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Summary of Conference Arrangements

The First International Conference on Smarandache Notions in Number Theory was held in
Craiova , Romania, 21- 22 August 1997. The Organizing Committee had spared no effort in
preparing programme, lodging and conference facilities. The Conference was opened by the la
te professor Constantin Dumitrescu', chairman of the Organizing Committee and the initiator
of the conference and a leading personality in Number Theory research. He welcomed all
participants. Unfortunately professor Dumitrescu’s state of health did not permit him to
actively lead the conference, although he delivered his first paper later in the day and was
present during most sessions. He requested the author of these lines to chair the first day of the
conference, a task for which I was elected to continue for the rest of the conference.

In view of the above it is appropriate that I express mine and the other participants gratitude to
the organizers and in particular to the Dumitrescu family who assisted throughout with social
and arrangements and the facilities required for the smooth running of the conference. I would
like to pay special tribute to professor Dumitrescu’s son Antoniu Dumitrescu who presented his
father’s second paper on his behalf.

Unfortunately not all those who intended to participate in the conference were able to come.
Their contributions which were submitted in advance have been gratefully received and are
included in these proceedings. A list of participants is found on page .....

A pre-conference session was held with professor V. Seleacu the day before the conference.
This was held in french with Mrs Dumitrescu as interpreter. Prof. Seleacu showed some
interesting work being conducted by the research group at Craiova University. Mrs Dumitrescu
also acted actively during the conference to bridge language difficulties.

Special thanks were expressed at the conference to Dr. F. Luca, USA, who helped during
sessions when translation from the romanian language to english was needed. In this context
thanks are also due to my wife Anne-Marie Rochard-Ibstedt who made my participation
possible by helping me drive from Sweden to Paris and then across Europe to Craiova. She was
also active during the conference in taking photos and distributing documents.

Although united through the international language of Mathematics it was not always possible
to penetrate presentations in such detail that extended discussions could take place after each
session. Informal contacts between participants proved important and opportunities for this was
given during breaks and joint dinners.

In the concluding remarks the chairman thanked the organizers and in particular professor
Dumitrescu for having very successfully organized this conference. It was noted that the
presentations were not made as an end in itself but as sources for further thought and research
in this particular area of Number Theory, n.b. the very large number of open problems and
notions formulated by Florentin Smarandache. The hope was expressed that the conference had
linked together researchers for continuing exchange of views with our modern means of
communication such as electronic mail and high speed personal computers.

Professor Dumitrescu thanked the chairman for his work.

Paris 26 March 1998.

! 1949-1997, Obituary in Vol. 8 of the Smarandache Notions Journal.



On Smarandache’s Periodic Sequences

Henry Ibstedt
Preamble:

Ladies and gentlemen,

1t is for me a great honour and a great pleasure to be here at this conference to present some
of the thoughts I have given to a few of the ideas and research suggestions given by Florentin
Smarandache. In both of my presentations we will look at some integer sequences defined by
Smarandache. As part of my work on this I have prepared an inventory of Smarandache sequences,
which is probably not complete, but nevertheless it contains 133 sequences. I welcome coantributions to
complete this inventory, in which an attempt is also made to classify the sequences according to
certain main types.

Before giving my first presentation I would like to say a few words about what eventually
brought me here.

When I was young my interest in Mathematics began when I saw the beauty of Euclidean
geometry - the rigor of a mathematical structure built on a few axioms which seemed the only ones
that could exist. That was long before I heard of the Russian mathematician Lobachevsky and
hyperbolic geometry. But my facination for Mathematics and numbers was awoken and who can
dispute the incredible beauty of a formula like

e*+1=0

and many others. But there was also the disturbing fact that many important truths can not be
expressed in closed formulas and that more often than not we have to resort to approximations and
descriptions. For a long time I was fascinated by classical mechanics. Newton’s laws provided an ideal
framework for a great number of interesting problems. But Einstein’s theory of relativity and
Heisenberg’s uncertainty relation put a stop to living and thinking in such a narrow world. Eventually
I ended up doing computer applications in Atomic Physics. But also my geographical world became
too narrow and I started working in developing countries in Africa, the far East and the Caribbean, far
away from computers, libraries and contact with current research. This is when I returned to numbers
and Number Theory. In 1979, when micro computers had just started making an impact, I bought one
and brought it with me to the depths of Africa. Since then Computer Analysis in Number Theory has
remained my major intellectual interest and stimulant.

With these words I would now like to proceed to the subject of this session.



On Smarandache’s Periodic Sequences
Henry Ibstedt

Abstract:

This paper is based on an article in Mathematical Spectrum, Vol. 29, No 1. It concerns what happens
when an operation applied to an n-digit integer results in an n digit integer. Since the number of n-
digit integers is finite a repetition must occur after applying the operation a finite number of times. It
was assumed in the above article that this would lead to a periodic sequence which is not always true
because the process may lead to an invariant. The second problem with the initial article is that, say, 7
is considered as 07 or 007 as the case may be in order make its reverse to be 70 or 700. However, the
reverse of 7 is 7. In order not to loose the beauty of these sequences the author has introduced
stringent definitions to prevent the sequences from collapse when the reversal process is carried out.

Four different operations on n-digit integers is considered.

The Smarandache n-digit periodic sequence. Definition: Let Ny be an integer of at most n digits and
let Ry be its reverse. N’ is defined through
N, = R, -10 o]
- The element Ny, of the sequence through
Nin= [ NN |
where the sequence is initiated by an arbitrary n-digit integer N; in the domain 10°<N,<10™".

The Smarandache Subtraction Periodic Sequence: Definition: Let Ny be a positive integer of at most n
digits and let Ry be its digital reverse. Ny’ is defined through

Nl: =R, -1 On—l—[log,o N ]
The element Ny, of the sequence through

New=|Ne'<|
where ¢ is a positive integer. The sequence is initiated by an arbitrary positive n-digit integer Ny. It is
obvious from the definition that 0<N,<10™", which is the range of the iterating function.

The Smarandache Multiplication Periodic Sequence: Definition: Let ¢>1 be a fixed integer and Ny and
arbitrary positive integer. Ny, is derived from Ni by multiplying each digit x of Ni by c retaining
only the last digit of the product cx to become the corresponding digit of Ni.;.

The Smarandache Mixed Composition Periodic Sequence: Definition. Let N, be a two-digit integer
a;-10+a,. If a;+ay<10 then b= a,+a, otherwise by= a,+ag+1. be=la;-a| . We define N;=b;-10+by. Ny
is derived from Ny in the same way

Starting points for loops (periodic sequences), loop length and the number of loops of each kind has
been calculated and displayed in tabular form in all four cases. The occurrence of invariants has also
been included.



Introduction

In Mathematical Spectrum, vol 29 No 1 [1], is an article on Smarandache’s periodic sequences which
terminates with the statement:

“There will always be a periodic sequence whenever we have a function f:S—S, where Sisa
[finite set of positive integers and we repeat the function f.”

We must adjust the above statement by a counterexample before we look at this interesting set of
sequences. Consider the following trivial function f(x:S—S, where S is an ascending set of integers
{a1, 3z, ... 3, ... An}:

[ e if x>a,
(x4 i if xi=a,
L X+ I Xe<ar

As we can see the iteration of the function f in this case converges to an invariant a,, which we may of
course consider as a sequence (or loop) of only one member. We will however make a distinction
between a sequence and an invariant in this paper.

_There is one more snag to overcome. In the Smarandache sequences 05 is considered as a two-digit
integer. The consequence of this is that 00056 is considered as as a five digit integer while 056 is
considered as a three-digit integer. We will abolish this ambiguity, 05 is a one-digit integer and 00200
is a three-digit integer.

With these two remarks in mind let’s look at these sequences. There are in all four different ones

reported in the above mentioned article in Mathematical Spectrum. The study of the first one will be
carried out in much detail in view of the above remarks.

1a. The Two-Digit Smarandache Periodic Sequence
It has been assumed that the definition given below leads to a repetition according to Dirichlet’s box
principle (or the statement made above). However, as we will see, this definition leads to a collapse of

the sequence.

Preliminary definition. Let Ny be an integer of at most two digits and let Ny’ be its digital reverse.
We define the element Ny, of the sequence through

Niew= | Ne-Ne |
where the sequence is initiated by an arbitrary two digit integer N;.
Let’s write N, in the form N,=10a+b where a and b are digits. We then have
N,=| 10a+b-10b-a}=9-|a-b|
The | a-b l can only assume 10 different values 0,1,2, ,9. This means that N; is generated from only

10 different values of Na. Let’s first find out which two digit integers result in la-bl=0,1,2, .. and 9
respectively.



labl  Comesponding two digit integers
0 11 22 33 44 55 66 77 8 99
1 10 12 21 23 32 34 43 45 54 56 65 &7 76 78 87 8 98
2 13 20 24 3 35 42 4 S3 57 64 68 75 79 86 97
3 14 25 30 36 41 47 52 58 63 49 74 85 96
4 15 26 37 40 48 51 59 62 73 84 95
S 16 27 38 49 50 61 72 83 94
[ 17 28 39 40 71 82 93
7 19 29 70 81 92
8 19 80 9
9 90

It is now easy to follow the iteration of the sequence which invariably terminates in 0, table 1.

Table 1. iteration of sequence according to the prefiminary definilion

{abl N2 N3 Na Ns Ns Ns
0 0
1 9 0
2 18 63 27 45 9 0
3 27 45 9 0
4 36 27 45 9 0
5 45 9 0
6 54 9 0
7 63 27 45 9 0
8 72 45 9 0
9 81 63 27 45 9 0

The termination of the sequence is preceded by the one digit element 9 whose reverse is 9. The
following definition is therefore proposed.

Definition of Smarandache’s two-digit periodic sequence. Let Ny be an integer of at most two

digits. N, is defined through

the reverse of Ny if Ny is a two digit integer
Nk’ = {
Ni-10 if N is a one digit integer
We define the element Ni.; of the sequence through
Niew= | NN |
where the sequence is initiated by an arbitrary two digit integer N, with unequal digits.
Modifying table 1 according to the above definition results in table 2.

Table 2. iteration of the Smarandache two digit sequence

la-bl N2 Na Na Ns N Ng Ny
1 9 81 63 27 45 9
2 18 63 27 45 9 81 63
3 27 45 9 81 63 27
4 36 27 45 9 81 63 27
5 45 9 8l 63 27 45
6 54 9 8l 63 27 45 9
7 63 27 45 9 81 63
8 72 45 9 8l 63 27 45
9 81 63 27 45 9 al

7



Conclusion: The iteration always produces a loop of length 5 which starts on the second or the third
term of the sequence. The period is 9, 81, 63, 27, 45 or a cyclic permutation thereof.

1b. Smarandache’s n-digit periodic sequence.
Let’s extend the definition of the two-digit periodic sequence in the following way.

Definition of Smarandache’s n-digit periodic sequence.
Let Ni be an integer of at most n digits and let Ry be its reverse. Ny’ is defined through
N, = R, -1 o]
We define the element Ny, of the sequence through
Nen= [ NN |
where the sequence is initiated by an arbitrary n-digit integer N, in the domain 10°<N,<10™. It is
obvious from the definition that 0<N,<10™" which is the range of the iterating function.
i..et’s consider the cases n=3, n=4, n=5 and n=6.
n=3,
Domain 100<N,<999. . The iteration will lead to an invariant or a loop (periodic sequence)'. There
are 90 symmetric integers in the domain, 101, 111, 121, ...202, 212, ..., for which N,=0 (invariant).

All other initial integers iterate into various entry points of the same periodic sequence. The number
of numbers in the domain resulting in each entry of the loop is denoted s in table 3.

Table 3. Smarandache 3-digit periodic sequence

s 239 11 200 240 120
Loop 99 891 693 27 495

It is easy to explain the relation between this loop and the loop found for n=2. Consider
N=3,+10a;+100a,. From this we have [N-N’[=99as-ap}=11-9ja;-a;] which is 11 times the
corresponding expression for n=2 and as we can see this produces a 9 as middle (or first) digit in the
sequence for n=3.

n=4,

Domain 1000<N;<9999. The largest number of iterations carried out in order to reach the first
member of the loop is 18 and it happened for N;=1019. The iteration process ended up in the
invariant O for 182 values of N;, 90 of these are simply the symmetric integers in the domain like
N=4334, 1881, 7777, etc., the other 92 are due to symmetric integers obtained after a couple of
iterations. Iterations of the other 8818 integers in the domain result in one of the following 4 loops or
a cyclic permutation of one of these. The number of numbers in the domain resulting in each entry of
the loops is denoted s in table 4.

8

! This is elaborated in detail in Surfing on the Ocean of Numbers by the author, Vail Univ. Press 1997,
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Table 4. Smarandache 4-digit periodic sequences

s 378 259
Loop 2178 6534
s 324 18 288 2430 310
Loop 90 810 430 270 450
S 444 2 449 333 208
Loop 909 8181 4363 2727 4545
s 329 1 290 2432 3N
Loop 999 8991 6993 2997 4995
n=s.

Domain 10000<N;<99999. There are 900 symmetric integers in the domain. 920 integers in the
domain iterate into the invariant 0 due to symmetries.

Table 5. Smarandache 5-digit periodic sequences

3 3780 2590
Loop 21978 465934
s 3240 180 2880 24300 3100
Loop 990 8910 46930 2970 4950
s 4449 1 4490 3330 2080
Loop 2009 81081 483063 27027 45045
s 3299 101 2900 24320 3110
Loop 9999 89991 49993 29997 49995

n=6.

Domain 100000<N;<999999. There are 900 symmetric integers in the domain. 12767 integers in the
domain iterate into the invariant 0 due to symmetries. The longest sequence of iterations before
arriving at the first loop member is 53 for N=100720. The last column in table 6 shows the number of
integers iterating into each loop.

Table 6. Smarandache é-digit periodic sequences

s 13667 13667
L1 0

s 13542 12351 26093
12 | 136 ss300

s 12685 12685 26271
L3 | 219978 ss9934

s 19107 2711 7127 123320 12446 16711
L4 OO 8IC0 &30 M0 450

s 25057 18 12259 20993 4ae9 52778
LS S0%0 81810 63630 V0 45450

s 47931 14799 42603 222941 29995 356269
L6 9950 89910 4990 29970 49950

s 25375 11 1275 21266 4409 53436
L7 | 50009 810081 430063 270027 450045

s 1288 2 105 e = 765
L8 | 90909 818181 436363 272777 asasas

s 1809 1T 1350 1570 510 5250
L2 | 99099 91891 693693 297297 495495

s 19139 2848 7292 123673 12472 165222
LI | 99999 399991 499993 299997 499995

s 152 4 1254 972 a2 111 828 485 &9 4725
LIT | 10989 978021 857142 615384 131868 736263 373626 252747 494505

s 623 64 156 796 77 3% 525 140 194 596 nz 156 fax) 37 45 50 139 1791 5813
L12 | 43659 91268) 726462 451835 76329 847341 700593 XBW6 V4517 340955 IIE0B7 462726 144538 &70973 341347 06296 26608 517374 I

2. The Smarandache Subtraction Periodic Sequence

Definition:
Let Ny be a positive integer of at most n digits and let Ry be its digital reverse. Ny’ is defined through

9



N' - R . lon—l—[logw N,]
k k
We define the element N.; of the sequence through
New= [N <]

where ¢ is a positive integer. The sequence is initiated by an arbitrary positive n-digit integer N;. It is
obvious from the definition that 0sN,<10™', which is the range of the iterating function.

c=1, n=2, 10<N;<99

When N; is of the form 11-k or 11-k-1 then the iteration process results in 0, see figure la.

Every other member of the interval 10<N;<99 is a entry point into one of five different cyclic periodic
sequences. Four of these are of length 18 and one of length 9 as shown in table 7 and illustrated in
figures 1b and 1c, where important features of the iteration chains are shown.

Table 7. The subiraction periodic sequence, 10sN:<99

Seq.No 1 12 20 1 9 8 97 78 8 67 75 56 64 45 53 34 42 23 3
Seq.No 2 13 30 2 19 90 8 79 9 68 85 57 74 46 43 35 52 24 4
Seq.No 3 14 40 3 22 91 18 8 7 69 95 58 84 47 73 35 62 25 S
-Seq.No 4 15 50 4 39 92 28 81 17 70 6 59 94 43 83 37 72 26 61
Sea.No S 16 &0 5 49 93 38 82 27 71
b24 37 38
98 72 82
88 «— 26 27
+ (=) 87 61 71
77 15 16
- 75 50 50
66 =(-1) - 04 « - 05 «—
85 «[-1) 39 -({+9) -1)e 49 —(+9)
55 92 93
54 28 38
44 81
43 17
3 70
32 - 06 «
22 {-1)e 59 —>{+9)
21 94
n 48
10 83
0 37
Fg. 1a FAg b Figlc

1<c<9, n=2, 100<N;<999

A computer analysis revealed a number of interesting facts concerning the application of the iterative
function.

There are no periodic sequences for ¢=1, ¢c=2 and c=5. All iterations result in the invariant 0 afer,
sometimes, a large number of iterations. 10




For the other values of ¢ there are always some values of N; which do not produce periodic sequences
but terminate on 0 instead. Those values of N; which produce periodic sequences will either have N,
as the first term of the sequence or one of the values f determined by 1<f<c-1 as first term. There are
only eight different possible value for the length of the loops, namely 11, 22, 33, 50, 100, 167, 189,
200. Table 8 shows how many of the 900 initiating integers in the interval 100<N;<999 result in each

type of loop or invariant 0 for each value of .

Table 8. Loop statistics, L=length of loop, f=first term of loop

c fl/ 1o 0 11 22 33 S0 100 167 189 200
1 Ny 900
2 Ny 900
3 Ni 241 59 150
1 240
2 210
4 Ny 494 42
1 364
5 Ny 900
é Ny 300 59 84
i 288
2 1469
7 N1 109 535
1 101
2 101
3 14
4 14
S 13
6 13
8 Ny 203 43 85
i 252
2 308
3 12
9 Ni 21 79 237 170
4 20
S 10
6 161
7 121
8 81
A few examples:

For c=2 and N;=202 the sequence ends in the invariant 0 after only 2 iterations:

2022000

For c=9 and N,=208 a loop is closed after only 11 iterations:
208 793 388 874 469 955 550 46 631 127 712 208

For ¢=7 and N,=109 we have an example of the longest loop obtained. It has 200 elements and the
loop is closed after 286 iterations:

109 894 491 187 774 470
167 754 450 47 733 330
126 614 409 897 791 190
184 474 467 757 750 50
143 334 426 617 709 900
102 194 484 477 767 760

67 753350 46 633329 916 612209 895 591 188 874 471
26 613 309 896 691 189 974 472 267 755 550 48 833 331
84 473 367 756 650 49 933 332 226 615 509 898 891 191
43 333326 616 609 899 991 192 284 475 567 758 850 351

2193384 476 667 759 950 52 243 335 526 618 809 901

60 53 343 336 626 619 909 902 202 195 584 478 867 761

160 54 443 337 726 620

19 903 302 196 684 479 967 762 260 55 543 338 826 621

119 904 402 197 784 480

77 763 360 56 643 339 926 622 219 905 502 198 884 481

177 764 460 57 743 340

36 623 319 906 602 199 984 482 277 765 560 58 843 341

136 624 419 907 702 200

5493387 776 670 69 953 352 246 635 529 918 812 211

105 494 487 777 770__70

63 353 346 636 629 919 912 212 205 495 587 778 870 71

163 354 446 437 729 920

22213 305 496 687 779 970 72 263 355 546 638 829 921

122 214 405 497 787 780

80 73 363 356 646 639 929 922 222 215 505 498 887 781

180 74 463 357 746 640

39 923 322 216 605 499 987 782 280 75 563 358 846 641

139 924 422 217 705 500

2
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3. The Smarandache Multiplication Periodic Sequence

Definition:

Let c>1 be a fixed integer and N, and arbitrary positive integer. Ny, is derived from Ny by
multiplying each digit x of Ny by ¢ retaining only the last digit of the product cx to become the
corresponding digit of Ny.

In this case each digit position goes through a separate development without interference with the
surrounding digits. Let’s as an example consider the third digit of a 6-digit integer for c=3. The
iteration of the third digit follows the schema:

xx7yyy —-- the third digit has been arbitrarily chosen to be 7.

xxlyyy

xx3yyy

xx9yyy

xx7yyy — which closes the loop for the third digit.

Let’s now consider all the digits of a six-digit integer 237456:
237456
691258
873654
419852
237456 — which closes the loop.

‘The digits 5 and 0 are invariant under this iteration. All other digits have a period of 4 for ¢=3.

Conclusion: Integers whose digits are all equal to 5 are invariant under the given operation. All other
integers iterate into a loop of length 4.

We have seen that the iteration process for each digit for a given value of ¢ completely determines the
jteration process for any n-digit integer. It is therefore of interest to see these single digit iteration
sequences:

Table 9. One-digit multiplication sequences

c=2 =3 c=4 c=5

1 2 48 6 2117 3 9 71 1 4 6 4 1 5 5
2 4 8 6 2 2 6 8 4 2 2 8 2 2 00
3 6 2 4 8 613 9 7 13 3 2 8 2 3 5 5§
4 8 6 2 4 4 2 6 8 4 4 6 4 4 0 0
5 00 5 5 5 00 5 5

6 2 4 8 6 6 8 4 2 6 6 4 6 6 0 0
7 4 8 & 2 4|7 1V 3 9 7 7 8 2 8 7 5 5
8 6 2 4 8 8 4 2 6 8 8 2 8 8 0 0
9 8 6 2 4 819 7 1 3 9 9 6 4 6 9 5 5

=4 c=7 c=8 c=

1 6 6 1 7 9 3 1 1 8 4 2 6 8 (1 9 1
2 2 2 4 8 6 2 2 6 8 4 2 2 8 2
3 8 8 317 9 3 34 2 6 8 43 7 3
4 4 4 8 6 2 4 4 2 6 8 4 4 6 4
5 0 0 5 5 5 00 5 5

6 6 6 2 4 8 6 6 8 4 2 6 6 4 6
7 2 2 7 9 3 1 7 7 6 8 4 2 647 3 7
8 8 8 6 2 4 8 8 4 2 6 8 8 2 8
9 4 4 9 3 1 7 9 9 2 46 8 4 219 1 9

-
N




With the help of table 9 it is now easy to characterize the iteration process for each value of ¢.
Integers composed of the digit 5 result in an invariant after one iteration. Apart form this we have for:
¢=2. Four term loops starting on the first or second term.

c=3. Four term loops starting with the first term.

c=4. Two term loops starting on the first or second term (could be called a switch or pendulum).

¢=5. Invariant after one iteration. |

¢=6. Invariant after one iteration.

¢=7. Four term loop starting with the first term.

¢=8. Four term loop starting with the second term.

¢=9. Two term loops starting with the first term (pendulum).

4. The Smarandache Mixed Composition Periodic Sequence

Definition. Let Ny be a two-digit integer a,-10+a,. If a,+2,<10 then b;= a,+ay otherwise b;= a;+ag+1.
bo=[a;-ao| . We define Ny=b;-10+b,. Ny, is derived from Ny in the same way.2

There are no invariants in this case. 36, 90, 93 and 99 produce two-element loops. The longest loops
have 18 elements. A complete list of these periodic sequences is presented below.

10 11 20 22 40 44 80 88 70 77 50 55 10
11 20 22 40 44 80 88 70 77 50 55 10 11
12 31 42 62 84 34 71 86 52 73 14 53 82

16 75 32 51 64 12

13 42 6284 34 71 86 52 73 14 53 82 16 75 32 51
71
82

64 12 31 42
86 52 73 14
675 32 51 44
4538216
2 84 34 71 88

14 53 82 16 75 32 51 64 12 31 42 62 84 34
15 64 12 31 42 62 84 34 71 86 52 73 14 53
16 75 32 51 64 12 31 42 62 84 34 71 86 5
17 86 52 73 14 53 82 16 75 32 51 64 12 3
18 97 72 95 54 91 18 '

19 18 97 72 95 54 91 18

20 22 40 44 80 83 70 77 50 55 10 11 20
21 31 42 6284 34 71 86 52 73 14 53 82 16 75 32 51 64 12 31
22 40 44 80 88 70 77 50 55 10 11 20 22

23 51 64 12 31 42 62 84 34 71 86 52 73 14 53 82 16 75 32 Sl
24 6284 34 71 86 52 73 14 53 82 16 75 32 51 64 12 31 42 62
2573 14 5382 16 75 32 51 64 12 31 42 62 84 34 71 86 52 73
26 84 34 71 86 52 73 14 53 82 16 75 32 51 64 12 31 42 62 84
27 95 54 91 18 97 72 95

28 16 75 32 51 64 12 31 42 62 84 34 71 86 52 73 14 53 82 16
29 27 95 54 91 18 97 72 95

30 33 60 66 30

31 42 6284 34 71 86 52 73 14 53 82 16 75 32 51 64 12 31

32 51 64 12 31 42 62 84 34 71 86 52 73 14 53 82 16 75 32

71 86 52 73 14 53 82 16 75 32 51 64 12 31 42 62 84 34
82 16 75 32 51 64 12 31 42 62 84 34 71 86 52 73 14 53 82

16 75 32 51 64 12 31 42 6284 34 71 86 52 73 14
53 82 16 75 32 51 64 12 31 42 62 84 34 71 86 52 73

? Formulation conveyed to the author: “Let N be a two-digit number. Add the digits, and add them again if the sum is greater than 10.
Also take the absolute value of their difference. These are the first and second digits of Ny.”



40 44 80
41 53 82
42 62 84
4371 86
44 80 88
45 91 18
4512 31
47 23 51
4834 71
49 45 91
50 55 10
51 64 12
5273 14
53 82 16
54 91 18
5510 11
56 21 31
57 32 51
58 43 71
59 54 91
60 66 30
81 75 32
62 84 34
63 93 36
64 12 31

6521 31
66 30 33
67 41 53
68 52 73
69 63 93
70 77 50
71 86 52
72 95 54
73 14 53
74 23 51
75 32 51
76 41 53

88
16

51

95
32
14
86
86
14
32
S0
72

72
54

18
18
36
S4
72

70 77 50 55
75 32 S1 64
71 86 5273
73 14 53 82
77 50 55 10
72 95 54 91
62 84 34 71

12
52
97
20
42
82
32
72
22
62
12
52
97
40
64
86

62
62
86
16
53
93
10
14
18
16
12
12
16
LB
51
91
50
54
51
53
52
52
53
S1
55
95

95
91

97
97
93
21
95

31
73
72
2
62
16
51
95
40
84
31
73
72

12
52

84
84

10
54

54

42 62
14 53
95 54
40 44
84 34
75 32
64 12
54

44 80
34 71
42 62
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Products of Factorials in Smarandache Type Expressions

Florian Luca
Introduction

In [3] and [5] the authors ask how many primes are of the form z¥ + 3%,
where ged (z, ¥) = 1 and z, y > 2. Moreover, Jose Castillo (see [2])
asks how many primes are of the Smarandache form z7* + z2™ + ... + z,™*,
where n > 1, 1, Z2, ..., Tn > 1 and ged (21, Z2, ..., Tn) =1 (see [9]).

In this article we announce a lower bound for the size of the largest
prime divisor of an expression of the type az¥ + by®, where ab# 0, z, y > 2
and ged (z, y) = 1.

For any finite extension F of Q let dr = [F : Q] For any algebraic
number { € F let Np({) denote the norm of .

For any rational integer n let P(n) be the largest prime number P
dividing n with the convention that P(0) = P(£1) = 1.

Theorem 1. Let o and B be algebraic integers with o - 8 # 0. Let
K = Qla, 8]. For any two positive integers x and y let X = max (z, y)-
There ezist computable positive numbers Cy and Cz depending only on
and 8 such that

x 1/(dx+1)
P(NK(a:ry+ﬁy"))> C1< 3X)

whenever z, y > 2, ged (z, y) =1, and X > Ca.

The proof of Theorem 1 uses lower bounds for linear forms in logarithms
of algebraic numbers (see [1] and (7]) as well as an idea of Stewart (see [10]).

Erdés and Oblath (see [4]) found all the solutions of the equation n! =
zP +yP with ged (z, ¥) = 1 and p > 2. Moreover, the author (see [6]) showed
that in every non-degenerate binary recurrence sequence (un)n>o0 there are
only finitely many terms which are products of factorials.

We use Theorem 1 to show that for any two given integers a and b with
ab # 0, there exist only finitely many numbers of the type az¥ + by*, where
z, y > 2 and ged (z, y) = 1, which are products of factorials.

Let PF be the set of all positive integers which can be written as
products of factorials; that is

k
PF={w|w= H-m,-!, for some m; > 1}.
=1



Theorem 2. Let f1, ..., fs € Z[X, Y] be s > 1 homogeneous polynomi-
als of positive degrees. Assume that f;(0, Y)- fi(X, 0) #£0 fori=1, ..., s.
Then, the equation

fulel, vi) - folad, o5) € PF, 1)

with ged (z;, ¥:) =1 and z;, ¥ 2 2, for i =1, .., s, has finitely many
solutions 1, Y1, - Ts, Ys. Moreover, there exists a computable positive
number C depending only on the polynomials f1, ..., fs such that all solu-
tions of equation (1) satisfy max (Z1, Y1, - Ts, Ys) < C.

We also have the following inhomogeneous variant of theorem 2.

Theorem 3. Let fi, ..., fs € Z[X] be s > 1 polynomials of positive
degrees. Assume that f;(0) =1 (mod 2) fori=1, ..., s. Letas, ..., s and
by, ..., bs be 2s odd integers. Then, the equation

1 (alxzfl + bly:fl) ceer fs (asxg’ + bsy:‘) € PF, (2)

with ged (2, wi) =land x, ¥ 22, fori=1, .., s, has finitely many
solutions 1, Y1, -- Zs, Ys- Moreover, there ezists a computable posi-
tive number C depending only on the polynomials fy, ..., f, and the 2s
numbers ay, b1, ..., Gs, bs, such that all solutions of equation (2) satisfy
max (T1, Y1, - Zsy ¥s) <C.

We conclude with the following computational results:

Theorem 4. All solutions of the equation
¥ +y® € PF with ged (z, y) =1l and z, y > 2,

satisfy max (z, y) < expl77.

Theorem 5. All solutions of the equation
¥ +y* +2°=n! with ged (z, ¥, z) =land z, ¥, 22> 2,

satisfy max (z, y, z) <expdl8.
2. Preliminary Results

The proofs of theorems 1-5 use estimations of linear forms in logarithms
of algebraic numbers.

Suppose that (i, ..., {; are algebraic numbers, not 0 or 1, of heights not
exceeding Ay, ..., A, respectively. We assume Anp,>efform=1, .. [
Put Q = log A;...log A;. Let F' = Ql¢1, - G- Let ng, ..., mu be integers,
not all 0, and let B > max |n,|. We assume B > ¢2. The following result
is due to Baker and Wiistholz.
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Theorem BW ([1]). If (T*..(H # 1, then

1
G — 1 > 5 exp(—(16(1 + 1)dp)2 3 Qlog B). (3)

In fact, Baker and Wiirtholz showed that if log(;, ..., log(; are any
fixed values of the logarithms, and A =njlog{i + ... + nilog ¢ # 0, then

log|A] > —(16ldr) 2+ D Qlog B. (4)

Now (4) follows easily from (3) via an argument similar to the one used by
Shorey et al. in their paper [8].

We also need the following p-adic analogue of theorem BW which is due
to van der Poorten. o

Theorem vdP ([7]). Let « be a prime ideal of F lying above a prime
integer p. Then,

dr
Ordr(CI‘l--- lnl _ 1) < (16(l+ ].)dp) 12(l+1)1(p)_°_p'Q(10g B)Z. (5)
(=]
The following estimations are useful in what follows.

Lemma 1. Let n > 2 be an integer, and let p < n be a prime number.
Then

(i)
n? <nl <n™ (6)
(ii) n n
< 1<
-1 < ordyn ) (M
Proof. See [6].

Lemma 2. (1) Let s > 1 be a positive integer. Let C and X be two
positive numbers such that C > exps and X > 1. Let y > 0 be such that
y < Clog® X. Then, ylogy < (ClogC)log°*! X.

(2) Let s > 1 be a positive integer, and let C > exp(s(s +1)). If X is
a positive number such that X < Clog’ X, then X < C log""1 C.

Proof. (1) Clearly,
ylogy < Clog® X (log C + sloglog X).
It suffices to show that
logC + sloglog X < logClog X.

17



The above inequality is equivalent to
logC(log X — 1) > sloglog X.

This last inequality is obviously satisfied since logC > s and logX >
loglog X + 1, for all X > 1.

(2) Suppose that X > Clog’t! C. Since s > 1 and C > exp(s(s + 1)),
it follows that Clog®*!C > C > exps. The function 1

- Is increasing
og" y
for y > exps. Hence, since X > C log"t! C, we conclude that

Clog’t'C < X

log*(C log**? C) ~ log X <C.
The above inequality is equivalent to
log**' C .
<logC +(s+1)log logC)
o loglog C'\*
logC < (1 +(s+ 1)%) .

By taking logarithms in this last inequality we obtain

loglog C

loglogC
logC '

loglog C < slog(1+(s+1) oz
(=]

)<s(s+1)

This last inequality is equivalent to log C < s(s + 1), which contradicts the
fact that C > exp(s(s + 1)).

3. The Proofs

The Proof of Theorem 1. By Cy, Cs, ..., we shall denote computable
positive numbers depending only on the numbers @ and 3. Let d = dk. Let

Nk (ax¥ + By*)= pf‘ - -pi"

where 2 < p; < pa < ... < px are prime numbers. For p =1, ..., d, let
a®z¥ + gB)y* be a conjugate, in K, of az¥ + By*. Fixi=1, ..., k. Let
7 be a prime ideal of K lying above p;. We use theorem vdP to bound
ord. (a®z¥ + g y*). We distinguish two cases:

CASE 1. p; | zy. Suppose, for example, that p; | y. Since (z, ¥) =1,
it follows that p; f z. Hence, by theorem vdP,

- (&)
(W¥ 1 gy = (1) v (BN 2y
ord, (oM z¥ + B#y*) = ordx(a'*'z¥) + ordx (1 ( a(ﬂ))y z ) <
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p?

log p:

<Ci+C; Iog4 X. _ (8)

where C; = d - log, Nk (), and Ca can be computed in terms of « and
using theorem vdP.

CASE 2. p; [ zy. In this case

Taw) v

(&) z
ord, (a®z¥ + B¥y*) = ords (a!)z¥) + ord, <1 - ( ks ) ¥ ) <

p?

log p;

<C1+C; log* X. 9)

Combining Case 1 and Case 2 we conclude that

d

ord, (aWz¥ + gWy7) < CgEZ"E log? X, (10)
where C3 = 2 - max (C1, C2). Hence,
8; = ordy, (NK (az¥ + ﬁy’)) < Cy P log* X. | (11)
log p;

where Cy = dC3. Denote pi by P. Since p; < P fori =1, ..., k, it follows,
by formula (11), that

k
log(NK (az¥ + ﬁy‘)) < Z 6: - logp: < kC4P%log* X. (12)
i=1

Clearly k < 7(P), where w(P) is the number of primes less than or equal to
P. Combining inequality (12) with the prime number theorem we conclude

that
d1

P
log(Nx (oz¥ + ﬁy’)) <Cs o P log* X. (13)
o

We now use theorem BW to find a lower bound for Iog(NK (az¥ + ﬁy’)).
Suppose that X =y. For g =1, ..., d, we have
) 8

where Cs = min (log la®| | u=1, ..., d), and C7 can be computed using
theorem BW. Hence,

x

1_( ﬁ(p)) v

- a(#) i

log<la(")xy + ﬁ(“)yzl) = log(ja®z¥]) + log(

> Cs + Xlog2 — Crlog® X.

log(NK (az? + ﬂy“)) > dCs + dX log2 — dC-log® X. (14)
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Let Cs = dCs, Cy = dlog?2, and Cio = dC7. Let also C1; be the smallest
positive number such that

1
3ng > Cio log3 y — Cs, for y > Cy1.

Combining inequalities (13) and (14) it follows that

d+1 1
Cs Tog P lOg4 X >Cs+CyX —Cyo lOg3 X > §CgX, (15)
for X > Cy1. Inequality (15) clearly shows that
Feay
P>C , for X > Cy;.
12 (log3 X) =Cu
The Proof of Theorem 2. By Ci, Ca, ..., we shall denote computable
positive numbers depending only on the polynomials f;, ..., fs. We may
assume that fj, ..., fs are linear forms with algebraic coefficients. Let

fi(X) Y) = aiX +)6tY where aiﬁi # O) and let K = Q[ah ﬂl’ -y Qg .63]‘
Let (z1, ¥1, -, Ts, ¥s) be a solution of (1). Equation (1) implies that

3
HNK(aixi"' +Biyf") =ngl-...ong! (16)
i=1
We may assume that 2 < 1y < ng < ... < ne. Let X = max (z;, ¥ 1=
1, ..., s). It follows easily, by inequality (10), that

ords (H Nk (auz? + ﬁiyf‘)) < Clog* X. (17)
i=1

Hence,

k
> orden;t < Cylog? X.

i=1

By lemma 1, it follows that
ne < 4C log4 X. (18)

On the other hand, by theorem 1, there exists computable constants Ca;
and Cs;, such that

. X. 1/(dx+1)
P(NK (a,-xf.“ + &-yf*)) > Czi (IOT;_X—) (19)

20



whenever z;, 1; > 2, ged (zi, ¥:) = 1 and X; = max (z;, y:) > Ca:. Let
Cy =min (Co; |i =1, ..., s)and let C3 = max (Cs; | i =1, ..., 5). Suppose

that X > Cs. From inequality (19) we conclude that

, 5\ VD
P H Nk (ouz¥ + Biyf) | > Co| = . (20)
i=1 Iog X

k
Since P | Hni!, it follows that P < ng. Combining inequalities (18) and

(20) we conclude that

1/(dx+1)
C < 4C; log* X. 21
2 (log3X> 1108 (21)

Inequality (21) clearly shows that X < Cy.

The Proof of Theorem 3. By Cy, Cs, ..., we shall denote computable
positive numbers depending only on the polynomials fi, ..., fs and on the
numbers a;, by, ..., s, bs- Let (Z1, ¥1, -, Ts, Ys) be a solution of (2).
Let X; = max (i, ¥:), and let X =max (X; |i=1, .., 5). Finally, let

d;
f(2y=ca]](Z2-¢s)
j=1

Let K = Q[Gis] 15:s; , and let d = [K:Q], D= Zdt, and c_Hc,

Let 7 be a prime ideal of K lying above 2. Let Z = g;z¥ + b,y’*. We
first bound ordy fi(Z;). First, notice that ord,(a;b:) = 0. Moreover since
£:(0) = 1 (mod 2), it follows that ord.({;;) =0, for all j =1, ..., di. We
distinguish 2 cases:

CASE 1. Assume that 2 f z;5:. Then fi(Z;) = £f:(0) = 1 (mod 2).
Hence, ordr fi(Z;) = 0.

CASE 2. Assume that 2 | z;. In this case, ord.(y) = 0. Fix j =

., d;. Then,

ord, (Zi - Ci,j) = ord, (G.«;:I:?‘ + (biyf‘ — (;,j)). (22)
Since ord, (b;y7*) = ord«(¢: ;) =0, it follows, by theorem vdP, that
ord, (bty::' - Ci,j) = ord, (b,yf‘ (Cg,j)—l fand 1) < Cl 10g3 X;. ) (23)

We distinguish 2 cases:
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CASE 2.1. y; > C log3 X;. In this case, from formula (22) and in-
equality (23), it follows that :

ord«(Z: — Gi,;) = orda (biyT* ~ ;) < C1log® X:. (24)
CASE 2.2. y: < Cy log® X;. In this case,
ord. (Z; — (i ;) = ordg (biyf" + (aiz¥ — Ci,j)>. (25)
Let A = a;x¥* — (;,;. Let H(A) be the height of A. Clearly,
H(A) < Coz¥s,

Hence,
log(H(A)) < logCa + diy: log z: < C3 + Cylog® X,

where C; = log Cy, and Cy = Cy -max (d; | i=1, ..., s). Since ord«(b:) =
ord.(y™) = 0, it follows, by theorem vdP, that

ord, (Z; — Cij) = ord (1 — b7 y;7™A) < Cslogy: log (H(A)) log?z: <
< Cslog® X:(Cs + Cylog* X). (26)
Let Cs = 2C4Cs. Also, let
Cr = exp((C3/Ca)'*).

