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ON CERTAIN INEQUALITIES INVOLVING THE
SMARANDACHE FUNCTION

by

Sandor Jozsef

1. The Smarandache function satisfies certain elementary inequalities which have
importance in the deduction of properties of this (or related) functions. We quote here the
following relations which have appeared in the Smarandache Function Journal:

Let p be a prime number. Then

S(p*) £S(p) forxs<y 1

a a+i
S(;:)ZS(p ) fora=0 2

p pa+l

where X, y, a are nonnegative integers;
S(p*) <S(q*) forp<gq primes; (3)
(p-Da+1<S(p")<pa; 4)
If p>% and p<a-l1 (a>2),then

S(p*)=p(al) (5)

For inequalities (3), (4), (5), see [2], and for (1), (2), see [1].
We have also the result ([4]):

For composite n = 4, Egl) < % )
Clearly, 1<S(n) for n>21 and 1<S(n) for n2>2 @)
and S(n) <n (8)

which follow easily from tfe definition S(n) =min { k € N* : ndividesk!}
3



2. Inequality (2), written in the form S (p*™' ) <pS(p*) , gives by successive application
S(p? ) <pS(p™' )<p’S(p*), ..., thatis
S(p™ ) <p"-S(p") 9)

where a and ¢ are natural numbers (For ¢ = O there is equality, and for a = O this follows
by (8)).

Relation (9) suggest the following result:
Theorem 1.
For all positive integers m and n holds true the inequality

S(mn) < m-S(n) (10)
Proof.
For a general proof, suppose that m and n have a canonical factorization

3 r b bs c Cr d d
m=p;..pt -qQ; Qs , A=Ppileepr bty

where pi(i=1,1), ;= 1), t,(p= 1,k) are distinct primesand a >0, 20, b 21,
d, > 1 are integers.
By a well known result of Smarandache (see [3]) we can write

S(m-n) = max{S(p;"™"), .... S ), S@", ... S, S, .. S(t)}

3 <y ar Cr 1 . d
< max{p}'S@}), - P¥SE), S@,"), s S@"). -, S}
by (9). Now, a simple remark and inequality (8) easily give

i ar 1 s Cy Cr d
S(m-n) <pt..p¥q ...q> - max{S(), ... S, S(t}'), ..., S(t")} = mS(n)

proving relation (10).

Remark.
For (m,n)=1, inequality (10) appears as
max{S(m), S(n)}< mS(n)

This can be proved more generally, for all m and n

Theorem 2.

For all m, n we have:
max {S(m), S(n)} < mS(n) %))
Proof.
The proof is very simple. Indeed, if S(m) > S(n) , then S(m) < mS(n) holds, since S(n)
> 1 and S(m) < m, see (7), (8). For S(m) < S(n) we have S(n) < mS(n) which is t me by m 2
1. In all cases, relation (11) follows.
This proof has an independent interest. As we shall see, Theorem 2 will follow also

from Theorem 1 and the following result:
4



Theorem 3.

For all m, n we have
S(mn) = max {S(m), S(n)} (12)
Proof.

Inequality (1) implies that S(p* ) < S(p™ ), S(p° ) < S(p*™ ), so by using the
representations of m and n, as in the proof of Theorem 1, by Smarandache's theorem and the
above inequalities we get relation (12).

We note that, equality holds in (12) only when all 3, =0 or all ¢,;=0 (i = 1,r) , i.e. when
m and n are coprime.

3. As an application of (10), we get:

Corollary 1.

S(a) _ S(b) .
a)TST,lf bla (13)
b) If a has a composite divisor b = 4 , then
S@ _ Sb) _ 2
—a < —b— < g (14)

Proof.
S(bk) < &

S b is equivalent with S(kb) < kS(b) , which is relation

Leta=b-k . Then

(10) for m=k, n=b.

Relation (14) is a consequence of (13) and (6). We note that (14) offers an
improvement of inequality (6).

We now prove:

Corollary 2.
Let m, n, r, s be positive integers. Then:
S(mn) + S(rs) = max { S(m) + S(r), S(n) + S(s) } (15)
Proof. 7
We apply the known relation:
max {a+c,b+d}<max{ab}+max{cd} (16)
By Theorem 3 we can write S(mn) > max {S(m), S(n)} and S(rs) > max {S(r), S(s)},
so by consideration of (16) with
a=S(m), b=S5(r), c=S(n), d=S(s)
we get the desired result.

Remark.
Since (16) can be generalized to n numbers (n > 2), and also Theorem 1-3 do hard for

the general case (which follow by induction; however these results are based essentially on
(10) - (15), we can obtain extensions of these theorems to n numbers.
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Corollary 3.
Let a, b composite numbers, a= 4, b= 4. Then

S@b) _ S@+S®) _2 .

ab a+b "3’
and
S? (ab) < ab[S*(a) + S*(b)]
where S*(a) = (S(a))’, etc.
Proof.
By (10) we have S(a) > %b) , S(b) 2 S_(::El , so by addition

S(a) + S(b) > S(ab)(%— + %) giving the first part of (16).
For the second, we have by (6):
S(a) < %a , S(b) < %b . 50 S(2)+ S(b) < %(a+b), yielding the second

part of (16).
For the proof of (17), remark that by 2(n*+ r*) > (n + r)’, the first past of (16), as
well as the inequality 2ab < (a +b)* we can write successively:

S(ab) < (aaib;)z [S@) +S®))* < % -[S%(a) + S?(b)] < ab[S(a)+ S*(b)]
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ON SOME CONVERGENT SERIES
by Enul Burton

Notations :
N* setof integers1,2,3,...
d(n) the number of divisors of n .
S(n) the Smarandache function §: V* - N*,
S(n) is the smallest integer m with the property that n! is divisible by n
R set of real numbers.

(v o}
In this article we consider the series Y f(S (k).
E=1
f: N* > R is a function which satisfies any conditions.
Proposition 1.1t f: N — R be a function which satisfies condition :
1) = — <
J & t-d(-1)1))
for every t € N*, a > [ constant, ¢ > } constant.’
%
Then the series Z S (S(k)) is convergent.

Proof: Let us denote by m, the number of elements of the set
M={ke N*:Stk)=t}= {ke N*:k|t'and k1 (t-1)!}.
It follows that m =d(t' ) d((t-1)').

o0

2 f (S(k)) —_‘“ m, f(t)
We have m,- f(t) < m,-

£
@

It is well - known that X ; is convergent if a > I.
t=1
e

Therefore Y f(S(k)) < = .
k=1

It is known thatd(n) < 2 /n if n < N* (2)
and it is obvious thatm <d(t!) (3)
We can show that

S(Stky Sk ) <w, p>1 (4)
k=1
Z(Sth)!) <> (5)

k=1



S(S()!S2)!...8(k)!) *<w

k=1
w

g (S(k) JS®) (log SCR)Y ) ' <w , p>1 (7)

‘Write f(S(K)) = (S(ky JS(A)* ) (=) =2 ) <

< 2(t-d(t!)) ' < 2(t"(d(t!) - d((t-l)!)))'l .

Now use the proposition 1 to get (4) .

The convergence of ( 5 ) follows from inequality /it <r!ifp=R.p> I
t>t, =[], t « N*. Here [¢7*'] means the greatest integer < &7 .

The details are left to the reader.To show (6) we can use the Carleman's

Inequality :Let (x_),.y. be a sequence of positive real numbers and x =0
for some n. Then

~
N
~

a0 o0
T(xx, x )% <elx, (8)
k=1 k=1

Write x,=(S(k)!)’ anduse (8) and (5) toget (6).
It is well-known that

o}

Z (n(]og nyY) <o ifandonlyif p>1, pcR. &)
Wnte fO) =@/t Qogty) ', t=22, tc N* We have
z (S(k) Sk (log S(RYY) " = = m,f(t)

k=2 k=2

m, ft) <d(t!) ft) <2 Jrv (t i1 (logtf)~' =2 (t (log 1))’
Nowuse (9)toget (7).

Remark 1. Apply (5) and Cauchy's Condensation Test to see that
an
T 2*(S(2*)!)! <. This implies that lim 2*(§(2*)'!)'=0.

k=0 k> o

A problem :Test the convergence hehaviour of the series
o o}
ISy [SH-1HT) (10)
a=]

Remark 2. This problem is more powerful than (4).
Let p, denote the n-th prime number (p=2,p=3,p,=5.p=7.,...)-

[+ o]
It is known that X 1/p, = . (1)
a=1
We next make use of (11) to obtain the following result :
. 0O
¥ S(n)/n’= o, (12)
=/



v ol [=o} v ) e

We have T S(n)/n*2 T S(p)/p,’ =Zp/pl=T 1p, (13)
= =1

a=1f k=1 k
Now apply (13) and (11) to get (12).
We can also show that
fo,0)

Z Snyn'*<w if p>1,p e R. (14)

- ac a0 a0
Indeed, ¥ S(n)/n'"*<T /"= 1/nP<=.
a—1 n—1 a1
If 0<sp<2, wehave S(n)/n® 2 S(n)/n*.
s8]

Therefore ¥ S(n)/)P=c if 0<p<2.

a=]
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ON SOME DIOPHANTINE EQUATIONS
by
Lucian Tutescu and Emil Burton

Let S(n) be defined as the smallest integer such that (S(n)) ! ig
divisible by n (Smarandache Function). We shall assume that S : N* 5> N*,
S(1) =1. Qur purpose is to study a variety of Diophantine equations
involving the Smarandache function. We shall determine all solutions of the
cquations (1), (3) and (8) .
1) =Sy
2) x°@ =8
3) x**+8(x)=S(x)"+x
4 x*+ S(v) =S¥y +x
(5) S(x) + x*=x**+ §(x)
(6) S(.V)x + xz = xS(y) + S(y)z
(7 S(x)*+ x*=x*"+ §(x)*
(8) S(yy+x’=x7+8(y).
For example, let us solve equation (1) :
We observe that if x = S(x), then (1) holds.
But x=S(x)ifandonly ifx ¢{1,2,3,4,5,7,..}={xeN*; x -prime }U{l, 4}.
If x > 6 is not a prime integer, then S(x)<x. We can write x =5(x) + t, te N*,
which implies that S(x)*®**=(S(x) + t)*®. Thus we have S(x)'= (1 + .5{7) ),
Applying the well - known result (1 + £ )" <3 for n,k <N*, we have
S(x)' < 3* which implies that S(x) <3 and consequently x < 3. This
contradicts our choice of x.
Thus , the solutions of (1) are A|={xe N*;x=prime}U {1,4}
Let us denote by A, the set of all solutions of the equation (k).
To find A, for example , we see that (S(n),n) € A; for nec N*.
Now suppose that x = S(y) . We can show that (x, y) does not belongs
to A, asfollows:1<8(y)<x = S(y)>2 and x> 3. On the other hand,
S - x> 8(¥)* - X = (8(¥) - YEE)* '+ x8F) T+, +x7) 2
(S() - XYSE)* + xS() + x*) = SEY - ¥
Thus, A, ={(x,y);y=n,x=5n),necN*}.
To find A, , we se that x=1 implies S(x)=1 and (3) holds.
If Sx)=x, (3) also holds.
If x> 6 is not a prime number , then x > §(x).
Write x=8(x)+t,te N*={1,2,3,..... }.
Combining this with (3) yields
S(x)S@* 4 S(x )t =(S(x) + *P+8(x) ©S(x)' + UK(x)*P = (1+US(x))* < 3
which implies S(x) < 3. This contradicts our choice of x.
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Thus A,={xe N*;x=prime } U {1,4}.
Now , we suppose that the reader is able to find A,,A,,...,A,.
We next determine all positive integers x such that x=3 k?

Hel #1
Write 12+2%+...+s*=x (1)
s2<x (2;
(s+1)22x (3)

(1) implies x = s(s+ 1)(2s+1)/6 . Combining this with (2) and (3) we have
6s® < s(s+1)(2s+1) and 6(s+1)* > s(s+1)(2s+1) . This implies that s € {2,3 }.
s=2 = x=5and s=3 = x=14.
Thus xe {5,14}.
In a similar way we can solve the equationx =Y k°
K<x
Wefind xe€ {9,36,100}.
We next show that theset M ={ne N*;n=2Zk* ,p>2| has at leact
iFen

| p/In2] -2 elements .

Let m € N* such that m-1 < p/In2 (1)
and p/In2 <m (5)
Write (4) and (S5)as:

A (6)
er'=<2 (7}

Write x, =(1+1/k)", y,=(1+1/k).

It is known that x, <e <y, forevery s,te N*.

Combining this with (6) and (7 ) we have
sPE<er’m<2<er’™<y™" forevery s,te N*.

We have 2 <y?'™'= ((t+:1)/t)"'=" < (((+1)/t)f if (t+1)/(m-1)= 1.

So,if t<m-2 wehave 2 <((t+1)/ty & 2 2 < (t+1) < (t+1)P - ?> t* (8).
Let A(s) denote thesum 1" +2°+..... +s'.

Proposition 1. (t+1)* > A (t) for every t<m-2,t e N*.

Proof. Suppose that A (f) 2 (t+1)f < A(t-1)>(t+1) -£>¢ &
A2)>¢-(t-1y>@t-1Y & ... & A(1)>2" which is not true.

It is obvious that A () > ¢ if t € N*, 2 < t < m-2 which implics A ()e M,
forevery te N*and 2<t<m-2. ) )
Therefore card M, >m-3=(m-1)-2=[p/In2 | -2.
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ABOUT THE SMARANDACHE COMPLEMENTARY PRIME FUNCTION

by

-

Marcela POPESCU and Vasile SELEACU

Let c¢- N— N be the function defined by the condition that n + ¢ ( n ) = p,, where
p, is the smallest prime number, p, > 1.

Example

c(0)=2,¢c(1)=1,¢(2)=0,¢c(3)=0,c(4)=1, c(5)=0,c(6)=1,
c¢(7)=0and soon.

1) If p, and p,_, are two consecutive primes and p, <n <p,,,then :

c(n)e{p.-P-LpPu-P-2. .,1,0], because:
c(p,~1)=py-Pi- landsoon,c(p,.,)=0

2)c(p)=c(p-1)-1=0 forevery pprime,becausec(p)=Oandc(p-1)=1.
We also can observe thatc (n)=c(n+1)foreveryne N.

1. Property

The equationc(n)=n,n>1 has no solutions.

Proof

Ifnisaprimeitresuitsc(n)=0<n

It is wellknown that between n and 2n, n > 1 there exists at least a prime number. Let
p, be the smallest prime of them. Then if n is a composite number we have :

c(n)= pk-n<2n-n=n,thereforec(n)<n.

12



: . 1
It results that for every n = p. where p is a prime. we have 7< —n—)< 1,
c

. c(n) .. . ) n
therefore . —(n—) diverges. Because for the primes ¢ ( p ) / p = 0 we can say that > -
n=p nzl
. 2 pnme
diverges.
2. Property

If nis a composite number. thenc(n)=c(n-1)~ L

Proof
Obviously.
It results that for n and ( n = 1 ) composite numbers we have : (i(i)l) > 1. Now. if

p, < n < p, , where p, and p,_, are consecutive primes. then we have -
c(n)c(n=1) .c(p--1)=(p., -n)
andifn<p <p,, thenc(n)c(n=1).. .c(p.-1)=0
Of course. every ILI c(n) = 0 if there exists a prime number p, k< p <r.

n=k

If n=p, isany prime number. thenc (n) =0 and becausec(n~ 1)=p,-n- 11t

resultsthat ' ¢c(n)-c(n+1 )| =1if and only if nand ( n+ 2 ) are primes ( friend prime
numbers )
3. Property

For every k - th prime number p, we have :

c(p,~1)<(logp ) -1

Proof

Becausec(p,~1)=p,,-p,- 1 wehavep_, -p,=c(p,~ 1)L

But. on the other hand we have p,_, - p, < ( log p, ). then the assertion follows.
4. Property

c(c(n))<c(n)andc™(n)<c(n)<n, foreveryn>1 andmz=2.
Proof

If we denote ¢ ( n ) = r then we have :

c(c(n))=c(r)<r=c(n).

Then we suppose that the assertion is true form : ¢ (n ) <c(n) <n, and we prove it

13



for(m-1).too:

¢c'(n)=c(c™(n))<c™(n)<c(n)<n

th

. Property

For every prime p we have (¢ (p-1))" < c((p-1)").

Proof

c(p-1)=1= (c(p-1))"=1while(p-1) isa composite number. therefore
c((p-1)y)=1L

6. Property

The following kind of Fibonacci equation :

c(n)=c(n-1)=c(n=-2) (1)
has solutions.

Proof

Ifnand ( n~ 1) are both composite numbers, thenc(n) >c(n-1)=1. If(n+2)
is a prime. then ¢ (n = 2 ) = 0 and we have no solutions in this case. If (n — 2 ) is also a
composite number, then :

c(n)>c(n=1)>c(n+2)2 1. thereforec(n)+-c(n+1)>c(n=+2)
and we have no solutions also in this case.

Therefore n and ( n = 1 ) are not both composite numbers in the equality ( 1 ).

If nis a prime, then ( n — 1 ) is a composite number and we must have :

O-c(n=1)=c(n=2), wichis not possible ( see (2)).

We have onlv the case when ( n = 1) is a prime; in this case we must have :

| ~0=c(n=2)but this implies that (n + 3 )1is a prime number, so the only
solutions are when (n = 1 ) and ( n ~ 2 ) are friend prime numbers.

7. Property

The following equation:

c(n)~c(n-+2)
—

-

c(n-1) (2)

has an infinite number of solutions.
14



Proof
Let p, and p, , be two consecutive prime numbers. but not friend prime numbers.

Then. for every integer i between p, =1 and p, , - 1 we have:

ci—-1)+c(i~1 a=1+=1)=(pra —i—1 . .
( N (i-H) _ (P« )Z(PU ) _ por—i = i),
So. for the equation (2) all positive integer n between p, ~1 and p, ,-11s a
solution.
c(n+2)

If n 1s prime. the equation becomes =c(n~1).

i

But ( n+ 1) is a composite number. thereforec(n=1) = 0 = c(n~ 2 ) must be

composite number. Because in this case c (n+1)=c(n+2)~ 1 and the equation has the

c(n+2)

-

-

form =c¢(n+2)+ 1, sowe have no solutions.

c¢(n)+c(n+2)
2

are composite numbers. So we have no solutions in this case, because c(n)>1 and

If (n+1) is prime, then we must have =0, wherenand (n+2)

c(n+2)=1.

If (n+ 2)1is a prime, the equation has the form @

=c(n+1), where(n-1)is
a composite number, therefore c(n+1) =0.From (2) it rezults that c(n) = 0, so

n is also a composite number. This case is the same with the first considered case.
Therefore the only solutions are for pk,pis1 —2 , where p,, p,., are consecutive

primes, but not friend consecutive primes.

8. Property

The greatest common divisor of nandc(x)1s 1:

(x.c(x))=1, for every composite number x.

Proof

Taking into account of the definition of the function ¢, we havex +c (x ) =p, where p
is a prime number.

If there exists d = 1 so that d / x and d / ¢( x ), then it implies that d / p. But pis a
prime number, therefore d = p.

This is not possibile because ¢ ( x ) <p.

If p is a prime number, then (p,c(p))=(p.0)=p.
1§



9. Property
The equation [ x. v]=[c(x).c(y)], where[ x. v ]is the least common multiple of
x and v has no solutions for x. v> 1.
Proof
Let us suppose that x = dk, and v = dk, . where d = ( x. v ). Then we must have -
[x.v]=dkk,=[c(x)c(v)]
But (x.c(x))=(dk, .c(x))=1, therefore dk, is given in the least common
multiple [c(x).c(v)] bv c(v)
But (v,c(v))=(dk,.c(y))=1 = d=1=>(x,y)=1>
= [x.y]=xy >c(x)c(y)=[c(x),c(y)], therefore the above equation has no
solutions. forx, v> 1.
Forx=1=vwehave[x,y]=[c(x),c(y)]=L
10. Property
The equation :
(x,y)=(c(x)c(y)) (3)
has an infinite number of solutions.
Proof
Ifx=1and_v=p-1then(x,y)=1and(c(x),c(y))=( 1,1)=1, for an
arbitrary prime p.
Easily we observe that every pair ( n.n ~ 1 ) of numbers is a solutions for the equation
( 3).1fnis not a prime.
11. Property
The equation :
c(x)-x=c(v)+y (4)
has an infinite number of solutions.

Proof

From the definition of the function c it results that for every x and v satisfying

16



p, < xsv<p., we havec(x)=x=c(y)*V=p,. Therefore we have (p,.,-p, )
couples ( x. v ) as different solutions. Then. until the n-th prime p, , we have?: (Pe1 - Pu )
different solutions.

Remark

It seems that the equationc( x)+y=c(y )+ x hasno solutionsx=y. but it is not

Indeed . let p, and p,_, be consecutive primes such that p,_, - p, =6 ( is possibile : for
example29-23=6,37-31=6.53-47=6andsoon)andpk-Zisnotaprime.
Then c(p,-2)=2. c(p,-1)=1 c(p)=0,c(p,+1)=5 c(p+2)=4
c(p,*+3)=3and we have:
Le(p*+1)-c(p-2)=5-2=3=(p+1)-(p-2)
2.c(p~2)-c(p-1)=3=(p,+2)-(p.-1)
3.c(pk+3)-c(pk)=3=(pk+3)-pk,thus
c(x)-c(y)=x-y( o c(x)+y=c(y)+x) has the above solutions if p, - p,, > 3
If p, - p., =2 we have only the two last solutions.
In the general case, whenp,_, - p, =2h. h € N*, let x=p,-uandy=p, *V, uveN
be the solutions of the above equation.
Thenc(x)=c(pk-u)=uandc(y)=c(pk+v)=2h-v.
The equation becomes:
u+(pk+v)=(2h-v)+(pk-u).thusu+v=h,
Therefore. the solutions are x=p, -u and y=p, + h-u, for every u =0,h if
pk-pH>handx=pk-u,y=pk+h-u,foreveryu=(ﬁifpk-pk_|=l+lsh.
Remark
¢ (p, ~ 1 ) is an odd number, because if p, and p,_, are consecutive primes, p;, > 2, then

p, and p,_, are, of course, odd numbers; thenp,,-p, - | =c(p, + 1) are always odd.

12. Property

det’ .
The sumatory functionof ¢, F_(n)= 3. c(d) has the properties :
deXN
d/n

17



a)F (2p)=1~c(2p)
b)F.(pq)=1~c(pq). where p and q are prime numbers.

Proof

a)F (2p)=c(l)+c(2)+c(p)rc(2p)=1+c(2p)
b)F.(pg)=c(l)+c(p)+c(q)~c(pq)=1l-c(pq)
Remark

The function ¢ is not multiplicative : 0=c(2)-c(p)<c(2p).

13. Property
. { 0 for k odd number
cMp) = A
L 2 for k even number, k=1
Proof
We have :
¢'(p)=0;

¢ (p)=clc(p))=c(0)=2
c(p)=c(2)=0:
¢ (p)=c(0)=2.

Using the complete mathematical induction. the property holds.

Consequences

cp) + <M(p)
o}

1) We have =1 for every k > 1 and p prime number.

—d

2) i c*(p) =[% -2, where [x] is the integer part of x, and

L.

1

1 [r11 K i i
=1Ll thus Y ¢ and 2, ——— are divergent series.
= c*(p) 12072 K21 ®) =z cMp :
k even Kk even
Remark

HMp-1)=c"(c(p-1)) =c""(1)=1, for every pme p >3 and k € N*,
therefore ¢ (p, - 1) = e ( p,- 1) for every primes p, , p, > 3 and k, , k, € N*.

14.Property

The equation :

c(x)+c(y)+c(z)=c(x)c(y)c(z) (5)
18



has an infinite number of solutions.

Proof

The onlv non-negative solutions for the diofantine equation a +b ~ ¢ = abc are a = 1,
b =2 and ¢ = 3 and all circular permutations of | 1.2.3 }.

Then -

c(x)=1=>x=p, - 1. p, pnme number. p, >3

c(y)=2 = y=p, -2, where p, and p, are consecutive prime numbers such
that p -p,, 23

c(z)=3 = z=p,-3.where p_ and p, are consecutive prime numbers such that

P - P2 4
and all circular permutations of the above values of x, y and z.

Of course. the equation ¢ ( x ) = ¢ ( v ) has an infinite number of solutions.

Remark

Wecanconsiderc“(y),foreveryyeN*,deﬁnedasc"(y)={xeNfc(x)=y}.

For example ¢ ( 0 ) is the set of all primes, and ¢~ ( | )istheset { I, p,, } R prime and so on.
p,>3
A study of these sets may be interesting.
Remark
If we have the equation :
c(x)=c(y) k=2 (6)

then, using property 13, we have two cases.

If x is prime and k is odd. then ¢* ( x ) =0 and ( 5 ) implies that v is prime.

In the case when x is prime and k is even it results ¢* ( x ) =2 = ¢ (v ), which implies
that y is a prime. such that y - 2 is not prime.

Ifx=p,y=q, pand qprimes, p,q>3.then(p-1,q-1)are also solutions, because
c“(p-1)=1=c(q-1), so the above equation has an infinite number of couples as
solutions.

Also a study of ( ¢* ( x ) ) ~ seems to be interesting.
19



Remuark

The equation :

c{(n)=c(n=1)-¢c(n=-2)Y=c(n-1) (7)
has soiutions whenc(n-1)=3.¢c(n)=2.¢c(n+1)=1.c(n=+2)=0.so the solutions
are n = p - 2 for everv p prime number such that between p - 4 and p there is not another
prime.

