
SURL: http://wwu.linux.org
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known factors of Sm{n)

WO I U b NI

ELEBLEEEIEHERE

22.3

3.41

2-617

3-5-823

26.3-643

127-9721

2-32.47.14503

32.3607- 3803

2-5-1234567891

3-7-13-67-107- 630803

2%. 3-2437- Do

113 - 125693 - 869211457

2-3-pis

3 3~ D1y

22. 2507191691 - py3

32.47.4993 - pis

2.32.97.88241 - pig
13-43-79-281-1193 - pys
25.3.5-323339- 3347983 - p1g
3-17-37-43-103- 131 - 140453 - p1g
2-7-1427-3169- 85829 - pyo

3-41-769 - pso
22.3.7-978770977394515241 - pyg

5% - 15461 - 31309647077 - pas

2-3%.21347 . 2345807 - 982638598363 - p1s
33.192. 4547 68891 - p3p

23 - 47 - 409 - 416603295903037 - p27

3 - 859 - 24526282862310130729 - pye
2-3-5-13- 49269439 - 370677592383442753 - pa3
29 - 2597152967 - pao
22.3.7-45068391478912519182079 - pag
3-23-269 - 7547 - 116620853190351161 - p3;
2-pso

32.5-139-151- 64279903 - 4462548227 - ps7
24.32.103-211- psg

71.12379- 4616929 - ps,

2 -3 - 86893956354189878775643 - pa3
3-67-311-1039-6216157781332031799688469 - pss

22.3-3169- 60757 - 579779 - 4362289433 - 79501124416220680463 - p2e

3 - 487 - 493127 - 32002631 - pss

2-3-127- 421 - 22555732187 - 4562371492227327125110177 - pay

7-17-449 - ppy
23 . 32-12797571009458074720816277 - psa
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known factors of Sm(n)

EAITERBT2BBEUBORLBLLEEHS &

I I IEN EEN TP BN N I PN -
B3IJFAFAINZ

3%.5-7-41-727-1291 - 2634831682519~ 379655178160650473 - Pa1
2-31-103 - 270408101 - 374332796208406291 - 3890951821355123413169209 - D2s
3 - 4813 - 679751 - 4626659581180187993501 - ps3

22.3.179-1493 - 1894439 - 15771940624188426710323588657 - pag
23-109- 3251633 - 2191196713 - 53481597817014258108337 - Dar
2-3-52-13-211- 20479 - 160189818494829241 - 46218039785302111919 - pyy
3 - 17708093685609923339 - pr3

27 - 43090793230759613 - Dre

3.78. 127534541853151177 - prg

2-3%.79.389- 3167 13309 - 69526661707 - 8786705495566261913717 - ps;
5 - 768643901 - 641559846437453 - 1187847380143694126117 - Dss

22 -3- C102

31736769067 - 2205251248721 - cs3

2:13-ci08

3 - 340038104073949513 - ¢g;

28.5.97-157 prog

10386763 - 35280457769357 - pge

2-32.1709- 329167 - 1830733 - coq

32 - 17028095263 - c105

22.7.17-19-197 - 522673 - 1072389445090071307 - Csg
3:5-31-83719-c113

2-3-7-20143- 971077 - 111

397 - 183783139772372071 - pros

2*.3-23 - 764558869 - 1811890921 - c105

3-13- 23 - 8684576204660284317187 - 281259608597535749175083 - cso
2-5-2411111-109315518091391293936799 - ¢100

32 '83'2281'0123

22.3%.5119-ci99

37907 - ¢132

2-3-7-1788313- 21565573 - 99014155049267797799 - c103
3-5%-193283 - 133

2% . 828699354354766183 - 213643895352490047310053981 - Dor

3 - 383481022289718079599637 - 874911832937988998935021 - cg7
2'3'31'185897'6139

73 - 137 - 22683534613064519783 - 132316335833889742191773 - 102
22.33.5-101 - 10263751 - 1295331340195453366408489 - D115

TABLE 2. Factorizations of Sm(n), 1 < n < 80
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known factors of RSm(n)

S0 ok w3

Mgwr—tn—-‘»—tv—-‘r—to—-‘v—io—a
= W 00 =3 O UL W~

REREEBELERRELERESBIEERER

3.7

3-107

29149

3-19-953

3.218107

19 - 402859

32.1997- 4877

32.172-379721

728843 - 54421

3 p2

3-7-p1s

17 - 3243967 - 237927839

3-11-24769177 - pro

3:13-19%2.79. p5

23-233.2531 - p1s

32.13.17929 - 25411 - 47543 - 677181889

32-112.19-23- 281 - 397 - 8577529 - 399048049

17- 19 - 1462095938449 - p14

3.89-317-37889-py

3-37-732962679433 - p1g

13- 137 - 178489 - 1068857874509 - p14

3-7-191-pa3

3-107-457- 57527 - pye

11-31-59- 158820811 - 410201377 - po
3%.929-1753- 2503 - 4049 - 11171 - pyy

3% .83 - 3216341629 - 7350476679347 - py3

23 -193 - 3061 - 2150553615963932561 - pzy

3-11-709- 105971 - 2901761 - 1004030749 - py4

3-73-79 18041 - 24019 - 32749 - 5882899163 - poy
730331061 - pys

3.17-1231-28409 - 103168496413 p3s

377349 - 9087576403 - pys

89 - 488401 - 2480227 - 63292783 - 254189857 - 3397595519 - pyo
32 .881-1559 - 755173 - 7558043 - 1341824123 - 4898857788363449 - p1s
3%.112. 971 - 1114060688051 - 1110675649582997517457 - pag
29 - 2549993 - 39692035358805460481 - p3g

3-9833 - pe3

3-19-73-709 - 66877 - pss

11-41-199 - 537093776870934671843838337 - ps3g
3-29-41-89- 3506939 - 18697991901857 - 596100083847585283597 - p2s
3-13249- 14159 25073 - 6372186599 - ps2

52433 - 73638227044684393717 - ps3

32.7-3067 - 114883 - 245653 - 65711907088437660760939 - py;

continued...
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known factors of RSm(n)

BVLEEERE G

LA&ER

69
70
71

73
74
75

76
77
78
79

3%.23-167- 15859 - 25578743 - pgs

23 - 35801 - 543124946137 - 45223810713458070167393 - py3
3-11-31-59-1102254385918193 - 4808421217563961987019820401 - p33
3151 -457 - 990013 - 246201595862687 - 636339569791857481119613 - pag
719777943361 - pry

3-157- 3307 - 3267926640703 - 771765128032466758284258631297 - py3
3-11-pgo

7-29 - 670001 - 403520574901 - 70216544961751 - 1033003489172581 - psr
34.499-673- 6287 - 57633 - 199236731 - 1200017544380023
-1101541941540576883505692003 - ps)

33.74.13-1427- 632778317 - 57307460723 - 7103977527461 - 617151073326209 - pys3
357274517 - 460033621 - psy

3-13% - 835221254605693 - ps7

341 25251380689 - pg3

11-2425477 - 178510299010259 - 377938364291219561
-2465728965823437480371566249 - pygo

3 - Cro9

3 - 8522287597 - ;o1

13- 373 - 6399032721246153065183 - cgg

32.11.487-6870011 - 3921939670009 - 11729917979119
-9383645385006969812494171823 - pso

32.97- 26347 - 338856918508353449187667 - pss

397 - 633 - 459162927787 - 27937903937681 - 386877715040952336040363 - pes
3-7-23-13219- 24371 - ¢330

3-33-83-2857-1154129- 9123787 - p1oa

43 - 38505359279 - 313

3-.29-277213- 68019179 - 152806439 - 295650514394629363
-14246700953701310411 - per

3.11-71-167-1481-2326583863 - 19962002424322006111361 - pgg
1157237 - 41847137 - 8904924382857569546497 « peg

32.17-131- 16871 - 1304047269 - 82122861127 - 1187275015543580261 - psr
32.449.1279 - p1og

7-11-21352291 - 1051174717 - 92584510595404843 - 33601392386546341921 - ps3
3- 177337 - 6647068667 - 31386093419 - 663035576309897 - 4313244765554839 - a3
3. 7-230849- 7341571 - 24260351 - 1618133873 - 19753258488427
-46752975870227777 - cg1

33 C142

3.919-571664356244249 - c;27

J3-17-47-17795025122047 - ¢131

160591 - 274591434968167 - 1050894390053076193 - p112

33.11.443291- 1575307 - 19851071220406859 - ¢121

TABLE 3. Factorizations of RSm(n), 1 <n <80

4. SEARCHING FOR PRIMES IN SM AND RSM

Using the GMP library, a fast C program was written to search for primes in Sm(n)
and RSm(n). We used the Miller-Rabin [K81] test to check for compositeness.
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No primes were found in Sm(n), 1 < n < 840, and only one probable prime in
RSm(n), 1 < n < 750, namely RSm(82)= 82818079...1110987654321. This number
proved prime with ECPP.
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To Enjoi is a Permanent Component
of Mathematics

~by

C. Dumitrescu and R. Miiler

1. The Theorem of Platon

Studying the properties of the proportions the peoples of the antiquity could
build using the ruler and the compasses. For example if instead of a square of
side a it was required the construction of another square. of side r determined by
the condition that the new square has a double area. so

2

I =

2 FIN
a i)

(]

Pithagora's descendents used to write this relation as

a

I

z  2a

and used to build an isosceles rectangular triangle having its hypotenuse 2a.
The celebrated philosopher of the antiquity Platon (427 - 347 B.C.) was greatly

interested in Mathematics, especialy in connections with the so called "solid num-

bers”, that is numbers of the form

a-b-c

representing a volume.

This sympathy is also due to a famous event even today.

In the Greek city Athens there was an epidemic diseare that killed many peo-
ples. The inhabitants anced the oracle of Delphi (a town in Delos. the smailest of

the Ciclade 1sles) what to do in order to save themselves.

:
(1949-1997)



The gods asked the prierts of the temple to replace their cubic altar with a
new one having a double volume.

The prierts appealed to the greatest mathematicians of the time to get the
solution.

The problem is to calculate the lenght z of the side of a cube such that

3

2 =24°

That 1s

r=2%qa (3]

But the peoples of those times didn’t know any method to calculate. not even
approximatively, the radicals over to two. Only in the fifth centurv A.D. the
[ndians used the approximation in order to extract the cubic root:

b
3a?
where a® is the greatest perfect cube not exceding the number a® + 5.

The problem (3) can’t be solved using only the rule and the compasses.

Let us observe that this problem is a particular problem on solid numbers. and
of course it is unsolvable by of only one proportion of kind (2).

However Platon observed that this problem could be solved using two propor-
tions. Namely, he affirmed that:

Theorem of Platon. While one simple proportion is enought to connect two
plane numbers (numbers of the form a - b), three proportions are necessary to
connect twoo solide numbers.

The solution of the problem of Delos is then obtained by Platon approxima-
tively writing

(a3+b)§‘:a+

(4}

/

ISR

S8

Indeed, from (4) we obtain

O

—

r*ay and y® = 2az

so 3 =245,

Platon and others [Archytas of Tarent (~ 330 B.C.). Eudoxus (408 - 355 B.C.}.

Appollonios of Perga (260 - 170 B.C.)] imaginated approximate solutions of the

|
4

12



equation (4), rather difficult, which, of course, could be simplified in the course
of time.

Today, we can easily find an approximate solution to the system (3) through
drawning the two parabolas or intersecting one of these parabolas with the circle

22+ y* —2az —ay =0

obtained through adding the equations of the two parabolas.

2. A method to construct convergent sequences

The name of Leonard Euler (1707 - 1783) is known amoung the young people
loving mathematics, especially because of the sequence given by

1 1 R L
pn=1+-+-=-+ ...+ ——inn (0
2 3 n
It 1s said that this sequence is monotonous and bounded, converging to a
? o o
constant v € (0,1), known as Euler’s constant.
This constant appears in many occasions in mathematics. For instance if d{n}

is the number of (positive) divisors of the positive integer n, then it is proved that

——

1 &,
—Zd(z):lnn—f—?‘/—l
n’i:l

Considering the sequence {6) and proving his convergence Euler has etablisaed
a connection between the following two sequences

by =14+ -+ ...+ — and c¢c,=lInn
2 n

both converging to infinity.

To prove the monotonicity and boundness of the sequence {a,j.cve it is used
a well known theorem. does to the count Luis de Lagrange {1736 - 1313). Tkis
method may be generalised in the following way:

13



Proposition. Let f : (1,50) — R a derivable function with the property that
f and f" are monotonous, but of different monotonicity (that is either f increase
and f' decrease or f decrease and f’ increase).

Then the sequence

)+ F(2)+ .+ fin) = f(n) (7)
15 convergent.
Proof. The proof 1s analogous with that of Euler’s sequence (6).
Indeed, let us suppose that f is increasing and f’ is decreasing. For the
monotoncity of the sequence (z,),cvs we obtains:

Topt —Tn =f(n+1) = (f(n + 1) = f(n))
and applying the theorem of Lagrange to the function f on the interval [k. & + 1]
it results:

(2) ck € (k. kE+1) suchthat flk+1)— f(k)= f"(ck) (3)
and
k<c<k+1l= f{k)> fllee) > fllk+1) (9)
30

Tnt1 = Zn = fi{n+1) = fl{ca) <0

because f’ is decreasing.
We have now to find a lower bound of the sequence (7). For this we write the
implication (9) for every k = 1,2, ....and we get:

l<e <2= f{1> fllecr) > f'(2)
2< e <3 = f{2) > flle) > f'(3)

/1 \
[ |
s ’

N
o

.= f(1) + f(2) = ..+ f'in) = f(n) >
> fle) + flea) = o+ flen) = fln)

Writing now the equalities (3} for & = 1.2....n and adding, it results:

14



fle) + flle) + o+ fllen) = fln+ 1) = f(1)

soz, > f(n+1)— f(1) — f(n) > —f(1) because f is increasing.
Of course, the limit point of this sequence is between —f{1) and z; = (1}~
f(1).
This proposition permet to construct many convergent sequences of the form
g
Indeed,
1) considering the increasing function f(z) = 2/z, whose derivative f/{r} =
1/+/z is decreasing, it results that the sequence

o~

1 1 1

. —2
5‘?\/5‘ T\/E vn

I, =1+

has a limit point [ € [—2, —1].
2) considering the function f{z) = In(ln )it results that the sequence

! + L . In(lnn)
In = t - ... T — n
2ln2  3In3 nlon
is convergent to a point [ € {—In(In2), 55 — In{ln2)].
3) the sequence
D In:
xn=2(1n—+kr‘13— ;lon —1In*n
2 3 n
as well as
n*2 W*3  Io*n Wn**'n
Tn = - - —
2 T3 n o k+l

are convergent sequences, and, of course. the reader may construct himself many
other convergent sequences, using the same method.

[t is interesting to mentione that by means of the same way as in the proof of
the above proposition it may be proved the following curious inequalities:

1998 €1+ = + —= + .+ < 1999

V2 V3 1o°

5 —
<O

and. more general,

15



2-10F -2<l+—=+—+. .+ <210 -1
2 3 102+
or these
H 1
P (ak(P“I) —_ l) < = __1 _1 - ' p (adp—l) — :)
p— 1 '21//17 31/P {aPk>1/P p— 1 D

3. The Problem of Titeica

The Romanian mathematician Gh. Titeica (1873 - 1939) while in a waiting
room and because time hardly passed, started drawing circles on a newspaper
margin, using a coin.

In this playing with it, he begun to move the coin so that it have a fixed point
on the circumference of a cercle. Because he had to wait for a long while. he had
the time to find out that drawing three circles in which the coin had a fixed point
on the circumference, the circles intersected two by two in three points {called A.
B. and ') over which the coin was exactly superposed.

Of course, the three points A, B, and C make a circle. The novelty was that
this circle seemed to have the same radius as the circles drawn with the coin.

When he reached home, Titeica proved that indeed:

The Problem of Titeica. If three circles of the same radius r have a com-
mon fized point M, they still intersect two by two in the points A, B.C which make
another circle with the same radiusr.

Proof. Because we have MC, = MCy = M(Cj; (see figure below) it results
that M is the centre of the circumscribed circle of the triangle determined by the
points (1. Cy, Cs.

Now. it is sufficient to prove the equality (congruence) between this triangle
and the triangle determined by the points A, B, C.

We have:
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AB = C;C5 ( because AAC,B = AC,CCs)
AC = CC; (because AAC,C = AC,BCy)
BC = 01C2 (because ABC'Q,C = _XC']_ACQ)

and the theorem is proved.

4. Hexagons in Pascal’s Triangle

The hexagon AC,C'(C3B(C used in the proof of the problem of Titeica is in
connection with some cercles. Now we shall make in evidence other hexagons. this
time lied with a triangle, the celebrate triangle of Pascal.

In 1634 Blaise Pascal (1623 - 1662) published the paper "On an Arithmetical
Triangle” in which studied the properties of the numbers in the triangle

17



1 5 10 10 3 1

constructed such that the n — row contains the elements

(5):(0) () () ()7

where
n\ n!
k] kl{n — k)!

In the sequel we shall focus the attention on the following elements in this

Y
(%)

For simplicity we note

[ n=1 _ n _/n+1\ [ n+l
A_(k—1>’B_<k—l)‘C_\ k )’D"<k+1)
n
k

\

=it )= () e

so it results the configuration



The multiplicative equality

A-C-E=B-D-F (11)

was found by V. E. Hoggatt Jr. and W. Hansell [31. Therefore this configuration
is called "Hoggat-Hansell perfect square hezagon”.
This hexagon has also the following interesting property, found in [2]:

g.cd(4.C,E)=g.cd(B.D.F) (

bt
(SN

where g.c.d. is the abreviation for the greatest common divisor.

The identities (11} and (12) are the first two non-trivial examples of transiat-
able identities of binomial coefficients and are called “the Star of David theorem”.

The lower common multiple ({.c.m.) counterpart of the identity (12), namely

lLem.(A,C,E)=l.em.(B,D,F) (13)

does not hold on Pascal’s triangle and it has been a long-standing open question
wheter there exists any mathematically non-trivial and/or artistically interesting
configurations which give a translatable l.c.m. identity of type (12).

S. Ando and D. Sato have proved {2] that the answer to this question is "yes”.
They have proved that:

Theorem./Pisa triple equality theorem) There ezists a configuration which
gives simultaneously equal product, equal g.c.d. and equal l.c.m. properties on bi-
nomial, Fibonacci-binomial and their modified coefficients.

A Fibonacci-binomial coefficient (or Fibonomial-coefficient) is the number de-

fined by:

don _ Fl ) FZFn
k Fy - Fs. . Fo- Fy- Fh.  Fa_

where F; is the 1 — th Fibonacci number, i.e.

F1:F2=]., F,H--g:Fn+Fn+1,forn:l,'2,...

All Fibonomial coefficients are positive integers. and the triangular array of
these numbers has a structure similar to Pascal’s triangle.

A. P. Hilmann and V. E. Hoggatt Jr. investigated the similarities with Pascal’s
triangle and showed that the original Star of David theorem also holds on this
Fibonacci version of the Pascal-like triangle.
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The modified binomial coefficient is defined as

nl_ (sl (n
{k}—k!(n—mz—‘\”“)(&)

It is proved that the translatable product and l.c.m. equalities, similar to (11}
and {13}, but not the g.c.d. equality (12}, hold for the array of modified binomial
coeflicients.

The two Pascal like number array can be combined further to define the mod-
ified Fibonacci coefficient, given by:

n\ _ Fy-Fy..Fop 3 [ n |
k) F-Fp.Fe F-Fp Foy ™k J

S. Ando and D. Sato announced at the third International Conference on
Fibonacci Numbers and their Applications (held in Pisa, Italy, July 25 -29, 1988)
some interesting results concerning g.c.d. and l.c.m. properties on configurations
like these reproduced below. We mention here only the following:

Theorem (Sakasa - Fuji quadruple equality theorem). The configuration of
Fujiyama (see below) has equal g.c.d. and equal l.c.m. properties on Fibonacci -
Pascal’s triangle,while its upside down configuration {called SAKASA - FUJL in
japonese) has equal g.c.d. and equal l.c.m. properties on modifies Pascal’s and
modified Fibonacci - Pascal’s triangle.

Theorem (Universal equality theorem). The Julia'’s snowflake and its upside
down configuration both give translatable simultaneously equal product (svmbolised
below by the Greek letter I1), equal g.c.d. and equal l.c.m. properties on Pascal’s
triangle, Fibonacci - Pascal’s triangle and modified Fibonacci - Pascal’s triangle

We reproduce here, after {2] these configurations.

S. Ando and D. Sato in their paper explained with amability the terminology
used for these configurations.

Thus one of the configurations is named in memoriam of Professor Julia Robin-
son for the friendship and support given to the authors during many vears of
mathematical associations.

Fujiyamais a highly symetric triangular mountain near Tokio, and Saskatchewan
1s a name of a province in western Canada, where the first non - trivial mutualy
exclusive equal g.c.d. — l.c.m. configuration was constructed.
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5. The Smarandache Function

This function is originated from the exiled Romanian Professor Florentin
o
Smarandache and it is defined as follows:

For any non — null n,S(n) ts the smallest integer such that S(n)! is divisibie byn.

To calculate the value of S(n), for a given n. we need to use twoo numerical
scale, as we shall see in the following.
A strange addition. A (standard) numerical scale is a sequence

—
b
e

(R) : 1, a1, aa,...,a,...

where a; = A*, for a fixed A > 1.
By means of such a sequence every integer n € .V mayv be writen as

T

i) = Pilk + Pr-10k-1 + ... T o

and we can use the notation

Nr) = PePk=1---90

The integers p; are called "digits” and verifie the inequalities
gers ¥ g q

0<pi<h—1

For the scale given by the sequence (14) it is trouth the recurence relation
=3 h q .

[

aiw1 =h-a; “'
which permet numerical calculus. as additions. substractions. etc.

The standard scale (14) was been generalised, considering an arbitrary incre-

assing sequence:
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(g) : 17 b17 62,-.-765,...

and knowing a corresponding recurence relation.
For instance the Fibonacci sequence:

Fi=1, F,=2, and i,y = F, + F,,
is such a generalised scale, for which the digits are only the integers 0 and 1.
Another generalised numerical scale is the scale defined by the sequence:

ol 2 1, by, by, bl (16)
with

and p a prime number.
This scale verifies the recurence

biyi=p-bi+1
and is used in the calculus of Smarandache function.
Let us observe that because of the diference between the recurences (15) and
(18) we have essentially different ruls for the calculus in the scale [p]. To ilustrate
these differences let we consider the generalised scale [5]:
3] 1, 6, 31, 136, ...

and the integer m = 150(10), which becomes my5; = 442. in the scale [3]. Indeed.
because

(3 <130<=p-1)/(p—-1)<130 = p <150(p—- 1)+ 1 =
<=1 <logs(150(p — 1) + 1)

1t results that the greatest a;(3) for which a,(3) < 150 is a3(3) = 31. Then
the first digit of the number mys; is




s0, 130 = 4a3(5) + 26.
For m; = 26 it results that the greatest a;(3) for which a;i(5) < 26 is a(3) = 6
and the corresponding digit is:

]sz{

50, 150 = 4a3(5) + 4ay(5) + 2 = 442.
[f we consider in addition the numbers:

then

m+n+r =442+
412
44
dcbha

From the recurence (18) it results that we need to start the addition from the
column corresponding to ax(3):

4a2(3) + a2(3) + 4a2(3) = 3a5(5) + 4a,(5)

Now, using an unit from the first collumn it results:

Continuing, 4a3(3) + 4a3(3) + a3(5) = 5a3(3) + 4a3(5) and using a new unit
irom the first collumn it results

4a3(3) +4a3(3) + a3(3) = ay(5) +4a3(3), soc=dandd=1

Finally, adding the remainder units, 4a,(3)+2a:(3) = 30,1(3)-1'-611(3) = Say(5)+
= a2(5), it results that b must be modified and a =0. So, m+n + r = 1450¢5
An other particularity for the calculus in the scale {p] results from the Fact
that in this scale the last non-zero digit may be even p. This particularity is a
consequence of the recurence relation (18).