From inequalities (23) and (26), it follows that

ord, (Z; — (:;)) < Cslog” X, for X > Cr. (27)
Hence,
ords (] £:(2)) < Calog” X, for X > Cr, (28)
i=1

where Cg = 2max (sDCs, ¢). Suppose now that

3 k
H fi(Z:) = Hnj!, (29)
i=1 j=1

where 2 < n; < ng < ... < ng. From inequality (28) and lemma 1, it follows
that

k .
an < Cq log7X,

i=1
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where Cq = 4C3. Hence,

k k k k k
log(H n;l) = Zlognj! < an logn; < (znj)log(zm) <
j=1 j=1 j=1 j=1 j=1

< Colog’ X (log Cs + Tloglog X ), for X > C7. (30)

Let C;o be the smallest positive number > C7 such that
y > logCy + Tloglogy, for y > Cio-
From inequality (30), it follows that

k
log(H n;!) < Cslog® X, whenever X > Cio. (31)
j=1

We now bound log(H f,-(Zi)). Fix i =1, ..., s. Suppose that y; = X;. By

i=1
) >

> Ci1 + Xilog2 — Cialog® X, ' (32)

where Ci1 = min (Ja;] | i =1, ..., §), 2nd Ci2 can be computed using theo-
rem BW. Let C3 = (log?2)/2, and let Cy4 be the smallest positive number
> C1o such that

Theorem BW,

log |Z;] =logla:z? + biyi*| = log(la,-l.'z:iy") + log ( 1-— (—%)yf"xi_y‘

Ci +ylog2— leog;3 y > C13y, for y > Ci4-
From inequality (32) it follows that
max (log|Z:]) > CisX, for X > Ciq4. (33)

On the other hand, for each i = 1, ..., s, there exists two computable
constants C; and C! such that

lf,,(Z,,)I > CilZiIdi, whenever IZI' > C:

Let Cys = min (C; |i=1, .., s), and let Cjs = max (C] | i =1, ..., s).
Finally, let Cy7 = max (C14, (logCis)/C13). Suppose that X > C;7. Since
|fi(Z)] > 1, foralli=1, ..., s, it follows, by inequality (33), that

log(f[ F:(Z)) > max (loglfi(Z:)|i=1, ..., s) >

i=1
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> log C1s + max (log|Zi| | i =1, .., s) >logCys + C13X, for X > Cyr.
(34)
From equation (29) and inequalities (31) and (34), it follows that

logC15 + Ci13X < Co Iog8 X, for X > Ci+. (35)

Inequality (35) clearly shows that X < Cis.

The Proof of Theorem 4. Let X = max (z, y). Notice that if
z¥ + y* € PF, than zy is odd. Hence, by theorem vdP,

2

log 2

orda (z¥ +y%) = orda(1 — (Fy)*z7¥) < 48% - log? X. (36)

Suppose that
Iy:tyz =ng!- ...-nk!, (37)

where 2 < n; < ... < ng. From inequality (36) and lemma 1 it follows that
k k 3
. < 1 4 6, _° . 4 9. 36 _ 4 ]
;nt _4(;ord2(n, )) <48 og 2 log X <12-48%% -log* X. (38)
It follows, by lemma 2 (1), that

k k k
log(z¥ £ y*) = IogHm! = Zlogn,-! < Zmlogn,- <

i=1 i=1 i=1

< (i n,-) log (Xk: n,-) <12-48%8 log(12 ~4836) -log® X < 1703-48% log® X.
i=1 i=1 (39)
Suppose now that X = y. Then, by theorem BW,
log |z¥ £ y*| > log|z¥ — ¥*| = log(z¥) + log |1 — y*z7¥| >
> Xlog3 —log?2 — 48'%1og® X. (40)

Combining inequalities (39) and (40), we conclude that
X < Xlog3 < log2 + 48°1og® X + 1703 - 48%% log® X < 1704 - 48% log® X.
Let C = 1704 - 4836 and let s = 5. Since log C =log 1704 + 36log 48 >(43%)),
it follows, by lemma 2 (2), that

X < C-logf C <1704 - 48% - 1475 (42)
Hence, log X < 177.
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The Proof of Theorem 5. Suppose that (z, y, z, n) is a solution
of z¥ + y* + z° = n!, with ged (z, y, 2z) = 1 and min (z, y, z) > 1. Let
X = max (z, y, z). We assume that logX > 519. Clearly, not all three
numbers z, y, z can be odd. We may assume that 2 | z. In this case, both
y and z are odd. By theorem vdP,

2
orda(y* + 2%) = orda(1 — (—y) 77z%) < 48% ——log* X < 3- 48 log* X.

log2
(43)
We distinguish two cases:
CASEl.y=>3- 48%% log* X. In this case, by lemma 1,

n/4 < orden! = orda(z¥ + y* + 2%) = orda(y* +2%) < 3- 48% log* X. (44)

Hence,
n < 12-48%log? X. (45)

By lemma 2 (1), it follows that
nlogn < 12 -48% log(12 - 48°%) log® X < 1703-48% log® X.  (46)
We conclude that
X log?2 < log(z¥ + y* + 2%) = logn! <nlogn <1703 - 48%6 1og® X.

Let C = 1703 - 483 /log?2, and let s = 5. Since logC > 30, it follows, by
lemma 2 (2), that

X < Clog® C < 2457 - 48% . 148°.

Hence, log X < 178, which is a contradiction.

CASE 2. y < 3-48% log* X. Let p be a prime number such that p | y.
We first show that p }z. Indeed, assume that p | z. Since ged (z, ¥, 2) = 1,
it follows that p J z. QWe conclude that p [ n!, therefore n < p. Hence,

n<p<y<3-48¢log* X.

In particular, n satisfies inequality (45). From Case 1 we know that log X <
178, which is a contradiction.
Suppose now that p [ z. Then, by theorem vdP,

ord,(z¥ + 2%) = ordp(1 — (—x) 7¥2%) < 483610—";5 log* X <

< 48%ylog* X < 3-487log® X. (47)
We distinguish 2 cases:
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CASE 2.1. z>3-487%10og® X. In this case, by lemma 2 (1) and in-
equality (47), ”

n
— <ord,n! =ord,(y* + (z¥ + 2%)) =

= ord,(z¥ + 2%) < 3- 48" log® X.
Hence,
n<12(p—1)-48™log® X <12y -487log® X < 36-48'®log'? X. (48)
From lemma 2 (1) we conclude that
Xlog?2 < log(z¥ +y* + 2%) =logn! <nlogn <

< 36 - 481%8 10g(36 - 481%8) log!3 X < 317 - 48! log!? X. (49)

Let C = 317 - 481%%/log 2, and let s = 13. Since logC > 182, it follows, by
lemma 2 (2), that

X < Clog'' C < 458 - 48199 In'%(458 - 481%%) < 458 - 481%° . 4294,

Hence, log X < 513, which is a contradiction.
CASE 2.2. z < 3-487 log8 X. By theorem vdP, it follows that

orda (z* + (z¥ + y*)) = orda (1 — (—z¥ — y‘)z_x) <

< 4836—2— log(z¥ +y7) log® X < 3-48% log(z¥ +y*) log® X (50)
log2 ° ° .

We now bound log(z¥+y7). Let g1 = 3-48% log* X and z; = 3 - 48" log® X.
Since y < y1 and z < zi, it follows that

log(z¥ + y*) < log(X¥* +yi') < log2 + max (y1log X, 21 logy1)-
Since zy logyy > z1 > y1 log X, it follows that

log(z¥ +y*) <log2 + z;logy;.

From lemma 2 (1) we conclude that
log(z¥ + y*) <log2 + z1logy, = log2 + ;—1 (y1 logy1) <
. 1

< log2+48% log* X - (3-48%¢ log(3-48%) ) log® X < 422-487log® X. (51)
o
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From lemma 1 and inequalities (50) and (51) it follows that
n/4 < ordan! = ords (2= + (=¥ + y*)) < 1266 - 481%8 1002 X

Hence,
n < 5064 - 481% log!? X.

By lemma 2 (1), it follows that
Xlog?2 < log(z¥ +y* +2%) = logn! <nlogn <

< 5064 - 481%8 - log(5064 - 48'%®) log™® X < 22- 48! 1og"* X.

Let C = 22 -48"1/log2, and let s = 13. Since logC > 182, it follows, by
lemma 2 (2), that

X < Clog C < 22-48!11 . 43314

Hence, log X < 518, which is the final contradiction.

Bibliography

(1] A.BAKER, G. WUSTHOLZ, Logarithmic Forms and Group Varieties,
J. reine angew. Math. 442 (1993), 19-62.

[2] J. CASTILLO, Letter to the Editor, Math. Spec. 29 (1997/8), 21.

[3] P. CASTINI, Letter to the Editor, Math. Spec. 28 (1995/6), 68.

[4] P. ERDOS, R. OBLATH, Uber diophantische Gleichungen der Form
n! = zP £ y? und n! £ m! = zP, Acta Szeged 8 (1937) 241-255.

[5] K. KASHIHARA, Letter to the Editor, Math. Spec. 28 (1995/6), 20.

[6] F. LUcCAa, Products of Factorials in Binary Recurrence Sequences,
preprint.

[7] A.J. VAN DER POORTEN, Linear forms in logarithms in the p-adic
case, in: Transcendence Theory, Advances and Applications,
Academic Press, London, 1977, 29-57.

[8] T.N. Shorey, A. J. van der Poorten, R. Tijdeman, A. Schinzel,
Applications of the Gel’fond-Baker method to diophantine
equations, in: Transcendence Theory, Advances and Applications,
Academic Press, London, 1977, 59-77.

[9] F. SMARANDACHE, Properties of the Numbers, Univ. of Craiova
Conf. (1975).

[10] C. L. STEWART, On divisors of terms of linear recurrence
sequences, J. reine angew. Math. 333, (1982), 12-31.

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY,
SYRACUSE, NY 13244-1150
E-mail address: florian@ichthus.syr.edu



ANALYTICAL FORMULAE AND ALGORITHMS
FOR CONSTRUCTING MAGIC SQUARES FROM
AN ARBITRARY SET OF 16 NUMBERS
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Nevsky 3-11, 191186, St-Petersburg, Russia
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In this paper we seek for an answer on Smarandache type question: may one
create the theory of Magic squares 4x4 in size without using properties of some

concrete numerical sequences? As a main result of this theoretical investigation

we adduce the solution of the problem on decomposing the general algebraic
formula of Magic squares 4x4 into two complete sets of structured and four-

component analytical formulae.

1 Introduction

In the genera! case Magic squares represent by themselves numerical or
analytical square tables, whose elements satisfy a set of definite basic and
additional relations. The basic relations therewith assign some constant
property for the elements located in the rows, columns and two main diagonals
of a square table, and additional relations, assign additional characteristics for
some other sets of its elements.

Judging by the given general definition of Magic squares, there is no
difficulty in understanding that, in terms of mathematics, the problem on Magic
squares consists of the three interrelated problems

a) elucidate the possibility of choosing such a set of elements which would
satisfy both the basic and all the additional characteristics of the relations;

b) determine how many Magic squares can be constructed from the chosen
set of elements;

¢) elaborate the practical methods for constructing these Magic squares.

It is a traditional way to solve all mentioned problems with taking into
account concrete properties of the numerical sequences from which the Magic



square numbers are generated. For instance, by using this way problems was
solved on constructing different Magic squares of natural numbers! -3, prime
numbersé 7, Smarandache numbers of the Ist kind® and so on. Smarandache
type question? arises: whether a possibility exists to construct the theory of
Magic squares without using properties of concrete numerical sequences. The
main goal of this paper is finding an answer on this question with respect to
problems of constructing Magic squares 4x4 in size. In particular, in this
investigation we

a) describe a simple way of obtaining a general algebraic formulae of Magic
squares 4x4, required no use of algebraic methods, and explain why in the
general case this formula does not simplify the solution of problems on
constructing Magic square 4x4 (Sect. 2);

b) give a description of a set of invariant transformations of Magic squares
4x4 (Sect. 3);

¢) adduce a general algorithm, suitable for constructing Magic squares from
an arbitrarily given set of 16 numbers (Sect. 4);

d) discuss the problems of constructing Magic squares from the structured
set of 16 elements (Sect. 5);

e) solve the problem of decomposing the general algebraic formula of
Magic squares 4x4 into a complete set of the four-component formulae (Sect.
6).

2 Constructing the general algebraic formula of a Magic square 4x4

A table, presented in Fig. 1(2), consists of two orthogonal diagonal Latin
" squares, contained symbols 4, B, C, D (L,) and a, b, ¢, d (Ly). Remind!® ! that
two Latin squares of order n are called

a) orthogonal if being superimposed these Latin squares form a table whose
all n2 elements are various;

b) diagonal if n different elements are located not only in its rows and
columns, but also in its two main diagonals.

It is evident that the table 1(2) is transformed in the analytical formula of a
Magic square 4x4 when its parameter b = 0. By using Fig. 1(2) we reveal the law
governing the numbers of any Magic square 4x4 decomposed in two orthogonal
diagonal Latin squares. For this aim we rearrange the sets of the symbols in the
two-component algebraic formula 1(2) so as it is shown in Fig. 1(6). Further, a
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table 1(6) will be called additional one. Such name of the table is justified by the

following: ‘
a) the table 1(6), containing the same set of elements as the table 1(2), has

more simple structure than the formula 1(2);
b) there exists a simple way of passing from this table to a Magic square
4x4: really, if one considers that Fig. 1(1) represents the enumeration of the

cells in the table 1(6), then, for passing from this table to a Magic square it will
be sufficient to arrange numbers in the new table 4x4 in the order

corresponding to one in the classical square 1(5) {the Magic square of natural
numbers from 1to 16 }.

1]1213])4 A+c | B+b | C+d | D+a - - - -
5161718 D+d{ C+a| B+c | A+b w - - | +w
10112 B+a | A+d | D+b | C+c wl| - | - |-w
13|14]15]16 C+b | D+c| A+a | B+d - - - -
n Q-Li+Ly) G-W)
A+c B C+d D+a 3 5112114
D+d-w C+a B+c A+w 16 10| 7 1
B+a+w A+d D C+c-w 6 4 |13 ] 11
C D+c A+a B+d 9 |15 2 8
@-L+L,+W) &)
A A+a| A+c | A+d A+w A+a A+c A+d
B |[B+a|B+c|B+td B B+a+w | B+c | B+d
o C+a|C+c | C+d C C+a | Cte-w | C+d
D D+aj{D+c|D+d D D+a D+c¢ | D+d-w
® )

Fig. 1. Constructing the general algebraic formula of a Magic square 4x4.

The more simple construction of the additional table in comparison with the
formula 1(2) and the possibility of passing from the additional table to a Magic
square suggest solving the analogous problems on constructing the
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corresponding additional tables instead of solving the problems on constructing
Magic squares. Further we shall always perform this replacement of one
problem by another.

It is easy to establish by algebraic methods!z '3 that the general algebraic
formula of Magic square of order 4 contains 8 parameters. Thus it has one
parameter less than the two-component algebraic formula, presented in
Fig. 1(2) with b = 0. If one takes it into account, then there appears a natural
possibility to seek a form for the general algebraic formula of a Magic square
4x4 basing, namely, on this two-component algebraic formula. It seems’ that
for introducing one more parameter in the algebraic formula 1(2) one may add
cell-wise this formula to the Magic square, shown in Fig. 1(3) {it can be easily
counted that the Magic constant of this square equals zero}. Thus, the general
algebraic formula of a Magic square 4x4 {see Fig. 1(4)} is obtained as a result
of the mentioned operation. Therefore it may be written in the simple analytical
form

L +L,+W. 4))

By analysing Fig. 1(7), in which the general formula of Magic square 4x4 is
presented as the additional table, one may conclude, that the availability of
eight but not of seven parameters results in a substantial violation of the simple
regularity existing for the elements of the additional table 1(6) and by this
reason, changing the problem on constructing a Magic square 4x4 by that on
constructing the corresponding additional table, will not result in a facilitation
of its solution in the general case {passing from the additional table 1(7) to the
general algebraic formula of the Magic square 4x4 1(4) one may realise by
means of the classical square 1(5) in the way mentioned above for the additional

table 1(6)}.
3 A set of invariant transformations of a2 Magic square 4x4

By means of rotations by 90 degrees and mappings relative to the sides one can
obtain from any Magic square 4x4 seven more new ones {see Fig. 2, from which
one can judge on changes of a spatial orientation of a Magic square on the basis
of the changes in arrangement of the symbols 4, B, C and D}. Besides forn > 4
there exist such internal transformations (M-transformations) of a Magic square
nxn (permutations of its rows and columns) by which the assigned set of
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[n/2}J{(2[n/2] - 2)!!} Magic squares nxn can be obtained’ from one square with
regard for rotations and mappings, where the symbol a!! means the product of
all natural numbers which, firstly, are not exceeding a, and, secondly, coincide
with it in an evenness; [a] means the integer part of a. In particular, if the cells of
any Magic square 4x4 are enumerated so, as it is shown in Fig. 2(9), and under
M-transformations the specific permutations of the cells of the initial square are
meant, then, in this case the all 4 possible M-transformations of a square 4x4
can be represented in the form of four tables, depicted in Fig. 2(5 - 12).

It is evident, that when studying Magic squares, constructed from the same
set of elements, it is worthwhile, to consider the only squares which can not be
obtained from each other by rotations, mappings and M-transformations. It is
usually said about such a family of Magic squares, that it is assigned with
regard for rotations, mappings and M-transformations.

A D C B
D B c A B D A C

C B A D

¢y ) 3 ®

c B A D
D B c A B D A c

A D c B

(3) ©) ) ®
1]12]3]4 1]3]2]4 6587 618]s5]7
sle6l7]8 9 (111012 271143 1416[13[15
o frof1t]12 s[7{6]8 14l 13[16115 2(4f1]3
13(14|15{16 13[15]14] 16 NERIET |29 n

(9 -M) (10 - M) (11 - M) (12- M)
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Fig. 2. A set of invariant transformations of a Magic square 4x4.




4 The algorithm for constructing Magic squares from an arbitrary 16 numbers

A complete set of Magic squares 4x4 from an arbitrarily given set of 16
numbers with regard for rotations, mappings and M-transformations one may
obtain by the following algorithm?:

1. Calculate the sum of all 16 numbers of the given set and, having divided
it into 4, obtain the value of the Magic constant S of the future Magic square
4x4;

2. Find all possible presentations of the number S in four different terms
each of them belonging to the given set of the numbers;

3. If the number of various partitionings is not smaller than 14, then, using
the obtained list of partitionings, form all possible various sets of four Magic
rows, containing jointly 16 numbers of the given set;

4. Among the sets of four rows, of the obtained list, find such pairs of the
sets which satisfy the following condition: each row of the set has one number
from various rows of the other set;

5. It is possible to construct Magic squares 4x4 from the above mentioned
pairs, if among the earlier found Magic rows (partitionings of the number S)
one succeeds in finding the two rows such that

— these rows do not contain identical numbers;

— each row contains one by one number from various rows both of the first
and the second set of the pair.

When constructing Magic squares 4x4 from the obtained pairs of the sets
consisting of four rows and the sets of the pairs of the rows corresponding to
these pairs one should bear in mind that:

—a four-row pair of sets (see point 4) gives a set of Magic rows and columns
for a Magic square 4x4;

— the found pairs of the rows (see point 5) are used for forming the Magic
square diagonals;

— if it is necessary to seek for Magic squares with regard for rotations,
mappings and M-transformations, then each differing pair of rows, found for
the given pair of sets consisting of four rows, can be utilised for construction of
only one Magic square 4x4;

— the algorithm can be easy realised as a computer program.
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5 Constructing Magic squares from the structured set of 16 elements

We shall say that a Magic square of order 4 possesses the structure (contains a
structured set of elements) if it is possible to construct from its elements the
eight various pairs of elements with the sum equal to 1/2 of the Magic square
constant. For obtaining the structural pattern of a Magic square, it is sufficient
to connect by lines each pair of the elements, forming this structure, directly in
the Magic square. The other (implicit) way of representing the structural pattern
of a Magic square 4x4 consists of the following: having chosen 8 various
symbols we substitute each pair of numbers, forming the Magic square, by any
symbol. As it has been proved by analytical methods®, with account for
rotations, reflections and M-transformations none Magic squares 4x4 exist,
which contains in its cells 8 even and 8 odd numbers and has structure patterns
another than ones shown in the implicit form in Fig. 3(1 - 6). In reality” 4 this
statement is incorrect because for such Magic squares with respect of invariant
transformations there exist 6 more new structure plots, depicted in Fig. 3(7 -
12).

1{2]3]4 112|314 1[2]3]4 1121314
5161718 516]718 5161718 112]3]4
516178 817[6]5 314142 5161718
112]3]4 413]241 78516 516178
(1) 2 G) 4
1{2]142 112134 11234 1{2]3]4
3]14(314 115164 315]6]2 5161117
51678 715168 716/5]8 7]2(8}5
718]5(6 712(3]8 4171811 81614]3
) (6) ) ©®
1{t]2]2 1]2]3]4 1]2]3]4 11213]4
3141314 3151611 5151616 516178
5/16]7]8 717(8]8 4171813 6141811
8]7]6]5 5/16(4]2 2|8(1]7 7 215
® (10 (1n (12)

Fig. 3. A complete set of possible structural patterns in a Magic square 4x4,
depicted in the implicit form.
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Basing on Fig. 3, for all structural patterns we shall construct a complete set of
general structural analytical formulae. Thus, in this section we shall solve the
problem on decomposing the general algebraic formula 1(4) in the structured
ones.

I. Here we present a simple method suitable for constructing general
algebraic formulae of Magic squares possessing the structural pattern 3(1 - 4).
Besides, we point out some singularities of these four general structured
analytical formulae.

As it has been established in Sect. 2 the general algebraic formula of a
Magic square 4x4 may be represented, as the sum of the two diagonal Latin
squares, formed by capital and small Latin letters {see Fig. 1(2)}, and the Magic
square {Fig. 1(3)}, having a zero Magic constant. It turns out’ that general
structured algebraic formulae, having structural patterns 3(1 - 4), can be
obtained if the required conditions of a structuredness at the fixed structural
pattern are written out separately for each of the 3 tables, forming the general
algebraic formula 1(4). In particular, diagonal Latin squares 1(2) and the Magic
square 1(3) will have structural patterns 3(1 - 4) at the following correlations
between their parameters {for convenience, the numbers of the written systems
of equations are chosen so that they are identical with the numbers of structural
patterns, shown in Fig. 3, by which these equations have been derived}:

1.4A+C=B+D, 2.A+B=C+D, 3.A4+D=B+C, 4. A+D=B+C, 2
c=a+d. a=c+d, c=a+d, a=c+d,
e=0. e=0. e=0.

Starting from the extracted system of equations (2) one can easily prove that:
1) The cells of an algebraic formula having the structural pattern 3(1)
contain two sequences involving elements of the following form:

a) a+e, a*ta, a+a+d, a+d a+b atatb+te, €)
a,+a+b+d, a +b+d

b) a, a,+a, a,ta+d, a,+d-e, ay+bh, ayta+b,
a,+ta+b+td—e, at+b+d.

One can see from a set of sequences (3) that the regularity existing between the
symbols of an general algebraic formula, having structural pattern 3(1), is
complicated due to the presence of the four elements containing the symbol e

35



a+b+2 a+b a,+c¢ a,+2b+3c
a,+b a,+b+2c a+c a,+2b+3c¢
a,+b+3c a,tb+c a,+2b+2c a,
a,+b+c a,+b+3c a,+2b+2c a,
&
a, a,+2b+c+d a+c a,+2b+2ct+d
a,+b a+b+2c+d a, +b a,+2c+d
a+2b+2c+d a,+b a,+b+2+d a,
a,+2c+d a, tc a, +2b+ct+d a +2b
©)
a,+b+2 a+b a, a,+2c
a,+b+2c a,+c¢ a-b+c a,+2b
a-b a,+2b+c atb+c a,+2c
a,+b a—-b+2 a,+2b+2c a,
)
a+2b | a,+10b | a,+4b | a,+4b a, +4b | a+12b | a+106 | a,+16b
a,+b | a+106 | a,#8b6 | a,+b a+11b | a,+8 | a, +6b | a+17b
a,+9b a, a,+2b | a,+9b a,+14b | a,+7b | a,+216 a
a,+8b a, a,+6b | a,+6b a+13b | a,+15b | a,+5b | a, +9b
® (10)

a, a,+8b a, a,+8b a+12h | a,+16b | a,+4b | a,+10b
a,+6b | a,+6b | a+2b | a,+2b a+l4b | a, +7b | a,+21b a
a+5b | a,+b6 | as*+7h | a,+3b a+11b | a,+6b | a, +8b | a,+17b
a,+3b | a+b | a+7b | ayt3b a,+5b | a+13b | a, +9b | a,+15b

® an
a, +3b (@, +a)/2+3b (@ +ay/2-b a, +3b
a, +3b a,+b a, +5b a+b
a, +4b a, a,+4b a, +2b
a, (@, +a)/2+6b (@, +a)/2+2b a, +2b
(12)

Fig. 4. General algebraic formulae of 2 Magic square 4x4
with structural patterns 3(5 - 12).
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{as well as in the general algebraic formula of a Magic square 4x4 shown in
Fig. 1(4)}. Consequently, the knowledge of the regularity existing between the
elements of the general algebraic formula with structural pattern 3(1) can not be
of help in creating a convenient and practical algorithm for constructing
corresponding Magic squares {as well as for the general algebraic formula
1(4)}.

2) The general algebraic formulae having structural patterns 3(2 - 4) are
decomposable in sums of two diagonal Latin squares {parameters b and e are
equal to zero). Hence, there is the simple regularity for the elements of
additional tables of general algebraic formulae with structural patterns 3(2 -
4) and, consequently, the
problem on constructing such Magic squares 4x4 from a given structured set of
16 elements is easy to solve by means of these three formulae.

II. Taking into account that for structural patterns 3(1 - 4) there exists a
simple method for constructing the general algebraic formulae (see point I) we
present in Fig. 4 a set of 8 general algebraic formulae which possess only
structural patterns of 3(5 - 12) {the form of representing these formulae is
chosen so that it reveals the regularity existing between their elements}.
Analysing the analytical formulae presented in Fig. 4 we may come to the
following conclusions:

1) among the all above formulae, the formulae 10 and 11 have the most
simple structure: the set, consisting of their 16 elements, is completely defined
by the first element of the sequence a, and the value of the parameter b;

2) the sets of the symbols, contained in the formulae 5, 6,7, 8 and 9, may be
represented in the form of the two identically constructed sequences consisting
of 8 elements {the reader can himself get assured that the same holds true also
for general algebraic formulae possessing structural patterns 3(2 - 4)};

3) there are two arithmetical sequences, each containing 6 terms and having
the same progression difference in the formula 12. Thus, the complication of the
regularity, governing the symbols forming the algebraic formula 12, is caused
only by four of its elements {compare with the above information concerning
the general algebraic formula possessing structural pattern 3(1)}.

The main conclusion which may be drawn from the above written implies
that for constructing Magic squares having the structural patterns 3(2 - 12) it is
preferable to use the general algebraic formulae of Magic squares 4x4,
corresponding to these structural patterns.
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G L9 h GG | P P 4G | & 1P| Ps ay | Ps | 84 |Pa
Piv|a | D | & PP | &G Ds | P | a5 as Ds | Ps| G4 |Gy
Brla b | & D2 | P |G| & as | a4 | Py | Ps Qs | A4 | Pa | Ps
a | hja b & | & D} P Py | Dy 3| a; Ps | G4 | Ps |4
(1)—Al (2)"’47 (3)"/43 (4)"A4
as | Ps | Ps | G5 Qs | Ps | Ps | G a; | P78 | Py Qs | a3 | Ps | Ps
Ps | 4as | as | Ps s { Ps | Ps | 9s a; | P71 |G | P a3 | Py | 93 | P
as | Ps | Ps | 9s Ps | 9 | 9 | Ps P11 G | P | % Ps | Gs | Pg |43
Ps | 4| s | Ds Ds | 95 | 86 | Ps Dy | @ | P19y Ds | Ps | 93 |G
() —4;s (6) -4, (N-4, () -4,
e le |t altl|laln Galhic| el |t |t
elelely alalnl|t tlel|nle to e |t e
Ll lal & t, | 2 | G} & [0 I SR I SN I Col 8y | €4 s
nlitlieala Lialth|a Lle |1 e [0 I O B A
®-C (10-G an-¢ 12)-C,
by [ Ay | Ay b by | b | by | by by | by | by | A
hy | by | Ay | by blh | b | b hy | by | by | By
byl | b | Ay by | b | By | by by | hy | Ay | by
hy | by | by | A hy | by | by | by hy | by | hy | by
(13)-5 (14)- B, (15)-B;
byl Ao | by VB by | bs | hs | As be | b | hs | hs
bV hy | By | s hg | bs | bs | hs bs | hs | hg | bs
h, |1 b, | b, |~y bs | hs | hs | b he | bs | bs | b
he | b, | ke 1 Dy hs | hs | bs | bs he | hs | bs | bs
(16)- B, (17) - B; (18)- B,

Fig. 5. A set of 4-, B-, C-forms, suitable for constructing Magic squares 4x4.
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6 Four—component algebraic formulae of Magic squares 4x4

1. Four-component algebraic formulae of the classical Magic squares 4x4. Since a
classical (Magic) square contains in its cells 16 different natural numbers N (1 <
N < 16) then one may write* '2 the formula for decomposing the number N in 5

terms:
N=8a+4b+2+d+1, )

where the parameters a, b, ¢ and d can assume only two values: either 0 or 1. By
means of (4) any classical square 4x4 may be identically decomposed in 4 tables
(a-, b-, c-, d-components) each of them containing 8 zeros and 8 units. From
theoretical point of view* there exist the only three groups of Magic squares:

1) correct squares — all the decomposition tables are by themselves Magic
squares: they have in all the rows, columns and in the two main diagonals by 2
zeros and 2 units. Further such decomposition tables we shall denote as A-form.

2) regular squares — at least one of the decomposition tables differs from
correct one by existing at least one of the components of the formula, which is
necessarily a regular one: each of its rows and columns contains by two zeros
and two units, but this condition being not preserved for the main diagonal.
Further such decomposition tables we shall denote as B-form if its both main
diagonals contain 4 or 0 zeros (units) and C-form if its the main diagonals
contain | or 3 zeros (units).

3) irregular squares — at least one of the decomposition tables differs from
correct and regular one by existing at least one of the components of the
formula has one row or one column where the number of the same symbols of
one kind is distinct from two.

As it can be proved by analytical methods

a) by using A-forms one may construct* !2 the only 11 different algebraic
formulae of correct Magic squares and with account for rotations and
reflections’ the only 7 following

A A AsAs, A\ A A3 A5, Ay A3 AsAs, A Ay Agds, 3
A2A3A6A7, A3A5A6A7a AlASASAB:

will be different among them, where 4, — 4, forms are presented in Fig. 5(1 - 8);

39



b) by using B- and C-forms one may construct* with account for rotations,
reflections and M-transformations the only 13 different algebraic formulae of
regular Magic squares

BCAA — B,CA,A4;, BCAA; (6)
BCBA — B\C\By4,, B,C\Bid,, B\C\BiA;, B,C,B.A;,

B\C,B,4,, B\C,BsA,, B\CBeA,;
BCBB — B,C\B,B;, B\C\B,B,, B,C\B;B,, B,C,B,B;,

B,C,B,Bs, B,C,BsBs,

where C, - C,and B,— B, forms are presented in Fig. 5(9 - 18).

¢) for classical squares 4x4 the complete set of four-component algebraic
formulae consists of algebraic formulae of the only correct and regular Magic
squares’ {see sets of formulae (5) and (6)}.

2. Four-component algebraic formulae of generalised Magic squares. Denote,
first, A-components of a correct Magic square 4x4 by the symbols F,, F;, F; and
F,; second, the trivial Magic square, whose 16 cells are filled with units, by the
symbol E. As it follows from point 1, any correct classical square 4x4 can be
represented as the sum of 5 tables (the first 3 tables should be multiplied by 8, 4
and 2):

8F, +4F, + 2F, + F, + E. @)

An algebraic generalisation of this notation is the expression
oF, + BF, + oF, + 8F, + ¢k, ®)

which represents the general recording form of a Magic square 4x4

decomposable in the sum of the 4-th 4-components. Since the numbers of a
classical square 4x4 may be calculated from the formula (4), the formula (8)

obviously permits to find the symbols contained in the cells of the generalised
correct Magic square 4x4. In particular, there exist the following relations

l—e¢, 5—e+B, 9—g+a, 13 —e +a +B, ®
2—¢g 43, 6—e+B+5, 10—e+a+§, 14 —g +a +B +3,
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3—¢tg, 7—e+f+o, 1ll—e+a+o, 15—e+a+B+o,
4 —g+o+d, 8—etBto+d, 12 —et+at+o+d, 16 —st+a+f +o+8.

between natural numbers from 1 to 16 and the symbols of the generalised
correct Magic square 4x4.

Note that the cells of the table, shown in Fig. 6(1), contain a complete set of
the symbols of the generalised correct Magic square 4x4. These symbols are
arranged so that the first cell of the table contains the symbol ¢, the second one
contains the symbols € + 8 and so on. Thus, the mentioned table is additional by
the definition and permits to construct various algebraic formulae of the
generalised correct Magic squares of the fourth order for the assigned correct
classical squares 4x4.

Change the form of recording the table 6(1) by introducing the new symbols
g, h and f with the correlations g =€ +B, h = ¢ +a, f = ¢ +a +f. The new form of
the table is shown in Fig. 6(3). The table 6(3) makes it clear that the rows of the
initial additional table of the generalised correct Magic square 4x4 contain the
sequences of four numbers formed by the same regularity. Let it be also noted,
that the new table (as it may be easily verified) completely corresponds to the
initial one only if between its parameters €, g, h and f the correlation ¢ +f=g
+ h is fulfilled. Thus, for constructing concrete examples of the generalised
correct Magic squares it is necessary to continue the search for the indicated
sequences involving four numbers until one finds among their first terms the

two pairs of numbers having the same sum.
For example, the generalised correct Magic square 4x4 may be formed from

the following eight pairs of prime numbers “the twins™: 29, 31; 59, 61; 71, 73;
101, 103; 197, 199; 227, 229; 239, 241; 269, 271.

The additional table, shown in Fig. 6(1) one also may use for constructing
the algebraic formulae of the generalised regular Magic squares on the basis of
the given classical squares 4x4. However, due to the fact that the condition of
Magicity is not fulfilled on the diagonals of regular tables (see point 1) for
obtaining algebraic formulae of Magic squares in this case one has to assign
additional correlations between the parameters of the additional table. For the
set (6) of regular formulae of the Magic square 4x4 these necessary correlations
between the parameters of the additional table 6(1) have the form, depicted in
Fig. 6(6).
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e e+d e+c¢ e+c+d 17 | 29 | 41 | 53
e+b et+b+d | e+tb+c etb+c+d 47 | 39 | 71 | 83
e+a eta+d | eta+c etatctd 227 | 239 | 251 | 263
eta+b | etat+b+d | etatbtc et+atbtctd 257 | 269 | 281 | 293

0)) ®
e| etd | etc | etctd 1 7 167173 83 | 113]293 | 503
g | eg+d | gtc | gtetd 37 1 43 {103} 109 41 | 71 | 251 | 461
h| htd | h+c | h+c+d 157 | 163} 223 | 229 281 | 311 | 491 | 701
flfAd | frc | fretd 193 | 197 | 257 | 263 239 | 269 | 449 | 639
©) @ 6]
Components of formula Correlations

a b ¢ d | between the parameters

A A B C ¢=2d,

B C A A a=2b,

A B C A b =12,

A B B C b=c+2d,

B B C A a=b+2c,

B B B C a=c+b+2d

®)

Fig. 6. Examples of constructing additional tables for the generalised correct (1-5) and
regular (2 - A4BC, 4 - ABBC, 5 - BBBC) Magic squares 4x4.

It is noteworthy, that for the given type of a four-component regular
formula the set of the symbols, positioned in the cells of additional tables of the
generalised regular Magic squares 4x4, does not depend upon the form of
additional correlations between the parameters of the additional table 6(1), in
other words, it does not depend on the position of the C-form in the a-, -, ¢-, d-
decompositions of regular formulae. One can be immediately convinced in this
by constructing on the basis of Fig. 6(1) all six additional tables for various
algebraic formulae of the generalised regular Magic squares 4x4. Thus, if it is
possible to construct one additional table for algebraic formulae of the type
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AABC or ABBC from the given set involving arbitrary 16 numbers, then it is
also possible to construct the other additional tables of Magic squares of the
given type, distinct from the above constructed one by the form of additional
conditions for the parameters of the table 6(1). With regard for the above
stated, only 3 additional tables, filled with prime numbers, for which the reader
is referred to Fig. 6(2, 4, 5), suffice for constructing a complete family of
different regular Magic squares 4x4.

1367 | 1468 | 2358 | 2457 2368 | 1467 | 2357 | 1458
1457 | 1458 | 2368 | 2367 2367 | 1457 | 1358 | 2468
1368 | 1467 | 2357 | 2458 2467 | 1357 | 1368 | 2458
1358 | 2467 | 1357 | 2468 1367 | 1468 | 2358 | 2457
¢)) 0}
1367 | 1458 | 2368 | 2457 1367 | 2368 | 1458 | 2457
1457 | 1468 | 2358 | 2367 2367 | 2358 | 1468 | 1457
1358 | 1467 | 2357 | 2468 2468 | 2357 | 1467 | 1358
1368 | 2467 | 1357 | 2458 1368 | 1357 | 2467 | 2458
3 C))
1367 | 1468 | 2358 | 2457 1368 | 2367 | 2458 | 1457
1467 | 1458 | 2368 | 2357 1367 | 23358 | 2467 | 1458
1358 | 1457 | 2367 | 2468 2468 | 1358 | 1467 | 2357
1368 | 2467 | 1357 | 2458 2368 | 1357 | 1468 | 2457
® ©)

Fig. 7. Examples of irregular four-component algebraic formulae of Magic squares 4x4.

In conclusion of this section we would like to draw attention that with
regard for rotations, mappings and M-transformations there exist? 81 irregular
four-component algebraic formulae of Magic squares 4x4. For instance, 6
formulae of such type are presented in Fig. 7 {for splitting the formulae, shown
in Fig. 7, in four components, it suffices to retain in the formulae, at first, only
the digits 1 and 2 (Ist component), and then, only the digits 3 and 4 (2nd
component), etc.}. Hence, the solution of the problem on decomposing the
general algebraic formula 1(4) into a complete set of the four-component ones

43



has following form: there are 7 formulae for correct Magic squares 4x4 {with
account for rotations and reflections}, 15 and 81 formulae correspondingly for
regular and irregular Magic squares 4x4 {with account for rotations, mappings
and M-transformations}. Thus, it is the main conclusion of this section that the
complete set of four-component analytical formulae of Magic squares 4x4 can
not simplify the solution of the problem on constructing Magic squares 4x4
from an arbitrary given set of 16 numbers but it can make so for constructing
the generalised correct and regular Magic squares 4x4.

7 Summary

As it have been demonstrated in this paper discussed Smarandache type
question — whether a possibility exists to construct the theory of Magic squares
without using properties of concrete numerical sequences — has the positive
answer. However, to construct this theory for Magic squares 4x4 in size, the
new type of mathematical problems was necessary to introduce. Indeed, in
terms of algebra, any problems on constructing Magic squares without using
properties of concrete numerical sequences may be formulated as ones on
composing and solving the corresponding systems of algebraic equations. Thus,
algebraic methods can be applied for

a) constructing the algebraic formulae of Magic squares;

b) finding the transformations translating an algebraic formula of a Magic
square from one form into another one;

¢) elucidating the general regularities existing between the elements of
Magic squares;

d) finding for an algebraic formula of a Magic square, containing m freely
chosen parameters, the equivalent set consisting of L algebraic formulae each
containing the number of freely chosen parameters less than m.