The equation

c(n-2)-c(n-1)=c(n=l1)+rc(n=-2)=4c(n) (8)
has as solutions n = p - 3. where p is a prime such that between p - 6 and p there is not another
prime. because4c (n)=12andc(n-2)+-c(n-1)=c(n+1)+c(n+2)=12

For example n = 29 - 3 = 26 1s a solution of the equation ( 7 ).

The equation :

c(n)+c(n-1)=c(n-2)~c(n-3)+c(n-4)=2c(n-5) (9)
( see property 7 ) has as solution n = p - 5, where p is a prime, such that between p - 6 and p
there is not another prime. Indeed we have 0 + 1 +2 +3 + 4 =2.5.

Thus. using the properties of the function ¢ we can decide if an equation, which has a
similar form with the above equations, has or has not solutions.

But a difficult problem is : " For any even number a, can we find consecutive primes
such that p,_, - p, =a” "

The answer is useful to find the solutions of the above kind of equations, but is also
important to give the answer in order to solve another open problem :

" Can we get. as large as we want. but finite decreasing sequence k, k-1, .., 2, 1,0
( odd k ), included in the sequence of the values of c?"

If someone gives an answer to this problem, then it is easy to give the answer ( it will
be the same ) at the similar following problem :

" Can we get, as large as we want. but finite decreasing sequence k. k-1,...,2,1,0
( even k), included in the sequence of the values of c?"

20



We suppose the answer is negative.

cn)

In the same order of ideea. it is interesting to find max —;
n

It is wellknown ( see [ 4 ]. page 147 ) that p_, -p, <(Inp, ). where p, and p,  are

two consecutive primes.

Moreover. c_(nrﬂ p. < n < p,., reaches its maximum value forn=p, — . where
p, Is a prime.

So. in this case :
@ _ Pei-pi- 1 - (lan‘ -1 ko=

pr 1 pi=+1
Using this resuit. we can find the maximum value of c__(nql
1 2 _ 1 2 _
For p > 100 we have (nTpil— < _(_lnl(l)g+ < %

Using the computer, by a straight forward computation, it is easy to prove that

c(n 3.
max cm) 2 wich is reached for n = 8.
2ensioo D ( &
c(n . c(n 3
Because -2 < L1 for every n>100 it resuits that max on) 2
n 4 n22 n 8

reached for n= 8.

Remark

There exists an infinite number of finite sequences { ¢ (k, ), c(k,+1),...,c(k,)}
Ko

such that Z c(k) is a three-cornered number for k,, k, € N* (the n-th three-cornered
h=h,

. det 1
number is T, = n(n2+ ), n € N*).

For example. in the case k, = p, and k, = p,_, , two consecutive primes. we have the

finite sequence {c(p, ), c(p,*1),.., ¢(p_,-1), ¢(p,.,)}and

Pi-i - -1 o=
Sek) = O+(prer-pi-1)+.+2+1-0 = (Pros =Py = (Pt — o =Ty peet

k=, 2

Of course. we can define the functionc¢': N\ { 0.1 }=» N, ¢'(n)=n -k, where k is
the smallest natural number such that n - k is a prime number, but we shall give some

properties of this function in another paper.
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THE FUNCTIONS 6,(x) AND 8,(x)
by V. Seleacu and $t. Zanfir

Department of Mathematics, University of Craiova,
Craiova (1100), Romania

In this paper we define the function 6, N\{0,1} > N and 6:N\{0,1,2} >N as
follows :

6,(x) = LS(pV) 6(x) = ZS(p),

p/x pAX
O<psx O<psx
p-pnme p-prime

where S(p*)is the Smarandache function defined in [3] (S(n) is the smollest integer m

such that m! is divisible by n).
For the begining we give some properties of the ¢ function. Let us observe that,

from the definition of &, it results:

6,(2)=S(2%) =4, 6.8)=5(2% =10,

6,(3) =S(3’) =6, 6,(9)=5(3") =21,

6.(4)=5(2") =, 6,(10) = S(2'%) +S(5'") = 12 +45 = 57,
6,(5)=S(5°) =25, g.(11)=sa1') =121,

0.(6) =S(2°)+S(3%) = T+15=22, 6,(12)=5(2"7) +5(3'?) =43,
6.(7)=5(77) = 49,

We note also that if p-prime than 6,(p") = p>.

Proposition 1. The series 2(9_,,.(,%))_l is convergent.
x22

Proof. o, R l : 1
roaf E( W) 5(22)+5(3-‘)+S(5-‘)+S(2")+S(3(’)+

1 | 1 I I
ST s@  s@) 5@ 55 | sa +"'

b o

+
2 (puiy - DV(X) o (Pygsy = DV(X)

where V(x) denote the number of the primes less or equal with x and divide by x.
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. =1 1
Of course the series 3 — and

> are convergent, so the
i=2 Pi Pven/x (PV(x) ~ DV(X)

propositionis proved.

Then

21
Proposition 2. Let the sequence T(n)=1-Ig@,(n)+) —.
=2 03(1)
lim T(n) = —c0.
n—oo

w
The proof is imediate because the series Y
n=2Y\N

is convergent according by the

proposition 1.

Proposition 3. The equation §,(x) = 6,(x +1) (0) has no solution if x is a
prime.

Proof. 1f x is a prime number the equation become
x? = 6,(x+1), where

gs(x+1):s(p:-ﬂ)+S(p,x"'l)+."+s(px+l )

iz vgaeny
Using the inequality
(p-Da<S(p?) < pa (1
given in [4], we have
G(x+1) < (x+1)(p;, +pi, +-+piy )
Let us presume that the equation (0) has solution. We have the following relation:
x? S (x+1)(p;, +ps, + o+, ) )
and we prove that
Pi, +Pi, *+py,, , Sx—1 3)

forx2>9.
Let n=p/-pyt---p, p; #pj, 1 # ], the decomposition of n into primes. We
define the function f(n) =1+ a;p;+---+a,p, and we show that f(n)sn-2 for n>9. If

1sn<9 the precedent inequality is verified by calculus). For n>9, we prove the
inequality by induction:
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[(9)=7, £(10)=8, f(12)=8<10, true.
Now let us suppose that f(n)<n-2, ¥V n212, and we show that f(n+1)<n-1
In this case we have three different situations:
[) n+1=h=k, -k, where k k, are composed members. Using the true relation,

f(h) = f(k,-ky) = f(k;)+f(ky) -1, we have

f(h)=f(n+l)=f(k‘)+f(k3)-1Sk,—2+k2—2—1=k‘~k2—8—5s
<h-2=n+l-2=n-1=>f(n+1)<n-1.

II) n+1=h=k,; ky, where, k, - prime, k, — compounded,
f(h):f(k,)+f(k2)—-lskl+1+k2—2—1Sk‘-k-_,—2=n—l.

[1l) n+1=h=k, k,, where k;, k, — prime,
f(h):l+k1+k2=k,k2+2—(kl—1)(k2-l)sh+2—4=h—2=n—1.

Conclusion: f(n)<n-2,Vn29.
Then f(n) Sn+2= l+ap + @py+--+aq,p, Sn-2=

a,p; + a;py+---+a,p, Sn-3.

We obtain

Py +Pa++p, S@p + APyt p Sn=3<n-2
Using (3) in (2) we have

x? < (x+1)x-1)= x2<x?-1, imposible.

Proposition 4. The equation G,(x) = G(x +1) has no solution for (x 1) - prime.

Proof. We have f(x+1) =(x+ 1)2.
We suppose that the equation has solution and with the inequalityes (1) is must that

(x+ 1)2 < X(Pi\; + pl\. +'”+pi‘\-(.,) < xz, imposible.

We give some particular value for O(x)= Y S(p*);
pix

p-pnme



8,(3)=5(2") =4 B,(8) = S() + S() + S(7°) = 18+35+49 =102

6,(4)=5(3% =9 8,(9) = S(2°) +8(5°) +S(7°) = 12+40+56 = 108

8,(5) = S(2°) +S(3°) = 20 89,10)=S(3'") + (7% =24 +63=87

8,(6) = S(5%) =30 8,(11) = S(2”)+S(3”)+S(5”)+S(7”)= 16+27+
+50+73=163

8,(7)=527)+s3" +S(5") = 8.(12) =@+ S(7'2) +S(11'2) =50+77+

=8+18+36=62 +121=248

8,(13) =s(2) +S(31%) +5(53)+8(71) +S(1 183y =
=16+27+60+84+132=319.

Proposition 5. The series Z(-Gs(x))'1 is convergent.
x23

Proof.
1 1 1 1

D)™ = —
200N =555 53 T s@)+s3) FS@) eSS | S@)+S()+S(T)

1 1 1 1 1 1 1
+---< + + + +---< —5 —< ) —.
5@ s@H s s@) 2, S(p) Z p} x}:‘gxz

ptx p,¥x

p;—prime p;,—pnime

. 1. ..
Because the senes 2—2' is convergent, we have that our senes 1S convergent.
x23X

Ma

Proposition 6. If T(n) =1-1g 6,(n)+ ?1__ then lim T(n) = —o.
i 303(‘) n—$o

)

Proposition 7. The equation b,(x) = ?s(x +1) has no solution if x+1=p-prime.

Proof. If x+1 is prime be wouldn't divide with any of prime numbers then him
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6’(x+l) _ Zs(px+l) S(p;‘”)+S(px”)+---+5(p¥+l )

i X
pix+l o
O<psx+l
The number x is divisible with at least two prime numbers then him. In the case

(x) = Y S(p*) will have at least two terms S(pl ) less then they are in ) (x+1).
pXx
0<psx

Moreover S(p*) < S(p/*') and it results that 8,(x) < G,(x+1).

Proposition 8. The equation 6,(x) = 6,(x +1) has no solution if x=p-prime, x2 9.

Proof. using the function Fy(x) = Y S(p*) defined in [2] we have
O<psx
p-prime

E.(x) = 6,(x)+ 8,(x)

F(x+1) = 6,(x+1)+6,(x+1).

If our equation have solution -0,(x) = b,(x +1) then
F,(x)-F(x+1)=6,(x)- 6,(x+1)

or

E,(x)- E(x+1) = x* - 6,(x+1).

Is known [2] that F,(x) - F;(x+1) <0. We have x2 - G, (x+1)<0=> x? < O,(x+1).
Using (3) we have

g (x+1)s(x+1)(x-1) = x2 — 1, therefore x? <x? -1, imposible.

For x<9 is verified by calculus that the equation 0,(x) = 6,(x +1) has not solution.

Proposed problem

1. 6,(x)=6,(x+1), x, x+1 are composed numbers.
2. 6,(x) = G(x+1), x, x+1, are composed numbers.

Calculate

3. lim 9’(:), aeR.

n— n

4, lim ﬂ(—rﬁ

n—w Il

, aeR.
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The function I1g (x)
by

Vasile Seleacu and Stefan Zanfir

In this paper are studied some properties of the numerical function II  : N* — N,
MN(x)={me(0,x]/S(m)=pnme number }, where S ( m) is the Smarandache function,
defined in [1].

Numerical example :

M (1)=0 M (2)=1, M(3)=2, M (4)=2, T (5)=3,II(6)=4,
M, (7)=5 Mg (8)=5 M(9)=5 T (10)=6 I (11)= 7,0,(12)=7,
M (13)= 8 (14)= 9 (15)=10,I;(16)=10T[(17)= 11,1 (18) =11,
M (19)=12, 11 (20)=13.

Proposion 1.

According to the definition we have :

a)II (x)<II(x+1),

by (x) = (x-1)+1, if x 1s a prime,

o)l (x)<o(x), if x is a prime,
where ¢ ( x ) is the Euler's totient function.

Proposition 2.

The equation Il (x )= [g] in the hypothesis x= land I (x+1)= Il (x ) has
no solution in the following situation :

a) X 1s a prime,

b) x is a composite number, odd

¢) x + 1 is the square of a positiv integer and x is odd.
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Proof.

Using the reduction ad absurdum method we suppose that the equation

. . X+1 . .
I (x) =[§] has solution. Then Il (x~1)= [X—,,-] . Using the hypothesis we have :

X x+1
[5] = [_2 ] false.
Because x = | is a perfect square we deduce that X is a composite number and because

X is an uneven we obtain ( b ).

Proposition 3.
vYa>2andk>2 S(a")isnotaprime.
Proof.
If we suppose that S (&)= p is aprime, thenp!= ap,“p,” .. .. p.pand
(a*.p)=1 Wededucethat a'/(p-1)!=
S (a) <p-1<p,false.
Proposition 4.

¥ x e N* we have :

M |
E s sx-[UX]

[ )

Proof.
We used the mathematical induction. In the particular case x € {1,2,3,4} our
inequality is verified by direct calculus.
We suppose that the inequality is verified for x € N* and we proved it for x + 1.
We have the following cases
1) x+ 1 the prime number, with the subcases :

a)x is not a square of some integer. Then I (x+1)=T(x)+1

We suppose that II (x )<x -[J/x]

Let provethat T (x+1)<x+1 S[Jx+11]

Itresultsthat TI (x+1)<x+1-[ Jx+1 ] & M(x)<x-[ Jx+1 1]
It's enough to prove that x - [JX]<x—[vx+1]. This relation is true because from our
hypothesis it results that [/X]=[yx+1].

For the left side of the inequality we have Il (x )2} : i true, and let prove

X
2

|

r(A.IW
that I'Is(x+1)>gh‘ >

Because [T, (x +1 ) =TI (x )~ 1 we have to prove that TI  (x)+ 12

B

L

g

+

X

[

[ 3]

1 . .
x+1 J — 1, that is a true relation.

-
Therefore T (x)2|

b) x perfect square.
We suppose that IT (x)<x-[/x]istrue. Then :
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Mo(x)sx=1-[yx+=1]=2MNs(x) =1 <x+1-[Jx+ 1] TMs(x)sx-[Jx+1].

That is a true relation because [/X]=[vyx+1].
analogous with ( a )

For the left inequality the demonstration is

2) x prime
a)x— 1 1snot a perfect square.

We suppose that T, ( x)<x-[/X] s true.
Letprovethat Tl (x+1)<x=1-[Jx=1].

In this case we have the following two situations :

(1)If TI, (x=1)= Il (x )~ 1, then we must prove that :
Mi(x)=-1<x =1-[JVx+1]

r “ F‘ ] j
Supposing that Tl (x)2] § i |
S L 2 g
Mo(x)=+1 2 | 1 B therefore [Tl (x)2> ;’ L] i— 1 and that results from the hypothesis.

(u) IfH (x+1)=TL(x). Wehavetoprovethat M (x)<x+1-[Jyx~1]

Of course this inequality is true. For the left side of the inequality we have to prove that

+1

|

M, (x) 2 2L If we admit

[§9]

i
According to the Proposition 2. this inequality can't be true.

-
|

Hs(x)<(—1 we obtain that Tl (x)-* x; = 1.

} a3
J L2 L2

-

Therefore we have T (x)=2

—

l
L 2
Let observe that x + 1 is not a perfect square, if x > 3 is a prime number. For
x = 3 the inequality is venified by calculus.

3) x is an even composed number. Then :
a)Ifx+ 1 isapnme.
We know that TTI, (x+1)= Il (x) + 1. Then supposing IL (x)< x-[J/X].
We have to prove that Tl (x+1) <x+1—[/xT]or I (x)= x-ﬂﬁﬁ1
This is true, because [J/x]=| CJx+1 ]

For the leﬂ mequahty we have toshow Il (x+~1)2
or Ii(x)+12 ! :

L

b) If X + 1 is an odd composite number, then

x+1

2

>

L)

-

+11
———;—1 1s true.

(1)If TIi(x ~ 1) =TI (x )+ I, the demonstration is the same as at ( a ).
(i) If TI,(x+ 1)=TII,( x ), we have to prove that [I,(x ) <x + 1 -[ X+ 1 ]
Obvious.

The left inequality is obvious.
¢)x + 1 perfect square.

Using Proposition 3 we have only the case II,( x + 1) =TL( x-). Then if we
consider to be true the relation Il (x)<x-[J/X].
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Let prove that ﬂx(x*l)<x+l-f_,/x+lj.
But ﬂx(x)s.\'f—l-§ Jx+1 |istrue.

Dx |
For the left inequalitv we suppose that Tl ( x )2 l % | is true. We have to prove that
L=

M(x=-1)= ix‘l,.

- 4 _I
Because l'l(\*l)-l'l(\)ltresults ﬂ(x)z, L.

So. we must have | x b 1 > [‘: L J This is true, because x + 1 is an odd number.
4)x isan odd composed number.
a) Ifx + 1 is even composed number the proof is the same as in ( 2a ).

For the nght inequality we have :
(1)If Mi(x+1)=1 (x)-ﬂandwesupposethat Il (x)<x-[{Jx],
letto provethat Tl (x+1)<x+1-; Jx+1 J

-

This relation lead usto Tl (x)<x-| ,/m} This is true because [/Xx ] = [ mj
(u)If Il (x +1)= Il ( x ) the proofis obvious.
b) If x + 1 is a perfect square.
In this case according to the Proposition 3 we have only the situation
[l (x+1)= I ( x ). The right sided inequality is obvious and the left side inequality has the
same proof as for ( 2a ). ‘
5) Ifx is a perfect square. _
a) If x is a pnime and the only situation is that I, (x+1)= Il (x )+ 1. The
demonstration is obvious.
b) Ifx+ 1 is a composite number.
For the right inequality we have :
(i) If I(x+1)=T(x +1), the proof is analogous as in the
preceding case.
(i) If MIg(x+1)= Il (x) the proof is obvious.
For the left inequality :
If x + 1 is an odd composite number the relation is obvious.
If x + 1 is an even composite number then :
if TI,(x+1)= II (x)+ 1, the proof is analogous with ( a).
if TI (x+1)= I ( x) then x can be just an odd perfect square.

We suppose that Tl  (x) 2> [% 1s true.

W+
—
| S

, if we suppose, again, that [T (x ) < [x

To show that TII ( x )z[x'L 1
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1t results

] :
=§ssns(x)<{‘j‘ ;,andwehave I, = %J

i
i

!
Propeosition 5.

im[ [1(2n)-Tl,(n) ]==.
Proof.

According to the Proposition 4 we have :
Hs(n)Sn-fLJn-e-l 1< n<Il(2n)>
ﬂS(Zn)-HS(n)>r,/n+] }andlim [Jn+] }:x.
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ON THREE NUMERICAL FUNCTIONS
by

I. Balacenoiu and V. Seleacu

In this paper we define the numerical functions o, ¢;*, ©; and we prove some
properties of these functions.

1. Definition. If S(n) is the Smarandache function, and (m, n) is the greatest common
divisor of m and n, then the functions o , ©,* and o, are defined on the set N* of the positive
integers, with values in the set N of all the non negative integers, such that:

0 (x)=Card{m eN* /0 <m < x. (S(m), x) = 1}

o, *(x) =Card{m eN* /0 <m < x, (S(m), x) = 1}

oy(x) = Card{m eN* /0 <m < x, and S(m) divides x}.

From this definition it results that:

04(x) + 0, *(x) = x and ©y(x) < @, *(x) (N
for all x € N*.

2. Proposition. For every prime number p € N* we have

0s(p) =P - 1 =0(p), 05(p’) = p* - p = ®(p?)
where o 1s Euler’s totient function.

Proof. Of course, if p is a prime then for all integer a satisfying 0 <a < p - 1 we have
(S(a), p) = 1, because S(a)<a. So, if we note M,(x)={m eN*/0<m<p, (S5(m), p)=1}
then a = M (p).

A1 the same time. because S(p) = p, it resuits that (S(p), p) =p = 1 and so p € M,(p).

Then we have o(p) =p - 1 = ©(p).

The positive integers a, not greater than p’ and not belonging to the set M,(p’) are:

p7 2p9 “ce s (p-l)p9 pz'
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For p = 2 this assertion is evidently true. and if p is an odd prime number then for all

h < p it resuits S(h- p) = p.

Now. if m < p* and m = hp then (S(m). p*) = 1. Indeed. iffor m=gq;" -q2" ---qr . ¢; =P
we have (S(m), p*) = 1. then it exists a divisor q* of m such that S(m) = §(q*) = q(a - i, ). with
a-11]

q

From (q(a-1,), p )=1 it results (q(a-i, ). p)=1 and because q=p it results

o
i i
1, <0
e

(a-i,,p)= 1l s0(a-i,p)=p.Butpdoesnotdivide a - i, because a <p.

Indeed. we have:

Sk}

q“<p’ ® a<2logp=<l2->=p

because we have:

log,p < -5— forq>2 and p>3.

So,

op?)=p°-Card {1-p,2-p, .., (p- p, P’} =P’ -p=0(p)).

3. Proposition. For every x € N* we have:

O (x)<x-1(x)*+ 1
where t(x) is the number of the divisors of x.

Proof. From (1) it results that @ (x) = x - @, *(x), and of course, from the definition of
o.* and it results ©g*(x) 2 1(x)- 1. Then o (x)<x-1(x)+ 1. Particularly, if x is a pnime
then @ (x) < x - 1, because in this case T(x) = 2.

If x is a composite number, it results that ¢ (x) <x - 2.

4. Proposition. If p < q are two consecutive primes then :

05(pq) = o(pq).

Proof. Evidently, o(pq) =(p- 1) (q - 1) and

o, (pq) = Card{m eN* /0 <m < pq, (S(m), pg) = 1}.

Because p and q are consecutive primes and p < q it results that the muitiples of p and q
which are not greater than pq are exactly given by the set:

M={p,2p, ... p5(P+1)p, .., (q- 1)p, 4P, q, 29, .. , (P - Da}.

These are in number of p+q - 1.
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Evidently, (S(m).pq)= 1 form e {p.2p. ... (p- Dp.p’. q,2q. ... . (p - 1)q}.
Let us calculate S(m) form € {(p = l)p. (p+ 2)p. ... . (g - 1)p}.
Evidentlv.(p+i,p)=lforl1 <i<q-p-1l.andso[p+i, p]=p(p+1).

It results that S(p(p + 1) = S([p, p + i]) = max{S(p). S(p + 1)} = S(p).

Indeed. to estimate S(p +i) letp+i=p| -p> - pu" <q<2p.

Then p}' <p.ps <p. ...ps" <P.

It results that:

S(p~i) = S(p;") < S(p), for somej=1h.

It results that:

(S(p(p +1). pq) = (p. pq) =p = 1.

In the following we shall prove that if 0 <m < pq and m is not a multiple of p or q then
(S(m). pg) = 1.

It is said that if m < p’ is not a multiple of p then (S(m), p) = 1.

If m < q’ is not a multiple of q then it results also (S(m), q) = 1.

Now, if m<p’ (and of course m < q’) is not a multiple either of p and q then from
(S(m), p) =1 and (S(m), q) = 1 it results (S(m), pq) = 1.

Finally, for p’<m<pq<gq’, with m not a multiple either of p and q, if the
decomposition of m into primes is m=p;" -ps ---ps then S(m)=S(py*) <S(p)=p so

(S(m), p)=1.
Analogously, (S(m), q) = 1, and so (S(m), pq) = 1.
Consequently,
05(pg) =pq-p-q+1=0(pq).
S. Proposition
(i) If p > 2 is a prime number then o, (p) = 2, o P)=p
(ii) If x is a composite number then o (x) = 3.

Proof. From the definition of the function «; it results that o (p) = 2.
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If 1< m < pfrom the condition that S(m) divides p’ it results m = 1 or m = kp, with
k<p-1l.so:
me {l.p.2p.....(p-1)p} and o p)=p
If x is a composite number. let p be one of its prime divisors.
Then. of course, 1. p.2p € fm/0<m<x}.
If p>3then:
S(1) = 1 divides x, S(p) = p divides x and $(2p) = S(p) = p divides x.
It rezults ©4(x)=23.
If x=2% witha > 2 then
S(1) = 1 divides x. $(2) = 2 divides x and S(4) = 4 divides x
so we have also ©4(x) = 3.
6. Proposition. For every positive integer X we have :
Ox) <x-0(x)+ 1. (2)
Proof. We have o(x) = x - Card A, when
A={m/0<m<x, (m,x)=1].
Evidently, the inequality (2) is valid for all the prime numbers.
If x is a composite number it results that at least a proper divisor of m is also a divisor of
S(m) and of x. So (m, x)=1and consequently m € A.
So. {m/0<m<x, S(m)dividesx} c Awv {1} and it results that :
Card { m/0<m<x, S(m) divides x} <Card A -1, or
oJ(x)<1+Card A,
and from this it results (2).
7. Proposition. The equation oy(x) = oy(x+ 1) has not a solution between the prime
numbers.
Proof. Indeed, if x is a prime then ©¢(x) =2 and because x + 1 is a composite number it

results o (x + 1) 23.
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Let us observe that the above equation has solutions between the primes. For instance.
0(35) = 0,(36) = 1.

8. Proposition. The function ¢(x) has all the primes as local maximal points.

Proof. We have oy(p)=p-1,04p-1)<p-3<o(p)and o(p+ 1)< ©(p). because
p ~ | being a composite number has at least two divisors.

Let us mention now the following unsolved problems:

(UP,)  There exists x € N* such that ¢ (x) < o(x).