Which are the numbers with the factorial ending in 1,000 zeros? The
answer to this question is in a strong connection with the Smarandache function.
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For this reason let us observe first that if

n=pt-pyt..pr (19)

is the decomposition of a given positive integer n into primes, then as an imediate
consequence of the definition of S it results

S(n) =max (S(p)) (20)
Now, for n = 10199 it results that S(n)! is a multiple of 10190 and it is the
smallest positive integer with this property.
We have

5(101,000) — 5(21,000 X 51,000) — maX(S(?l’OOO), 5(51,000)) — S(’:—)I,OOO)

Indeed, for the calculus of S(p*) we can use the formula:

S(p%) = plag))ip)
which signify that the value of the function S for p* is obtained multiplying by
p the number obtained writting the exponent « in the generalised scale [pl and
reading it in the scale (p).
So, we have:

5(21'000) = 2((1,000){21}(2) = 2((111111100){3})(2) = 3508
S(51000) = 5(11201(5})(5) = 4005

and it results that n = 4003 is the smallest positive integer who's factorial end in
1,000 zeros.

The next integers with this property are 4006, 4007, 4003, and 4009. because
the factorial of 4010 has 1,001 zeros.

Smarandache magic square. For n > 2 let A be a set of n? elements and
l'a n—arry law defined on A. The Smarandache magic square of order n is a 2
square array of rows of elements of 4 arranged so that the law [ applied to each
horizontal and vertical row and diagonal give the same result.

Mike R. Mudge. considering such squares. poses the following questions (see
Smarandache Function Journal, Vol. 7, No. 1. 1996):

1) Can you find such magic square of order at least 3 or 4. when A is a set of
prime numbers and [ the addition”
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2) Same question when A is a set of square numbers, or cube numbers, or
special numbers. For example Fibonacci or Lucas numbers, triangular numbers,
Smarandache quotients (i.e. g(m) is the smallest k¥ such that mk is a factorial).

An interesting law may be

l(al,ag, CL-‘) =ay +ay + —az -+ aq — asz + ...

Now some examples of Smarandache Magic Square:
If Ais a set of prime numbers and [ is the operation of addition such magic
squares, with the constant in brackets, are:

|33 89 411|101 491 3251|7146l 311
29 113 I 131 981 131 zi 521 281 41
101 311 71 461 |7 251 101 491 |
(213 1 (343) | (843) |
97 907 537 397 197
113 149 25T | | 367 167 6T 877 677
| 317 173 29 ! 997 647 337 137 37
89 197 233 || 107 157 967 617 307
(519) | 1587 27T 227 127 937
(2155)
The multiplication magic square
18 1 12!
4 9 |
i 3 |
716 |

is such that the constant 216 may be obtained by multiplication of the elements
in any row/column/principal diagonal.

A geometric magic square is obtained using elements which are a given base
raised to the powers of the corresponding elements of a magic square it is clearly
a multiplication magic square.

For instance, considering

' 1 61 1236 2 64 i
| - - !

'35 T I3 32 128
i o 9 Teo | |
: L9 9 i and base 2 it results : 6 512 %
IR | (239)
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Tabsman Magic Squares are a relatively new concept, contain the integers from
1 to n? in such a way that the difference between any integer and its neighbours
(either rouw-, column-. or diegonal-wise) is greather than some siven constant:
\ (o] o

; 5 15 9 12
1001 6 3
113 16 11 14
2 8 4 7
; (2)
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The Convergence of Smarandache Harmonic Series

Sabin Tabirca* Tatiana Tabirca**
* Buckinghamshire University College, Computer Science Division

** "Transilvania” University of Brasov, Computer Science Department

The aim of this article is to study the series . called Smarandache

n22 S’"( )
: : : . o
harmonic series. The article shows that the series 253 = 1s divergent and
n22 n
studies from the numerical point of view the sequence a, = S0 In(n).
=2 1

1. Introduction

The studies concerning the series with Smarandache numbers have been done
recently and represents an important research direction on Smarandache’s
notions. The question of convergence or divergence were resolved for several
series and the sums of some series were proved to be irrational.

The most important study in this area has been done by Cojocaru [1997]. He

proved the following results:

n+l — xn

1. If (xn)n>O IS an increasing sequence then the series Z

1s divergent.
n20 S('x ) °

1
As a direct consequence, the following series Z S( % Z SCoarh) and
nx2 n nxi =

1 )
;*—5(4%1‘_ D are divergent.
2. The series Y, u is convergent and the sum
w22 9(2)-S(3)..-S(n) =
1 71 101\
th terval
;5(2)-5(3)-...-5(71 's in then interv (100 100/
Th Z— t b the int 717 1753\i
g rval A
3. The series 230 IS converges to a number in the inte kIOOO 500/



4. The series Z

converges to an irrational number.
n=0 n

Jozsef [1997] extended Cojocaru’s result and proved that the series

. S(n) . .
D (-1 -~ also converges to an irrational number.
n:

n20

n22 Sz(n)
: : . . . 1 .
In this section, the divergence of the series ZT(—) will be proved based on an
n22 n
inequality which we shall establish in Lemma 1.

Lemma 1.

/ 2 n

s 1 1
11 . ——E ~|l=— l
" L 8 (21‘+1)‘J 4 ()

i=0
Proof

The proof is based on the well-known formula

-1 7
— 2
15320 Qi+l 8 (2)
. 2 n 1 \’
and on a double inequality for the quantity n~( z_

8 S+

Let m be a natural number such that m>n. We then have

o 1 1 "'( Y11 1 )
2. — -y ~ _
S+ D)-(2i-1) 2 ~\2i-] 71+1) 2\ 2n-1 2m+1

i=n i=n

= 1 L& Ly _1f 1 1) /
Z(7i+1)-(2z‘+3)_z'g(szzi~3)'2\ 1 2me3 (4)

i=n \=

(3)

1
1 ' ' 3-4) t
The difference ;(7l+1) Z{; 1+1) ,gli PRI 1s studied using (3-4) to

obtain the inequalities (5-6).

) >3 L (5)
o ,,4(71+1) - ,,H(?z+1)(7z—1) 2 2n+1 2m+1

1 m 1 11 1
e (2i+ )7 Q2+ D(Q2i+3) 2 2n+3 2m+3



Therefore. the mequaliw

T n " Tan |
2\2n+3 2m+3 Z%H) Z("H—l) PLEr 2m+1J (7)

=0 A=

holds for all m>n. If m— w0 then the inequality (7) becomes

1 & 1 1 4 g
——<—— 5 <
22n+3) " 8 &ZQitl)} “22nen OO ®)
! r & 1
i o< - \ < " 4 (9
22n+3) N8 T &0 “2meD

/7 -
. : . 7 E )
The inequality (9) gives the limit hmn-§ %— |

n—x N

1
Z(2i+17) 47

L3

In Lemma 2 we will prove an inequality for Smarandache’s function.

Lemma 2.

SQ*-ny<n(Yn>2k>1). (10)
Proof
Because n>2k the product n!'=1-2-..n contains the factors 2.4, ... 2k

Therefore, the divisibility n!=1-2-..n=2%-n-mM*-n holds resulting in the
inequality S(2* -n)<n .
*

. , h 1
In the following, we analyse the summation a, = ZT'W) where n>0 .
i=] \ & !

Let us define the sets

E( 2n+l} ( 7”4'11
A== 12752+ i) s and B, =4i=12"S(2"+1) > ;oD
. (2"1) ] | (2%.0)

which is a partition of the set {1‘ = 1,2"} :

Lemma 3.

[f 1=2"- satisfies the following conditions:
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* k<n-log,(n)-1 (12)
® jisaodd number so that ; < 2" (13)
then:/ =2 e4 .
Proof
If k satisfies &k <n-log,(n)~1 then n—-k > log,(n) +1 and the inequality

PR ek R T Y (14)
holds.
Applying Lemma 2 and (14), the following inequality

2" +2%.

SQT+) =S 2"  + <2ty = (272 )

is found to be true. Therefore, the relationship / = 2* . ; € 4 holds.

)

Let C, = {2" J=12"k <n-log,(n)-1, jodd, j < 2""‘} be the set of numbers

which satisfies the conditions of Lemma 3. Thus, the inclusion C, < 4, holds.

Theorem 1 shows an inequality satisfied by the sequence a,.

Theorem 1.

- < 1 l 1 -
(V£>O)(31V£ >O)(\V’n> Ng)an :ZSTQTU)(Z—(E);-—_I. (13

i=1
Proof

Let £>0 be a positive number.

47

< 1

The summation a, = ;m is split into two parts as follows
S I P D B (16)
a4 = - = + - —_.
TOES@ ) G G2 h T 5820
. . 1 1
Because C, < 4, the inequality > > holds.

S 2S1)

ieC,

Consequently |
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a, >-Z—1—— (17)

T ST+
IS true.
")II

<

Ifi=2”-j€Cn§An then S(2" +i) < ——
(27,1)

=2""+ holds. This inequality is

applied in (17) resulting in

a,> 3. ——- ¥y ¥y L (18)

S
-k < . -k -
<C, (2" +j) ksn-log,in)-1;odd, j<2"°* (2" +/)

The right side of (18) is equivalent to the following summations

| 1 1
0=+ =+ + 5=+
2"+ (2"+3) 27 -1

k=1=+ 5=+ T +
2"+ (2" +3)° (2" -1)

1 1
k=n- ([logz(n)]+ 1) = (2[log:(n)]+l + 1)2 * (2{logz(n)]+l +3)2 T +(2{log2(m]¢2 I)A *
: = 1
therefore, the sum is equal to A Gie D
The inequality (13) becomes
27 1 2" 1 alicsx ] 1
= - . 19
4= g, (2i+1)° S (2i+1)? Z{ (2i+1)° (19)

Based on Lemmal, a natural number VN, can be found so that the inequalities

(20-21) hold simultaneous true for all n> N,.

~ (1 ) L I B ] ) !
8 K4"5'2"—1>§(21+1)2>8—\4” 27 ] (20)

7 (1 j 1 Ami 7 (1 ) 1
S L L il — 2
s T e 2 G T e D

1=1 Z

Using (20-21), the inequality (19) is transtormed as follows

&1 ET ~ (1Y 1 2 (1 } 1

a, > T > — - —+& e o B e

’ E(ZHI)‘ Zl Qi+ 78 a0 8 TG T Sl
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S 1 AR (1 \1 1
a > ——¢&| —
S VR TN K4 Jv"—1>}\4 £) o] _ =
a >(l ) 1 (1 j I )
_—8 Slog-(m) 4 — D - hede ]
n 4 zlog:(n)_l 4 £ i’l—l ( )

The inequality (22) is true for all n> N,

L

The divergence of the series Z

1
= Si(n)

is proved based on the inequality (22).

Theorem 2.

The series Z

5 1s divergent.
n2 n

Proof

“Sa.

nz2 ( ) nxl

Let >0 be a positive number. There exists a number N>0 so that the

inequality a, > (% ~ g)

1 holds for all n> N, The divergence of the series is
n—

given by Z

R Y I

nxi nz N, nzN, n-— 1

£y

Consequence 1.

If m<2 then the series Z

1s divergent.
nx2 S”'( ) g

Proof.

The statement follows directly from divergence of the series Z

nz2

1
) and the

1
inequality ;5 ey Z‘S”’(n)'

o
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i

|
= S0

n

In this section the sequence a,,=Z S0
i=2 l

remarks concerning the sequence values are made'.

3. About.the Sequence o, = ~In(n)

—In(n) 1s evaluated and some

rl - an o n ) '_’an | n V dn
500 314 100000 1119 500000 31.15
1000 -2.97 . 200000 1795 = 1000000 47.74
1500 -275 300000 2309 1500000 5680
2000 -2.55 400000 2738 = 2000000 66.05
2500 235 500000 3115 2500000 74.14
3000 -2.14 600000 3453 | 3000000 81.45
3500 -195 © 700000 3763 3500000 8813
4000 -1.79 © 800000 40.51 = 4000000 94.34
4500 -160 900000 4320 = 4500000 100.15
5000 -1.44 = 1000000 4574 = 5000000 105.63

n ‘1
Table 1. The values for the sequence a, = Z S0

=2

- In(n)

| .
Because ZT(S 1s divergent, it is natural to find the convergence order for
n22 n

the series.

n

Firstly, we evaluate the sequence a, = Z

1 .
Z Sz((_)—ln(n) and its values are

presented in Table 1. Analysing the results from Table 1, the following

remarks are obvious:

n

i=2 Sz(l)

I. The sequence «a, = ~In(n) can be considered pseudo-monotone.

' Numerical results presented in the tables have been calculated by Henry Ibstedt. The algorithm and its
implementation will be included in Computer Analysis of Number Sequences, H.Ibsted:, American
Research Press (to appear summer [998). a3



[R]

Z

5()

(V8]

Secondly, the sequence b, =

R

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

. The .sequence a, =

n

1
I—S()

—In(n) satisfies

ges.

n22

the

inequality

~In(n) > 0 ¥n: 50000 < ~ < 5000000 . If the inequality holds for

. Because (the values of) the sequence a, is pSeudo-increasing we

In(In(n)).

hm 0 - In(n)} =
jz S 1( —In(n) —In(In(n)) is evaluated in Table 2.

-3.14 100000 483 500000 1.83
0.17 200000 3.08 1000000 1.26
0.21 300000 243 1500000 1.02
0.2 400000 2.07 2000000 0.87
021 500000 183 = 2500000 0.77
02 600000 1.65 3000000 0.7

0.18 700000 1.52 3500000 065
0.17 800000 1.4 4000000 0.61
0.18 900000 1.33 4500000 0.57
0.16 1000000 - 1.26 5000000 0.53

Table 2. The values for the sequence b, = " ——-In(n)-

= S0

This sequence is more unpredictable than the sequence a, The only thing,

which can be remarked is the decreasing behaviour. We have not been able to

predict if this sequence is convergent yet.
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4. Conclusions
A proof more simple than the proof presented in this article can be obtained

using a convergence test similar to the condensation test [Nicolescu et.al.

1974]. According to this test, if (a,,)">O is a decreasing sequence of positive

numbers then the series Zan 1s convergent if and only if the series Z 2"a,

n>0 n>0

1S

2™)

n>0

: 1 : 1
1s convergent. The sequence ( 57 )) satisfies that 22”-5”,(
n
n>1

: : : |
divergent. In spite of that, we cannot conclude that the series Z S™0n) 1s
n>1 n,

) is not decreasing.

n>1

divergent because the sequence (
: HEE S
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SMARANDACHE ALGEBRAIC STRUCTURES

by Raul Padilla
Dept. of Physical Sciences

University of Tarapaca
Arica, Chile

A few notions are introduced in algebra in order to better study the
congruences. Especially the Smarandache semigroups are very important
for the study of congruences.

1) The SMARANDACHE SEMIGROUP is defined to be a semigroup A such that a
proper subset of A is a group (with respect with the same induced

operation).

By proper subset we understand a set included in A, different from the

empty set, from the unit element -- if any, and from A.

For example, it we consider the commutative multiplicative group
SG={18"2, 18”3, 184, 18”5} (mod 60)
we get the table:

X | 241236 48

24| 364824 12
12) 4824 1236
36 241236 48
48 1236 48 24

Unttary element is 36.

Using the Smarandache's algorithm [see 2] we get that
1872 1s congruent to 18”6 (mod 60).

Now we consider the commutative multiplicative semigroup
SS= {18"1, 182, 18"3, 18”4, 185} (mod 60)
we get the table:

x 18124123648
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24112364824 12
12:3614824 1236
36148124 123648
4812412364824

Because SS contains a proper subset SG, which is a group, then SS is a
Smarandache Semigroup. This is generated by the element 18. The
powers

of 18 form a cyclic sequence: 18, 24,12,36,48, 24,1236 .48, ... .

Similarly are defined:

2) The SMARANDACHE MONOID is defined to be a monoid A such that a proper
subset of A is a group (with respect with the same induced operation).

By proper subset we understand a set included in A, different from the

empty set, from the unit element - if any, and from A.

3) The SMARANDACHE RING is defined to be a ring A such that a proper
subset of A 1s a field (with respect with the same induced operation).

By proper subset we understand a set included in A, different from the
empty set, from the unit element -- if any, and from A.

We consider the commutative additive group M={0,18"2,18"3,18"4,18"5}
(mod 60) [using the module 60 residuals of the previous powers of 18],
M={0,12,24,36,48}, unitary additive unit is 0.

(M,+,x) is a field.

While (SR,+,x)={0,6,12,18,24,30,36,42,48,54} (mod 60) is a ring whose
proper subset {0,12,24,36,48} (mod 60) is a field.

Therefore (SR,+,x) (mod 60) is a Smarandache Ring.

This feels very nice.

4) The SMARANDACHE SUBRING is defined to be a Smarandache Ring B which
is a proper subset of s Smarandache Ring A (with respect with the same
induced operation).

5) The SMARANDACHE IDEAL is defined to be an ideal A such that a proper
subset of A is a field (with respect with the same induced operation).
By proper subset we understand a set included in A, different from the
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empty set, from the unit element - if any, and from A.

6) The SMARANDACHE SEMILATTICE is defined to be a lattice A such that a
proper subset of A is a lattice (with respect with the same induced

operation).

By proper subset we understand a set included in A, different from the

empty set, from the unit element -- if any, and from A.

7) The SMARANDACHE FIELD is defined to be a field (A,+ x) such that a
proper subset of A 1s a K-algebra (with respect with the same induced
operations, and an external operation).

By proper subset we understand a set included in A, different from the
empty set, from the unit element -- if any, and from A.

8) The SMARANDACHE R-MODULE is defined to be an R-MODULE (A,+,x) such
that a proper subset of A is a S-algebra (with respect with the same

induced operations, and another "x" operation internal on A), where R is

a commutative unitary Smarandache ring and S its proper subset field.

By proper subset we understand a set included in A, different from the

empty set, from the unit element -- if any, and from A.

9) The SMARANDACHE K-VECTORIAL SPACE is defined to be a K-vectorial
space (A,~,.) such that a proper subset of A is a K-algebra (with

respect with the same induced operations, and another "x" operation

internal on A), where K is a commutative field.

By proper subset we understand a set included in A, different from the

empty set, from the unit element -- if any, and from A.
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SMARANDACHE CONTINUED FRACTIONS

by Jose Castillo, Navajo Community College,
Tsaile, Arizona, USA

Abstract:

Open problems are studied using Smarandache type sequences in the
composition of simple and general continued fractions.

Key Words:
Simple and General Continued Fractions, Smarandache Simple and
Continued Fractions

1) A Smarandache Simple Continued Fraction is
a fractionn of the form:

1
a(ly +

where a(n), for n >= 1, is a Smarandache type Sequence or Sub-Sequence.

2) And a Smarandache General Continued Fraction is
a fraction of the form:

b(1)




where a(n) and b(n), for n >= 1, are both Smarandache tvpe Sequences or
Sub-Sequences.

(Over 200 such sequences are listed in Sloane's database of
Encyclopedia of Integer sequences -- online).

For example:

a) if we consider the smarandache consecutive sequence:
1,12, 123, 1234, 12345, ..., 123456789101 112, ...

we form a smarandache simple continued fraction:

1+

b) if we include the smarandache reverse sequence:
1,21,321,4321, 54321, ..., 121110987654321, ...
to the previous one we get a smarandache general continued fraction:

With a mathematics software it is possible to calculate such continued
fractions to see which ones of them converge, and eventually to make
conjectures, or to algebraically prove those converging towards certain
constants.

Open Problem: Are the previous two examples of continued fractions
convergent?
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SMARANDACHE PARADOXIST GEOMETRY

by
Sandy P. Chimienti Mihaly Bencze
Mathematics and Science Department 6, Hatmanului Street
University of New Mexico 2212 Sacele 3
Gallup, NM 87301, USA Jud. Brasov, Romania

Abstract:

This new geometry is important because it generalizes and
unites in the same time all together: Euclid, Lobachevsky/Bolyai/Gauss,
and Riemann geometries. And separates them as well!
It is based on the first four Euclid's postulates, but the fifth one is
replaced so that there exist various straight lines and points exterior to
them in such a way that none, one, more, and infinitely many parallels
can be drawn through the points in this mixted smarandacheian space.

Key Words: Non-Euclidean Geometry, Euclidean Geometry, Lobacevskyian
Geometry, Riemannian Geometry, Smarandache Geometries,
Geometrical Model

Introduction:

A new type of geometry has been constructed by F. Smarandache[5] in 1969
simultaneously in a partial euclidean and partial non-euclidean space by a
replacement of the Euclid's fifth postulate (axiom of parallels)
with the following five-statement proposition:

a) there are at least a straight line and a point exterior
to 1t in this space for which only one line passes through
the point and does not intersect the initial line;
[1 parallel]
b) there are at least a straight line and a point exterior
to it in this space for which only a finite number of
linesl, .., 1 (k>=2) pass through the point and do not
1 k
intersect the initial line;
[2 or more (in a finite number) parallels]
¢) there are at least a straight line and a point exterior
to it in this space for which any line that passes through
the point intersects the initial line;
(O parallels]



d) there are at least a straight line and a point exterior
to it in this space for which an infinite number of lines
that pass through the point (but not all of them) do not
intersect the initial line;
[an infinite number of parallels, but not all lines passing
throught]
¢) there are at least a straight line and a point exterior
to it in this space for which any line that passes through
the point does not intersect the initial line;
[an infinite number of parallels, all lines passing throught
the point]

['have found a partial geometrical model, different from Popescu's [1], by
putting together the Riemann sphere (Ellyptic geometry), tangent to the
Beltrami disk (Hyperbolic geometry), which is tangent to a plane (Euclidean
geometry). But is it any better one?

(because this doesn't satisfy all the above required axioms).
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SMARANDACHE NON-GEOMETRY

by
Sandy P. Chimienti Mihaly Bencze
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Abstract:
All Euclid's five postulates are denied in this new geometry.

Key Words: Euclidean Geometry, Non-Euclidean Geometry, Smarandache
Geometries, Geometrical Model

Introduction:

We introduce this curious geometry, created in 1969 by F.Smarandache[4],
and ask for the readers' feedback in finding a model to satisfy the below
"axioms".

1. It 1s not always possible to draw a line from an arbitrary point
to another arbitrary point.

2. It is not always possible to extend by continuity a finite line
to an infinite line.

3. It is not always possible to draw a circle from an arbitrary
point and of an arbitrary interval.

4. Not all the right angles are congruent.

5. If'a line, cutting two other lines, forms the interior angles of
the same side of it strictly less than two right angles,
then not always the two lines extended towards infinite cut each
other in the side where the angles are strictly less than two right
angles.