The new for algebra the type of mathematical problems is presented in
points (b) -~ (d). It is evident that without introducing these problems the
algebraic methods are not effective themselves. For instance, in the common
case (see Sect. 2) the general formula of Magic square 4x4 can not simplify the
solution of problems on constructing Magic squares 4x4 from an arbitrary
given set of 16 numbers. In particular, even when solution of discussed
problems is sought by means of a computer, in calculating respect it is more

preferable for obtaining the solution to use algorithm, described in Sect. 4, than
one, elaborated on the base of the general formula of Magic square 4x4. But by



means of decomposing the general algebraic formula of Magic squares 4x4 into
complete sets of a defined type of analytical formulae one may decrease the
common amount of freely chosen parameters in every such formula and,
consequently, substantially simplify the regularity existing for the elements of
every formula. In other words, for constructing Magic squares 4x4 from an
arbitrary given set of 16 numbers there appears a peculiar possibility of using

the set algebraic formulae with more simple structure instead of use one
complex algebraic formula Magic square 4x4.
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Palindromic Numbers And Iterations of the
Pseudo-Smarandache Function

Charles Ashbacher
Charles Ashbacher Technologies
Box 294, 119 Northwood Drive
Hiawatha, [A 52233
e-mail 71603.522@compuserve.com

In his delightful little book[1] Kenichiro Kashara introduced the Pseudo-Smarandache
function.

Definition: For any n > 1, the value of the Pseudo-Smarandache function Z(n) 1s the
smallest integer m such that n evenly divides

m
T k.
k=1

And it is well-known that the sum is equivalent to w

Having been defined only recently, many of the properties of this function remain to be
discovered. In this short paper, we will tentatively explore the connections between Z(n)
and a subset of the integers known as the palindromic numbers.

Definition: A number is said to be a palindrome if it reads the same forwards and
backwards. Examples of palindromes are

121, 34566543, 1111111111
There are some palindromic numbers n such that Z(n) is also palindromic. For example,
Z(909) = 404 Z(2222)=1111
In this paper, we will not consider the trivial cases of the single digit numbers.
A simple computer program was used to search for values of n satisfying the above
criteria. The range of the search was, 10 < n < 10000. Of the 189 palindromic values

of n within that range, 37, or slightly over 19%, satisfied the criteria.

Furthermore it is sometimes possible to repeat the function again and get another
palindrome.

7(909) = 404, Z(404) =303

and once again, a computer program was run looking for values of n within the range



1 < n < 10,000. Of the 37 values found in the previous test, 9 or slightly over 24%,
exhibited the above properties.

Repeating the program again, looking for values of n such that n, Z(n), Z(Z(n)) and
Z(Z(Z(n))) are all palindromic, we find that of the 9 found in the previous test, 2 or
roughly 22%, satisfy the new criteria.

Definition: Let Z¥(n) = Z(Z(Z(. . .(n)))) where the Z function is executed k times. For
notational purposes, let Z°(n) = n.

Modifying the computer program to search for solutions for a value of n so that n and all
iterations Z(n) are palindromic for i =1, 2, 3 and 4, we find that there are no solutions in
therange 1 < n < 10,000. Given the percentages already encountered, this should not
be a surprise. In fact, by expanding the search up through 100,000 one solution was
found.

Z(86868) = 17271, Z(17271) = 2222, 7(2222) = 1111, Z(1111) = 505
"~ Since Z(505) = 100, this is the largest such sequence in this region.

Computer searches for larger such sequences can be more efficiently carried out by using
only palindromic numbers for n.

Unsolved Question: What is the largest value of m so that for some n, Z¥(n)isa
palindrome forall k=0,1,2,...,m?

Unsolved Question: Do the percentages discussed previously accurately represent the
general case?

Of course, an affirmative answer to the second question would mean that there is no
largest value of m in the first.

Conjecture: There is no largest value of m such that for some n, Z*(n) is a palindrome
forallk=0,1,2,3,...,m.

There are solid arguments in support of the truth of this conjecture. Palindromes tend to
be divisible by palindromic numbers, so if we take n palindromic, many of the numbers
that it divides would also be palindromic. And that palindrome is often the product of two
numbers, one of which is a different palindrome. Numbers like the repunits, 11... 111
and those with only a small number of different digits, like 1001 and 505 appeared quite
regularly in the computer search.
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Computational Aspect of Smarandache’s Function

Sabin Tabirca Tatiana Tabirca

Abstract: The note presents an algorithm for the Smarandache'’s Jfunction computation. The
complexity of algorithm is studied using the main properties of function. An interesting inequality is

Jfound giving the complexity of the function on the set {1,2,....n}.
1. Introduction

In this section, the main properties of function are reviewed. The Smarandache’s
function notion reported for the first time in [1]. The main results concerning the
function can be found in [1], [2].

The function S:N — N defined by S(n) = min{k|k!:n}is called Smarandache’s
function. This concept is connected with the prime number concept, because using the
prime numbers an expresion for the function is given. The important properties that

are used in this paper, are showed bellow.

1. For all neN, the inequality S(n) <nis true. When n is a prime number, the

equalit'y is obtained .
22If n=pf-pf...p* is the prime number decomposition  then
S(n) = max{S(p* ), S(p3*), -, S(P)} - (D
3. The inequality S(p*) < p-k is true, if p is a prime number. 2

A lot of conjectures or open problems related ot the Smarandache’s function appear in
the number theory. Several such problems have been studied using computersand

reported in relevant literature, e.g.[3], [4]. Using the computer



2. An Algorithm for the Smarandache function

In the following, an algorithms for computing the function S is presented. The main
idea of the algorithm is to avoid the calculations of factorial, because the values of
n!, for n>10 are a very big number and cannot be calculated using a computer.

Let (x, ), 2 sequence of integer numbers defined by x, = k! mod n, (¥)n> 0. Using

the definition of sequence , the following equations can be written:

o x =1 @)
* X =(k+D!mod n=(k+1)k!mod n=(k+1)x, modn. “4)
Based on the linear equaton (4), S can be calculated as
S(n) = min{k|k!:n} = min{k|x, =0} .

The algorithm for S(n) performs the computation of x,,x, ,...,x, until the 0 value is

found. The PASCAL description of this algorithm is given bellow.

function S(n:integer):integer;
var
k,x:integer;
begin
x:=1k:=1;
while x<>0 do
begin
x=x*(k+1) mod n;
k:=k+1;
end;
s:=k;

end;

An analysis for the complexity of algorithm is presented in the following. The work-

case complexity and the average complexity are studied.
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Theorem 2.1

If n=p" p-..pf~ then the complexity of the algorithm for computing S(n) is
O(max{p,k,, D, k.- Pk }) -

Proof

The algorithm computes the value S(n) generating the sequence x,,x, seees X5 - The
number of operation has the complexity O(S(n)).

Based on (1) and (2), the following inequality holds

S(n) = max{S(@{" ), S(p3* ), S(Po)} < max{piky, pyky .., Pk} - (%)
Therefore, it can .Ee concluded that the complexity of computing S(n) is

O(max{plkl :szz r"rpmkm}) .

Other aspect of complexity is given by the average operations number. Assume the
value S(k) is generated, where k is a number between 1 and n. This value can be
computed with S(k) operations. Therefore the process takes S(1) operations for the
value S(1), S(2) operations for the value S(2), ...,a.s.0. The average of the numbers

operations is §=lZS(i) and gives an other estimation for the complexity of

i=]

algorithm.

In the following, a possible upper bounds for S are sought. Obviously, S verifies the

simple inequality

s 1< 1<, n+l 11 '

S==>S@H<-)i=—==—n+—. 6
;250 n‘?,—:‘l 2 2772 ©)

Inequality (6) can be improved using the strong inequalities for S(i).

Lemma 2.1.

If i>2 is an integer number the following inequalities hold

1. §(2i)+8(2i+1)s3i+1. @)
2. §(2i-1)+8(2i)<3i-1. (8)

Proof A
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Assuming i>2 folow S(2i) <i. Applying this result both inequality are true.
Based on lemma 2.1, we can found an upper bound for the S better than in (6).

Theorem 2.2

If n>3 is a integer number then the inequality S = lZS(I') < én + % + 2 is true.
i=1 n

Proof
Two cases are considered to prove the inequality.

Case 1: n=2m

ni2 nl2

nS = Z S() =Y [SQ2i-1)+S(2)] = S1) +S(2) + S(3) + S(4) + D [Si—1)+S(20)]

i=} i=l i=3

Based on (8) it can be derived that

nS = 9+§ S(7z—1)+S(21)]<9+"Z/2:(31—1) 2+"an(31—1) 2+3-”-(ﬁ 1)—§=

i=3 i=3

D L LSRN
8 4
. . ... =3 1 2
Dividing by n, we obtain the inequality S$§n+z+—-. ®
n

Case 2: n=2m+1

nS = Z S(i) = S(1) + (n-zl):/ES(?.i) +S(2i +1)] = S(2) + S(3) + S(4) + 5(5) + (R—ZWES(ZI') +8(2i +1)]

Using (7), it is found

(n=yy2 (ny2 (ny2 3n-1n+l_n-1

nS=14+ > [SQ)+SQi+D]S14+ > Gi+D) =3+ > Gi+l) =3+ 32 2 5 T

i=3 i=3 i=]

3, 1 17 301 17

=3+§(n2—1)+——n—1= n*+—n+—.Thus, S<2n+—+—. (10)
8 2 8 2 8 8 2 8n
From (9) and (10), it is found § <= rnl-mm{—-+g -1—-,-2}_3 +l+2-,
8 n’2 8 "8 4 n

3. Final Remarks
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1. Based on theorem 2.2 we can say that the average operations number for

-

computing the Smarandache’s function is less than 2n+ % +=.
n

2. The upper bound —z-rz +% +—r21— improves the previous bound %n + % .

3. The improving process can be extended using other sort of inequalities give the
prime numbers 2 and 3. A lemma as similar as lemma 2.1 finds the upper bounds
the sum of sixth consecutive terms of Smarandache’s function.

4. Using the algorithm for computing the function S, the Smarandache’s function can
be tabulated. The values S(1),...,S(n) for all n <5000 can be found. The algorithm

should be reviewed to be able to compute the Smarandache function for the big

numbers.
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THE ANALYTICAL FORMULAE YIELDING SOME
SMARANDACHE NUMBERS AND APPLICATIONS IN
MAGIC SQUARES THEORY

Y.V. CHEBRAKOV, V.V. SHMAGIN
Department of Mathematics, Technical University,
Nevsky 3-11, 191186, St-Petersburg, Russia
E-mail: chebra@phdeg.hop.stu.neva.ru

In this paper we study the properties of some six numerical Smarandache
sequences. As result we present a set of analytical formulae for the computation

of numbers in these Smarandache series and for constructing Magic squares
3x3 in size from k-truncated Smarandache numbers. The examples of Magic

squares 3x3 in size of six Smarandache sequences are also adduced.

1 Introduction

In this paper some properties of six different Smarandache sequences of the Ist
kind! are investigated. In particular, as we stated, the terms of these six
sequences may be computed by means of one general recurrent expression

Bg(my= 0(a,10¥C) +a, +1), ' M

where a, — n-th number of Smarandache sequence; ¢() and y(a,) — some
functions; o — an operator. For each of six Smarandache sequences,
determined by (1), we adduce (see Sect. 2 and 3)

a) several first numbers of the sequence;

b) the concrete form of the analytical formula (1);

¢) the analytical formula for the calculation of n-th number in the sequence;

d) a set of analytical formulae for constructing Magic squares 3x3 in size

from k-truncated Smarandache numbers;
e) a few of concrete examples of Magic squares 3x3 in size from k-truncated

Smarandache numbers.



2 Analytical formulae yielding Smarandache sequences

1. Smarandache numbers of S,-series. If ¢(n) = n+1, =1 and y(a,) = [lIgn +
)]+1 then of (1) the following series of the numbers, denoted as S)-series, is
generated

1, 12, 123, 1234, 12345, 12345, ... )

The each number of

(g(k+0,5)] .
v = -1+ % (k+1-107), 3)
Jj=0

corresponds to each number a, of series (2), where the notation “[Ig(y)]” means

integer part from decimal logarithm of y. By (3) it is easy to construct the
analytical formula for the calculation of n-th number in the §;-series:

a, = 10%n S(i/104). - )
i=1

By expressions

A a,=1234...(n-Dn; A1 a,=234...(n-1)n; A2a,=34...(n-Dn; ... ®)

we introduce the operator AF {the operator of k-truncating the number a, =
1234...(n-1)n}. Since

ANa=1, AMa,=2, Ala,=3, ..., Al g =n .. (6)

it is evident that by the operator A7F from the numbers of S,-series one may
produce the series of the natural numbers. And, vice versa, if the operator
A*¥ {the operator of k-extending the number n} is introduced:

An=n; A*n=(@E-Dn, A?2n =(n-2)n-Dn; ... @)
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then from the series of the natural numbers one may obtain the numbers of §,-
series:
All=a, A*2=aqa,, A"23=gq, ..., A"l n=gq, . ®

It is evident that

a) the operators A**and A*are connected with each to other. Therefore
one may simplify their arbitrary combinations by the mathematical rule of the
action with the power expressions {for instance, A*2A- A= A*F1+3=A2},

b) apart from operators of k-truncating and k-extending of numbers from

the left {see (5) and (7)} one may introduce operators of k-truncating and &-
extending of numbers from the right {for instance, (A-212345)= 345, but

(12345 A-Y) =123},

¢) by means of operators of k-truncating and k-extending of numbers from
the right one may represent the different relations existing between the numbers
of S,-series {for instance, a,=(a,_, A*") =(a, ,A™') andso on}.

2. Smarandache numbers of S,-series. If o(n)=n+1; c =y — the operator of
mirror-symmetric extending the number ay(,,);j0f S;-series from the right
with 1-truncating the reflected number from the left, if » is the odd number, and
without truncating the reflected number, if n is the even number; y(a) =

[1g([(n+1)/2] + 1) ] + 1, then of (1) the following series of the numbers, denoted
as S,-series, is generated

1, 11, 121, 1221, 12321, 123321, 1234321, ... ®

The analytical formula for the calculation of n-th number in the S,-series has
the form

/2 1)/2
_ /2] g

1oxi-ledl 4

i=1 i=l

a

n

, (10

where d =1+ X(nse1yr2] + Xfn/2] = X

3. Smarandache numbers of S;-series. If o(n) = n+1; ¢ =y — the operator of
mirror-symmetric extending the number a, of S,-series from the left with 1-
truncating the reflected number from the right; w(a,) = [lg(n + 1)} + 1, then of
(1) the following series of the numbers, denoted as S;-series, is generated

S5



1, 212, 32123, 4321234, 543212345, 65432123456, ... 1y

The analytical formula for the calculation of n-th number in the S;-series has
the form

a,= 10t { $(i 10%)/ 10189 + Fi/10%}. (12)

i=2 i=1
4. Smarandache numbers of S-series. The series of the numbers
I, 23, 456, 7891, 23456, 789123, 4567891, ... (13)

we denote as S,-series. It is evident that the series of the numbers (13) is
obtained from the infinite circular chain of the numbers

(123456789)(123456789) ... (123456789) ... (14)

by means of the proper truncation from the left and the right. The analytical
formula for the calculation of n-th number in the S,-series has the form

-1 .
2,=10" "5 {1+ d—- 9[d/9}/10™", d=i + n(n-1)/2. (15)

i=
5. Smarandache numbers of Ss-series. The series of the numbers
1, 12, 21, 123, 231, 312, 1234, 2341, 3412, 4123, 12345, ... (16)

we denote as Ss-series. By (3) it is easy to construct the analytical formula for
the calculation of n-th number in the S;-series:

a,= $(i10%), z=[(f83n-7-1)/2], an
i=1

d= % -u-0+ DI-%/0+ D), 1=-1+n-2(z-1)/2.

6. Smarandache numbers of Sg-series. The-series of the numbers

12, 1342, 135642, 13578642, 13579108642, ... (18)
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we denote as Sg-series. The analytical formula for the calculation of n-th
number in the S,-series has the form

142015, /2] f (2i—1/10%2i-172

i=1

a,={10 + $2i10%2i 2y qolis2n) (19
i=1

3 Magic squares 3x3 in size from A-truncated Smarandache numbers

1. Magic squares 3x3 in size from k-truncated numbers of S,-series. By analysing
numbers a, of S;-series one can conclude that it is impossible to construct an
arithmetical progression from any three numbers of S,-series. Consequently?,
none Magic square 3x3 in size can be constructed from these numbers.
However, one may truncate number a, of S,-series from the left or/and the

right by means of the operator Ak (5). Therefore there is a possibility to
construct the Magic squares 3x3 in size from truncated numbers of S)-series. In
particular, the analytical formula for constructing such Magic squares is
adduced in the Fig. 1(1). If in the formula I(1) the parameters n, r, p and ¢
take, for instance, the following values:

a) n=7,r=14, p=1 and g = 3, then it generates the Magic square 3x3
shown in the Fig. 1(2);

b) n=4,r=0, p=1and g= 3, then the numerical square 3x3, shown in
the Fig. 1(3), is yielded — the square 1(3) is not Magic, but it can be easy
transformed to one by means of revising three numbers marked out by the dark
background {the revised square see in Fig. 1(3")};

c) n=4,r=7, p=1and g= 3, then the numerical square 3x3, shown in
the Fig. 1(5), is yielded — the square 1(5) also is not Magic, but it can be easy
transformed to one by means of revising just one number marked out by the
dark background {the revised square see in Fig. 1(5)}.

By analysing the squares, shown in the Fig. I(3) and 1(5), it can be easy
understood that the analytical formula [(l) does not hold true only in such
cases when natural numbers, being components of numbers Ak a,, have
different amount of digits. To obtain the Magic square in this case, one is to
correct the defects of the square generated by formula 1(1) {as it made, for
instance, in Fig. 1(3") and 1(5") for squares {(3) and 1(3)}, or to change the
values of parameters n, r, p and/or q correspondingly.

57



-r-p-2q —-r —-r-2p-q
A n+r+p+2q A 2 pr A n+r+2p+q
~r-2p -r-p=q -r-2
A a n+r+2p A n+r+p+q A a n+r+2q
—r-g -r-2p-2q -r-p
A a n+r+q A a n+r+2p+2gq A n+r+p
)
22232425262728 15161718192021 20212223242526
17181920212223 19202122232425 21222324252627
18192021222324 23242526272829 16171819202122
@
38 110§ 30
18 1 26 | 34
10122 221421 14
39 @)
15161718 891011 13141516 15161718 891011 13141516
10111213 | 12131415 | 14151617 10111213 | 12131415 | 14151617
1121314 ETREIBIGS| 9101112 1121314 | D337IRI9| 9101112
©) &)
r+p+29n+n(n+l)/2 rn+ n(n+l)/2 r+2p+gn+nntl)/2
(r+2p)n+n(n+l)/2 r+p+n+nn+l)/2 r+2g9)n+n(n+tl)/2
(r+g)n+n(@n+1)/2 r+2p+29n+nntl)/2 (r+pyn+n@ntl)/2
©

Fig. 1. Constructing Magic squares 3x3 from k-truncated numbers of S,-series.
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It should be noted that the proper replacement of numbers A'ka,, in
squares 1(2), 1(3) and 1(5) by the sum of digits of natural numbers, being
components of AT a,, gives three different Magic squares 3x3. For instance,
the Magic square, obtained by such way from square [(3), is depicted in
Fig. 1(4). The explanation of this curious fact can be found in Fig. 1(6),
presenting the analytical formula of Magic square 3x3, which is obtained
directly from the formula 1(1) by means of the mentioned way.

2. Magic squares 3x3 in size from k-truncated numbers of Sjy-series. To apply
the methods, elaborated in point 1, for constructing Magic squares 3x3 from
numbers of S,-series {see (9)}, we divide a set of S,-series numbers into two
different subsequences:

1) a,=1, a,=121, a,=12321, a,=1234321, ...

2) b=11, b,=1221, b;=123321, b,=12344321, ...

By adding to the all elements of the analytical formula I(1) from the right
the operator ATk , having the same form as one located from the left, we obtain
the new formula of the Magic square 3x3. This formula allows easy to construct
examples of Magic squares 3x3 both from numbers of the first subsequence {see
Fig. 2(1)} and from numbers of the second subsequence {see Fig. 2(2)}.

171819191817 101112121110 151617171615

121314141312 141516161514 161718181716

131415151413 181920201918 111213131211
)

17181920191817 10111213121110 15161718171615

12131415141312 14151617161514 16171819181716

13141516151413 18192021201918 11121314131211
@

Fig. 2. Constructing Magic squares 3x3 from k-truncated numbers of S,-series.
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3. Magic squares 3x3 in size from k-truncated numbers of Sy-series. By
comparing numbers of S;-series {see (11)} and S,-series {see point 2} with each
to other one can conclude that numbers of S;-series resemble numbers of the
first subsequence of S,-series and distinguish from them on the order of the
natural numbers movement. The example of the Magic square 3x3 from
numbers of S;-series is presented in Fig. 3. This square is constructed by means
of methods described in point 1 and 2. Thus, in spite of the mentioned
difference between numbers of S;-series and S,-series, the methods, discussed
above, can be applied for solving problems on constructing Magic square 3x3
from numbers of S,-series.

201918181920

131211111213

181716161718

151413131415

171615151617

191817171819

161514141516

212019192021

141312121314

Fig. 3. Constructing Magic squares 3x3 from 4-truncated numbers of S;-series.

4. Magic squares 3x3 in size from k-truncated numbers of Sg-series. In

contrast to considered Smarandache sequences the digit 0 is absent in numbers
of S,- series. Besides, the order of the movement for digits 1, 2, ..., 9 can not be

changed and after digit 9 can be the only digit 1. These peculiarities of numbers
of S,- series make too difficult the solving problems on constructing Magic
square 3x3. It is evident that by using ATk -operator one can easy construct
classical square 4(1) {the Magic square of natural numbers from 1 to 9}. Since
by means of ATk -operator such square can be constructed from numbers of

any Smarandache sequence {for instance, see (6)}, the example of the square
4(1) is banal. The example of the Magic square 3x3, presented in Fig. 4(2, 3), is

less trivial.

g8l1]6 a, A7 4 Ala, 18| 1|56

3|57 a, a, A" |AFa A7 23 | 45 | 67

alof2] Jata, a2 |aa, a7 AP g A" 3408912
M @ (€)

Fig. 4. Constructing Magic squares 3x3 from k-truncated numbers of S,-series.
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5. Magic squares 3x3 in size from k-truncated numbers of Ss-series. As
compared with another Smarandache sequences of the Ist kind the numbers of
S,-series {see (16)} have the following peculiarity: the circular permutation of
natural numbers is allowed in them. The analytical formula of Magic square
3x3, presented in Fig. 5(1), is just constructed with taking into account the
pointed peculiarity of discussed numbers. Examples of the Magic square 3x3,
obtained from formula 5(1) at = 2, 3 and 4, are depicted in Fig. 5(2, 3, 4)
correspondingly. By analysing these squares it is easy to find more simple form
of the analytical formula 5(1) {see Fig. 5(5), where a, is the (n —1)th number

of §,-series, M is general amount of digits in the numbera, _, }.

-7 -5
ATa sy + 21 2 mn+1)/2 ATa a2 + 10
-2 —4 -6
AT a sy e ATa o v6 | A Gpnazy2 s s
3 -3 0
AT s | A G2 e 28 Aa
03]
911 21 {71 1012 | 312 | 812 11123 4123 9123
41 1 61 | 81 512 712 | 912 6123 8123 10123
s1 | 101§ 31 612 | 1112 | 412 7123 12123 5123
2 3) @

M M M
@+ni0M+a noM+a 10 M+a
@10 +a 0 M+a m+6)10 M +a

M M M
(n+3)10 © + a,_, n+8)10 ™ + a4 (n+DI0 ™ + a,,

)

Fig. 5. Constructing Magic squares 3x3 from k-truncated numbers of S;-series.
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6. Magic squares 3x3 in size from k-truncated numbers of Si-series. Numbers
of Si-series {see (18)} resemble both numbers of the first subsequence of S,-
series and numbers of S;-series {see points 2 and 3}.The example of the Magic
square 3x3 from numbers of Ss-series is presented in Fig. 6. This square is
constructed by means of methods described in points 1 — 3. Thus, in spite of
the mentioned difference between numbers of S;-series and §,-, S;-series for
solving problems on constructing Magic square 3x3 from numbers of Si-series

the methods, discussed above, can be applied.

2527293132302826 1113151718161412 2123252728262422
1517192122201816 1921232526242220 2325272930282624
1719212324222018 2729313334323028 1315171920181614

Fig. 6. Constructing Magic squares 3x3 from k-truncated numbers of S,-series.
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Perfect Powers in Smarandache Type Expressions

Florian Luca

In [2] and (3] the authors ask how many primes are of the Smarandache
form (see [10]) z¥ + y*, where gcd (z, y) =1 and z, y > 2. In [6] the author
showed that there are only finitely many numbers of the above form which
are products of factorials.

In this article we propose the following

Conjecture 1. Let a, b, and c be three integers with ab # 0. Then the
equation

az¥ + by* = cz" withz, y, n>2, andged (2, y) =1, (1)

has finitely many solutions (z, y, 2z, n)-
We announce the following result:
Theorem 1. The "abc Conjecture” implies Conjecture 1.

The proof of Theorem 1 is based on an idea of Lang (see [5])-

For any integer k let P(k) be the largest prime number dividing k£ with
the convention that P(0) = P(£1) = 1. We have the following result.

Theorem 2. Let a, b, and ¢ be three integers with ab# 0. Let P > 0
be a fized positive integer. Then the equation
az¥+by* = ¢z withz, y, n > 2, ged (z, y) = 1,and P(y) < P, (2)

has finitely many solutions (z, y, 2z, n). Moreover, there ezists a com-
putable positive number C depending only on a, b, ¢, and P such that all
the solutions of equation (2) satisfy max (z, v) <C.

The proof of theorem 2 uses lower bounds for linear forms in logarithms
of algebraic numbers.

Conjecture 2. The only solutions of the equation
¥yt =2" withz, y, n>2, z2>0, ged (z, ¥) =1, (3)

are (z, ¥, z, n) =(3, 2, 1, n).
We have the following results:
Theorem 3. The equation
¥ £y* =2 with z, y > 2, and gcd (z, y) =1, (4)

has finitely many solutions (z, y, z) with2 | zy. Moreover, all such solutions
satisfy max (z, y) < 3-10%3.



The proof of Theorem 3 uses lower bounds for linear forms in logarithms
of algebraic numbers.

Theorem 4. The equation
2V 4+ y% = 2" (3)
has no solutions (y, z, n) such thaty is odd and n > 1.

The proof of theorem 4 is elementary and uses the fact that Z[iv/2] is

an UFD.
2. Preliminary Results

We begin by stating the abc Conjecture as it appears in [5]. Let k be a
nonzero integer. Define the radical of k to be

Nok) =[] » (6)
plk

i.e. the product of the distinct primes dividing k. Notice that if z and y are

integers, then
No(zy) < No(z)No(y),

and if ged (z, y) =1, then
No(zy) = No(z)No(y)-

The abc Conjecture ([5]). Given € > O there ezists a number C(¢)
having the following property. For any nonzero relatively prime integers
a, b, ¢ such that a +b = ¢ we have

max(|al, [b], lc]) < C(e)No(abe)'+*.

The proofs of theorems 2 and 3 use estimations of linear forms in logarithms
of algebraic numbers. :

Suppose that (1, ..., {; are algebraic numbers, not 0 or 1, of heights not
exceeding Aj, ..., 4, respectively. We assume A, > e*form =1, ..., L
Put Q = log A;...log A;. Let F = Q[(1, ..., (1] Let ny, ..., m; be integers,
not all 0, and let B > max |n.,|. We assume B > e?. The following result
is due to Baker and Wiistholz.

Theorem BW ([1]). If (T*...¢* # 1, then

C7 G — 1] > 5 exp(~(16(1 + 1)dg) 29 Qlog B). )

In fact, Baker and Wiirtholz showed that if log(, ..., log{; are any
fixed values of the logarithms, and A =nilog (i + ... +nilog§ # 0, then

log |A| > —(16ldp) X+ Qlog B. (8)
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Now (7) follows easily from (8) via an argument similar to the one used by
Shorey et al. in their paper [9].

We also need the following p-adic analogue of theorem BW which is due
to Alf van der Poorten.

Theorem vdP ([7]). Let  be a prime ideal of F lying above a prime
integer p. Then,

d
ordy (¢F* ¢ — 1) < (16(1 + 1)dF)l2(l+l)l—(’;-o%Q(log B (9

We also need the following two results.

Theorem K ([4]). Let A and B be nonzero rational integers. Let
m > 2 and n > 2 with mn > 6 be rational integers. For any two integers
and y let X = max (|z|, |y|). Then

P(Az™ + By™) > C(log, X logs X)'/* (10)

where C > 0 is a computable constant depending only on A, B, m and n.

Theorem S ([8]). Letn > 1 and A, B be nonzero integers. For integers
m >3, z and y with |z| > 1, ged (z, y) =1, and Az™ + By™ # 0, we have

P(Az™ + By™) > C((log m)(log logm)) /> (11)

and '
|Az™ + By"| > exp(C((log m)(loglog m))1/2) (12)

where C > 0 is a computable number depending only on A, B and n.

Let K be a finite extension of Q of degree d, and let Ok be the ring
of algebraic integers inside K. For any element v € Ok, let [y] be the ideal
generated by v in Ok. For any ideal I in Ok, let N(I) be the norm of I.
Let 71, 72, ..., ™ be a set of prime ideals in Ok. Put

p = max P(N(x;)).
Write
7 = [pi] fori=1, .., {

where p1, P2, ..., Pt € Ok and h is the class number of K. Denote by S the
set of all elements o of Ok such that [a] is exclusively composed of prime
ideals 7y, w2, ..., ;. Then we have
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Lemma T. ([9]). Let « € S. Assume that

(o] = wirmd2 .o,

There exist a B € O with |N(8)] < p™™ and a unit € € Ok such that
a = efpl'p3?...o0 .

Moreover,
b; =a;h+ ¢ for some 0 < ¢; < h.

3. The Proofs

The Proof of Theorem 1. We may assume that ged (a, b, ¢) = 1.
By C;, Ca, ..., we shall denote computable positive numbers depending
only on a, b, c. Let (z, y, z, n) be a solution of (1). Assume that z >y,
and that £ > 3. Let d = ged (az?, by®). Notice that d | ab. Equation (1)
becomes '

i _= (13)
By the abc Conjecture for € = 2/3 it follows that

C(2/3)Ny(abc)3/®

7 No(zyz)®/2. (14)

max (Jaz], [oy?] lez"]) <

Let :
01 = C(2/3)No(abc)5/3

Since d > 1, and |b] > 1, from inequality (14} it follows that
= < byl < Cilayl2)*? < o323, (15)

Since z > min (y, 3), it follows easily that y* > z¥. Hence,

n _ E y é z x
12| lc:z: +2y7| < Cay
where Cy = %ﬂ. We conclude that
2] < G/ "y < Gy (16)

Combining inequalities (15) and (16) it follows that
¥ < Clcg/GIIO/Sy(Sx/Bn)’

or
yx(1—5/3n) < 031.10/3, (17)
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where C3 = 01025/ 6 Since 2 <y and 2 < n, it follows that
2:/6 < 2:(1—5/311) < 03x10/3‘ (18)

Inequality (18) clearly shows that z < Cj.
The Proof of Theorem 2. We may assume that

P > max (P(a), P(b), P(c))-

By Ci, Ca, ..., we shall denote computable positive numbers depending
only on a, b, ¢, P. We begin by showing that n is bounded. Fix d €
{2, 3, ..., P—1}. Suppose that z, y, z, nis a solution of (2) withn > 3
and d | y. Since

by® = cz™ — a(:ry/d)d (19)

it follows, by Theorem S, that
P =P(by") = P(cz" - a(:z:y/d)d) > C1((logn)(log log'n.))l/2 (20)

where C; is a computable number depending only on a, ¢, d. Inequality
(20) shows that n < Cs.

Suppose now that ny > 6. Let X = max (z, |z|). From equation (19)
and theorem K, it follows that

P = P(by®) = P(cz” — az¥) > Cs(log, X logs X) vz (21)

where C3 > 0 is a computable constant depending only on a, ¢, and Co.
From inequality (21) it follows that X < C3. Let Cyq = max (Cb, Cs). It
follows that, if ny > 6, then max (z, |z|, n) < Cs. We now show that y is
bounded as well. Suppose that y > max (Cy, €?). Rewrite equztion (2) as

lezI” _ |1 - (——b)y’-x-y|. (22)

lajzy a

Let A > e° be an upper bound for the height of —b/a and C4. Let 2 =
(log A)®. From theorem BW we conclude that

logle| +nlog|z| — log ja] — ylogz > —log2 — 64*Qlogy.  (23)
Since z > 2, and max (z, |z, n) < Cu, it follows, by inequality (23), that
ylog2—6412Qlogy < ylog £—642Qlogy < Cqlog Cs—loglaj+log|c|+log 2.

(24)
From equation (24) it follows that y < Cs.
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Suppose now that n = y = 2. We first bound 2 in terms of z. Rewrite

equation (2) as
2

i+ (G)(F)

Let Cs > 0 be a computable positive number depending only on a and &
such that

2Z2=2" : (25)

I%‘ (g;) < % for z > Cs. (26)
From equation (25) and inequality (26), it follows that
rla] <= (- 5(5) <= <+ 5 5) <3l en
for ¢ > Cs. Taking logarithms in inequality (27) we obtain
zCr + Cs < logz < zCr + Co for z > Cs (28)
where Cr — 10_52, Cs = log |b] -;log?.[cl’ and Cy = log |3b] ;logl2c|- We
now rewrite equation (2) as
(cz)? — acx? = ab2”. (29)
Let o = \/ac. Then
(ez +az)(cz — qx) = cb2”. : (30)

We distinguish 2 cases.

CASE 1. ac < 0. Let K = Q[a]. Since ac < 0, it follows that all the
units of Ok are roots of unity. Since K is a quadratic field, it follows that
the ideal [2] has at most two prime divisors. Since

ged ([cz +ozl, [ez - a:z:]) 2[abc]

it follows, by lemma T, that
ez + ax = eBp* (31)

where % —l<u< %, and ¢, 83, p € Ok are such that || = 1, |p| = 272,

where h is the class number of K, and |8] < Cy¢ where Cjg is a computable
number depending only on a, b, and ¢. Conjugating equation (31) we get

cz — ax = EfP™. (32)

From equations (31) and (32) it follows that
20z = fp*(1 — (= ~2)(8) "' BE) *(®)")-
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Hence,

2lalz = |BlIpl*|1 - (—e~*)(8) "' B() "(B)¥| (33)
Taking logarithms in equation (33) we obtain
log(2|a|) +log z = log 8] +ulogp+log |1 — (=~ 2)(B) " B(p)"“(@)"|- (34)

Let A, and P be upper bounds for the heights of —e~2(8)~!3 and p, respec-
tively. Assume that min (4, P) > e®. Let Q = log A(log P)2. Assume also

that % > 1 + &2. From equation (34), theorem BW, the fact that |p| = 27/2,

x T .
and the fact that 7= l1<u< 7 we obtain that

log(2|e]) + logz > log|B] + ulog|p| — log2 — 6412Qlogu >

z h
log|8] + (ﬁ - 1) . (5) log 2 — log 2 — 641?Qlog(z/h). (35)

Inequality (35) clearly shows that z < Ci;.

CASE 2. ac > 0. We may assume that both a and ¢ are positive. If
b < 0, equation (2) can be rewritten as

lajz? — |b]2% =|c]z2 > 0 (36)

Equation (36) clearly shows that < Cj2. Hence, we assume that b > 0.
We distinguish two subcases.

CASE 2.1. y/ac € Z. In this case, from equation
(c|z] + az)(clz| — az) = be2”

and from the fact that

gcd (clzl + az, clz| - a:z:) | 2cech (37)
it follows easily that
cz| + ax = 32¢
{ |2] 8 (38)
clz| —az =7

where 3, <, u are positive integers with 0 < 8 < be, v < (be) - (2ach) and
u > z — ord2(2ach). From equation (38) it follows that

20z = [2% — 7. (39)

From equation (39), and from the fact that 0 < B < be, v < (be) - (2ach),
and u > z — orda(2aeh), it follows that z < Cis.
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CASE 2.2. Jac € Z. Let K = Q[a]. Let ¢ be a generator of the torsion
free subgroup of the units group of Ok. From equation (37) and lemma T,
it follows that
ozl + az = €010} (40)
where % —-1l<u< %, and G, p; € Ok are such that 1 < B; < Ci4 for some
computable constant Ci4, and 1 < p1 < 2"-¢. From equation (40), it follows
that
clzl —ax =€ " Gapy (41)

where 32 = |61]%/81, and p2 = 2" /p1. Suppose now that z > Cs. Since
™ = 5B (del + as)

it follows, from inequality (28), and from the fact that % -l<u< % and

1 <p; < 2" -¢, that
Im| < Cisz + Cis for x > Cs, (42)

for some computable constants Cys and Cy¢ depending only on a, b, and c.
From equations (40) and (41), it follows that

20z = €™ B1p¥ - (1 - E_Qm(ﬁl)_lﬁz(m)_"??)

or
202 = (dzl +oz) - (1 — € 2™(B) ™ Balp1) 775 ) (43)

Let A;, Az, As, A4 be upper bounds for the heights of €, (81)~!02, p1, P2
respectively. Assume that min (A;, A2, As, A4) > e®. Denote Q =
H;l log A;. Denote C;; = max (2Cis, 1/h). From inequality (42), it
follows that

max (2|m|, u) < Ci7z + Cie. (4—4)

Let B = Ci7z + Cis. Taking logarithms in equation (43), and applying
theorem BW, we obtain

log(2a) + log z = log(clz| + ax) +log |1 — €™>™(61) ™ Ba(p1) ¥p3 | >
log(clz] + az) — log 2 — 80 Qlog(Cy7z + Cie). (45)
Combining inequalities (28) and (45) we obtain
log(4a) +log z + 801 Qlog(C17z + Cis) > log(clz| +az) > logz > Crz + Cs
This last inequality clearly shows that z < Cg.
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The Proof of Theorem 3. We treat only the equation
z¥ + % = 2%

We may assume that z is even. First notice that, since ged (z, y) =1, it
follows that ged (z, z) = ged (y, 2) = 1. Rewrite equation (4) as

z¥ = (z+yz/2)(z—yz/2). .
Since ged (z, ¥*/?) =1 and both z and y are odd, it follows that
ged (z+y7/%, z—y/%) =2.

Write z = 2d,d» such that either one of the following holds

{z+y’/2 =2y'1d’1’ or {z—!—yz/2 = 2d} (46)
z —y*/?* =2d} z— ™% =2v1gY
Hence, either

y*? =2~ df (47)
or

v/ = dt - 20 (49)

We proceed in several steps.
Step 1. (1) Ifz > y then either y < 9 and 2 < 27, ory > 9 and
T < 3y.
(2) Ifz <y and y > 2.6-10%, then y < 4z.
(1) Assume first that z > y. Since
e N

it follows that

% <Y < (2d1)Y <2¥  or v/ < &Y < av. (49)
Hence, R
5 logy < ylogz. (50)
Inequality (50) is equivalent to
z Y
2 . 1
logz < logy (51)

If y < 9, then one can check easily that (51) implies z < 27. Suppose now
that y > 9. We show that inequality (51) implies z < 3y. Indeed, assume
that z > 3y. Then

3y Yy < Z 2y
log3+logy log(3y) ~ logz ~ logy

(52)
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Inequality (52) is equivalent to
3logy <log9 + 2logy

or y < 9. This contradiction shows that z < 3y fory > 9.
(2) Assume now that z <y. Suppose first that

y:r/2 = 2y—2d11} _ dg

In this case
(2d,)? > 2V 2dY = df +y*/% > d
. . vz
therefore 2d; > d2. Since = 2d1dy, it follows that 2d; > /z, or d; > 5
Suppose now that
y:t/2 — dzlj _ 2y—2d§l.
In this case,
d¥ > 297y >
or dy > ds. We obtain that dy > Vdide = 3’ > %_—
If equality (47) holds, it follows that
e e B
On the other hand, if equality (48) holds, then
do\Y
/2 — gvly —ov—2(22
dlll (dl) l (54)

From inequality (53) and equation (54), we conclude that, in either case,

y*? > di,ll — 9€(y—2) (gz)y (55)

1

for some ¢ € {x1}. Suppose now that z > e®. By theorem BW, and
inequality (55), it follows that

z
§logy > ylogd; —log2 —48%]logzlogy >

ylog l/,)—i —log2 —48'%]log zlogy (56)
or
48%%logzlogy +10g2 + = logy > ylog \/TE (57)
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CASE 1. Assume that z < 2. From inequality (57), it follows that

&
481% - 6log2 - logy + log 2 + 2% logy > ylog \/‘)é_ > %
or
(48103 -6log2 + 25) logy +log2 > g-
or
2(48'% - 6log 2 + 25 + 1) > ——. (58)
logy

Let C; = 2(48'% - 6log2 + 2° + 1). From inequality (58) and lemma 2 in
[6], it follows that

y < Cilog? C1 < 2(48'% - 6log 2 + 25 + 1) - 422 < 2.6 - 10%1. (59)
CASE 2. Assume that z > 26. Then,

d1>\/7'523\/5.