(UP,) Forall x eN* is valid the inequality

04(x) 2 1(x)

where 1(x) is the number of the divisors of x.
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THE MONOTONY OF SMARANDACHE FUNCTIONS
OF FIRST KIND

by Ion Bilicenoiu

Department of Mathematics, University of Craiova
Craiova (1100), Romania

Smarandache functions of first kind are defined in [1] thus:

SoN >N, S(k)=1 and S,(k)= g{spj (ik)}.
J

where n=p} - pi?--- p and Sy, are functions defined in [4].
They T ,-standardise (N ,+) in (N,<,+) in the sense that

Zy max{5,(a),5,(b)} < S,(a+d) < §,(a)+ S,(b)
foreverya,beN" and I ,- standardise (N',+) in (N',<,-) by
T2 max(S§,(a),S,(8)} <S,(a+b) < S,(a)-S,(b), foreverya,b e N*
In 2] it is prooved that the functions S, are increasing and the sequence {S g Levt 18
also increasing. It is also proved that if p,q are prime numbers, then

p-i<q:SP,- <S, and i<g=>§ <S5,

wherei e N".
It would be used in this paper the formula

S, (k)= plk =), for same i, satifying osas[%], (see [3]) ()

1. Proposition. Let p be a prime number and k.k, e N'. Ifk <k, then i, <i,,
where i iy, are defined by (1).

Proof. 1t is known that S,:N"— N and S,(k)=pk for ksp. If S,(k)=mp*"
with m, @ e N*,(m, p) = 1, there exist a consecutive numbers:
nn+l. .. . n+ra-1 so that
ke{n,n+l,...,n+a-l} and
S,(n)=8,(n+1)=--=S(n+a-1),
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this means that S, is stationed the -1 steps (k— k£ +1).

If k <k and S,(k)=S,(k), because S,(k)=p(k~ik), S,(k)=p(k -ik;)
it results i, <i, .

If i<k, and S,(k)<S,(k), itiseasy to see that we can write:

Iy, = +Z(a-1)

mp® <, (k)
then B, €{0,1,2,...,a-1}
and

where B =0 for S, (k)=mp®, if S,(k)=mp*

Iy, =4+ (a=1)

mp® <, (k)
B, €{0,1,2,...,a-1}.
Now is obviously that k <k, and S,(k)<S,(k) = i, <i, . We note that, for

k<k, i =i, if S,(k)<S,(k) and {mp°|a>1 and mp* < S,(k)} =
{mp‘|a>1 and mp® < S§,(k)}

where 3, =0 for S,(k)=mp®, if §,(k,)=mp® then

2. Proposition. If p is a prime number and p 25, then S,> S, and S, > S,

Proof. Because p—1< p it results that S, , <S,. Of course p+1 is even and so:

@) if p+1=2, then i>2 and because 2i <2' ~1= p we have §,,; < S,,.

@ if p+1=2, let p+1=p}'-pf---p;, then Sr.(k)=g1g{SP.f (k)}= S, (k)=
=S, (ink).

Because p,-i, < p~ SP;I < p it results that SP,-_(k)<SP(k) for k eN", so that

Sp+

1 <5,
3. Proposition. Let p,q be prime numbers and the sequences of functions
{Sp,}'w., {Sq,}jm.
If p<q and i < j, then SH <Sq,.

Proof. Evidently, if p<gq and i < j, then forevery k €N
Sp,(k)sSP,(k)<qu(k)
so, Sp, <qu
4. Definition. Let p,q be prime numbers. We consider a function S .+ @ sequence of
Sfunctions {S g Lt and we note:

Iy = m'ax{ilsi < Sql}
40



i‘”:mlin{ilSq, <S’,}.

then {k eN !i(j y <k< i =A Sl = A, , defines the interference zone of the function Sq ,
with the sequence {SP, },w..
5. Remarque.
a)Iqu, <S/ for i eN", then now existsf,,and/": 1, and we say that Sq, is separately
of the sequence of functions {Sp, }

reN*

b) If there exist keN‘sothatS’.<S¢,<S,...,thenA =@ and say that the

P@)

function S , does not interfere with the sequence of functions {S ; }
v P ien

6. Definition. The sequence {x,} o S generaly increasing if

VneN 3myeN so that x,2x, for m2m,.

7. Remarque. If the sequence {x,} . with x,20 is generaly increasing and
boundled, then every subsequence is generaly increasing and boundled.

8. Propeosition. The sequence {S,,(k)}uN. , where k e N, is in generaly increasing
and boundled.

Proof. Because S,,(k)=Sn,,(I), it results that {S,,(Ic)}“N. is a subsequence of

(Sa(D)}, -
The sequence {S,(1)} mey® 1S generaly increasing and boundled because:

VmeN" 3ty=mi so that V121, 5,(1)2S, (1)=m25,(1).

From the remarque 7 it results that the sequence {S,,(k)}uN. is generaly increasing
boundled.

9. Propasition. The sequence of functions {S,} w5 generaly increasing boundled.
Proof. Obviously, the zone of interference of the function S, with {S,}_ o~ is the set
Animy = {k € N" |1y < k <™} where
N, =max{neN|S,<S,}

™ =min{neN'|S, <S,}.
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The interference zone A,,, is nonemty because S, €A, and finite for 5, <S5, <S,,

where p is one prime number greater than m.
Because {S,(1)} is generaly increasing it results:

VmeN" 3t,eN" sothat §,(1)25,(1) for V1 214,

For r, = t, +n*™ we have

S, 25,28,(1) for Vr2n,

so that {S,} o~ is generaly increasing boundled.

10. Remarque. ,
a) For n= p}' - p?--- p are posible the following cases:

1) 3k €{1,2,...,r}so that

S’g SS’,., for j €{1,2,...,r},
then 5, =S, and Pt is named the dominant factor for 7.
k
2) 3k,k,.. k, €{1,2,...,r} sothat:

vtelm 3¢, eN sothat S,(¢)=S #, () and
Py,

VieN S§,(D= ggxm{Spu, (1)}-

We shall name { p:’ It e1,m} the active factors, the others wold be name passive factors

for n.
b) We consider
N, ={n=p}-p}|i,i eN"}, where p, < p, are prime numbers.
For neN, , appear the following situations:
1) i, €(0,i*], this means that pj! is a pasive factor and p? is an active factor.
2) iy €(iy,),i") this means that pi' and p7 are active factors.

3) i, €[i?? ) this means that p is a active factor and p? is a pasive factor.
1 €U, b Pi
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For p, < p, the repartion of exponents is represently in following scheme:

PSPl 1 o2 03 n N
1IN~ : ’
2 <~ | The zone of exponents
3 O~. 1 foroumbersof typel)

\\l{
b~
——————————— \\
1 ~
' ~
I >~
____________ ., zoneof >
x| for ~
The zone of exponents of type 2)
for numbers of type 3)

W
For numbers of type 2) j e(iwz),i‘(iz)) and i, G(iz(;,),é"))

¢) I consider that
Np‘plp; ={n=p{‘-p?-p§"i‘,i2,i3eN'},
where p, < p, < p; are prime numbers.

Exist the following situations: .

1) neN”,j=1,2,3 this means that p; is active factor.

2) ne NP*  j=k; jk €{1,2,3}, this means that p;.",pi" are active factors.

3) ne NAP7 | this means that pj!,p?,p} are active factors. N7 is named the S-
active cone for N, ,, . -

Obviously

NP = (n=ph g2 piliy o iy €N* and iy €(iygy,it") where j = k; j,k €{1,2,3}}.

The repartision of exponents is represented in the following scheme:

i3 N NPiP;3
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d) Generaly, I consider N,, , ={n=p p¢- - - P"i,hpse-ri, €N}, where

P <Py < -+ < p, are prime numbers.

On N, ,, ., exist the following relation of equivalence:

npm < n and m have the same active factors.

This have the following clases:

- N°7  where s €{1,2,....r}.

neN®" & n hase only pX‘ active factor

- N*1%%, where jy = j; and i, j; €{1.2...7}.
n e N2 & n has only P;f , p;’zz active factors.

NPP2-Prysch is named S-active cone.

PP2--Pr —
N (neNpp...o

Obviously, if n € NPP2-%  then i, e(i,,(,.j),i:i’)) withk = j and k,je{1,2,...r}.

nhasp!, p2,...,p" active factors}.
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THE SMARANDACHE NEAR-TO-PRIMORIAL (S.N.T.P.) FUNCTION

by
M. R. Mudge

Definition A.

The PRIMORIAL Function, p*, of a prime number, p, is defined be the product of the
prime numbers less than or equal to p. e.g. 7* = 2-3-5.7 = 210 similarly 11* = 2310. A number,
q, is said to be near to prime if and only if either q+1 or q-1 are primes it is said to be the
mean-of-a-prime-pair if and only if both q+1 and g-1 are prime.

p such that p* is near to prime: 2, 7, 13, 37, 41, 53, 59, 67, 71, 79, 83, 89, ...
p such that p* is mean-of-a-prime-pair: 3, 5, 11, 31, ...

TABLEI
p 2 3 5 7 11 13
p*-1 ] 5 29p 209=11-19 2309p 30029p
p* 2 6 30 210 2310 30030
p*+1 3 7 31p 211p 2311p 30031=59-509

Definition B.

The SMARANDACHE Near-To-Primorial Function, SPr(n), is defined as the smallest
prime p such that either p* or p* + 1 is divisible by n.

n 1 2 3 4 5 6 7 8 9 10 11 ..59..
SPr(n) 2 2 2 5 3 3 3 5 ? 5 11 13

Questions relating to this function include:

1. Is SPr(n) defined for all positive integers n ?
2. What is the distribution of values of SPr(n) ?
3. Is this problem fundamentally altereted by replacing p* + 1 by p* £ 3, 5, ...

Current address:

22 Gors Fach, Pwil-Trap,
St. Clears, Carmarthen,
DYFED SA 33 4AQ
United Kingdom
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A Note on the Smarandache Near-To-Primorial Function

Charles Ashbacher
Decisionmark
200 2nd Ave. SE
Cedar Rapids, IA 52401 USA

In a brief paper passed on to the author[1], Michael R. Mudge used the definition of the
Primonal function:

Definition: For p any prime, the Primorial function of p, p* is the product of all prime
numbers less than or equal to p.

Examples:

3*=2%3=6
11*=2*3+5%7*11=2310

To define the Smarandache Near-To-Primorial Function SPr(n)

Definition: For n a positive integer, the Smarandache Near-To-Primorial Function SPr(n)
is the smallest prime p such that either p* or p* + 1 or p* - 1 is divisible by n.

A table of initial values is also given

n

1 2345678910 11...59
SPr(n) 2 22 5333572 5 11...13
and the following questions posed:

1) Is SPr(n) defined for all positive integers n?

2) What 1s the distribution of values of SPr(n)?

3) Is this problem fundamentally altered by replacing p* + 1byp* + kfork=3,5,...7
The purpose of this paper is to address these questions.

We start with a simple but important result that is presented in the form of a lemma.

Lemma 1: If the prime factorization of n contains more than one instance of a prime as a
factor, then n cannot divide q* for q any prime.

Proof: Suppose that n contains at least one prime factor to a power greater than one, for
reference purposes, call that prime pl. The list of prime factors of n contains a largest
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prime and we can call that prime p2. If we choose another arbitrary prime q, there are two
cases to consider.

Case 1: @ < p2. Then p2 cannot divide g*, as q* contains no instances of p2 by
definition.

Case 2: q > p2. In this case, each prime factor of n will divide q*, but since p1 appears
only once in q*, p1? cannot divide q*. Therefore, n cannot divide q* as well. [J

We are now in a position to answer the first question.

Theorem 1: If n contains more than one instance of 2 as a factor, then SPr(n) does not
exist.

Proof: Choose n to be a number having more than one instance of 2 as a factor. By
lemma 1, there is no prime q such that n divides q*. Furthermore, since 2 is a prime, q* is
always even. Therefore, q* + 1 is always odd and n cannot evenly divide it. OJ

The negative answer to the first question also points out two errors in the Mudge table.
SPr(4) and SPr(8) do not exist, and an inspection of the given values verifies this. The
Primorial of 5 is 2*3*5 = 30 and no element in the set { 29,30,31 } is evenly divisible by 4.

By definition, the range of SPr(n) is a set of prime numbers. The obvious question is then
whether the range of SPr(n) is in fact the set of all prime numbers, and we state the answer
as a theorem. '

Theorem 2: The range of SPr(n) is the set of all prime numbers.
Proof: The first few values are by inspection.
SPr(1) =2, SPr(5) =3, SPr(10)=5
Choose an arbitrary prime p > 5 and construct the number p* - 1. Obviously,
p* - 1 divides p* -1. It is also clear that there is no prime q < p such that q*, q* + 1or
q* — 1isdivisible by p* -1. Therefore, SPr(p* - 1) = p and p is in the range of
SPr(n). O
Which answers the second question posed by M. Mudge.

It is easy to establish an algorithmic process to determine if SPr(n) is defined for values
of n containing more than one instance of a prime greater than 2.

The first step is to prove another lemma.
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Lemma 2: If n contains a prime p that appears more than once as a factor of n, and q is
any pnme q > p, then n does not divide q* = 1.

Proof: Let n, p and q have the stated properties. Clearly, p divides q* and since q is
greater than 1, p cannot divide q* =+ 1, forcing the conclusion that n cannot divide g* + 1
as well. Combining this with lemma 1 gives the desired result. O

Corollary: If n contains some prime p more than once as a factor and SPr(n) exists, then
the prime q such that n divides @* &+ 1 must be less than p.

Proof: Clear. O]
The next lemma deals with some of the instances where SPr(n) is defined.
Lemma 3: Ifn = pyps . .. px, where k > 1 and all p; are primes, then SPr(n) is defined.

Proof: Let q denote the largest prime factor of n. By definition, g* contains one instance
of all primes less than or equal to q, so n must divide q*. Given the existence of one such
number, there must also be a minimal one. [J

Combining all previous results, we can create a simple algorithm that can be used to
determine if SPr(n) exists for any positive integer n.

Input: A positive integer n.
Output: Yes, if SPr(n) exists, No otherwise.

Step 1: Factor n into prime factors, p1ps . . . pk.

Step 2: If all primes appear to the first power, terminate with the message "Yes".
Step 3: If 2 appears to a power greater than 1, terminate with the message "No".
Step4: Set q = 2, the smallest prime.

Step S: Compute g* + 1 and q* - 1.

Step 6: If n divides q* + 1 or q* - 1, termunate with the message "Yes".

Step 7: Increment q to the next largest prime.

Step 8: If @ > p, terminate with the message "No".

Step 9: Goto step 5.

And this algorithm can be used to resolve the question mark in the Mudge table. Since 9
does not divide 2* =+ 1, SPr(9) is not defined. Furthermore, 3 to any power greater than 2
also cannot divide 2* =+ 1, so the conclusion is stronger in that SPr(n) is not defined for n
any power of 3 greater than 3.

Note that modifications of this algorithm could be made so that it also returns the value of
SPr(n) when defined.



These conclusions can be used to partially answer the third question. The conclusion of
lemma 3 concerning all prime factors to the first power is unaffected. However, ifq > 3
and q prime, then q* =+ 3 is also divisible by 3, making solutions possible for higher
powers of 3. Such results do indeed occur, as

3*+3=9

so that the modified SPr(9)=9.

Reference

1. The Smarandache Near-To-Primorial Function, personal correspondence by
Michael R. Mudge.

49



PRIMES BETWEEN CONSECUTIVE
SMARANDACHE NUMBERS

by
G. Suggett

I assume that the range between S(n) and S(n+1) should be interpreted as
including the endpoints ? If one is looking for cases in which there are no primes
in the open interval between the two consecutive values, then the range of
exceptions is much larger, including n = 1, 2, 3, 4, 5, 9, 14, 15, ... Using the
closed interval gives a much smaller list of exceptions, starting, as you state, with
n = 224. I have confirmed that the next value is n = 2057, but to go further on a
systematic basis would be far too time-consuming. However, taking the hint
about prime pairs, [ have found the following:

Associated with the prime pair (101, 103): 265225, 265226

Associated with the prime pair (107, 109): 67697937, 67697938

Associated with the prime pair (149, 151): 843637, 843638

Associated with the prime pair (461, 463): 24652435, 24652436

Associated with the prime pair (521, 523): 35558770, 35558771

Associated with the prime pair (569, 571): 46297822, 46297823

Associated with the prime pair (821, 823): 138852445, 138852446

Associated with the prime pair (857, 859): 157906534, 157906535

Associated with the prime pair (881, 883): 171531580, 171531581

Associated with the prime pair (1061, 1063): 299441785, 299441786
Associated with the prime pair (1301, 1303): 551787925, 551787926
Associated with the prime pair (1697, 1699). 1223918824, 1223918825
Associated with the prime pair (1721, 1723): 1276553470, 1276553471
Associated with the prime pair (1787, 1789): 5108793239997, 5 108793239998
Associated with the prime pair (1871, 1873): 6138710055036, 6138710055037
Associated with the prime pair (1877, 1879): 1655870629, 1655870630
Associated with the prime pair (1949, 1951): 1853717287, 1853717288
Associated with the prime pair (1997, 1999): 1994004499, 1994004500
Associated with the prime pair (2081, 2083): 2256222280, 2256222281
Associated with the prime pair (2111, 2113): 9945866761776, 9945866761777
Associated with the prime pair (2237, 2239): 2802334639, 2802334640
Associated with the prime pair (2381, 2383): 3378819955, 3378819956
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Associated with the prime pair (2657, 2659):
Associated with the prime pair (2729, 2731):
Associated with the prime pair (2801, 2803):
Associated with the prime pair (3251, 3253):
Associated with the prime pair (3257, 3259):
Associated with the prime pair (3461, 3463):
Associated with the prime pair (3557, 3559):
Associated with the prime pair (3581, 3583):
Associated with the prime pair (3671, 3673):
Associated with the prime pair (3917, 3919):
Associated with the prime pair (3929, 3931):
Associated with the prime pair (4001, 4003):
Associated with the prime pair (4127, 4129):
Associated with the prime pair (4217, 4219):
Associated with the prime pair (4241, 4243):
Associated with the prime pair (4421, 4423):
Associated with the prime pair (4517, 4519):
Associated with the prime pair (4547, 4549):
Associated with the prime pair (4649, 4651):
Associated with the prime pair (4721, 4723):
Associated with the prime pair (5009, 5011):
Associated with the prime pair (5021, 5023):
Associated with the prime pair (5099, 5101):
Associated with the prime pair (6089, 6091):
Associated with the prime pair (6197, 6199):
Associated with the prime pair (6569, 6571):
Associated with the prime pair (6701, 6703):
Associated with the prime pair (6869, 6871):
Associated with the prime pair (7457, 7459):
Associated with the prime pair (7589, 7591):
Associated with the prime pair (7757, 7759):

4694666584, 4694666585
5086602202, 5086602203
5499766300, 5499766301
55912033969191, 55912033969192
8645559934, 8645559935
10373399185, 10373399186
11260501609, 11260501610
11489910655, 11489910656
90891127331586, 90891127331587
15036031219, 15036031220
15174611302, 15174611303
16024009000, 16024009001
145169740720152, 145169740720153
18761158894, 18761158895
19083231940, 19083231941
21617036545, 21617036546
23055716569, 23055716570
213896677247667, 213896677247668
25136152762, 25136152763
26321940220, 26321940221
31437871492, 31437871493
31664313895, 31664313896
338226861243825, 338226861243826
56466627682, 56466627683
59524353949, 59524353950
70898343322, 70898343323
75258100075, 75258100076
81060670597, 81060670598
103706773384, 103706773385
109311364057, 109311364058
116731835059, 116731835060

and so on. I am reaching the limits of my computational power, but with no
obvious end in sight to the list. Do you have a copy of Radu's proof that the set is
finite ? Does it give an upper bound on the values in the set ? I am intrigued.

Current address:

34 Bridge Road, Worthing,
West Sussex, BN14 7BX, UK.
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Introducing the SMARANDACHE-KUREPA
and SMARANDACHE-WAGSTAFF Functions

by
M. R. Mudge

Definition A.
The left-factonial function 1s defined by D.Kurepa thus:

Im=0!+1!+2!+3!+ . +(n-1)!

whilst S.S. Wagstaff prefers:

(1)

(i1)
(iii)
(iv)

begin:

B, =!n+1)-1=11+2!+3!+ .. +n!
The following properties should be observed:

'n is only divisible by n when n = 2.

3 1s a factor of B_ if n is greater than 1.
9 is a factor of B_ if n is greater than 4.
99 1s a factor of B, if n is greater than 9.

There are no other such cases of divisibility ob B, for n less than a thousand.
The tabulated values of these two functions together with their prime factors

TABLE L
n 'n B,
1 1 1
2 2 3
3 4=2.2 9=3.3
4 10=2-5 33=3-11
5 34=2-17 153=3-3-17
6 154=2.7-11 873=3.3-97
7 8742-19-23 5913=3-3-3-3-73
8 5914=2.2957 46233=3-3-11-467
9  46234=2-23117 409113=3-3-131-347

10 409114=2-204557
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"Intuitive Thought": There appear to be a disproportionate (unexpectedly high)
number of large primes in this table?

Definition B.

For prime p not equal to 3 define the SMARANDACHE-KUREPA Function,
SK(p), as the smallest integer such that !SK(p) is divisible by p.
For prime p not equal to 2 or 5 define the SMARANDACHE-WAGSTAFF Function,
SW(p), as the smallest integer such that By, is divisible by p.

The tabulation of these two functions begins:

TABLE IL
p 2 3 5 7 1 13 17 19 23 131
SK(p) 2 * 4 6 6 ? 5 7 7 ?
SW(p) * 2 * ? 4 ? 5 ? ? 9

Where the entry * denotes that the value is not defined and the entry ? denotes
not avaible from TABLE I above.

Some unanswered questions:

Are there other (*) - entries i.e. undefined values in the above table.

What is the distribution function of integers in both SK(p), SW(p) and their
union ?

3. When, in general, is SK(p) = SW(p) ?

N

Current address:

22 Gors Fach, Pwll-Trap,
St. Clears, Carmarthen,
DYFED SA 33 4AQ
United Kingdom

53



ABOUT THE SMARANDACHE COMPLEMENTARY CUBIC FUNCTION

bv Marcela Popescu and Mariana Nicolescu

DEFINITION. Let g:N" — N be a numerical function defined by g(n) =k, where k is
the smallest natural number such that nk is a perfect cube: nk = $>,seN.

Examples: 1) g(7)=49 because 49 is the smallest natural number such that
7.49=7.7°=7%
2) g(12)=18 because 18 is the smallest natural number such that
12-18= (2°.3).(2-3%)=23.3 = (2-3)°;
3) g2 =g =1
1) g(54)=g(2-3°) =2 =g(2).

PROPERTY 1. For everv n eN g(n3) =1 and for everv prime p we have g(p) = p:.

PROPERTY 2. Let n be a composite natural number and nzps k -pf?z pf i
O<pi <Pi, < <Pi, & :Qi»--0rlly eN’ its prime factorization. Then
g(n)= p:w“) -pi(%) ----- pg(a"), where ai is the remainder of the division of @ bv 3 and

d:{0.1.2} > {0,1.2} ss the‘numericalﬁmction defined by d(0) = 0,d(1) =2 and d(2)= 1.
If we take into account of the above definition of the function g, it is easy to prove the
above properties.

OBSERVATION: d(g; )=3-¢ , for every o =N, and in the sequel we use this
writing for its simplicity.

REMARK 1. Let me N~ be a fixed natural number. If we consider now the numerical
function N - N" defined by 8(n) = k. where k is the smallest natural number such that
nk =s™,s =N then we can observe that § generalize the function g. and we also have:

- g m-a -
g(n™)=1, vn=N. g(p)zpm_l, Yp prime and g(rx):pf1 a'».piﬂ I Pim % where

>4 [>4

n-= pla .pif ..... pi_l‘

is the prime factorization of n and Z is the remainder of the division of
a; by m. therefore the both above properties holds for g , too.

- N - 1 .
REMARK 2. Because 1< g(n)=n*, jur every neN . we have: —= <n, thus
n n
n |
gn) is a divergent serie.
n

AN
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In u similar wav, using that we have 1< g(n)< n™! for everv n eN’. it resuits that

g(n) . .
D 3 o aiso divergent.
nx1

PROPERTY 3. The function g N> N s multiplicatve: g(x-y)=g(x)-3(¥) Jor
every X.v =N with (x,¥) = L

Proof For x=1=v¥ we havc (x,y)=1 and g(1-1)=g(1)-g(1). Let

X= p1 pl ------ p,a' and vy ~q1 qJ q’z s be the prime factorization of X and YV,

repectively, so that X-y =1.
Because (x,v)=1wehave p; =q; . foreverv h= Lrand k=1r-.

>a  Fu 3a 3pp BB
Then g(x-3)=p, -, TeoBy Ced,ea, T =008

REMARK 3. The propertv holds also for the function :3(X-V)= 8(x)-g(v). where
(x,y)=1

PROPERTY 4. I[f(x.v)= 1. X and v are not perfect cubes and x.y>1. then the equation
g(x) = g(¥) has not natural solutions.

T s . _
Proof. Let x= Hpi‘fh and v= qu“‘ (where p, =q;,vh=1rk=1s, because
k:l [ 2
3a 37
(x.y)=1) be theirr prime factorizations. Then g(x)= HP » and g(v)= Hq * and

h=1 k=1
there cxist at least o;, =0 and ﬂjk =0 (because x and v arc not perfect cubes), thercfore

3a 38
1= p, %= q; < =1, so g(x) = g(¥).