Conclusion:
We thought at a discontinous space to satisfv the first three axioms,
but didn't find vet a corresponding definition for the "right angle”.
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SMARANDACHE COUNTER-PROJECTIVE GEOMETRY

by
Sandy P. Chimienti Mihaly Bencze
Mathematics and Science Department 6, Hatmanului Street
University of New Mexico 2212 Sacele 3
Gallup, NM 87301, USA Jud. Brasov, Romania

Abstract:
All three axioms of the projective geometry are denied in this
new geometry.

Key Words: Projective Geometry, Smarandache Geometries, Geometrical Model

Introduction: :
This type of geometry has been constructed by F.Smarandache[4] in 1969.

Let P, L be two sets, and r a relation included in PxL. The elements of
P are called points, and those of L lines. When (p, 1) belongs to r, we
say that the line | contains the point p.

For these, one imposes the following COUNTER-AXIOMS:

(D) There exist: either at least two lines, or no line,
that contains two given distinct points.

(I) Let p1, p2, p3 be three non-collinear points, and ql, g2 two
distinct points. Suppose that {p1, q1, p3} and {p2, 2, p3} are
collinear triples. Then the line containing pl, p2, and the line
containing q1, g2 do not intersect.

(IIT) Every line contains at most two distinct points.

We consider that in a discontinuous space one can construct a model
to this geometry.
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SMARANDACHE ANTI-GEOMETRY

by
Sandy P. Chimienti Mihaly Bencze
Mathematics and Science Department 6, Hatmanului Street
University of New Mexico 2212 Sacele 3
Gallup, NM 87301, USA Jud. Brasov, Romania

Abstract: This is an experimental geometry. All Hilbert's 20 axioms of the Euclidean
GGeometry are denied in this vanguardist geometry of the real chaos! What is even more
intriguing? F.Smarandache[5] has even found in 1969 a model of it!

Key Words: Hilbert's Axioms, Euclidean Geometry, Non-Euclidean Geometry,
Smarandache Geometries, Geometrical Model

Introduction: _
Here it is exposed the Smarandache Anti-Geometry:
It 1s possible to entirely de-formalize Hilbert's groups of axioms
of the Euclidean Geometry, and to construct a model such that none of
his fixed axioms holds.
Let's consider the following things:
-aset of <points>: A, B, C, ...
-asetof <lines>: h, k, 1, ...
- a set of <planes>: alpha, beta, gamma, ...
and
- a set of relationships among these elements: "are situated”,
“"between", "parallel”, "congruent", ‘continuous”, etc.
Then, we can deny all Hilbert's twenty axioms [see David Hilbert,
"Foundations of Geometry", translated by E. J. Townsend, 1950:
and Roberto Bonola, "Non-Euclidean Geometry", 1938].
There exist cases, within a geometric model, when the same axiom is
verified by certain points/lines/planes and denied bv others.

GROUP I. ANTI-AXIOMS OF CONNECTION:

[1. Two distinct points A and B do not always completely
determine a line.

Let's consider the following model MD:

get an ordinary plane delta, but with an infinite
hole in of the following shape:
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P

p .
semi-plane deltal . .

curve f1 (frontier)

t o curve f2 (frontier)

a semi-plane delta2 . .
Q

Plane delta is a reunion of two disjoint planar
semi-planes;

f1 lies in MD, but 2 does not;

P, Q are two extreme points on f that belong to MD.

One defines a LINE 1 as a geodesic curve: if two
points A, B that belong to MD lie in |, then
the shortest curve lied in MD between A and B
lies in 1 also.
If a line passes two times through the same point, then
it is called double point (KNOT).
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One defines a PLANE alpha as a surface such that for
any two points A, B that lie in alpha and belong to
MD there is a geodesic which passes through A, B and
lies in alpha also.

Now, let's have two strings of the same length:

one ties P and Q with the first string s1 such that

the curve s! is folded in two or more different

planes and sl is under the plane delta;,

next, do the same with string s2, tie Q with P, but

over the plane delta and such that s2 has a different
form from si;

and a third string s3, from P to Q, much longer than sl.
sl, s2, s3 belong to MD.

Let [, J, K be three isolated points -- as some islands,
1.€. not joined with any other point of MD,
exterior to the plane delta.

This model has a measure, because the (pseudo-)line is
the shortest way (lenth) to go from a point to another
(when possible).

Question 37:
Of course, this model is not perfect, and is far from
the best. Readers are asked to improve it, or to make up
a new one that is better.

(Let A, B be two distinct points in deltal-f1. P and Q are
two points on s, but they do not completely determine a
line, referring to the first axiom of Hilbert,
because A-P-s1-Q are different from B-P-s1-Q.)

[.2. There is at least a line | and at least two distinct
points A and B of 1, such that A and B do not
completely determine the line |.

(Line A-P-s1-Q are not completely determined bvPand Q

in the previous construction, because B-P-s1-Q is another
line passing through P and Q too.)
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[.3. Three points A, B, C not situated in the same line do
not always completely determine a plane alpha

(Let A, B be two distinct points in deltal-f1, such that
A, B, P are not co-linear. There are many planes
containing these three points: deltal extended with any
surface s containing s1, but not cutting s2 in between
P and Q, for example.)

[ 4. There is at least a plane, alpha, and at least three
points A, B, C in it not lying in the same line, such
that A, B, C do not completely determine the plane
alpha.

(See the previous example.)

L5. If two points A, B of a line | lie in a plane alpha,
doesn't mean that every point of | lies in alpha.

(Let A be a point in deltal-f1, and B another point on

s] in between P and Q. Let alpha be the following plane:
deltal extended with a surface s containing si, but not
cutting s2 in between P and Q, and tangent to delta2 on

a line QC, where C is a point in delta2-f2.

Let D be point in delta2-f2, not lying on the line QC.
Now, A, B, D are lying on the same line A-P-s1-Q-D,

A, B are in the plane alpha, but D do not.)

[.6. If two planes alpha, beta have a point A in common,
doesn't mean they have at least a second point in
common.

(Construct the following plane alpha: a closed surface
containing sl and s2, and intersecting deltal in one point
only, P. Then alpha and deltal have a single point in
common.)

[.7. There exist lines where lies only one point,
or planes where lie only two points,
or space where lie only three points.
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(Hilbert's [.7 axiom may be contradicted if the model
has discontinuities.
Let's consider the isolated points area.

The point I may be regarded as a line, because it's not
possible to add any new point to I to form a line.

One constructs a surface that intersects the model only
in the points [ and J.)

GROUP II. ANTI-AXIOMS OF ORDER:

[I.1. IfA, B, C are points of a line and B lies between A
and C, doesn't mean that always B lies also between
Cand A.

[Let T lieinsl, and V lie in s2, both of them

closer to Q, but different from it. Then:

P, T, V are points on the line P-s1-Q-s2-P

( L.e. the closed curve that starts from the point P
and lies in s1 and passes through the point Q and
lies back to s2 and ends in P ),

and T lies between P and V
-- because PT and TV are both geodesics -,

but T doesn't lie between V and P
-- because from V the line goes to P and then to T,

therefore P lies between V and T ]

[By definition: a segment AB is a system of points
lying upon a line between A and B (the extremes are
included).

Warning: AB may be different from BA;

for example:
the segment PQ formed by the system of points
starting with P, ending with Q, and lying in s1,
is different from the segment QP formed by the
system of points starting with Q, ending with P,
but belonging to s2.

Worse, AB may be sometimes different from AB:

for example:
the segment PQ formed by the system of points
starting with P, ending with Q, and lying in s1,
i1s different from the segment PQ formed by the
system of points starting with P, ending with Q,
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but belonging to s2.]

IL.2. If A and C are two points of a line, then:

I1.4.

there does not always exist a point B lying between A
and C,

or there does not always exist a point D such that C lies
between A and D.

[For example:
let F be a point on f1, F different from P,
and G a point in deltal, G doesn't belong to f1;
draw the line | which passes through G and F;
then:
there exists a point B lying between G and F

-- because GF 1s an obvious segment --,
but there is no point D such that F lies between
G and D -- because GF is right bounded in F
( GF may not be extended to the other side of F,
because otherwise the line will not remain a
geodesic anymore ).]

. There exist at least three points situated on

a line such that:
one point lies between the other two,
and another point lies also between the other two.

[For example:
let R, T be two distinct points, different
from P and Q, situated on the line P-s1-Q-s2-P,

such that the lenghts PR, RT, TP are all equal;
then:

R lies between P and T,
and T lies between R and P;
also P lies between T and R ]

Four points A, B, C, D of a line can not always be
arranged:

such that B lies between A and C and also
between A and D,

and such that C lies between A and D and also between
B and D.
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IL.5.

[For examples:
- let R, T be two distinct points, different
from P and Q, situated on the line P-s1-Q-s2-P such
that the lenghts PR, RQ, QT, TP are all equal,
therefore R belongs to s1, and T belongs to s2;
then P, R, Q, T are situated on the same line:
such that R lies between P and Q, but not between
Pand T
-- because the geodesic PT does not pass through
R -,
and such that Q does not lie between P and T
-- because the geodesic PT does not pass through
Q-,
but lies between R and T;
- let A, B be two points in delta2-f2 such that A Q,B
are colinear, and C, D two points on s1, s2 respectively,
all of the four points being different from P and Q;
then A, B, C, D are points situated on the same line
A-Q-s1-P-s2-Q-B, which is the same with line
A-Q-s2-P-s1-Q-B, therefore we may have two different
orders of these four points in the same time:
A,C,D,Band A,D,C,B]

Let A, B, C be three points not lving in the same
line, and | a line lying in the same plane ABC and
not passing through any of the points A, B, C.
Then, if the line [ passes through a point of the
segment AB, it doesn't mean that always the line |
will pass through either a point of the segment BC
or a point of the segment AC.

[For example:

let AB be a segment passing through P in the
semi-plane deltal, and C a point lying in deltal
too on the left side of the line AB;

thus A, B, C do not lie on the same line;

now, consider the line Q-s2-P-s1-Q-D, where D is
a point lying in the semi-plane delta2 not on 2:
therefore this line passes through the point P of
the segment AB, but do not pass through any point
of the segment BC, nor through any point of the
segment AC.]
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GROUP [II. ANTI-AXIOM OF PARALLELS.

[n a plane alpha there can be drawn through a point

A, lying outside of a line , either no line,

or only one line, or a finite number of lines,

or an infinite number of lines which do not intersect

the line I. (At least two of these situations should occur.)
The line(s) is (are) called the parallel(s) to 1

through the given point A.

[ For examples:

- let 10 be the line N-P-s1-Q-R, where N is a point
lying in deltal not on {1, and R is a similar
point lying in delta2 not on 2,
and let A be a point lving on s2,
then: no parallel to 10 can be drawn through A
(because any line passing through A, hence through
s2, will intersect s1, hence 10, in P and Q);

- if the line 11 lies in deltal such that 11 does
not intersect the frontier f1, then:
through any point lying on the left side of 11
one and only one parallel will pass;

- let B be a point lying in f1, different from P,
and another point C lying in deltal, not on f1;
let A be a point lying in deltal outside of BC;
then: an infinite number of parallels to the
line BC can be drawn through the point A.

Theorem. There are at least two lines 11, 12 of a
plane, which do not meet a third line 13 of the
same plane, but they meet each other,

(1e. 1f 11 is parallel to 13, and 12 is parallel
to 13, and all of them are in the same plane,
it's not necessary that 11 is parallel to 12 ).

[ For example:
consider three points A, B, C lying in f1, and
different from P, and D a point in deltal not on

f1; draw the lines AD, BE and CE such that

E 1s a point in deltal not on f1 and both BE
and CE do not intersect AD;

then: BE is parallel to AD, CE is also parallel
to AD, but BE is not parallel to CE because the
point E belong to both of them. ]
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GROUP IV. ANTI-AXIOMS OF CONGRUENCE

IV.1.If A, B are two points on a line |, and A' is a
point upon the same or another line I', then:
upon a given side of A' on the line I', we can
not always find only one point B' so that the
segment AB is congruent to the segment A'B'.

[ For examples:

- let AB be segment lying in deltal and having no
point in common with f1, and construct the line
C-P-s1-Q-s2-P (noted by I') which is the same
with C-P-s2-Q-s1-P, where C is a point lying in
deltal not on f1 nor on AB;
take a point A' on I', in between C and P, such
that AP i1s smaller than AB;
now, there exist two distinct points B1' on s1
and B2'on s2, such that AB1' is congruent to AB
and A'B2' is congruent to AB,
with AB1' different from A'B2";

- but if we consider a line I' lying in deltal and
limited by the frontier f1 on the right side
(the limit point being noted by M),
and take a point A' on I', close to M, such that
AM s less than A'B', then: there is no point
B’ on the right side of I so that AB' is
congruent to AB. ]

A segment may not be congruent to itself!

{ For example:
- let A be a point on s1, closer to P,

and B a point on s2, closer to P also;
A and B are lying on the same line A-Q-B-P-A
which is the same with line A-P-B-Q-A,
but AB meseared on the first representation
of the line 1s strictly greater than AB
meseared on the second representation of
their line. ]

[V.2. If a segment AB is congruent to the segment
A'B' and also to the segment A"B", then
not always the segment A'B' is congruent to
the segment A"B".
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[ For example:

- let AB be a segment lving in deltal-f1, and
consider the line C-P-s1-Q-s2-P-D, where C, D are
two distinct points in deltal-fl such that C, P, D
are colinear. Suppose that the segment AB is
congruent to the segment CD (1.e. C-P-51-Q-s2-P-D).
Get also an obvious segment A'B' in deltal-f1,
different from the preceding ones, but congruent
to AB.
Then the segment A'B' is not congruent to the segment
CD (considered as C-P-D, i.e. not passing through Q.)

[V.3. If AB, BC are two segments of the same line |
which have no points in common aside from the
point B,
and AB', B'C' are two segments of the same line
or of another line [' having no point other than
B' in common, such that AB is congruent to A'B'
and BC is congruent to B'C,
then not always the segment AC is congruent to
A'C.

[ For example:
let | be a line lying in deltal, not on f1,
and A, B, C three distinct points on 1, such
that AC is greater than sl;
let I' be the following line: A'-P-s1-Q-s2-P
where A' lies in deltal, not on {1,
and get B' on s1 such that AB' is congruent
to AB, get C' on s2 such that BC is congruent
to B'C' (the points A, B, C are thus chosen);
then: the segment A'C' which is first seen as
A'-P-B-Q-C' is not congruent to AC,
because A'C' is the geodesic A'-P-C' (the
shortest way from A’ to C' does not pass
through B") which is strictly less than AC. }

Definitions. Let h, k be two lines having a point O
in common. Then the system (h, O, k) is
called the angle of the lines h and k in
the point O.

( Because some of our lines are curves,
we take the angle of the tangents to
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the curves in their common point. )

The angle formed by the lines h and k
situated in the same plane, noted by
<(h, k), 1s equal to the arithmetic mean
of the angles formed by h and k in all
their common points.

IV.4. Let an angle (h, k) be given in the plane alpha,
and let a line h' be given in the plane beta.
Suppose that in the plane beta a definite side
of the line h' be assigned, and a point O".
Then in the plane beta there are one, or more,
or even no half-line(s) k' emanating from the
point O’ such that the angle (h, k) is
congruent to the angle (h', k'),
and at the same time the interior points of
the angle (', k') lie upon one or both sides
of h'. '

[ Examples:

- Let A be a point in deltal-fl, and B, C two
distinct points in delta2-£2;
let h be the line A-P-s1-Q-B, and k be the
line A-P-s2-Q-C; because h and k intersect
in an infinite number of points (the segment
AP), where they normally coincide -- 1.e. In
each such point their angle is congruent to
zero, the angle (h, k) 1s congruent to zero.
Now, let A" be a point in deltal-f1, different
from A, and B' a point in delta2-f2, different
from B, and draw the line h' as A'-P-s1-Q-B";
there exist an infinite number of lines k', of
the form A'-P-s2-Q-C' (where C' is any point in
delta2-f2, not on the line QB"), such that the
angle (h, k) is congruent to (h', K),
because (h', k') is also congruent to zero, and
the line A'-P-s2-Q-C' is different from the line
A'-P-s2-Q-D'if D’ is not on the line QC'.

- If h, k, and h' are three lines in deltal-P,
which intersect the frontier f1 in at most one
point, then there exist only one line k' on a
given part of h' such that the angle (h, k) is
congruent to the angle (h', k).
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- *Is there any case when, with these hypotheses,
no k' exists ?

- Not every angle 1s congruent to itself;
for example:

<(sl, s2) is not congruent to <(sl1, s2)

[because one can construct two distinct lines:
P-s1-Q-A and P-s2-Q-A, where A is a point in
delta2-2, for the first angle, which becomes equal
to zero;
and P-s1-Q-A and P-s2-Q-B, where B is another point
in delta2-£2, B different from A, for the second
angle, which becomes strictly greater than zero!].

[V. 5. If the angle (h, k) is congruent to the angle
(h', k',) and the angle (h", k"), then the
angle (h', k') is not alwavs congruent to the
angle (h", k").

(A similar construction to the previous one.)

IV.6. Let ABC and A'B'C' be two triangles such that
AB is congruent to A'B',
AC is congruent to A'C',
<BAC is congruent to <B'A'C".
Then not always
<ABC 1s congruent to <A'B'C'
and <ACB is congruent to <A'CB'".

[For example:

Let M, N be two distinct points in delta2-f2, thus
obtaining the triangle PMN;

Now take three points R, M', N' in deltal-f1, such
that RM' is congruent to PM, RN' is congruent to RN,
and the angle (RM, RN'") is congruent to the angle
(PM, PN). RMN' 1s an obvious triangle.

Of course, the two triangle are not congruent,
because for example PM and PN cut each other twice
-- in P and Q -- while RM and RN' only once -- in

R.

{These are geodesical triangles.)]

Definitions:
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Two angles are called supplementary if they have the
same vertex, one side in common, and the other sides
not common form a line.

A right angle is an angle congruent to its
supplementary angle.

Two triangles are congruent if its angles are congruent
two by two, and its sides are congruent two by two.

Proposttions:

A right angle is not always congruent to another
right angle.

For example:

Let A-P-s1-Q be a line, with A lying in deital-f1,
and B-P-s1-Q another line, with B lying in
deltal-f1 and B not lying in the line AP;

we consider the tangent t at sl in P, and B chosen
in a way that <(AP, t) is not congruent to <(BP, t);
let A", B' be other points lying in deltal-f1

such that <APA' is congruent to <A'P-s1-Q,

and <BPB' is congruent to <BP-s1-Q.

Then:

- the angle APA' is right, because it is congruent
to its supplementary (by construction);

- the angle BPB' is also right, because it is
congruent to its supplementary (by construction);
- but <APA' is not congruent to <BPB',

because the first one is half of the angle A-P-s1-Q,
L.e. half of <(AP, t),

while the second one is half of the B-P-s1-Q,

1.e. half of <(BP, t).

The theorems of congruence for triangles

[side, side, and angle in between; angle, angle, and
common side; side, side, side] may not hold either
in the Critical Zone (s1, s2, f1, £2) of the Model.

Property:

The sum of the angles of a triangle can be:
- 180 degrees, if all its vertexes A, B, C are
lving, for example, in deltal-f1;
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- strictly less than 180 degrees [ any value in the
interval (0, 180) |,

for example:

let R, T be two points in delta2-f2 such that Q does

not l1e in RT, and S another point on s2;

then the triangle SRT has <(SR, ST) congruent to 0
because SR and ST have an infinite number of common
points (the segment SQ), and <QTR + <TRQ congruent
to 180-<TQR [ by construction we may vary <TQR in the
interval (0, 180) |;

- even O degree!

let A be a point in deltal-f1, B a point in delta2-£2,

and C a point on s3, very close to P;

then ABC is a non-degenerate triangle (because its
vertexes are non-colinear), but <(A-P-s1-Q-B, A-P-s3-C)
= <(B-Q-s1-P-A, B-Q-s1-P-s3-C) = <(C-s3-P-A,
C-s3-P-s1-Q-B) =0

(one considers the lenth C-s3-P-s1-Q-B strictly less
than C-s3-B);

the area of this triangle is also 0'!

- more than 180 degrees,

for example:

let A, B be two points in deltal-fl1, such that

<PAB +~ <PBA + <(sl, s2; in Q) 1s strictly greater

than 180 degrees;

then the tnangle ABQ, formed by the intersection of
the lines A-P-s2-Q, Q-s1-P-B, AB will have the sum of
its angles strictly greater than 180 degrees.

Definition:
A circle of center M is a totality of all points A
for which the segments MA are congruent to one another.

For example, if the center i1s Q, and the lenth of the
segments MA is chosen greater than the lenth of sl,
then the circle is formed by the arc of circle centered
in Q, of radius MA, and lying in delta2, plus another
arc of circle centered in P, of radius MA-lenth of s,
lving in deital.

GROUP V. ANTI-AXIOM OF CONTINUITY (ANTI-ARCHIMEDEAN AXIOM)

Let A, B be two points. Take the points A1, A2, A3, A4,
. so that Al lies between A and A2, A2 lies between
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Al and A3, A3 lies between A2 and A4, etc. and the
segments AAL, A1A2, A2A3, A3A4, ... are congruent to one
another.

Then, among this series of points, not always there exists

a certain point An such that B lies between A and An.

For example:

let A be a point in deltal-f1, and B a point on f1, B

different from P;

on the line AB consider the points A1, A2, A3, A4, ...

in between A and B, such that AAL, A1A2, A2A3, A5A4, etc.
are congruent to one another;

then we find that there is no point behind B (considering

the direction from A to B), because B is a limit point

(the line AB ends in B).

The Bolzano's (intermediate value) theorem may not hold in
the Critical Zone of the Model.

Can vou readers find a better model for this anti-geometry?
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On certain new inequalities and limits for the Smarandache function

Jozsef Sandor
Department of Mathematics, Babes-Bolyai University,
3400 Cluj - Napoca, Romania

I. Inequalities

1) If n > 4is an even number, then S(n) <

T

—Indeed, 2 is integer, 7 > 2,soin(3)! =1-2-3---2 we can simplify with 2, so n{(5)!.
This simplies clearly that S(n) < 3.

2) Ifn > 4is an even number, then S(n?) < n

—Byn!=1-2-3---2--.n, since we can simplify with 2, for n > 4 we get that n*|n!. This
clearly implies the above stated inequality. For factonials, the above inequality can be much

improved, namely one has:

3) S ( (m! }—2) < 2m and more generally, S ( (m! )“) < n_-m for all positive integers m and n.

. n)! _ ! —m)! 2m)!
—First remark that (L::! )2, = m g:::lm). . mgz;:ln_‘r;zn)! ,sigr?mg -

=Cp, - CR,..Cm., where CX = () denotes a binomial coefficient. Thus (m! )" divides

(m n)!, implying the stated inequality. For n =2 one obtains the first part.

4) Letn > 1. Then S((n)*"V') < n!

—We will use the well-known result that the product of n consecutive integers is divisible by
nl. By(n!)!'=1-2-3---n- ((n+l) (n+2)---2n)---((n-1)!-1)---(n-1)! n

each group is divisible by n!, and there are (n-1)! groups, so (r))(*~V" divides (n! )!. This
gives the stated inequality.