Inequality (56) becomes

1
48%logzlogy +log?2 + Zlogy > = ylogz

2 3
or _ 2
3e48'%logzlogy +log8 + 7 zlogy > ylogz
or 3
(3e481% + 1) logzlogy + 5 zlogy > ylogz
or -
4804142 o5 Y 0
348+ 14 5 0% > Togp (60)
Assume first that
3 T 3481041 (61)
2 logz '
In this case, o
z = 10 5
Togz <3 (3e48™ +1). (62)

‘)
Let Cy = -;: (3e48!° + 1). From inequality (62) and lemma 2 in (6], it follows
that 0
< Calog?Cy < §(3e481° +1)-41%2 < 6-10%. (63)

In this case, from inequalities (60) and (61), it follows that

y
logy

< 2(3e48% +1). (64)
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Let Cs3 = 2(3¢48!° + 1). It follows, by inequality (64) and lemma 2 in (6],
that '
y < Cslog? Cs < 2(3e48'% +1) - 422 < 1.8 - 10%%. (65)

Assume now that y > 2.6-10%!. From inequality (59), it follows that z > 28,
Moreover, since inequality (65) is a consequence of inequality (61), it follows

that
§_ T

2 logz

From inequalitites (60) and (66) it follows that

> 3e48'% + 1. (66)

3z Y
Togz > gy (67)

We now show that inequality (67) implies ¥y < 4z. Indeed, assume that
y > 4z. Then inequality (67) implies

3z > v oS iz 4z
logz ~ logy ~ log(4z) ~ logz +log4

or
3logz + 3log4 > 4logzx

or 3log4 > logz which contradicts the fact that z > 28.
Step 2. Ify > 3-10'%3, then y is prime.
Let

Y% =2v72dY — d or y*/? = d¥ —2v~2d3. (68)

Notice that if y*/2 = 2¥~2d¥ — d}, then ged (2d;, d2) = 1. Let p| y be a
prime number. Since p f 2d1dz = z, it follows, by theorem vdP, that

g < max (ord,, (2v—2dY —d3), ordp(d¥—2y‘2d,§)) < 48%e—L_ 1og? ylogz.

logp
(69)
By step 1, it follows that -
ly <z <2 48%e—P log?ylog(dy) <4- 48%e—P_log3y. (70)
4 = logp logp ™ ~
Hence, . »
436 436
- <16-48%ep — <16+ 48%%ep. (71)

Suppose that y is not prime. Let p | y be 2 prime such that p < \/y. From
inequality (71) it follows that

_%;7_ < 16-48%%
log” y
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or

—;/i— < 128 48%%. (72)
log” (/%)

Let k = /7 and C4 = 128 - 48%%. By inequality (72) 2nd lemma 2 in 6], it
follows that

VI =k < Cylog! Cq = 128 - 48%%¢ - 146* < 5.3 107 (73)

or
y < (5.3-10™)% <3101 (74)

This last inequality contradicts the assumption that y >3- 103,

Step 3. Ify > 3-101%3, thenz > y.
Let y = p be a prime. If y*/2 = 2v=24} — dj, it follows, by Fermat’s
little theorem that

2—1d1 —dy = 2y—2d¥ — d'é‘ = y:"'/'2 =0 (mod p),

therefore
dy = 2d; (mod p). (75)

On the other hand, if y*/2 = d} — 2¥~2dj, then
dy -2 1dy = d¥ — 2¥2d§ = y*/? = 0 mod p),

therefore
do = 2d; (mod p). (76)

Suppose that z < y. From congruences (75) and (76), we conclide that, in
both cases, z is a perfect square. Hence,

v == (EY = (4 (@) (- (v®)
From equation (77) it follows that

z—(vz)’ =1
78
{z—l—(\/iay:yz (7%)

Hence,

2(vz)? =y* - 1. (79)
It follows, by equation (79) and theorem BW, that

1 -2y~ (Vz)¥

zlogy — log2 — 64'%elog? ylog z. (80)

0 =log >

y*— 2(\/5)y| = log(y*) + log
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From inequality (80) and Step 1 it follows that

1
log 2 + 64'%elog® y > zlogy > %Q
or
4log2 + 4 - 64'2elog®y > ylogy
or
(4-642%e+1)log’y >y
or y
4-64%+1> . 81
oy (81)

Let Cs = 4-64'2¢ +1. By inequality (81) and lemma 2 in [6] it follows that

y < Cslog®Cs < (4-641%e+1)-53% < 8-10%. (82)

The last inequality contradicts the fact that y >3- 1043

Step 4. Suppose thaty > 3-10'3. Let y = p be a prime. Then,
with the notations of Step 1, every solution of equation (4) is of one of the
following forms:

(1) y*/* =2¥"2d} —dj withy=p, di=2+p, d2o=1, z=4+2p
3p—1

2

FA

(2) y/? =d¥ —2v"2d§ withy=p, d; =

,de=1 z=3p—1

’ -1
(3) y*/* =dy —2¥7%dj withy=p, d =222 d,=3z=3p-9

&)

4

We assume that y > 3 - 103, In this case, y = p is prime, and = > y.
From Step 1 we conclude that z < 3y. Moreover, from the arguments used

at Step 1 it follows that d; > i‘)—a_:_ Since = = 2d;d», it follows that

da < VI < /3y =/3p.

By the arguments used at Step 3 we may assume that z is not a perfect
square. We distinguish the following cases.

CASE 1. d» = 1. By congruences (75) and (76) it follows that d; =
2 (mod p), or 2d; =1 (mod p).

Assume that d; =2 (mod p). Sincez =2d;,andp=y <z < 3y = 3p,
it follows that d; =2+ pand z =2d; =4+ 2p.

Assume that 2d; =1 (mod p). Again, sincexz =2d;,and p=y <z <

,and z =3p — 1.

3y = 3p, it follows that d, = d

CASE 2. d» = 2. By congruences (75) and (76) it follows that d; =
4 (mod p), or dy = 1 (mod p). One can easily check that there is no solution
in this case. Indeed, if d; = 4 (mod p), it follows that d; > p + 4. Hence,
T = 2d;dy > 4(p +4) > 3p = 3y which contradicts the fact that z < 3y.
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Similar arguments can be used to show that there is no solution for which
dy =2 and d; =1 (mod p).

CASE 3. d» = 3. By congruences (75) and (76) it follows that d; =
6 (mod p), or 2d; = 3 (mod p). One can easily check that there is no
solution for which d; = 6 (mod p). Suppose that 2d; = 3 (mod p). Since

‘) 7

p=y <z < 3y=3pand z = 2d1d2 = 6d, it follows easily that d; = P
and x = 3p —9.

CASE 4. dyo =k > 4.

If k is even, then, by congruences (75) and (76), it follows that d; =
2k (mod p), or d; = k/2 (mod p). Since z is not a perfect square it follows
that d, > p+k/2, therefore z > 2pk+k? > pk > 4p > 3p = 3y contradicting
the fact that z < 3y.

If k is odd, then, by congruences (75) and (76), it follows that di =

2k (mod p), or 2d; = k (mod p). We conclude that d; > P

T = 2d;dy > k(p—k). Since k(p—k) >3pfor5 <k </3p and p > 3-10148,
we conclude that z > 3p = 3y contradicting again the fact that z < 3y.

, therefore

Step 5. There are no solutions of equation (2) withy >3- 10'*2 and
T even.

According to Step 4 we need to treat the following cases.
CASE 1.

Hence,
p**P = 32+ )P ~1> 272+ p)". (84)

Taking logarithms in inequality (84) we obtain
(2+p)logp > (p—3)log2 +plog(p +2)
or
21log p + p(logp — log(p +2)) > (p — 3) log 2. (85)
It follows, by inequality (85), that

2logp > (p—3)log2

> plog2 < 2logp +3log2 < 5logp. (86)
Tnequality (86) is certainly false for p =y >3- 10143,
CASE 2.

3p—1

F4
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Hence,

p8P=1/2 _ (3—%;3)? —277% < (g‘a“s——l)p < (3_1))?

or

pP=1/2 ¢ (g)” (87)

A

Taking logarithms in inequality (87) it follows that

p_

1
5 logp < plogl.5

or
2p
p—1

Tt follows that p < 1.5% < 4 which contradicts the fact that p > 3 - 1043
CASE 3.

log1.5 < 3log1.5 < log1.5%.

logp <

-1
l)

Z

yx/2=d31l__2y—'2d32/ Withy:p, dlzp ,d2=3,:z:=3p—9.

Hence,
p3P=9/2 = (p_;_g)p — P23 < (p;_s)p < pP. (88)

Z

From inequality (88) it follows that < p or p < 9 which contradicts

the fact that p=1y > 3- 10,

3p—9
2

The Proof of Theorem 4. The given equation has no solution
(y, z, n) withn > 1 and y odd, ¥ < 5. Assume now that y > 5. We
may assume that n is prime. We first show that n is odd. Indeed, assume
that (y, z) is a positive solution of y? + 2¥ = 2z with both y and z odd.
Then (z + y)(z — y) = 2¥. Since ged (z +y, z—y) = 2 it follows that
z—y=2and z+y=2v""1. Hence, y = 2v—2 _ 1. However, one can easily
check that 2¥=2 —1 >y for y > 5.

Assume now that n = p >3 is an odd prime. Write

(’,lj +o-1/2 -'i\ﬁ) . (y —o(y-1)/2, 1,\/5_3) =z
Since Z[i+/2] is euclidian and
ged (y+2070/2 .03, y - 207D/2. 500 =1
it follows that there exists a, b € Z such that
y+20702 Vi = (a+biva)"
y—20-0/2. V5 = (a- ln\/§)n
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From equations (89) it follows that

S (a+bi\/§)n-;-(a—bi\/§)n (©0)

and n n
(a +biV3) - (a — biv3)
224

From equation (90) we conclude that a is odd. From equation (91), it follows
that

o(y—1)/2 _

(91)

2=1/2 = p(na™"t + s),

where s is even. Since both n and a are odd, it follows that na® ! + s is
odd as well. Hence, b = 2=1)/2, Equation (5) can now be rewritten as

Y+ =2z"= ((a +biv2) - (a - bi\/i))n = (a2 +26%)"

or
y? +2V = (a® +2¥)" > 2™ > 2% (92)

Inequality (92) implies that

y? > 2% —2¥ = 2¥(2%¥ . 1) > 2¥,

Z

which is false for y > 5.
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ABSTRACT

The family of Metallic Means comprises every quadratic irrational number that 1s
the positive solution of algebraic equations of the types

X*-nx-1=0 and 2-x-n =0,

where 7 is a natural number. The most prominent member of this family is the Golden
Mean, then it comes the Silver Mean, the Bronze Mean, the Nickel Mean, the Copper
Mean, etc. All of them are closely related to quasi-periodic dynamics, being therefore
important clues in the study of the onset to chaos. However, they also constitute the
basis of musical and architectural proportions. Through the analysis of their common
mathematical properties, it becomes evident that they interconnect different human fiels
of knowledge, in the sense defined by Florentin Smarandache (“Paradoxist
Mathematics™).

. Keywords: continued fractions, quadratic irrationals, Fibonacci sequences, Smarandache
~ sequences, hyperbolic map.

1. INTRODUCTION

Let us introduce a new family of positive quadratic irrational numbers. The family
is called the “Metallic Means Family” (MMF) . Its members have, among other
common characteristics, the one of carrying the name of a metal (see [1], 2D . E.g., the
most distinguished member is the well known “Golden Mean”. Then, we have the Silver
Mean, the Bronze Mean, the Copper Mean, the Nickel Mean and many others.

The Golden Mean has been widely utilized by a great quantity of ancient cultures
as basis of proportions to compose music, to make sculptures and paintings or construct
temples and palaces (in Reference [3], see the first chapter dedicated to this subject).
With respect to the many relatives of the Golden Mean, a great part of them have been
used by physicists in different researchs, in trying to systematize the behavior of non
linear dynamical systems that suffer the transition from periodicity to quasi-periodicity.
Notwithstanding, there other instances of using these relatives in quite different fields:
Jay Kappraff [4] appealed to the Silver Mean to describe and explain the roman system
of proportions, making use of a mathematical property of this Mean that is, as we are
going to prove, common to all the members of this curious famuly.
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Being irrational numbers the members of the MMF, in the applications to
different scientific disciplines, they have to be approximated by ratios of integer numbers
and the analysis of the relation between the MMF and the approximant ratios is one of
the goals of this paper. A direct consequence of this study will be the possibility of
interconnecting quite distinct (sometimes opposite) human fields of knowledge, in the
sense defined by Florentin Smarandache (“Paradoxist Mathematics”).

2. CONTINUED FRACTIONS EXPANSIONS

Every real number x admits a continued fraction expansion, that is, an expression
of the type

that is written x = [ ay,a;,a;,...]. The first coefficient can be zero (in such a case the real
_ number is between O and 1) but the rest of the coefficients are positive integers. This
continued fraction expansion is finite if and only if x is a rational number (that is, a2
number of the form p/q with ¢ different from zero and p,g natural numbers without
common factors). For example,

18 1
= =2 S ={2,1,1,3].
I+
14—
3

If x is an irrational number, the expansion is infinite and if we take a finite number

of terms like
1

we get a sequence of “rational approximants” to the number x such that they converge
to x when k — <.

Some irrational numbers, like 7 and e have approximants that converge very
quickly. In particular, the number @ = [3,7, 15, 1, 292, ...] converges so quickly that the

. . . 335 . :
third rational approximant o, =1 =3.1415929... has six exact decimals!

b
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Amazingly, this result was already known by Tsu Chung Chi in China, 5th
century!. Instead, the base of the napierian logarithms, the number e =2, 1,2, 1, 1, 4, 1,
1,6,2,2, 8, 1,..] converges more slowly at the beginning, due to the pressence of many
‘ones’ in its expansion. Comparatively, the quadratic irrationals converge much slower.

Similarly to the periodic decimal expansions, the “periodic” continued fractions
are denoted with a line over the period and if the continued fraction expansion is of the
form x = [a,,a,,...,a, ], we say that the continued fraction is “purely periodic”. In this
context, the french mathematician Joseph Louis Lagrange (1736-1813) proved that a
real number is a quadratic irrational if and only if its continued fraction expansion is
periodic (not necessarily purely periodic). This result was improved by Evanste Galois
(1811-1832) in the following form: The continued fraction of an irrational number x is
purely periodic if and only if x > I and it is a root of a second degree equation with
integer coefficients, the other root being between -1 and 0.

PROPERTY Nr. 1 OF THE METALLIC MEANS FAMILY

They are all positive quadratic irrationals.

In fact, if we take the quadratic equation
(2.1) X-nx-1=0

where 7 is a natural number and solve it, we find that the positive solutions of this

equation are of the form
n+in® +4
b mve—
2

1+/5

For n = 1, the result is the well known Golden Mean ¢ = — =1618.... To find the

continued fraction expansions of this quadratic irrationals, simply we take equation (2.1)
and divide it by x (different from zero):

1
x=n+—
x

Then, we replace the x of the second member iteratively by » + 1/x. In this way, we get,
after N iterations:
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If N = =, we have
1 —
x=n+—71 ={n],

n+——
n +---

a purely periodic continued fraction expansion.
Obviously, the Golden Mean has the most simple continued fraction expansion

For n = 2, we have the Silver Mean o,, =1 +~/2, which continued fraction

- expansion 1s

1 _

04 =2 -i-——l— =[2].
2+
24,

For n = 3, the result is the Bronze Mean
313 =
= =[31]

GBr 2

Sunuha.rizing, solving quadratic equations of the form
x*-nx-1=0
with n natural, we obtain as positive solutions, the members of the MMF, which

continued fraction expansion is purely periodic

x={n]

Instead, if we solve quadratic equations of the form

x*-x-n=0,

(2.2)
with » natural, we obtain members of the MMF which continued fraction expansion is

periodic, not necessarily purely periodic, e.g.
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[{m,n,n,,...n 1

This last subset of Metallic Means has curious mathematical properties, with reference to
the frequence of apparition of the natural numbers, as well as to the length of the period
or the presence of “stable cycles™ (see Reference [1] for more details).

Obviously, of all these Metallic Means, the one that converges more slowly is the
Golden Mean, since all the denominators are the smallest possible — ones. This fact
allows us to state the following

The Golden Mean ¢ is the most irrational of all irrational numbers.

Note: In the restant posible cases of quadratic equations with integer coefficients, we
find the following results, looking for positive solutions

a) x> +nx-1=0. Same solutions as for equation (2.1), but only their decimal part.

b) ¥’ + nx+ 1 =0 . There are no positive solutions.

. ¢)x*-nx+1=0. The positive solutions have periodic continued fraction expansions.
" d)x*+x-n=0.The positive solutions have periodic continued fraction expansions.
e) X* +x+n= 0. There are no positive solutions.

f) x* - x + n =0 . There are no positive solutions.

3. FIBONACCI SEQUENCES

The Fibonacci sequence is a sequence of natural numbers formed by taking each
number equal to the sum of the two precedent terms. For this reason, this type of
sequences is called a “secondary Fibonacci sequence”, to distinguish them from the
ternary Fibonacci sequences, in which each term is a linear combination of the three
precedent terms.

Beginning with F(0) = 1; F(1) = 1, we have the following secondary Fibonacci
sequence

(3.1) 1,1,2,3,5,8, 13,21, 34, 55,89, 144, ...
where
(3.2) Fn+1)=FMm) +~ F(n-1).

Secondary Fibonacci sequences can be generalized, originating what is known as
“generalized secondary Fibonacci sequences” GSFS, like

a, b, pb - qa, p (pb - gqa) — gb. ...
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that satisfy relations of the type

G+ =p Gy - g Gln- 1)

with p and ¢ natural numbers.
. From equation (3.3), we get

Gty G g
Gy PTGm PTGl
G(n 1)

L . . G(n+D)
Taking limits in both members of this equation and assuming that /im ) exists and

e Gln)
1s equal to a real number x -- fact that will be proved in next theorem--, we have

wfa

x =p

or x* - px - ¢ =0, which positive solution is

_pH{p +4g ‘

* 2
This means that
. Gn+l) p +1/ p* +4q
(3.4) Iim
new (G(n) 2

Now, let us prove the existence of this limit:
Theorem
Given a generalized secondary Fibonacci sequence (GSFS)

a, b, pb ~ qa p(pb + qa) ~ gb, ...

such that

G(n+1) =p G(nm) + g G(n-1)

) ) . G(n +1)
with p,¢q natural numbers, then there exasts lf.”l., G

and is a real positive number o.

Proof: To find the nth term of the GSFS, let us put
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G(r+1) = p G(nm) + gH(m)

Hn+1)=G(n)
and
Gm) , _fp g
G(n) = (n)]’ A _[l 0].

Then it is easy to prove that

G(n +1) =A4.G(n).

— I
Let us assume that G(0) = G(1) = 1 for simplicity. If G(1) =U then

G(n +1) =A".G(1) and the problem is reduced to the finding of the mth power of the
matrix A. We know that the eigenvalues of 4 are

, =F +p* Hq PP g
2 2

(o3

To diagonalize 4 so as to transform it in 4, =[

0
0 a’} , we shall use the change of base

matrix P=[1
1 1

O.I
} The nth power of A is calculated applying the similarity

transformation

» 1 nA _o.,(n-ﬂ) oo ,(0_ m __o_n)
A" =P A" P = .

o —o' " - O,O.:(o.f(ﬂ“l) _0,"“
and the nth term of the GSFS
LLptqpptq) +q ..

is given by the following expression

n+2 An+2)
o
G(n +1) = -
R : r = 2 ol == q
eplacing o —o' =4/p” +4q ;0 = we have
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+
nH __Z
G(n +l) , g +[ g T

=[lim =g

Ilim
n- co G n—- o
(n) . +[ qI

and the proofis completed.

Note: if instead of choosing G(0) = G(1) = 1 we begin the GSFS with two arbitrary
values a and b, it is easy to prove that the result is the same. Indeed, given the GSFS

a, b, pb+qa, p @b+ qa) + gb, ..

we have to evaluate the quotient

b G(n)
G 41)  pbG(n) +qaGin 1) P’ Gn -1) ‘1"_ .,
G T pbG(n —1) +qaG(n =2) e
(my  pbG(n ~1) +qaG(n m
G(n —2)

Let us put G(0) = G(1) = 1 and consider different possibilities for the coefficients
of (3.4).Then, if p = g = 1, we have the Golden Mean

1+J_

=¢ ={11].

X =

If p= 2 and g = 1, the sequence has the form

(3.5) 1,1,3,7,17,41, 99, 140, ...

where
(3.6) Gmn+1)=2GMm) - GMm-1),

and from (3.4) we get the Silver Mean

- G(n+1
o, =lim

- 21
 =lin L = (2]

Analogously, if p = 3 and g = 1, the sequence is
(3.7) 1,1,4,13, 43,142, 469, ...

where
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(3.8) Gn+1)=3Gnm)+Gn-1),
and we get the Bronze Mean

G 1 3 13 -
) 28T,

a5 =lim

"o G(n) 2
If p=1 and g =2, the sequence is
(3.9) 1,1,3,5,11, 21,43, 85, ...
where
Gn+1)=GMm) +2Gn-1)
and we get the Copper Mean
0o, =2=[2,01]
If p= 1and g = 3, the sequence is
(3.10) 1,1,4,7,19,40,97, ...
where
Gn+1)=Gm)+3Gn-1)

and we get the Nickel Mean

Gn+) 1+/13
Oy =im =

 =lim = — =[2.3]

Summarizing our results, we may affirm

PROPERTY Nr. 2 OF THE METALLIC MEANS FAMILY

All of them are obtained as limits of ratios of two consecutive terms of generalized
secondary Fibonacci sequences.




4. ADDITIVE PROPERTIES

Let us form now the sequence of ratios of consecutive terms of the sequence

(.1)

“n 12358132134 558
. 1717273587137 21734”5577

Obviously, this sequence converges directly to the Golden Mean ¢. This sequence 1s very
useful as a good approximation: indeed the term u(11) = 233/144 = 1.6180 with four
exact decimals!

If we take now a geometric progression of ratio ¢ such as

11
7¢2:¢7

1L, $,6% 6%, ..

we can easily verify that this geometric progression is also a GSFS. In fact

1 1
— +— =73 =L
¢ @

The same happens for the Silver Mean g, , starting from the sequence

(4‘2) _’—)_’—-’—’——) > "2
17173”77177 41” 99

that converges to g, . The sequence

1 1 "y 3
. T o b0 T 0
U,qg UAg

is a geometric progression of ratio g4, that satisfies condition (3.6). Indeed

3

1 ) 5
— +2 =0 '1+2<7,4g =04, 704 +2aAg =0,

Az g
0.4

Similarly, it is easy to prove that the sequence of ratios

(4'3) —)—_’_’_7-—7 >3
171747137 437142

15

2

(V3]

converges to the Bronze Mean o3 = =[3] and the sequence
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1 1
2 3
°c za—a1368703 703 7'“
Og B -

is a geometric progression of ratio ¢ that satisfies condition (3.6). This is due to the
fact that

— A . - — 2. 2 _ 3.
- +3 =0,; 1430, =0,", 0, 305 =0y ,;
B

Similarly for all GSFS. These numerical sequences (4.1), (4.2), (4.3), and so on,
are new Smarandache sequences that have to be empirically used as approximations to
the values of the members of the MMF. Furthermore, the sequences formed by taking
these members as ratios enjoy the following unique mathematical property:

PROPERTY Nr. 3 OF THE METALLIC MEANS FAMILY

They are the only positive quadratic irrational numbers that originate GSFS (with
additive properties) which are, simultaneously, geometric progressions.

This curious property of satisfying both arithmetic additive and geometric
properties, bestow all the members of the MMF with interesting characteristics to
become basis of different systems of geometric proportions in Design.

5. PROPORTIONS SYSTEMS

1+/5
The golden Mean ¢ = -:[_, is indissolubly linked to pentagonal symmetry.

Indeed, if we take a regular pentagon of unitary edge, like the one depicted in Fig. 5.1, it
is easy to prove that its diagonal is equal to ¢. Considering the geometric similarity of the
two isosceles triangles ADC and ABF we have

AD DC
DC ~ AD —FD

Being DC = FD =1 and calling x = 4D, we obtain the quadratic equationx (x - 1) =1 or
X’ -x -1 =0, that is equation (2.1) with » = 1 and positive solution x = ¢. It is not
difficult to prove besides the following “golden relations™ in the regular pentagon
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1
GB =¢ —1 = =0618...
¢ o]

1
Gl =FG =1 —
¢

1
FG =7 =0382..

1
JG =’;7 =0,236...

These “golden relations” determine, for example, the proportions of the ancient
mask of Hermes (Medusa), shown in Fig. 5.2. It is a wonderful Roman marble after
Greek original, 1st century BC. , pertaining to the artistic collection of the Glyptothek,
Munich, Germany.

Innumerable are the references to the apparition of the Golden Mean ¢ in the
proportion systems adopted by antique civilizations in their constructions, as well as its
presence in the human body proportions and in Botany. Among the many authors that
_ have dedicated their researchs to this subject, we have to mention Matila Ghyka [5], [6]

“and [7], H. E. Huntley [8] and Theodore Andrea Cock, whose book [9], published in
1979, is a reprint of the original published by Constable, London, England, as early as
1914.

Instead, the Silver Mean is linked to octogonal symmetry, as it is shown in Fig.
5.3. “Silver relations” have been found in many examples, coming from quite different
fields of human knowledge. In particular, the mathematician Jay Kappraff [4], at the
conference Nexus’96: Relations between Architecture and Mathematics, that took place
in Fucecchio (province of Florence) in June 1996, carried out a carefully analysis of the
three architectonic proportion systems presented by P. H. Scholfield in his excellent book
[10]. These three proportion systems are the following

1) the system of musical proportions used during the Italian Renaissance, developed by
Leon Battista Alberti [11];

2) the Modulor created by the twentieth-century architect Le Corbusier [12] and

3) the Roman proportion system.

The musical system was based on rational proportions inherent in the musical
scale. Although it succeeded in creating harmonic relationships in which key proportions
were repeated in a design, this system did not have the additive properties necessary for a
successful proportion system. Notwithstanding, the very well known contemporary
Modulor that is based on the Golden Mean ¢ , and the ancient Roman proportion
system, based on the Silver Mean, both conform to the relationships inherent in the
system of musical proportions, with the great advantage of having additive properties.

Unlike the Renaissance system, which used a static sequence of commensurable
reatios to proportion the length, width and height of rooms, Le Corbusier’s system
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developed a scale of lengths based on the irrational number ¢ , through a GSFS and
geometric sequence:

a
cees T2

¢

2 3
,a,ap,adp”,ad’, ..

© | Q

for some convenient unit a, directly determined by ergonomic reasons. In general, the
ratios involved in this system are incommensurable and Le Corbusier, in his designs,
used an integer GSFS approximation, that is a Smarandache sequence. More details
about this proportion system may be consulted in References [13] and [14].

Now, we are going to consider in detail the third proportion system. With this
purpose, let us consider a couple of sequences

1 3 7 17 41 ...
(5.1) 1 2 5 12 29 70 ...
such that
“(5.2) Af+2)=2A(n+1)+AMm).

These sequences satisfy three additive fundamental properties: in addition to relation
(5.2) they obey the following numerical relations

7=23+1;17=27+3; ..
5=22+1;12=52+1; ...

and

7;5+12=17;,12+29 =41, ..

2+5=
=5,5+7=12;12+17=29;29 +41=70; ..

2+3

Furthermore,the ratios of diagonally adjacent terms of the sequences (5.1) are
aproximants to V2

1

s T

=
19, =

13 7
5.3 - ==
( J) 172’5’

But since the sum of any couple of numbers of the upper sequence, is not
represented in this system, we may expand it adding a third sequence obtained by
duplicating the terms of the lower sequence

2 4 ' 10 24 58 ...
(5.4) 1 17 41 ..
1 2 5 12 29 70 ...

L)
~J
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Finally, the Roman architectonic system utilizes the following incommensurable
schema based on the Silver Mean, which is equivalent to the commensurable system
(5.4)

22 2120y 242047 24204

(5.5) 2 2Gag 264g 2Gag
\[2— '\/EGAS V/EGAgz A ‘\/’5(5_.\83
1 Cag Gag Cag

This system holds all the additive relations of sequences (5.4), as it is easy to
prove. Donald and Carol Watts [15], a couple of american architects, have carefully
studied the ruins of the Garden Houses at Ostia, the city-port of the Roman Empire and
they found that all these houses have been designed using theoretically the proportion
system (5.5) and practically, its integer approximation (5.4). These are not the only
examples of the antiquity where the Silver Mean is present, since the italian-american
architect Kim Williams has found similar results while surveying:

1) the pavement of the baptistery of San Giovanni, Florence, Italy [16],

2) Verrocchio’s Tombslab for Cosimo de’ Medici, patriarch of the wealthiest of
Florentine families [17] and

"3) the famous Medici Chapel in Florence, Italy, built by Michaelangelo [18].

6. FRACTAL STRUCTURES OF ST. GEORGE

Alan St. George is a British retired architect, living in Portugal and dedicated to
the creation of mathematical sculptures. In december 1995 he presented at Lisboa his
exposition “La forma del mimero” [19]. His originals are fabricated with acrylic or
metallic plates and they can be reproduced by computerized graphics. The generation of
these original structures is based on the fractal principle of adding to each one of the five
platonic solids — tetrahedra, cube or hexahedra, octahedra, dodecahedra, icosahedra --
" reduced versions of the same solid. In"such a way, adding in each iteration auto-similar
versions of the original structure, the result are fractal variations of regular solids.

For example, to convert a cube in a fractal octahedra, we begin with a cube
which faces are. divided in nine equal squares, as indicated in Fig. 6.1. Then, we bild a
cross with six smaller cubes, which faces are of the size of the above mentioned squares.
Five of these cubes are located in form of a “greek cross” and the sixth is put over the
central cube, forming a sort of stepping pyramid. The construction goes on sticking one
of such units over each face of the original cube. Then, each of the faces of the resulting
structure is subdivided in nine even smaller squares, over which we stick more reduced
copies of the stepping pyramid.

It is also possible to fractalize an octahedra and obtain a tetrahedra or a cube, like
the mathematician Tan Stewart suggested in an interesting paper [20]. And why not? It
would also be feasible to apply this fractalization process to semi-regular solids, a task
that has not been focussed yet ...

35



Another variant of St. George consists in constructing three-dimensional spirals,
starting also from the five platonic solids. In particular, let us consider the icosahedra of
pentagonal symmetry (Fig. 6.2), which main characteristics we detail in what follows

Faces: 20 Vertices: 12 Edges: 30
Edge length: 1
Distance from the polyhedra centre to the face centre: ¢/ 24/3=10,7558...
Distance from the polyhedra centre to the edge mid-point: ¢ /2 =0,8090...
Distance from the polyhedra centre to a vertex: 5 \/; /2=0,9511...
Volumen: 5¢>/6 =2,1817...

Starting with an icosahedra, it is possible to construct the so called “icosahedrical
spiral”, following a path that passes through the twelve triangular edges of the
icosahedra, visiting each vertex once and only once (Fig. 6.3). The construction 1s
fulfilled by means of a sequence of “legs” ,which correspond to the twelve edges of the
icosahedra. Each leg is connected to the previous one and is parallel to an edge. But the
successive legs have different lengths: each of them has ¢"'* = 1,040916... times the
. length of its antecessor. The answer to the question: why this strange figure?, is that
after having added twelve edges to a given one, the last edge is parallel to the original,
" having increased its length in (67" )2 = ¢.

Obviously, the choice of the Golden Mean ¢ in the construction of the
icosahedrical spiral of St. George, obeys to mathematical as well as purely aesthetic
reasons. In any case, it is impossible to deny the underlying mathematical reality inherent
to a pentagonal symmetry so directly related to the Golden Mean ...

7. INFLATIONARY SYSTEM

We may consider that the terms of the different GSFS that define the Metallic
Means family, can be ordered in generations in such a way that each generation
“inherits” a property from his antecessor. This type of inheritance is completely normal
in iterative processes and frequently, produces auto-similar structures that are the base of
fractal configurations [20]. Let us denote such processes as “inflationary”, using an
usual noun in Economy.

Let us consider two types of building blocks 4 and B that are distributed
according to the inflation schema

S P =5 p S P
where 7 and n are integers; p > 2. S;" represents m adjacent repetitions of the stack S; .

It is easily proved that the Golden Mean ¢ is generated by the recurrence relation
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It is easily proved that the Golden Mean ¢ is generated by the recurrence relation
Sou =5,55,,
that is,
S, ={A4};S, ={BA4},S; ={ABA};S, ={BAABA};...
in which each term is the “sum” ofits two immediate antecessors.
The Silver Mean, instead, is generated by the recurrence relation
S,n =S5,4 Sz,

S, ={4};S, ={BA4};S, ={ABABA};S, ={BAABABAABABAY};...

such that each term of the chain is formed by writing contiguously two replicas of the
precedent term and adding its antecessor to the left of the replicas.

In the case of the Bronze Mean, the relation 1s

S,a =S4 S; ,

S, ={4};S, ={BA};S, ={ABABABA},S, ={BAABABABAABABABAABABABAL; ...

For the Copper Mean, we have the relation
S,u =Sp_f S,

S, ={B};S, ={4};S; ={BBA};S, ={A4BBA};...

And for the Nickel Mean
RS =SI,_,3 S,

S, ={B};S, ={4};S; ={BBBA};S, ={AAABBBA};...

Finally, we may assert
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PROPERTY Nr. 4 OF THE METALLIC MEANS FAMILY
All the members of this family are obtained through an “inflationary schema” that

produces a binary chain originated by two primitive blocks 4 and B that are distributed
according to the inflation schema

S,u =5,47 S8,

where m and n are integers and p > 2.

8. THE HYPERBOLIC MAP

In analyzing dynamical systems -- that is, physical systems which behavior
“changes with time — it is crucial to detect periodic orbits. This periodic behavior, as well
" as the transition to quasi-periodic orbits, is mathematically studied considering irrational

values of some characteristic parameter and, in such a case, as the important fact is the
“irrationality” of such a value, the integer part is omitted and only the decimal part of
the number is taken into account. More precisely, the main subject is restricted to the
analysis of maps (transformations) of the unitary interval (0,1) in itself.

Returning to the continued fraction expansion, there is another possibility of
expressing the continued fraction expansion of a positive real number o < 1. Let us put

1
=y and apply the iterative process described by the following relation

. -1
(8.1) x, =———
mant x,

where mant x means “mantissa of x” and is the rest of the number x when it is taken
modulo 1, that is, when one substracts as many times 1 as possible.

E.g. mant ©=0,1416...; mant ¢ =0.618...

Then we may state that the continued fraction expansion of the number a is

(e k]

where E_ , the so called “floor function” by Manfred Schroeder [21], is the biggest
integer not greater than x,. .
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Notice that:

mant ¢ = 1/¢
or
1 -
mant ¢ =———— =[0,11,..] =[o0,1]
I+
1 +—
14-.

The iterative process (8.1) is called the “hyperbolic map” [22]. This map is very
simple to execute if the number x is given as a continued fraction expansion:

In each iteration move all the terms of the expansion x = [a0 ,a,,a, ,] one place to
the left and leave out the first coefficient of the expansion.

In Fig. 8.1a we show the iteration of the hyperbolic map, starting from the
number x = = and in Fig. 8.1b the ordered sequence of 200 points is depicted. The
“'same procedure have been applied to the hyperbolic map starting from the number e (see
Figs. 8.2a y 8.2b) . It is highly interesting to compare in both cases the graphics 8.1a and
8.1b as well as 8.2a and 8.2b: notice how the 200 points of the hyperbolic map ordered
themselves when in reality, they are following a completely chaotic' [24] trajectory!

Obviously, being the continued fraction expansion of the Golden Mean a purely
periodic expansion, it is a “fised point” or an “equilibrium value” of the hyperbolic
map, through all the iterations. That means that if the initial value is A(0) = a, then 4(k) =
a is a constant solution to the iterated dynamical system, for all values of &.

The same happens with all the members of the family that have a purely periodic
continued fraction expansion. In the restant cases, where the continued fraction
expansion is only periodic, we have also fixed points of the hyperbolic map, since leaving
aside the first iteration, then the obtained value is invariant.

In fact, we have depicted in Fig. 8.3 the hyperbolic map starting from the Golden
Mean ¢ and in Fig. 8.4 the hyperbolic map starting from all the others Metallic Means
we have already considered. As is easily seen, they appear as fixed points of the
hyperbolic map. We have taken 50 digits and 1,000 iterations.

In concluston, we may assert

! “Chaotic™is a process with respect to its dynamics, that is, when it is not possible to adventure any
prognosis about its future evolution, since very similar initial conditions produce behaviors of the system
that differ enormously among them.
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PROPERTY NR. 5 OF THE METALLIC MEANS FAMILY

Since the continued fraction expansions of the Golden, Silver and Bronze Means
are of the form [i], [?:] [3], respectively, these numbers are “fixed points” of the
hyperbolic map. For the restant members of this family, that possess periodic
continued fraction expansions of the form Ez ,-;7], being all the terms (with the
exception of the first) equal to n, we have also fixed points of the hyperbolic map.

NOTE: Of course, the number of members of the MMF that satisfies Properties 1, 2, 3,
4 and 5, is infinite, since we could add to the above mentioned irrational numbers, all the
irrational numbers which continued fraction expansion is purely periodic of period 1,
such as for example

5 +J29 7 /53
2 2

[]=1+20¢;F]= ;6] =3 +V10;[7] =
~ as well as all the possible combinations of continued fraction expansions of the form
[n, p], with n natural and p an uneven number:

;B]=4-hﬁ7;...

R

The rest of the members of the family are integer numbers with continued
fraction expansions [#,0] or else numbers with continued fraction expansions that

include “stable cycles” obeying certain regularity rules that will be published elsewhere.
Some of them are

1473
2

2,13 —[321,25]

=[4,132,1123,1,7}

9. QUASI-CRYSTALS: FORBIDDEN SYMMETRIES

Among the many problems in Physics, Chemistry, Biology and Ecology where
the members of the MMF appear, one of the most striking is the structure of a quasi-
crystal. The most symmetric, regular and periodic of all real entities, are the “crystals”.
At the opposite end of the scale, we have the disordered or amorphous substances, like
the “glasses”.

100



To distinguish between a crystal and a glass let us consider that a real crystal can
be modellized putting an atom or a molecule at all the vertices of a regular triangular,
cuadrangular or hexagonal lattice, lattices that have symmetries of order 3, 4 and 6 (Fig.
9.1). In such a way, the problem of matter structure is reduced to one of pure geometry.
This was the state of the art until 1984, when Schechtman et al. [25], [26], registering
diffraction schema of electrons in an alloy of Aluminium and Manganese quickly cooled,
found in cutting with planes forming determined angles, pentagonal symmetries of order
5, wholly impossible in a crystal since it is, obviously, impossible to tessellate the plane
with regular pentagons.

These configurations with pentagonal symmetry, that possess a quasi-periodic
spatial structure, were called “quasi-crystals”. And they are really a new solid state of
matter!

What is extremely interesting is the fact that the projections were taken cutting
with a plane which slope with respect to the ground was equal to the Golden Mean ¢.

Starting with this discovery, there appeared another quasi-crystals with other
forbidden symmetries. E.g. the Silver Mean o4, = 1 + V2 = [ 2 ], generates a quasi-
- crystal with a forbidden symmetry of order 8 (see [27], [28]), while | 4 1= ¢.° appears
in another forbidden symmetry, of order 12 (see [29]). Both symmetries, have been
empirically detected.