1

s

CONSEQUENCE 1. The eguation g(x)=g(x~1) has not natural solutions because
for x =1, x and x| are not both perfect cubes and (X,Xx -1) = L

REMARK 4. The property and the consequence is also true for the function
g if (x.v)=1, x> 1, y>1, and it does not exist 2. beN" sothat x=2a™. v=">b" (where m is
fixed and has the above significance), then the equation §(x)=8(y) has not natural
solutions; the equation g(x) = g(x+1), x 21 has not natural solutions. to0.

It is easv 10 see that the proofs are similarv, but in this case we denote by aq =y

(mod m) and we replace 3- Zz_‘_ by m —Zz;_.

PROPERTY 5. We have g(x-ys') = g(X), for everv X,y eN.

Proof. If (x,y)=1, then (x,y>)=1 and using property 1 and property 3, we have:
(x-¥%) = g(x)-g(y”) = &(%).
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S Il

If (x.v)=1 we can write: x= le Hd‘ and y:qu*'H \©  where
h=l ' h '

— _— —_ n
Pi, :dL_,qjk :dl,-Pih :qjk,‘vhzl,r,kzl,s . t=1n. We have g(x- v")—a(Hp1 »I]d :"-
h— t=1

ﬁ x L 'y a+3[i
H ) Hd, >-g<HP I’I«” Td)= g(le qu )g(Hd’

=t =1

>3, 3-_?_ L 3a,
v HdI. a‘u w-:np;’-a;,n ;—(1 _g(l_[p h) O(Hdl )_
’ =1~ h=1 "~ =1 =1 '

(1

F‘:Ju

P
[

d“") g(x).

i
I

[0} :'_‘_j;s

r s n -
We used that (Hp ' Hd *)=1 and (Hpia‘h-nq?ak_ndla“ 3“*):1 and the

h—‘t1' k=1t =t
above properties.

REMARK 5. [t is easv to see that we also have 3(x-v™) = §(X). for everv X,y eN.

3

OBSERVATION . [f 2. u7 where 2 is a simplified fraction. then g(x}j=g(v). It is
v \%

easv to prove this because x = kn" and v =", and using the above property we have:
g(x)=g(k-u) =g(k)=g(k-v) =g(y)
x u™ u . _ . )
OBSERVATION. If —= W where — is a simplified fraction, then, using remark 35,
y v
we have g(x)=g(y), too.

CONSEQUENCE 2. For every X eN and neN,

1. if n=3k;
g(x") ={g(x), fn=3k -1
g=(x), if n=3k+2, keN,

where 8°(x) = g(g(x)).
Proof. K n=3k then x" is a perfect cube, therefore g(x")=1.

If n=3k~1. then g(x") = g(x:’k-x) = g(x3k)-g(x) =g(x).

If n=3k-2. then g(x") = g(x™*-x7) = g(x™*)-g(x7) = g(x°).
PROPERTY 6. g(x?) = g2(x), for every xeN .

T
Proof. Let x= pr’5 be the prime factorizaion of x. Then

I 2 I 3-2a 33a_ L.
g(xz):g(npizu‘“)z Ip, % and 62(\0 g(g(‘m-g(np “‘) Hp *, but it is
h=1 " h=1 ° het s
easy to observe that 3-E= 3—3—a—,h, because for :
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@.=0 3-2a_=3-0=0 and 3-3-a, =3-3-0=3-0=0

a =1 3-

@,=2 3-2¢ =3-4=3-1=2and3-3-¢ =3-3-2=3-1=2,

therefore g(xz) = g:(x).

REMARK 6. For the function § is not true that §(x?) = §*(x), Yx =N . For example.
for m=5 and x=3". §(x7) = §(3')=3 while 3(3(3°)) = §(3°) = 3°.

More generallv g(xk) = gk(x). vx 2N is not true. But for particular values of m.k and x
the above equality 1s pessivle i be true. For example for m=6, x=2" and

k=2:8(x)=§(2")=2" and F(v)=§EQ*)) = 2" =22

REMARK 6'. a) g(x™") =g (x) for every x =N iff m is an odd number, because we

have m—(m-1)a; =m-m-...— m-a; . forevery a; €N.
5 = "
m-1 tumes

Exampie: For m=35, g(x*)=g*(x), for everv x cN".
b) g(x"1)=g"(x). for everv x eN" iff m is an even number, because we

have m—(m-a; =m-m-...~ m—a: , for every a, eN.

Example: For m= 4. 3(x*) =g*(x). for everv x =N".

PROPERTY 7. For every x e N~ we have g>(x) = g(x).

. I a . o . I 3a
Frogl et X = th"’ be the prime factorization of x. We saw that g(x)=[] p, ™ and
h=l = h=1 "

2 A I 33-g 7 3-3-3-qa
g2(x)=g(e" (=N =g([]p,
h=1 " h=1

But 3-a_=3-3-3-a_, forevery ¢; <N. because for:

@ =0 3a =0 and 3-3-3-¢ =3-3-

a,_-b=1 3-a =2 and 3-3-3-a =3-3-3-1=3-3-2=31=2

-

@ =2 3-a =1and 33-3-a =3-3-3

o
]
(1.:
1]
]
[\S)
I

therefore gB(.\:) = g(x), for every x eN".



REMARK 7. For every x eN" we have 3°(x) = §(x) because m—?q_hzm—m—m—aTh,
for every ¢, eN. For a—,,‘:ae{L...,m—l}:A, we have m-al_-hzm—aeA, therefore

m-m-a =m-(m-a)=a=a, so that m-m-m-§=m—a=m_q, which is also true

for a_ = 0, therefore it is true for every a; eN”
2 A

PROPERTY 8. For every x,y eN" we have g(x-y)= gz(g(x)-g(y)).

T n S n
Proof. Let x= Hp{:‘" -de“ and y= Hqﬁ’* de" be the prime factorization of x
h=1 t=1 k=1 t=l

and y, respectively, where P, #dj.qj #dj.pi, #q;,Vh=1rk=15t=Tn. Of course

I o S n T 3¢ S 37 N Wy o
X-y= HPZ*'qu"-de'%‘ » S0 gxey)=Tlp - [a; ﬂ’*-HdL @) 0on the
h=t ° k=17 =1 " h=1 * k=1 t=1 "
I 3 N 3 s 38 n 3
oher  hand, g(x)=[Ip, *-[]/ * and sm=TTa; * I, so that
h=1 t=1

—

r 3
Pih

22@(x)-8(y) =g []
h=1

_— e——— r —
t =
t

a S 35 n 3o o 3-3-3-a_ 2 3-3-3-
ISR ICA DS s Raatl s Ciasay
k=1 t=1 k=1

n o = r 3o S T/ on
3(3-a +3-8) 3a 3 B, _I—Id?-(a:,'*'ﬂ») = g(x-y), because

'Hdl f % =Hpi u,HqJ
=1 " = D = |

3-3-3-2=3-2 and 3-3-(3-3+3-b)=3-(a+b),va,beN.

1

REMARK 8. In the case when (%,Y)=1 we obtain more simply the same result
Because (x,y)=1= (g(x),2(¥))=1=> (2%(x),2%(y)) = 1 50 we have:

£(2(x)-8)) = 8EE(X) &) = 2(8(e()) -&(y))) =g(g*(x)-g%(y)) =
=2(8° () 2@ () = £(0)-8(¥) =g(x)-8(y) = g(x-).

REMARK 9. If (,Y) =1, then g(xy2) = g*(2(xy)-8(2)) =8*(e(X)e(y)2(2)) and this
property can be extended for a finite number of factors, therefore if

n n
(X1 X2) = (X3,X3) == (X 5,y 1) =1, then g Ix)= gz(Hg(xi))-
1=1

1=1
PROPERTY 9. The function g has not fixed points x = 1.

Proof- We must prove that the equation g(x) = x has not solutions x>1.
Let x= p:" -p;fz -----p:”,aij >Lj=1r be the prime factorization of x. Then

I 3-a —_— J—
g(x)= l'Ipi % implies that ¢y =3-; ,Vjelr which is not possible.
J=1 1 1 1 .
REMARK 10. The function § has fixed points only in the case m= 2k, k cN". These
points are x = pz.k . pik pik , Where Pi,Jj= 1L,r are prime numbers.
1 2 14
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PROPERTY 10. If ( ad ,y)zl and ( >4 ,x)=1 then we have
(x,3) (x,y)

g((x,y)) = (g(x),8(Y)), where we denote by (x,y) the greatest common divisor of x and v.

Proof. Because ( x ,y)=1 and ( 24 ,x)=1, we have ( al ,(x,y))=1 and
(x,») (x,») (x,»)

ﬁ,(x, y)) 1, then x and y have the following prime factorization; x = Hp Hda"
»y h=1 t=1

s j— —
and y= qu:k Hdah H plh ® dlt.qjk ® dll’ plh = qjk: Vh=1,r,k=1,5,t=1,n. Then

n a, n 3-(1
(x,v)= Hdlx“ , therefore g((x,y))= Hd * | On the other hand

n

3—a .
(8(x),.g(y) = (HP % Hdl, I_[d1 ) I—Id1 and the assertion
t= k-1
follows.

REMARK 11. In the same conditions, §((x,¥)) = (&(x),&(y)), Vx,y eN".

(x,»)
gdx,yD =[g(x),g(y)], where (x,3) has the above significance and [X,y] is the least
common multiple of x and y.

PROPERTY 11. If ((—’),y)=1 and (-”-,::):1 then we have:
X,y

Proof. We have the prime factorization of x and v used in the proof of the above
property, therefore:

elx-y) = g(Hp,“ [T -TTa%)= le % n "-ﬁdf_a and
t=

k=1 t=1

(8(x).8()]= Ex HdL th o lﬂl‘ﬁ }

t=

I 3¢ S 38 N 3~
, in th x .Hdl, o, ,
h=1 k=1 t=1
so we have g([x,y]) = [g(x), 8()].

REMARK 12. In the same conditions, gdx,yD =[8(x),&(¥)] VX,y eN".

(x,»

CONSEQUENCE 4. If ( )—1 and (L,x)ﬂ. then g(x)-g(y)=

(x,)’
=g((X,y))-g((x,y] for every x,y eN".



Progf. Because [x,y]= d using the last two

Xy g(x )g(y)

ha ,g(y)]= =228

Gy v e Eml= oy
properties we have:

g(x)-g(y) = (g(x),g(y))-[g(x),g(¥)]= g((x,¥))-g([x, YD-

REMARK 13. In the same conditions. we also have g(x)-8(y)=8((x,y))-8(x.¥D
for every x,y eN'.

PROPERTY 13. The sumatory numerical function of the function g is

k ar +3-a
F(n)= H ’(1+p P )+h (@) |

where n= pz’x Py, &, p::’k is the prime factorization of n, and hy N> N is the
1 for =3k
numerical function defined by hy(a)={-p for a=3k+1, where p is a given number.
0 for a=3k+2

Proof. Because the sumatory function of g is defined as F(n)= > g(d) and because

d/n
let") 1 and g is a multiplicative function, we have:
t=2
Fn)=| >g(d)) | > g(d;) | and so on, making a finite number of steps we

d/pg 4 /p..px
. k a.
obtain: F(n) = HF(pi) )
jml

But it is easy to prove that:

—g(1+p+p2)+1 for a=3k:
F(p%) = 9—;—2(1+p+p2)—p for @=3k+1;
-‘13L1(1+p+p2) for =3k, k eN, for every prime p
Using the function h;, we can write F(p“):i;—a(l+p+p2)+ hy(a), therefore we
have the demanded expresion of F(n).

REMARK 14. The expresion of F(n), where F is the sumatory function o g, is
similary, but it is necessary to replace



ail"'3‘; ail-f-m—a_
- by

3 m

L (where El—) is now the remainder of the division of @ by

m=1
m and the sum 1+ p; + pi by T pf ) and to define an adapted function h,,.
' k=0

In the sequel we study some equations which involve the function g.

1. Find the solutions of the equations X-g(X) = a, where X,a eN".
If a is not a perfect cube, then the above equation has not solutions.

If ais a perfect cube, a=b>beN", where b=p{fx-p§z-----p§* is the prime
factorization of b, then, taking into account of the definition of the function g, we have the
solutions X=b3/di,iz.ik where d;; ; can be every product pﬁlpﬁzn.pﬁk where B, B, ... B
take an arbitrary value which belongs of the set {0,1,2}.

In the case when B=p=--=F =0 we find the special solution x=b°, when
B =84 == =1, the solution piﬂl‘lpiﬂz‘l...pka—] and when B =8 =-=f; =2, the

. -2 38 -2
solutmnpiﬂx piﬂ’ 2---piﬂ" .

We find in this way 1+ 2C} +22C}+---+2°C{ = 3° different solutions, where k is the
number of the prime divisors of b.

2. Prove that the following equations have not natural solutions:

xg(X)+yg(y)+ zg(z) = 4 or xg(X) +yg(y) + zg(z) = 5. Give a generalization.

Because xg(x)= a3,yg(y) = b3,zg(z) =¢®>  and the cquations a+b2+c>=4 or
a3+ b + ¢ = 5 have not natural solutions, then the assertion holds.

We can also say thet the equations (xg(x))*+(yR(Y)"+(zm(2)"=4 or
(xgO)™ + (yg(y))* +(zg(2))?=5 have not natural solutions, because the equations
a® b ™ =4 or a™+b>+c¥ =5 have not.

3. Find all solutions of the equation xg(x)-vyg(y)=999.
Because xg(x)=a’ and yg(y)= b> we must give the solutions of the equation
2> — b> = 999, which are (a=10, b=1) and (a=12,b=9).

In the first case: a=10, b=1 we have xa(x)=10>=23.5°
:xoe{1o3,22.53,23.52,2 53285 25225 2 .22 -5}
and vb(y)=1 = y, =1 so we have 9 different solutions (x,,y,)-
In the second case: a=12, b=9 Qc have xa(x) =123=2¢.3
o xp €]25.3,25.33,25.32,2 . 3,26.3 257,20 7,253 243 |
and yb(y)=9°=3 =y, 6{39,38,37} so we have another 9-3=27 different solutions
(X0:¥0)-

4. It is easy to observe that the equation g(x)=1 has an infinite number of solutions: all
perfect cube numbers.
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5. Find the solutions of the of the equation g(x)+ g(y) + g(2) = g(X)g(y)8(2).
The same problem when the function is g.
It is easy to prove that the solutions are, in the first case, the permutations of the sets

{u3,4v3,9t3}, where u,v,t N, and in the second case {um,2m'lvm,3m'ltm}, uv,teN .

Using the same ideea of [1], it is easy to find the solutions of the following equations
which involve the function g:

a) g(x)=kg(y), k eN k>1

b) Ag(x)+Bg(y)+Cg(z)=0, A,B,C YA

¢) Ag(x)+Bg(y)=C, A,B,CeZ", and to find also the solutions of the above equations
when we replace the function g by §.
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Some Considerations Concerning the Sumatory Function

Associated to Smarandache Function

by

M. Andrei,C. Dumitrescu,E. Ridescu, N. Ridescu

The Smarandache Function [4] ia a numerical function S:N* — N’ defined by

S(n) = min{mim!divisible by n} .
From the definition it results that if

- n n L/
n=p'p;..-p/
is the decomposition of » into primes, then

S(n) = max{S(p; Ji=12,....t}

It is said that for every function f it can be attashed the sumatory function

F(n)=Y f(d)

din

If £ is the Smarandache function and n = p°, then
E(p)=25(r")=2.5,0))
J=0 J=0
In [2] it is proved that
S(p’)=(p-1)j +oy,(J)

where

Jj= Zk{a,(p)
il

and

owl)=3k

is the sum of the digits of the integer j, written in the generalised scale

[p] :al(p)’az(P)r---,al,(p),...

with
p -1
a,(p)= 1 na=12....
For example
p=p-a(p);
p’=(p-1)-a,(p)+1-a/(p);
p'=(p-1-a(p)+1;
and

o, (P7)=P;

S(p*)=p'; S(p”)=(p-Dp+p .

In [3] it is proved that

l a
F(p)=(p-D) a(a; = Z. o)

)]

@

€))

4

&)

(6)

Q)

®



In the following we give an algorithm to calculate the sumatory function, associated to the
Smarandache function:

1. Calculating the generalised scale [p] :a,(p),a,(p),.....a,(p),...
2. Calculating the expresion of a in the scale [ p]. Let a,; = kk, ..k .
3. For i=12,..,s

31LIf k=0
then
3.1.1L v,=a-a,(p)+1
3.1.2. z, =(ksks—l"'k""'l )usa(p)
3.1.3. h,- =V, -2

else

3.14. b=k, ...k, —1p00...0
315 v,=b-a,(p)+1

3.16. z, =(k,k,_.---k.-),_‘,(,,)
3.1.7. h=v, ~z
32,4, = —h——}
_anl(p)_ai(p)
33.1,= b - 4(a,,(p)-a,(p))
34. B =| L% J
| a,(p)

3.5.9,=r,—-B*a(p)

36. S = A,a,.(p)ﬂpz——l)+ A,p+ai(p)3'(%ﬂ+ql(8, +1)

: D < N
4. Calculating F,(p"):(p-l)“("z+ 11 3s,, [Zc[,,](j)=ZS,~(a)) :

i=l J=l i21
A Pascal program has been designed to the calculus of F,(p°) :

uses dos,crt;
type tablou=array(1..100] of real;
var a,k,amare,bmare,niu,z,alfaa betaa ro.r,s:tablou;
alfa p,ik,amax,beta,suma,fsuma,u:real;
1,dim,max,j:longint;
hour,min,sec,sec100:word;
{**#***tt*t#****t#**#*“*#**####*ttt#tt*#**t#*t#t**#*t}
{Calc. scale p right}
procedure bazapd(var b:tablou;var p:real;var a:real; var dim:longint);
var i:longint;
begin
for i:=1 to 100 do
bi]:=0;
b[1]:=1;
1:=0;



repeat
1:=1+1;
b[i]:=b[i-1]*p+1;
until b[i]>a;
dim:=i;
end;

{#**“#*#*#‘###*t##*#*‘#ttt*t‘*#t#““t‘tt####**##**#*}
{write alfa in the scale p right}
procedure nrbazapd(var a:tablou; var p:real;
var alfa:real; var k:tablou; var max:longint);
var m,i:longint;
d,r,prod:real;
begin
for i:=1 to 100 do
k[i]}:=0;
d:=alfa;
max:=trunc(In((p-1)*d+1)/In(p));
repeat
m:=trunc(In((p-1)*d+1)/In(p));
k[m]:=trunc(d/a[m]);
r:=d-a[m]*k[m}];
d:==r;
until r<p;
if >0 then
k[1}:=r;
end;
{**t*##*#*##t#****##*l#‘#**#**#*#*#*###t**t#}

{calc. z for given i }

procedure calcz(var k:tablou;var a:tablou;
var i:longint;var u:real; var z:tablou; var p:real);
var j,il,ind:longint;
prod:real;
begin
z[i]=0;
ind:=1;
for j:=i+1 to max do
begin
if k[j]J<0 then
begin
prod:=1;
if ind>1 then
begin
foril:=1 to ind-1 do
prod:=prod*p; {****}
prod:=prod*u-+afind-1];
end
else
prod:=u;
z[i]:=z{i]+k[j]*prod;



end;

ind:=ind+1;

end;
end;
{###*#**‘*t****##*#*##*#*#*t*******###*###*#*#******}
begin
clrscr;
write(' give p=);
readln(p);
write(' give alfa=");
readin(alfa);

gettime(hour,min,sec,sec100);
writeln(’ Timp Start:'hour,":',min,".',sec,":',sec100);
bazapd(a,p,alfa,dim);
nrbazapd(a,p,alfa.k,max);
for i:=1 to max do
begin
if k[i]<>0 then
begin
niufi}:=alfa-afi}+1;
u:=afi];
calcz(k,a,i,u,z,p);
alfaa[i]:=niufi}-z[i];
end
else
begin
for j:==1 to max do
betaalj]:=k(j};
betaa[i}:=p;
betaa[i+1]:=betaa[i+1]-1;
forj:==1toi-1 do
betaa[j]:=0;
{ Write beta in the scale 10}
beta:=0;
for j:=1 to max do
beta:=beta+betaa[j]*a[j];
niufi]:=beta-afi]+1;
u:=a[i];
calcz(betaa,a.i,u,z,p);
alfaa[i]:=niufi]-z{i];
end; A
amare[i}:=int(alfaafi)/(afi+1]}-a[i]));
r[i]:=alfaafi]-amarefi]*(a[i+1]-a[i]);
bmare[i]:=int(r{i}/a[i]);
ro[i}:=t[i]-bmarefi]*a[i];
s[i]-=amare[i]*a[i]*(p* (p-1)/2)+amare(i]*p;
s[i]:=s[i]+a[i]* (bmare[i]*(bmare[i}+1)/2);
s[i]:=s[i]+ro[i]*(bmarefi}+1);
end;
suma:=0;



for i:=1 to max do
suma:=suma+s{i};
fsuma:=(p-1)*((alfa*(alfa+1))/2)+suma;

writeln(' fsuma=',fsuma);
gettime(hour,min,sec,sec100);

writeln(' Timp Stop:',hour,"',min,"';sec,".',sec100);
end.

We applied the algoritm for p=3 and a = 300 we obtain
TIMES START: 10:34:1:56
TIMES STOP: 10:34:1:57
We applied the formulas [4] for p=3 and g = 300 we obtain
TIMES START : 10:33:31:2
TIMES STOP: 10:33:31:95
A consequence of this work is that the proposed algoritm is faster then formula [4] .
From the Legendre formula it results that [1]

-1
S,()=p{j-i,()) with 0< i,(j)s[’T],

and
F(p®)= ZP(J"(J)) PZOJ pZ ()
consequently
F(py= 2D Zx ) ©)
In [1] it is showed that
o j‘c[,](f)
i, (j)=—2—.
p
In particular,
L,(P)=0; i (p")=p" -
and
2i,0)= [Z] Zkf]
If p2a,then
j=j'al(p)’ U[p](j)=j, (j=1’29'"9a)’ S(pa)=pa
and
l g
So="5" Rih=0
oy Pa(a+l)
F.(p )-—2 (10)
For example
F(11°)=s(1)+S11)+S11*)+S(11°)=66 or
E(ll’):%:“ .
In particular,
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2(p+1
F,(p’)=%
If p<a,then a=pQ0+R with 0SR<p,and

Suo-E{;] ["zf”J}=

> (=222=0 1 ok - Z{ }f”]

J=0 =P

(11)

consequently,
R a(a+1) p? -1 a | o 1(p)
F(pny=22etD) POl )-pQ(R+1)+pZ[—M— (12
J=0 p
In particular, for p=a then 0=1,R=0 and
2(p+1
F(pr)= 222 (13
For example,
F(3)=18; F,(5)=75
o 2027+ 41 27 +1
F(n")= ( )2.5. ),forn= * ,with 3<p<31and p prime.

If n=p°q® with p<gand p° <q, then
q")= 2S(d) ZZS(pq) (a+1)ZS(q> (a+DF,(q")

dip°q® =0 y=0 J=0
Then:
L If g2b,
bla+1)(b+1
F(ptgt)= XD (14)
. If g<b,
. a+l)gb(b+1) (a+1)g*0(0-1 — —
F(prg)= 20D E N PO°D o iig®eny+
s [0 1(J) (15)
q(a+1)Z|: lo :l
I=q
where b=q—Q-+72,withOS§Sq.
If n=p“°q, then

F(p°q)= ZS(p )+ZS(qp ).

=0

For p> g, then p' >q and S(gp’ )—S(p ) with i>1 consequently,
F(p°q)=2F,(p*)+S(9)-1 (16)
For p < g, there exists x <a with p*™ <g < p* and
S(gp')={S(g), i=0L...x-1

S(p'), i=x,....a
consequently,

x-1

F(p°q)= ZS(p )+xS(q)+22S(p )



or

(9= E(r )+ xS@)+@+xia-x+D(p-1+250,,() (A7)

J=x
For example, if p2a, then
F(p°q)=F,(p*")+xS(q)+ p(x +a)a-x+1)
If n=p°q* with p> g, then
F(p°q*)=2 .S(p")+2.S(gp')+2.S(g°p').
=0 =0 =0
But S(q¢*p')=S(p') for i>k, because max(S(p’),S(q" )) =S(p') for i k consequently,
F(p°q*)=F,(p°q)+F(p°)+S(qg*)+S(¢’p)-p-1=
=3F,(p")+S(q)+S(¢*)+S(q’ p)- p-2
In short
F(p°q)=2F(p°)+S(g)~1
F(p°q*)=F,(p°q)+F,(p°)+S(¢*)+S(¢’p)- p-1
F(p°q’)=F,(p°q*)+F.(p*)+S(¢’)+5(q’°p)+S(g’°p*)-p-2p-1
F(p’d")=F.(p°q"")+F(p°)+S(¢")+S(q" p)+S(¢" p*)+

+.48(¢" p*)-p-2p-..~(k-Dp-1 .
Hence

k k k
F(p'q")=(k+1)F,(p")+ . 5(g')+ 2, S(g'p)+ . S(g'p*)+
=} i =3
L k(k? -1) (%)
+.4) S(@'p*)+S(g*p)-k- 22

k1 6
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SOME ELEMENTARY ALGEBRAIC CONSIDERATIONS INSPIRED
BY SMARANDACHE’S FUNCTION (II)

E. RADESCU, N. RADESCU AND C. DUMITRESCU

In this paper we continue the algebraic consideration begun in [2]. As it was sun,
two of the proprieties of Smarandache’s function are hold:

(1) S is a surjective function;

(2) S([m,n]) = max {S(m),S(n)}, where [m,n] is the smallest common multiple
of m and n.