5) For all m and n one has [S(m), S(n)] < S(m - S(n) < [m, n]. where [a, b] denotes the




£-c-mofaandb.
—Ifm= ?;;-, n= Hq;’-j are the canonical representations of m, resp. n, then it is well-known
that S(m) = S (3, )and S(n) = S(q7 ), where S( )= max {S(5):i=1,--,1}; S(¢¥ ) =
max {S(q?j ):5=1,---, h}, withr and h the number of prime divisors of m, resp. n. Then

clearly [S(m), S(0)] < S(m)-S(n) < p* - g < [m, n]

6) (S(m). S(n)) > ﬂﬂ,n%@-(m. n)forallmand n

~Since (S(m), S(m)) = S > SELS) - SIS (m, p)

= [S(m},S(n)] = im, nj nm

by 5) and the known formula [m,n] =

mn
7 )
M, ny

S(m), S(n) e\ 2
7) (k(";vn)") > (£22)” forall mand n

2 AN
—Since S(mn) < m S(n) and S(mn) < n S(m) (See [1])’ we have (srmn)) < S(m)Stn)

mn mn 4

and the result follows by 6).

2 4
8) We have (%’:‘T")) < SmS(n .~ 1

- mn — {(mn)

—This follows by 7) and the stronger inequality from 6), namely S(m) S(n) < [mn]= —r':—’;—}

COI'OHQ! S(m TL) < m

9) Max {S(m), S(n)} > %%:—)‘2 for all m,  n; where (m.n) denotesthe g-c-d of mand n.

—We apply the known result: max {S(m), S (n)}= S([m, n]) On the other hand, since

’ 1% .
{mn) Si m.r}Q .
mn — m,nj

[m, n] ! m - n, by Corollary 1 from our paper [1] we get S

mn
(mv n) >

Since [m, n] =
The result follows:
Remark. Inequality g) compliments Theorem 3 from [1],

namely that max {S (m), S(n)} < S(mn).
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L §{ patni2)
10) Let d(n) be the number of divisors of n. Then 232 < (o)

nl =  ndn)2

—We will use the known relation [Jk = n4(™/2 where the product is extended over all divisors k

kln
of n. Since this product divides [] k = n!, by Corollary 1 from [1] we can write
k<n

S
s < -TI/?;— , which gives the desired result.

nl —
kin
Remark If n is of the form m?2, then d(n) is odd, but otherwise d(n) is even. So, in each

d(n)/2

case n is a positive integer.

11) For infinitely many n we have S(n + 1) < S(n), but for infinitely many m one has

Sm-+1)> S(m).

—This is a simple application of 1). Indeed, let n = p — 1, where p > 5 is a prime. Then, by
1) wehave S(n) = S(p—1) < % < p. Since p = S(p), we have S(p — 1) < S(p).
Let in the same manner n» = p + 1. Then, as above, S(p+1) < B! < p = 5(p).

12) Let pbe a prime. Then S(p!+1) > S(p!)and S(p! —1) > S(p")

—Clearly, S(p!) =p. Letp!+1= qu’j be the prime factorization of p! + 1. Here each
g; > p, thus S(p! +1) = S(q?j ) (for certain 7) > S(p% ) > S(p) = p. The same proof
applies to the case p! — 1.

Remark: This offers a new proof for M).

13) Let P be the kth prime number. Then S(p;ps... B +1) > S(pypy:--P;)and
_3-

Sipypy. P =1) > S(pypy---Py)
—Almost the same proof as in 12) is valid, by remarking that S(p; ps- - - Pi) = Px (since

p<p<--- < i)

14) For infinitely many n one has (S(n)z) < S(n —=1)-S(n +1) and for infinitely many m,
2
(Stm) > Stm=1). S(m+1).
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—By S(p+1) < pand S(p— 1) < p (See the proofin 11) we have

Sl ¢ 5(1,3 < 5225 - Thus (S(p)) > S(p—1) - S(p+1).

On the other hand, by putting z,, = ng:)n , we shall see in part II,

thatlim sup z, = + oco. Thus z,_; < z, for infinitely many n, giving

n—oo

(S(n))2 < S(n-1)-Sn+1).

II. Limits:
1) lim mf— = 0 and lim sup =1
n—xo n—oo
—Clearly, &1 > 0. Let n = 2™. Then, since S(2™) < 2m, and hm ;—m = 0, we have
lim ig,,—ml = 0, proving the first part. On the other hand, it is well known that inl <1.

m—oo
For n = py (the kth prime), one has S(p D=1 lask — oo, proving the second part.

Remark: With the same proof, we can derive that lim inf J— = Ofor all integers r.

n—x

—As above S(2*") < 2kr, and

gf’ — 0 as k — oo (r fixed), which gives the result.

2) lim mf—gs% = Oand lim sup 225K = + o0

/
n—oo n—oo S

—Let p. denote the rth prime. Since (p,...p-, 1) = 1, Dirichlet's theorem on arithmetical

progressions assures the existence of a prime p of the formp=a-p,..p, — 1.
ThenS(p+1) = S(apa---p-) < a-S(pr---p,) by S(mn) < mS(n) (see [1])

But S(pr---p-) =maz {py, -, pr} = pr. Thus 35 < = <

p—‘v"‘—&“p,_l — 0as r — oo. This gives the first part.

Let now p be a prime of the form p = bpy---p, + 1.



Then S(\p - 1) = S@I’&Pr} < bS(P\Pr) =b- Pr,

and S=1) « b p-

T~ — < — — .
S{py = bdprp+l = pp--pe Oasr 0

3) liminf[S(n-i-l S(n)} —ooandhm sup [S(n-}-l)—S(n)] = + o0

n—oo —0

—~Wehave S(p+1) - S/p) < E;—l——p= :'gll — — oo for an odd prime
p(seel)andll)). On the other hand, S(p) - S(p—1) > p— %1 = ?“2”—1 — 00

(Here S(p) = p), where p — 1is odd for p > 5. This finishes the proof.

S{oln)
4) Let o(n) denotes the sum of divisors of n. Then lim inf ( =0

n—oe

—This follows by the argument of 2) for n = p. Theno(p) = p+ 1 and 5(;;; U 0, where

{p} is the sequence constructed there.

5) Let ¢(n) be the Enter totient function. Then lim inf i—z =0

n—o0

—Let the set of primes {p} be defined as in 2). Since ¢p(n)=p— land S@p’u = 5;‘;;)1) — 0,

the assertion is proved. The same result could be obtained by taking n = z*. Then, since

99(2’°) = , and el IQH) < = '2‘[ L, oas k — 0o, the assertion follows:
S(5m) S(S(n)
6) lim mf-—uz = Oand ¥ ln—ll =1
n—x

—Letn = p! (pprime). Then, since S(p!) = pand S(p) = p, from f-! —0(p— )

s(s¢ n,} St : .
we get the first result. Now, clearly < = < 1. By letting n = p (prime), clearly

5(5(p) . .
one has > = 1, which shows the second relation.
o{ S{n)
0] nangomf STy = 1.
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\
5 .. S{p) ;
—Clearly, Z& > 1. On the other hand, for n = p (prime), 7 \’ =2l L lasp— oo.
k kp S{p) p

S(n)

FCYR 0.

8) Let Q(n) denote the greatest prime power divisor of n. Then lim inf Z

n—o

—Let n = pF---p* (k > 1,fixed). Then, clearly 8(n) = p*

By S(n) = S(p) (since S(pF) > S(pF)fori < k)and S(pF) = j- p,, with j < k (which is

S(n
known) and by ¢ (j px) < j - @(pr) < k(p- — 1), we get ¢<a(;))) < k'(’;,—l) — Oas

r — oo (k fixed).

9) lim 322 —g
m—oo m:
meven

{m? . . .
—By 2) we have i”%l < % for m > 4, even. This clearly inplies the above remark.
. 2 .
Remark. It is known that igﬁ < % ifm #* 4 1s composite. From ﬂ”_fg_l < i < % form > 4,

for the composite numbers of the perfect squares we have a very strong improvement.

o{ S(n
10) uminfl—,f—)l=o

n—0o

—Byo(m)=Zd=nZ:<nZl<n (2logn), wegeto(n) <2nlognforn > 1. Thus
d/n d/n d=1

a(S(n)) < 2 5(n)logS(n)

n n

. For n = 2F we have S(2F) < 2k, and since ﬁ%& — 0

(k — o0), the result follows.

11)  lim ¢/Sn) =1

—This simple relation follows by 1 < S(n) < n,s01 < {/S(n) < \“/ﬁ; and by \"/5 -1
as n — oo. However, 11) is one of a (few) limits, which exists for the Smarandache function.
Finally, we shall prove that:

a{nS(n)

12) lim sup wS = T .
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—We will use the facts that S(p!) = p, 222 =7

5 >1+5+ -+ —ooas
dipt

Qe

p — 00, and the inequality o(ab) > a o(b) (see [2]).

a{ S(php! Sip!).o(p! oot
Th ( > (p)-a(pl) — ;P'

s ey 2 A — o00. Thus, for the sequence {n} = {p!}, the

results follows.
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THE FACTORIAL SIGNATURE OF NATURAL NUMBERS

by

v

Ion Balacenoiu

In this paper we define the factorial signature for natural numbers and with this
we obtain several results.

1. DEFINITION The system  (J, ,J,» --- > J, ) € N*' is a system of
factorial exponents if IseN* so that s!=p) -py- .. pJ.;E{s; ,  where

2=p,<3=p,<.. <Puy S, ns)=r.
Obviously, for every natural number s > 1 there exists a system of factorial
exponents  (J;, Jy, -5 Jug )

n(s) e A{s) ’
ol , L.
‘ where €p,(s) are Legendre's exponents, it is

Because  s!=[Ip," ,
i=1
true that: €p,(S) 2 €ep,(8) 2 ...epy,(s) = L.
Therefore for every system of factorial exponents  (j,, J,, ... , J, ) it results

that j 2j3,2..2j=1.
It exists a finite number of system of factorial exponents with r components.
Indeed, they correspond those natural numbers with the property:  p. ! <s!<p_, !
If g,,J,,,J.) and 1" 51", 5 )" ) are systems of factonal
exponent corresponding as n respectively m, then
n<m = J, 23", J5<)%, 00510 =) =L
If =w(n)==n(n+l), then n-=1 1isacomposite number and their systems
of factorial exponents have the same number of components.



If n-1 is a prime number, then (o) =z(n) -1 and if
Gy 2 Jas s Jum =1)  is the system of exponents of adequate factorial for n, then
the system of exponents of adequate factonal for n+ 1 1s:
Giodas o dam =15 Jxeen =D
Two systems of factorial exponents with r components, adequate as two
different natural numbers, have different components and equal components, too.

2. DEFINITION Let neN, n=p,'-p.’-..p.°, andlet s be
the smallest positive integer such that s! is divisible by n. Then the factonal
‘ )

oy a "
signature for n (denoted by s.f.(n!)) is: s.f.(n)= {pikk‘ ,pi,,kz, o p?‘“ ;
L 1 K2 ®

1

o

[y &y a, ) ) (oo, @, a€,

where {pikl JDiy s> Py [ isthelargestsubsetfor (p; ,pi T, .., Di 7

t
<

By
so that there are B‘;kJ 2o 21, Je L,r with pikk"*(s— 1)l and
i J ‘
pik;) I st.
[t 1s considered sf(0)=9, st(l)={l}.
Obviously: ep (s—1) <Py <ep (s), j=1, 1.
5 E j

3. DEFINITION The type of the factorial signature for n 1s noted
T[sf(@)] and T[sf(0)]=0, T[s.f(n)]=s, for n>0, where s 1isthe
smallest positive integer such that n|s!.

4. EXAMPLE
a) Let n=120=2"x3 x5, therefore p,=2, p,=3, p,=3;
o, =3, o,=1, o =1L Obviously the smallest positive integer s thus so

that nis!' is s=35. Indeed, sf(120)={5} because {5} 1is the largest
subset of {2°,3,5} in the sense that (see definition 2) itexist B, =a;=1
sothat 5P )4! and 5P |30
b) Let n=p*, then sf(*)={p®} and T[s.f(p*)]=s iff
e(s-1) <a<efs)

5. PROPOSITION Let n=p, ' p.ic ... DL
) [ % O, Cig |
Piy < Pis < ... < Pis, with sf(m)=1{py Py, > 5P, and
iy ) —_—
T[s.f(n)]=s>1 thenitexists at least an element Di, L= 1r so that
J
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e, (5—-1) <oy < ep, (3) and T sf pi;"j J =5.

Proof.  Let Pi,, <Pi, <... <Pi, -
Because T[sf(n)]=s>1 it results that nis! and 1t exists
Bikj 2 i, 2 1 so that  ep, (s—1) <P < ep, (5) .
ol N ’ ]
If does not exist jel,r  so that ep, s—D <oy <ep (5),
§ E x

then Pi,. <Pn(s) because Pi,, = Dx(s) it 1implies that
Uiy, = €p, (8) = €pyy(s) =1=Pi, and  ep,,(s—1)=0.
Using  aj, < Bi <ep (s) it results that i, < ep, s-D,j=1r.
J ] Kj ]

Thus we have Tlsf(n)]<s-1<s, which is not possible.

Therefore itexists jel,r sothat ep (s-1)<ai <e, (s) andin
i 31 ') \‘

r @
consequence Tts.f. (pik‘ ’) ] =S5.
: o

We can observe that pikzk" indicates the type  T[s.f.(n)].

6. DEFINITION The complement until a factorial (see [2]), is
b:N* > N*, bm)=k, vhere k 1is the smallest positive integer so that
n b(n) isa factorial. Thus n b(n) =m!.

Obwviously, if n b(n) = m!, then  m! is the smallest factorial divisible
by mn, therefore nb(n)=[n(n)]! where 7 isSmarandache function see [1].
It is easy to see that  b(n!)=1 and b(p)=(p-1) p  1Saprime
number.
: [n(m)]!
Because n(n!)=n  itresults b(n) = ——= .
") ()
7. PROPOSITION Let p  beaprime numberand p>m, then
_(=-1!
b(m! - p) = T
Proof. Obviously, p! isthe smallest factorial divisible by m! p.
! - 1!
Therefore b(m! - p)= p' = (- 1)
m!p m!

8. PROPOSITION
T[s.f.(n)] =s iff  nb(n) =s!

Proof  Obviously, T[s.f(n)]=s <« s! is the smallest factorial divisible
by n <& nb(n)=s!.
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9. DEFINITION We define the echivalent relation: s.f.(n)=s.f(m) <
<> nbn = mb(m).
Wenote s! = {ne N*/nb(n)=s'}.

10. REMARK Obviously, if s.fi(n)=s.f(m) then s.f.(n) = s.f.(m).
If s.f.(n) = s.f(m) it does mnot result that s.f(n) =sf(m ). If
s.f.(n) =s.f.(m) it does not result that n=m. If nb(n)=s! itresultsthat

s.f.(n) ~s.f(s!) because s!b(s!)=s!.
We also observe that T[s.f.(n)]=s < nes!.

If p isaprime number, then p e p! because pb(p)=p!. Itiseasyto

see that  s.f.(p)=s.f(p)) = {p}.
epl(p) ep:(p) .

Because p!'=p, -p; ...p, where 2=p <3=p,<... <p, 1t
/\, 2 eP](P) e?z(p)
results  p'= {p, pip, P2p, PP, P1P2P, ---» P1 P2 - P} -
o, o, o, epil(s) eplz(s) ep:_‘(s)
If S:pii 'piz L. pik 5 then S.f.(S!)z {pil ’piz 5 .- "pik }

11. PROPOSITION If (n,m)=1 and nmes! then n-mes!
and s.f.(n-m)=[s.f.(n)] v [s.f.(m)].

Proof. Let n=p.'-py ...-pt" and m=q}]-qy ... q be
the cannonical decompositionof n and m. Obviously, because (n,m)=1 1t
results p#q for ielt jelh

o, iy a;; Yi i
Let s.f.(n) = {pin 0, Pi, 5 -5 Pi, } and Sf(m) = {qjl >t qjkk}‘

N
Because n,m e s! itresults that s is the smallest positive integer so that

nls!, mis' and it exists Bi,, Bis» .- Bi, and Bii» Ojas -« 5 Ojy
respectively so that PB;, 2 a;, =21, ue I,r and §;, 2v;, 21, ve I,k and
Bfu ﬁiu
Di, A(s=D!, Di, 's!
5 5.,
g A -1 g s
In (n,m)=1 and njs!, m|s! itresultsthat nm|s!. Because s
is the smallest natural number suchas n|s! and nm/|s! it resulisthat s
is the smallest natural number such that s! is divisible by n - m, therefore
Fay

T[s.f(nm)]=s, sothat nm es!. o
Obviously nm=pS -p¥...pi-q'-qf...qy and

ag, a, o, i Yiy .
sf-m)={p; ", p.’s - > Pi >G> > iy § = [s.f(n)] v [s.f.(m)]
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12. REMARK  The proposition 11 can be also formulated in this way: if
nb(n)=s!, mb(m)=s! and (n,m)=1, then nmb(nm)=s'

=W if mm)=1 and nm es!

It results  b(n - m)

13. PROPOSITION

If (nm)=1 and sf(n)=sf(m), then b(nm)=(b(n), b(m)).

Proof.  Let T[sf(m)] =s, because (n,m)=1 and s.f(n)= s.f(m)
then it results:

nb(n) = mb(m) = nmb(nm) = s!,

therefore  b(n-m)= —Sm% : Let us consider d = (b(n), b(m)), b(n)=da
and  b(m)=db, where (a,b)=1 Then nb(m)=mb(m) implies that
na =mb. '

Because (a,b)=1 itresults a|m and bin, then we can write
n=hb, then hba =mb, sothat m=ah. Since 1=(n m)=(hb, ha)=h(a,b)=h
itresults n=b, m=a.

Then  (b(@),b(m))=d =t =S — b(n.m)

na’ nm
14. PROPOSITION
Let n=q;-q - ...-q" and s.f.(n)={qj",h,-.-,q}f’}. If nes
¢, () e () ¢, 9]
and sf(sh= {pil Pi, s Dy } then
{45, Qj25 5953 S {PisPins - Pic ) -
'f epi,(s) eph(s) €1 (5)‘5
Proof. Because sf(sh= {Pi, »Pi, 5Dy it results
e, (9 epih(s) ) - ’
pi Ms-1) and Pi, |s! for h=1,k,  therefore p.ls,
thus we have s= piori‘ : pi’z : : pilk, where I <oy, <ep () for
h=1,k.

Because n es! it exists Bi,2y;,>1, for m=1r so that
qJB:’ (s - 1)! and qim st | thus Qs Therefore
(G525} S {PisPias > Pic ) -

. A all &, (o2

15. DEFINITION Let nmes' and sf(n)= {pi, .Pi, » -5 D}
s.f(m) = {qj{j‘ ’q;f Y qj{:k} then s.f(n) < s.f.(m) iff
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PisPiss s Pict €G- Dss -, ) and for every p;, =q:. 1t implies
/i .

16.REMARK  Obviously "S<" is a partial order relation in the set of

factonal signatures of numbers which belongs to s!. Forany n es! it

results S. f(n) =s.f(sh, so that  s-f(s!) is the maximal element. If
o a, u .. . C oy

S=Dp;, Leplteo pio: then the minimal elements in the factorial signatures of

A

numbers which belongs to  s! are:

[ er (s)—a +13 [ e (s)-a,;—l‘i .

l ; “ {
s.f. iy [= 1P, », helu

ePiH@_am’l A A

because D, es! and for any X €s! so that

4 e, (s)-at; nol\’ . feg, (S)map =1
s.£(x)Ss.f pIH Jodtresults sf(g =/

(RS

17. PROPOSITION  Forany me N, n-i(m)=m', where =n is
Smarandache function.

Proof.  Let nem!, then nb(n)=[n(m)] =m!, therefore n(n)=m,
or n e n’'(m). Converzely, if nen'(m) itresults m(n)=m, that

nb(n) =[n(n)]! and therefore nem! .

A

18. DEFINITIONS In s! it is considered the equivalent relation:
n =m < s.fi(n) = s.f(m). The echivalent class for nois
ANt 3 n
n = mes' [Sf(n)—sf(m)‘ The set of equivalent classes in s it
A A
A A
noted with st. In s! 1t 1S considered partial order relation
N < av4

nm < sf(n)Ssf(m)

A

19. REMARK Each class r/lves! 1s a set of elements which belongs to

s!, anditis total ordered in the sense of the relation S Tt 1s also finite, therefore

it has a minimum and a maximum. If sf(n)= {p1 , pl, Y pi“’}, then In

the class 10 the smallest number i1s n= p p - -pi" and the

other numbers of fi are  A-q . with A—ph! - pi SN pk‘( , with

Dy, A's and Dy, I8! and 0<g <e,(s), j=1,k, where
25, (5) %, ) ¢ e (s

: 1 _ | 1 ) !
(p‘i s ey pn’( ’ = <‘Lp1‘ > Px(s) ‘? —-S.f.(S.) .
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A7 N
The largest number of n  is:

ef—":. '\S> ’:P_Lm '/5) c?':., S)

NPy "Pn. - " Pn
N :
. A . . i <
Minimal elements of s! , in the sense of the partial order relation =, are
. . ePi (S)°a:h+1 —_—
the classes which respectively have the elements:  p; " , h=1,r. The

N

N
maximal class of s! has s! aselement.
NN ~ N 3
If n~m and n # m, the absolute value of the difference between
. . % .
two different numbers in the class m  is larger than the smallest between absolute

values of differences between two different numbers of the class n .

N, /\/ AL A .
f nim and n # rrf, the absolute value of the difference between a
A’ ~ R
number of n and a number of m  is larger or equal than the smallest number

of 1  and therefore it is larger or equal than the smallest number of the minimal

class comparable (in the sense of the partial order relation < ) with n .

20. EXAMPLE Let s=12=2"-3, then s!=12!=2"3%5%711]

s.f.(121) = {2%, 3°).
Let wus consider the :et of natural numbers with the factorial signature of

type 12,sothat 12!={n e N/nb(n)=12!} = {n € N/sf(n)=sf(12))} .
Obviously n~'(12) =12!.
The minimal elements of 12!, in the sense of the partial order relation =
~S

A A ~/
are:  2%'=2° and 37'=3°

A
Factorial signatures of numbers of 12! are ordered in the following way:

{2103 210335210323 £{219,351 < {210 341 ¢
{210 33

b4

| {29,3}9{29,32}9{29,33}5{29,34}5}{29,35}§ |

(3°} © {3°,21<43°,221 < ... S3%,281¢
/\ .
Classes of numbers of 12! are presented in next table:
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n — sf(n) | sf(n) | «— n o osf(n) “n
2y 2 (3% 3
2°. 53 135.5
2%.7 35.7
2°-11 311 *
29 52 35 52
2°.5.7 35.5.7
22-5.11 35.5.11
2°.7-11 3.7.11
2°.5.7-11 3¥.5.7-11
2°.5%.7. 11 3*.52.7.11
2" 29 | {23 2.3 (3°2) [3°2
2%-5 .35 3.2.5
2°-7 2°.3-7 3°.2.7
2°:11 2311 3.2 11
210.52 ~9.3_52 35‘2.5-_\ }
257 2.3.5.7 35.2.5.7 ;
21°.5. 11 2°.3.5-11 3*.2-5-11 1
219711 22.3.7-11 35.9.7.11
21°.5.7-11 2°.3.5.7-11 3.2.5.7-11 |
21¢.52.7.11 2°.3.50.7.11 3%.2.50.7.11
210 3 {zlo,ﬁ} {29’ 3- 29 3" {—55’2-} ~5 22
219.3.5%.7-11 2°.32.52.7.11 35.92.52.7. 1]
2°- 3 {293y | 2,3 25 {32 13°-2°
21°.3%.52.7.11 2°.3.50.7-11 35.28.50.7.11
2l0 B 34 {210, 34} {29’ 35} 29 . 35 |
219.34.52.7.11 2°.3°.5%.7. 11
210 . 35 {2!0’ 35}
21°.3%.57.7-11 |
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. The Pseudo-Smarandache Function and the Classical
Functions of Number Theory

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, A 52233
e-mail 71603.522(@compuserve.com

Abstract: The Pseudo-Smarandache function has a simple definition: Given any integer
n > 0, the value of the Pseudo-Smarandache function is the smallest integer m such that
n evenly divides the sum 1 +2 +3 + ...+ m. In this paper, several problems concerning

this function will be presented and solved. Most will involve the standard number theory

functions such as Euler's phi function and the sum of divisors function.[1]

The Pseudo-Smarandache function has the definition

Given any integern > 1, the value of the Pseudo-Smarandache
function Z(n) is the smallest integer m such that n evenly divides

m
Sk
k=1

Note that this summation is equivalent to the expression

m(m+1)
2

The purpose of this paper will be to present some theorems concerning the interactions
of this function with the classical theorems of number theory.