In particular, Gumbs, Ali et al., in various highly interesting papers [30], [31],
[32], [33] and [34] studied electronic, optical, acoustic and super-conducting properties
of quasi-periodic layered systems. For that purpose, they constructed geometric one-
dimensional models of a new type of quasi-crystals devised taking as basis GSFS. They
were interested in these quasi-crystals because of their important physical applications,
i.e. the problem of light transmission through a multi-layered medium. Among their most
remarkable experimental results, they found fundamental differences in the behavior of
Metallic Means which continued fraction expansion is purely periodic (the Golden Mean,
the Silver Mean and the Bronze Mean) and the Metallic Means with only periodic
continued fraction expansions (the Copper Mean and the Nickel Mean):

1) In studying the electronic properties of a GSFS lattice, it was found that the trace
maps of the Golden, Silver and Bronze Mean lattices are volume-preserving (non-
dissipative) while those of the Copper and Nickel Mean lattices are volume-non-
preserving (dissipative).

2) In investigating the magnetic excitation spectra of a Nickel-Molybdene GSFS lattice,
it was found that only in the case of purely periodic continued fraction expansions, the
whole spectrum is self-similar. In the case of periodic continued fraction expansions, only
some parts of the whole spectrum are self-similar.
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3) In considering quasi-periodic quantum Ising models in which the exchaige interaction
follows a GSFS, it was proved that in the case of dissipative maps (Copper and Nickel
Mean lattices), the spectral properties are directly determined by the attractor of the
map. And that the Copper and Nickel Mean lattices can be classified as between quasi-
periodic and random, with the Nickel Mean more random than the Copper Mean.

10. CANTOR SPECTRA IN CRITICAL STATES

In 1919, the brilliant mathematician Félix Hausdorff published a fundamental
paper on the concept of “dimensién” of a set. This paper opened the possibility of
constructing sets with non integer topological dimension! The topological dimension
corresponds to the common meaning of the word “dimension” and is an integer: it is
zero for a point, one for a straight line, two for a certain portion of the plane and three
for any body in space. But evidently, the curves, surfaces and volumes may be so
complex as to make it necessary to differentiate among them, taking into account how
quickly the length, the surface or the volumen vary with respect to measure scales each
time smaller. This notion established the base to define the “fractal dimension”,

introduced by the polish mathematician Benoit B. Mandelbrot [35], [36].

Mandelbrot defined a “fractal” as a set with a Hausdorff dimension greater or
equal to its topological dimension. It can be stated that the concept of dimension he used
was a simplification of Hausdorff dimension.

The notion of self-similarity is strictly related with the intuitive concept of
dimension. A segment may be divided into N equal sub-segments, each of which is in a
relation & = 1/N with the original segment (Fig. 10.1). Analogously, in dividing a square
into N equal sub-squares, obviously self-similar, we have a relation &= 1/N*? with the
complete figure; this ratio is € = 1/N'® in the case of a cube and & = 1/N° for a D-
dimensional object. Then '

e =1N.
Taking logarithms in both members, we get
Dln g=-In¥,

from where we get the fractal dimension D:

InN

(10.1) “n(1/2)

We shall apply this formula to calculate the fractal dimension of the famous
“Cantor ternary set”, that is the most ancient known fractal. It was introduced by the
german mathematician Georg Cantor (1845-1918), who is considered one of the

102



founders of set theory. To construct this set, let us begin with a given segment that is
divided into three equal parts (Fig. 10.2) and leaving aside the middle third. Then the left
and right thirds are again divided in three equal parts and the middle third is left aside.
The process is repeated until after many iterations, we get discrete points that form the
so called “Cantor powder”. If we take the initial length equal to unity, after three
iterations, we shall have 2° = 8 segments, each of them of length 37 = 1/27. After n
iterations there will be 2" segments, each of length 3™ The total length of the restant
segments is equal to (2/3)", a quantity that tends evidently to zero when r tends to
infinity. This implies that the fractal dimension of the Cantor ternary set is

D InN In2"
TIn(l/e) In(1/3™

=0,6309...

This value is an irrational number, being nearer from one than from zero, and this is, in a
certain sense, a measure of its irregularity.

M. S. El Naschie has carefully analyzed the relations existent among the
Hausdorff dimension of Cantor sets of higher order and the Golden Mean and the Silver
Mean [37], [38]. In particular, in Reference [39], he proved five important theorems,
" three of them main theorems (Bijection Theorem, Theorem of the Golden Mean and
* Generalized Fibonacci Theorem) and two auxiliary theorems (Silver Mean Theorem and
Arithmetic Mean Theorem). These theorems are related to the notion of KAM
instability* and the global chaos in hamiltonian ( that conserve the energy) physical
systems.

Indeed, certain members of the MMF play a very important rol in relation to the
stability of some orbits in the »-dimensional phase space. For example, it is a very well
known fact that orbits with a “winding number” equal to the Golden Mean are the most
stable - the winding number measures the mean displacement of a certain angle at each
iteration of a discrete dynamical system. Furthermore, the connection between the
hyperbolic map and more general dynamical systems, is closely related to period
duplication and the Golden Mean route to chaos. The empirical finding of period
duplication in a certain physical phenomenon, as well as the existence of certain irrational
ratios that produce the onset to chaos when this ratio is equal to the Golden Mean, are
very well known in modern References (see References [3] and [21]).

The forbidden symmetries we have already encountered in analyziung quasi-
crystals, like the symmetries of order eight and twelve, may also be generated by Cantor
multiplicative sets of higher order, together with the Golden Mean [40].

*Kolmogorov (1954), Amold (1963) and Moser (1967). proved what is today known as KAM theorem.
This theorem states that the motion in the phase space of Classical Mechanics is neither completely
regular nor completely irregular. but that the sort path depends sensibly from the initial conditions..
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Comparing the terms of the secondary Fibonacci sequence (3.1), with the ternary
Fibonacci sequence, defined by the relation

(102) Bn+1 = Bn-Z + Bn—l T Bn >

like it is indicated in the following table:

n{112}13|4(5] 6 7 8 9
F,|l1}11{2}13}5] 8 13 | 21 | 34
B, |1 |1 ]2{4|7]13]24]44] 3l

it is easy to verify that for the first sequence, F, and r are equal only when 7 = 5, while
for the second one, B, and n are equal only when n = 4. These type of states is normally
used to modellize some forms of ergodic’ behavior of physical systems and they can be
considered as “ergodic-type states”. The connections of this research with statistical
mechanics, classic as well as quantum mechanics, as is proved by El Naschie [41],
determine the existence of two types of quasi-ergodic Cantor sets:

"-a) an even set of four dimensions, that describes the behavior of classical particles and
- bosons” ;

b) an odd set of five dimensions, related with fernzions’ and with the pentagonal
symmetry of quasi-crystals.

11. TIME IRREVERSIBILITY

Tlia Prigogine is, without any doubt, one of the most important scientists of this
century. He awarded the Nobel Prize in Chemistry and nowadays, he is the leader of a
brilliant research group at the Free University in Brussel, Belgium. The fundamental
question of time irreversibility and its consequences in science philosophy, has been one
of his main preoccupations.

The basic laws in Physics, from newtonian Mechanics to the generalized relativity
theory of Einstein, as well as the present theories for the elementary particles, satisfy all
the hypothesis of time reversibility.

* In Dynamics, it is a very important problem to be able to describe the path of a particle in space. If the
particle is limited to move inside a limited domain of space, it is essential to know if the path fills out
all the space with an uniform distribution in a sufficiently long time. Such paths are called “ergodic”
and to postulate their existence is a fundamental problem in classic Dynamics as well as in Quantum
Mechanics.

* Bosons are eiementary particles with a “spin™ or angular momentum that is an integer multiple of
Planck s constant. Photons and mesons are bosons.

S Fermions arc elementary particles with a “spin” that is a half-integer multiple of Planck’s constant.
Electrons, protons and neutrons are fermions.
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As Einstein stated: “the distinction among past, present and future, is only an
illusion”. However, time seems to flow in one sense. How is it possible to reconcile the
fundamental statement with the empirical fact?

In his recently appeared book [42], Prigogine considers this question and the
finding of an answer obliges him to revise and restate all the Physics, starting from
Epicur’s dilemma for whom the problem of the intelligibility of nature is undetachable
from men destiny.

Together with Prigogine and other scientists, El Naschie proposes a solution
valid for classical Mechanics as well as for Quantum Mechanics [43]. The solution
consists in the introduction of the notion of a “cantorian” (from Cantor) space-time, in
which time behaves statistically and is completely undistinguishable from the restant
three space coordinates. What is really remarkable of this Cantorian space-time is that
applying all the probabilistic necessary laws, the values of Hausdorff dimensions are
intrinsically linked to the Golden Mean ¢ and its successive powers, like ¢° =[2,1] and

¢’ =[4] (see Reference [44])!

Obviously, Hausdorff dimension, being an intermediate measure between volume
“and dimension, plays in this new theory a preponderant rol as a linkage between
dimension and information. We may as well conjecture a relation between the
irrationality grade and the information content, since when the dimension is equal to the
Golden Mean ¢ - the most irrational of all irrational numbers -- the information
content is the largest possible.

12. CONCLUSIONS

We have already verified how the MMF is closely related to the transition from a
periodic dynamics to a quasi-periodic dynamics, as well as to the onset from order to
chaos and with time irreversibiity.

But simultaneously, since the beginning of humanity, there have been
philosophical, natural and aesthetic considerations that have had primacy in the
establishment of proportions based on some members of this family. They appeared more
or less explicitly in the sacred art of Egypt, India, China and Islam and other ancient
civilizations. They have dominated greek art and architecture, they persisted concealed in
the monuments of the Gothic Middle Ages and re-emerged openly to be celebrated in the
Renaissance.

Summarizing, we can state that wherever there is an intensification of function or
a particular beauty and harmony of form, there at least the two first members of the
MME, e.g. the Golden Mean and the Silver Mean, will be found. If the restant members
of this family are also involucred in these considerations, future researchs will give the
answer.
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Such a wide range of applications where the members of the MMF are present,
opens the road to new inter-disciplinary investigations that undoubtedly will clear up the
existent relations between Art and Technique, building a bridge linking the rational
scientific approach and the aesthetic emotion. And perhaps this new perspective could
help us in giving Technology, from which we depend each time more and more for our
survival, 2 more human character.
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FIGURE CAPTIONS

Fig. 5.1: Golden relations in a pentagon or unity side.

- Fig. 5.2: Golden divisions in an ancient mask of Hermes.

Fig. 5.3: The Silver Mean in a regular octagon.

Fig. 6.1: Fractalization of a cube.

Fig. 6.2 Iéosahedron.

Fig. 6.3: Icosahedrical spiral.

Fig. 8.1a: Hyperbolic map starting from =.

Fig. 8.1b: Ordered sequence of 200 points for the hyperbolic map of Fig. 8.1a.
Fig. 8..2a: Hyperbolic map starting from e.

Fig. 8.2b: Ordered sequence of 200 points for the hyperbolic map of Fig. 8.2a.
Fig. 8.3: Hyperbolic map starting from the Golden Mean.

Fig. 8.4: Hyperbolic map starting from the other Metallic Means.

Fig. 9.1: Regular tilings for tessellating the 'plane.

Fig. 9.2: Cantor “powder” set.
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Fig. 6.2
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> x:=evalf(P); .
> R: ={seq(H(),i=1..1000}};
> plot{R,0..1,0..1,style =POINT);
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Fig. 8.1a

>
> R2:=[seq{H(),i=1..200}]
> plot{R2,0..1,0..1 ,style = LINE});
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> x: =evalf(E);

x :=2.7182818284590452353602874713526624977572470937

> R: =[seq{H(},i=1..1000}]:
> plot(R,0..1,0..1,style =POINT};
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> R1:=[seq(H(},i=1..200)]:
> plot(R1,0..1,0..1,style=LINE);
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>

> Digits: =50;

> x:=evalf({1 +sqrt(5)}/2};

> F1:=array(1..1000);

> H1:=proc{);

> ifi=1 then F1[i]: =frac(x) else F1[i}: = frac(1/frac(F10i-1}))
> fi; '
> end;

> R1:=[seq{H1(),i=1..50}];

> R3:=[R1[2..49]];

> with{plots):

“> RP: =plot(R1,0..1,0..1,style=POINT):

> RP3: =plot(R3,0..1,0..1,style = POINT):

> display({RP,RP3});
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Fig. 8.3
114 g



0.2{

061 -

0.4} .

0.2

115

Fig. 8.4

0.8



>
2>
S

Fig. 9.1

‘0
0
L
1 2
0 3 H
I
0 i 2 3 [ 7 8
] 9 9 9 9 9
I3
0L 2 3 5" 18 2 1B 1 n 247 25 28
27 27 17 27T 27 17 7 2T T 27 27 T2

Fig. 9.2

116




The equations m-S(m) = n-S(n) and m-S(n) = n-S(m)
have infinitily many solutions

Vasile Seleacu, Constantin A. Dumitrescu

University of Craiova, Department of Mathematics,
A.l.Cuza street 13, (1100) Craiova, ROMANIA

Letbe S: N'— N the Smarandache function.

S(n) = min {k|n<qkl)
where <, is the order generated by:

=gc.d.

<woad

=s.cm.
on set N.

d
It is known that 4/, = (N ',;\,v) is a lattice where 1 is the smallest element and 0 is the

biggest element. The order < is defined like in any lattice by:

d
n<,m & nAm=n < pvm=m
d

or, in other terms:
ns,m < njm.

Next we will study two diophantine equations which contain the Smarandache

function.

Reminding of two of the features of Smarandache’s function which we will need

further-

1. Smarandache’s function satisfies:

S (mf/n) = max{S(m),S(n)}
2. To calculate S(p®):

2.a.  we will write the exponent in the generalized base [p] definite by the
sequence with general term:



2.b.

~. Proposition:

Proof

p -1
a,(p)= o1
who satisfies:
a.(p)=p-a(p)+1
that is:

1 a,(p),a,(p).-..
the result is read in the standard base (p) definite by the sequence:
b(p)=rp'
who satisfies:
b..(P)=p-b(p)
that 1s:
(o) Lp,p*.p’

the number obtained will be multiply by p.

The equation

mS(m)=nS(n) W

has infinity many solutions in the next two cases:

1. m=n- obvious
2. m>nwith m=d-a, n=d-b satisfying m/;n=d, d{i\azl,

d Qb > 1 and the dual of this condition for m <n.

The equation

2
mS(n)=nS(m) @)

has infinity many solutions in the next two cases:

1. m=n- obvious
2. m>nand man=1
d

Let’s consider m > n. We distinguish the next cases:

1. m;xn:l thatis (m,n)=1.

Then from equation (1) we can deduce: m<, S(n); then m< S(n). But S(n)<n

for every n and as n < m we get the contradiction: S(n) <m.
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For the equation (2) we have: m<, S(m) > m<Sm)y=>m=8Sm)=>m=4orm

15 a prime number. If m = 4 the equation becomes:
4-S(n)=4-n = n=S5(n) = n=4ornis a prime number
So in this case the equation has for solutions the pairs of numbers:
(4,9), (4,p), (04, (p,q) with p,q prime numbers.

. Ifm/d\nzd¢l, SO:
m=d-a
{n:d-b , cua/’}bzl
the equation (1) becomes:
a-S(m) = b-S(n)
From condition m > n we deduce:

a>b

We can distinguish the next possibilities:

a) d{‘\a: 1, d/;b-—-l
If we note:
p=38(m), v==5(n)
we have:
u=S(m)=8(d-a) = S(d¥a)=max(S(d),S(a))
v=S(n) =S(d-b)= S(d ¥V b) = max(S(d),S(?))
and the equation (1) is equivalent with:
m_Sm e v
n Sm T b u
From (5) we deduce for 4 and v the possibilities:

al) u=5(d), v=_5(d), thatis:
S(d)= S(a) and S(d)=S(b)
In this case (6) becomes:

a
Z=1 - false
a2) u=5(d), v=35(b), thatis:
S(d)=S8(a) and S(d) <S(b)
In this case (6) becomes:
a_3@ _
5@ = aS(d)=5bS5(b)
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But anb =1, so we must have:
d

as<,S(b) so a<S(b)

and in the same time: _
S(b) < b <a - contradicts (7)

a3) u=S(a), v=3(d) thatis:
S(a)> S(d) and S(d)=S5(b)

In this case the equation (6) is:
a S(d)

b S(a)
that is:

a§(a) = bS5(d)

Thenfroma/;b=1 => a<,8(d) and 5<, S(a). So:

S(a)<a < §(d) - contradicts (8)

a4) u=S(a), v==5(b)
In this case the equation (6) becomes:
a S(b)

—=——-with a/d\bzl

b S(a)

and we are in the case 1.

For the equation (2) which can be also write:

aS(n)=5bS(m)
thatis: av=>bu
4 in the conditions al) it becomes:
a=> - false
4 1n the conditions a2) it becomes:
aS(b) =bS(d)

and as ax;b:l we deduce:
a<,8(d), b<,5().
So 6<8(b), thatis b=S(b),so b=4 or b=p - prime number

and the equation becomes:
a=35(d)

and as S (d)/;d >1 we obtain the contradiction:

and>1
4

+ in the conditions a3) it becomes:
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aS(d) _ bS(a)

and because a/;b =1 we must have a <, S(a) that is a = S(a).

So the equation is:
S({d)=5
As d/d\S(d) >1 it results d;\b> 1 - false.
¢ in the conditions a4) the equation becomes:
aS(b)=5b5(a)
that 1s the equation (2) in the case 1.

b) d/d\a>1 and d/;b:l
As (1) is equivalent with (4) from a/;b =1 1t results:
a<,S8(n) and 5<, S(m)
From the hypothesis (d na> 1) it results:
S(m) = S(a-d) = max{S(a),S(d)} (1)

Ifin (11) the inequality is not top, that is:
S(m) = max{S(d),5(a)}

and as
S(n) = max{S(d),5(b)} (12)
~ we are in the in the case a). Let’s suppose that in (11) the inequality is top:
S(m) > max{S(a),S(d)}
It results:
S(m) > S(a) ‘ (13)
S(m)>S(d) (14)

Reminding of (11) we have the next cases:

b1) S(n) = S5(d)
The equation(4) becomes:
aS(m) =bS(d)
and from a > b it results S(d) > S(m) - false (13).

b2) S(n)=S(b)
The equation (4) becomes:
aS(m)=bS(d)
As ged(a, b)=1 itresults a<, S(b) so a<S(b) - false because
S()<b<a.

c) d/;azl and de>l
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S(m) = S(d-a) = S(d¥Va) = max{S(d),S(a)}
S(m) = §(d-b) 2 max{§(d),S(b)}
If the last mequality is not top, we have the case a). So let it be:

S(n) > max{§(d),5(b)},
that is:
S(n)> S(d)
and
S(n)> S(b)

cl) S(m)= S(d), thatis S(d) > S(a) . The equation becomes:

(15)

(16)

aS(d)=bS5(n)
We can’t get a contradiction and we can see that the equation has solutions
like this:
m=p®-a
n=p=

So b= p*,d=p®. The condition a > b becomes a > p*. We must have also

a/‘}p“ =1, thatis a{l\pzl.

The equation becomes:
pia-S(p*)=p*”S-(p*™%)
It results:
o250 e+, _Pr(@+X),)e .
S*) Pl ) (@)
We can see that choosing « this way:
(@) =P = (10&;-_9)(1:) = a=a,= (192;;9)[1:1 =a..(P)

X times x times

we get:
a=((a+x),), N

We must also put the condition anp= 1 which we can get choosing

convenient values for x.

Example: For n=3 we have: _
(3 1,3,9,27, ..
[31: 1, 4, 13, 40, 121, ...

Considering x = 2 we get (from condition (&), =P"):
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(@) =3"=3" =100, = a =100, =13 =
a=S8(p™*)=8(3?*)=S3Y) = (154 =102, = 11

So, (m=3"-11, n=3")is solution for equation (1).

Equation (2) which has the form:
aS(n)=5bS(d)

has no solutions because from a > b = S(d) > S(n) - false.
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On The lrrationality Of Certain Alternative
Smarandache Series

Sandor Jozsef

4160 Forteni No. 79. R-Jud. Harghita. ROMANIA

1. Let S(#2) be the Smarandache function. In paper [1] it is proved the irrationality of

S(n) ) ) . )
> e We note here that this result is contained in the following more general

. on=1

theorem (see e.g. [2]).

Theorem 1 Let (x,) be a sequence of natural numbers with the properties: (1) there
exists 7, € N° such that x, <n for all n>n,; (2) x, <n—1 for an infinity of #,

(3) x,, > 0 for infinitely many m. Then the series ZF is irrational.
n=1

2
By letting x = S(n), it is well known that S(n)<n for n>n =1, and S(n)<—n
J

: 5 :
for n>4, composite. Clearly, —n<n—1 for n>3. Thus the irrationality of the
2

second constant of Smarandache ([1]) is contained in the above result.

w811
n!

2. We now prove a result on the irrationality of the alternating series 7( D

n=t
We can formulate our result more generally, as follows:

Theorem 2 Let (a,),(b,) be two sequences of positive integers having the

following properties: (1) nlaa,...a, foral n>n, (n, eN); (2

n+l

nzny, (3) b, <a where m2n, is composite. Then the seres

m?>

- b . o
Z(—l)" ' —— is convergent and has an irrational value
aa,...a

_ b, -
Proof: 1t is sufficient to consider the series 7( 1)""'———=—— The proof is very
aa,...da

=, Tt

e . b,
similar (in some aspect) to Theorem 2 in our paper [3]. Let x, = ————— (n2#,).
. ad,...d

T



Then x, < -~ — 0 since (1) gives a,...a, 2k — % (as k = ). On the other

1=

a
hand, x,,,<x, by the first part of (2). Thus Leibnitz criteria assures the
convergence of the series. Let us now assume, on the contrary, that the series has a

: a . .
rational value, say rE First we note that we can choose 4 in such a manner that k+1

a ca
= . Le
p-1 cp-1
c=2ar’+2r, where r is arbitrary. Then 2a(2ar® +2r)+1=(2ar +1)?, which is
composite. Since r is arbitrary, we can assume & > #,. By multiplying the sum with

is composite, and & >#,. Indeed, if k+1=1 (prime), then t

a,a,...a, , we can write:

. .

a,...a a,...a b b

a 1 Kk - 2 :(_1)n—l 1 & -b" _*_(_l)t( k+1 _ k+2 +-“) )
k n=n, al i an ak+] ak+lak+2

The alternating series on the right side is convergent and must have an integer

.. ) ) b,. b b
value. But it is well known its value lies between == ——*2 __ and -1 Here
oy Qs i
bk+l bk+2 ~ blc«ﬂ . :
- >0 on base of (3). On the other hand <1, since k+1 1s a
iy Qs i

composite number. Since an integer number has a value between 0 and 1, we have
obtained a contradiction, finishing the proof of the theorem.

> S
Corollary (- 1)""—(2)— is irrational.

n=1 n!

Proof: Let a, = n. Then condition (1) of Theorem 2 is obvious for all #; (2) is valid
with 1y =2, since S(n)<n and S(n+1)<n+1=(n+1)-1<(r+1)SH) for n>2 .-

: 2 .. . :
For composite m we have S(m) <—m <m, thus condition (3) is verified, too.
D
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Some Elementary Algebraic Considerations
Inspired by Smarandache Type Functions

E. Radescu and N. Réadescu
University of Craiova, Department of Mathematics,
1100 Craiova, Romania

The basic ideea of this paper is the algebraic construction of some func-
tions representing prolongations of the Smarandache type functions to more
complete sets already known and having specified properties.

A. Starting from a sequence of positive integers ¢ : N* — N* satisfying
the condition

¥n € N*, Im, € N*, Ym > m, = n/o (m) (1)

(such sequences-possibly satisfying an extra condition-considered by C. Chris-
tol to generalise the p-adic numbers were called also mudtiplicative convergent
to zero; for example: o (n) = nbit was built an associated Smarandache type
function that is S, : N* — N* defined by

S, (n) = min {m, : m, is given by (1)} (2)

(For ¢ : N* — N* with o (n) = n! the associated function S, is just the
Smarandache function.)

The sequence is noted g and the associated function Sgq.

For each such a sequence, the associated function has a series of properties
already proved, from whom we retain:

Soq ([n1,na]) = max {Seq (n1) , Sea (n2)} (see [1, th. 2.2]). (3)

We can stand out:-the universal algebra (IN*, Q). the set of operations is
Q = {Vy4, po} where Vg : (_N"‘)2 — N* with Vz,y € N*,z Va ¥y = [z,] and



©o : (N*)? — N* the null operation that fixes 1-unique particular element
with the role of neutral element for ”Vy”; 1 = ey, -the universal algebra
(N*, Q) with @ = {V, 1y} where V : (N*)2 - N*,Vz,y € N, zVy =
sup {z,y} and ¢y : (N*)a — N* anull operation that fixes 1-unique particular
element with the role of neutral element for "V”: 1 = e,. We observe that
the universal algebra (N*, Q) and (N*, ') are of the same type

(Vd 900>=<V ¢'0>
2 0 2 0

and with the similarity (bijective) Vg <= V and @g <= 1} function Sp, :
N* — N* is a morphism between them.
We already know that ((N*)I , Q) with J-a some set-is an universal alge-

bra with Q = {w;, w} defined by :
un : (N x (N9 — (N%)f
with
Va = {a};c;, b= {biticr, 0,0 € (N9, wy (a,b) = {a; Va bi}ie;
and wg a null operation: e,, = {e&; =1}, (the canonical projections p;
being, of course, morphismes between ((N*)I,Q_) and (N*,Q) (see {3, th.

1.2)])).

We also know that ((N*)", Q) with @ = {61,600} defined by

6;: (N)" x (N")' — (N)!
by
Va = {ai}t,er, b={bi}ies, 0,0 € (N*)I, 01(a,b) = {a: V bi}es

and 6o - a null operation: eg, = {e; = 1},., (neutral element) is an universal
algebra and is of the same type as the above one.

With all these known elements we can state:
Theorem 1 If Sgq : N* — N* is a Smarandache type function defined by
(2), morphism between (N*,Q) and (N*, ) and I is a some set, then there
is an uhique Soq : (N = (N*)! , morphism between the universal alge-
bras ((N*)I,ﬁ) and ((N*)I,W) so that p; © Spa = Sea 0 Di, ¢ € I, where
p; : (N9 = (N*) with Va = {a:};c; € (N*), pj(a) = a;,¥j € I are

the canonical projections, morphismes between (( N+)f ,Q—’> and (N*, ), B; :
(N*)! — N*, analoguous between ((N*)I ,ﬁ) and (N*,Q).
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Proof. We use the property of universality of the universal algebra
((N*)I ,W) : for every (A, 5\) with 8 = {T’,_G_O} is an universal algebra of the
same type with (( N*)! ,ﬁ) and u; : A — N*, Vi € I, morphismes between
(A_, 5) and (IN*,(Y'), there is an unique u : A — (N *)I morphism between the
universal algebras (A, 5) and ((N*)I ,ﬁ) , so that p; ou = u;,Vj € I, with
p; - the canonical projections. A some universal algebra can be ((N*)I ,ﬁ)

because is of the same type and the morphismes from the assumption can be
u; : (N*)! — N* defined by:

Va = {a,-}iel S (N*)I s 'LL]' (a) = SOd (aj) e u; = S()d Oﬁj, V] € I,
where So¢ is 2 Smarandache type function, morphisme, as we know from
(3) and p; - the canonical projections, morphismes between ((N*)I , Q) and
(IN*, Q)(u; are morphismes as a composition of two morphismes). The as-

sumptions of the property of universality being ensured, it results that there
is an unique sgg : (N*)' — (N*)!, morphismes between ((N*)[ , Q) and

((N*)I,W) so that p; o sgg = u;,Vj € I, i.e. pjosgy =Seg0P;, Vel B

B. A sequence of positive integers ¢ : N* — N~ is called ” of divisibility
(ds.)” if: ‘
m/n =0 (m) /o (n) (4)

and ”of strong divisibility (s.d.s.)” if:
o ((m,n)) = (c(m),o(n)), ¥m,n e N", (5)

with (m,n) the greatest common factor.
The sequence s.d.s. were studied by N. Jansen; the Fibonacci sequence
defined by
Fn+1 = Fn - Fn—l with F1 = Fg =1

is a s.d.s.
Starting from a sequence g4 : N* — N* that satisfies the condition

VYn € N*,3m, € N*,VYm € N*, m,/n => nfo (m), (6)

as associated Smarandache’s function was built that is Szz : N* — N* given
by
Si (n) = min{m,, : m, is given by (6)} , Yn € N*, (7)
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having a series of already known properties from which we retain:
if the sequence 044 is s.d.s. and satisfies (6), then

Saa ([n1,m2]) = [Saa (n1) , Saa ()], Yny, ny € N, (8)

where [a, b] is the smallest common multiple of a and b (see [1, th. 2.5}).
We can stand out the universal algebra (IN*,(2) where, this time, 2 =

Vg A ;
{V4, Ad,po} of the type T = ( 2d 2" %0 > with known V, and gg (from

A) and A, : (N*)? — N* defined by
z /\dy = (fE,y) 7vx7y € N*'

It is known that then there is an universal algebra (( N*)! ,ﬁ) with I -

a some set and here Q = {w;, ws, wp} with w;, we known and wy : (N*)! x
(N*)' — (N*)" defined by:

Ak
wy (a,b) = {a; Na bi}iel ,Va = {a"i}iel , b= {bi}iel E(N) :
It can be stated the same as at A:

Theorem 2 If Sy; : N* — N* is a Smarandache type function defined by
(7), endomorphism for the universal algebra (N*, Q) and I - a some set,
then there is an unique sq - (N*)! — (N*)! | an endomorphism for the above
universal algebra ((N*)I , Q) S0 that p; © Sgqa = Saa 0 i, Vi € 1.

The analogical proof with that of th. 1. can be also done directly; the
corespondence 54q is defined and it is shown that is a function, endomorphism,
the required conditions being obviously satisfied.

Remark 1 If the initial sequence oqq isn't at all s.d.s. but satisfies (6) with
a view to the properties of the associated function, a function can be always
defined sqq : (N*)' — (N*)! that is no more an endomorphism for the given
universal algebra (( N *)I ,ﬁ) than in certain conditions or in particular cases

(see [1, th. 2.4.]).

129



C. Starting from a sequence noted g of positive integers oo : N* — N~
that satisfies the condition:

Vn € N*, 3m, € N*;Ym € N*,m,/m => n < 04 (m) (9)
are associated Smarandache type function was built, defined by:

S0 (n) = min {m,,\m, satisfles (9) } (10)

having known properties.
Standing out the universal algebra (IN*,{') when here ¥ = {V, A, fo}
with V, to known, and A : (N"‘)2 — N* by

z Ay =inf {z,y},Vz,y € N"

it can be proved the same way that there is an unique sqo : (N*)I — (N*_)I
endomorphism of the universal algebra ((N*)I ,W) so that

Diosgp = Sap 0P, Vi€ I

Above we built the prolongations s;; to more complexe sets of the Smaran-
dache type functions noted S;; (for I = {1} = s;; = S;;). The algebric
properties of the 844, for their restrictions to IN*, could bring new properties
for the Smarandache type function that we considered above.
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CONSTRUCTION OF ELEMENTS OF THE SMARANDACHE
SQUARE-PARTIAL-DIGITAL SUBSEQUENCE

by Lamarr Widmer

The Smarandache Square-Partial-Digital Subsequence (SPDS) is
the sequence of square integers which admit a partition for which

each segment is a square integer. An example is 506°= 256036
which has partition 256[/0/36 . Ashbacher considers these numbers
on page 44 of [1]1 and quickly shows that the SPDS is infinite by
exhibiting two infinite ''families' of elements, We will extend
his results by showing how to construct infinite families of
elements of SPDS containing desired patterns of digits,

Theorem 1: Let c be any concatenation of square numbers. There
are infinitely many elements of SPDS which contain the sequence c,

proof: If ¢ forms an even integer, let N = ¢, Otherwise, let N
be ¢ with a digit 4 added at the right. So N is an even number,

Find any factorization N = 2ab., Consider the number

m=a* 10+ b for sufficiently large n, (Sufficiently large means:

that 10" > b® and 10" > N .) Then m°= a-10°"+ N-10"+ b° = SPDS
Q.E.D,

For example, let us construct elements of SPDS containing the

string ¢ = 2514936 . In the notation of our procf, ws have

" ab = 1257468 and we can use a = 6 and b = 209378 (among many
possibilities). This gives us the numbers

600000209578° =-360000251493643922938084
6000000209578° = 36000002514936043922938084
60000000209578° = 3600000025149360043922938084

etc., which all belong to SPDS,
This allows us to imbed any sequence of squares in the
interior of an element of SPDS. What about the ends? Clearly we

cannot put all such sequences at the end of an element of SPDS. No
perfect square ends in the digits 99, for example. Our best
result in this respect is the following,
Theorem 2: Let a be any positive integer., There are infinitely
many elements of SPDS which begin and end with az.
proof: For large encugh n (ie. 10" > 225a° ), consider
m=a-10"+ 3107+ a = a-10""+ 5a-107 '+ a
Then

2

m= a2‘104n+ a2°103n+ 2 a2'102n+-a2'10h+ a2

4
= 22-10%"+ a2-10%"+ (152)%-10°77%+ a%-10"+ a°

beleongs to SPDS, Q.E.D.



We illustrate for a = 8 . For successive values of n
beginning with 5, we have the following elements of SPDS,

80000400008° = 6400064001440006400064
8000004000008% = 64000064000144000064000064
800000040000008° = 640000064000014400000640000064

etc,
We have a number of observations concerning this last result,
First, an obvious debt is owed to Ashbacher’s work [1], in which

he gives the family 212%= 44944, 20102%= 404090404 P
Second, we actually have exhlblted an infinite family of elements

of SPDS in which a’ _appears four times, And finally, we note that
an alternate proof can be given using m = a-10°""1¢ 510n+ a

4h+2 3In+1

for which m= a>-10 a?+ 102" @5a)%- 1057 %+ a%- 10"+ a°

This concludes our results emphasizing the infinitude of
SPDS. In addition we wish to note an instance of the square of an

element of SPDS which also belongs to SPDS, namely 441%= 194481

Can an example be found of integers m, nﬁ, m' all belonging to
SPDS? It is relatively easy to find two consecutive squares in

SPDS., One example is 12°= 144 and 13°= 169 . Does SPDS also
contain a sequence of three or more consecutive squares?

Reference:

(1] Charles Ashbacher, Collection of Problems On Smarandache
Notions, Erhus University Press, Vail, 1996,

Lamarr Widmer
Messiah College
Grantham, PA 17027
USA
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REMARKABLE INEQUALITIES

by
Jon Bilicenoiu

In this paper are presented inequalities between factors of canonical decomposition.
Let

cp () cpl(n) ep,‘(u)(u)
n'=p; " Py - Pxla)

be the decomposition of n! into primes with  2=p, <3 =p,<..<p_,,
and 7(n) is the number of prime numbers smaller or equal to n. Of course, ey, (n), i=1,7(n)
are Legendre's exponents. It is said that:

eo(n) =[g]+[pﬂ+[;‘;—}+ .

1. Proposition.
For every n > 4, holds: 202 5 3esle

Proof. Because

l:-rl]+[—“—:l 11+ -1
2 2 — —_
2 221 2 2 _9Bn-%) and 9(3n-8)

5 .
= >= > .
- n n, 16m on 23 for n>216 itresultats that:
g + ‘3—2' 3 32 o
n n
_2_“{22} 5
— >= for n2216 (1)
n J{_rl_] 3
L34 132
(n] n
2 2 _3
If =2 =——= > ===
n =2k, then 2 k)
3] 3
If n = 2k+1, it results that we have the following possibilities:  2k+1 =3m or
=3 = k_3_1 ,k_3,,.k_3, 1
2k+1 =3m+1 or 2k+1=3m+2 and consequently m=5 75 T m-5% m —2+2 :
It results
n
(2] _k_ 3 1 _10 [n:l 10 n}
Led X522 L2 Lix >2
E:l m>5" 14 7,thatls ) 713 for n2>21
L3
While




[
E

|
J

1,

Cz(n) S
% -;— for n>216 and so 233(“) >23>3 or

R
B

Generally, is true that:

[324a]],
EEl

for 123 )

3

2

Ll N]=

| — 1
SR

L»Jl;-_-;
L»JIU\

From (1) and (2) 1t results

2@ 5 250 for n>216.
It may be verified directly that ~2°2® >3°® for 4<n<216.

2. Proposition.
For p>5 and n22 itistrue that 2620) 5 pepla)

Proof.
npIf 2 <n<p Dbecause e(n)=0, itresults 2°2(0) 5 peel®) = |

)If 5 <p <n<p? thenitmaybe showed that:

. [%}‘“[ ; ] o) 6

BN
p
iii) For n >p* we have:

TE] 3o
= 2020 _
2 Zn _p’Bn-8) and of course:
p*

P
2

n, ~ dn(p+1)
BlE] v
2
___(3r1 8)>E = n>--——8p .
4n(p+1) 2 p—2
Therefore 'n2p22n>p_pz for p=25, itresults

>2 )

If n=2k then:

ay n

2 _2_p_p-1

==>==S>2— 5

n ) ®)

Lpl P _

If n=2k+l2>p, then 2k+1 isoftheform: 2k+1=pm+, i€ 0,p—1 For =0, it results

k_p_1,p-1 eTo-] k_P. i
m—2—2m2 3 andfor iel,p-1, 3 >
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Finally we get

Ol 2
We havc-z 3159 ) ~ DT 1fn
BB BPTIII{[%H , e [43]] [ee=0]
= T TR (]
While
a1 (e p(p—l)];{i]
) 12l ¢ Py dz[g}[p(p—l)}
TR
Lp3 PLp?
Generally
3] or
AT o s
From (4) and (6)pi; results that
:—;Eﬁ—;z% for nxp? (M
e2(m)

From (3) and (7) it results ~ 2%2(W > 22 p, thatis: 2% > 2@

3. Proposition.

Letp, q be prime numbers, n=p-qx with xeN* If 3<p<q and [

it results per® > g

Proof. Obviously, if n=p-q->j then:

We shall prove that

n n n

ep(n)_[p]{pz]{f}m
o) [ﬂ]+ L By

A1 e

For n=pqx, xeN* istrue the following inequality

q]*'z[qz}[qz} i .

= =12 = p<q, 122

[p pz p
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We prove this inequality using the mathematical induction. Obviously

2] ) ol [ETRD
BEOREDIRNCEINS

s e

g ]
And we demonstrate that (10) is true for 1=kt

ERCEREDREL SN
F

Finally the formula (10) is true for 12>2.

a0

REEE

2
If [ﬂg}% then from (8) and (10) it results (9). Using (9) it results:
p

eo()
p&s(® >p

q ep(n)
Because p'>qfis q>p=23 itresults pP >q and therefore peq(n) >pP >q thatis:

q
P (11

per® > post® ar)

4. Remark.

The restriction 3 <p<gq it suppressed in following cases:
)p=2 and q=5, becauseinProposition 2 itis showed that:

202@ 5 gqe@ | forn>2.

=3 for n=23x, xeN* 6lx and x>18. Istrue that:

5 3x+[3?x]
25, that s ———jz

2%
2 ==
x+[3



it results:

Using (2) and (12) it, results:

ez2ln) 5
2830 223 >3 and therefore 2@ > 3

i) p=2, q=3 and n=2%3%x, where xeN*

Indeed
n +[L:|
[2] 22 _21_5
[E]_{L]' 16 3
3 32
Using (2) and (13) it results:

ez2(n) S5
2€3(n) >23 >3 and therefore 252® > 3e3@
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Some Considerations Concerning the
Sumatory Function Associated to
Generalised Smarandache Function

E. Radescu and N. Radescu

d -
Let us denote by V the least common multiple, by /} the greatest common devisor and

A =min, V=max. It is known that N, = (N°,A,V) and Ny= (N',,/d\, {’) are lattices. The order
on the set N* : m sﬂ'}/@ mAm =m. corresponding to the first of these lattices and it is
known that this is a total order. But the order < induced on the same set by A and \i’ and
defined by: m SmemAn=momn divides a,is only a partial order.

Let o: My = Ny (1) a sequence of positive integers defined on the set N*.
The sequence (1) is said to be a multiplicatively convergent to zero sequence (mcz) if:

VneN*,im, eN°,Vm>m, = n% o(m) (2).
The sequence
o: Na— Ny G)

s said to be a divisibility sequence (ds) if: nsm= o(n) < o(m) and it is said to be a strong
divisibility sequence (sds) if:
ol n /} m) =o(n) ./d\. o(m) for every n,m eN* 4).