That is on R there are considered both of the divisibility order "<, having the
known properties and the total order with the usual order < with all its properties.
R has also the algebric usual operations ”+” and ”-”. For instance:

a<b<= (I)u€Nsothat b=a+u.

Here we can stand out:

: the universal algebra (R*,(), the set of operations is @ = {V4,p0} where
Vg : (R*)> — R* is given by m Vg n = [m,n], and ¢ : (R*)° — R* the
null operation that fixes 1-unique particular element with the role of neutral
element for ”V,"-that means @o ({#}) =1 and 1 =ey,;

: the universal algebra (R*,{'), the set of operations is Q' = {V,%} where
V : N2 - R is given by z V y = sup {z,y} and % : R® — R a null operation
with 1o ({0}) = 0 the unique particular element with the role of neutral
element for V, so 0 = ey.

We observe that the universal algebras (X*,(2) and (R, ') are of the same type:

(re)-(: )

and with the similarity (bijective) V4 <= V and yo <= %o, Smarandache’s function
S : X" — R is a morphism surjective between them

S(zVay) = S(z)V S(y),Vz,y € X" from (2) and
S(po ({0})) = o({8}) <= S(1)=0.
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E. RADESCU, N. RADESCU AND C. DUMITRESCU

Problem 3. If S: X" — R is Smarandache’s function defined as we know by
S(n) = m <= m = min {k : n divides k!}

and I is a some set, then there exists an unique s : (R*)! — R/ a surjective morphisme
between the universal algebras ((R‘)I, Q) and (N’, Q’) so that p,os =Gop;, fori € I,
where p; : XY — X defined by a = {a;},; € R/, p; (a) = aj, for each j € I,

p; are the canonical projections, morphismes between (RI ,Q’) and (R, £')-universal
algebras of the same kind and p; : (X*)7 — R* analogously between ((N‘)I ,Q) and
(R=, ). We shall go over the following three steps in order to justify the assumption:

Theorem 0.1. Let by (R,Q) is an universal algebra more compleze with

= {vd’ Adv ¥o, ¢0}

of the kind 7 : Q — R given by

(Vi A w0 By
2 2 0 0

where V4 and o are defined as above and Ay : N2 = R, for each z,y e R,z \gy =
(z,y) where (z,y) is the biggest common divisor of z and y and B, : R — R s
the null operation that fizes 0-an unique particular element having the role of the

neutral element for "Ay” i.e. G, ({0}) =0 so 0 = e, and I a set. Then (N’,ﬁ) with
0= {w1,w2,wo,@o} becomes an universal algebra of the same kind as (R,§) and the
canonical projections become surjective morphismes between (NI ,ﬁ) and (R,9), an

universal algebra that satisfies the following property of universality:
(U) : for every (A, ﬁ) with @ = {T, L,00,50} an universal algebra of the same kind

= T L Op 50
V2 2 0 0
and u; : A = R, for each 1 € I, morphismes between (A, ﬁ) and (R,Q), ezists an

unique u : A — NI morphism between the universal algebras (A, ﬁ) and (RI ,ﬁ)

so that p; o u = uj, for each j € I, where p; : "I — R with each a = {ai}ier €
R! p.(a) = a;, for each j € I are the canonical projections morphismes between

(R7,Q) and (},9).

7



SMARANDACHE’S FUNCTION

Proof. Indeed (RI , ﬁ) with Q = {wy, w2, w0, T0} becomes an universal algebra because
we can well define:

wy : (RN?2 = R7 by each a = {ai};¢;, b= {bi};e; € Rjwi (a,8) = {ai Va bi}ies € R
and

wy ¢ (R1)* = R by wy (a,8) = {ai Aa bi}ig N
and also

wo : (RN = R with wo ({0}) = {ei =1}, € R

an unique particular element (the family with all the components equal with 1) fixed
by wo and having the role of neutral for the operation w; noted with e,, and then
Do : (R1)® — N with T ({8}) = {&: = 0},, an unique particular element fixed by
To but hawing the role of neutral for the operation w. noted &,, (the verifies are
imediate).

The canonical projections p; : 8 — R, defined as above, become morphismes
between (N’ ,ﬁ) and (R, Q). Indeed the two universal algebras are of the same kind

W W2 Wo wo - Vd /\d Yo ¢0
2 2 0 0 2 2 0 O
and with the similairity (bijective) wy <> V4w, <> Ag;wo < po;Wo <= P

we observe first that for each a,b € R/, p; (w1 (a, b)) = pj(a) Va4 p;(b), for each j € I
because a = {ailie;,b = {bi}ies»pi(wn (a,8)) = p; ({ai Vabili;) = a; Va b; and
pi(a) Va pi(b) = p;i({ai}ies) Va pi ({bilir) = @5 Va b; and then pj(wo ({0})) =
po({0}) = p; ({e.- = l}iel) = 1 <= pj(e.,) = ev,; analogously we prove that
p;, for each j € I keeps the operations w, and @p, too. So, it was built the universal
algebra (R’ ,ﬁ) with Q = {w;,ws,wo,To} of the kind 7 described above.

We prove the property of universality (i) .

We observe for this purpose that the u; morphismes for each : € I, presumes
the coditions: for each z,y € S,u;(zTy) = ui(z) Va wi(y);ui(zly) = ui(z) Ag
ui(y); ui(90 ({0})) = po({8}) <= ui(er) = ev, = 1 and u(To ({8})) = Po({0}) =
ui(€.) = ea, = 0 which show also the similarity (bijective) between (} and (2. We
also observe that (S,{1) and (N’ ,ﬁ) are of the same kind and there is a similarity
(bijective) between  and O given by T < wy; L <> wsy; 09 <> wo; 0o <> Wo.

We define the corespondance u : A — R! by u(z) = {ui(z)};¢; -

u is the function:

o for each z € A, (3)u;(z) € R for each i € I (u;-functions) so (3) {ui(z)}e;
that can be imagines for z;
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e ; = z3 = u(z;) = u(z2) because z; = z; and u;-functions lead to u;(z;) =
u;(zz) for each i € I = {ui(z1)};¢; = {ui(22)},c; = u(z1) = u(z2)

u is a morphisme: foreachz,y € A,u(zTy) = {u; (2 Ty)},¢; = {ui(z) Va wi(y) hier =
wr (@ hier + {8Wher) = wi(u(e),u(y)). Then (oo ({0})) = wo({0))

u(et) = e, because for each {a;},; € N’,wl({a;}iel Aui(er)hier) = {ai Vaui(et)}ier =
{a‘- V4 l}iel = {ai}iel'

Analogously we prove that u keeps the operations: . and .

Besides the condition p; o u = uj, for each j € I is verified (by the definition: for
each z € 5, (p; 0 u)(z) = p(u(a)) = ps({u(c) ies) = us(x)).

For the singleness of u we consider u and %, two morphismes so that p; o u = u;
(1) and p; o @ = u; (2), for every j € I. Then for every z € A, if u(z) = {ui(z)},,
and T (z) = {z},,; we can see that y; = u;(z) = (p; 0 ¥)(z) = p;({z:}ier) = ;, for
every j € I ie u(z)=1tu(z),foreveryz€e A<= u=m1.

Consequence . Particularly, taking 4 = R! and u; = p; we obtain: the morphisme
u : T — R verifies the condition p; o u = p;, for every j € I, if and only if, u = 1.

The property of universality establishes the universal algebra (NI , ﬁ) until an iso-
morphisme as it results from:

Theorem 0.2. If (P,Q) is an universal algebra of the same kind as (R, Q) and p/ :
P — R, i1 € I a family of morphismes between (P,Q1) and (R,Q) so that for every
universal algebra (A, ﬁ) and every morphisme u; : A — R, for every i € I between
(A, ﬁ) and (R,§) it ezists an unique morphisme u : A — P with p ou = u;, for
every ¢ € I, then it ezists an unique isomorphisme f : P — X! with p; o f = pl, for
every 1 € 1.

Proof. From the property of universality of (RI , ﬁ) it results an unique f : P — R/
so that for every i € I,p; 0o f = p} with f morphisme between (P, 1) and (N’,Q) .

Applying now the same property of universality to (P,{2) =exists an unique f :
R/ — P so that p} o f = p;, for every i € I with f morphisme between (Rl,ﬁ) and
(P, Q). Then p; o f=p; <= p;o (f 07) = pj, using the last consequence, we get
f of = lu. Analogously, we prove that f o f = 1p from where f = f~! and the
morphisme f becomes isomorphisme.

We could emphasize other properties (a family of finite support or the case I —filter)
but we remain at these which are strictly necessary to prove the proposed assertion
(Problem 3).

b) Firstly it was built (R’ ,ﬁ) being an universal algebra more complexe (with
four operations). We try now a similar construction starting from (R, 2*) with Q* =
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(V,A,t0) with ?V” and "40” defined as above and A : R? — R with z Ay = inf {z,y}
for every z,y e X. N

Theorem 0.3. Let by (R, Q") the above universal algebra and I a set. Then:
() (R’,B) with § = {6,,0,,60} becomes an universal algebra of the same kind T as

R, Q2*)sor:0 >R s
_[ 6 6 6\
T‘(2 2 0 )

(22) For every j € I the canonical projection p; : ! — R defined by every a =
{ai}ic; € N.pj(a) = a; is a surjective morphisme between (N’,O) and (R,Q*)
and kerp; = {a eXl:a={a},, anda;= 0} where by definition we have kerp; =
fa e pyia) = )

(i12) For every j € I the canonical injection ¢; : R — RI for every z € R,qi(z) =
{ai}izl where a; = 0 if i # j and a; = z is an injective morphisme between (R, 2%)

and (X,6) and g;(X) = {{a;};;;: @i = 0,Vie I - {i1};
(iv) If j,k € I then:
o — O-the null morphisme  for j # k,

Pi® 9k =1 1y-the identical morphisme for j = k.
Proof. (i) We well define the operations 6, : (Rl)z — R by Va = {ai};c; € Rf and
b = {b{}‘-el e Rl,al (a, b) = {a;V b{}‘-el;02 : (Nl)2 —_ RI by 02 (a, b) = {a"/\ bi}..el
and 6y : (RI)O — R by 6, ({0}) = {e; = 0},c; an unique particular element fixed by
0o, but with the role of neutral element for 8, and noted es, (the verifications are
immediate).

(#2) The canonical projections are proved to be morphismes (see the step a)), they
keep all the operations and

kerp; = {a = {ai};es € R: pi(a) = ev} = {a eRl:g; = 0}.

(122) For every z,y € R,q;(z Vy) = {ci};e; Where ¢; = 0 for every i # j and
¢ =z Vyand

0 a; =0, Vi#j bi=0, Vi#j _Jja=0 Vi g
! a; =z 1 b=y c;=zVy

Le. gj(zVy) = 61(q;(z),q;(y)) with j € I, therefore ¢; keeps the operation ”V”
for every j € I. Then ;(# ({8}) = 60 ({0}) <= q; (ev) = {e: = 0},; <= g, (0) =

{e: = 0},; = es, because Va = {a;},; € R, 0, (¢; (0) ,a) = 6, ({e; =0}icr» {a;},-e,) =
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{e: V a;};c; = {ai};e; = a enough for ¢;(0) = e4, because 8§, is obviously comutative
-this observation refers to all the similar situations met before. Analogously we also
prove that 8; is kept by ¢; and this one for every j € I.

(iv) For every z € R, (p;joqi)(z) = p; (g (z)) = p; ({ a;=0 ,Vi#k }) =

ar==1

. i=0 ,Vi#j
0 = pjoqx = Oforj # kand (p; 0 g;) (z) = p; (g5 (z)) = p; ({ Z,-=:r: a }) =
r=p;ogx=1lyforj=%k M

The universal algebra (N’ , 0) satisfies the following property of universality:

Theorem 0.4. For every (A, 5) with 8 = {T,L,60} an universal algebra of the

some kind 7 : 6 — R
_ [T L 6
T™=l2 20
as (N’,O) and u; : A — R for every i € I morphismes between (A, 5) and (R,*),

ezists an unique u : A — R! morphisme between the universal algebfas (A, 5) and

(RI,G) so that pjou = uj, for every j € I with p; : ’ — R,Va = {ai};; €
R?,p; (a) = a; the canonical projections morphismes between (R’ , 0) and (R, Q).

Proof. The proof repeats the other one from the Theorem 1, step a). B

The property of universality establishes the universal algebra (N’ , 0) until an iso-
morphisme, which we can state by:

If (P,§)") it is an universal algebra of the same kind as (X,0*) and p! : P — X
for every ¢ € I a family of morphismes between (P, Q) and (R, 2*) so that for every
universal algebra (A, 0) and every morphismes u; : A — R,V: € I between (A, 0)
and (R,*) exists an unique morphisme u : A — P with plou = u;, for every i € I
then it exists an unique isomorphisme f: P — R with p; o f = pf, for every i € I.

c) This third step contains the proof of the stated proposition (Problem 3).

As (®*,Q) with @ = (Vg,lo} is an universal algebra, in accordance with step a) it
exists an universal algebra ((N')I , Q) with Q = {w;,wp} defined by:

w (R > () by every a = {ai};¢; and b= {b},; € (X°),
wq (a, b) = {ai‘/:ibi};el
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and

wo : (R)1)° = (R)" by wo ({8}) = {ei = 1}ies = ewns
the canonical projections being certainly morphismes between ((R‘)I , Q) and (R*, Q).
As (R,Q') with @' = {V,¥,} is an universal algebra, in accordance with step b)

it exists an universal algebra (R7, Q') with Q' = {6,060} defined by:
8, : ()2 = RT by every a = {a;};;, b = {bi};c; € X, 01 (a,b) = {a:Vabi},¢;
and
6o : (R1)° = R by 6o ({0}) = {e&: = 0};; = eq,

The universal algebras ((R‘)I , Q) and (RI , Q') are of the same kind

We use the property of universality for universal algebra (N’ , Q’): an universal al-
gebra (A,1) can be ((R‘)I ,Q) because they are the same kind; the morphismes
u; : A — R from the assumption will be .;; : (R')I — R* by every a = {a,—}iel €
(rR-)! ,s.j (a) = S-j ({a.-},-el) = s(a;) <= .s._,- =s 0p._,' for every j € I where s: R* — R
is Smarandache’s function and p-j : (8*)! — R* the canonical projections, morphismes
between ((R')I ,Q) and (R*,2). As s is a morphisme berween (R*, 1) and (N, Q'), s-,-
are morphismes (as a composition of morphismes) for every j € I. The assumptions
of the property of universality being provided = exists an unique s : (N‘)I — Rf
morphism between ((R‘)I , Q) and (N’,Q) so that pjos = s.j & p;os = Sop.j, for
every j € I. We finish the proof noticing that s is also surjection: p; o S surjection
(as a composition of surjections) = s surjection.

Remark: The proof of the step 3 can be done directly. As the universal algebras
from the statement are built, we can define a correspondence s : (R*)! — (8*)! by
every a = {a;},; € (R, s(a) = {S (a:)};¢;» Which is a function, then morphisme
between the universal algebra of the same kind ((N‘)I ,Q) and (N’ ,Q’) and is also
surjective, the required conditions being satisfied evidently.

The stated Problem finds a prolongation s of the Smarandache function S to more

comlexe sets (for I = {1} = s = S). The properties of the function s for the
limitation to ®* could bring new properties for the Smarandache function.
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A LINEAR COMBINATION WITH
SMARANDACHE FUNCTION
TO OBTAIN THE IDENTITY

M. Andrei, I. Bdldcenoiu, C.Dumitrescu, E. Rddescu, N. Rddescu, V.Seleacu

In this paper we consider a numerical function ip:N' — N (p is an arbitrary
prime number) associated with a particular Smarandache Function SP:N. - N
such that (1/ p)S, (a)+i, (a)=a.

1. INTRODUCTION. In [7] is defined a numerical function S:N* — N, S(n)is the
smallest integer such that S(n)! is divisible by »n. This function may be extended to all
integers by defining S(-n) = S(n).

If a and b are relatively prime then S(a-b)= max{S(a),S(b)}, and if [a,b] is the last
common multiple of a and b then S([a - b]) = max{S(a), S(b)}.

Suppose that n = p;*p3*....p;" is the factorization of n into primes. In this case,
S(n) = max{S(pfi = 1,...,r} (1)
Let a (p)= (p“ —1)/ (p—1) and [p] be the generalized numerical scale generated by

(a.(p)) _, :

" [pl:a,(p).2,(p),-. 3, (p). -
By (p) we shall note the standard scale induced by the net b_(p)=p" :

(p):Lp.p% 0" p”
In [2] itis proved that
S(p*) = p(a[,,])[p] @
That is the value of S(p*) is obtained multiplying by p the number obtained writing the
exponent a in the generalized scale [p] and “reading” it in the standard scale (p).
Let us observe that the calculus in the generalized scale [p] is different from the calculus in
the standard scale (p), because

a,,(p)=pa,(p)+1 and b_,(p)=pb,(p) 3)
We have also

a,(p)sae(p™-l)/(p-N<aep™<(p-1)a+le mslogp((p—l)-a+1)
so if
ap; =v,a,(p)+ v a,(pH..+va(p)=v,v,, Ve
1s the expression of a in the scale [p] then t is the integer part of log, ((p ~1)-a+ 1)
t= [logp ((p -1)-a+ 1)]
and the digit v, is obtained from a=v,a,(p)+r1,_
In {1] it is proved that

! This paper has been presented at 26" Annual Iranian Math. Conference 28-31 March 1995 and is published in
the Proceedings of Conference (437-439).

78



S(p*)=(p—1)-a+0y,(a) 4
where 0},,(a)=v, +Vv,+.4V,.

A Legendre formula asert that
al= Hpiﬁ,i (a)
pisa
P; pnm
where E (a)= 2[—%} .
2P
We have also that ([5])
(a = Opp) (a))
E,(a)= T 6]

and ([1]) E,,(a)=u§] J .
®/(p

In [1] 1s given also the following relation between the function E, and the Smarandache
function

g - -1
S(p*) = > (Ep(a)+a)+pp Op(2)+ 0y, (2)
There exist a great number of problems concerning the Smarandache function. We present

some of these problem.
P. Gronmas find ([3]) the solution of the diophantine equation F;(n)=n, where

F;(n)= ES(d). The solution are n=9, n=16 or n=24, or n=2p, where p is a prime number.
din

T. Yau ([8]) find the triplets which verifies the Fibonacci relationship
S(n)=S(n+1)+S(n+2).

Checking the first 1200 numbers, he find just two triplets which verifies this relationship:

(9,10,11) and (119,120,121). He can’t find theoretical proof.

The following conjecture that: “the equation S(x)=S(x+1), has no solution”, was not

completely solved until now.

2. The Function i,(a). In this section we shall note S(p*)=S(a). From the
Legendre formula it results ([4]) that

S, (a)=p(a—i, () with osi,(a)s[a—;l] . (6)
That 1s we have
isp(a)+ip (a)=a @)

and so for each function S, there exXists a function i, such that we have the linear combination
(7) to obtain the identity.

In the following we keep out some formulae for the calculus of i, . We shall obtain a duality
relation between i,and E, .

Let ag,) =u,u,....uyu, =u,p" +u,,p '+ uptu,.
Then



pk__l pk—l_ll p_l
a=(p—l u, 1 +u, o1 T....+u1p_1 +(uk+uk_,+...+u,)+uo=

(p - l)u:_a'] ] +0,,(a)=(p- DE,, +G(p)(a) (8)
®)/p

From (4) it results
ae S, (a)-0,,(2)

— ©
From (8) and (9) we deduce
S (a)-0,,.(a)
(p—l)Ep (a)+0,(a) =—p—p-:1m—.
So,
S,(a)=(p—1D’E,(a)+(p— 1o, (a)+0,(a) (10)
From (4) and (7) it results
a-o.,(a
i,,(a)-——:il (1)
and it is easy to observe a complementary with the equality (5).
Combining (5) and (11) it results
-DE_(a)+0,,(a)-0,
P
From
a=0,0,, Uy, =0, (p7 +P AP+ 1)+ 0, (P +P T AP+ 1)+
+....+0,(p+ D+,
it results that

a=(0,p" + 0P T4 AU+ )+ 0, (P P T AN+ (P D T A D

vy (p+1)+0, = (a[l’l)(p) +[ﬁ]_[alp](a):|

P p
because

) v
[3] = [vt(p"2 +p T+ 4p+ D+ ;‘-+ v (p 7 +p T+ 4p+ )+—L4 +
P P

v v D,
+v,(p+ 1)+;3+uz+—pi+-p—‘ |=0,(p +p +. 4p+ 1)+

g.(a
+”z_,(p"’+p"‘+"'+P+l)"'"'+”3(9+1)+02+[ (p;( )]

we have [n+x]=n+[x] .
Then

_ a Gi(2)
a-(alP])(p)+[p:|_[ p ] (13)

S,(a) [a] [G[p](a):‘
a=—t—4|=|-| —2—
P p p

or

It resuits that



ol {22

From (11) and (14) we obtain
. a G[p](a):l
==L 15
= 2]-| 2 1

It is know that there exists m,n € N such that the relation
m-n m n
={— |- (16)
[ p ] [P] [P]

€ N then the relation (16) is satisfied.
From (11) and (15) it resuits

[a“atpl(a)]_[ﬁ}_l:"[pl(a)]
P P P |
This equality results also by the fact that i (a)e N.

From (2) and (11) or from (13) and (15) it results that
i,(a)= a-(ah,])(p) amn

1s not verifies.
m-n

Butif

From the condition on i, in (6) it results that A= [aT-l]—ip(a) 20.

To calculate the difference 4= [a_—-ljl -1i,(a) we observe that
p

A:[.a;l]_ip(a)=l:_a__1:|_[3]+[alpl(a)] (18)
P P P P

For ae[kp+1,kp+p—l] we have [3-—1:|=[:3] so

P P
A=[a—_l-]—ip(a)=[am(a):| (19)
P P
If a=kp then [3;1}[5"—”1}:[1;-1]:1(-1 and H:k.
P P P P
So, (18) becomes
A=[i;—l]-ip(a)=[f“’;ﬁ]-1 (20)

Analogously, if a=kp+p, we have

[a_l]=[p(k+1)-lp]=[k+l—l]=k and [3]=k+1
p p p

so, (18) has the form (20).
For any number a, for which Ais given by (19) or by (20), we deduce that A is maximum
when 0,,(a) is maximum, so when

2y =(P-D(-D..(p-Dp 21)

' terms tr]
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That is
ay =(p—ba,(p)+(p—Da(pH...Hp-Da,(p)+p=
-1 p”'-1  p*-l
=(p-1 + +... +p=
(p- )(p I

=(p'+p" +.4+p” +p)=(t-1)=pa,(p)- (t-1)
It results that a,, is not multiple of p if and only if t—1 is not a multiple of p.
In this case oy,,(a)=(t-1)(p—1)+p=pt—t+1 and

2 ]
P P p
So ip(aM)Z[aMp-I:'—t or ip(aM)e[[aMp—l}—t,l:aMp—lj”.If t-1e(kp,kp+p) then

[‘;} k and k(p-D+1<A(a,) <k(p=D+p+1 so lim A(a,)=.

We also observe that

a,, —1 t—1 o1 =1 1 RALAL
R = I e s
P P p-1 P p-1 p-1
Then if a,; = e (as p”*), it results that A(aM)—-)oo (as x).
1 (a -
From 3 M1)= a‘(p)ttz —911tmultshm[ (1]) =1.
a,, — 1= g —
2] w5 "
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EXAMPLES OF SMARANDACHE MAGIC SQUARES

by
M.R. Mudge

Forn 22, let A be a set of n’ elements, and 1 a n-ary law defined on A.

As a generalization of the XVI-th - XVII-th centuries magic squares, we
present the Smarandache magic square of order n, which is: 2 square array of rows of
elements of A arranged so that the law | applied to each horizontal and vertical row
and diagonal give the same resuit.

If A is an arithmetical progression and | the addition of n numbers, then many
magic squares have been found. Look at Durer's 1514 engraving "Melancholia” 's one:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

1. Can you find a such magic square of order at least 3 or 4, when A is a set of prime
numbers and | the addition?

2. Same question when A is a set of square numbers, or cube numbers, or special
numbers [for example: Fibonacci or Lucas numbers, triangular numbers,
Smarandache quotients (i.e. q(m) is the smallest k such that mk is a factorial), etc.].

A similar definition for the Smarandache magic cube of order n, where the

elements of A are arranged in the form of a cube of lenth n:

a. either each element inside of a unitary cube (that the initial cube is
divided in)

b. either each element on a surface of a unitary cube

c. ether each element on a vertex of a unitary cube.

3. Study similar questions for this case, which is much more complex.
An interesting law may be I(a, , a,,...,a,)=a, +a, -a, +a, -a, + ...