Basic Theorems
Theorem 1: If p is an odd prime, then Z(p)=p - 1.

Proof: Clearly, p divides

(p=V)p
2

and there is no smaller number that satisfies the definition.
Theorem 2: Z(2F) = 2F=1 - 1.

Proof: Since only one of m and m+1 is even, it follows that Z(2*) is the smallest ratio



mi{m+1)
2

where the even number contains k + 1 instances of 2. This number is clearly 2% and the
value of m is smallest when m + 1 = 2F~1,

Definition: Given any integer n > 2, the Euler phi function ¢(n) is the number of
integers k, I < k < n, such that k and n are relatively prime.

Our first theorem concerning the combination of ¢ and Z 1s trivial.

Theorem : There are an infinite number of integers n such that
o(n) = Z(n).

Proof: It is well-known that if p is an odd prime o(p) =p - 1.
So we modify the statement to make it harder.

Modified theorem: There are an infinite number of composite integers n such that o(n) =
Z(n).

Proof: Let n = 2p, where p is an odd prime of the form p = 4k + 1. It is well-known that
this is an infinite set.

Consider the fraction

(p-1)p

5 -
Replacing p by the chosen form

4k+1-1)(4k+1 4k(4dk +1
hr1-D@k+l) . %E+D — 9k(4k + 1)

Clearly,
204k + 1 ] 2k(dk + 1)

and p = 4k + 1 is the smallest such number. Therefore,
Z(2p) =p - 1. It is well-known that o(2p) =p - | for p an odd prime.

Unsolved Question: Is there another infinite set of composite numbers such that Z(n)
= o(n)?

Another equation involving these two functions has an infinite family of solutions.
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Theorem: There are an infinite number of solutions to the expression
Z(n) + o(n) = n.
Proof: Letn = 2% + 2%7! wherej > 1. Factoring it, we have
n = 2% * 3. Using the well-known formula for the computation of the phi function
o(n)=2-1)2%713-1)30=2%

[t is easy to verify that if k is odd,

3061
From this, it follows that

|
27 % 2 i
24 Ji 5

and it is easy to see that 227! is the smallest such m. Therefore,
Z(2% * 3) = 22+1
and
Z(n) - o(n) = n.
Unsolved Question: Is there another infinite family of solutions to the equation

Z(n) ~ o(n) =n?

Another classic number theory function is the sigma or sum of divisors function.
Given any integern > 1, o(n) is the sum of all the divisors of n.
Theorem: There are an infinite number of solutions to the equation

o(n) = Z(n).

Proof: It has already been proven that Z(2F) = 2%~} — 1.1t is well-known that o(p*) =
k-1
p T - 1.
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A computer»search up through n = 10,000 yielded no solutions not of this type.
Unsolved Question: [s there another infinite family of solutions to the equation

o(n) = Z(n)?
The final classic function of number theory is the number of integral divisors function.

Definition: For n > 1, the divisors function d(n) is the number if integers m, where 1
<m < n,such that m evenly divides n.

Question: How many solutions are there to the equation

Z(n) = d(n)?
A computer search up through n = 10,000 yielded only the solutionsn =1, 3 and 10.
Question: How many solutions are there to the equation

Z(n) + d(n) =n?

A computer search up through n = 10,000 yielded only the solution n = 56, as d(36) =8
and Z(56) = 48.

It is unknown if there are any additional solutions to this problem.

There are many other problems involving the classic functions that can be defined. One
such example is

Question: How many solutions are there to the equation
Z(n) + o(n) = d(n)?
A computer search up through 10,000 failed to find a single solution.

The author continues to work on this set of problems and hopes to present additional
solutions in the future.

1. This paper was presented at the Spring, 1998 meeting of the lowa section of The
Mathematical Association of America.
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TWO FUNCTIONS IN NUMBER THEORY AND SOME UPPER BOUNDS FOR THE
SMARANDACHE’S FUNCTION

Sabin Tabirca Tatiana Tabirca

The aim of this article is to introduce two functions and to give some simple properties for one of
them. The function’s properties are studied in connection with the prime numbers. Finally, these

functions are applied to obtain some inequalities concerning the Smarandache’s function.

1. Introduction

In this section, the main results concerning the Smarandache and Euler’s functions are
review. Smarandache proposed [1980] a function §:N*— N defined by S(n) = min{k k! )
This function satisfies the following main equations:
1. (nm)=1=5(n-m)= min{S(n),S(m)}
(1)

ko ky . k k,

n=pi ps b = S(n) = min{S(p!"), S(p5: ) S(pE))
(2)
(‘7’ n> 1) S(n)y<n

8]

(V%]

(3)
and the equality in the inequality (3) is obtained if and only if n 1s a prime number. The research on

the Smarandache’s function has been carried out in several directions. One of these direction studies

S50

the average function S N* = N defined by S(n) = <=L . Tabirca [1997] gave the following
n
. .. = 3 I 2
two upper bounds for this function (V n> 5) S(n) < 3 n-+ 1 and
. n
. =, 21 1 2 . = 2-n
(vn>23)S(M) <= n+—-= and conjectured that (¥ n> 1) S(n) < ==
72 12 n In

Let @ N* — NV be the Euler function defined by ¢(n) = card{k = 1.ni(k,.n)y =1} The

main properties of this function are review below:



L (nm)=1= p(n-m) = p(n)- p(m)
4)

5

I
Xy

ky 1
2 on=pt-py > p(n) = n~H(1—“)

i=1 i
(5

3. o2y =cardik = Ln(k.ny = m} .
m

(6)

[tis known that if f:V* — ¥ is a multiplicative function then the function g2 VN > VN

defined by g(n) = > f(d) is multiplicative as well.

adn

2. The functions Wi W

In this section two functions are introduced and some properties concerning them are
presented.
Definition 1.
Let ¥, @, be the functions defined by the formulas

n

Loy V* >V, wl(n)=z

‘=1 (Ivn)
(7N
n ]
2w N*> Ny, (n)= .
Y w5 (n) ; o
(8)
; wilij wy ! w(i) wAi) wifli wol)
1 1 1 I 11l 36 21 301 151
2 3 2 12 77 39 22 333 167
3 7 4 13 157 79 23 507 254
4 11 6 14 129 65 24 301 151
5 21 1 15 147 74 25 521 261
6 21 1 16 171 86 26 471 236

83



Sabin Tabirca and Tatiana Tabirca

>

7 43 22 17 273 137 27 547 274
8 43 22 18 183 92 28 473 237
9 61 31 19 343 172 29 813 407
10 63 32 20 231 116 30 441 221

Table 1. Table of the functions ¥, i/,

Remarks 1.

1. These function are correctly  defined based on the implication

n
(G,n) (i, n) Z (i,n) Z , n)

[£8)

plp=b o
2

If p is prime number, then the equations wi(p)= p2 -p+ltand y,(p) =

be easy verified.

The values of these functions for the first 30 natural numbers are shown in Table 1. From this

W

table, it is observed that the values of w, are always odd and moreover the equation

z//()

waln) = | seems 1o be true.

Proposition | establishes a connection between v,and @

Proposition 1

[f n-0 is an integer number, then the equation

vi(m) =Y d p(d) (9)
dn

holds.

Proof
Let 4;={= Ln {(i,n} = d} be the set of the elements which satisfy /7,n)=d.

The following transformations of the function w, holds.
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d'n dnied, iedy dn
n n
Using (6) the equation (10) gives y,(n) = Z— .
Td NdJ

Changing the index of the last sum, the equation (9) is found true. &

The function gfnj=ngfny is multiplicative resuiting in that the function W (ny= Z d-old) is

multiplicative. Therefore. it is sufficiently to find a formula for w(p"). where p is a prime
number.
Propesition 2.

If pis a prime number and 4>/ then the equation

) 2Ly
wi(pty= =2 ()
p+1
holds.
Proof

The equation (11) is proved based on a direct computation, which is described below.

£ s Nk
X { i : 1t 2.
WL(P‘):ZdWO(d)=I-Zp‘-Iw(p)=l~.— 1——‘-Zp~ =
P ; N D/
d'p =1 =i

I N 2y 2y ey

I« 1—— -

, P -
< pJ p- -1 p-1 p-1

Therefore, the equation (11) is true. &
Theorem 1.
If n= pff . p:“" p; is the prime numbers decomposition of », then the formula
kel _
2 (Hp, )= H”‘p 1 (12)
i=1 4
holds.
Proof

The proof'is directly found based on Proposition! 1 and on the mulitiplicative property of w..
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Obviously, if p is a prim number then w(p) = pﬁl =p?- p+1 holds finding again
p+

the equation from Remark 1.2. If n = p, *P2.ops is a product of prime numbers then the

following equation is true.

;)
vim=vi(pprp=[]{e7 - p <) (13)
Proposition3.
(¢ n>1) Zz _meln (14)
‘ ' 2
=i tim=i
Proof
This proof'is made based on the /nclusion & Fxclusion principle.
Let D, = {i =12,....4 pin} be the set which contains the muitiples of p.
This set satisties
/ \
i ’_’ : ﬁ 1
( 2 ‘ /‘ n n \‘
D,=p<12, .—>and i=p Z =p == =<1
N P ieD, =1 2 P J
Let n= pik‘ . pf‘ o pf’ be the prime number decomposition of n.
The following intersection of sets
Dp’: N Dp[: f‘LnDpjm =i=12,.n P, MAD NA.AD A
is evaluated as follows
DP;: [ Dp/: '“.._/\:Dph = {I = 1, 2,..,, I‘I@. p . pj: p" fn} = D_ ps,,
Therefore, the equation
n n
21 = i =— + 1 (14)
“‘D.:,'l SO, T DP;,. _‘D."ﬂ;: Pim s . p‘"" P .4,-,’7}'

holds.

The Inclusion & Exclusion principle is applied based on
D=fi=12...nGm=t}={12...n-YD,
j=i

and it gives
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Applying (14), the equation (15) becomes
DX X X L]

1 ]
ncim=t 1€ <ja ek g \p}x p,’: ”'p,’ /

The right side of the equation (16) is simplified by reordering the terms as follows

Therefore, the equation (14) holds. &

Obviously, the equation (14) does not hold for 7=1 because Zi =land X f(n) =
i=l.(i.1)=! -

Based on Proposition 3, the formula of the second function is found.
Proposition 4.

The following equation

wi(ny+1
- 5

(Vn>1) wy(n) =

holds.
Proof

(16)

(17)

Let /,; = l’ =12, (i, m) :d} be the set of indices which satisfy (i,n)=d Obviously, the

following equation

(Vdin)1,,=d-1

mls

holds. Based on (18), the sum Z is transformed as follows

(i,n)

Q/Z(n)zii-(i,n)":Zd_l- Zr_Zd -d- le-z Z"'
i=1 dn 1€l, 4 dn el
A J

Proposition 3 is applied for any divisor ¢=? and the equation (19) becomes
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wam=Y zzl:th%dJ 1+%Z{§}-¢{§). (20)

dn iel, n=dn ned'n
s

Completing the last sum and changing the index, the equation (20) is transformed as follows

2(;1)_1*—241 od) —1——+—Zd o{d) —j*—-wl(n)

{=d'n

resulting in that (17) is true. &
Remarks 2

+ 1 ) .
1. Based on the equation w,(n) = % itis found that w (M) =2-y,(m-1is always

WI( )
l

an odd number and that the equation y,(n) = holds.

2. If n:p{‘I -pé‘: -A..p_f’ >1 is the prime numbers decomposition of n, then the formula

s . 1 p: 2k, +1 +
va[[ofy=5+- H L holds.
i=l -

3. Upper bounds for the Smarandache’s function

In this section, an application of the functions W,, ¥, is presented. Based on these function an
inequality concerning the Smarandache’s function is proposed and some upper bounds for
S(ny = — ZS(I ) are deduced.

=1
Letp, =2, p-=3 ..., pn,.. bethe set of the prime numbers.

Propositien 5.

Py Pyl ]
(Px D2 Dms )

(7izp,) (v J=LP PriP) S(Py prvoppi+ ) < 2 2n

Proof

Let 7./ be two numbers such that i > p, and j =1, p, “Pa P

Let us suppose that (p; - p5-.p,.. /) = by pi-op, and j=p; - p, P e

g8



i+ jzi+l2p, +1, we find that the product

Based on the inequality PPy ibm

Pi P oD,
[ b Dy - 3 (o pe 3
| Mz'”—p’"—ié-jl = 1.2 4 Mi+jl | contains the factors p, , p, ,..., p, and
\Piy PP, J \ @i Py Py, J 1 . !
P PP i+

pi! ‘pl: ."'.pi

The following divisibility holds

/7 N 7 N ) ]
PP P, DU Py P Dy PPy i
1;—_1‘Jz§!‘,P,,'pi:'--A',D,:"‘——-——l-e-jI;: :

\Bi, PP J ) \Pi, " Py, Py, J (Py P2 PmsJ)

therefore, the inequality (21) is found true. &

Proposition 6.
PrPy - Pm
(Yi2pn) D S -PrPm it NS wi (P Prbn) * ¥ (Pr-ProDm)  (22)
J=t
Proof

The equation (21) is applied for this proof as follows:

PPy P AR Y,
> S prcpariviys Y, PPPallTS
J=1 s=1 (P DyeiPys)

PPy Py . L. D Pr Py .

— . PPy P . J

Jj=1 (plplpm’./) J=1 (pl 'pZ"".pm’.j)
Applying the definitions of the functions /|, i/, | the inequality (22) is found true.
Theorem 2.

The following inequality

vilpr pyopp) VAP PP 2 1,

— 1 < )
S(n)—;~ZS(1)S

=t 2-(pr- Py Pw) Pi- D2 Pm

istrue forall n> p, - po--p,. |- po. where
PPy P P

Ca= D50 —wilpy 22 )

i=]

-n-
Pn=V b _ Walpi Py D) (D=1 (29)

2 \

1s a constant which does not depend on .
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Proof

Proposition 6 is used for this proof.

Let # be a number such that n> Py Py Py p,f, The sum ZS(i) is split into two sums as

i=]

follows

PPy P B Dot P LB prp

ismz Zso)+ ZS(:) < ZS(:)+ 25(1) =
i=1 i=| p,,,*-l

20ty Py +1

‘r"_l

P Pm’ PPy Pal ppypn
= ZS(‘)‘ Z ZS(PI'PJ'---'Pm'i"j)-
=p, J=1

For the second sum the inequality (22) is applies resulting in the following inequality
g
PUPY P i P | PP P |

Zn:S(i) s 2SO+ Dliwiepapa) < valp Prepn)](25)
i=1 i=1

i=p,

Calculating the last sum, the inequality (25) becomes

" TNT 1
: 2 i ,_"___g
n By Py B P ! i ;
. A NPUPyPm| J DU Pyl |
Zso)s Z{S(,)T%(pl.pz.m.pm) ; -
(TR IS
walpr P pa) | =1 =Y [y (p P2 Bm) V(P Pa )]
NPV PP T
on n T oon
Based on the double inequality | i-l< < i, we find
i PL Py P1 Pz Pn P Py Pp |
" vilp prop,) ,Lwl(pz-pz-----pm)w:(m-p:-.upm)
ZS(i)s ‘ —on? 2 ‘n+C,

= 2(py D2 p) PP P

Dividing by » and using Proposition 4, the equation (22) is found true. &
4. Conclusions

The inequality (22) extends the results presented by Tabirca [1997] and generates several

inequalities concerning the function S, which are presented in the following:
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. 1 n -
o m=l= (n>4)Sm=—> S([)<0375. 7075~
n i1 n

= IR 24

o m=2= (n>18)S(n) == S()< 029167 n+ 176+ —
n =1 n

) - 1« 1052

o mB o (n>150) S =—-> SG)< 0245 n~ 735 - 2
) n any n

= 1 < 176859
o m=4= (n>1470) S(n)= —- ZS([) <0215-n+-4515- >
n n

i=]
The coefficients of n from the above inequalities are decreasing and the inequalities are stronger and

stronger. Therefore, it is natural to investigate other upper bounds such us the bound proposed by

= I & 2:n
Tabirca [1997] S(n) = —-ZS(I') < T Ibstedt based on an UBASIC program [Ibstedt
n nn

=1

= l & n
1997] proved that the inequality S(n) = —- ZS(!) < [ holds for natural numbers less than
nn

i=1
5000000. A proof for this results has not been found vet.
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THE SMARANDACHE PERIODICAL SEQUENCES

by
M.R. Popov, student Chandler College

1. Let N be a positive integer with not all digits the same, and N' its digital reverse.

Then, let NI = abs (N-N'), and NI' its digital reverse. Again, let
N2 = abs (N1 - N1"), N2' its digital reverse, and so on, where abs x is the
absoluth value of x.

After a finite number of steps one finds an Nj which is equal to a previous N1,
therefore the sequence is periodical (because if N has, say, n digits, all other
integers following it will have n digits or less, hence their number is limited, and
one applies the Dirichlet's box principal).

For examples:
a. If one starts with N =27, then N' = 72;
abs (27 - 72) = 43; its reverse is 54;
abs (45-54)=09, ...
thus one gets: 27, 45, 09, 81, 63, 27,45, ... ;
the Lenth of the Period LP = 5 numbers (27, 45, 09, 81, 63),
and the Lenth of the Sequence 'till the first repetition
occurs LS = 5 numbers either.
b. If one starts with 52, then one gets:
52,27, 45,09, 81, 63, 27,453, ...
then LP = 5 numbers, while LS = 6.
c. If one starts with 42, then one gets:
42,18, 63, 27,45, 09, 81, 63,27, ...;
then LP = 5 numbers, while LS = 7.

For the sequences of integers of two digits, it seems like:
LP = 5 numbers (27, 45, 09, 81, 63; or a circular permutation of them), and
5<=LS<=7.

Question 1:
Find the Lenth of the Period (with its corresponding numbers), and the Lenth of

the Sequence 'till the first repetition occurs for:
the mtegers of three digits, and the integers of four digits.
(It's easier to write a computer program 1in these cases to check the LP and LS.)



An example for three digits:
321, 198, 693, 297, 495, 099, 891, 693, ... ;

(simular to the previous period, just inserting 9 in the middle of each number).
Generalization for sequences of numbers of n digits.

. Let N be a positive integer, and N' its digital reverse.
For a given positive integer ¢, let N1 =abs (N' - ¢), and N1' its digital reverse.
Again, let N2 = abs (N1' - ¢), N2' its digital reverse, and so on.

After a finite number of steps one finds an Nj which is equal to a previous Ni,
therefore the sequence is periodical (same proof).

For example:
I[f N =52, and ¢ = 1, then one gets:
52,24, 41, 13, 30, 02, 19, 90, 08, 79, 68, 85, 57, 74, 46, 63, 35, 52
thus LP =18, LS = 18.

3 aee s

Question 2:
Find the Lenth of the Period (with its corresponding numbers), and the Lenth of
the Sequence 'till the first repetition occurs (with a given non-null ¢) for:
the integers of two digits,
and the integers of three digits.
(It's easier to write a computer program in these cases to check the LP and LS.)

Generalization for sequences of numbers of a n digits.

. Let N be a positive integer with n digits ala2 ... an, and ¢ a given integer > 1.
Multiply each digit ai of N by ¢, and replace ai with the last digit of the product
ai x ¢, say it 1s bi. Note N1 =b1b2 ... bn, do the same procedure for N1, and so on.
After a finite number of steps one finds an Nj which is equal to a previous Ni,
therefore the sequence is a periodical (same proof).

For example:
[fN=68andc="7:
68, 26,42, 84, 68, ... ;
thus LP =4, LS =4.

Question 3:
Find the Lenth of the Period (with its corresponding numbers), and the Lenth of
the Sequence 'till the first repetition occurs (with a given c) for:
the integers of two digits,
and the integers of three digits.
(It's easier to write a computer program in these cases to check the LP and LS.

Generalization for sequence of numbers of n digits.
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4.1. Smarandache generalized periodical sequence:

Let N be a positive integer with n digits ala2 ...an. If f is a function defined on
the set of integers with n digits or less, and the values of f are also in the same set,
then:
there exist two natural numbers i < j such that

f(f(... f(s) ...)) = f({{{( ... f(s) ...))),
where f occurs 1 times in the left side, and j times in the right side of the previous
equality.
Particulanizing f, one obtains many periodical sequences.
Say:
If N has two digits ala2, then: add 'em (if the sum is greater than 10, add the

resulted digits again), and substract 'em (take the absolute value) -- they will be the
first, and second digit respectively of N1. And same procedure for N1.

Example:
75,32,51, 64, 12,31, 42,62, 84,34, 71, 86, 52, 73, 14, 53,82, 16, 75, ..

4.2. More General:
Let S be a finite set, and f: S ----> S a function. Then:
for any element s belonging to S, there exist two natural numbers i < j such that

£(£(... (s) ...)) = f(f(f(... s) ...))),

where f occurs 1 times in the left side, and j times in the right side of the previous
equality.

Reference:

F. Smarandache, "Sequences of Numbers", University of Craiova Symposium of
Students, December 1975.
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THE PRIMES IN SMARANDACHE POWER PRODUCT SEQUENCES

Maohua Le and Kejian Wu
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract

For any positive integer k, let A, be the Smarandache
k-power product sequence. In this paper we prove that if k is
an odd integer, with k>1, then A, contains only one prime 2.

£

In [1], lacobescu defined the sequence {1+c.c,...C.} 1)
1s the Smarandache cubic product sequence, where ¢, 1s the n-th
cubic number. Simultaneous, he posed the following question:
Question: Hou many primes are in the sequence {1+c,C,...C )., ?
We nou give a general definition as follows:
For any positive integers k, n let

(1) a(n)=1+12".n"

x

and let A, = {a(n)},.,. Then A, is called the Smarandache
k-power product sequence. In this paper we prove the following
result:

Theorem. [fkisan odd integer, with k>1, then A,
contains only one prime 2.

Clearly, the above result completely solves [acobescu's
question.

Proof of Theorem. We see from (1) that

(2) a(n)=1+(n")"
[fk 1s an odd integer, with k>1, then from (2) we get

(3) ad(n)=1%-(n!)
=(1+n')(1-n' = (n!Y- .. - (a2 = (n)*).