Let the lattices M, and NV;. We'll use the following notations:
(a) a sequence oo : My = M 1s a (00) - sequences;
(b) a sequence coqs: Ny > Ny is a (od) - sequences;
(c) a sequence .0 : Ny —> My is a (do) - sequences,
(d) a sequence o4 : Ny —> Ny is a (dd) - sequences.
Then A(do) - sequence o5 the monotonicity yields:

(ma)Vm,m N, m S m = G ala) Scalm) (5)
and the condition of convergence to inifinity is:
(cw)VaeN*,3m, eN",Vm Smy,= co(m)2n (6).
Analogously, for a (dd) - sequence o4 the monotonicity yields:
(mag)Vm, m eN", 1 S m = Gadm) S S adm) (7

and the convergence to zero is:
(cag)Vn eN*,3m, eN*,Vm > my = G ad(M1a) >n. 3)

To each sequence o, with i, j € {0, d}, satisfying the condition (c;), one may attach a
sequence S (a generalised Smarandache function) defined by:

Sj=min {m, : m, is given by the condition (c;)} 9).
For the properties the functions Sy, see [2].

It is said that for every numerical function fit can be attashed the sumatory function:

Fln)=Z £a) (10)
The function f'is expressed as:
La)= Z w(u)F(v) (11)

where p is the Mobius function (u(1)=1,u(a) =0 if n is divisible by the square of a prime
number, u(a) = (-1)* if n the product of k different prime numbers).
If f'is the a generalised Smarandache function, S; then



Fi{n)=% Sid),1,j € {0, d}. (12)
Now let us consider 7= py pr...px, With py < p» <... < p; primes number and
,,(pl) < Si{p) < ... < Si{px), for example. If i=0, ]—d then So,,(m A ﬂz) = Soalm )V Sod22) and

fsd([l) Sod(l) + Z Sod(p_r,)-i‘ Z Sod(pbpf)-i’ hig l,b:: SOd(pbp,pq)-i---SOd(n). It result:

Fai1) = Sod1);

Foi(p1) = Sod1) + Soa(pr) = Foul(1) +2° Soa(p1);

Fo(pip2) = Sod1) + Sodp1) + Soalp2) + Sodpr1p2) = Sod(1) + Sod(pr) +250s(P2) = Fodpr) +2804(p2);
Fofdpipaps) = Fodpr 1) + 22 Sodp3);

Fs{pip2p3ps) = Fodpr 22p3) + 22 Soa(pa);

Esipip2.p) = Fod P12 Pk—l)+2k ! Soa(Pe)-

That is Fodpi pr...px) = Soa(l) + z 271 Sod(Dd)-
The equality (11) becomes:
Sod(pe) = Ka) = T wa)Folb) =

= Fifa) -3 RS2+ T ng(m,)

Wltthd(p) ng(plpv D1 Dl - pk) 22" Sod(pj)+ Z ZrlSod(p)—

= Fo ppr...pi1) + 27 F’,,,(p,+l ).
- Analogously,
Fil(3%) = Fokpr--pin) + 27 Fidpin P2 iy i) =
= 2 phat Sodps)+ 2 Z 21"250,1(p1,)+ 2 2“50,,(;;,,).
In parnculary fora=p* p pnme number, 1t result
Sodp") = WpVFedp?) = Fodp) - Fod P

If n= p*q® with max {SOd(p), ., Sod(p*)} <min { Sp(q), ..., So{q%)}, then
Ffp*q) = Fokp') + (@+ DFIAT).
Ifi=d, j=d and if 64 1s a (sds) satlsfymg the condition (cas), then

5411(!11 v Hz) = 544(111) V Sam) (13)
and F5(n) = Si{1) +5 de(Pb)+ [de(Plz) v de(p:)]
+ f‘: [:de(pj) v de(p,) A\ de(pq)}+ +S,1,;(H) (14)
btg=l.brt2q
Sudp*) + F3Ap*) = Fakp™™). (15)

Example: The Fibonacci sequence (Fa) . definited by Fi = Fa+Far, with Fi=F=11as
(sds), so for the generahsed Smarandache function Sr attached to this sequence we have:

S;(m Vﬂz) SHm) V SHm), and the calculus of S,(a) is reduced to the calculus of SHp*),

with p a prime number. For instance:

n SHn) n SHa) n SHn)

1 1 7 13 21
2 3 8 6 14 24
3 4 9 24 15 20
4 6 10 15 16 12
5 5 11 20 17

6 12 12 12 18
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FS(4) =10, F5,(8) = 16, F3(16) = 28, F3(15) = 30.
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SuperCommuﬁng and a second distributive law:

Subtraction and division may not commute, but they SuperCommute

Homer B. Tilton
Department of Mathematics, Physics and Astronomy
Pima Community College East
8181 East Irvington Road
Tucson, Arizona 85709-4000 USA

Abstract

This paper deals with teaching methods.

Elementary textbooks tell that addition and multiplication commute but subtraction and
division do not. Actually they do if a simple restriction is observed. The technique is not
new; but the method presented here for teaching it is believed to be new and simple enough
for presentation immediately following the signed-mmbers concept. The technique is
dubbed SuperConumuting or the shuffling property. '

SuperCommuiting leads directly to a new formal algebraic distributive law, one that
applies to expressions of the form 1/(a*b/c/d*s...). Also, by comparison with the first
distributive law, the duality concept can be painlessly and unobtrusively introduced by the
dedicated instructor of beginming algebra.

Introduction

The beginning algebra student is today told, almost incidentaily, that a long string of
mumbers consisting of a mixture of additions and subtractions can be evaluated by adding
all positive numbers then adding all negative mumbers then subtracting the two results. This
paper gives a formal treatment of that property and extends it to a similar procedure with
strings of multiplications and divisions. Underlying this entire discussion is the Order of
Operations rule in which operations of a given kind are to be performed from left to right

Asterisk is used as the multiplication sign to prepare the student for fiture computer math
literacy. Thus A*B is always used, never AB, AxB, or A<B. Similarly, division is always
C/D never C+D.

Subtraction and SuperCommuting

Today, the student may be told that A-B can be written —~B+A; but how does one initially
present this idea with total clarity? One method follows.

First write A-B as 0 +A —B-where “A” has a plus sign directly attached to it, and “B”
has a minus sign dxrectly attached to it. The student would then be told it’s alright to shuffle
these numbers if the sign of each number is carried with it while keeping 0 at the front of
the string. Thus, 0 +A —B becomes 0 —B +A or sumply ~B+A, the initial 0 having outlived
its usefilness; and the problem in subtraction is said to be the addition of signed mumbers.

That simple and obvious development suggests another one that is just as simple but
perhaps less obvious.



Division and SuperCommuting

A similar process can be illustrated with division. Begin by writing C/D as 1 *C /D,
where “C” has a multiplication sign directly attached to it and “D” has a division sign
directly attached to it just as if *C and /D were some kind of “signed numbers”! The
student would then be told it’s alright to shuffle these if the sign attached to each mmber is
carried with it, and if 1 is kept at the front of the string Thus 1 *C /D becomes 1 /D *C,
and a problem which started out as division is now seen to be multiplication by the
divisor’s reciprocal. In this case the initial numeral, 1, must be retained becanse *C and /D
are not recognized as any kind of signed pumbers.-(But might they be?)

A second distributive law

The student would now be informed that long strings of additions and subtractions can be
gsimilarly shuffled into an arbitrary order, as can long strings of multiplications and
divisions; and that the traditional commmutative laws of addition and multiplication are
simply narrow applications of this shuffling property.

The parallel, or dual nature of the above two developments is as obvious as the fact that
lightning begets thunder. Thus is suggested a new distributive law, one that works for
complex fractions like 1/(a*b/c) by considering their dual, in this case 0—(a+b—c). The
suggestion is that 1/(a*b/c) becomes 1/a/b*c. A traditional proofis left to the reader.

Teachmg duality early

After this, the student of elementary algebra should be perfectly comforwble with the
duality concept if presented somethmg as follows.

One’s left hand is like one’s right hand except that they are mutual mirror images, each
is a mirror image or a reflection of the other. This is one kind of symmetry. Another kind of
symmetry exists between a number and its reciprocal A number and its reciprocal are
mutual reciprocals. Still another kind of symmetry is the way in which the new
distributive law relates to the old one.

Compare these two forms; the first illustrates the new distributive law, the second form
illustrates the old familiar one:

i1 /(a *b /c)}
0 —(a +b =¢)

1 /a /b %c

1}

0 —a -b +c

The student can then be told that either form can be changed into the other by exchanging

* and + signs, / and — signs, and constants 1 and 0; and that this kind of symmetry is called
duality,and the two forms are said to be mutual duals. Tt might also be suggested that this
kind of duality is a precise form of the usually imprecise method called analogy.

Finally it should be pointed out to the student that in each of the three kinds of symmetry
discussed above, a double application is the same as no application. That is, if a right hand
is reflected twice, the result has the shape of a right hand; if the reciprocal is taken twice,
the original number results; and if the dual is taken twice, the original form results.

JIf1J
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PROPERTIES OF THE TRIPLETS p’

1. Balacenoiu, V. Seleacu
Univ. of Craiova

For every natural number p we define p’ as the following triplet
(p"-1,p",p"+1), where p"=23.5....p
Let us consider the following requence of prime numbers :
2=p <3=p,<5=p;<..p <...
We call the triplets (p; ~1,p;,p; +1), where p,=p.p,..p, ,k=12..a p

triplets.

It is casy to observe that : o _
i) (p; -1,p, +1)=1 , because p, —1,p, +1 are both of them are add numbers, and
(pe+D-(p-D=2

i) if n=s®.s3 5% divides p,-1or p,+1, because (p,—1p;)=1, this

implies s, > p, , for every i elt.

i)  ifndivides p,—1 or p,+1,then(n,p,)=1, forh<k
Proposition. The triplets p° are separated .

Proof. Let us consider the consecutive triplets :

p;—l - 1’p;—1 ’p;-l +1

Pe-Lpi P+l

Because p;, —1-(p,_ +1)=p, (p,—~1)—-2>0 it results that every two consecutive
triplets are separated , so we have :

P —l<pl <p +1<p,—1,p;<pi+l<.<p,—l1<p, <p, +1<.
Remark. Let us consider the triplets :

pi—Lpi, P+l

P, =1, py, b+ 1, where k < h,and

M, ={n eN/p, +l<n<p, -1}

Then we have :

a) if h—k is constant , then card M increases simultaneously with k .
b) card M,, increans when A—k increases.

Definition . We say that the triplets p;, p, , where & </ , are F - prime triplets iff there is
no neN,n>1sothat n/p, +landn/ p, or n/ p, 1

Examples. The triplets :

5 -1=29,5 =30,5 +1=31

7" -1=209,7 =210,7 +1=211lare

F - prime triplets.

The triplets :



7" -1=209,7 =210,7 +1=211

11" —=1=2309,11" =2310,11" +1=2311

are not F - prime triplets, because (7"-1,11) =11

Definition . The triplets : (p"—1,p",p" +1) and (¢ -14".¢" +1) where p"—1=¢q or
p’ +1=gq are called tinked triplets.

Remark. i) If q and p are two consecutive prime numbers, then we call p° and ¢  as
consecutive linked triplets. For example 3' and S° are consecutive linked triplets.

ii) Two linked triplets are not F- prime triplets.

Proposition . There is no consecutive linked triplets with p<q , forevery p2 5.

Proof, Because p and q , p<g , are two consecutive prime numbers , we have :
p<q<2p.

For every p=>5 we have:

[P +1]=[L+l}z[ﬁ_+l}{s_+l]:i23,

q g q) l2p ) L2 9] 2

where s is such that s< p and s and p are two consecutive prime number, so we have :
p +1#q.

Because [p _1}2[2——}-}=5——122, then we have p"—1#¢
q

2 q 2
Remark i) There are p triplets such that p’ —land p" +1 are friend prime numbers (for
example for p=35)
There are friend prime numbers which do not belong to a p° triplet . For example the
friend prime number 11 and 13 do not belong to any triplet p , because 12 isnota D .
ii) The friend prime numbers which belong to a triplet p are called friend prime numbers
with the triplet p" .
There are the pairs of friend prime numbers (5,7) and (29,31) with the triplet p° which
correspond to p" linked consecutive triplets.

Unsolved problem
i) There are an infinite set of friend prime numbers which the triplet p” .

i) There are an infinite set of friend prime numbers which the triplet is not p .
Proposition. For every k € N there is a natural number A, 2> k such that for every s> h
_the triplets (p; —1,p;,p; 1) and (p. -1,p.,p. +1) arenot F - prime.

Proof. If ndivides p, or p;+1,then n=g* 1%  where ;> p; for every jel,i .
Letnben=1t.1,....1.

Then 7 divides p,—lorp,+1.1fp,= max{tj} _then h>k, i divides p; and, of
course , 7 divides p| , for every s2h . Then the triplets p;, p, are not F - prime.
Definition. If n=p...p" » then 7 is denoted by 7= { 7 A P }

Definition. Let us consider M = {fz}new and let < be the partial ordering relation on
M, defined by
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bope) S {atattolnop,ontely g, od p =g, imples

a, <p .
Definition. Let us consider M, =p,wp; ~1Up, +LkeN".

Then we define p; = {n e N /i< M, } and % for h<k.

Remark. For n=1t1...t]" |ifne D, , then there are the following cases :

iy n/p, and

iy n/ p,—lorn/ p,+1

In the first case, 7 e{pk,plp,,,...,p,‘_lpk,...,p,:}.

In the second case, becasuse ; > p, for every j Ei,_; it implies that there is s eﬂ for
every h,1<h<k ,suchthat £ ¢ B -1, respectively ¢ ep, +1.

In the paper [1] it'is defined the Primorial Smarandache function, denoted by SP, , where
SP:Ac N >N * and SP.(n)=p , where p is the smallest prime number such that n
divides one of the numbers which belong to the triplet p":p’ -1, p,p +1 , where
p’ =2.3.5.....p ( the product of the prime numbers which are < p )

In the paper [1] it is proved that the free of quadrates numbers belongs to the domain of
definition of the function SP. . The problem is : There are numbers which are not free of
quadrates numbers which belongs to the domain of definition of the function SP, ?

We study if there is x> e N* , where x is a prime number, such that x* divides one of the
numbers of the triplet p":p" —1,p",p" +1, where p is a prime number .

It is casy to see that x* # p’, for every prime number p .

We proof that every prime number x eN" has the property x*#p 1 . If x<p , then
x*tp 1.

Proposition. x*#p” £1

Proof. In the case x? = p’ +1 , then x* —1=p" . It is casy to see that x =2 do not verify
this property.

Because x> —1= M4 and p’ = M4+2 ,thén x* -1=p

Ifx =p -1,x*+1#M3and p = M3, then X*+1zp

Remark. Every free of quadrates number could be of onc of the following kinds :
4hec? (4 +1)x?, (4k +2)x* or (4k +3)x* , where k € N and x is a prime number.
Proposition. For every prime number x,x € N , we have :

a) dkx’ = p  £1

b) (4k+2)x* = p %1

¢) (4k+Dx*=p +1

d) dk+3)x*=p -1

Proof. a) Because 4kx? is an even number and p’ £1 are odd numbers, then it results
that 4kx’ = p 1 ‘

b) In an analogue way (4k+2)x’ = p" 1, because (4k +2)x* is an even number.

¢) Because (4k+1)x*-1=M4,x>2and p"= M4+2 then it results  that
(4k+1)x* = p"+1. For x=2 it can be directly proved.
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d) Because (4k +3)x* +1= M4, then it implies (4% +3)x*#p -1 .For x=2 it is
directly proved. _

In order to proved the proposed problem it is necessary to study the following cases, too:
Jx and p which are prime numbers, so that :

a) (4k+1)x*=p -1, where 4k +1, 4k +3 are prime number greater than x.

b) (4k+3)x* = p" +1 or products of primes greater than x.

It is easy to see that in the case when 4k+1 and 4k +3 have a prime factor q smallest
than p (g < p) the assertions a) and b) are not proved.
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ON THE QUATERNARY QUADRATIC
DIOPHANTINE EQUATIONS

NICOLAE BRATU
UNIVERSITY of CRAIOVA

In this paper are presented the parametric solutions for the homogeneous diophantine equations:
X+ by’ + ¢zt = w? (1)
where b, c are rational integers.

I. Present theory. Case 1: b=c=1
Curmichael [2] showed that the solutions are expresions with the form:

w=p*+q +u’+ v} y=2pq+2uv; (2)
x=p'-q+u*-v}z=2pv-2qu

where p, g, u, v are rational integers.
Mordell [3] showed that only these are the equations solution’s by appying the arithmetric
theory of the Gaussian integers.

Case 2: b=1;c=-1. Mordell [3] showed that the solutions are, and only these, the
€Xpressions:

2x =ad - be; 2y = ac + bd; 3)
2z = ac - bd; 2w = ad + bg;

a, b, ¢, d are integer parameters.
Case 3: b, c, are rational integers.

Mordell [3] took the particulary solutions with trhee parameters again, had been proposed by
Euler:

w=p’ +bq’ +cu’;y = 2pg; 4
x=p’-bq’ - cu’; z=2puy;

[I. Results. ,

In [4] is proposed a new method to solve the quaternary equations using the notion of
"quadratic combination". If we noted G, , the complete system of equation’s solutions:

x* +y* =7, and also G,* for the equation: x*> + y* + 2= w?, we sholl can to enuneiate:
Definition 1: Quadratic combination is a numerical function _ ] _ which associates each two
solutios from G, four solutions from G,* . Simbolicaly we have:

2

0: G,x G — G
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Observation.

From the quadratic combination of the equation’s solutions with the form: x}+ by’ = 7%, we
sholl obtain the solutions for the equations x> + by” + cz* = w* 4]

1.Caseb=c=1

From the quadratic combination, we find again the solution (2). We can present another
demonstration for Mordell’s sentence. From [4] we have:

Theurema 1.

For the equation E,?, the solutions are expresions (2) and only these. The first part of the
demonstration results by verification. For the ssecond part of it, we can use the property
demonstrated in [4].

Lemma 2. The multitude of the equation’s solutions E,”is a graph F,’ as terminal top the
ordinary solution (1, 0, 0, 1) and the arcs are given by the "t" functions:

t=wtxty+z

The solutions are matriceally developed:

0 -1 -1 1
10 -1 1

$.,=S.-B ,wihB= | -1 0 -1 1 (5)
1 -1 -1 2

Lemma 3. Any solutions from the equations (2) are on the graph F,’ and, reciprocally, any
solutions from the F,” can be written with form (2).

It was defined the term: t,=x+y+z-W; t,, < t,, where variables are naturale numbers (41
We are verifing that form every solution of naturale numbers can derive a solution whit w, < w.
The parameter’s corespondence ( p > q and u> v) will be:

p=P-q-Vv; wy=uftq-v;
9,79 o itV

It is obteinid a number of decreasing values w, , having as limet the ordinary solutions
(1,0, 0, 1). Reciprocally, for every solution from the graph F32 is obteined a number of
parameterly solutions with w, breeder, in cas t,, > t;.

2. Caseb=1,c=-1. From quadratic combination resultes equations:

w=p'+q-ut-v?

x=p-qg+u-v (6)
y=2pq + 2uv '

z=2pv +2qu

It can be showed that the Mordell’s solutions (3) are equivalent with solutions (6); the
parameter’s equivalence is given by:

a=p+v ;b=p-v
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c=q-u ;d=q+u
3. Case b, ¢ are rationale integers. For simplicity, we shell treat in two subcases:
3a) b, c prime numbers. The quadratic combination will require the solutions:

w=p® +bg’ +cu’ + bev?

x=p* - bq’ - cu’ + bev?

y =2pq + 2cuv (7
z=2pu- 2bqv

3b) b and ¢ are compound numbers. For any decomposition: b=iejand c=1e h,
where i, j, 1, h are rationale integers, we have the general solutions with four parameters of the

equation (1):

w = ihp? + jhqZjlu? + ilv?

x = ihp® - jhq® + jlu’ - ilv? (8)
y =2hpq + 2luv
z =2ipv - 2jqu
III. Applications We sholl take again from [4] only the application of the numerical

representations of exponent 2. It is well known the Fermont - Lagrange Theory.

Theorema 2

For any natural number it is at least a representation by sum of four whole number’s square rest:
z=u++w+t (%)

Later on another Theory was demonstrated:

Theorema 3

For any natural number z# 2*(81 + 7) it is least a representation of three whole a numbers:
z=uw+vV +w %)

Our theory allows us to enunciate a much stranger theory:

Theorema 4
For any natural number z it is at least three whole numbers (u, v, w) or (a, b, ), in order to
have :

z=u + +w (o) (10)

z=a’+b’ +2¢ B)
Forz =2z, =2%(81 + 7), we have only the representation ( B), forz=z, =2 (81+7), we have
only the representation (a ) and for z#z, 4z, ,we have in the same time the
representations (c) and (B) .
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THE SEMILATTICE WITH CONSISTENT RETURN
by Ion Bilicenoiu, Department of Mathematics, University of Craiova,

1100, Romania

Let p be a prime number. In [5] is defined the function Sp as .SP:N* —>N*,Sp(a)= k, where k is

the smallest positive integer so that p? is a divizor for k!.

A Smarandache function of first kind is defined for each 5 eN" in [1], as numerical function
S,,:N* — N, so that:

i) if n=4', where u=1 or u= D, then S, (a)=4%, k being the smallest positive integer with the
property that k!= M -4'9.

11) ifn:pli‘ -péz o —p;’, then Sp(a)= max {Spj (ija)}.

I</j<r

It is proved that:
2 max{Sn (@), S,,(b)} <Sp(a+b)<S,(a)+S,(b)

2 Sula+b6)<S,(a)-S,(b)

-

In [2] is proved that:

i) the function §,, is monotonously increasing,

11) the sequence of functions {Sp,- }iei\f' 1s monotonously increasing.

iii) for p, ¢ - prime numbers such that: p <q=>8p,<S;and p-i<g= Sp,- < Sy, Where i eN”
) if n<p, then §,, < Sp- ’

In [3] it is proved:

1) for p>5, Sp> max{Sp_l,Spﬂ}

i1) for p,q - prime numbers, /, JjeN i

P<q and i< = Spi<Sq/

1i1) the sequence of functions {S,, }neN' 1s generaly increasing boundled
V) if n=pl-pp- - pl, there are kyky,...k, {12, .r} so that for cach ¢eim there is

q €N * 50 that
Sp(qr) = Spu.-, (4:)
ke



and foreach / e N * we have:

I<t<m

§,(/)= max {Spku- (/)},

i —_— . .
We define the set { pk"' lt €l, m} as the set of active factors of » and the others factors as the pasive
t
factors.
— — il, iZ,____ ir
Let NP]'P:"'"Pr _{n_pl 1) b,
Then

.. . * .
,h ...l €N }, where py < pp <---< p,. are prime numbers.

NPP2-Pr {n eN In has p{‘ , p;,...,‘ p;’ as active factors}

P Pr-Pr

is the S-active cone.
A Smarandache function of second kind is defined for each keN' in [11, as the function

S*:N" — N* where $%(n)= S, (k).

. It is proved that:
> max{sk (a),S"(b)} <S*(a-by< $¥(a)+ S (B)
2 S*(a-b) < S*(a)- S*(b)

In [4] it 1s proved that:
i) for k,n e N" the formula Sk(n) <n-kis true
11) all prime numbers p > 5 are maximal points for $* and

évk(p)zp[k—‘p(k)], where Osip(/c)s[ﬁp——l]

iii) the function S¥ has its relative minimum values for every n= pl, where p is a prime number
and p > max{3,k}
iv) the numbers 4p for p prime number, £ €N * and p >k, are the fixed points of § k
v) the function S ¥ have the following properties:
a) S¥ =0 (n'*®), for £>0
S5my _,

b) lim sup———
n—oo n

c)S k 1s, "generally speaking”, incresing, thus:
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VneN",3my eN so that Vm > my = S*(m)= S¥ (i)

1. DEFINITION. Let o# = {S,,,(n)'n,m EN*}, lett A BeP(N)\D and a=min4,
b=minB,a’ = max 4,5 = max B . The set I is the set of the functions:

S(h),n < max{a,b}
| Sa, (b), max{a, b} < n < max{a®, 5%}

where
* .
Ig:N —o#, with ]g(n) = ap = m?X{ai e Aa; < n}
H

b = ma}x{bj eBij Srz}
/

\Sa‘(b*),n >max{a’,b')

2. EXAMPLES.
6,10,12} ,* .
a) 1?3,8,10} ‘N — o and:
n 12 3 4 s 6 7 8 9 10 11 12 ,s13
6103

3810} | S3(6) S3(6) S3(6) S3(6) S3(6) S3(6) S3(6) Sg(6) Sg(6) Sjo(10)  Sjp(10)  Spp(l2)  Si(12)

b)Let A={1,3,5,....2k+1,..}
B={2,4,6,.,2k,.}

IB:N" > ot and:

n | 1 2 3 4 s 6 . 2 2+

Zls,m 50 50 S0 8$,06) S6) .. Su@k-1) Su2k+D)

6) Let A={5,9,10) and 14, 1%.:N" — ot with

183



n 1 2 3 4 5 6 7 & 9 10 n>11
) S5(5)  S5(5) S5(5) S5(5) S85(5) S5(5)  S5(5) S5(5) S4(9) S§,,(10) S14(10)
v S S55(2) S503) S,(4) S5(5) Sg(6) S(7)  Sg(8) S5(9)  S§p(10) | S, (n)

. A . . N® Aot N[ a*
It 1s easy to see that /) is not the reduction of / e and /(N ) c ]N' (N )

3. REMARK.
The functions whitch belongs to the set / have the folowing properties :
1)if 4 <4, and n €4, , then Ifl(n)zli(n)
I)if BB, and neB;, then 15 (n) = I%2(n)
2) ]11\\//. (n)=S,(n) = 5"(n), the function I;\\/{. 1s called the 7 - diagonal function and Ij\\fl’ (N*) is
called the diagonal of o# .
. 3) foreach m eN* I{A’["} =S, for I{A'/n}(n) =S,,(n),vn eN”.
- 3)foreach meN~ Ii/m} =S" for 11{\;’:}(") = S, (m) = S™(n),YneN",
4)if n €4 B, then I5(n)= I (n) = Sy ().

4. DEFINITION. For each pair mn eN iy S,,(n) and S™(n) are called the simetrical numbers
relative to the diagonal of o#

S,, and S’ are called the simmetrical functions relative to the I-diagonal function I AA[[.. As a rule,
I g and / g are called the simmetrical functions relative to the I-diagonal {unction / IN .-

5. DEFINITION. Let us consider the following rule T:1 x [ — I, IAB T/ g =7 ZUCI? . It is easy to see
that T is idempotent, commutative and associative, so that:

iy Br5=18

i) 18172 =12718

iii) (187 12) TIE = 1B (12 T1F), where 4,B,C,D,E,F e P(N')\@

6. DEFINITION. Let us consider the following relative partial order relation p, where:

pcixl,
I8pI2 & AcC and BcD.

1t is easy to see that (1,7, p) is a semilattice.
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7. DEFINITION. The elements u,v € [ are p - preceded if there is w €I so that:
wpu and wpv.

8. DEFINITION. The elements u,v €1, are p - strictly preceded by w if
D)wpu and wpv.

i) Vx e I\{w} sothat x pu and x pv =>x pw.

9. DEFINITION. Let us defined:

I ={(u,v) eI x lju,v are p—preceded }
F={@wv)yelx Ilu,v are p—strictly preceded}.

It is evidently that (u,v) el o (v,u) e [ and (u,v) elf o (v,u) el”.
' 10. DEFINITION. Let us consider T'=U xU, U I and let us consider the following rule:
1 W, Wcl, ]f _L[g = IB"g and the ordering partial relation rcUxU so that

An
B D D B
IArICc>[CpIA )
The structure (/ #,_L,r) is called the return of semilattice (/,T,p).
11. DEFINITION. The following set

@8:{15 cl|4nB=0]

is called the base of return (1#,_l_,r).
12. REMARK. The base of return has the following properties:

Dif I8 eB= 15 B

i) for @ XN, I§ B

ii1) for / g €D is true the following equivalence & = X < Cy+(A A B) & non existence of I\Y 17 f .
13. PROPOSITION. For I @ there exists n €N so that I%(n) = 11‘\‘/’.' ().

Proof. Because A B # O it results that there exists 7 € A B so that:

18(ny=Sy(n)= 1;\‘/’.‘ (n).

It results that for / f €@ then [ ‘f has at least a point of contact with [-diagonal function.
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14. REMARK. From the 1. it results:

rb, n<b=minB
b, b<n<b =maxB
lg}(n)=s,,(b,,), where 5, =1 where
by = max{x € Blx <n}
* *
b ,n>b

and

a, m<a=min A4
ay, a<m<d =maxA4
I;{‘l'"}(m) = Sm(am), where a, =1 where

a; = max{x € Ax <m}

* *
a ,m>a
15. PROPOSITION. There are true the following equivalences:

(18,12) er* = 15,12 B = 3nmeN" so that:

1B(n)y= 12, (1) = Sp(ba), 12(m)=ID,(m) = Sp(dy), I (m) = 19" (m) =™ (@), and

Ig(m) = I“g"}(m) =S™(c,,) where a,,,b,,c,,,d, are defined in the sense of 14.

Ifn<m, then n<a,, c,<m.

Proof. Evidently,

(18,12) er* & 4nC %@ and BAD =@ = IS, I} €.

Because AmC¢@'and BAD=Jitexists neAnC and me BN D. Then:

15(m) =18 ,(n)= $,(8,), I8 (m)=1,() = Sp(dy)

15(m)= lﬁf”f(m) = 5™(ap), 1£<m)— 187 (m) = S™(cp).

Conversely, if there exist meN~ so that Ig(n) =3S,(4,) and Ié)(n) =S,(d,), then because
Ig(n)z S,(b,) it results n=q; = max{ai eAla,- Sn}, so that n € A. Because [g(n)z S,(d,) it results

{

neC.
Therefore ANC = J, thus, finally, /3 C . Itis also proved /p D 28 in the some way.

If n<m, because nednC it results that ne{x eA|x<m} and ne{y eC]y<m} therefore

n<a,<mand n<c, <m.
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This is presented in the following scheme:

1 Lo 2N
rbm'\m,:

16. DEFINITION. The return (L*,L,r) of semillatice (L, T,p) is:

a) null, ,if F=(uufuel)=A;.
b) weak, if cardl¥ < card(L x L\ l,#)
¢) consistent, if card* = ca rd(Lx L - L#)
d) vigour, if cardZ¥ > card(L x L- 1¥)
e) total, if F=IxL.

17. PROPOSITION. The return (1# ,L,r) of the semilattice (I,T,p) is consistent.
Proof. Evidently, card(2?(N )\ @) =X, card [ = card[(@(N*) ~ D) x (P(N") - @)] =N and

card(/ x I)=%.

Let us consider &:{(A,C)!A,C e@(N‘)—@,AmC:@} and & = {(A,C)IA,C e@(N‘)-—@,
AnC=J}.

cardZ =cardd? =N. Indeed, if ANC =0 it resulls that CyrAuCyC= N"; because for every
XeP(N)-@ 37 =N*\ X so that XUY=N" then it results cards# =card P(N")=N. Because for
each (4,C), A C egz’(N*)—-Z,AmC= @, it exist at least two (4),(),(4,C;) with
AN 20,4 NCy =D itresults cardF >cardF =N.
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Since  card&Z < card[(?’(N Y= D) x (P(N - @)] =N finally cardg% =N.  Because
card/" = card(&# x F )= and card(/ x [) - = card(s# x & ) =N it results that (I#,_L,r) 1s a return

consistent.
18. REMARK. Generaly, it is interesting the folowing problems:
i) what relations, operations, structures can be defined on

M= {Sm(n) in,m eN*}?

ii) what relations, operations, structures can be defined on

o ={ f| FN" > ott)?
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ON A FUNCTION IN THE NUMBERS THEORY
by

Ion Cojocaru and Sorin Cojocaru

Abstract. In the present paper we study some series concerning the following function of the
Numbers Theory [1]: "S : N->N such that S(n) is the smallest k with property that k! is
divisible by n".

1. Introduction. The following functions in Numbers Theory are well - known : the
function p(n) of Mdbius, the function &(s) of Riemann (g(s) = i #,s =o+it € C), the function

n=1

A(n) of Mangoldt (A(n)={ logp. if n=p™ ] etc.

o,if n# p™
The purpose of this paper is to study some series concemning the following function of
the Numbers Theory "[1] S : N->N such that S(n) is the smallest integer k with the propriety
that k! is divisible by n"
- - We first prove the divergence of some series involving the S function, using an unitary

method, and then we prove that the series gz m

(71/100, 101/100) and we study some applications of this series in the Numbers Theory .

1s convergent to a number S e

Then we prove that series f} _S(IT)' is convergent to a real numbers s €(0.717, 1.253)
n=2 -

and that the sum of the remarkable series > % 1s a irrational number.
2

2. The main results

Proposition 1. If (xa)ne1 is strict increasing sequence of natural numbers, then the

series :

S Xntl = Xp
, 1
27560 M
is divergent.
Proof. We consider the function f:[Xn, Xar1] >R, defined by f{x) = In In x is meets the
conditions of the Lagrange's theorem of finite increases. Therefore there is Cn € (Xq,Xn+1)

such that :

10 Xou —Inlnx, = ——(x, — Xpe1). @)
calncy,
Because X, < Cp < Xnt1, We have :
X+l —~ Xp X+ — Xp
— <] —lnlnx, <« ==—=2 N, 3
SR <lInlnx, - Inlnx, < N ,(Mn e 3)
ifxa21.
. S(n) )
We know that for each n eN"\{1}, - <lie
0@ 1 (4)

nlnn ~ Inn



s@ _,

from where it results that lim Hence there s k>0 such that

> ninn
S <k, 1e,nlnn> —= S() for any neN",
nlnn c k
Xalnx, < S(xa) ()
Introducing (5) in (3) we obtain :
Inln X —Inlnx, <kx“§2 = 1 (V)n e N*\{1}. (6)

Summing up after n it results :

< Xnrl —Xn 1
—_ > = —Inl .

El SGe) > k(lnlnxm.,.l nxp)

Because lim Xm = © we have ul‘i_rgolnlnxm =0, 1.e., the series :
Xn+l —xn

g S(Xa)

is divergent. The Proposition 1 is proved.

Proposition 2. Series Z L s divergent.

2 S(n)
Proof. We use Proposition 1 for x, = n.
Remarks.
1) Ifx, is the n - the prime number, then the series Z '*S*E ) is divergent.
=] Xn
2) Ifthe sequence (Xn)n>1 forms an arithmetical progression of natural numbers, then
the series Z Zorl ~¥%a i dlvergent

=1 S( n) ”

3) The series Z > 1 etc, areall divergent.

S(2n +1) =1 S¢@n+1)
In conclusion, Proposition 1 offers us an unitary method to prove that the series having

one of the precedent forms are divergent.
Proposition 3. The series

,Z; S(2)S(?}) S )is convergent to a number s € (71/100, 101/100).

Proof. From the definition it results S(n) < n!, (v)n eN*\{1},s0 —=—

I
S( )
Summing up, beginning with n=2 we obtain :
< 1 1
EZ S()SG3)..Sm) - Ez oo
The product S(2) S(3)...S(n) is greater than the product of prime numbers from the set

{1,2, ..., n}, because S(p)=p, for p= prime number. Therefore :
1 n1 i - (7)
[Tsir IIs
i=2

1=2

where p, 1s the biggest number smaller or equal to n.

There are the inequalities :
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where

5= % 1 1 1 »
=2 S(2)S(o) S 5@ S@se) S(2)8(3)S(4)

1 2 |
5(2)8(3) S 27237373 3 5v33.5.7

Pk+1 — Pk :
2.3, 5 711 T Y ppape T ®)
Using the inequality p,p,...p>pi.1, (¥)k > 5[5], we obtain :

1.1, 1 1 1
S<otztcHtTio bt %)
23 15 105 pi p? Piet

WesymbohsebyP—L+—1—+ and observe that P < —— + 4 + ..

p:  p> 13*  14* 157

It results :

ﬁ_( 1.1 L)
P< 6 1+22+32+...+122 s

nr_..1.1.,1
—6——1+——+—+4—2+...(EULER).

22 32
Introducing in (9) we obtain :
1,1, 1 1 = . 1 1 1
S<yt3tstIste Tyt oT

* Estimating with an approximation of an order not more than 1—(1)3 we find :

1
071 <,§; S2)S0G)..5@)

The proposition 3 is proved.

<0,79. (10)

Remark. Giving up at the right increase from the first terms in the inequality (8) we

can obtain a better right ranging :

Ll

1 .
235550) 5@ <> (an

Proposition 4. Let a be a fixed real number, a > 1. Then the series n°
P Ez S(2)S(3).-S()

is convergent.

where pi <n,i € {1,...k}, pxs1 > 1.

Proof. Be (xk)u the sequence of prime numbers. We can write :
2% ..2¢

S 2 =2

3¢ 3«
S(2)S(3) ~ P1p2

4« < 4 p3
S(2)S(3)S(4) Pip2 <Pip2

5@ 5¢ Dy
S(2)S(3)S(4)S(5) Pi1P2P3 " P1pP2Ps3

6% 6* __Ps’

5(7)5(3)5(4)5(5)5(6) Pi1P2P3 " PipzpP3

n% < n¢ < p](:-f-l
S(2)S(3)...S(n) " Pi1Pz2...Px ~ P1pPz2...px’
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Therefore

S n% qa- (px+1 —px) - Pk+1

2 S@SE)-S@ l““z S(2)S()...S(n)
a- _ Piet

<207 +:=Z,2 VIR

Then it exists ks €N such that for any k > ko we have :
P1P2...Pk > Phai -

Therefore

< n¢ ' pen 3 1
<2%1 4 Z = 4 .

n§2 S(2)S(3)...S(m) k1 P1P2--P o, piﬂ

Because the series 2, :— is convergent it results that the given series is convergent

k2ko P+t

too .
Consequence 1. It exists no eN so that for each n > ng we have S(2)S(3) S(n)>n
Proof. Because Ixm =0, there is ng €N so that

5(2)5(3) S(n) 5(2)5(3) S@ *

for each n > no.
Consequence 2. [t exists ng €N so that :
S2)+SB)+...+S(n) > (n- l)nn—l foreachn>ng .
Proof. We apply the inequality of averages to the numbers S(2), S(3), ..., S(n) :
S(2) +S3) +... +S(@) > (n~ )™ /S@)SG)...S(@) > (a— 1)n*T, Vn 2 no.
We can write it as it follows :

1,1.1. 1.1 1,2 4.8 14 am) -
T T TR T TR TR TR +5f+6' Ez > Where 2@ is the

number of - soluti_ons for the equation S(x) =n, n €N, n>
It results from the equality S(x)=n that x is a divisor of n!, so a(n) is smaller than d(n!).

So, a(n) < d(n!).

Lemma 1. We have the inequality :

d(n) <n-2, for eachneN, n>7. (12)

Proof. Be n= pl‘p;2 Pt with pi,p2, ....px prime numbers, and
aj 2 1 for eachie {1,2,...,k}. We consider the function f: [1,20) »R, f{x)=a*-x-2,a2 2,
fixed. It is derivable on [1,0) and f{x) = a*lna— 1. Because a2, and x> 1 it results that

a*>2 so a*lna>2lna=Ina?>In4>Ilne=1, f{x) > 0 for each x € [1,») and a > 2, fixed.

But f{1) = a-3. It results that for a > 3 we have f(x) 20 means a*>x+2.

Particularly, for a =p;,i € {1,2,..,k}, we obtain p:' > a; +2 for each pi 2 3.

Ifn=2s eN* thend(n)=s+1<2-2=n-2fors=3.

So we can assume k > 2, i.e. pz = 3. The following inequalities result :

p?' 2ay+ 1 .

p;z 2a;+1

Pr 2ax+1,
equivalent with
pilza +1,p-12a+1,..,pf—12ac+1 (13)
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By multiplying, member with member, of the inequalities (13) we obtain :

P (P2 = 1Py ~ 1) 2 (a1 + 1)@z + 1)...ak + 1) = d(n). (14)
Considering the obvious inequality :
n-22py'(p;’ - ..oy - 1) (15)

and using (14) it results that :

n-2 > d(n) for eachn > 7.
Lemma 2. d(n!) < (n-2)! foreachn €N, n>7. (16)

Proof. We carry out an induction after n. So, for n=7,
d(71)=d(2%-23-5-7) =60 <120=5!,

We assume that d(n!) < (n-2)!.

d((n+1)!) = d(nl(n+1)) < d(n!) d(n+1) < (n-2)!d(n+1) < (n-2)!(n-1) = (n-1),

because in according to Lemma 1, d(n+l) <n-1.