Now some examples of Smarandache Magic Squares: if A is a set of PRIME
NUMBERS and 1 is the operation of addition, for orders at least 3 or 4.
Some examples, with the constant in brackets, elements drawn from the first hundred
PRIME NUMBERS are :



83 89
29 71
101 53
(213)
97 907
367 167
997 647
107 157
587 277

557
67
337
967
227

101
431
311

397
877
137
617
127

491
281

197
677
37
307
937

251
131

71 461
(843)

461 311 113 149 257
521 281 41 317 173 29
251 101 491 89 197 233
(843) (519)
(2155)

Now recall the year A.D. 1987 and consider the following .. all elements are

primes congruent to seven modulo ten ...

967 1987 2017 1987 9907 11677 5237
2707 1657 607 | (4971) 4877 12037 9547 2347
1207 1327 2347 10627 2707 4517 10957
11317 4157 3067 10267
(28808)
7 2707 5237 937 947
4157 1297 227 1087 3067
1307 1447 1987 4517 577 (9835)
2347 3797 1657 1667 367
2017 587 727 1627 4877

What about the years 1993, 1997, & 1999 ?

In Personal Computer World, May 1991, page 288, I examine:
A multiplication magic square such as:

‘ 18 1 12
4 6
| 3 36 2

with constant 216 obtained by multiplication of the elements in any
row/column/principal diagonal.

84



A geometric magic square is obtained using elements which are a given base
raised to the powers of the corresponding elements of a magic square .. it is clearly a
multiplication magic square.

e.g. from
8 1
3 5 7 C=15
4 9 2

and base 2 obtain

256 2 64
8 32 128 where M= 2'* = 32768
16 512 4

Note that Henry Nelson of California has found an order three magic square consisting
of consecutive ten-digit prime numbers. But "How did he do that" 7??

A particular case:
TALISMAN MAGIC SQUARES are a relatively new concept, contain the integers
from 1 to n* in such a way that the difference between any integer and its neighbours
(either row-, column- or diagonal-wise) is greater than some given constant, D say.

e.g.

5 15 9 12
10 1 6 3
13 16 11 14 illustrates D=2.
2 8 4 7
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Base Solution
(The Smarandache Function)

Heary Ibstedt
Glimminge 2036
280 60 Broby
Sweden

Definition of the Smarandache function S(n)

S(n) = the smallest positive integer such that S(n)! is divisible by n.

Problem A: Ashbacher’s problem

For what triplets n, n-1, n-2 does the Smarandache function satisfy the Fibonacci reccurrence:
S(n)=S(n-1)+S(n-2). Solutions have been found for n=11, 121, 4902, 26245, 32112, 64010,
368140 and 415664. Is there a pattern that would lead to the proof that there is an infirute

family of solutions?

The next three triplets n, n-1, n-2 for which the Smarandache funtion S(n) satisfies the
relation S(n)=S(n-1)+S(n-2) occur for n=2091206, n=2519648 and n=4573053 . Apart from
the triplet obtained from n=2624S the triplets have in common that one member is 2 times
a prime and the other two members are primes.

This leads to a search for triplets restricted to integers which meet the followihg
requirements:

n = xp® with a<p+1 and S(x)<ap (1)
n-1 = yq® with b<q+1 and S(y)<bq ¥))
n-2 = zr° with e<r+1 and S$(z)<cr 3)

p.q and r are primes. With then have S(n)=ap, S(n-1)=bq and S(n-2) =cr. From this and by
subtracting (2) from (1) and (3) from (2) we get
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ap =bq + cr 4)
xp'-yq® = 1 )
yg* -z = 1 (6)

Each solution to (4) generates infinitely many solutions to (5) which can be written in the
form:

x =%+ qt y = Yo -pht )

where t is an integer and (x,Y,) is the principal solution, which can be otained using Euclid’s
algorithm.

Solutions to (5°) are substituted in (6’) in order to obtain integer solutions for z.

z = (yq’ - 1)/rf (6)

Implementation:

Solutions were generated for (a,b,c)=(2,1,1), (ab,c)=(1,2,1) and (ab,c)=(1,1,2) with the
parameter t restricted to the interval -9 < t< 10. The output is presented on page 5. Since
the correctness of these calculations are easily verfied from factorisations of S(n), S(n-1),
and S(n-2) some of these are given in an annex. This study strongly indicates that the set of
solutions is infinite.

Problem B: Radu’s problem

Show that, except for a finite set of numbers, there exists at least one prime number between
S(n) and S(n+1).

The immediate question is what would be this finite set? I order to examine this the
following more stringent problem (which replaces "between” with the requirement that S(n)
and S(n+ 1) must also be composite) will be considered.

Find the set of consecutive integers n and n+1 for which two consecutive primes p, and p, .,
exists so that p, < Min(S(n),S(n+1)) and p,,, > Max(S(n),S(n+1)).

Consider
n+l = xp’
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- s
0 = YPr1

where p, and p,,, are consecutive primes. Subtract

Xp,’ - YPrei = 1 (1)

The greatest common divisor (p,%,p,,,”) = 1 divides the right hand side of (1) which is the
condition for this diophantine equation to have infinitely many integer solutions. We are
interested in positive integer solutions (x,y) such that the following conditions are met.

L S(n+1) = sp, i.e S(x) < sp,

I S(n) = P4y, i€ S(Y) < 5Py

in addition we require that the interval

. sp; < q < sp,,,’ is prime free, i.e. q is not a prime.

Euclid’s algorithm has been used to obtain principal solutions (X,Y,) to (1). The general set
of solutions to (1) are then given by

x=x°+p,,l’t, y=YlJ'pr‘t

with t an integer.

Implementaton:

The above algorithms have been implemented for various values of the parameters d=p,,, -
P s and t. A very large set of solutions was obtained. There is no indication that the set
would be finite. A pair of primes may produce several solutions. Within the limits set by the
design of the program the largest prime difference for which a solution was found is d=42
and the largest exponent which produced solutions is 4. Some numerically large examples
illustrating the above facts are given on page 6.

Problem C: Stuparu’s problem

Consider numbers written in Smarandache Pnme Base 1,2,3,5,7,11,.... given the example that
101 in Smarandache base means 1-3+0-2+1-1=4,

As this leads to several ways to translate a base 10 number into a Base Smarandache
number it seems that further precisions are needed. Example



1115mannda:he = 1‘3+1'2+1' 1 = 610

10015, nagache = 1°5+0-340-2+1-1 = 6

Equipment and programs

Computer programs for this study were written in UBASIC ver. 8.77. Extensive use was
made of NXTPRM(x) and PRMDIV(n) which are very convenient although they also set
an upper limit for the search routines designed in the main program. Programs were run on
a dtk 486/33 computer. Further numerical outputs and program codes are available on
request.
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Smarandache - Ashbacher's problem.

O 00 ~NO WS WN -~

LS YUY R KB NN RO NER N IEIFIRARNDS

49
50
51
52
S3
54
55

1"

11

4902

32112

64010

368140

415664
2091206
2519648
4573053
77833464
79269727
136193976
321022289
445810543
559199345
670994143
836250239
893950202
1041478032
1148783154
1305978672
1834527185
2390706171
2502250627
3969415464
3970638169
6493607750
6964546435
11329931920
13429326313
13849557620
14988125477
17560225226
25184038673
69481145903
155205225351
196209376292
344645609138
401379101876
484400122614
§33671822944
561967733264
703403257356
859525157632
8984606860813
1185892343342
1188795217601
1294530625810
1517767218627
2677290337914
3043063820555
6344309623744
16738688950356
19448047080036

S(X)

1

173

313

1109

569
91
2861

7589
174
1129
6491
9859
2213
2647
2487
5653
3671
6661
2861
5801

3049
2161

4778

4241
5582
6301
8317
7246

32122
16811
21089
2172
13147
14158
19973
18251
29242
17614
11617

14951
22978
30538
34186

1514

643

1814

1597
%74

3118
1951

3257

653
12658
18118

7159
10874
3557
13402
12022
13049
5807
8318
3631
12202
7451

17027

S(N-2)

17
14

127
151
146

67
907

142
879
7411

953

L87
5653
9377

151
1361
1721
4139
3037
4019

13
1787
347

3181

1123
3631
579

3989
423
314669
4153
29N
14563
273
10601
6571

16193
11807

3299
29863

2749
15527
23561
17159

Ashbacher‘'s problem (ASHEDIT.UB), 951206, Menry lbstedt
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DB O BT T AGw > DIOWLET.

a=p(j), p=p(j*1), o=p-g, N=x"g’s or y*p’s, k solutions to x*q's - Y™p°s = +/-1 will examined.

Parameters for this run: d=2 , s =2, k=15 .,

x Y q P x*qQ’s y*p’'s

13039 12198 59 61 453838759 45388758
1876 175% 59 61 4530356 6530355
™75 754l 7 73 40201975 40201976

25 25 101 103 265226 265225

5913 5498 107 109 67697937 67697938
113967 110968 149 151 2530181367 2530181368
32 37 149 151 843633 843637
49043 48438 31 313 474562203 4745422422
636720 628509 31 313 61584195120 61584195121
60988 60291 357 349 7343504092 7343504091
182614 180527 347 349 21988369126 21988369127
1071729 1062490 461 463 27764918809 227754918810
116 115 461 463 24652436 24652435
214485 212636 73 463 45582566685 45582564684
1071961 1062720 461 463 2278162235681 227814223680
131 130 521 3 35558771 35558770
1914834 1900217 521 53 5197564455794 S19764455793
143 162 569 571 L629TB3 46297822
3385439 3370000 821 23 2282598729999 2282598730000
206 205 21 =3 138852446 138852445
2ro9s2 26963569 &1 = 1826328918402 1826328918401
215 214 as7 &s59 157906535 157906534
1475977 1669112 857 as59 1084029831673 1084029831672
3689620 3572459 as7 as9 2709837719380 2709837719379
221 220 881 883 171531581 171531580
2339288 2328703 881 883 1815664113368 1815664113367
5649579 5628340 1061 1063 6359849721459 6359849721460
266 265 1051 1063 29941786 299641735
5650111 S428870 1061 1063 6330448505031 6350448405030
597051 S94B848 1091 1093 710658461331 710658461332
664b16 662113 1151 1153 880218981216 880218981217
1993825 1986914 1151 1153 2641621353825 2641421353826
7311461 7285118 1151 1153 9686230844261 9686230844262
9970279 9935720 1151 1153 13208435589479 13208635589480
8483719 84662680 1301 1303 14368014268119 14368014268120
5093101 SQ77478 1301 1303 8420587345701 8620587845702
326 325 1301 1303 S51787925 S51787925
5093753 5078128 1301 1303 8521691421553 8521691421552
8489371 8463330 1301 1303 1436911784357 14349117843970
2617231 2609312 1319 1321 4553356421791 4553356421792
1393198 1389861 1667 1669 3871542597022 3871542597021
9749046 9725495 1667 1669 2709151668989 Z7091516689895
146432580 14398521 1697 1699 4156307377720 41583073777221
2886176 2879385 1697 1699 8311635620384 &311435620385
425 424 1697 1699 1223918825 1223918824

431 430 1721 173 1274553471 1276553470
2969160 2962271 1721 has 8794179823560 8794179823559
1600708 1597131 1787 1789 5111451305252 511165130525
1599813 1596238 1787 1789 5108793239997 S108793239998
24003460 B549821 1787 1789 76651905056740 7665190505674 1
19295178 19253993 1871 1873 67545491209098 67545491209097
1753596 1749853 1871 1873 6138710055036 6138710055037
&70 465 1877 1379 1655870630 1655870629
14123034 14092985 1877 1879 4975T270653386 4975T270653385
7612314 596715 199 1951 2291614357274 28916143572715
3805913 3798114 1%9 1951 1645714452713 164571464927T14
488 487 1949 1951 1853717288 1853717287
19032493 18993492 1949 1951 T229684L6542293 T2296846942292
11987503 11963528 1997 1999 47B06269851527 478B06269851528
500 499 1997 1999 1994004500 1994004499

521 520 2081 2083 2256222281 2256222280
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Smarandache - Racu's problem.

qep(j), p*p(j+1), d=p-g, Na=x*g’s or y*p’s, k solutions to x*q’s - y*p’s = +/-1 will exsmined.

Parameters for this runt d =2 , s

X

4339410
11162451
2232913
2231856
15626163
33485239
35091287
10025682
560
2574748
38612140
227146160
596
17036663
16809771
21210178
665
161461227
10846754
40482708
11061232
683
52209210
39283344
701
571128
31427937
4871101
68783872
5291818
5290191
79366254
815
53106220
5687721
866

8%0
64188549
38512771

8744546
46074703

154537464
30906505
48071026
1001
48073028
25129997
25127950
125643844
8525353
g523288
76717852
1055
89000860
54008086
1061
97813539
1956183
1106

y

4331081
11141330
2228688
2227633
15596596
33421880
35028624
10007779
559
2570211
38544101
226756049
595
17008078
16783850
21178283
664
14119962
10830625
40423043
11024959
682
52132769
39227305
700
3537503
31333104
48564850
68699319
5285313
5283688
79266695
814
53041059
5680978
8465

889
64116910
38469788
895
6737203
46027688
979

982
1543803
30875064
48023003
1000
43025003
25105444
25103399
125521085
8517096
8515033
76643549
1054
88916499
3957183
1060
97725100
19544136
1105

2081
21
2111
2m
21
2m
37

7
2267

2381
81
81
391
2657
2657
2657

m
m

280
2801
2801
2801
3119
351
3251
ko)l
3251
357
3257

3461
3557
581
3581
3581
387
3917
;7

2083
2113
2113
2113
2113
2113

2659
2659

ans3
a3
2731

92

x*q’s

18792079709010
4974346480277
9950577093073
9945866761776
6963519832633
149220973745719
175602730575503
50170207068258
280334640
13760746172
1984389463568460
128770230019760
3378819956
965835854649743
112848716268451
149736411907522
4694666585
SOBI2099049323
TEI13227630626
297528512582848
8114776646498T2
5086602203
383825011131610
308201464296974k
5499766301
184929665407928
26651053955137
47386854775261
T26976811951872
5592929733818
55912033969191
E3BB0087989025 6
85645559935
563353383964780
64633219552161
1037339186
11260501610
125773602989
493870868197531
11489910656
90891127331586
706919053836967
15036031220
15174611303
238560079731504
4L77104984851705
769521032279026
160246009001
769553080297028
420582691321157
420548432153950
2102810679104164
145204912066537
145169740720152
130666835 1856908
18761158895
15827102146456540
971393809450966
19083231941
1911789192817899
3823405464934343
21617036546

Y*p's

18792079709009
497434L64802770
9950577093072
9945846761777
696351983246324
149220973745720
175602730575504
50170207068259
28023344639
1323237407417
1984389443468461
128770230019761
3378819955
96583585449742
112848716268650
1497364 1190753
45694666584
9983209904322
78313227630625
297528512582867
8114776649871
50865602202
388825011131609
3082014642969745
5499765300
184929665407927
264571053955136
4T3B5854775260
T26976811951871
55929229733817
55912033969192
&38300879890255
8645559934
S6335IIEI6LTTS
64633219552162
10373399185
112560501609
823125773602990
493870868197532
11489910655
90891127331587
706919053836968
15036031219
15174611302
8560079731503
&7T10498LE51704
769521032279027
16024009000
769553080297027
420582691321156
4£20548432153951
21028105791046165
145204912066536
145169740720153
130666835 1866909
1875611588%4
1582710214456539
971393809450967
19083231940
1911739192817900
3BZ3L05445343464
21617036545



Smarandache - Racdu's problem.
9=p(j), p=pLj=1), g=p-q, N=x"q’s or y"p’s, k solutions to x*G’s - y*p’s = /-1 will examined.

Parameters for this run: d =2 , s =2, k=15 .

x b 4 q P x*q’s Y*p’'s
19564035 19546346 &1 &3 382383779007435 382383779007434
97815751 972730 &&L21 [2%4] 1911832426890991 1911832426890990

1130 1129 4517 4519 23055716570 23055718569
113814843 113714786 4547 4549 2353145666327187 2353145666327186
10347838 10338741 4547 4549 213943713348142 213943713348141
10345563 10336468 4547 4549 21389667T247667 213896677247668
113812568 113712513 4547 4549 2353098630226712 Z353098430226713
43262439 43225240 L649 4851 935039789857239 935039789857240
1163 1162 L6469 4651 25136152763 25136152762
86528367 86453966 &649 4651 1870154988172757 18701549881727566
1181 1180 4721 Y ra 26321940221 26321940220
12168478 12158513 4931 4933 295873634303758 295873634303757
36500500 36470909 4931 4933 887500933880500 887500933880501
158172945 1580447146 4931 4933 3BL5F373543461145 3845937354341146
86419606 84350053 L967 4L969 2132065790970934 2132065790970933
37035199 37005392 4967 L9869 9134698690661711 913698690661712
125549352 125449153 5009 5011 3150043411177512 3150043411177513
100439231 100359072 5009 5011 2520028441387711 252002844 1367712
1253 1252 5009 5011 31437871493 31437871492
75331616 75271495 5009 5011 1890076347300896 18900756347300895
176612647 176471832 5021 503 &L5287T674959127 &452477674959128
156 1255 5021 5033 31664313896 31664313895
117092180 117000379 5099 5101 3044373378656180 3044373378656179
13011376 13001175 5099 5101 I38293186738176 338293186738175
13008825 12998626 5099 5101 I38224861243825 3382256861243826
15979618 15968313 5651 5653 51028994 1268018 51028994 1268017
111846018 111766891 5651 5653 I571658481454418 35716684814546419
155004692 154899067 5867 5869 533553301564 788 5335523301564787
51666274 $1631067 5857 5859 177844046 15416785 1778L4L04 15416787
SEIIT240 258161201 5867 5869 8892404 132398360 8892404 132398351
51880712 51845431 5879 5881 17931344 23680392 17931344 23680391
17294551 17282790 5879 5881 5977453574691 597745357469190
17291610 17279851 5879 5881 597643708742010 597643708742011
51877771 51842492 5879 5881 1793032774953211 1793032774953212
190222415 190093056 5879 5881 4574589039798015 6574589039798016
224808576 224655697 5879 5881 T769978106009216 T769978106009217
153 1522 6089 6091 56466627683 56466627682
185502928 185381127 6089 8091 &B776901903796488 68776919037964687
1550 1549 6197 6199 59524353950 59524353949
76856752 76807167 6197 6199 29515151674163468 2951515167416367
115284353 115209976 6197 6199 &L2T20298BKTSTT LL2T24L298894L7576
1643 1642 6569 6571 70898343323 70898343322
846357725 85305164 6569 6571 37254L879097U3725 3725487909703724
66555047 66515086 6659 6661 2951202596042207 295 1202596042206
1676 1675 6701 6703 75258100076 75256100075
161508570 161413581 6791 6793 T4484L05321794270 74484L05321794269
116589810 118521529 6827 6829 5434009585603490 5434009585603489
69954569 69913600 6827 6829 3260437585 177601 3260437585177600
178 irakd 6849 6871 81060670598 81050670597
120719765 120650286 69467 6949 582603352118988S 5826033521 189886
127058385 126987104 n 7129 6453819998221665 6453819998221664
3472461454 3470514645 7307 7309 18540002175090046 18540002175090045
133551875 133478796 7307 7309 71306349644 16875 713063496464 16876
80661167 80617174 331 =33 4335018348995687 4£335018348995686
26888278 26873613 7331 7333 1445071808877958 1445071808877957
26884611 268599468 7331 7333 1644878731397 16LLBTLTII 39772

Rscu's probiem, PCW Oct. 95, 951128, Henry Ibstedt



Smarandache - Radu's probtem.

Q=p(j), p=p(j+1), d=p-q, N=x*g’s or y*p’s. Principal solution to x%q’s - y*p’s = +/-1: x0,y0.
General solutions: x = x0 + t*p’s, y = y0 » t*g’s.
N, Ne1 S(N),S(N+1) d s t q.p
11822936664715339578483018 3225562 42 2 -2 1612781
11822936664 715339578483017 3225646 1612823
11157906497858100243738683434 165999 4 3 0 55333
11157906497858100263738683635 166011 55337
17549845213221162413502236227 165999 3 3 -1 55333
175498452132211624 13502236226 166011 55337
270329975921205253634707051822848570391314 669764 2 3 0 167641
270329975921205253634 70705 1822848570391313 669772 167443
Racu's proolem (RADUpres.UB), 951129, Henry Ibstedt
Factorisations:
11822936664715339578483018 = 2 * 3 * 89 * 193 * 431 » 1412781 ° 2
11822936664715339578483017 = 509 * 3253 * 1612823 ~ 2
11157906497858100263738683634 = 2 * 7 * 37 ~ 2 * 56671 * 55333 - 3
11157906497858100263738683635 = 3 * 5 * 11 * 19 ° 2 « 14433 » §5337 - 3
175498552132211626 13502236227 = 3 * 11 ° 2 * 307 * 12671 * 55133 - 3
17549865213221162613502236226 = 2 * 23 * 37 * 71 * 419 * 743 * 55337 - 3
270329975921205253634707051822848570391314 = 2 * 3 " 3 » 47 « 1280 * 2017 * 119983 * 167641 - &
270329975921205253634707051822848570391313 = 37 * 23117 * 24517 * 38303 * 167443 -~ &
Raduface, 951129, Henry lbstedt
Adjacent primes:
Smarandache function values in the above examples: $1 and S2.
P1 and P2 are consecutive primes betow and above S$1 and S2 respectively. Prime gap = G.
P1 S1 s2 2 G
3225539 3225562 3225646 3225647 108
165983 165999 166011 166013 30
669763 669764 669772 669787 26

Racuadj, 951130, Henry I[bstedt
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Factorisations: Ashbacher - Fibonacci

N o= 1185892343342 =2 2 * 7 T 2 * 47 * 14107 * 18251 © 1

N-1 = 1185892343341 = 23 * 1427 * 6011 © 2

N-2 = 1185892343340 = 2 " 2*3*5*583 " 60676229 1
S(N) = 18251 = 18251 " 1

S(N-1) = 12022 = 2 * 6011 " 1

S(N-2) = 6229 = 6229 " 1

N = 1188795217601 = &7 * &3 * 14621 " 2

N-1 = 1188795217600 = 2 6 * 5 ° 2 * 97 * S87 * 13049 ~ 1
N-2 = 1188795217599 = 3 " 2 * 11 * 17 * 181 * 261 * 16193 " 1
S(N) = 29242 = 2 * 14621 " 1

S(N-1) = 13049 = 13049 ~ 1

S(N-2) = 16193 = 16193 " 1

N o= 1294530625810 = 2 * 5 * 1669 * 8807 ~ 2

N-1 = 1294530625809 = 3 ~ 2 * 101 * 103 * 2381 * 5807 " 1
N-2 = 1294530625808 = 2 "4 * 7 * 19 * 67 * 769 * 11807 " 1
S(N) = 17614 = 2 * 8807 " 1

S(N-1) = 5807 = 5807 " 1

S(N-2) = 11807 = 11807 " 1

W o= 1517767218627 = 3 * 11 * 107 * 163 * 227 * 11617 ° 1
N-1 = 1517767218626 = 2 * 73 * 601 * 4159 ~ 2

N-2 = 1517767218625 = 5 "3 * 7 * 17 * 157 * 197 * 3299 " 1
SO = 11617 = 11617 ~ 1

S(N-1) = 8318 = 2 * 4159 " 1

S(N-2) = 3299 = 3299 " 1

N = 2677290337916 = 2 * 3 * 37 * 43 * 16747 ~ 2

N-1 = 2677290337913 = 479 * 739 * 2083 * 3631 " 1

N-2 = 2677290337912 = 2 "3 * 17 - 3 * 2281 * 29863 " 1
S(N) = 33496 = 2 * 16747 " 1

S(N-1) = 3631 = 3431 ° 1

S(N-2) = 29863 = 29843 " 1

N = 3043063820555 = 5 * 11 * 571 * 6481 * 14951 ~ 1

N-1 = 3043063820556 = 2 * 41 * 997 * 6101 ~ 2

N-2 = 3043043820553 = 3 * 53 * 73 * 2&3 * 337 * 2749 " 1
S(N) = 14951 = 14951 " 1

S(N-1) = 12202 = 2 * 6101 " 1

S(N-2) = 2749 = 2749 " 1

N = 6364309623764 = 2 ° 6 * 751 * 11489 ~ 2

N-1 = 6344309623743 = 3 "3 =7 - 2°* 13 *31* 1597 * 7451 " 1
N-2 = 6344309623762 = 2 * 107 * 211 * 9049 * 15527 ° 1

S(N) = 22978 = 2 * 11489 " 1

S(N-1) = 7451 = 7451 ° 1

S(N-2) = 15527 = 15527 ° 1

M = 16738688950356 = 2 "2 *3*31*193* 15260 "2

N-1 = 16738688950355 = S5 * 197 * 1399 = 1741 * &77 ~ 1

N-2 = 167386889503564 = 2 *7 " 2*19* 23 *53*313* 2351 "1
S(N) = 30538 = 2 * 15269 " 1

S(N-1) = 6977 = 6977 " 1

S(N-2) = 3561 = 23561 " 1

N = 19648047080036 = 2 2 * 3 " 2*43 " 2* 17093 ° 2

N-1 = 19448047080035 = 5* 7 ® 19 * 37 * 61 * 761 * 17027 - 1
N-2 = 19448047080034 = 2 * 97 * 1609 = 3431 * 17159 ~ 1
S(N) = 34186 = 2 * 17093 1

S(N-1) = 17027 17027 ~ 1

S(N-2) = 17159 17159 ° 1

ASHfact. 951202, Henry Ibstedt 85



ON RADU'S PROBLEM

by H. Ibstedt

For a positive integer n, the Smarandache function S(n) is defined as the smallest positive
integer such that S(n)! is divisible by n. Radu [1] noticed that for nearly all values of n up
to 4800 there is always at least one prime number between S(n) and S(n+1) including
possibly S(n) and S(n+ 1). The exceptions are n=224 for which S(n)=8 and S(n+1)=10 and
n=2057 for which S(n)=22 and S(n+1)=21. Radu conjectured that, except for a finite set
of numbers, there exists at least one prime number between S(n) and S(n+1). The
conjecture does not hold if there are infinitely many solutions to the following problem.