Whenn =1, a,(1)=21sa prnme.
Whenn > 1, since



I-n!>Tlandl-n! Sy - -(n) - () =
(¥ - (n)*) + = ((n)-nh)+1>1,

we find from (3) that a(n)is nota prime. Thus, the sequence A, contains only one prime 2.
The theorem is proved.

Reference:
1. F. lacobescu, "Smarandache partition type and other sequences”, Bulletin of Pure and

applied Sciences, 16E(1997), No.2, 237-240.
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A NOTE ON THE PRIMES IN SMARANDACHE UNARY SEQUENCE

Maohua Le and Kejian Wu
Zhanjiang Normal college, Zhanjiang, Guangdong, P.R.China

Abstract

For any positive integer n, let p, be the n-th prime,
Pa
and letu(n) = (10 - 1)/9. In this note we prove that if
p. = 1,13, or 19 (mod 20), and 2p,~1 is also a prime, then u(n) is not a prime.

For any positive integer n, let p, be n-th prime,
Pa : *
and let u(n)=(10 - 1)/9. Then the sequence U = {u(n)} -,
is called the Smarandache unary sequence (see [2]).
It is an odd question that if U contain infinit many primes?
In this note we prove the following result:
Theorem. Ifp, = 1, 13, or 19 (mod 20), and 2p,~1 is also a prime, then u(n) is not a prime.
By using the above result, we see that both u(12) and
u(15) are not primes.
Proof of Theorem. Let q =2p,+1. By Fermat's theorem
(see[1], Theorem 71)), if q is a prime, then we have

(1 109" = 1 (mod q).

From (1), we get

Pa Pa

(2) (10 = 1)10 -1)=0(modq).
Since q is a prime, we have either

Pn
(3) q 10 =1
or

Pa
(4) q. 10 - 1,
by {2).

We nou assume that p, satisfies p, = 1, 13, or 19 (mod 20).
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Then p, 1s an odd prime. Hence, if (3) holds, then we have

(3)
-10

feeny =1,

\ q!

where (-10/9) is the Legendre symbol. Since q=2p,+1,
we hawe q = 3 (mod 4) and (-1/q) = -1. Therefore, we obtain from (5) that

(&) (10/q) = (2/q)(5/q) = -1.
Hoewer, since q = 3, 27, or 39 (mod 40) if p, = 1, 13, or 19 (mod 20) respectively, we have

-1 -1,1fq = 3 or 27 {mod 40),
(7 (2g= { (5/q)=

1 1,if q = 39 (mod 40).

4

We find for (7) that (10/q) = 1, which contradicts (6). It implies that (3) does not hold. Thus, by
(4), we get '

(8) g 9u(n).

Notice that g9 and 1<q<u(n). We see from (8) that qu(n) and u(n) is not a prime. The
theorem is proved.

References:

1. G.H.Hardy and E.M. Wright, "An Introduction to the Theory of Numbers", Oxford
University Press, 1937.

2. F.Iacobescu, "Smarandache partition type and other sequences”, Bulletin of Pure and
Applied Sciences, 16E (1997), No. 2, 237-240.
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SMARANDACHE CONCATENATED POWER DECIMALS
AND
THEIR IRRATIONALITY

Yongdong Guo and Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract

In this paper we prove that all Smarandache concatenated
k-power decimals are irrational numbers.

For any positive integer k, we define the Smarandache concatenated k-power decimal a,
as follows:

o, =0.1234567891011..., o, =0.149162536496481100121...

(D)
o, =0.18276412521634351272910001331..., .., etc.

In this peper we discuss the irrationally of ¢, We prove the following result:

Theorem. For any positive integer k, ., is an irrational number.
Proof. We nou suppose that «, is a rational number.
Then, by [1, Theorem 135], «, 1s an infinite periodical decimal such that

(2)  «=0a.aa..a,

were T, t are fixed integers, with r>0 and t>0,a,, ..., a, a,;, ..., ,., are integers satisfying
0<a<9(1=1,2,..,rt).
However, we see from (1) that there exist arbitrarv many
continuous zeros in the expansion of «,. Therefore, we find
from (2) thata,., = ... =a,, = 0. Itimplies that « is a finite decimal; a contradiction.
Thus, o, must be an irrational number. The theorem is proved.
Finally, we pose a further question as follows:
Question. Is e, a transcedental number for any positive integer k?
By an old result of Mahler [2], the answer of our question is positive for k=1.
References:
1. G.H.Hardy and E.M.Wright, "An Introduction to the Theory
of Numbers”, Oxford University Press, Oxford, 1938.
2. K.Mahler, "Arnitmetische Eigenschaften einer Klasse von
Dezimalbruchen"”, Nederl. Akad. Wetesch. Proc., Ser. A, 40 (1937), 421-428.
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ON THE PERFECT SQUARES IN SMARANDACHE CONCATENATED
SQUARE SEQUENCE

Kejian Wu and Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract

Let n be positive integer, and let s(n) denote the
n-th Smarandache concatenated squre number. In this paper
we prove thatif n=2,3,4,7,8 9, 11,12, 14, 16, 17, 18, 20, 21, 22, or 25 (mod 27),
then s(n) is not a square.

In [1], Marimutha defined the Smarandache concatenated

EY

square sequence {s(n)},., as follows:

(1) s()=1, s(2) =14, s(3) = 149, s(4) = 14916,
s(5) = 1491625, .. .

Then we called s(n) the n-th Smarandache concatenated
square number. Marimutha [1] conjectured that s(n) is
never a perfect square. In this paper we prove the following result:
Theorem.
Ifn=2,3,4,7,8,9,11,12,14,16, 17,18, 20, 21, 22, or 25 (mod 27),
then s(n) is not a perfect square.
The above result implies that the density of perfect squares in Smarandache concatenated
square sequence 1s at most 11/27.
Prof of Theorem. We now assume that s(n) is a perfect square.
Then we have

(2) sm)=x?,

were X is a positive integer. Notice that 10* = 1 (mod 9) for any positive integer k.
We get from (1) and (2) that

(3)  s(n)=1"=2*~ . +n’=1/6n(n+1)2n+1) = x* (mod 9).

[t implies that
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(4) n(n-1)(2n+1) = 6x° (mod 27).
Ifn = 2 (mod 27), then from (4) we get 2*3*5 = 6x° (mod 27). It follows that
(5) %* = 5 (mod 9).

Since 5 is not a square residue mod 3 , (5) is impossible.
Therefore, if n = 2 (mod 27), then s(n) is not a square.

By using some similarly elementary number theory methods,
we can check that the congruence (4) does not hold for the
remaining cases. The theorem is proved.

Reference:
1.H.Marimutha, "Smarandache concatenate type sequences”,
Bulletin of Pure and Applied Sciences, 16E (1997), No. 2, 225-226.
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THE MODULE PERIODICITY OF SMARANDACHE CONCATENATED ODD
SEQUENCE

Xigeng Chen
Maoming Educational College, Maoming, Guangdong, P.R.China

Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract

In this paper we prove that the residue sequence of Smarandache concatenated odd
sequence mod 3 1s periodical.

Let p be a prime. For any integer a, let <a>, denote the least nonnegative residue of a mod p.
Furter, for an integer sequence
A = {a(n)},.,, the sequence {<a(n)>} ., iscalled the residue sequence of A mod p, and
denoted by <A>_.
In [1], Marimutha defined the Smarandache concatenated odd

£

sequence S={s(n)},.,, where
(1) s(1)=1, s(2)=13, s(3)=135, s(4)=1357, ....

In this paper we discuss the periodicity of <S>, Clearly,
if p=2 or 5, then the residue sequence <S> is periodical.
We now prove the following result:

Theorem. If p=3, then <S>, is periodical.

Prof. For ahy positive integer k, we have 10* = 1 (mod 3).
Hence, we see from (1) that
(2)  s(n) = 1+3+5+_+(2n-1) = n* (mod3).
Since

[ 0,if n
(3) <n*™>;=l 1,if n

0 (mod 3);
1 or 2 (mod 3),

we find from (2) and (3) that
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(( 0, ifn = 0 (mod 3);
(4 <s(n>;=1 |
1,1fn = 1or2(mod3),

Thus, by (4), the sequence <S>; = {<s(n);>},., is periodical.
The theorem 1s proved.
Finally, we pose the following
Question. Is the residue sequence <S>, periodical for every odd prime p?

Reference:
1. H.Marimutha, "Smarandache concatenate type sequences”, Bulletin of Pure
and Applied Sciences, 16E (1997), No. 2, 225 - 226.
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ON A CONJECTURE CONCERNING THE SMARANDACHE FUNCTION

I.Prodanescu
Lahovan College, Rm. Vélcea, Romania

L.Tutescu
Vladimirescu Military College, Craiova, Romania

Let S:Z"--> N, S(n) is the smallest integer n such that n! is divisibil by m (Smarandache
function), for any m € Z*,
Then the following Diophantine equation
S(x) = S(x+1), where x > 0,
has no solution.

Some remarks:
S(1)=0. Leta >2, then S(a) = 0.

Anytime S(a) # 1, because 1'=1=0'and 1 > 0.
Lemma.

Ifa>2and S(a)=b, then(a,b) = 1.
Proof:

r, T,
Leta=p, ..p,, withall p; distinct prime numbers,its canonical factor decomposition.

[ ]
Then S(a)=max !S'p, /.., S{ps /.

.
i 1
But S'p, ) is a multiple of p,, Vi< {1, .., s}.
Therefore, =q € {p,, ..., p,] such that q divides S(a), but q divides a, too. Q.E.D.

These results do not solve the Conjecture 2068 proposed by Florentin Smarandache in
1986 (see [1]) and republished by Mike
Mudge in 1992 as problem viii, a) (see [2]).

References:
1] R.Muller, "Smarandache Function Journal’, New York, Vol. 1., December 1990, 37.
2] M Mudge, "The Smarandache Function” in <Personal Computer Word>, London, July
1992, 420.
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Remark: . .

Professor Lucian Tutescu considered that this conjecture may be extended for S(ax ~ f3) =
S(yx ~ &) equations,
where (ax-f,yx+d8)=1lande,B,vy,0¢cZ
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Erdés Conjecture I.

F. SAIDAK

ABSTRACT. An old conjecture of Paul Erdés [6] states that there
exist only 7 integers A = 4,7,15,21,453,75 and 105 such that the
difference A — 2% is a prime for all B for which it is at least two. It
is known that the conjecture is true for all 4 < 277, as Uchiyama
and Yorinaga have verified in 1977 ({21]), and in this short pa-
per [ show how it is related to other famous unsolved problems in
prime number theory. In order to do this, I formulate the main
hypothetical resuit of this paper - a useful upper bound conjec-
ture (Conjecture 3.), describing one aspect of the distribution of
primes in various special forms, paying a brief attention to Fermat,
Mersenne, Fibonacci, Lucas and Smarandache sequences, and I de-
bate some side effects of the most surprising results it implies. At
the end I also give connections of the questions discussed to other
important areas of prime number theory, such as topics from the
theory of distribution of primes in denser sequences, and along the
way I mention some further conjectures of Erdés that have relevant
applications there.

1. Sorbents.
Let me introduce the following notation:

DEFINITION 1. Let f and g be two functions such that for every
real number k > 1 there ezists an integer constant zo such that for all
T > 1z we have f5(z) > g(z), then we will write ¢ K f. If f & ¢
and g K f at the same time, we'll say that f and g belong to the same
sorbent, S say, and we’ll write f = g.

Sometimes we might also write f = s(g), s denoting the sorbent
allocating map, or simply f = g in cases when there is no possibility

1991 Mathematics Subject Classification. 11A07, 11N25.
Key words and phrases. Primes. Distribution of Primes, Prime Number Theory,
Smarandache Sequences.



of confusion in notation. To sketch the use of sorbents I give a very
elementary, but strikingly far reaching application.
Let f and g be two polynomials such that f = g, then

(1) s(7(f)) =<(f. 9)-s(=(g)).

where s is again the sorbent function, while ¢{f, g) is either 0 or 1
according to whether f and g have the same irreducibility properties
or not. One can write this equivalently as

CONJECTURE 2. If 4 and B denote any one variable jfunctions
(polynomials in particular), then we have

(2) p(C =AB) =<(f.g).0(4]).0(B).

where p(H) is the density function corresponding to function H. and
s(f, g) is here again either 0 or 1 like before, depending only on whether
C s trivial or not.

This also covers the case of the problem of occurences of primes of
a given special form (A) as values of a given function (B), and happens
to be in a close connection to the arithmetical functions theory, linking
distribution of primes to things as diverse as odd perfect numbers.

At the same time one also immediately sees its direct relation to the
results of the famous Bateman-Horn {1] quantitaive form of Schinzel’s
(17] Hypothesis H.

2. The Upper Bound Conjecture.

In order to develop possible implications of the Conjecture 2 into
something more precise and useful, it is necessary to recall the basic
property of the simple prime density function. The Prime Number
Theorem ([13]) states that

o)~ @) =t [+ [~ gt = Y poga)

n=2

the first estimation being due to Gau8, the second one due to Dirichlet.
By definition, the local prime density, or equivalently the probability
of primality of an integer in a small nbd of x. p;(z) can be recovered
from this equation by (see {11}) differentiating the corresponding prime
distribution function. In general hold

(3) pk(z) = Di(z) = (logz) ™%,

and considering further a generalization to problems concerning the
distribution of primes in “sparse” sequences and special forms, noticing
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that D(z) < z for all D, implying 0 < p < 1, gives us the simple
inequation

(4) p(W ={ni.ny, - ,ne}) < HP(%’):

where the equality in (4) occures iff W is a stochastically independent
set of integers. This is in turn equivalent to saying that if we let C be
the set of all primality restrictions that are put upon a sequence S{n).
or conditions the sequence S{n) must obey, then there exists a function
f such that

5) DIStn)) = (z. S(n)) ~ F(C) 3 o(S(3) ~ FC) [ o503
= 1

where f is bounded and depends only on the size and the structure
of the condition set C. Furthermore f has a regular, approximable
behaviour in all fixed, non-trivial cases, and its global properties can
be deduced from arithmetical structure of integers in the particular
sequence S(n).

In terms of sorbents we in fact explicitely conjecture that f < 1,
and that for a dense set of f we also have! f = 1. The first, weak
assumption gives us that for all sequences S(n) defined in a closed
arithmetical manner the corresponding distribution function D(S) sat-
isfies the inequality

S7iz)
(6) 7(z,5) < / (log S™H#)) ™ dt,
1

S~! denoting the inverse map of S, and it is plausible to conjecture
that the “order” inequality in (6) could be replaced by the standard
one for all sufficiently large z. and therefore hypothesize that we alwayvs
have correctness of the following UB Conjecture, in the above notation
written as

CONJECTURE 3. For all S(n), and all z > X, hold

5Hz)
(7) m(z,5) < / (log S™H(#))™* dt.

This sort of a thing is however justified only by establishing a deeper
connection of the result (c.f. [15]) to a different “maximal prime den-
sity” conjecture of Erdés [7'.

the situation is a bit more delicate than one could pressume, as Graham
demonstrated in [9]. His result can also be used to justify the density conjecture
mentioned.
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3. Mersenne and Fermat Primes.

As far as applications of the I'BC are concerned, sparse sequences,
such as functions of powers of integers, that are obviously arithmetically
closed, are now evidently a very suitable point to start at, for if their
local density p*(z) satisfies, say, the inequality

z—l—e

p{z) <elz7') =e

/Iogp‘(t)dt</ Iogp"(t)dt</ ;i—i<K.

9

fcr some constant K. implying in conjunction with the Conjecture 3
that D(S(n)) = 7{z. S(n)) will converge. i.e. will satisfy

(8) D(S(n)) =1.

This implies, for instance, that denoting F, the n-th Fermat number.
and F(z) the number of Fermat primes below z, the for all z we have

N
T | 527\ ~1 _ = 1 -
F(z) < 54 A\Lﬂé(logz )h<s+ T§T0g3 < 5.1,
showing that it is rather unlikely that any new Fermat prime will ever
be discovered?.

Now, back to the old conjecture of P. Erdés 7], introduction of
the ideas from the beginning of this paper shows that an analogy of
a parallel between twins and Goldbach ([5]) can be obtained for the
Erd6s and Fermat problem here. There is nothing to it, really, bv
considering a generalization to an arbitrary function f(z), the questions
about distribution of primes in “sequences” f(z) and A — f(z) are
complementary. Indeed, all we are interested in are integers 4 such
that f{z) is a prime for

z=123, fYA).

Obviously, by the above, as long as f(z) increases to infinity sufficiently
slowly, the number of wanted As has to be finite. What does sufficiently
mean here? Evidently as soon as log f = 1 we should be alright.

This means that, for instance, the number of integers A such that
the difference 4 — n! is a prime for all n for which it is positive is
going to be greater than what it was in the similar Erd6s problem
due to nothing but tendencies of growth of inverses of the functions
concerned.

A conjecture of Selfridge '18].
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- For Mersenne primes the situation is different. By definition S (v) =
— 1, giving by above something like

(9) /x ! dt 1 /oc ! dt
i=1 log S(2) log2 /., logt ‘

Now, as far as the conditions on primality of 2" — 1 are concerned,
nothing explicit® can be said beyond the fact that n must be a prime
itself. So, a uniformity property of potential divisors of n that give S{n)
prime is expected, and in fact can be show to strongly suggests a direct
connection to the simple Eratosthenes sieve result. The only effect of
this we care about is that except for the necessity of a factor 2. needed
due to exclusion of even exponents n used in the sieve. evervthing stayvs
unchanged, giving the conjecture f(C) = 2.

Denotmg .W\x) the number of Mersenne primes below z, one now
immediately sees that

, e”. loglogz
(10)  M(z)==(z,2" ‘_E:mc TeR

p<z

This last asymprotic relation (10) is known as S. S. Wagstaff’s conjec-
ture [22], correcting the previous 1964 heuristical result of D. B. Gillies
[8]. Therefore in sorbent theory notation we may conclude that

F(z)=1, M(z) =loglogz.
4. Fibonacci and Lucas Primes.

As far as Fibonacci (F}) and Lucas (L,) numbers are concerned,
we have famous formulas like

1+-V5 . 1-V3
(11) o= (=) +{—=—)
where Ny
1 —
—5— " <1"=1

&

s0, denoting [z} the integer part function, (11) gives
Fo="+1+(-1)",

where ¢ is the real number (1 + /3)/2, and an obvious connection
to the Mersenne prime case is clearly visible. In fact, the existence of
connection based strictly on the fashion of increase of the terms of these
two sequences is what the main idea of sorbents, and their quantitative
characteristics - Conjecture 3, is all about. Same thing happens for
arbitrary Smarandache sequences (S,) based on properties of digital

3this is again just a conjecture we know very little about ...
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patterns of integers, although to treat exact behaviour of distribution
functions of a particular sequence always needs an additional care. But
in general

(12) log M, =log F, =logL, =log$S, = n.

and due to existence of bounds on conditional divisibility properties of
terms of all these cases we also must have:

F(zr) < loglogz, L{z) < loglogz.
and we can conjecture that
(13)  D(F™(z)) = D(L{z})) = D(S(z}) = M{z) = loglog V.

For certain special cases this could be made more precise through a dis-
cussion concerning the corresponding condition sets C, although we'll
stay contempt with the illustration of this idea we gave in the case of
Mersenne primes distribution.
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_ All Solutions of the Equation S(n) +d(n)=n
Charles Ashbacher
Charles Ashbacher Technologies
Box 294

Hiawatha, [A 52233 USA
e-mail 71603.522@compuserve.com

The number of divisors function d(n), is a classic function of number theory, having been
defined centuries ago. In contrast, the Smarandache function S(n), was defined only a few
decades ago. The purpose of this paper is to find all solutions to a simple equation
involving both functions.
Theorem: The only solutions to the equation
S(n)+d(n)=n, n > 0

are 1, 8 and 9.
Proof: Since S(1) =0 and d(1) = 1 we have verified the special case of n = 1.
Furthermore, with S(p) = p for p a prime, it follows that any solution must be composite.
The following results are well-known.
a) d(p...p¥F)=@l+1)...(ak+1)
b) S(p*) < kp
¢) S(p?' ... p¢*) = max { S(p) ... S(p) }
Examining the first few powers of 2.

S(2%)=4, d(22)=3

S(23)=4and d(2®)=4 which is a solution.

SR*)=6.dR2*)=5
and in general

S(2F) < 2k and dQ2*)=k+1.
It is an easy matter to verify that

2k+k+1=3k+1 < 2F

fork > 4.



Examining the first few powers of 3

S(3%) =6 and d(3%) = 3, which is a solution.
S(3%)=9,d(3%) = 4

and in general, S(3*) < 3kandd(3F)=k + 1.
It is again an easy matter to verify that
3k+k+1 < 3%
fork > 3.
Consider n = p* where p > 3 isprime and k > 1. The expression becomes
S(p*)+d(p*) < kp+k+1=k(p+rl)+1.
Once again, it is easy to verify that this is less than p* forp > 5.
Now, assume that n = p$* . .. p* k > 1 is the unique prime factorization of n.

Case 1: n=p;ps, where p, > p;. Then S(n) =p; and d(n) =2 * 2 =4. Forming the
sum,

p2+ 4

we then examine the subcases.
Subcase 1: p; = 2. The first few cases are

n=2%*3, S(n)+d(n)=7

n=2*35 S(n)+dn)=9

n=2%*7 S(n)+dn)=11

n=2%*11,S(n)+d(n)= 15
and it is easy to verify that S(n) + d(n) < n, for p; a prime greater than 11.
Subcase 2: p; = 3. The first few cases are

3%5, S(n)+dn)=5+4
3*7. S(m)+d(n)=7+4
3% 11, S()+dm)=11+4

n
n
n
and it is easy to verify that S(n) + d(n) < n for p, a prime greater than 11.
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Subcase 3: It 'is easy tq verifyv that
p2 + 4 < pip2
forpy > 3,p2 > p1.
Therefore, there are no solutions forn =p;ps, p1 < po.
Case 2: n=p;p3’, wherea, > landp; < po. Then S(n) < asps and d(n) = 2(ay + 1).
S(n) +d(n) < azpz ~2(az + 1) = appy + 22, + 2
We now induct on as to prove the general inequality
apy 22, =2 < pipy’

Basis step: a; = 2. The formula becomes

2pp 4 +2=2py+6 ontheleftand

p1p2p2 on the right. Since py > 3,2 + < 4and p;p; > 6. Therefore,

5
P2
2+ % < P1p2
and if we multiply everything by ps, we have
2pp 76 < pipape.
Inductive step: Assume that the inequality is true fork > 2
kpy + 2k +2 < pips.
and examine the case where the exponent is k + 1.
(k=Dpy +2(k+ 1) +2=kpy +po +2k +2+2=(kpo 72k + 2) + py + 2
< pipf+pr+2 by the inductive hypothesis.

Since p;p5 whenk > 2 is greater than p; + 2 is follows that

pipi w22 < pipitt.

v

Therefore, S(n) ~d(n) < n, wheren=p;p§ .k

v
N
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Case 3:n=p;'py. wherea; > 1.

We have two subcases for the value of S(n), depending on the circumstances
Subcase 1: S(n) < ajp;.

Subcase 2: S(n) = ps.

In all cases, d(n) = 2(a; + 1).

Subcase 1: S(n) +d(n) < ajp; +2(a; +1)=a;p; +2a; + 2.