Proposition 5. The series Z 3 ( =y 1s convergent to a number s € (0.717, 1.253).
=2

Proef. From Lemma 2 it results that a(n) < (n-2)!, so a(n) <1

n! n@m-1)
'n>7 and Z E a(n) Z

e S(n)I = 0l = (n—l)

for every ne N,

Therefore Z a(n ) +—2-+ 4 14+Z . (17)
2 nl 2' 3! =7 n2 -n
Because Z =1 we have there is a number s > 0, s = . 1 .
—n-n =2 S(n)!

From (17) we obtain :

v _1 391 1 1 1
o <T=+1- - - +
Ez S(n)! 360 22-2 32-3.42_4
1 1 751 _5_ 451
+ <1,253.
52—5+62—6 360 6 360
But because S(n) < nfor every n eN” | it results :

,Z;S(n)' Z r=e- 2.

Consequently, for the number s we obtain the range e-2 < s < 1,253, i.e, 0,717 <s <
1,253. -

Because S(n) < n, it results 2, S ) <>, Therefore the series . & is
2 ol T2 (n —1)’ > nl

convergent to a number £,

Proposition 6. The sum f of the series 2. S_IE"Q is an irrational number.
2 1

Proof. From the above results that hm Z Sr(lll) = 1. Under these circumstances that
1—2 H

fe Q,f>0. Therefore it exists a,b €N, (a,b)=1, so that P—_E'
_ . <
Let p be a fixed prime number, p > b, p > 3. Obviously, % > Sl(ll) iy 1(ll) hich
1=2 2p

leads to :
163



(p-Dta _ Z » (- DISE) Z (P-DIS®

b 1=2 il il

!
Because p > b results that (p ) 2 eNand E (- ) S0) € N. Consequently we
=2
hav ez(p—l) S0 € N too

Bea= Z (- l) 5@ e N.So we have the relation

_b- 1)'S(p) (e-D!ISe+1) (@-DISE+2)
p! E+D! (r+2)!

Because p is a prime number it results S(p)=p.

So

Sp+1) S(p +2)
18
e+ D pprDE-D 7! ()
We know that S(p+1) <p+ (V)i > 1, with equahty only if the number p+1 is prime.

Consequently, we have

a~1+

L 1,1, 1, _®
a<l+p+ ot gmem - <1l +pt gt =F <2 (19

From the inequalities (18) and (19) results that 1<<2, impossible, because a € N.

The proposition is proved.
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1 Variations on Fermat—Euler theorem

In {Schw8l] a semigroup approach to the FERMAT-EULER Theorem was devel-
oped
a*™ =1 (mod n), (a,n) =1

based on an idempotent technique giving the best possible extensions of this
fundamental result to the set Z of the all integers. In [LaP096] the idea was
generalized to finite commutative rings R and subsequently to the residually
fintte DEDEKIND domains, that is DEDEKIND domains R satisfying the finiteness
condition:

(FN) For every non-zero ideal M C R the residue class ring R/M is finite.

A detailed specialization of these results depends then upon a correspond-
ing detailed knowledge of the structure of the group of units (i.e. invertible
elements) of the corresponding residue class ring R/M. The most known pro-
totypes of rings where this knowledge is available are, besides Z, the ring of
residue classes modulo n, the algebraic number fields. Thus for instance, for
*- residually finite DEDEKIND domains we only have Lemma 8 in general. For
algebraic number fields see [LaPo96].

1.1 Semigroup level

The basic underlying idea of the proofs of generalizations of FERMAT-EULER
Theorem given in [Schw81] and [LaPo96] is based on the some elementary semi-
group ideas. To describe them we shall suppose in this Section that S is a finite
commutative semigroup written multiplicatively.

Given an z € S, the sequence

z, 2, 23, ... z€S (1)

J

contains some of its elements multiple times. If we denote by ¥ = k{z) € N
(here NV is the set of positive integers) the least such exponent for which z*
appears at least twice in (1) and d = d(z) the least exponent with =¥ = z*+9,
then the sequence (1) has the form

2, gf gk L gkl gk
The next elementary result is instrumental in the investigations which follow:

Lemma 1 (Frobenius 1893) For every z € S the set
C(z) = {zF,...,zFrd-1} (2)

forms a cyclic group with respect to the multiplication.
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The identity element e = z7,r = r(z) of the group C(z) is the unique
idempotent of R which belongs to (1). This connections are described saying
the element = belongs to the idempotent e.

The above observations imply (see also proof of Theorem 1.9 in [LaPo96]):

Proposition 1 (Individual Fermat — Euler Theorem) If x,6 € N with
k> k(z), d(z) | 8, then for everyz € S we have

zrc+6 = z*
and the numbers k(z) and d(z) are the least positive numbers possessing this
property.

The main problem here is to determine the exact values of k(z) and d(z).
As mentioned above, more knowledge about S is required for this task. In the
process of the determination of values of these numbers further structural results
are needed. To make the paper self-contained we shall outline some crucial
facts, the reader is referred to [LaPo96] for more details. Of basic importance
are properties of the idempotents.

Let E's denote the set of idempotents of S. Let e € Es. Then the set

PS(e) = {z € S;  belongs to e}

is the largest subsemigroup of S, which except for e contains no other idem-
potent of S. This uniquely determined maximal subsemigroup P3(e) will be
called the mazimal (multiplicative) semigroup (of semigroup S) belonging to the
idempotent e € Es. Note that

S= U P5(e).

ecEs

Moreover, ife € E5 is an idempotent in S, then there always exists a subgroup of
S containing e as its identity, e.g. the group {e} or the group C(z) of Lemma 1
provided z belongs to the idempotent e. Since S is finite, there exist maximal
subgroup of S amongst the all subgroups of S for which e serves as the identity
element. We shall call this group G5(e) the mazimal (multiplicative) subgroup
of S belonging to the idempotent e € Es. It is surprising that the existence of
these subgroups is almost unknown in the classical number theory.
Given an idempotent ¢ € Fg, define

k. = max{k(z) ; = € P5(e)}, d. =lecm.{d(z); z € P°(e)}

and
ks = max{k(z) ; z € S}, ds =lemfd(z); z € S}.

The algebraic meaning of numbers k(z),d(z) for z € S, k.,d, for e € Es,
ks, and ds is best explained by the next results [LaPo96, p.268|:
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Lemma 2 Foranyz €S

(a) Every of z*(%) zk< z¥s is an element of a subgroup of S. More precisely,
%=} € C(z), =%« € G5(e) for £ € Ps(e), and z¥s € Useks G3(f).

(b) For every z € ;e g, G°(f) the element £9?) = z4 = z95 is an idempotent
of S.

These numbers enable us to complement the above individual FERMAT—
EuLER Theorem and its classical version to statements over three basic sub-
semigroup levels of S, namely:

o the least subsemigroup generated by z yielding FERMAT-EULER Theo-
rems of individual type,

¢ the maximal subsemigroup belonging to an idempotent of S yielding local
types of this Theorem, and

o the whole multiplicative semigroup of S giving global type FERMAT—
EULER Theorems.

. Namely, it follows from the definitions of numbers k.,d., ks,ds and Theo-
rems 1.10, and 1.11 of [LaPo96] that:

- Proposition 2 (Local Fermat — Euler theorem) Ife € Es, and 5,6 € N
with & > k., d. | §, then then for every z € P3(e) we have

Moreover, the numbers k., d, are the least positive integers such that this equality
holds under the given conditions for each z € P5(e).

Proposition 3 (Global Fermat — Euler theorem) For every z € S and
k,6 € N with k > ks,ds | 6 we have

zs+6 = r*
and the numbers ks,ds are the least positive integers such that this equality

holds under the given conditions for eachz € S.

1.2 Finite rings level

The classical FERMAT-EULER Theorem involves both additive and multiplica-
tive structure of the ring of integers, so it seems unavoidable to respect the
interference of both, the additive and multiplicative structure of the underly-
ing ring in the process to find the best possible generalization of this Theorem
Jjoining its classical form.

Therefore, in this section we shall always suppose that R denotes a finite
commutative ring with the identity element 1 = 1g. The set Er of idempotents

168



of R is obviously non empty for 0,1 € E and it is finite. The set EFr can be
endowed with a partial ordering

r<{y << zy=r1z.
An idempotent e € Eg is called primitive if it is minimal in the ordered set
(Er\ {0}, ).
Lemma 3 Letey,..., e, be the all primitive idempotents of R. Then

(1) If0# f € E, then 4
fe:{ef if e<f,

0 otherwise.

(ii) If0 # f € E, then

To simplify the notation, given f € E'g, denote
Iy = {ie{l,...,n}; fe:=¢e},
I = {L,...,n}\I.

Note the following facts (the reader is referred for more details to {LaPo96])
for e € Eg:

o GR(e) = PE(e)e, thus in particular GE(1) = PE(1),
o Gf(e) is the group of units of eR with respect to the ring multiplication
and GR(e) = Pef(e).
o PR(0) = N(R), where N(R) denotes the the nil-radical of the ring R
N(R)={z € R; z* =0 for some ¢ > 0}
which is formed by nilpotent elements of R. Thus nil-radical is the max-
imal semigroup belonging to the idempotent 0.

Ife;,..., e, are all the' primitive idempotents of R, then we have the Peirce
decomposition of R

R=eR®---BeaR,
and ([LaPo96, p.263-264])
PR(f) = PFle1f)o -0 P*F(eaf) = D) GP(es) © €D N(eiR)
iely i€l
= GR(fleN((1-f)R)
GR(f) = DGR (3)

Important observation is given in the next result:
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Lemma 4 ([LaP096, Theorem 1.14]) Let e1,...,en € E be the primitive
idempotents of R. Then for everyi=1,...,n we have

e;R = G®(e;) U N(e;R) (4)
and this union s disjoint.
If we define for y € e; R

vily) = 1 if y € GR(es),
W=t if y € N(e;R), where t is minimal with y* = 0.

and
v(z) = max{vi(e;z) ; i=1,...,n},

then we have:

Lemma 5 ([LaPo096, Corollary 1 of Theorem 1.15]) For every £ € R we
have k(z) = v(z).

Finally, if we define

v = max{v(z) ; = € e;R}, gD =lemd(z); z € GR(e:)}
foreveryi=1,...,n and
vy =max{v® ; ie I}, pr=lem{p®); ie I}

then numbers py, f € ERr, have the following property ({LaPo96, Lemma 1.8,
Corollary 1}):

Lemma 6 If f € Eg, then ugluy and the number puy ts the erxponent of the
group GR(f).

If analogically we define
vr =max{vy ; f € E} = v, pr=lcm.us; fEE}=p,
then these are the least positive integers such that:

Lemma 7 (a) z¥R is an element of a multiplicative subgroup of (R,.) for every
z € R,
(6) z#R is an idempotent for every z € (Jscp GR(f).

The previous considerations together give the following generalized FERMAT—~
EULER Theorems (global and local) which are “computationally easier” to han-
dle in comparison with the Proposition 2 and 3, because it reduces the determi-
nation of the values of ¥ u(®) for i = 1,...,n to the knowledge of the values
vy, ps for every f € Er. Thus we have:
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Proposition 4 (Local Fermat — Euler theorem) Ife € Eg, ard k,6§ € N
with K > v, p. | 8, then then for every z € PR(e) we have

"8 =z~
The numbers v,, u. are the least positive integers such that this equality holds
under the given conditions for each z € PR(e).

Proposition 5 (Global Fermat — Euler theorem) For every z € R and
k,6 € N with k > vg,pur | 6 we have

zn-}-& =z~
and the numbers vp, ur are the least positive integers such that this equality
holds under the given conditions for each = € R.

1.3 Dedekind domains level

Henceforth we shall suppose that R stands for a residually finite DEDEKIND
domain. If M is a non—zero ideal of R then the residue class ring R/M will be
denoted by Rys and its elements by {z] = [z]sr = z + M for z € R. The norm
- N(M) of an ideal M is defined as the cardinality of the residue class ring Rys.
Since every proper ideal M of a DEDEKIND domain R is uniquely (up to the
order of the factors) expressible in the form of a product of powers of prime

ideals, suppose that
M= Pi...P, (5)

where Py, ..., P, are distinct prime ideals of Rand u; > 0,7=1,...,r.
For these rings the FERMAT-EULER Theorem is usually stated in the form:

Lemnma 8 ([Nark74, Theorem 1.8]) Let GR™([1]3r) denote the group of units
of the residue class ring Ryr with M # (0) of a residually finite Dedekind domain
R. If pr(M) = card (GR™([1])), then

Pr(M) = N(M) ] (00 = N(P)™),
P

where the product is extended over all prime ideals appearing in (5), and, more-
over, ifz € R and ((z), M) = (1), then

zv2M) =1 (mod M).

As usual, we say that an ideal A divides an ideal B, in symbols A} B, if there
exists an ideal C with B = AC. It can be easily shown that in a DEDEKIND
domain A|B if and only if A D B.

Let an ideal T divide the ideal M. Then the ideal T is called the unitary
divisor of M, if (T, %) = (1). Here the greatest common divisor (A, B) of two
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ideals A and B is defined as the ideal A+ B={a+b; a € 4,5 € B}, i.e. the
least (with respect to the set inclusion) ideal containing both ideals 4 and B.
Moreover, an ideal D is called unitary divisor generated by the divisor T of M
provided D is a unitary divisor of the ideal M and D is divisible by exactly the
same prime ideals of the ring R as the ideal 7. We shall denote it by D = (T).

If (5) is the factorization of an ideal M with distinct prime ideals P, ..., P,,
u; >0,i=1,...,r, then given a divisor T of the ideal M, define

Jr ={i€ {1,...,1’}; P,lT}

The next result describes the relation between unitary divisors of the ideal
M and idempotents of the residue class ring Rys.

Lemma 9 ([LaPo96, Theorem 3.2]) There ezists a one-to—one correspon-
dence between unitary divisors of the ideal M and idempotents of the residue
class ring Rps. More precisely, every idempotent in Ryr is a solution of the
congruence system

z 0 (mod P{*?) for i€ Jp, (6)

1 (mod P*%) for ie{L,...,r}\ Jp,

1

where D is a unitary divisor of the ideal M.

If an idempotent [f] € Rus is given by the system (6), where the ideal D is
a unitary divisor of the ideal M, then we again say that [f] is the idempotent
belonging to the (unitary) divisor D.

This implies, for instance, that we have 2" idempotents in the ring Rys, and
that primitive idempotent [e;], for every ¢ = 1,...,r, is just the idempotent
belonging to the unitary divisor

M 17 ou;
M= oz =[] P
: i=t
I#Fs
This shows that our notation Jr does not collide with its previous usage. If
[z] € Ry and T = ((z), M), then we say that [z] belongs to the divisor T of M.
The next result brings us back to FERMAT-EULER Theorem via the explicit

determination of v([z]):

Lemma 10 ([LaP096, Theorem 4.3]) Let [z] € Ry belong to a divisor T =
[Licsr Pj"j, where 1 < v; < u; for every j € Jy. Then

1 if T=1 (Jr=0),
v([=]) = { max [u—’ otherwise. (7)
JeJr | vj
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This Theorem in turn implies that
l/(i) =Uu;.

For later purposes define the function M on proper non-zero ideals M of a
DEDEKIND ring R by

HB(M) = max{ui; i€ {1,...,7}}

if (5) is the decomposition of M into the product of prime ideals.
If [f] is the idempotent belonging to the divisor D of M, then

= ; = HR(D);
) = maxy (D)

in the case [f] = [0] we get

o= 5 = Vi = HE)

We also have:

Lemma 11 Let [f] be the idempotent of the ring Ryr belonging to the unitary
divisor D of M. Then

(i) The element [z]*"(P) belongs to GRM([f]) for every [z] € PRM([f]).

(11) The element [:z:]'HR(M) belongs to a group for every [z] € Rus.

The numbers HE(D) and HE(M) are the least positive integers possessing these
properties.

Of fundamental importance is also the following structural result:

Lemma 12 Let [f] € Rar be the idempotent belonging to the unitary divisor D
of M. Then the finite commutative rings Rag and {fls Rar with identities [1]%
and [f]lm are isomorphic.

Corollary 12.1 Let[f] € Rar be the idempotent belonging to the unitary divisor
D of M. Then the unit groups ¥ ([1]%) and GUImBam ([f]34) are isomorphic.

Corollary 12.2 Iffe;], i =1,...,r are primitive idempotents of Ryr, then

GRM ([eilar) = G ([Lpr).

This shows that for the determination of the values (), pis), and pr,, = upy
the information about the structure of the groups G®7*({1]p+), where P is the
prime ideal of the ring R and u > 0, is necessary. Thus for instance, a classical
structural result says:
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Lemma 13 If p s a prime number in Z and u > 0, then

Z if p=2, u=1,

Z fp=2, u=2

AR ~ ’ ’

G ([1]1") - Zs X Zogn-2 Hf p=2, u>2,
Zyn_pu—1 if p>2.

Therefore the exponent of the unit group G%~([1],,), where m€ Z, m# 0
is given by the so—called Carmichael function A defined by:

3

1 f m=1,
A(m) = 2u-2 if m=2% u>2,
] e(m) if m =24, or p* for odd prime p,

Lem{A(p!);i=1,...,r} if m=pi*...ptr,
(8)

where ¢ is the EULER totient function, i.e.:

Lemma 14 Foreveryj=1,...,r

1 2f Pj =2, u_,-:l,

: ; 2 if p; =2, u; =2

@) = Y5y —= 7 ' 7 ’

p =Ap7) =9 qui-2 i m= >,
Py —=p" i pp>2.

This yields the following (by the way the best possible) extensions of FERMAT—
EULER Theorem for Z which are proved in [Schw81}, where

H(m) = ’HZ((m)).

Proposition 6 (Global Fermat—Euler Theorem) Leta,m € Z, m #0. If
k,86 € N with k > H(m), A(m) | 8, then

a** =a* (mod m),

where H(n) = max{ai, @3, ...,ar} forn having the standard formn = pf*p3> ... pe*.
The exponents A(m), H(m) are the least positive integers for which the congru-
ence is true for every a.

If again, given a divisor d of m, (d} denotes the unitary divisor of m having
the same set of prime divisors as d, and, a unitary divisor of m is such a divisor
t of m for which (m,m/t) =1, then

Proposition 7 (Local Fermat—Euler Theorem) Leta,m € Z, m # 0 and
d=((a,m)). If k,6 € N with x> H(d),\(3) |6, then

a*t* =a* (mod m),

The ezponents A(m/d), H(d) are the least possible positive integers over the set
Pldy={n€ Z : {(n,m)) =d}.
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Various other forms of FERMAT-EULER Theorem found in the literature
can be derived from the just given one using that the LAGRANGE’s Theorem of
group theory which in case of Z,, says

Vmen  A(m) | o(m). (9)

This follows directly also from (8). For concretization of Propositions 2
and 5 for other rings the values of . and ug are needed. In [LaPo96] the
corresponding values for GAUssian integers, and other quadratic extensions of
Z and general number fields can be found.

2 Smarandache’s algorithm

Given two integers a,m with m # 0, F.SMARANDACHE [Smar81] proved that
the following algorithm terminates

Let do = (a, m), a = aqdp,

m = mods, (ag,mo) =1.
- Ifdg > 1 then
d; = (do,mo), dg = dédl: 1 _
mo = mldI’ (do,ml) — l.
Ifdy > 1 then
dz = (dl,ml), d, = d%dZ, 1 —
my = m2d2’ (dl,mg) = 1.
If ds > 1 then -
ds = (da, m3), dy = djds, 1 -
maq = m3d3, (dg,m3) =1
etc. untild;_; > 1 and
d, = (ds—ly ms—l)’ ds_1 = di—ld" (dl 1 m,) =1

ms_1 = m,d;,
where d;, = 1.

This algorithm-provided him the basis for the following generalization of the
FERMAT-EULER Theorem:

Proposition 8 (Smarandache, [Smar81, Théoréme]) Ifa,m€ Z, m#0,
then
a?(MmI+? = ¢*  (mod m), (10)

where m, and s are defined through the above algorithm and ¢ s the EULER’s
totient function.

It follows from the above algorithm that

d,ld;_]_l...ldc, d0=(axm):
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ms lms—l l ---ImO [m,
(d},m,) =1 for ¢=0,1,2,...,5 -1,
(a,m;) =1, (11)
1 2
m = (df) (d})"...(d}_,)" .m,, (12)
a = aodgd} ...d!_.d,.

Relation (11) is employed as the starting point of the SMARANDACHE's proof
of the above Proposition 8 through the EULER Theorem

a?™) =1 (mod m,). (13)

However, as we noted in the previous Section of this paper, ¢ (m,) is not the
best exponent for which (13) is true for for every a coprime to m,. The best
exponent is given by CARMICHAEL’s function A(m,) as relations (7) and (9)
show. Therefore an immediate check of the SMARANDACHE’s proof implies that
SMARANDACHE’s result of Proposition 8 can be improved to the form:

Theorem 1 Ifa,m € Z, m # 0, then
a*(mdts = ¢ (mod m), (14)

where m,, and a are defined through as above and X is the Carmichael’s function.

3 Generalized Smarandache’s algorithm

In this Section give another proof of a generalization of Proposition 8 based on
the results quoted in Section 1.

R will again denote a residually finite DEDEKIND domain. Here the SMARAN-
DACHE’s algorithm acquires the following form:

Given two ideals A, M with M # (0), let

Let Do = (A4, M), A= AgDy,

M = MyDy, (Ao, Mo) = R.
If Do # R then
Dy = (Do, Mo), Do = Dg Dy, 1 —
My :1\{1D1’ (DOyMl)—R.
If D; # R then
D'_’:(D]_,Ml), Dl =D]1.D2, . B
A/Il = A/I2D2, (DI)MZ) = R.
If Ds~1 # R then
D’ = (Ds—l,l\{{,_l), Ds—-l = D.}—-]_D:) 1 —
M,_].:A/[’D’, (Ds—llzv[:)—R,

etc.
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Though we give a more explicit proof of the above SMARANDACHE’s result
in this more general setting, the original SMARANDACHE’s ideas can also be
employed here if the well ordering principle of the set of positive integers used
by SMARANDACHE over the set

l1=d,<d,-1 <...<ds, do=(a,m),
is replaced in R through the norm function A over the set
1= N(D}) S N(Djow) < ... <N(D)), D= (A M),
by means of the following elementary results:

Lemma 15 ([Gilm72, Exercise 8,p.467]) If R is @ Dedekind domain and
A, B are two non-zero ideals with finite norm N'(A), N(B), then AB also has
finite norm and

N(AB) = N(A).N(B). (15)

Note that there follows from the subsequent Exercise 9, [Gilm72] that the
truth of (15) for every couple of non—zero ideals in a residually finite domain R

- forces that R is DEDEKIND.

Lemma 16 Let R be a residually finite Dedekind domain. If A, B are two tdeals
of R with AB, then N(A)N(B).

Proof. As already mentioned if R is DEDEKIND then A C B holds if and only
if there exists an ideal C such that A = BC. If N(A) = N(B), then N(C) =1,
i.e. C = R. Consequently, A = BC = B, which is impossible due to AB.

That the SMARANDACHE’s algorithm also terminates in this more general
setting follows from the next result:

Theorem 2 Let M = PZPg* ... PE* and A = PP*PJ .. PP* be decompo-
sitions of ideals M and A into the product of distinct prime ideals of R with
0<a; and 0 < B; fori = 1,2,...,k. Then the generalized Smarandache’s
algorithm terminates for s given by

s=ma.x{0, [_‘;—] : fori=1,2,...,k withﬂi¢0}.

Proof. We shall discuss the contribution of every prime ideal P separately.
Let P*||M and PP||A. If 8 # 0, put
a=Kf+q, 0<g<p,

and K =0if 8 =0.

If Dy = (A, M) and P|| Dy, then 7o = min{a,3}. Consequently, if M =
My Do, then P#o||My, where pg = @ —v. Thusifa < Bor f=0,1e. if K =0,
then P%|My, and P does not contribute more to the whole process.
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If K >1,thenypy=Band po=a—-p>0,ie PP £ R and we can
continue in the SMARANDACHE’s algorithm. If D; = (Do, Mo) and P™{|Dy,
then 71 = min{yo,uo}. Since Mo = M D;, P*i|[M; with uy = po — 7.
Consequently, uy = 0if # < @ < 28, 1ie. if K =1, or gy = @ — 23 provided
K > 1. Thus if K =1, then PY|M;, and the contribution of P terminates. If
K > 1 then gy = o — 28 and v; = 3, etc.

In the last but one step, px_1 = o — KB and P7%~1||Dg_; with vx_; =
min{yk -2, -2} = B. Then P7%||Dg implies yx = min{yg_1,px-1} =
a— K and

NIK_l = MKDK yields HBK = UK-1 —YK-1—= 0, i.e. PIWK.

This shows that the SMARANDACHE’s algorithm really stops after

ma.x{O, [%-] : i=1,2,...,kwithﬂg¢0}

steps, and the proof is finished.
Lemma 10 immediately then proves:

Corollary 2.1 If [z] € Ry belongs to the divisor T = [Tiesr Pf", where 1 <
. Bi < o for every j € Jr then

)1, i T=1 (ie if Jr =0),
v(l=]) = { s,  otherwise. ’

It follows from the last Corollary that SMARANDACHE’s number s is a more
suitable tool for extension of the (p — 1)-power version of FERMAT Theorem,
while v([z]) does this for its p-power version.

Moreover we have:

Theorem 3 If Dy = (A, M) and D = {Dy), then

M
M, = o

Proof. Let P%||M but PD. Then P¢||M, and PDy. Consequently,
PlM;, i=0,1,...,s,

ie. PO|M,.
Let P|M and also P|D. We claim that PM,. In the opposite case

PIM, | Msoi|...| Mo | M,

and simultaneously P|Dy. Therefore P|D; = (Dg, My), and thus P|D; =
(D1, My), etc. , P|D; = (Ds-1, M,_1). A contradiction, since D, = 1.

This together with Lemma 8 gives the following extension of SMARAN-
DACHE’s contribution to the individual type FERMAT~EULER Theorem to resid-
vally finite DEDEKIND domains:
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Theorem 4 Let R be a residually finite Dedekind domain and M its non—zero
ideal. Then given an element a € R, let s, M, be determined by the above
Smarandache’s algorithm for A = (a), and M. Then

a?RMI+s = q*  (mod M). (16)

It follows from the above discussion that the exponent wg(M,)} is not the
best possible. The best one is given by the order of the cyclic group C(a) in Rys.
The “next” best exponent is given by the exponent of the maximal subgroup
of the multiplicative semigroup of Ry belonging to the idempotent belonging
to the unitary divisor D = (((a), M)). In the case when R = Z this is given
through the CARMICHAEL function. The reader is again referred to {LaPo96] for
how the corresponding values can be computed in the case of algebraic number
fields. The necessary facts can also be found in [Naka79]. For other residually
finite commutative rings the corresponding numbers can be computed using (3)
and Lemma 12 and its Corollaries 12.1, 12.2.

4 Applications

As noticed by SMARANDACHE in [Smar81] his algorithm can be easily imple-
mented. Namely:

Stepl: A:=a, M :=m,::=0

Step 2: COMPUTE d = (a,m) AND M’ = M/d

Step 3: IF d=1 THEN s =i and m, = M’; STOP

Step 4: IF d# 1 THEN A:=d, M :=M',i:=1+1; GOTO 2

In conjunction with the above given form of individual FERMAT-EULER The-
orem the SMARANDACHE’s algorithm can be used for a effective determinations
of:

¢ The highest power in which a prime from a given set {p1,p2,...,px} of
primes divides a given integer n. Simply apply the above algorithm with
a=p;...pr and m=n.

o the least power k for which a given number z belongs to a subgroup of
the multiplicative semigroup of Z,, the residues modulo n. Again apply
the the algorithm with a =z, and m = n.

Adaptation of the above ideas to other residually finite rings along above
lines is left to the reader.
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A few Smarandache Integer Sequences

Henry Ibstedt

Abstract
This paper deals with the analysis of a few Smarandache Integer Sequences which first appeared in
Properties of the Numbers, F. Smarandache, University of Craiova Archives, 1975. The first four
sequences are recurrence generated sequences while the last three are concatenation sequences.

The Non-Arithmetic Progression: {a; :a; is the smallest integer such that aa;; and such that

for k<i there are at most t-1 equal differences @, —q, =a, —a, =.=4, —a, }

(e

A strategy for building a t-term non-arithmetic progression is developed and computer implemented
for 3<t<15 to find the first 100 terms. Results are given in tables and graphs together with some
observations on the behaviour of these sequences.

The prime-Product Sequence: {t, : t, = p#+1, p, is the nth prime number}, where p.#
denotes the product of all prime numbers which are less than or equal to p,.
The number of primes q among the first 200 terms of the prime-product sequence is given by 6<g<9.
The six confirmed primes are terms numero 1, 2, 3, 4, 5 and 11. The three terms which are either
primes or pseudo primes (according to Fermat’s little theorem) are terms numero 75, 171 and 172.
The latter two are the terms 1019#+1 and 1021#+1.

) The Square-Product Sequence: {t,: t, = (nl)*+1}
As in the previous sequence the number of primes in the sequence is of particular interest. Complete
“prime factorization was carried out for the first 37 terms and the number of prime factors f was

recorded. Terms 38 and 39 are composite but were not completely factorized. Complete factorization
was obtained for term no 40. The terms of this sequence are in general much more time consuming to
factorize than those of the prime-product sequence which accounts for the more limited results. Using
the same method as for the prime-product sequence the terms t, in the interval 40<n<200 which may
possible be primes were identified. There are only two of them, term #63: N=(65!)’+1 which is a 182
digit number and term #76: N=(76!)’+1 which has 223 digits.

The Prime-Digital Sub-Sequence: The prime-digital sub-sequence is the set
{M=ay+a;-10+a,-10%+...a, 10" :M is a prime and all digits aq, a;, 3,...2; are primes}
A proof is given for the theorem: The Smarandache prime-digital sub sequence is infinite, which
until now has been a conjecture.

Smarandache Concatenated Sequences: Let G={g, g2, .... & .... } be an ordered set of
positive integers with a given property G. The corresponding concatenated S.G sequence is defined

through S.G = {a,:a, = g,,a, =a,_,-10""%% + g k>1}.

The S.0dd Sequence: Fermat’s little theorem was used to find all primes/pseudo-primes
among the first 200 terms. There are only five cases which all were confirmed to be primes using the
elliptic curve prime factorization program, the largest being term 49:

13579111315171921232527293133353739414345474951 535557596 1636567697173757779818385878991939597
Term #201 is a 548 digit number.

The S.Even Sequence: The question how many terms are nth powers of a positive integer was
investigated. It was found that there is not even a perfect square among the first 200 terms of the
sequence. Are there terms in this sequence which are 2-p where p is a prime (or pseudo prime)?
Strangely enough not a single term was found to be of the form 2-p.

' The S.Prime Sequence: How many are primes? Again we apply the method of finding the
number of primes/pseudo primes among the first 200 terms. Terms #2 and #4 are primes, namely 23
and 2357. There are only two other cases which are not proved to be composite numbers: term #128
which is a 355 digit number and term #174 which is a 499 digit number.



I. The Non-Arithmetic Progression

This integer sequence was defined in simple terms in the February 1997 issue of Personal Computer
World. It originates from the collection of Smarandache Notions. We consider an ascending sequence
of positive integers a,, a,, ... 2, such that each element is as small as possible and no t-term arithmetic
progression is in the sequence. In order to attack the problem of building such sequences we need a
more operational definition.

Definition: The t-term non-arithmetic progression is defined as the set :

{ai :a; is the smallest integer such that a>a;; and such that for k<i there are at most t-1 equal

differences a, —a, =a, —4q, =.=q, -a }

From this definition we can easily formulate the starting set of a t-term non-arithmetic progression:
{1,2,3 .....t-1, t+1} or {a; : a=i for i<t-1 and a,=t+1 where t>3}

\ItAmay seem clumsy to bother to express these simple definitions in stringent terms but it is in fact
- -absolutely necessary in order to formulate a computer algorithm to generate the terms of these
sequences.

Question: How does the density of a t-term non arithmetic progression vary with t. i.e. how does the
fraction ay/k behave for t>37*

Strategy for building a t-term non-arithmetic progression: Given the terms a,, a, ... a we will
examine in turn the following candidates for the term a,:

g =ac+d,d=1,2,3, ...
Our solution is the smallest d for which none of the sets

{a, 2z, ... &, a+d, agtd-e, agtd-2e, ... a+d-(t-1)-e :e>d}
contaips a t-term arithmetic progression.

We are certain that a. exists because in the worst case we may have to continue constructing sets
until the term a,+d-(t-1)e is less than 1 in which case all possibilities have been tried with no t terms
in arithmetic progression. The method is illustrated with an example in diagram 1.

In the computer application of the above method the known terms of a no t-term arithmetic
progression were stored in an array. The trial terms were in each case added to this array. In the
example we have for d=1, e=1 the armay: 1,2,3,5,6,8,9,10,11,10,9,8. The terms are arranged in
ascending order: 1,2,3,5,6,8,8,9,9,10,10,11. Three terms 8,9 and 10 are duplicated and 1! therefore
has to be rejected. For d=3, e=3 we have 1,2,3,5,6,8,9,10,13,10,7,4 or in ascending order:
1,2,3,4,5,6,7,8,9,10,10,13 this is acceptable but we have to check for all values of e that produce terms

! This question is slightly different from the one posed in the Personal Computer World where also a wider definition of a t-term non
arithmetic progression is used in that it allows 2;>2, to be chosen arbitrarily.
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which may form a 4-term arithmetic progression and as we can see from diagram 1 this happens for
d=3, e=4, so 13 has to be rejected. However, for d=5, e=5 no 4-term arithmetic progression is formed
and e=6 does not produce terms that need to be checked, hence ag = 15. :

1 2 3 4 5 6 7 8 ¢ 10 1 a2 13 14 15

Known terms 1 2 3 5 6 8 9 10
Trials
d=1 e=1 8 9 10 11 reject 11
d=2 e= é 8 10 12 reject 12
d=3 e=3 4 7 10 13 try next e

e=4 ] 5 9 13 reject 13
d=4 e=3 2 é 10 14 reject 14
d=$5 e=5 ) 10 15 |accept 15

Diagram 1. To find the 97 term of the 4-term non-arithmetic progression.

Routines for ordering an array in ascending order and checking for duplication of terms were
included in a QBASIC program to implement the above strategy.

12.001 L1

\

10.00 » i

8.00-

6.00

4.00 e AL AL I lo]s 90

2,00

0.00-

6
7891011

1
12 13

14 15l

Diagram 2. aw/k for non-arithmetic progressions with 1=3, 4, 5, ... 15. Bars are shown for k = multiples of 10.

Results and observations: Calculations were carried out for 3<t<15 to find the first 100 terms of each
sequence. The first 65 terms and the 100 term are shown in table 1. In diagram 2 the fractions ayk
has been chosen as a measure of the density of these sequences. The looser the terms are packed the
larger is ay/k. In fact for t>100 the value of a/k = 1 for the first 100 terms.

In table 1 there is an interesting leap for t=3 between the 64™ and the 65” terms in that ag, = 365 and
ags = 730. Looking a little closer at such leaps we find that:
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Table 1. The 65 first terms of the non-arithmetic progressions for {=3 o 15.

# t-3 =4 =5 =6 =7 =8 =9 =10 =1 =12 =13 =14 t=15
1 1 i 1 1 1 i ! 1 } i 1 1 i
2 2 2 2 2 2 2 2 2 - 2 2 2 2 2
3 4 3 3 3 3 3 3 3 3 3 3 3 3
4 5 s 4 4 4 4 4 4 4 4 4 4 4
S 10 é 6 5 5 5 S 5 S 5 S 5 5
é 11 8 7 7 é é é 6 é é é é [
7 13 9 8 8 8 7 7 7 7 7 7 7 7
8 14 10 9 9 9 9 8 8 8 8 8 8 8
? 28 15 11 10 10 10 10 9 9 ? 9 ? 9
10 29 16 12 12 1 1] 11 i 10 10 10 10 10
11 3i 17 13 13 12 12 12 12 12 11 B R H
12 32 19 14 14 13 13 13 13 13 13 12 12 12
13 37 26 16 15 15 14 14 14 i4 14 14 13 13
14 38 27 17 17 16 16 15 15 15 15 15 15 14
15 40 29 18 18 17 17 16 16 16 16 16 16 16
16 4] 30 19 19 18 18 17 17 17 17 17 17 17
17 82 3 26 20 19 19 19 18 18 18 18 18 18
18 83 34 27 x 20 20 20 20 19 19 19 19 19
19 8s 37 28 23 22 21 21 21 20 20 20 20 20
20 86 49 29 24 23 x) 2 2 21 21 21 21 21
21 91 50 31 25 24 24 23 23 23 22 2 2 22
2 92 St 32 26 25 25 24 24 24 24 23 23 23
23 94 53 3 3 26 26 27 25 25 25 24 24 24
24 95 54 34 34 27 27 28 26 24 26 25 25 25
25 109 56 36 35 29 28 29 27 27 27 27 26 26
26 1o 57 37 36 30 ks] 30 28 28 28 28 28 27
27 112 58 38 37 31 3i 31 31 29 29 29 29 28
28 113 83 39 39 32 32 32 32 30 30 30 30 29
29 118 &5 4] 43 3 3 3 3 31 31 31 31 31
0 119 66 42 44 34 34 34 34 32 32 32 32 32
31 121 &7 43 45 36 35 37 kS 34 33 33 33 33
32 122 80 44 44 37 37 38 34 35 35 34 34 34
33 244 87 51 47 38 38 39 37 36 36 35 35 35
34 245 88 52 49 32 39 40 38 37 37 36 36 36
35 247 89 3 50 40 40 41 39 38 38 37 37 37
36 248 21 54 §1 41 41 43 41 39 39 38 38 38
37 253 94 56 52 50 42 44 42 40 40 40 39 39
38 254 99 57 59 51 44 45 43 41 41 41 41 40
39 256 102 58 60 52 45 46 44 42 42 42 42 41
40 257 105 59 62 53 46 47 45 43 43 43 43 42
4] 271 106 81 63 54 47 48 49 45 44 44 44 45
42 272 109 62 64 55 48 49 50 44 46 45 45 46
43 274 110 43 S 57 49 50 St 47 47 44 46 47
44 275 m 64 66 58 50 53 52 48 48 47 47 48
45 280 122 65 68 59 59 S 53 49 49 48 48 49
46 281 126 67 69 &0 &0 56 54 S0 50 49 49 50
47 283 136 48 71 61 41 57 55 St 51 50 50 S1
48 284 145 49 73 62 62 58 58 s52 52 St 51 52
49 325 149 76 77 64 63 59 59 53 53 53 52 53
50 326 151 77 a5 45 64 &0 &0 54 54 54 54 54
St 328 152 78 87 66 &5 64 81 56 55 55 55 85
52 329 160 79 88 &7 &7 65 62 57 57 56 56 56
53 334 163 81 89 &8 34 66 63 58 58 57 57 58
54 335 167 82 90 49 70 67 64 59 59 58 58 59
55 337 169 a3 ?1 71 71 48 &5 60 60 59 59 40
56 338 170 34 93 72 72 &9 66 81 61 60 460 81
57 352 i71 86 9?6 73 74 70 48 62 42 61 61 62
58 353 174 87 97 74 75 71 49 &3 63 62 62 &3
59 358 176 88 98 75 76 78 70 64 44 43 43 64
&0 356 177 89 99 76 77 79 71 65 45 &4 464 65
61 341 183 91 100 78 78 80 72 &7 46 66 45 66
62 362 187 92 103 79 7% 81 73 48 48 &7 &7 &7
43 344 188 93 104 80 81 82 74 &9 69 48 48 48
64 345 194 94 107 81 84 83 75 70 70 69 49 &9
&5 730 196 126 m 82 85 84 77 71 7 70 70 70
100 977 3460 179 183 130 139 138 126 109 109 108 108 113
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’

Leap starts at Leap finishes at

5 10

14 =3.5-1 28 =2-14
41 =3-14-1 82 =2-41
122 =3-41-1 244 =2.122
365 =3.122-1 730 =2.365

Does this chain of regularity continue indefinitely?