Find consecutive integers n and n+1 for which two consecutive primes p, and p, .., exist so that
Py < Min(S(n),S(n+1)) and p,., > Max(S(n),S(n+1)).

Consider
n+1 = xp} (1)
and :
n =yp.,, (2)
where p, and p,,, are consecutive prime numbers. Subtract (2) form (1).
xpr_s - anls = 1 (3)
The greatest common divisor (p,’,p,.,") = 1 divides the right hand side of (3) which is the
condition for this diophantine equation to have infinitely many integer solutions. We are
interested in positive integer solutions (x,y) such that the following conditions are met.
S(n+1) = sp, ie S(x) < sp, 4)
S(n) = sp,,,, i.e S(y) < sp;., &)
In addition we require that the interval

sp° < q < sp,.," is prime free, i.e. q is not a prime. (6)

Euclid’s algorithm is used to obtain principal solutions (xYy,) to (3). The general set of
solutions to (3) are then given by

X = X + Prei’ts Y = Yo-Prt (N

with t an integer.
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Radu’s Conjecture. H. Ibstedt

These algorithms were implemented for different values of the parameters d=p,,, - p,, s
and t resulted in a very large number of solutions. Table 1 shows the 20 smallest (in respect
of n) solutions found. There is no indication that the set would be finite. A pair of primes
may produce several solutions.

Table 1. The 20 smallest solutions which ocurred for s=2 and d=2.

# n S(n) S(n+1) Pl P2 t
1 265225 206 202 199 211 0
2 843637 302 298 293 307 o]
3 6530355 122 118 113 127 -1
4 24652435 926 922 919 929 0
5 35558770 1046 1042 1039 1049 0
6 40201975 142 146 139 149 1
7 45388758 122 118 113 127 -4
8 46297822 1142 1138 1129 1151 0
S 67697937 214 218 211 223 o]
10 138852445 1646 1642 1637 1657 0
11 157906534 1718 1714 1709 1721 0
12 171531580 1766 1762 1759 1777 0
13 299441785 2126 2122 2113 2129 o]
14 551787925 2606 2602 2593 2609 0
15 1223918824 3398 3394 3391 3407 0
16 1276553470 3446 3442 3433 3449 0
17 1655870629 3758 3754 3739 3761 0
18 1853717287 3902 3898 3889 3907 0
19 1994004499 3998 3994 3989 4001 )
20 2256222280 4166 4162 4159 4177 0

Within the limits set by the design of the program the largest prime difference for which a
solution was found is d=42 and the largest exponent which produced solutions is s=4. Some
numerically large examples illustrating the these facts are given in table 2.

Table 2.

n/n+1 S(m)/ d s t Pe/Prs1
S(n+1)

11822936664715339578483018 3225562 4?2 2 -2 1612781
11822936664715339578483017 3225646 1612823
11157906497858100263738683634 165999 4 3 0 55333
11157906497858100263738683635 166011 55337
17549865213221162413502236227 16599 4 3 -1 55333
17549865213221162413502236226 166011 55337
270329975921205253634707051822848570391314 669764 2 4 0 167441
270329975921205253634707051822848570391313 669772 167443
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To see the relation between these large numbers and the corresponding values of the
Smarandache function in table 2 the factorisations of these large numbers are given below:

2-3-89-193-431- 16127812
509 - 3253 - 1612823

11822936664715339578483018
11822936664715339578483017

7 37%- 56671 - 55333°
“5-11-19%- 16433 - 553373

11157906497858100263738683634
11157906497858100263738683635

(V3 3 S

112+ 307 - 12671 - 553333
2-23-37-71-419 - 743 553373

17549865213221162413502236227
17549865213221162413502236226

(W)

|
9

270329975921205253634707051822848570391314 = 2-3%-47 - 1289 - 2017 - 119983 - 167441°
270329975921205253634707051822848570391313 = 37 - 23117 - 24517 - 38303 - 167443°

It is also interesting to see which are the nearast smaller P, and nearast bigger P, ,, primes
to S; = Min(S(n),S(n+1)) and S, = Max(S(n),S(n+ 1)) respectively. This is shown in table
3 for the above examplies.

Table 3.
P, S, S, P.., G=P,, -P,
3225539 3225562 3225646 3225647 108
165983 165999 166011 166013 30
669763 669764 669772 669787 24

Conclusion: There are infintely m

are prime free.
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SOME CONVERGENCE PROBLEMS INVOLVING
THE SMARANDACHE FUNCTION
by
E. Burton, I Cojocary, S. Cojocary, C. Dumitrescu

Department of Mathematics, Unrversity of Craiova,
Cratova (1100), Romania

In this paper we consider same series artashed to the Smarandache finction (Dinchlet

senes and other (nwnencal) senes). Asunptouc behaviour and vonvegence of these senes
18 etablished.

1. INTRODUCTION. The Smarandache function S : A » N is defined {3} such that
S(n) is the smallest integer n with the property that n! is divisible by n.If

n=py'pst.pl (L1)

is the decomposition into primes of the positv integer n, then

S(r) =max S ) (1.2)

s d . . .
and more general it 7,V n, is the smallest commun multiplc of'n, and n, then .

Sty ¥ n2) = max(S(n ), S(n2)

Let us observe that on the set N of non
gencrated respectively by V= max, A =

-negatrve integers, there are two latticeal structures

. 4 .

min and V = the last commun multiple. A = the
d

greatest commun division. if we denote by < and ¢, the induced orders in these latiices, It
results

d
S(mV m) = S(n1)V S(na)

The calculus of Sip) depends closely of two numerical scale, namely the standard scale

®): L, p, p*.esp”...
99



and the generalised numerical scale [p]

{pl:a,(p) 3,(p)s -y ap) -
where a, (p) = (p*-1)/(p-1). The dependence is in the sens that
S(p®) = ptag))e) (1.3)

$0, S(p*)is obtained muitiplyng p by the number obtained writing a in the scale [p] and
"reading” it in the scale (p).

Let us observe that if b (p) = p® then the calculus in the scale [p] is essentaly different
from the standard scaie (p), because :

b,..(p) = pb,(p) buta,,(p)=pa(p)+1]
(for more details see [2] ).
We have also (1] that

Sp*) = (p- 1)a+ opj(a) (1.4)

where o) is the sum of digits of the number ¢ writen in the scale [p].
In [4] 1t 1s showed that it ¢ is Euler's totient tunction and we note S,(w) = S(p*) then

S ) =pp®)+p (1.5)

[

It results that p™)=5¢" )-p so

o= 1 (sw, ""‘)-p,). .

=1

In the same paper [4] the function S is extended to the set Q of rational numbers.

2. GENERATING FUNCTIONS. It is known that we may attashe 1o cach numenical
function f:N*->C the Dinchlet serie :

Diz)=£ ¢ (2.1)

which for some z =x +fy may be convergent or not.
The simplest Dirichlet series is:

=% &

n=l

called Riemann's function or zeta function where is convergent for Re(z) > 1.

It 1s said for instance that if f is Mobius function (i) = 1. u(p, P, P,) = (-1) and u(n)
= 0 if n is divisible by the squar of a prime number ) then D, (z) = 1/3(2z) for x>1, and il {is
Euler's totient tunction ( (n) = the number of positive ntegers not greater than and prime to
the positive integer n ) then D, (2)=3(z-1)3(z) for x>2 ).

We have also D4(2) = 3%(z), for x > 1, where d(n) is the number ol divisors of n,
including 1 and n, and Dz, (n) = 3(2)-3(z-k) (for x > 1, x > k+1), where o,(n) is the sum of
the k-th powers of the divisors of n. We write o(n) tor o (n).
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In the sequel let we suppose that z'is a real number, so z=x.
For the Smarandache function we have:

_ o )
D)= I =
=

If we note :
Fo(n) =£nﬂk)
it is said that M&bius function make a connection between { and F by the inversion tormula:
fn)= I Fltknui) (2.3)
-y

The functons F,° are also called generating functions.
In [4] the Smarandache functions is regarded as a generating function and is constructed the
function s, such that:

s,(n) = tg,, NEHTES

2.1. PROPOSITION. For all x > 2 we have :
@) 3(x)s Dyx)s 3(x-1)
@ 1 <D,(R)<Dx)
@iil) 3*(x) s D,5(2) $3(x)3(x-1)

Proot. (i) The asertion results from the fact that 1 < S(n)< n.
(ii) Using the multiplication of Dirichlet series we have:

n - hY )
s(#) gt - _)

F §

?u(l)!\:)m(x)a(x) +u(:):(~)~;(:):(=)~;(t}i\x) .. . = = aiv _ D (x)
) 8t ‘:"1 - ol
and the asertion result using (i).
(i) We have p \
«© / © \ D
3Dy =5 I T2 =gy LB A0 L (x)
- Nemy * : :
so the inequalities holds using (i).

Let us observe that (iii) is equivalent to D, (x) < D,. < Do(x) .These incqualities can
be deduced also observing that from 1 < & n) < 2 it result:

L 1< Z stkys &

A Sga Iag o ALg
dn) < F,(n)sc(a) (2.4)
But from the fact that F, < n + 4 (proved in [5]) we deduce

dn)<F,n)<n+4 (2.5)
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Untl now it is not known a closed formula for the calculus of the functions DAxy, D, (x) or
D,six), but we can deduce asimptotic behaviour of these functions using the following well
known results:
2.2. THEOREM. (i) 3(2) = ,—: + (1)
(i) In3(z) = In—= + O(z-1)
(i) 3'(z) = =7 T

for all compiex number.
Then from the proposition 2.1 we can get inequalities as the fallowings:

(i) —-?O(l)sD,(x)s—‘_;'fO(l)

I
& 3

@@ 1<D,,(x)s —:;-‘1_-3 for some positive constant A
(1) '(—‘_:—)2-1- o(l)< D',(x) < -(‘_‘z),‘ +0(1).

The Smarandache functions S may be extended to all the nonncgative integers defining
S(-n) = S(n).
In [3] it is proved that the seric

1s convergent and has the sum q € (e-1,2).
We can consider the function

_ s X
f(z)-E‘(,—,%‘-’*

convergent for all z € C because

i _ _Kati) pad 1

= € —
, “n (rdsle) = (rrde) = 1(a)
& Ne .

andso = > 0

2.3. PROPOSITION. The function { statisfies (z) < gz an the unit disc
U0,1)={z} |z < 1}.

Proof. A lema does to Schwartz asert that if the function f is olomorphe on the unit disc
U,1) = { z| g < 1} and sausfies f(0) = 0, |fiz)} < 1 for z € U(0,1) then |f(2)] 5|z on
U(0,1) and |f'(0)| < 1.

For iz <1 we fave f(z)l < q so (1/q) f(z) satisfics the conditions of Schwartz lema.

3. SERIES INVOLVING THE SMARANDACHE FUNCTION. In this scction we
shall studic the convergence of some series concerning the function S.

Let b: N*=>N* be the function defined by: b(n) is the complement of n until the
smallest factorial. From this definition it results that b(n) = (S(n)!)/n tor all n ¢ N*.
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3.1. PROPOSITION. The sequences (b(n)),.;and also (b(n)in*),., for keR. are
divergent.

Proof. (i) The asertion results from the fact that b(n') = 1 and iF (p,) -1 18 the sequence
of pnme members then

b(py = 2L =22 = (p, - 1)t

(ii) Let we note x, = &(n)/nt. Then

- XAZ!
x" - ’.lol
and for k > 0 it results
PO (1) I 1
‘\"! - (n!)tol - (I!f)"‘ O
_ Pt _ 1) prprpe
Xpa = @) - @) p.‘." Pn

because it in said (6] that p, p, ... P, > p,*"* for n suticiently largc.

3.2. PROPOSITION. The sequence T(n) = 1+ & = - In &(n) is divergent.

157 &)
Proof. It 'we suppose that lim 7(n)= /< =, lhcnzbecause “; #) = @ (see [3]) it results
the contradiction nli_g_g Inbn)= .
If we suppose nlir_g T(n) = -, from the cquality Ind(n) = 1 +‘§ ﬁ — T{n) it results
.Ii_x’n‘lnb(n) = .

We can't have lim 7(n) =+ because T(n) < 0. Indeed, from i < S(i)! fori 2 2 it results
i/8@{) < lforalli 2 2

T(p,.)=1+s(%)!+...+s%i (.- I < 1+(p, - D =Ini(p, - 1) =

=pPn- ln((l’n -Dh.

But for k sufficiently large we have c*<(k-1)! that is there cxists me N so that p, < Ini(p, - 1))
forn > m. It results p, - In((p, - 1)!) <Oforn 2> m, and so T(n) < 0.

Let now be the function

Hy(x)= 23:.& &n).

3.3. PROPOSITION. The serie

T H;Nm) (3.1)

nzl
Is convergent.
Proof. the sequence (b(2)+b(3)+ ...+ b(n)), is strictley increasing to «: and
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S
2 3 7
2 X3 Ay ) X5
2 t73 T, s > s
2)! 3! 4! 1 . :
ﬂ)+5‘(!+5()+$(5!+36)>5(!)
2 3 “ s 3 3
Sy sy S ser S SOy
2 T T TS s ~ 7~ =7
80 W¢ have
< 1 - } 1 1
- H; (n)= F EIRCTIREEE R T 0 G
nel 2 =TT TS Yo T TTY
]
CTBETIPETTE
i by L]
2 1 2 4 2 Prel =Pk
<mtmtmtm ottt e T
H 3 $ 7 1 Pr
o 1 =P4)
<1+ S oetp) g ale) g Ly, T erlleipy
2 S 22 Pt 112
But (p,-1)! > p,p;...p, for n 2 4 and then
-1 19
LH)im< Z+Za
n22 - 24
- Pn(Pn.x‘Pt)>_ Prei=Pa . Puacia Pias
where  ar = Y 123 (pa-1) = PWi-dt

PRI-PL
Because p,p,...p, > P,., for k sufficiently large, it results

Prei

= — for k2k,

™Me

1
k=2 S(k)
- 1

=z SO

3.4. PROPOSITION. The scrics

and the convergence of the seric (3.1) follows trom the convergence of the sene

raky Pl
In the followings we give an elementary proof of the convergence of the
qv,‘s(‘.)»

,a € R, o>1 provides informaton on the convergence behavior ol the series

A

2

series

-
T —L— convergesifa € R and o > 1.
=2 30« ey e
Proof.
- 1 - 1 R B i
P ORNEGTRNE AT A

}

i
<+ — —t
4o it se s e n

|

W
74"; PR

v

where m, denotes the number of clements of the set
M, { keN* S(k)=t } = { ke N*, k|tand k| (t-1)! }.
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It follows that M, { ke N*, k|t } and there fore m<d(t!).
Hence m, < 2./1_! and consequently we have

o 2 2. <
T =231
marede et Tmptt

So, ;2.‘,2 = Comverges.

3.5. PROPOSITION. 12 /¢! <l ifa e R, a>1 and t > (o = [¢2¢"'], 1:: N*. (where
[x] means the integer part of x).

Proof. 1 /Il <fl = < (¢) @ 132 < 1l 2
On the other hand 132 < (L) o (e£)2 < () @ e (4)38 < (5) = ¥ (3 M (3)
If pe2esl=> (Ly-28 > (v_‘;‘_'):-za = (e¥)im2m 5 (g3u)yeiri-lu

Applyng the well-known result that ¢* > 1 +x if x > 0 for x = 2a we have
(ezu)ﬂ'"-za. > (e3R)larivi=a = (g28)2 = géa 5 20

So, if t> e2*iwe fave e < (&) " (4)
It is well known that (1) < ¢! if te N*. (5)

Now, the proof of the proposition is obtained as follows:

Ift>t. =[e3*],r € N* we have €2 < (£} o 122 < (1) < ol Hence 2% < 1 if t>1. and
this proves the proposition.

CONSEQUENCE. The series E_ S converges.
- -~ =2 ’
Proof. T T L 5 where m, is defined as above.
1

1> W e . T |
ft>: ¢ have ﬁ<t!c:“m>"c>

my > m
,u'f‘-! 44
= *
Since T —— converges it results that T = also converges.
=1 e Jr =2 "

REMARQUE. From the definition of the Smarandache function it results that
card { ke N*: S(k)=t } = card { ke N*: k| tand k| (t-1)!} = d(t)-d((z-1)!)
30 we get

£ car(dS () = £ (e - d(r- 1)1)) = dnt)- 1
m2 =2
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ON THE SMARANDACHE FUNCTION AND
THE FIXED - POINT THEORY OF NUMBERS

by
Albert A. Mullin

This brief note points out several basic connections between the Smarandache
function, fixed-point theory [1] and prime-number theory. First recall that fixed-point theory in
function spaces provides elegent, if not short, proofs of the existence of solutions to many
kinds of differential equations, integral equations, optimization problems and game-theoretic
problems. Further, fixed-point theory in the ring of rational integers and fixed-lattice-point
theory provide many results on the existence of solutions in diophantine theory. Here are four
fundamental examples of fixed-point theory in number theory. (1) There is the well-known
basic result that for p>4, p is prime iff S(p) = p. (2) Recall that the present author defined [2]
the number-theoretic function ‘¥(n) as the product of the primes alone in the mosaic of n,
where the mosaic of n is obtained from n by recursively applying the unique factorization
theorem/fundamental theorem of arithmetic to itself! Now the asymptotic density of fixed
points of ¥(n) is 7/, just as the asymptotic density of square-free numbers is 6/7". Indeed,
(3) the theory of perfect numbers is also connected to fixed-point theory, since if one puts
f(n) = &(n) - n, where d(n) is the sum of the divisors on n, then n is perfect iff f{n) = n. Finally,
(4) the present author defined [2] the number-theoretic function W*(n) as the sum of the
primes alone in the mosaic of n. Here we have a striking similarity to the Smarandache
function itself (see example (1) above), since ¥*(n) =n iff n = 4 or n = p for some prime p;
i.e, if > 4, nis prime iff ¥*(n) = n. Thus, the distribution function for the fixed points of S(n)
or of 'W*(n) is essentially the distribution function for the primes, I(n).

Problems

(1) Put S%(n) = S(S(n)) and define S™(n) recursively, where S(n) is the Smarandache function.
(Note: This approach aligns Smarandache function theory more closely with recursive
function theory/computer theory.) For each n, determine the /east m for which S™(n) is
prime.

(2) Prove that S(n) = S(n+3) for only finitely many n.

(3) Prove that S(n) = S(n+2) for only finitely many n.

(4) Prove that S(n) = S(n+1) for no n.
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ON THE CALCULUS OF SMARANDACHE FUNCTION

by
C. Dumitrescu and C. Rocsoreanu

(University of Craiova,Dept. of Math.,Craiova (1100),Romania)

Introduction. The Smarandache function S : N* — N* is defined [5] by the
condition that S(n) is the smallest integer m such that m! is divisible by n.So,we
have 5(1) = 1, 5(2'?) = 16.

Considering on the set N* two laticeal structures N = (N*, A, V) and N, =

d . . . d
(N.’{i\’ V),where A = min,V = max, A= the greattiest common divsor, V= the
smallest common multiple,it results that S has the followings properties:

d
(91) S(ny V n3) = S(ny) Vv S(ny)
(32) ny < ng = S(ny) < S(ny)
where < is the order in the lattice N and <, s the order in the lattice Ng.It i
said that
. ny €4 Ny <> n, divides n,

From these properties we deduce that in fact on must consider

SiNg— N
Methods for the calculus of S. If
n= Ry (1)
is the decomposition of n into primes,from (s;) it results

S(n) = vS(p)

so the calculus of S(n) is reduced to the calculus of S(p?).
If e;(n) is the exponent of the prime p in the decomposition into prities of n':
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4
nl =11 ey(n)
1=l pJ

by Legendre’s formula it is said that

ep(n) Zn’

21
Also we have

n— oy (n
() = 222 )
where [z] is the integer part of z and o(,)(n) s the sum of digits of n in the
numerical scale

®:1,p,p0,.., P

For the calculus of S(p®) we need to consider in addition a generalised numer-
ical scale [p] given by:

(o] ailp) , aslp) ..., aulp)
where g;(p) = (p‘.— 1)/(p = 1).Then in [3] it is showed that

5(%) = ploi)er (3)
that is the value of S(p“) is obtained multiplying p by the number obtained writing
the exponent « in the generalised scale [p] and "reading” it in the usual scale (p).

Let us observe that the calculus in the generalised scale [p] v eswentially dif-
ferent from the caiculus in the scale (p).That is because if we note

ba(p) = p"

then for the usual scale (p) it results the recurence relation

bne1(p) = P balp)
and for the generalised scale [p] we have

Gn+1(p) =p - an(p) + !
For this,to add some numbers in the scale {p] we do as follows:
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1) We start to add from the digits of "decimals” that is from the column
corresponding to a;(p).

2) If adding some digits it is obtained paz(p),then we utilise an unit from the
classe of "units” (the column corresponding Lo a,(p)) to obtain p - ay(p) + 1 =
as(p).Continuing to add,if agains it is obtained P ay(p),then o new unit must be
used from the classe of units,etc.

Ezample. I

M| = 442 = 4a5(5) + 4ay(5) + 20,(5) , npgy = 412, rpgy = 44

then
men+r = 442 +

412
44
dcba

To find the digits g, b, c,d we start to add from the column corresponding to
aa(5):

4a3(8) + a2(5) + 4a3(5) = 5a3(5) + 4a,(5)
Now,if we take an unit from the first column we get:
8a3(5) + 4a2(5) + 1 = ay(5) + 4ay(5)
s0 b =4,
Continuing the addition we have:
4a3(5) + 4a3(5) + a3(5) = 5a5(5) + 4a3(5)

and using a new unit (from the first column) it results:

4a3(5) + 4a3(5) + a3(5) + 1 = ay(5) + 4a3(5)
soc=4andd=1.
Finaly,adding the remained units:
4a,(6) + 2a,(5) = 5a,(B) + a,(5) = 5a,(5) + 1 = ay(5)

it results that the digit b = 4 must be changed in b6 = 5 and a = 0.
So
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Mg + nsp + risp = 1450() = al(5) + 403(5) + 5a2(5)

Remarque. As it is showed in [5],writing a positive integer o in the scale [p]
we may find the first non-zero digit on the right equals to p.Of course,that s no
possible in the standard scale (p).

Let us return now to the presentation of the formulace for the calculus of the
Smarandache function. For this we expreswe the exponent «in both the scales (1)

and (p}:

©

Q) = cep” + ComtP L+ ...+ Cip+ o =Z ap' (4)
1=0
and
oy = k,,av(p) + k,-;a‘,-l(p) + ..+ k101(p) = ix /c,~a,-(p) =
]g
=)§1 kje;il
It results
(P=Na=3 kip'= 3k (5)
J=l )=l

80,because i kjpp = b(cv[,,l)(,), we get:
. ywml

S(p") = (p - D + o(w) (6)
From (4) we deduce

1} L
pa =Y (P -D+ ) ¢
=0

=0
and
L _q =i Gaei(p) + : o))
P - 1 (L) p- 1
Cousequently
o = B2 (o) pp + 2o (@) (7)
P P



Replacing this expression of a in (6) we get:

- 1)3 -
S®) = (p . 1) (Ot(,))(,] + P > 16(,)(0!) + o'(,](a) (8)

Ezample.To find 5(3%) we shall utilise the equality (3).For this we have:

(3):1,3,9,27, 81, ..
(3] : 1,4, 13,40, 121, ..
and 89y = 202150 S(3%) = 3(2021)(3) = 183.That is 183! is divisible by 3% and
it 18 the smallest factorial with this property.
We shall use now the equality (6) to calculate the same value 5(3%°).For thw
we observe that o(3(89) = 5 and, so 5(3*%) = 2-89 + 5 = 183.
Using (8) we get 89(s) = 10022 and :

S(a*) = 3(10022)y + % (5+6= 183

It is possible to expresse S(p*) by mins of the exponent ey(c) in the following
way: from (2) and (7) it results

ep(a) = (ap))py — @ (9)
and then from (8) and (9) it results

S(p*) = Lp_—pl_)’(e’(a) +a)+ p; ]a(,)(a) + appy(w) (10)

Remarque.From (3) and (8) we deduce a connection between the integer o
writen in the scale [p] and readed in the scale (p) and the vame mteger writed
the scale (p) and readed n the scale [p]. Namely:

P(et)e) = (2 = 1)} ()it = Popi(@) + (P = D)ag(@) (1)
The function i,(a). In the followings let we note S(p*) = Sp().Then from
Legendre’s formula it results:
(p— Na < Sp(a) < pa

that s S(p*) = (p = 1)a+z =pa—y.
From (6) it results that z = op(c) and to find y let us wnite Sp(@) under the
forme
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Sple) = plar = ip()) (12)
As it is showed in (4] we have 0 < i,(a) < [“T‘l-}
Then it results that for each function S, there exists a function 1, 5O that we
have the linear combination

S5y(e) +ip(a) = (13)
In {1] it is proved that
Hla) = “;:,M (14)

and 20 it is an evident analogy between the expression of ¢,(cr) given by the
equality (2) and the expression of i,(«) in (14).
In (1] it is also showed that

a = (ap))p) + [%] - [ﬂd:i)] = (ap)le) + 9'-—?1(1)-
and so '

S(*) = pl = (2] + [fmxf‘—"’}) (15)

Finaly,let us obeerve that from the definition of Smarandache function it results
that

o
(Spoe)(e) =p[=]=a-q
where «, is the remainder of o modulus p.Also we have
(ep 0 Sp)(@) 2 a and ¢p(Sp(a) = 1) <
80 using (2) it results

S,(Ll') - %)(S,(u)) >« and S,((.Y) -1]1- 0(},)(5,(1.?) - l)
p=—1 - p—-1
Using (6) we obtains that S(p°) is the unique solution of the system

<
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0p)(2) S api{a) S apy(z = 1)+ 1

The calculus of card(S=*(n)).Let q1, 43, ..., gx be all the pnme itegers small-
est then n and non dividing n. Let also denote shortly eq,(n) = f,.A solution z,
of the equation

S(z)=n
has the property that z, divides n! and non divides (n — 1).Now, if d(n) is the
number of positive divisors of n,from the inclusion
{m / m divides (n — 1)!} C {m / m divides n!}

and using the definition of Smarandache function it results that

card(S~}(n)) = d(n!) = d((n = 1)!) (16)
Ezample. In [6] A. Stuparu and D. W. Sharpe has proved that if p is a given
prime,the equation
S(z)=rp
has just d((p — 1)!) solutions (all of them in between p and p!) .Let us observe that
ep(p!) =1 and e,((p = 1)!) = 0,80 because

dip!) = () + N HA+ W fa+ D(fa + 1) =20i+ N2+ D (fa + 1)
dp=-1 =L+ Dat+1)(fn+1)

it results

card(S™(p!)) = d(p!) = d((p - 1)! = d((p - 1))
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THE FIRST CONSTANT OF SMARANDACHE
by

Ion Cojocaru and Sorin Cojocaru

In this note we prove that the series 2 ﬁ is convergent to a real number s € (0.717,
=2 .