Using an induction argument very similar to that applied in case 2, it is easy to prove that
the inequality

aip1+2a; +2 < pi'pa
is true for all a; > 2.
Subcase 2: S(n) + d(n) =pa +2(a; + 1) =ps +2a; +2
It is again a simple matter to verify that the inequality
p2 *2a;+2 < pi'pa

is true for alla; > 2.
Case 4: n=p{'ps?, wherep; < pranda;,a; > 2.
dn) = (a1 + 1)@z + 1)
Subcase 1: S(n) < ajp;

S(n) +d(n) < ajpr+ (a1 + 1)@+ 1) < pi' +pfi(@+1)=p'(a+2) <

pY'py’

Subcase 2: S(n) < aspo

S+ d(n) < apy+ (@ + D@+ 1) < pf+pf(a+ 1) =pa+2) <

ay,.ad2
P1 P2

Case 5:n=p;' ...p;*, wherek > 2.
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The proof is by induction on k.
Basis step: Completed in the first four cases.

Tk

Inductive step: Assume that forn; =pj* ... pi*. k >2
ap;t(art1l)...(a+1) < m
where S(n;) < a;p;. Which means that
S(ny) +d(ny) < ny.

Consider n, = p‘f‘ S PZkPkﬂ-l-

Subcase 1: S(ng) = S(n;). Since pe~; 2 3, it follows that (ac+; + 1) < D, and we can
this in combination with the inductive hypothesis to conclude

api T(ar+ 1) (2 + D(aesr + 1) < mippsy,
which implies that S(n;) + d(ny) < ns.
Subcase 2: S(np) > S(n;), which implies that S(ny) < ax.ipg-:. Starting with the
inductive hypotheses
apir(a+1)...(a+1) <pi...pg
and multply both sides by ax-;px-; to obtain the inequality
,Pi8k~iPk~1 + &k+1Pk-1(a1 + 1) .. (ag +1) < pf' ... prfag—1pe-1
Since px~; > 3, it follows that
P! - .. Prrak+iPk+1 < DI .. PYPL
and with ag1px+; > (ags; + 1), we have
1P T(@ T D (@ T (@ D) <
&Pik+1Pk+1 T A-1Pk-1(a1 + 1) ... (2 = D).
Combining the inequalities, we have

Qc-1

deiPerr @+ D) (@ T D 1) < pl e
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which implies

S(ny) +d(ny) < n.

Therefore, the only solutions to the equation
S(n) +d(n) =n

are 1, 8 and 9.
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An inequality between prime powers dividing n!
Florian Luca

For any positive integer n > 1 and for any prime number p let e;(n) be the
exponent at which the prime p appears in the prime factor decomposition of n!. In
this note we prove the following;:

Theorem.
Let p < g be two prime numbers, and let n > 1 be a positive integer such that
pq | n. Then,
peP(n) > qeq(n). (1)

Inequality (1) was suggested by Balacenoiu at the First International Confer-
ence on Smarandache Notions in Number Theory (see [1]). In fact, in [1], Balacenoiu
showed that (1) holds for p = 2. In what follows we assume that p > 3.

Ve begin with the following lemmas:

Lemma 1.

(i) The function
z-1

= 2
Ha) = e @
s increasing for x > e.
(it) Let p > 3 be a real number. Then,
z > (p-1)log,(z) for z > p. (3)
(iit) Let p > 3 be a real number. The function
z-2
gplz) = 4
P = - Diog®) @
is positive and decreasing for z > p(p + 2).
(iv)
2 log(p+4
pt:, loglpt ) for p > €% (3)
p logp
(v) L log(na 2
Pl og(p+2) for p>e. (6)
p logp
Proof. (i) Notice that
df 1 z 1
e logzz . (log(;) + (;)) >0 for z > e.
(ii) Suppose that z > p > 3. From (i) it follows that
-1_p-1
z z 5P ™

logz = logz = logp’

1991 AMS Mathematics Subject Classification. 11A351.



Inequality (7) is clearly equivalent to
logz

z>(p- l)iog_p = (p—1)log,(z).

(i#i) The fact that g,(z) > 0 for z > p > 3 follows from (4i). Suppose that
z > p(p + 2), and that p > 3. Then,

dgp _ —log(p)((p—1)zlogz — (2logp +p ~ 1)z + 2(p — 1))
dz z{(p~-1)logz — zlogp)’ .

(8)

From (8), it follows that in order to check that dg,/dz < 0 it suffices to show that
(p—1)zlogz — (2logp+p—1)z > 0,

or that ) 5
ogp
1 2—=—+1)=({—=+1). 9
ogz)(p_1+> (f(p)+) (9)
The left hand side of (9) is increasing in z. By (i), the right hand side of (9) is
decreasing in p. Thus, since p > 3, and z > p(p + 2) > 13, it suffices to show that
inequality (9) holds for z = 15 and p = 3. But this is straightforward.
(iv) Inequality (3) is equivalent to

pp+2>(p+4)p’
or 4 4 Y
2 4He 4\?
p >(1+p) _[(1+p) ] (10)
Since
e>(1+2)Y7  forall z >0, (11)

it follows, from inequality (11) with z = 4/p, that

e> (1+s)p/4. (12)

From inequality (12) one can immediately see that (10) holds whenever p > e2.
(v) Follows from arguments similar to the ones used at (iv).

For every prime number p and every positive integer n let 7,(n) be the sum of
the digits of n written in the base p.

Lemma 2.

Lect p < q be two prime numbers and let n be a positive integer. Assume that
pq | n. Then,

(i) 7o(n) > 2.
(i) 7p(n) < (p — 1) logy(n).

Proof. (i) Since n > 0 it follows that 74(n) > 1. If 7,(n) = 1, it follows that
n is a power of ¢ which contradicts the fact that p | n. Hence, 7,(n) > 2.

(ii) Let n = pql for some integer { > 1. Let

g =ap+a1p+..+a,p’,
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where0 < a; <p—1for1<i<s,and a, # 0, be the representation of gl in the
base p. Clearly,
s= [logp(ql)] < log,(gl)-
Since
n=pq =ap+ alp2 + ... +a,p*t,

it follows that

() =Y a;i < (p—1)(s+1) < (p—1)(log,(al) + 1) = (p— 1) log,(n).

=0

The Proof of the Theorem. Suppose that ¢ > p > 3 are prime numbers,
and that n > 1 is such that pq | n. By applying logarithms in (1) it suffices to prove
that

ep(n)logp > eq(n)logg. (13)
Since . ) (n)
=2\ =177\
eP(n) p— 1 and eQ(n) q- 1 )

it follows that (13) can be rewritten as

n—1,(n)
p—1

' n — 1,(n)
.1 — 9" .logg,
ogp > ——1— logg

or
(g—=1)logp _ n—(n)

(p-1)logqg = n—r1y(n)

(14)

We distinguish two cases:

CASE 1. ¢ = p+ 2. We distinguish two subcases:

CASE 1.1. n = pq. In this case, since ¢ = p+ 2, and p > 3, it follows that
7p(n) = 7p(p? +2p) = 3, and 74(n) = 7,(pq) = p. Therefore inequality (14) becomes

(p+1)logp pPP+2p—p  plp+1)

= . 15
(p-1)loglp+2) " p*+2p—-3 p*+2p-3 (13)
Inequality (15) is equivalent to
2 -
pP+2p-3 log(p+2). (16)

plp—-1) logp

By lemma 1 (v) we conclude that in order to prove inequality (16) it suffices to
show that

249 —
p-+2p 3>p+1'

> 17)
p(p—1) P (
But (17) is equivalent to
2
p°+2p—3
—_— 2 1
-1 2P+l (18)

or p? +2p —3 > p* — 1, or p > 1 which is certainly true. This disposes of Case 1.1.

121



CASE 1.2. n = pgl where ! > 2. In this case n > 2p(p + 2) > 2p®. By lemma
2 (i) and (ii), it follows that

n—2 n —7,(n)

> . 19
n—(p-1) log,(n) = n—1p(n) (19)

Thus, in order to prove (14) it suffices to show that
(p+1)logp n-—2 (20)

F-Dlogp+2) ~ n=(p-Diog,(n) _ #™

Since n > 2p® > p(p + 2), and since g,(n) is decreasing for n > p(p + 2) (thanks to
lemma 1 (i#1)), it follows that in order to prove (20) it suffices to show that

2_9
(p El);)-lt)gl;gi 2) > gp(2p%) = 2p? iplongQPZ)' (21)
Since p > 3 > 23/2 it follows that p?/3 > 2. Hence,
log,(2p”) < log, (p*/°p%) = %-
We conclude that in order to prove (21) it suffices to show that
(p+1)logp 2p°-2 _3p-1)(p+1) (22)
(p—1)log(p+2) "~ 2p2-% 3pr—4
Inequality (22) is equivalent to
3pP -4 _ log(p+ 2). (23)

3p-1)? logp
Using inequality (6), it follows that in order to prove (23) it suffices to show that

3p? -4 >p-\\-l
3p—-1)? p

Notice now that (24) is equivalent to

3p°—4p>3(p—1)2(p+1)=3p° - 3p* - 3p + 3,

or 3p? > p + 3 which is certainly true for p 2 3. This disposes of Case 1.2.

CASE 2. q > p + 4. Using inequality (19) it follows that in order to prove
inequality (14) it suffices to show that

f(q).logp _{g=1)logp n—2

p—1 (p=1)logq ~ n—(p=1)log,(n) _ 9p(n)- (25)

Since f(q) is increasing for ¢ > 3 (thanks to lemma 1 (), and since g,(n) is
decreasing for n > pg > p(p + 4) > p(p + 2), it follows that in order to prove (25
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it suffices to show that inequality (25) holds for ¢ = p + 4, and n = pq = p(p + 4).
Hence, we have to show that

(p+3)logp p’+4p -2 ‘ (26)
(p—1)log(p+4) ~ p2+4p— (p—1)log, (p(p + 4))
Inequality (26) is equivalent to
(p+3) S PP +4p—2
(p—-1)loglp+4) " (P®*+3p+1)logp—(p—1)log(p+4)’
or
_ (e+3)(P*+3p+1) log(p +4)
P-1E*+4p-2)+(p-1)(P+3) logp ’
or
p*+6p2+10p+3 _ log(p+4) (27)

pP+4p?—-dp—-1 logp
One can easily check that (27) is true for p = 3, 5, 7. Suppose now that p > 11 > eZ.
By lemma 1 (iv), it follows that in order to prove (27) it suffices to show that
PP +6p?+10p+3  p+2
pP+4p*—4p—1 p

Notice that (28) is equivalent to

(28)

P +6p° +10p2 +3p> (p+2)(P* +4p® —4p—1) =p* + 6p° + 4p> — 9p — 2,

or 6p? + 11p + 2 > 0, which is obvious. This disposes of the last case.
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MARANDACHE FUNCTION AND THE DIOPHANTINE EQUATIOCN
Xl+a = y-

Maochua Le

Znaniiang Normal College, Zhaniian Guangdeng, P.R.China

Abstract. Ff[or any positive integer n, let S(n) denote the
Smarandache function ¢of n. 1In this paper we prove that if a is
nonsquare positive integer, then all positive integer scluticns
{x,v) Of the equaticn x!+a=y® satisfy x< 2S(a).

Let N be the set of all positive integers. For any posic
integer n, let 3S{n; denote the Smarandache function of n. Let
be a fixed positive integer. Recently, Dabrowschil[l] proved
that I1f a is not a square, then the eguation
(1) xl+a = y°, X,y € N
has only finitely many sclutions (%,y). In this paper we give
an upper bound for the solutions ¢ (1) as follows.

Theorem. If a not a square, then all scolutions (x,V)
of (1) satisfy x<25(a).

Prcof. Since a 1is not a sgquare, a has a prime factor o
such that
(2) P 2y
were r 1s a nonnegative integer. We now suppcse that (x,v)
is a soluticn of (1) with x2235(a). By the reSJlt of [27,
we have S{mn)< Sim)+S(n) for any positive integers m, n. It
implies that 2S(a}>S(a*). So have
{3, asix!.

Therefore, we see from (1) and (3} that
{4 aiyz.

T v ’ / Y - M / \ N -
Further, by {2; and (4}, we get

(5] apiy-



{0} ap ix!.
Thus, by (1), (5) and (6), we obtain pll, a contradiction.
Sc we have x<2S{(a). The theorem is proved.

References
1.A. Dabrowski, On the diophantine equation x!+A = y7,
Nieuw Arch. Wisc. (4) 14 (1996), No.3, 321-324.
2.M.-H.Le, An inequality concerning the Smarandache
function, Smarandache Noticns J.
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ON SMARANDACHE CONCAT:

Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdeng, P.R.China

x

Abstract. Let A={p"}.., where p is a prime. Let
C(A)={c.} denote the Smarandache concatenated Sequence of A.

In this paper we prove that if n>l and p#*2 or 5, tren
C. does not belong to A.
X

Let A={a_.}..- pe an infinite 1ncreasing seguence of
positive integers. for any positive integer n, let <. e the
decimal integer such that
(1) C., =a. a- ...a. .

o0
Then sequence C{A)={c.}... is called the Sm ndache concatenzated
sequence of A. In [1], Marimutha poqea a genara guestions as
fclliows:

Question. How many terms of C(A) belong to A?

In this serial paper, we shall consider some intersting
cases for the above question. In this part we prove the
folicwing resul

>0

Theorem. Let A={p"}._. ,where p is a prime. If

a>L and p#2 or 5, then c, does not belong to A.

Procf. For any pisitive integer a, let d{a) denote the
figure number of a in the decimal system.

2% A={p“}..., then from(l) we get

if c. belongs to A, then we have

where m 1s a positive integer with m>n It implies that
(4) p° | c.
if n>1. Hoever, if p#2 0Or 35, then of10° for any positive



integer « “hersicre,py (2}, we get
= -l o~
Vo M A 7
wich contradicts (4). Thus, c. dces not belong to A 2
this case. The theorem is proved.
Reference
i.¥%.Marimutha, Smarandacnhe concatenated tLype seguences,
re Appl. Sci.Sect. E 16(19970, No.2, 225-226.

129



ON SMARANDACHE CONCATENETED SEQUENCES I:

fe o]
Abstract. let A={n!}...,and let ClA)y={c.}._.
denote the Smarandache concatenated sequence of A. In this vaper
we prove that if n>1, then c. dces not belong to A.

o foe]

Let A={n!}..., and let C{A)={c.}... denote the Smarandache
cencat ﬂated segquence of A In this part we prove the following

result.

Theorem. If n>l, then c, does not belong to A.

1f n>1 and c. belongs to A, then

(2) c. =m!,
where m is a positive integer with m>n>1 Notice that c.
=12, 126, 12624, 12624120, 12624120720, 126241207205040 zand
1262412072050404040320. for n=2,3,4,5,6,7 and 3, which are rnone
factorial. We may assume that n>9. Then we have m>9.

For any positive integer a, let d{a) denocte the figure numper
©f a in the decimal system. Since n»9, we see from (1) thatz
{(3) ¢c. =n!+{n-1)!10% S B RO

Since 3° '12624120720504040320 and 3° k! for k29, we get
Zrom {3) that

(4 3~ ic. ,n29.

)4 ror ] ca m>: 9 a Al i Fvrm ,2 = o 31 |

noever, sincCe m>»n:xd, we obtaln Irpm [2) that iC.
wnich contradicts (4). Thus, if a>l, then c. does nct
peiong to A The Theorem 1is prcoved
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CN THE INTERSECTED SMARANDACHE PRODUCT SEQUENCES

-

Maohua Le
Znanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract. In this paper we discuss a question concernin

the intersected Smarandache product seguences.
oo

Let U={U. }... Dbe an infinite increasing seguence of positive
integers. For any positive integer n, let
(1) S, =l+u. u- ...u. .

o0

Then the the sequence S{U)={s. }... is called the Smarandache product
sequence of U (see[l]}. Further, if there exist infinitely
many terms in U belonging to S(U), then S{(U), is <called
intersected. 1In this paper we pose the fol lowing gquestion:

Question. Wich of ordinary Smarandache product sequences
are intersected?
We nou give some obvious examples as follows:

o]
Example 1. If U={n}.., , then S{U) is intersected.
In this case, we see from (1) that s. =u,.. for any positive
nteger n.
Exemple 2. Let k be a positive integer with k>1.
e}
If U={kn}... , then S(U) is ncn-intersected, since kfs. for
any positive integer n.
Exemple 3. Let k be a positive integer with k>1 it

- (U) is non-intersected. 1In this case, we have
S, =1+1° 2 ...n® =1+{n!)* , which is not a k-th power.

If U={n!}._. then S(U) 1s non-intersected.
In this case, we have s. =1+1!2!...n!, which is an odd integer
if n>l. It implies that u, €S{U, if and only if n=2.
Reference
l1.F.Iacobescu, Smarandache partition type and other se guences,
Bull.Pure appl.Sci.Sect.E 16(1997), No.2, 237-240.



PRIMES IN THE SMARANDACHE SQUARE PRODUCT SEQUENCE

Machua Le
hanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Apstract. or any positive integer n, let a, be the n-th
SQuare number, and let s, =l+a. a. ...a, . In this paper we prove
that 1f n>2, 2{n and 2n+l is a prime, then S, is
not a prime.

For any positive integer n, let a, be the n-th square %o
number, and let s, =1+a- &. ...a. . Then the se qdenca S={s. }... is
called the Smarandache sguare product seguence. (21,
lacobescu asked the followi oG guestiocn.

tion. How many terms in S are primes?

o T
I his paper we prove the following result:

es
o

e
93
n

Theorem. If n>2, 2|n and 2n+l is a prime, then s,
prime.

-
0]
b ]
O
ct
[\

Proof. By the definition of s. , we have

1) s =l+a. a. ...a. =1l+(n!)" .
Let p=Zn+l. It is a well known fact that if 2in and p is o
is a prime,then we have

(2)  (n!l)? = -1 (mod p),

{see{l,p.88]). Therefore, by (1) and (2), we get:

Further, 1if n>2, then s, =1+{n!)- >2n+l=p. Thus, by (3},
S. 1s not a prime. The theorem is proved.

Reference
Z.G.H.H:rdy and e.m.Wright, An Introducticon to the
Theory of numbers, Oxford Univ. Press, Oxfcrd, 19383.
2.7, LaCuDeSpu, Smarandache pertition type and other seguences,
3u Pure Appl. sci. Sect. E 16(1997), No.2, 237-240.
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On a characterization of the uniform
repartition

Vasile Seleacu

An important role in the theory of the hi-square criterion is plaved by the
following fact: #f 21,25, ..., 2, are independent random variables with Gauss
distribution NV(0,6%), then the distribution of the central statistic hi-square

n

2 ‘
x? =Z (z; + a;)° depends on ay, ay, ..., a, only by mean of the parameter
=1

Z a?. In the paper [ 1]one proves that this property is characteristic for

i=1
the normal distribution of probability. The aim of this paper is to give a
characterization of the uniform distribution of probability by mean of the

hi-square statistic.

n

Theorem 1 Let x,, x5, ..., T, independent and equally distributed random
variables, where n > 2, then the necessary and sufficient condition that the
n n

statistic distribution x? =Z (z; + ai)2 depend on Z a? with a; € R is that
z; be uniformly dzlstrz'buteé.z1 =
Proof. We define the function:
v(a) = Ee™+, (1)

It is obvious that ¥(a) > 0 and ¥ is derivable in every a € RR.
Using the conditions of the theorem we have



N

Let h(a) = logw(a) and H{a) = log®(a). From { 2 | we obtain:
Z h(ai) =H <Z G,i> . (3)
i=1 i=1

If we differentiate twice the both sides of ( 3 ) by a1, then by ay, we obtain
for every ay, az, ..., @n :

" (Z ) ~o. o

In this way

H(a) = Cia+Cs . ‘(5>
From ( 1} and (3 ) we obtain:
v(a) = /e"(”“)ng (z) = eCraves (6)
where F(z) = P (z; < z).
In the following step we consider the substitution:
e ¥ dF (z) = dG. (7)
In this case { ¢ ) can be written in the form:
/e'zde(I) = gCaavCs, (8)

It follows, using the uniqueness theorem for the Laplace transformation.
that dG = CsA (z — Cs) for every Cs and Cg, where A is the Dirac function.
Using again relation { 7 ), it follows that F is the distribution function of the
uniform random variable.

The sufficiency can be proved by a straightforward verification.

References

(1] Cagan AM., Salcevski O.B. Haractierizatia nor-
malinovozaema, Svoisvom tetralinovo hi-cvadrat raspradelenia, Litovski

matem. Sbornic 1(1967) 57-38.
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A NOTE ON THE SMARANDACHE PRIME PRODUCT SEQUENCE
A. A K MAJUMDAR

Department of Mathematics, Jahangimagar University, Savar, Dhaka 1342, Bangladesh

ABSTRACT
This paper gives some properties of the Smarandache prime product sequence,
(P.), definded by
P, =l4+pip..pn,n > 1,
where ( p,) is the sequence of primes in their natural order.

AMS (1991) Subject Classification: 11A41, 11AS51.

1. INTRODUCTION

Let (p») = (p1, p2,...) be the (infinite) sequence of primes in their natural numbers.
The first few terms of the sequence are as follows:
=2, p,=3,p3=5p=7,ps =11, pg =13, p; =17, ps =19, pg =23, p1p =29.
Clearly, the sequence (p,) is strictly increasing (in n > 1) with p, > p; py foralln > 4.
Furthermore, p, > nforalln > 1.
The Smarandache prime product sequence, (p,), is defined by (Smarandache [5] )
P.=1+p1 py..pp,n > 1. (1.1)
We note that the sequence (F,) is strictly increasing (in n > 1), satisfying the following
recursion formulas:
Prii=Ftpi ;e pa(Pasr-1),n 2 1, (1.2)
Pty = B posr-(pre1-),n 2 1 (1.3)
We also note that P, is an odd (positive) integer for all n > 1; furthermore,

P =3, B,=7, P;=31, P;=211, P;=2311
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are all primes, while the next five elements of the sequence (P,) are all composites, since

P5 =30031 =59 x 509,
P=510511=19x97 x 277,

B, = 9699691 =347 x 27953,

Py =223092871 =317 x 703760,

Pyg = 6469693231 =331 x 571 x 34231.

Some of the properties of the sequence (P,) have been studied by Prakash [3],

who conjectures that this sequence contains an infinite number of primes.

This note gives some properties of the sequence (P,), some of which strengthens

the corresponding result of Prakash [3]. This is done in §2 below, and show that for each

n 2 1, P, is relatively prime to P,.;. We conclude this paper with some remarks in the

final §3.

2.

MAIN RESULTS

We start with the following result which has been established by Majumdar [2] by
induction on n ( > 6), using the recurrence relationship (1.3).

Lemma2.1: P, < (ppe)* 2 foralln > 6.

Exploiting Lemma 2.1, Majumdar [2] has proved the following theorem which
strengthens the corresponding result of Prakash [3].

Theorem 2.1: For each n > 6, P, has at most n-3 prime factors (counting
multiplicities).

Another property satisfied by the sequence (P,) is given in Theorem 2.2. To prove
the theorem, we would need the following results.