Sometimes it is easier to look at what is missing than to look at what we have. Here are some
observations on the only excluded integers when forming the first 100 terms for t=11, 12, 13 and 14.

For t=11: 11, 22, 33, 44, 55, 66,77, 88, 99 The nth missing integer is 11-n
For t=12: 12, 23, 34, 45, 56, 67, 78, 89, 100 The nth missing integer is 11-n+1
For t=13: 13, 26, 39, 52, 65, 78, 91, 104 The nth missing integer is 13-n
For t=14: 14, 27, 40, 53, 66, 79, 92, 105 The nth missing integer is 13-n+1

Do these regularities of missing integers continue indefinitely? What about similar observations for
other values of t?

IL The Prime-Product Sequence

The prime-product sequence originates from Smarandache Notions. It was presented to readers of the
Personal Computer World’s Numbers Count Column in February 1997.

Definition: The terms of the prime-product sequence are defined through {t,: t, = P+l pois the nth
prime number}, where p# denotes the product of all prime numbers which are less than or equal to

Pa

The sequence begins {3, 7, 31, 211, 2311, 30031, ... }. In the initial definition of this sequence t; was
defined to be equal to 2. However, there seems to be no reason for this exception.

Question: How many members of this sequence are prime numbers?

The question is in the same category as questions like ‘How many prime twins are there?, How many
Carmichael numbers are there?, etc.’ So we may have to contend ourselves by finding how
frequently we find prime numbers when examining a fairly large number of terms of this sequence.

From the definition it is clear that the smallest prime number which divides t, is larger than p,. The
terms of this sequence grow rapidly. The prime number functions prmdiv(n) and nxtprm(n) built into
the Ubasic programming language were used to construct a prime factorization program for n< 10%°.
This program was used to factorize the 18 first terms of the sequence. An elliptic curve factorization
program, ECM.UB, conceived by Y. Kida was adapted to generate and factorize further terms up to
and including the 49¢h term. The result is shown in table 2. All terms analysed were found to be
square free. A scatter diagram, Diagram 3, illustrates how many prime factors there are in each term .

The 50th term presented a problem. tso=126173-n, where n has at least two factors. At this point
prime factorization begins to be too time consuming and after a few more terms the numbers will be
too large to handle with the above mentioned program. To obtain more information the method of
factorizing was given up in favor of using Fermat’s theorem to eliminate terms which are definitely
not prime numbers. We recall Fermat’s little theorem:
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If p is a prime number and (a, p)=1 then a*' =1 (mod p).

a™' = 1 (mod n) is therefore a necessary but not sufficient condition for n to be a prime number. Ifn
fills the congruence without being a prime number then n is called a pseudo prime to the base a,
psp(a). We will proceed to find all terms in the sequence which fill the congruence

a*' =1(mod1?,)
for 50 < 1 < 200. ty0 is @ 513 digit number so we need to reduce the powers of a to the modulus t,
gradually as we go along. For this purpose we write t,-1 to the base 2:

te-1= 2 5(k)-2* , where 5(k) € {0,1}
k=1
From this we have

k
gt = H g’

O = N W bH 0o N

Term number

Diagram 3. The number of prime factors in the first 49 terms of the prime-product sequence.

This product expression for a' ! is used in the following Ubasic program to carry out the reduction

of a*' modulus t,. Terms for which 5(k)=0 are ignored in the expansion were the exponents k are
contained in the array E%(). The residue modulus t, is stored in F. In the program below the

reduction is done to base A=7.

100 dim E%(1000)

110 M=N-1:1%=0

120 T=1J%=0

130 while (M-T)>=0

140 inc J%BIT=2"T

150 wend

160 dec J%H:M=M-T\2inc 1%:E%{I%)=1%
170 if M>0 then goto 120
180 F=1

190 for J%=1to 1%

200 A=7

210 for K%=1 to E%{J%)
240 A={AN2)@N

250 next

260 F=F*A:F=F@N

270 next
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Table 2. Prime factorization of prime-product temms

$ P L N=p#+1 and its factors
1 2 1 13 Prime number
2 3 1 |7 Prime number
3 S 2 |3 Prime number
4 7 3 |21 Prime number
s n 4 |231n Prime number
é 13 5 }30031 = 59- 509
7 17 6 510511 =19.97.277
8 19 7 [969969) =347 - 27953
9 23 9 }223092871 =317 - 703743
10 29 10 }6469693231 =331 - 571 - 34231
n 31 12 }200540490131 Prime number
12 | 37 13 7420738134811 =181 - 60411 . 475421
13 41 15 [304250263527211 =61 - 450451 - 11072701
14 43 17 }13082761331670031= 41 - 450451 - 11072701 .
15 47 18 ]4614889782588491411 =953 - 44727 - 13808181131
16 53 20 |32589158477190044731 =73 - 139 - 173 - 18564761860301
17 59 22 |192276035015421 2639071 =277 - 3467 - 105229 - 19026377261
18 61 24 [117288381359406970983271 =223 - 525956887082542470777
19 67 25 |7858321551080267055879091 554730729297 - 143581524529603
20 71 27 |5579408301264698960967415391 = 1063 - 303049 - 598841 - 2892214489673
21 73 29 |40729680599249024150621323471 = 2521 - 161561604915704181 47806951
22 79 31 [3217644767340672907899084554131 = 22093 - 1503181961 - 96888414202798247
231 8 33 |267054515689275851355624017992791 = 265739 - 10049880359484897329167431269
24 89 35 |23748741896345550770650537501358311 = 131 . 1039 « 2719 - 64225891884294373371808141
25 | 97 37 {23055679439455184247531021 47331756071 = 2336993 - 13848803 - 71237436024091007473549
26 101 39 |23286236435849735090006331 6880507343071 = 960703 - 242387 464553038099079 594127301057
27 | 103 | 41 |23984823528925228172706521 6386922583946211 = 2297 - 9700398839 - 179365737007 - 6001315443334531
28 | 107 | 43 [2568374117504999414479597815340071848394471 = 149 - 13203797 - 30501264491063137 . 42767843651083711
29 109 45 [27973499681785493517827516187208780987 4997231 = 334507 - 1290433 - 4480464442342997144623177554034701
30 | 113 ] 47 [31610054564041760778814520629 154366249327 4686991 = 5122427 - 2025436786007 30446707 595069540247157055819
31 127 | 49 [40144746939333036189094441199026045134645885247731 =
1543 . 49999 - 552001 - 57900988201093 -1628080529999073967231
32 | 131 | 51 1525896479052827740771371797072411912900610967452431 =
1951 - 22993 - 11723231859473014144932345466415143728266617
33 | 137 { 53 [72047817430210000485877936198920432067383702541010311 =
881 . 1657 - 326334877 - 160823938621 - 5330099340103 - 1764291759303233
34 § 139 | 56 [10014646650599190067509233131649940057366334653200433091 =
878279959005528882498481487 . 147647 68614544245139224580493
35 | 149 | 58 |149218235093927932005887573661 5841068547 583863326864530411 =
87549524399 - §5018161573521013453 - 262140076844134219184937113
36 1151 | 60 1225319534991831177328890236228992001350685163362356544091911 = :
23269084799 180847 - 9683213481319911991636641541802024271084713
37 | 157 § 62 }35375166993717494840635767087951744212057570647889977422429871 =
1381 - 1867 - 8311930927 - 388938467968570583 - 42440201875440880489113304753
38 | 163 ] 84 [57661522199759516590236300353341 3430656538401 5606066319856068811 =
1341 - 214114727210560829 - 32267019267 402210517 - 613228865630544238382107
39 | 167 | 86 (962947420735983927056946215901134429196419130606213075415963491271 =
205590139 - 53252429177 - 7064576339567 63 - 124501 547099289409061979 46067239
40 | 173 | 69 [18658990378732521938085159535089425625098050959 487 48620446961683989711 =
62614127 - 268058015609341 1580352333193927 5661 5852809877 2260689062181793
41 179 | 71 {29819592777931214269172453467810429868925511217 4826003064061 41434158091 =
501 - 1651781 - 8564177 . 358995947 - 1525310189119 - 6405328664096618954809029861252251
42 | 181 | 73 {5397346292805549782720214077 67 3687806275517 53036435065545951 1599582614291 =
107453 - 56348381 41 - 891 4157280964101 12334489 13965712571 6363297 462840317 4028667
43 | 191 | 76 |1030893141925860008499 56088883567 4370998623848299590975192756715520279329391 =
32999 - 175603474759 - 77148541513247 - 2305941 4646437323959598530415862423316227152033
44 | 193 | 78 [198962375391690981640415251 5452851536027 3440272182105821 220397 6095413910572271 =
21439496447 - 7979125905967339495018877 - 11523077715625979758044020162101777 453615909
45 | 197 | 80 13919558814914312338314818045544211752597386773361987484467804183290796540382737191 =
521831 - 50257723 - 1501684368321 - 39081170243262541027 - 23875913958369977 1585726531 60969521
46 | 199 | 82 {779992204168345155324919910632981387 668799 678990355094 509303247 486851 1536164700811 =
447 - 10723 - 57622771 . 5876645549 - 9458145520867 - 4856325954430626096097 19222040521 4947865503847
47 | 211 | 85 |164578355079521038773558101 1435590727981 167322669849249414629852197255934130751870911 =
1051 - 2179 - 16333 - 43283699 - 75311908487 - 292812710684839 - 46096596672888469293430334044872907384889
48 | 223 | 87 [347009731827331915465034565550136732339900312955331782619462457039988073311157667212931 =
138678894681 59 - 264647142357 1680867 6791 59849289 67035648881000360533429306 19448037 572880509
49 | 227 | 89 |83311209124804345037562846379881038241 13467 104084031 46548179777 48077292641632790457335111 =
3187 . 31223 - 1737142793 - 114463039340315601 - 9731045054704469469309113 - 43206785807 567189232875099500379

This program revealed that there are at most three terms t, of the sequence in the interval 50<n<200
which could be prime numbers. These are:

Term #75. N=379#+1_ N is g 154 digit number.

N=1719620105458406433483340568317543019584575635895742560438771 105058321 65523856261308397965147
9555788009994557822024565226932906295208262756822275663694111
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Term #171. N=1019#+1. N is g 425 digit number.
N=204040689930163741945424641727744074956597971174231219132271310323390261691759299022444537574
104687288429298622716055678188214854906766619853898399586228024659868813761 394041383761530961031
A08346655636467401602797552123175013568630036386123906616684062354223117837423905105265872570265
00302696834793248526734305801 6341 65948702506367 1767012332980646166635537169754250487515755971504
17381063934255689124486029492908966644747931

Term #172. N=1021 #+1. N is a 428 digit number.

N=20832554441846971805262785592040287 4457268652856889007 4734049007840181 457187286244301915872863
160885721 4863138937930928474301 694088598087 18870830265977538813177726058850383316252820523111213
0679219354048332170364563007177616888535712671 50232508655634427663661803312009807112476455894240
54809053468323906745795726223468483433625259000887 41 1959197323736 1348834503191 305877535848446905
74146066276875058596100236112260054944287636531

The last two primes or pseudo primes are remarkable in that they are generated by the prime twins
1019 and 1021.

Summary of results: The number of primes q among the first 200 terms of the prime-product
sequence is given by 6<g<9. The six confirmed primes are terms numero 1,2,3,4,5and 11. The
three terms which are either primes or pseudo primes are terms numero 75, 171 and 172. The latter
two are the terms 1019#+1 and 1021#+1.

IIL The Square-Product Sequence

Definition: The terms of the square-product sequence are defined through {t,: t, = (@)*+1}

This sequence has a structure which is similar to the prime-product sequence. The analysis is
therefore carried out almost identically to the one done for the prime-product sequence. We merely
have to state the results and compare them.

The sequence begins {2, 5, 37, 577, 14401, 518401, ... }

As for the prime-product sequence the question of how many are prime numbers has been raised and
we may never know. There are similarities between these two sequences. There are quite a few primes
among the first terms. After that they become more and more rare. Complete factorization of the 37
first terms of the square-product sequence was obtained and has been used in diagram 4 which should
be compared with the corresponding diagram 3 for the prime-product sequence.

O~ N WHOOON

0] 5 10 15 - 20 25 30 35 40

Term number

Diagram 4. The number of prime factors in the first 40 terms of the square-product sequence.
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Diagram 4 is based on table 3 which shows the prime factorization of the 40 first terms in the square-
product sequence. The number of factors of each term is denoted f. The factorization is not complete
for terms numero 38 and 39. A +-sign in the column for f indicates that the last factor is not a prime.
The terms of this sequence are in general much more time consuming to factorize than those of the
prime-product sequence which accounts for the more limited results in this section. Using the same
method as for the prime-product sequence the terms t, in the interval 40<n<200 which may possible
be primes were identified. There are only two of them:

Term #45. N={65i]2+1. N is g 182 digit number.
6802374028907832895045078197262220379290257 695327 13580342793801040271006524643826496596237244465781514128589
94571534385340583792951 8223844551807 4780057 600000000000000000CC000000CO000T .

Term #76 N=(76l12+1. N is 0 223 digit number.
35550902700107478542025131357707726481943256669255416479770052502800S00841772264688442139146465890651 6439209129
30369944999 452531006264950776782697850719865801 16252984099317 647848386381 1504 17 600000000000000000000000000000
0000001

Table 3. Prime factorization of square-product tems.

n L t N={nl}2+1 and its factors
1 1 1 |2
2 1 118
3 2 1 137
4 3 1 1577
5 5 1 [14401
é é 2 1518401=13-39877
7 8 2 |25401401=101. 251501
3 10 2 11625702401= 17- 95629553
9 12 1 ]131631894401
10 14 1 |13168189440001
1 16 1 |1593350922240001
12 18 2 |229442532802560001=101- 2271708245569901
13 20 1 |38775788043632640001
14 22 3 |7600054458551997 440001= 29- 109- 24043196483572286441
15 25 2 |1710012252724199424000001=1344169-1272170577304043929
16 27 2 | 437763136697395052544000001=149- 2938007 628841577533852349
17 30 2 [12651354650554717018521 $000001= 9049139809 42259 42614324071 3449
18 32 2 [40990389067797 2831 40009984000001= 37-1107848353183710355135404972973
19 35 2 | 1479753045347 4819213543604224000001=710341-20831587158104092560535861261
20 37 5 |5919012181389927 685417 441689500000001=41-10457- 856816017- 3480446955609-4483247 49841
21 40 3 [2610284371992958109269091785113600000001 = §1.157-272557624725170524096177486176831513
22 43 4 |1283377536044591724886240423994982400000001= 337. 8017- 51 4049835440277 481- 90967 4823323537849
23 45 3 |668326769467589022464821 184293345689600000001 = 509-1 544837 4629- 8499 40026045327 47 6837 401741723441
24 43 1 |3849562192133312746939737002152967117209600000001
Sl 3

240597 637008332048087335626345604448254000000000001 =
941- 815749831908479758733- 313425331349331290243399417

26 54 5 [162644002617632464507038883409628607021056000000000001=
53. 53 418633- 6017159668589- 2298588971287 6096222556462301797
z 57 7 [118567477908254066625631346005619254518349824000000000001=
113- 42441. 745837 2450281- 7565641 15238649 116793504008451126962009
23 59 2 |92956902568007 118823449497 52684054955423862620146000000000001=
212259034557 6634509- 4379408529299793930395224147 4982753464389
29 62 2 |7817675515393986930521027 4200729021751 146848355456000000000001=

171707860473207 588349837 45528932070141404637164469396531758248773
30 45 &  70359079638545882374489246780485611957460321417199104000000000000Q1=
61. 1733. 15661- 359525849- 10046343811246568690110069- 1174592249518207759537897,
31 68 4 }167615075532642592962076366156210530912564907 412833894400000000000001 =
353- 422041. 13400767181- 338676081809 48409085305820793832191570324667321677
32 7t 4 ]6923783734542501519316419894395958346544468513190741907845600000000000001=
10591521481- 6415450838021 522303293914660001204969- 1950882388585355532025429
33 74 5 |7540000486916893054535799064997198859971 82108847 17937 $65638400000000000001=
37- 3121. 4421- 4073332832845936253- 36258135123244480427387 4507 621085782231 48052301
871624056287592837104338371913587581 650927 19397594613935941 477 990400000000000001 =
193- 13217- 848100731693. 394521434431 45645231 47589 4644096901291197410624286816576197
81 3 |106773946895230122545281 450559 425330223858 12620552707 1528310538 240000000000000001=
317 . 373 - 90301965388480848897828545563235536086347 4820117414832198907771 6189815715361
34 34 3 ]13837903517621823881868475992501 52279701 201 315623430847 00690457 559040000000000000001 =
73- 57986941373 . 3269017 431469827 7804505207 62862495178178824806313661 467 540114377341 49869
87 3 | 1894408991562427 68942779 43433734584709 109446010887 50629 552452363983257 0000000000000001 =
127406364297881- 49105571194338128021910109 - 3027972011 45240384282924307 698 14272052327 643069
2735524658381 414558353373506071 127 403199540400397 21 559090737 41 21 359 132397 440000000000000001 =
233.757- 15509190807 491428121 7009 4885906800637 2542416722731 790323638834 19184506 2531 6785821 6021
93 4+ 14160735933984357432554811027341847802665009490041 5491377011 503858731 6426506240000000000000001=
61-10045457577 41-6790012826932706465470845882125093489732961 5368972937285510229243157273033617801
96 4 | 865717749437 4971892087 6976437 4695648426401 518406663862032185641739706282409984000000000000000001 =
89- 701- 187100101949- 570304192879869 1519563156731 422223621 393496539544379 49264772817 48349020255113441

b
3

&

58 8 8 4
3
3
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IV. The Smarandache Prime-Digital Sub-Sequence

Definition: The prime-digital sub-sequence is the set {M=ao+a;-10+az- 10%+...2,10% :M is a prime and

all digits ao, ay, a;...3 are primes}

The first terms of this sequence are {2, 3, 5, 7, 23, 37, 53, 73, ... }. Sylvester Smith [1] conjectured
that this sequence is infinite. In this paper we will prove that this sequence is in fact infinite. Let’s
first calculate some more terms of the sequence and at the same time find how many terms there is in

the sequence in a given interval, say between 10* and 1

ok+l

.The program below is written in Ubasic.

One version of the program has been used to produce table 4 showing the first 100 terms of the
sequence. The output of the actual version has been used to produce the calculated part of table 5

which we are going to compare with the theoretically estimated part in the same table.

Ubasic program

point 2

dim A%(6).8%(4)

for %=1 to éread A%(i%)next

data1,4,6,89.0

data 2.3,5.7

forK%=1to7

M%=0:N=0
90 forE%=11o4
100 P=B%(E%)*10AK%:PO=P:5S=(B%(E%)+1)}*10AK%:gosub 130

110 next

120 print K% M%,N,M%/N

130 next
140 end
150 while P<S

10
20
30
40
50 for %=1 to 4read B%(I%):next
80
70
80

160 P=nxiprm(P):P$=str(P)

170 incN

180 L%=len{P$}.C%=0

190 forl%=2t0o L%
200 forlJ%=1t04é
210 if vallmid(P$.1%.1}}=A%{J%) then C%=1

*Digits not allowed stored in A%(}

‘Digits allowed stored in 8%()
‘Cdic. for 7 separate intervals

‘Only 2,3,5 and 7 allowed cs first digit

‘Select prime and convert to siring

*Count number of primes

‘C% will be set to 1 if P not member

“This loop examines each digit of P

220 nextnext
230 if C%=0 then inc M% ‘If criteria filled count member (M%)
240 wend
250 retum
Table 4. The first 100 temms in the prime-digital sub sequence.
2 3 5 7 23 37 53 73 223 227
233 257 277 337 353 373 523 557 577 727
733 757 773 2237 2273 2333 2357 2377 2557 2753
2777 3253 3257 3323 3373 3527 3533 3557 3727 3733
5227 5233 5237 5273 5323 5333 5527 5557 5573 5737
7237 7253 7333 7523 7537 7573 7577 7723 7727 7753
7757 22273 22277 22573 22727 22777 23227 23327 23333 23357
23537 23557 23753 23773 25237 25253 25357 25373 25523 25537
25577 25733 27253 27277 27337 27527 27733 27737 27773 32233
32237 32257 3323 32327 32353 32377 32533 32537 32573 33223
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Table 5. Comparison of results.

K [ ] 2 3 4 5 6 7
Computer count:
m 4 15 38 128 389 1325 4643
log(im) 0.6021 1.1761 1.5798 2.1072 2.5899 3.1222 3.6648
n 13 64 472 3771 30848 261682 2275350
m/n 0.30749 0.23438 0.08051 0.033%4 0.01261 0.00506 0.00204
Theoretical estimates:
m 4 1 34 109 364 1253 4395
log{m} 0.5922 1.0430 1.5278 2.0365 2.5615 3.0980 3.6430
n 7 55 421 3399 28464 244745 2146190
m/n 0.50000 0.20000 0.08000 0.03200 0.01280 0.00512 0.00205
Theorem:

The Smarandache prime-digital sub sequence is infinite.

Proof:
We recall the prime counting function ®(X). The number of primes p<x is denoted 7(X). For

. x
sufficiently large values of x the order of magnitude of 7(x) is given by 7(x) = E_g—x' Leta

and b be digits such that a>b=0 and n(a,b,k) be the approximate number of primes in the interval
(b-10%,2-10%). Applying the prime number counting theorem we then have:

10* ( a b ) o
1 - logh
k log10+—o}‘g—g~ log10+—qf——

n(a,b, k) =

Potential candidates for members of the prime-digital sub sequence will have first digits 2,3,5 or 7, i.e.
for a given k they will be found in the intervals (2-10%,4-10%), (5-10%,6-10) and (7-10%8-10%). The
approximate number of primes n(k) in the interval (10510*"') which might be members of the
sequence is therefore:

n(k)=n(4,2,k)+n(6,5,k)+n(8,7,k) ()

The theoretical estimates of n in table 5 are calculated using (2) ignoring the fact that results may not
be all that good for small values of k.

We will now find an estimate for the number of candidates m(k) which qualify as members of the
sequence. The final digit of a prime number >5 can only be 1,3,7 or 9. Assuming that these will occur
with equal probability only half of the candidates will qualify. The first digit is already fixed by our
selection of intervals. For the remaining k-1 digits we have ten possibilities, namely 0,1,2,3,4,5,6,7,8
and 9 of which only 2,3,5 and 7 are good. The probability that all k-1 digits are good is therefore
(4/10)%*. The probability q that a candidate qualifies as a member of the sequence is

|
=—-(—)"" 3)
=73 (
The estimated number of members of the sequence in the interval (10,10") is therefore given by
m(k)=g-n(k). The estimated values are given in table 5. A comparison between the computer count

and the theoretically estimated values shows a very close fit as can be seen from diagram 5 where
logo m is plotted against k.



The prime-digital sub sequence

Diagram 5. logio m as a function of k. The upper curve corresponds to the computer count.

loga dlogb
kT k

For large values of k we can ignore the terms in comparison with log 10 in (1).

For large k we therefore have

(a-b)10*

n(a,0,k) ~ klogl0

1)
and (2) becomes

n(k) ~ ——— @)

m(k) ~ ——— @)

From which we see (apply for instance 1"Hospital’s rule) that m(k)—>co as k—>w. A fortiori the prime-
digital sub sequence is infinite.

V. Smarandache Concatenated Sequences

Smarandache formulated a series of very artificially conceived sequences through concatenation. The
sequences studied below are special cases of the Smarandache Concatenated S-sequence.

Definition: Let G={g,, g5, .... & .... } be an ordered set of positive integers with a given property G.
The corresponding concatenated S.G sequence is defined through
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S.G={a;a, =g,a =a,, 10" 1o k>]}

In table 6 the first 20 terms are listed for three cases, which we will deal with in some detail below.

Table 6. The first 20 terms of three concatenated sequences

The S.odd sequence

The S.even sequence

The S.prime sequence

1

i3

135

1357

13579

1357911

135791113

13579111315

1357911131517

135791113151719

13579111315171921
1357911131517192123
135791113151719212325
13579111315171921232527
1357911131517192123252729

135791 113151719212325272931
13579111315171921232527293133
13579111315171921232527 29313335
135791113151719212325272931333537
13579111315171921232527293133353739
1357911131517192123252729313335373941

24481012

2458101214

246810121416

24481012141418

24438101214161820

246810121416132022

2456810121 414618202224
2448101214161820222426

2445810121 414182022242628
24681012141418202224262830
2468101214141820222426283032
244810121416182022242628303234
244810121 41618202224262830323436
245810121 4161820222426283032343638
2448810121416182022242628303234343840
24681012141 618202224262830323438384042

2

3

235

2357

235711

23571113

2357111317

235711131719

2357113171923

2357111317192329

235711131719232931
23571113171923293137
2357111317192329313741
235711131719232931374143
23571113171923293137414347
2357111317192329313741434753
235711131719232931374143475359
23571113171923293137414347535961
2357111317192329313741 434753596167
235711131719232931374143475359616771
23571113171923293137414347535961677173

Case L The S.odd sequence is generated by choosing G={1,3,5,7,9,11,.....}. Smarandache asks how
many terms in this sequence are primes and as is often the case we have no answer. But for this and
the other concatenated sequences we can take a look at a fairly large number of terms and see how
frequently we find primes or potential primes. As in the case of prime-product sequence we will resort
to Fermat’s little theorem to find all primes/pseudo-primes among the first 200 terms. If they are not
too big wee can then proceed to test if they are primes. For the S.odd sequence there are only five
cases which all were confirmed to be primes using the elliptic curve prime factorization program. In
table 7 # is the term number, L is the number of digits of N and N is a prime number member of the
S.odd sequence.:

Table 7. Prime numbers in the S.odd sequence

# L N
2 2 13
10 15 135791113151719

16 7 135791113151719212325272931
34 3 135791113151719212325272931333537394 1434547 4951 5355575961 636567
49 93 135791113151719212325272931333537394 14345474951 5355575961 63656769717375777981838587899 1939597

Term #201 is a 548 digit number.

Case 2. The S.even sequence is generated by choosing G={2,4,6,8,10, ...... }. The question here is :
How many terms are nth powers of a positive integer?

A term which is a nt# power must be of the form 2"-a where a is an odd nth power. The first step is
therefore to find the highest power of 2 which divides a given member of the sequence, i.e. to
determine n and at the same time we will find a. We then have to test if a is a nth power. The Ubasic

program below has been implemented for the first 200 terms of the sequence. No nth powers were
fond.

Ubasic program: {only the essential part of the program is listed)

60 N=2

70 for U%=4to 400 step 2
80 D%=int{log{U%)/log{10))+1
90 N=N"10AD%+U%

100 A=N:E%=0

110 repeat

120 Al=A:A=A\2inc E%

130 until res<>0

‘Determine length of U%
‘Concatenate U%

‘Determine E% {=n)



.

132 dec E%:A=Al ‘Determine A (=q)

140 B=round{AA[1/ER))

150 if BAE%=A then print E%B,N ‘Check if ais a nthpower
160 next

170 end

So there is not even a perfect square among the first 200 terms of the S.even sequence. Are there
terms in this sequence which are 2-p where p is a prime (or pseudo prime). With a small change in the
program used for the S.odd sequence we can easily find out. Strangely enough not a single term was
found to be of the form 2-p.

Case 3. The S.prime sequence is generated by {2,3,5,7,11, ...}. Again we ask: - How many are
primes? - and again we apply the method of finding the number of primes/pseudo primes among the
first 200 terms.

There are only 4 cases to consider: Terms #2 and #4 are primes, namely 23 and 2357. The other two
cases are: term #128 which is a 355 digit number and term #174 which is a 499 digit number.

#128
235711131719232931374143475359616771737983899710110310710911312713113713914915115716316717317918
119119319719921122322722923323924125125726326927127728128329330731131331733133734734935335936737
3379383389397401409419421 431 433439443449457 461463467479 487 49149950350952152354154755756356957157
7587593599601607613617619631641643647653659661673677683691701709719

#174
235711131719232931374143475359616771737983899710110310710911312713113713914915115716316717317918
119119319719921122322722923323924125125726326927127728128329330731131331733133734734935335936737
3379383389397401 409419421 431433439443449457461 463467479487 49149950350952152354154755756356957157
758759359940160761361761963164164364765365966167367768369170170971972773373974375175776176977378
779780981 182182382782983985385785986387788188388790791191992993794194795396797197798399199710091
0131019102110311033

Are these two numbers prime numbers?



THE SYSTEM - GRAPHICAL ANALYSIS OF SOME NUMERICAL
SMARANDACHE SEQUENCES
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Nevsky 3-11, 191186, St-Petersburg, Russia
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The system - graphical analysis results of some numerical Smarandache
sequences are adduced. It is demonstrated that they possess of the big aesthetic,
cognitive and applied significance.

1 Introduction

The analytical investigation' of some 6 numerical Smarandache sequences?
permitted to state that the terms of these sequences are given by the following
general recurrent expression

)

a(p(,,)= o’(a,,lO""(”") +a,, +I),

where @(n) and w(a,) — some functions; ¢ —  operator. In this paper we will
denote all numerical sequences, yielded by (1), as Smarandache sequences of Ist
kind, and analyse ones by system - graphical methods. The main goal of the
present research is to demonstrate that the system - graphical analysis results of
numerical Smarandache sequences of Ist kind possess of the big aesthetic,
cognitive and applied significance.

2 System - graphical analysis of some Smarandache sequences of 1st kind

1. Smarandache numbers

1,12, 123, 1234, 12345, 123456, ... @)



.

9 —+ *—>0—>0—po— >0 >o— P> (23456789

8L  o—>e—>e—o—pe—res—»e—> (7345678

7+ —>-0—>0—p0—>0—p0—P 1734567

6 1 *—>o—>0—>o—po0—>* (13456

5T *—>—>0—>0—>% (7345

4 +— *—30—>e—>* |34

3T eI |53

2T &> |2

1+ * 1
L I ] i 1 ] l ! 1 -
i } i i 1 i 1 ) 1 i
| 2 3 4 5 6 7 8 9 n;

Fig. 1. Graphical image of the first nine terms of §-series.

.

we shall call numbers of S,-series. Graphical image of the first nine terms of S)-

series is given in Fig. l. For these numbers we introduce! an operator AR,
making k-truncation the numbers (2) from the left and/or from the right: for
instance, if £ =1 then (A'k 123) =23 and (123A"'") =12.

It is evident from Fig. | that one may use numbers of S)-series with
ATF operator as a standardizative representation of any quantity characteristics
of investigated object in such cases when the values of these characteristics are

limited from the left and/or the right and uniformly discrete. For instance, one
may use mentioned standardization in visual control device of sound level in
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audio-techniques, in the information decoding and transmitting systems and so -
on.
2. Smarandache numbers

1,11, 121, 1221, 12321, 123321, 1234321, ... €))

we shall call numbers of S,-series. The numbers (3) possess the mirror-symmetric
properties evinced in graphical image of ones (see Fig. 2) by the presence of
reverse motion arcs. It is easy to find that there are a great number of technical
and physical objects, using the same principle of action as one showed in Fig. 2.

124 QQQQ[ >< ) 123456654321
1+ QQQQQ 12345654321

o+ ERDERDNE DE o 123854321

7T QQQ 1234321

6 T Q% 123321

4+ % 1221

I 2 3 4 5 6 ni

Fig. 2. Graphical image of the first twelve terms of S,-series.
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In particular, a standardizative representation in terms of Smarandache
numbers of S,-series can be made for reverse connection circuits in the different
control and handling systems; for the suitable graphical representation of any
systems in which for complete description of system state the knowledge of n
last states is required; for coding information on effects of “staying waves” and
so on.

3. Smarandache numbers

1,212, 32123, 4321234, 543212345, 65432123456, ... C))

we shall call numbers of S;-series. By analysing graphical image of S;-series

terms given in Fig. 3 one can conclude this image is similar to that given in
Fig. 2. Indeed, figures of S,-series terms differ from the ones of S,-series terms

only by reverse orientation in space (a suitable interpretation for description
reversible physical phenomenon) or by another initial state (— for the theory of
automates).

n A

8 4+ QQ@@@@@ 876543212345678
7T @QQQQQ 7654321234567

L NN ssemzsss

5T QQQQ 543212345
R~ V2 V7 SRV
P VAL SRS

-+
-

Fig. 3. Graphical image of the first eight terms of §;-series.
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Thus, the numbers of S;-series can get the same applications in
standardizative representations of quantity characteristics as the numbers of S,-

series, though they are less useful because its graphic image structure more poor
than one that numbers of S,-series have.

4. Smarandache numbers
1, 23,456, 7891, 23456, 789123, 4567891, ... )

we shall call numbers of S,-series. It’s graphical image is given in Fig. 4. In
distinction from the terms of considered Smarandache series the ones of S,-
series consist of only numbers from | to 9. Thus, after 17th term of S,-series
23456789123456789 the successive ones do not enrich S,-series since any

sequence

n A
ol
10+ M 1234567891
94+ e—me—>e—>eo—peo—re—rpe—pe—»r [23456789
8 1 o—>o—>o—>o—>o—»e—po—»r 23456789
74+ A e—pe—pe—»e—pe 3> 4567891
6+ Y ey —>e 789123
5+ o—>o—ro—po—pr 23456
4 e o—»eo 3> 7891
3+ o —po—pb 456
2T o—>» 73
e
- 1 L 1 1 [ 1 1 1
13 1 ] T T I 1 N 1 -
1 2 3 4 6 7 8 9 n

Fig. 4. Graphical image of the first ten terms of S,-series.
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from 9 or less different successive digits can be obtained from 17th term of ;-

series by truncation from the left and right ATF operators. However, in spite of
mentioned lack the standardizative representation of quantity characteristics of
local computer nets by terms of S,-series may be quite useful. In particular, such

Smarandache numbers can reflect the principle of transmitting data packets
from one local station to another. Besides one may use standardization by S,-

terms for description of recurrent relations between sequence elements or some
processes, described usually by Markov's chains.
5. Smarandache numbers

n
i1+ o—ro—rpo—ro—>»L (7345
10+ o<>e—»r * 4123
9 -+ > —> 3412
§ L +*€ g 5 o > 234l

4 T *o—po—e |)3

31+ *=w—e )

2+ e—>»* 12

L+ *
! ! IN i 1 -
] ] 11 1] 1
| 2 3 4 5 ni

Fig. 5. Graphical image of the first eleven terms of S;-series.
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1, 12,21, 123,231,312, 1234, 2341, 3412, 4123, 12345, ... 6)

we shall call numbers of Ss-series. It is evident that Ss-series contains all the
numbers of S,-series and some additional numbers. Successive-circular
properties of this series are well-shaped in Fig. 5. The analysis of the Ss-series
graphical image permits to find applications fields where Ss-series terms as
standardizative representation of object characteristics can be used: these are
fields where some look over several states of objects is required. For instance,
technical diagnostics, systems of processes handling, theory of selecting and
taking the decision may be named.
6. Smarandache numbers

12, 1342, 135642, 13578642, 13579108642, ... )

b AT A A D o
. AL ¥ o .
at m 13578642

i 2 3 4 5 6 7 8 9 10 n;

Fig. 6. Graphical image of the first five terms of S,-series.

we shall call numbers of Si-series. These numbers also as numbers (6) have
circular properties with the uniform structure. Graphical image of (7) is given in
Fig. 6. By analysing Fig. 6 one may note that presented images may describe the
test procedure rounds the all elements of system with minimal steps and aim to
finish the round in the element the nearest to the initial one. Besides it turns out

201



that a term of (7) being divided into two subterms can serve as standardizative
representation of two simultaneous processes. In particular, such
standardization of S,-series terms can be applied for parallel signal processing

or parallel design processes.

3 System - graphical analysis of numbers of S,- and S;-series

Divide! a set of S,-series numbers (3) into two different subsequences:

1) a=1, a,=121, a;=12321, a,=1234321, ...

2) b=11, b,=1221, b,=123321, b,=12344321, ...

The numbers of the first and the second subsequences we shall call 4- and B-
numbers correspondingly.

In Sect. 2 Smarandache numbers were presented in the proper constructions
on the number axises. It is naturally to expect that employment not only
number axises but the whole plane and different geometrical figures for
representation Smarandache numbers will permit to reveal new interesting
properties of ones, explain by ones a great number of technical and nature
processes, study more deeply its peculiarities and preferences. In this section we
consider the only mentioned above A- and B-numbers and also Sj-series
numbers (4).

Firstly we explain how to construct numerical circumferences from
Smarandache numbers:

a) b) c)

Fig. 7. The graphical images of the second (a) and the third terms of 4- and B-
subsequences and the third term (c) of S;-series.
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a) the first terms of 4- and B-subsequences and of S;-series convert into the
point;

b) the graphical images of the second and the third terms of these sequences
are given in Fig. 7 correspondingly.

By analysing Fig.7 one can easy find the graphical forms of the
representation for next terms of these sequences. Namely, to construct the
graphical image of n-th term of mentioned above Smarandache sequences the
following algorithm may be used:

1. To draw the circumference and two perpendicular lines crossed in the
centre of circle.

2. To denote the tops of four rays going from the point of the cross as 11,
In, nn, nl consequently in the forward of clock hand.

3. To divide every sector into n—1 equal parts by drawing additional rays
with proper mark.

At such representation of Smarandache sequences terms these ones produce
the subsequences. For example,

a) the second term of 4- or B-subsequences produce the proper 2x2 series of
subsequence

11,22,22,11; 12,21,21,12; ®)

b) the third term of 4- or B-subsequences produce the proper 3x3 series of
subsequence

11,22,33,33,22, 11; 12,22,32,32,22,12; 9
13,22,31,31,22,13; 21,22,23,23,22,21;

and so on.

Among splendid peculiarities of graphical images, depicted in Fig. 7, we
point that the all Smarandache circumferences reveal Magic properties: they
have a constant sum for the elements located in the diameters of the
circumference. It is very interesting to confront the ancient Chinese hexagrams,
located on the circumference (see Fig. 8a), with numbers of subsequence (9), by
which the tops of diameters are marked (Fig. 8b).

By deleting commas in (8) and (9) and combining two-digit elements in
single terms one obtains extended representation of Smarandache sequences
terms.
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Fig. 8. The graphical confrontation of the ancient Chinese hexagrams with numbers of
subsequence (9).

Thus, graphical images of Smarandache sequences terms, used as
standardizative representations of the objects allow both decomposition of the
object representation (analysis of the object) and combination of the object
representation (synthesis of a new object). This graphical technique is similar to

. -k . +k .
operators of truncation A k and extending A~ of series terms', but more
flexible.

a) b)

Fig. 9. The Aristotelian logical (a) and the reduced logical (b) squares.
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Curtailment of these graphical images is seemed to be very interesting since
it reflects the ways of simplification of real instruments and devices. For
example, if one takes into account that Aristotelian logical square can be
superposed into the graphical representation of A- or B-subsequences third term
(see Fig. 9a) then the circumference may be reduced one fourth of the circle
(Fig. 9b).

Very curious graphical images with Smarandache circumferences are
revealed when one draws the track of point M and M' movement along the
circumference, and this track will be shown not on the whole diagram, but on
the reduced one to 1/8 of the circle (see Fig. 10).

3

|

Fig. 10. The track of points M (a) and both M and M’ (b) movement along the
circumference.

i

a) b)

Very important for understanding internal properties of Smarandache
numbers are images given in Fig. 11(a, b), where the third term of 4- or B-
subsequences is depicted. Indeed, it shows the quantitative characteristics of
Smarandache numbers even in such case when numerical information, adduced
in Fig. 11(a, b), is absent. We pay attention, that in Fig. 11b circumference with
unit diameter and the graphical quantitative characteristic of Smarandache
number are depicted simultaneously.
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Fig. 11. The graphical image containing the quantitative characteristics of the third term
of A- or B-subsequences.

Thus, the image of quantitative characteristic of Smarandache number in
Fig. 11(a, b) one may interpret as any transformation of unit circumference.
Taking such interpretation into account one can easy come from Fig. 11b to

Fig. 11c. In the image depicted in Fig. llcone caneasy  find a schematic
picture of an aeroplane. Hence, it turns out that third term of the 4- or B-
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subsequences contains in the implicit formpicture of an aeroplane. We assume
that by using discussed system graphical analysis methods one may reveal some
another unexpected graphical information, contained in some Smarandache
numbers.
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