Lemma22: Foreachn > I, P, is of the form 4k+3 for some integer k > 0.
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ELc&_f: SinceiP,, is odd for all n > 1, it must be of the form 4k+1 or 4k+3 (see, for
example, Shanks [4], pp. 4). But, P, cannot be of the form 4k+1, otherwise, from
(1.1), we would have pyps...p, = 4k,

that is, 4| p1p2...pn, Which is absu?d. Hence, P, must be of the form 4k+3. O
Lemma 2.3: (1) The product of two integers of the form 4k+1 is an integer of the
form 4k+1, and in general, for any integer m > 0, (4k+1)™ is again of the form 4k+1,
(2) The product of two integers of the form 4k+3 is an integer of the form 4k+1, and
the product of two integers, one of the form 4k+1 and the other of the form 4k+3, is
integer of the form 4%+3,

(3) For any integer m > 0, (4k+3)™ is of the form 4k+1 or 4k+3 respectively
according as m is even or odd.

Proof: Part (1) has been proved by Bolker ([1], Lemma 5.2, pp. 6). The proof of the
remaining parts is similar. [

We now prove the following theorem.

Theorem 2.2: For eachn > 1, P, is never a square or higher power of any natural
number ( > 1).

Proof: If possible, let P,= N for some integer N > 1.

Now, since P, is odd, /N must be odd, and hence, N must be of the form 4k+1 or 4k+3 for

some integer k > 0. But, in either case, by Lemma 2.3, N?= P, is of the form 4k+1,

contradicting Lemma 2.2. Hence, P, cannot be a square of a natural number ( > 1).

To prove the remaining part, let FP,= N ! for some integers N > 1, 1 > 3. ™

Without loss of generality, we may assume that 1 is a prime (if 1 is a composite number, let

1= rs where r is prime, and so p, = (NN°)"; setting M = N, we may proceed with this M in
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place of N). By Theorem 2.1, 1 < n, and hence, 1 must be one of the primes ps, ps, ..., Dn.

By Fermat's Little Theorem (Bolker [1], Theorem 9.8, pp. 16),
pip2..Pn=Nl-1 = N-1=0(mod 1).

Thus, N =1m+1 for some integer m > 0,

and we get pip2..po=(Im)! + (})(Am)i 1+ .+ (|1 ) (1m).

But the above expression shows that 121p; ps...p,, which is impossible.

Hence, the representation of P, in the form (+) is not possible, which we intend to prove. O
Some more properties related to the sequence (P,) are given in the following two
lemmas. Lemma 2.4: Foreachn > 1, (P,, P,.1) = 1.

Proof: Any prime factor p of P, satisfies the inequality p > pn.;.

Now, if p|Pn, then from (1.3), we see that p|(pn+1-1), which is absurd. Hence, all the prime

factors of P,,, are different from each of the prime factors of P,, which proves the lemma. O
Lemma 2.5: Foreachn > 1, P, and P, have at most one prime factor in common.
Proof: Since P.i9-P, = p1p2...pn (Prs1Pnso-1),

any prime factor common to both P, and P, must divide p,.;pa.a-1. Now, any prime

factor of P, is greater than p,.». Hence, it follows that P, and p,.- can‘ have at most one

prime factor in common, since otherwise, the product of the prime factors is greater than

(Pn-2)?, which cannot divide pn.i pnig-1 < (pni2)?. O
From the proof of the above lemma we see that, if all the prime factors of p,.{ pr.a-1

are less than p, .9, then (P, P,,2) = 1. And generalizing the lemma, we have the following

result: Foranyn > 1, and ¢ > 1, P, and P,.; can have at most i-1 number of prime factors

in common.
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3. SOME REMARKS

We conclude this paper with the following remarks.

(1) The sequence (P,) is well known, it is used in elementary texts on the Theory of Numbers
(see, for example, Bolker [1]and Shanks [4] to prove the infinititude of the primes. Some of
the properties of the sequence (F,) have been studied by Prakash [3]. Theorem 2.1 improves
one of the results of Prakash [3], while our proof of Theorem 2.2 is much simpler than that
followed by Prakash [3]. The expressions for s, P;, P, Py and Pjg show that Theorem 2.1
is satisfied with tighter bounds, but we could not improve it further.

(2) By Lemma 2.3 we see that, of all the prime factors of P, (which is at most n-3 in
number for n > 6, by Theorem 2.1), an odd number of these must be of the form 4k+3. In
this connection, we note that, in case of Ps, one of the prime factors (namely, 59) is of the
form 4k+3, while the other is of the form 4k+1; and in case of P, all the three prime factors
are of the form 4k+3.

(3) The Conjecture that the sequence (P,) contains infinitely many primes, still

remains an open problem.
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Smarandache Lucky Math

cy C. Ashbacher

C

Ashbacher Technologies

~
s . i
i
Hiawatha, Box 294
T oo Ty
IA 22233, usa
Demni e 71 s o n
Z-mail: r-Ovo.oZzZicompuserve. cor

The Smarandache Lucky Method/Algorithm/Operation/etc. is

said to be any incorrect method or algonthm or operation etc. which leads to

a correct result. The wrong calculation should be fun, somehow similarly

to the students' common mistakes, or to produce confusions or paradoxes.
Can someone give an example of a Smarandache Lucky Derivation, or

Integration, or Solution to a Differential Equation?

Reference:

[1] Smarandache, Florentin, "Collected Papers” (Vol. II), University of
Kishinev, 1997, p.200 .
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Problems
Edited by

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
119 Northwood Drive
Hiawatha, IA 52233 USA
71603.522@compuserve.com

Welcome to the latest installment of the problems section! Our goal as always is to
present interesting and challenging problems in all areas and at all levels of difficulty with
the only limits being good taste. Readers are encouraged to submit new problems and
solutions to the editor at one of the addresses given above. All solvers will be
acknowledged in a future issue. Please submit a solution along with your proposals if vou
have one. If there is no solution and the editor deems it appropriate, that problem may
appear in the companion column of unsolved problems. Feel free to submit computer
related problems and use computers in your work. Programs can also be submitted as part
of the solution. While the editor is fluent in several programming languages, be cautious
when submitting programs as solutions. Wading through several pages of an obtuse
program to determine if the submitter has done it right is not the editors idea of a good
time. Make sure you explain things in detail.

If no solution is currently available, the program will be flagged with an asterisk*. The
deadline for submission of solutions will generally be six months after the date appearing
on that issue. Regardless of deadline, no problem is ever officially closed in the sense that
new insights or approaches are always welcome. If you submit problems or solutions and
wish to guarantee a reply, please include a self-addressed stamped envelope or postcard
with appropriate postage attached. Suggestions for improvement or modification are also
welcome at any time. All proposals in this offering are by the editor.

Definition: Given any positive integer n, the value of the Smarandache function S(n) is
the smallest integer m such that n divides m!.

Definition: Given any positive integer n > 1, the value of the Pseudo-Smarandache

m
function Z(n) is the smallest integer m such that n divides 5_ k. Note that this is
k=1
m(m+1)

equivalent to n divides 5



New Problems
16. Prove that there are an infinite number of integers n such that S(n) = Z(n).
17. Prove that if n is an even perfect number, then S(n) and Z(n) are equal and prime.
18. The Smarandache Square-Partial-Digital Subsequence(SPDS) is the set of square
numbers that can be partitioned into a set of square integers. For example, 101 =110 1
and 1449169 = 144 | 9| 169 are in SPDS. Widmer[1] closes his paper with the comment,
"It is relatively easy to find two consecutive squares in SPDS. One example is 12° = 144

and 132 = 169. Does SPDS also contain a sequence of three or more consecutive
integers?"”

Find a sequence of three consecutive squares in SPDS.
19. Prove that if k > 0, then
2k+1_1 ifkisodd
ZQk*3) =
2%+l ifkiseven
20. Prove that ifk > 0, then Z(2* * 5) =
a) 25*2 if k is congruent to 0 modulo 4
b) 281 ifk is congruent to 1 modulo 4
¢) 252 — 1 ifkis congruent to 2 modulo 4
d) 2f*1 — 1 ifk is congruent to 3 modulo 4.
21. a) Prove that
S(Z(n)) - Z(S(m))
is positive infinitely often.
b) Prove that
S(Z(n)) - Z(S(n))
is negative infinitely often.

22. It 1s clear that if p is an odd prime,

Z(S(n)) = Z(n)
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since S(p) = p. Prove that there are an infinite number of composite numbers that also
satisfy the equation. -

Reference

1. Lamarr Widmer, "Construction of Elements of the Smarandache Square-Partial-Digital
Subsequence’, Smarandache Notions Journal, Vol. 8, No. 1-2-3, Fall, 1997.

Problem 23 {btv Sabin Tabirca, Zaglan

. . ld (
Prove the following equation (7 n>1) > s =27 n
= o

Proof
This proot is made based on the /nclusion & Exclusion principle.

Let D, ={r=12,.,mpin} be the set which contains the muitiples of p.

This set satisfies

n nn
; n 2 ;;‘1/ nin O
Dy=p<12.Zrand Y i=p Yy i=p Lot LA
S p} ed i=i - Y 4 /

Let n=pfi - pi*-.. p¥ be the prime number decomposition of n.

The following intersection of sets

~ = ;= ‘ : :
Dp{,i - 'Dp/: mmmDpJ_ =u=L2,..,m b, nAp, nA.Ap ‘n}

i1s evaluated as follows

D ADP/: h”‘ﬁDP :{izl’z""’mp/{ 'R;: i"‘-p,'..‘n}=D{-’:

Py
gl Py P,

Therefore, the equation

D S Tl (1)

The Inclusion & Exclusion principle is applied based on
D= {1' =L2. .. n(n= I} = {l, 2., n}—i’va
J=l

and 1t gives
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n ki R 7
PIEED IR N 3 (2)

. Yo e . = -~ ~~D
renr =t 1S/1</3<< mSR <0,, °C, ., 5,

Applying (1), the equation (2) becomes
{ N

DS IED W AR SR . R (3)

<n.im=t = 1€ <fp <ol jmSht \Py PP,

The right side of the equation (3) is simplified by reordering the terms as

follows
4 3 4
5 ! n 1 ! n u m
LS. ERCRE P i) Y o
rnZt;!)I:l 2 : mgl( ) 2, ¢ Z<,.>n ;/'! ? 7 - 2 7=l i :_/‘/ =
PRI 1 A n / kil " /n\\-\ _i I——l‘\ =—.pin -
”Z;::zT g l—:/ *E'\l*;._ m/i/ - 2 - 2. PR

Therefore, the equation (14) holds. &

Remark

R : n-olny 1
Obviously, the equation does not hold for ~=1 because Zz =land ——=~.
=l (iD=l - -

']

L. - -~ - P
Problem 24 vy Sapin Tabirca, England)

e}

[

Prove that there is no a magic square made with the numbers S(1), S(2),.... S( nz)
where ne{2,3,4,5 7, 8, 10}.

Proof

Let n be a number in the set {2,3,4,5,7,8, 10},

Let us suppose that there is a magic xz(x

\

) ., Square made with the
number S(1), 5(2)...., S(n?).

In this case, the following equations are true-

(‘v’i:l,_n}znx’_‘jzc (D
J=1

n ”xi‘j =iS(z):nC (2)

i=l j=1 i=1

Therefore, the sum of the numbers S(1), S(2),..., S(n?) is divisible by n.

Letus denote SS(n) =" S(i). In the cases ne {2,3,4,3,7,8, 10}, we have:

i=}
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n=2 = SS(2)=9 is not divisible by 2.

n=3 = SS(3)=34 is not divisible by 3.

n=4 = S§(4)=835 is not divisible by 4.

n=5 = SS(5)=187 is not divisible by 5.

n=7 = S§(7)=602 is not divisible by 7.
n=10 = SS8(10)=2012 is not divisible by 10.

A contradiction has been found for each case. Therefore, there is no a magic

square with the elements S(1), S(2),..., S(n”).

Problem 25 ity Jose Cca

)}
)]

[N

The following number, which has 1573 digits,
82818079787776...1110987634321

has been proved (Stephan [1]) with a computer to be a pnme number called

Smarandache Reverse Prime and it belongs to the sequence:
1,21,321,4321,54321,... .

What is the sum of the digits of this number?

Solution:
Write the number per groups:

digit sum
828180 ~memmemmeeemeeee> 8*3+2+1-0 =27
7978.. 727170 ~——eem- ——> 7*]0+(9+8+.. +2~1=0) = 70-45
6968...626160 > 6*10+(9+8+...+2+1+0) = 60+45
5958...525150 > 5*10+(9-8+...+2+1+0) = 50+45

> 1*10+(9+8+...+2+1+0) = 10+45
> 0*10+(9+8+.. . +2+1+0) = 0+45

1918..121110 ~——
98... 21 -

Total = 27+(70+60+50+..+10)+45*8 = 27-280+360 = 667

References:
[1] Stephan, Ralf W., “Factors and Primes in two Smarandache Sequences”,
URL: http://rws.home.pages.de, E-mail address: stephan@tmt.de .
[2] Sloane, N.J.A., "Enciclopedia of Integer Sequences”, online, 1995-1998.
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Solutions to Vol. 7, 1-2-3 Problems

1. The Euler phi function ¢(n) is defined as the number of positive integers not exceeding
n that are relatively prime to n.

a) Prove that there are no solutions to the equation
o(S(m)) =n
Proof: It is well-known that S(n) < n and o(n) < nforalln> 0.
b) Prove that there are no solutions to the equation
S(o(n))=n
Proof: Use the same reasoning as in part (a).
¢) Prove that there are an infinite number of solutions 1o the equation
n-o(Sn) =1

Proof: It is well-known that if p is an odd prime, S(p) =pand &(p) =p - 1. Since there are
an infinite number of odd primes, the result follows.

d) Prove that for every odd prime p, there is a number n such that
n-¢(S(n)=p+1

Proof: It is well-known that if p is an odd prime, then S(2p) = p and if p is an odd prime,
o(p) =p - 1. Therefore,

o(SEp) =p- 1.
The result follows.

2) This problem was proposed in Canadian Vlathematical Bulletin by P. Erdds and
was listed as unsolved in the book Index to Mathematical Problems 1980-1984, edited
by Stanley Rabinowitz and published by MathPro Press.
Prove that for infinitely many n

o(n) < o(n-o(n)).
Proof: It is easily verified that

0(30) = o(2)*o(3)*o(5) = 1*2*4 =8 and

6(30 - 8) = 9(22) = $(2)*4(11) = 1¥10 = 10
149



Now multiply 30 by any power of 2, 2. It is easy to verify using the well-known formula
for the computation of the phi function

Ifn=p$ ...p%¥ is the prime factorization of n, then
! = L . L
o(m) = n(l-_)...(1-3)
that
(30 * 2F) =8 * 2% and (30 *2F - 8*2ky = 10 * 2%
which creates the infinite set.

3) The following appeared as unsolved problem(21) in Unsolved Problems Related to
Smarandache Function, edited by R. Muller and published bv Number Theory

Publishing Company.
Are there m, n. k non-null positive integers, m, n = 1 for which
S(mn) = m* *S(n)?
Find a solution.
Solution-m=n=2and k = 1 is a solution.

4) The following appeared as unsolved problem(22) in Unsolved Problems Related to
Smarandache Function, edited by R. Muller and published by Number Theory
Publishing Company.

Is it possible to find two distinct numbers k and n such that
105 S(n*)
1s an integer?
Find two integers n and k that satisfy these conditions.
Solution: Fork=n =2.
log(z2) S(2%) =log,S(4) = log, 4 = |

5) Solve the following doubly true Russian alphametic

IIBA 2
ABA 2
TPU 3
CEMB 7



Solution:
There are many solutions, one is

372
372
690
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Solution:
There are many solutions, one is

372
372
690
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Unsolved Problems
Edited by

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, [A 32233 USA
e-mail 71603.522@compuserve.com

Welcome to another installment of the unsolved problems column! In this section,
problems are presented where the solution is either unknown or incomplete. This is meant
10 be an interactive endeavor, so input from readers is strongly encouraged. Always feel
iTee 10 contact the editor at any of the addresses given above. It is hoped that we can work
together to advance the flow of mathematics in some small way. There will be no
deadlines here, and even if a problem is completely solved, new insights or more elegant
proofs are always welcome. All correspondents who are the first to resolve any issue
appearing here will have their efforts acknowledged in a future issue.

Definition of the Smarandache function, S(n).
S(n) = m where m is the smallest integer such that n divides m!.

Definition of the Pseudo-Smarandache function, Z(n).

Z(n) = m, where m is the smallest number such that n divides >k

[t is easy to verify that the expression
S(Z(n)) - Z(S(n))

is positive and negative an infinite number of times. It is also occastonally zero. A
computer program was created to check the percentages. When run for
I < n < 10,000, the numbers were

Positive 4,744
Negative 3,227
Zero 29

This precentage was fairly constant for runs with smaller upper limits. Which leads to the
question



Unsolved Question: What are the percentages of numbers for which the expression
S(Z(m)) - Z(S(n))
is positive, negative and zero?

[t is possible to create polynomials with the variables the values of the Smarandache
function. For example, the polynomial

S(n)* +S(n)=n

is such an expression. A computer search for alln > 10,000 yielded 23 values of n for
which the expression is true.

A computer search for all values of n < 10,000 for which the expression
S(n)? = S(n) = 2n

is true yielded 33 solutions.

A computer search for all values of n § 10,000 for which the expression
S(n)? + S(n) = 3n

is true yielded 20 solutions.

A computer search for all values of n < 10,000 for which the expression
S(n)> + S(n) = 4n

1s true vielded 24 solutions.

A computer search for all values of n < 10,000 for which the expression
S(n)* + S(n) = 5n

is true vielded 11 solutions.

A computer search for all values of n < 10,000 for which the expression
S(n)*> = S(n) = 6n

is true vielded 26 solutions.
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Unsolved Question: [s the number of solutions to each of the expressions above finite or
infinite? -

Unsolved Question: Is there a number k such that there is no number n for which
S(n)? + S(n) = kn?

Unsolved Question: Is there a largest number k for which there is some number n that
satisfies the expression

S(n)? + S(n) = kn?
Unsolved Question: In examining the number of solutions for the runs for k = 1,2,3.4,
5 and 6, it appears that there are more solutions when k is even than when k is odd. Is this
true in general?
A computer search was performed for the expression
S(n)® +S(n)®> + S(n) =n

foralln < 10,000 and no solutions were found.

Unsolved Question: What is the largest value of k such that there is a solution to the
expression

S(n)* +S(n)*~* +. ..+ S(n)=n?
A computer search for solutions for all n < 10,000 was performed for the expression
S(n)® + S(n)? + S(n) =kn

fork=2, 3,4, 3, and 6 and no solutions were found. However, two solutions were found
for k=7.

Another computer search for alln < 10,000 for the expression
S(n)* + S(n)* + S(n)? + S(n) = kn
fork=1,2,3,4,35, 6 and 7. One solution was found fork = 5.

Unsolved Question: Is there a largest value of m for which there are no values of n and k
for which

S(m)™ + S(m)™! +. ..+ S(n) = kn?
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There are several classic functions of number theory, and it is in some sense natural to
examine problems with the Smarandache and Pseudo-Smarandache functions combined
with the classic functions.

Definition: Forn > 1, the divisors function d(n) is the number of integers m, where
1 <m < n,such that m evenly divides n.

Unsolved Question: How many solutions are there to the equation

Z(n) = d(n)?
A computer search up through n = 10,000 yielded only the solutions n =1, 3 and 10.
Unsolved Question: How many solutions are there to the equation

Z(n) +d(n) =n?

A computer search up through n = 10,000 yielded only the solution n = 36, as d(56) = 8
and Z(56) = 48.

Unsolved Question: How many solutions are there to the equation
S(n) =d(n)?
A computer search up through n = 10,000 vielded 12 solutions, 10 of which were less

than 3,000 and the last two were n = 5,000 and n = 8750. Given the obvious thinning of
the solutions as n gets larger, it may be that there are very few solutions.

Definition: Forn > 1, the Euler phi function ¢(n) is the number of integers k,
1 < k < nthat are relatively prime to n.
Using the Euler phi function, we can create an additional problem.
Unsolved Problem: How many solutions are there to the expression
S(n) + d(n) + o(n) =n?

A compute, earch for all n up through 10,000 yielded only the trivial solutions n =1.



CONTENTS

Ralf W. Stephan, Ffactcrs ana frimes 1n IwC Zmarancache )
SeQUences s ieee . R R R R R R R RSO S 5
C. Dumitrescu and R. Muller, 7T¢C ZnjCy 18 a rFPermanent Vompv“eh_ﬂq
of MathematicCs ..... e e et e e e e e e e e e seee 12
Sabin Tibirci, Tatiana Tabircd, The Convergence ci Smaranaacneﬁﬁ
HaYmMON il SO iBS ittt ittt e et et e eeeeasesonensanseensasnasenansees 1;
Raul Padilla, Smarandache AlgebralcC STLruUCLUYEeS it ieeeenennenn }?
Jose Castillo, Smarandacre Continued Fractions EEREREE 39
Sandy P. Chimienti, Mihaly Bencze, ZSmarandache Paradoxist N
Sandy P Chimienti, Mihaly Bencze, S 24
Sandy P. Chimienti, Mihaly Bencze, 21 B
PrOTEIIITVE ZEIITE T it e e e e i
Sandy P. Chimienti, Mihaly Benc:ze, <
Jozsef Sandor, Croo CZerTaln MNew _naaou

Tne Imaraniache © e e e e e e e e e e e e e e e e e e.e. 605
Ion Baldcenoiu, Tre Tactorial Sigrature of Natural Numpers T0
Charles Ashbacher, The Zseudo-Smarandache FTuncrticn and

the Classical Functicns of Nurbers ENot=Tol o)V AN e e 75
Sabin Tabircd, Tatiana Tabircd, Twc functions in Number

Theory and Some Upper Bounds for the Smarandache Function .... 82
M. R. Popov, The Smarandache Pericdical Sequences ........... S92
Maohua Le and Kejian Wu, The Primes in Smarandache Power

Product Seguences v e

Maocohua Le and Kejian Wu, A Nc-e cn the Primes in Smarandac

Lnary Seguences

Yongdong Guo and Maohua Le, Smarandache Concatenated

Zower Tecimals and their Irratiora
Kejian Wu and Maohua Le, 0On -~

Smarandache Concaterated Sguare Seguence ..., .. .
Xigeng Chen, Machua Le, Trec M3 o Fericdicity
Smarandache Ccncatenated 0O4d SETUBNTE ittt i e e
I. Prodianescu, L. Tutescu, On a Ccntecture Ccncerning
The Siarar:ac:e TuncTion ... .. e e e e e et e e e e e, e
F. Saidak, Z=Zrdcs C:nje:t;re L e e e e e
Charles Ashbache All 3cluticrs of the Zguaticrns
\p — N ia}
il - il -iy R T D T T T
Florlan Luca, AL Ireguality Retween Drime fowers Dividing !
Maohua Le, An inequality Cocrncerrning thne Smarandache Furnctian
Maochua Le, Tre Smarandache Tunctiocn and the Diophantine
EQquatiocn <! + a = Y e e e e e, e e et e e e e et e e e
Maohua Le, Cn Smarandache Concatenatad Seguences l: Prime
Tower Seguence D T S e e e e e et e e
Maohua Le, 0= Smarandache Concaterated Seguences I1l:
Tactorial Sequence ............... e e e e e e e e e
Maohua Le, 0rn -r= Irtersected Smarandache croduct Seguerces

N@]

O D

boyopoa

Papos s
Ny pes b

'
(9]
(W)

-]

Ne
&)

IS

[N

NN OS]



Maochua Le,

s

("

Vasile Seleacu,

uct
Ashbacher,

Prod
C.

O
it

o
N
62}

-