1.253) that we call the first constant constant of Smarandache.

It appears as an open problem, in [1], the study of the nature of the series )

=2

1
s—(m. We

can write it as it follows :

It results from the equality S(x) = n that x is a divisor of n!, so a(n) is smaller than d(n!).
So, a(n) <d(n!). )
Lemma 1. We have the inequality :

d(n)<n-2,foreachne N,n2>7. 2

Proof. Be n = p}'py*---px- With p,, p,, ..., p, prime numbers, and a, > 1 for each i €
e{l, 2, ..., k}. We consider the function f: [I, ®) > R, fix) =a*-x-2,a22, fixed Itis
derivable on [1, =) and f(x) =a*lna- 1. Becausea > 2, and x > 1 it results thata®* 22, so
a*lna22lna=ina*2n4>lne=1,ie, f(x) >0 for eachx € [1, ) and a > 2, fixed. But
f(1) = a - 3. It results that for a > 3 we have f{x) 2 0, that means a* 2 x + 2.

Particularly, fora=p,,i € {1, 2, ..., k}, we obtain p;’ 2a; + 2 for each p, 2 3.

Ifn=2",se N* thend(n)=s+1<2'-2=n-2fors23.

So we can assume k > 2, i.e. p, 2 3. It results the inequalities :
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o
v
ot
+

o

"
A\
5]

'
+
19

equivalent with
Py 2ai+1,pY -12a;+1, . p - 12a+1. 3)
Multiplying, member with member, the inequalities (3) we obtain :
p1' (P2 = Do (o = 1) 2 (a1 + 1)(az +1)---(ax + 1) = d(n). 4
Considenng the obvious inequality :
n-22p/'(y - D@ -1 (%)
and using (4) it results that :
n-22d(n)foreachn>7.
Lemma 2. d(n!)<(n-2)! foreach neN,n>7. 6)
Proof. We ration trough induction after n. So, forn=7,
d(7")=d(2*-3*-5-7)=60<120=5!.
We assume that d(n!) < (n - 2)!.

d((n+1)) =d(n!(n + 1)) <d(n!) - d(n+ 1) <(n-2)! d(n+ 1)< (n-2)! (- 1)=(n - 1)!,

because in accordance with Lemma 1,d(n+ 1)<n- 1.
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is convergent to a number s € (0.717, 1.253), that we

Proposition. The series Z
(n)'
call the first constant constant of Smarandache.
Proof. From Lemma 2 it results that a(n) < (n - 2)!, so at(::) < n(nl D for every n € N,
an) < |
n > 7 and = —_ )
Ez S(n)! ,gz nl ; (n-1)
14 < 1
2 S ™

1 1,2 .4 8
Therefore Ez S()! < 3 + 3 + 2l + 5T + P
it exists the number s > 0, that we call the

= we have

ac
Because 2,
=2 N°—n
S 1

=1

Smarandache constant,s = 2
n=2 S(n)'

From (7) we obtain :

S 1 _391 ] 1 1
+1- - -
2 S()! * 360 21-2 323 3i-4°
1 1 751 5 _ 451
+ = - = =
~s T 67-6 360 6 360 < L2333

52

But, because S(n) < n for every n € N*, it results

2 L=e—2.
2 n!

5w
Consequently, for this first constant we obtain the framinge - 2 <s < 1,253

s

Le, 0,717 <s< 1,253,
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THE SECOND CONSTANT OF SMARANDACHE

by

Ion Cojocaru and Sorin Cojocaru

In the present note we prove that the sum of remarcable series T 5—:‘-’ which implies the
frellY
Smarandache functionis an irrational number (second constant of Smarandache .

Because S(n) < n, it resuits T s:” T ——. Therefore the serie 3 ? is convergent to a
222 a2

azy 1!
number f.
Proposition. The sum f of the sene.rz - is an irrational number.

Proof. From the precedent lines it results that lim 3T s = =f Against all reson we assume
t=2

that f e Q, > 0. Therefore it exists a,b €N, (a,b) = I, so that f=

vl

1

“

Letp be a fixed prime number, p > b, p 23. Obviously, t=

siLf +T = 29 which leads to:
’ izp

-l

(P~ _ P18}« (p-1US()
5 Z 2! ta it
=2 w2p

Because p > b it results that *=™ e Nand Z ""l:s(" N. Consequently we have

=2

11S8¢
z‘r_ﬂeNmo
2p

Bea=Y w—'l e N. So we have the relation
£

= (PTLNS(Y | (poluStpeh)  (p-lVS(ped)
- P! (peit! (p=2)

Because p is a prime number it results S(p) = p.

So
Slp~11) Stp+2)
pp=i)  plp=inp=2)

+..>1 ()

a=]+
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We know that S(p+i) sp+i (v)iz1, with equality only if the number p +i is prime.
Consequently, we have
1

a<l+etr——a+
P ppel)

1 1 1 1 P -
—+... - — — TR e— A
HPriXpe2) <1+P*P:+P’ P‘1<2 2)

From the inequalities (1) and (2) it results that 1 <« < 2, impossible, because « € N. The

proposition is proved.
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THE THIRD AND FOURTH CONSTANTS OF SMARANDACHE
by

Ion Cojocaru and Sorin Cojocaru

In the present note we prove the divergence of some series involving the Smarandache

function, using an unitary method, and then we prove that the senes

zz S(Z)S(Sl)....S(n)
is convergent to a number s € (71/100, 101/100) and we study some applications of this series
in the Number Theory (third constant of Smarandache).

The Smarandache Function S : N* — N is defined [1] such that S(n) is the smallest
integer k with the property that k! is divisible by n.

Proposition 1. If ( x_ )

.., IS a strict increasing sequence of natural numbers, then the

series :

< Xnei = Xn
Z7%5 )

where S is the Smarandache function, is divergent.
Proof. We consider the function f : [x_, x__,] = R, defined by f{x) = In In x. It fulfils the
conditions of the Lagrange's theorem of finite increases. Therefore there is ¢, € (X, , X,., ) such

that :

IninXpe; = Ininx, = l (Xnei — Xn). (2)
Colncy

Because x < ¢, <X,., , we have :

Xeel = Xn  jiinxey - Inlnx, < 222=%  (v)n € N, )
Xne1 1N Xne Xaln Xp
if xp=1.
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We know that for eachn € N*\ {1}, i(nl) < 1,1e.

S(n) !
0< ninn < Inn’ )
S(n)

= 0. Hence there exists k > 0 such that
ninn

from where it results that nlinl

S(n)
ninn

< k, ie., ninn > S—():-)- for any n € N*, so

1 k
XnlnXq < S(Xa) ()

Introducing (5) in (3) we obtain :

Ininxee — Inlnxe < k""’s'(T')" (V) e N*\{1}. (6)

Summung up after n it results :

Xl = Xp 1
g S0e) >k(lnlnxm,, Ininx,).

Because lim xm = @ we have lim Inlnx, = =, i.e, the senes :
M-—baC Mm=—s

S Xnel = Xan
E S(Xa)

is divergent. The Proposition 1 is proved.

Proposition 2. Series 2. E(%ﬁ where S is the Smarandache function, is divergent.
=2 .

Proof. We use Proposition 1 for x, = n.

Remarks. 1) If x_is the n - th prime number, then the series 2 &SL(;.% is divergent.
m=] n

2) If the sequence (x, ) forms an arithmetical progression of natural numbers, then

- |
the senesE S0

. 1 & 1 .
3) The sertes zl S@Ens 1)’ Z:l S@n=1 etc., are all divergent.

a2l

is divergent.
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In conclusion, Proposition 1 offers us an unitary method to prove that the series having
one of the precedent aspects are divergent.

Proposition 3. The series :
3 1

Z& S2)-SG) S’

where S is the Smarandache function, is convergent to a number s € (71/100, 101/100).

Proof. From the defimition of the Smarandache function it results S(n) < nl,

()n € N*\{1}, so —-‘n— >L

Summing up, begining with n = 2 we obtain :

.gi S(2)- SG)---S(n) 2 Ez Pl 2.

The product S(2) - S(3) ... S(n) is greater than the product of prime numbers from the

set {1, 2, .., n}, because S(p) = p, for p = prime number. Therefore :

1L ™
Es(l) IIlpi

where p, is the biggest prime number smaller or equal to n.

There are the inequalities :

_ - ) _ 1 1 1
S= 2 5550) 5m - 50) T SO0 T Sases® Tt
+ 1 4ot 242 4
S(2)S(3)---S(k) 2 23 2-3-5 2-3-5-7
2 g Pt TP (8)

235711 T Y P px

Using the inequality pips---px > Ppi» (V)k = 5[2], we obtain :
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+L+ - e 1 + e (9)

=

] 1 ] 1
S<-+=+—+ —
AR RRERRTTRNYaS Pret
WenoteP=%+lz+~-- andobservethatP<L+L+L+
Ps D3 132 142 152
It results :
n_z_( S U SRS B
P< 6 1 c 22 32 -+ 122/
where
n? _ 1 1 ]
?-l+-2—2+3—2+4—2+--- (EULER).
Introducing in (9) we obtain :
r.1,1 .2 = _,_1_1_ _ 1
S<2*3*T5 105t " 1m3r 3 127

Estimating with an approximation of an order not more than Il? we find :

0,71 <3 1

= S@SG)--- s 1,01. (10)

The Proposition 3 is proved.
Remark. Giving up at the right increase from the first terms in the inequality (8) we can

obtain a better night framing :

3 )
gz S(2)S(3)--- S(n) <0,97. (1)

Proposition 4. Let o be a fixed real number, ¢ > 1. Then the series

na
) S(2)SG)---5(m) 1s convergent (fourth constant of Smarandache) .

=2

Proof. Be (p, ), ,, the sequence of prime numbers. We can write :
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28 _ 2% _ e
S(2) 2
3@ 3¢

S(2)S(3) ~ PPz

4% <4t p3
S(2)S(3)S(4) PPz " pip2

5a P L s
S(2)S(3)S(4)S(5) ~ P1P2P3 " PiP2p3

6° 6% Pe
S(2)S(3)S(4)S(5)S(6) - PiPzP3 ~ P1p2p3

na < na < p:-rl
S(2)S(3)---S(n)  P1P2---Px ~ PiPz2 - Px’

wherep, <n, 1€ {1, ...k}, p,., >n
Therefore
< n< a1 . (Pxs1 = Px) - p:-rl
% S@S6) - sm -2 2T
- a+l
<20l 4 3 Pin

%=1 PIP2-"Px’

Then it exists k, € N such that for any k > k, we have :

a+3

Pi1P2 -"Px > Pke+l -

Therefore

= ne = pen ]
a-i ——

% 5@ s@ <t & Eew &L
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100.

Because the series 2. ,] is convergent it results that the given series is convergent
k2ko Py

Consequence 1. It exists n, € N so that for each n 2 n, we have S(2)S(3) ... S(n) > n®.

a

Proof. Because lim

n .
= h
S()SG) - Sm) 0, there is n, € N so that

na

S(2)S(G)--- S(n)

<] foreachn 2 ng.

Consequence 2. It exists n, € N so that :

S(2) + SG3) +--- + S(n) > (@~ 1) - n=T for each n > no.

Proof. We apply the inequality of averages to the numbers S(2), S(3), ..., S(n) :

S(2) + SG) + - + S(n) > (n=1) ~YS2)SG)-—-S() > (n-1)n=T, Vn 2 no.
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A PARADOXICAL MATHEMATICIAN: HIS FUNCTION, PARADOXIST
GEOMETRY, AND CLASS OF PARADOXES

by Michael R. Mudge

Described by Charles T. Le, Bulletin of Numker Theory, vol.3, No.l,
March 1995,as "The most paradoxist mathematician of the world"”
FLORENTIN SMARANDACHE was born on December 107", 1954, in Balcesti
(a large village), Valcea, Romania of peasant stock. A very hard
and socially deprived childhood led to a period of eccentric
teenage behaviour, he was close to baing expelled from his high
school in Craiova for disciplinary reasons. Eventually, however,
a period of university studies, 1974-79, resulted in the recognition
of mathematical brilliance by the professor of algebra, Alexandru
Dincae+ Florentin generalised Euler‘’s Theorem froms

If (a,m) = 1, then ap(m) =1 (mod m) to,

If (a,m) = d, , then afs(ms + a) = a° (mod m) where mg divides

m and s is the number of steps to get mge ,

An industrial appointment from 1979 to 1981 was disastrous,

ending in dismissal for disciplinary reasons. In 1986 an apparently
successful teaching appointment was terminated by the Ceausescu
dictatorship and two years of unemployment followed. In 1988 an
illegal escape from Romania through Bulgaria resulted in two years
in a Turkish refugee camp, where much time was spent as a drunken
vagrant.

Many mathematicians and writers lobbied the United Nations
Commision for Refugees,based in Rome, and exile to the United
Stat2s followed in 1990, As a member of the American Mathsmatical
Society since 1992 and of the Romanian Scientists Association
(Bucharest) since 1393 and a reviewer for the Number Theory to
Zantralblatt fur Mathematik scores of publications and four
books bear the name of Smarandache, publishing in English, French

and his native Romanian. 129



The Smarandache function, S{(n), is defined for positive integer
argument only as the smallest integer such that S(n)! is divisible
by n: {the extension to other real/complex argument has not, yet,
been investigated).

The Smarandache Quotient, Q(n), is defined to be S(n)!/n.

Limited tabulation of both functions appears in The Encyclopedia
of Integer Sequences by N.J.A.Sloane & Simon Plouffe, Academic
Press, 1995. M1669 & M0453,
There exists an extensive literature dealing with properties
of these functions; "An Infinity of Unsolved Problems Concerning
a Function in Number Theory", Smarandache Function Journal,
vol.l., No.l, December 1990, ppl2 - 55, ISSN 1053-4732, Number
Theory Publishing Company, P.O. Box 42561, Phoenix, Arizona 85080,
USA providing an ideal starting point for interested readers.

A recent paper by Charles Ashbacher, Mathematical Spectrum,
1995/96, vol.28., No.l, pp20-21 addresses the question of when

the Smarandache Function satisfies a Fibonacci recurrence relation,
i.e. sS(n) = s(n~1) + S(n-2), Empirical evidence is for 'few’
occasions the largest known being n = 415664, Are there infitely many?

A Paradoxist Geometry. In 1969, at the age of 15, fascinated by

geometry, Florentin Smarandache constructed a partially Euclidean
and partially non—-Buclidean geometry in the same space by a
strange replacement of the Zuclid's £fifth postulate (the axiom of
paralells) with the following five-statement proposition:

a)there are at least a straight line and an extericr point to it in
this gspace for which only one line passes through the point and does
not intersect the initial 1ine;

b)there are at least a straight line and an extarior point to it

in this space for which only a finite number of lines, say k» 2,
pass through the point and do not intersect the initial line;
c)there ara at least a straight line and an exterior point to it

in this space for which any line that passes through the point

intersects the initial 1line;
d)there ar> at least a straight line and an ext=2rior point to it
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in this space for which an infinite number of lines that pass
through the point (but not all of them) do not intersect the
initial 1line;

e)there are at least a straight line and an exterior point to it
in this space for which any line that passess through the point
does not intersect the initial 1lina.

Does there exist a model for this PARADOXIST GEOMETRY? If not

can a contradiction be found using the above set of propositions
together with Euclid‘’s remaining Axioms?

Smarandache Classes of Paradoxes. Contributed by Dr.Charles T.Le,
Erhus University, Box 10163, Glendale, ARIZONA 85318, USA.

Let @ be an attribute and non-@ its negation.

Thus if @ means °possible’ then non-@ means °impossible‘.

The original set of Smarandache Paradoxes are:

ALL is "®", THE "NON-@" TOO.

ALL IS "NON-@", THE "@" TOCO.

NOTHING IS "@", NOT EVEN "e~.

These three kinds of paradox are mutually equivalent and reduce tos
PARADOX: ALL (verb) "€", THE "NON-&" TOOC.

See Florentin Smarandache, “"Mathematical Fancies & Paradoxes", paper
presented at the Eugene Strens Memorial on Intuitive and Recreational
Mathematics and its History, University of Calgary, Albarta,

Canada, July 27 - August 2, 1986.

8/10/95
Further Reading:
Only Problems, Not Solutions!, Plorentin Smarandache, Xiquan
Publishing House, 1993 (fourth edition), ISBN- 1-879585-00-6.
Some Notions and Questions in Number Theory, C.Dumitrescu & V.Seleacu,

Ehrus University Press, Glendale,1994, ISBN 1-879585-48-0.
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Smarandache - Fibonacci Triplets

H. Ibstedt

We recall the definition of the Smarandache Function S(n):

S(n) = the smallest positive integer such that S(n)! is divisible by n.
and the Fibonacci recurrence formula:

F,=F_,+F_, (=2
which for F; = F, = 1 defines the Fibonacci series.
This article is concerned with isolated occurrencies of triplets n, n-1, n-2 for which
S(n)=S(n-1)+S(n-2). Are there infinitly many such triplets? Is there a method of finding
such triplets that would indicate that there are in fact infinitely many of them.
A straight forward search by applying the definition of the Smarandache Function to
consecutive integers was used to identify the first eleven triplets which are listed in table 1.
As often in empirical number theory this merely scratched the surface of the ocean of
integers. As can be seen from diagram 1 the next triplet may occur for a value of n so large

that a sequential search may be impractical and will not make us much wiser.

Table 1. The first 11 Smarandache-Fibonacci Triplets

# n S(n) S(n-1) S(n-2)
1 11 11 5 2*3
2 121 2*11 5 17
3 4902 43 29 2*7
4 26245 181 18 1
5 32112 223 197 2*13
6 64010 173 2*23 127
7 368140 233 241 151
8 415664 313 2*73 167
9 2091206 269 2*101 67
10 2519648 1109 2*101 907
11 4573053 569 2*53 463

However, an interesting observation can be made from the triplets already found. Apart
from n=26245 the Smarandache-Fibonacci triplets have in common that one member is two
times a prime number while the other two members are prime numbers. This observation
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Smarandache-Fibonacci Triplets. H. Ibstedt

Diagram1.

The vaiues of n for which the first 11
Smarandache-Fibonacci triplets occur

n
(Millions)
)

(3]

1 2 3 4 5 6 7 8 9 10 11
Solution number

leads to a method to search for Smarandache-Fibonacci triplets in which the following two
theorems play a role:

L If n=ab with (a,b)=1 and S(a)<S(b) then S(n)=S(b).
IL If n = p* where p is a prime number and a<p then S(p®)=ap.

The search for Smarandache-Fibonacci triplets will be restricted to integers which meet the
following requirements:

n = xp® with a<p and S(x)<ap (1)
n-1 = yq® with b<q and S(y)<bgq (2)
n-2 = zr° with c<r and S(z)<cr 3)

p,q and r are primes. We then have S(n)=ap, S(n-1)=bq and S(n-2)=cr. From this and by
subtracting (2) from (1) and (3) from (2) we get

ap = bq + cr (4)
xp*-yq® = 1 ©®)

yg* -z =1 (6)
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TABLE 2. Smarandache - Fibonacci Triplets.

# N S(N) S(N-1) S(N-2) t
1 4 4 * 3 2 0
2 11 11 5 ] 0
3 121 2 5 17 0
4 4902 43 29 14 -4
5 32112 223 197 26 -1
[ 64010 173 46 * 127 -1
7 368140 233 8 * 151 -1
8 415664 313 167 146 -8
9 2091206 269 202 * 67 -1
10 2519648 1109 202 * 907 0
n 4573053 569 106 * 463 -3
12 7783364 2591 202 * 2389 0
13 79269727 2861 2719 142 10
14 136193976 3433 554 * 2879 -1
15 321022289 7589 178 * 7N 5
16 445810543 1714 * 761 953 -1
17 559199345 1129 662 * 467 -5
18 670994143 6491 838 * 5653 -1
19 836250239 9859 482 * 9377 1
20 893950202 2213 2062 * 151 0
21 937203749 10501 10223 278 -9
22 1041478032 2647 1286 * 1361 -1
23 1148788154 2467 746 * 1721 3
24 1305978672 5653 1514 * 4139 0
25 1834527185 3671 634 * 3037 -5
26 2390706171 6661 2642 * 4019 0
27 2502250627 2861 2578 * 283 -1
28 3969415464 5801 1198 * 4603 -2
29 3970638169 2066 * 643 1423 -6
30 4652535626 3506 * 3307 199 0
3 6079276799 3394 * 2837 557 -1
32 6493607750 3049 1262 * 1787 5
33 6964546435 2161 1814 * 347 -4
34 11329931930 3023 2026 * 997 -4
35 11695098243 12821 1294 * 11527 2
36 11777879792 2174 * 1597 577 6
37 13429326313 4778 * 1597 3181 1
38 13849559620 6883 2874 * 4409 1
39 14298230970 2038 * 1847 191 7
40 14988125477 3209 2986 * 223 2
41 17560225226 4241 3118 * 1123 -2
42 18704681856 3046 * 1823 1223 4
43 23283250475 4562 * 463 4099 -10
44 25184038673 5582 * 1951 3631 -2
45 29795026777 11278 * 8819 2459 0
46 69481145903 6301 3722 * 2579 3
47 107456166733 10562 * 6043 4519 -1
48 107722646054 8222 * 6673 1549 -1
49 122311664350 20626 * 10463 10163 0
50 126460024832 6917 2578 * 4339 1
51 155205225351 8317 4034 * 4283 -5
52 196209376292 7246 * 3257 3989 -5
53 210621762776 6914 * 1567 5347 1
54 211939749997 16774 * 11273 5501 0
55 344645609138 7226 * 2803 4423 9
56 484400122414 16811 12658 * 4153 -1
57 533671822944 21089 18118 * 2971 0
58 620317662021 21929 20302 * 1627 0
59 703403257356 13147 10874 * 2713 -2
60 859525157632 14158 * 3557 10601 -5
61 8986068560813 19973 13402 * 6571 1
62 972733721905 10267 10214 * 53 -4
63 1185892343342 18251 12022 * 6229 -2
&4 1225392079121 12202 * 9293 2909 -4
65 1294530625810 17614 * 5807 11807 -3
66 1517767218627 11617 8318 * 3299 -8
67 1905302845042 22079 21478 * 601 -1
68 2679220490034 11402 * 7459 3943 1
69 3043063820555 14951 12202 * 2749 5
70 6098616817142 24767 20206 * 4561 2
71 6505091986039 31729 19862 * 11867 2
2 13666465868293 28099 16442 * 11657 7
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Smarandache-Fibonacci Triplets. H. Ibstedt

The greatest common divisor (p?, q°)=1 obviously divides the right hand side of (5). This
is the condition for (5) to have infinitely many solutions for each solution (p,q) to (4). These
are found using Euclid’s algorithm and can be written in the form:

X =Xy + q°, y =y, - pit (5)
where t is an integer and (x,Y,) is the principal solution.

Solutions to (5’) are substituted in (6’) in order to obtain integer solutions for z.

z = (yq" - 1)/r° (6)
Solutions were generated for (a,b,c)=(2,1,1), (a,b,c)=(1,2,1) and (a,b,c)=(1,1,2) with the
parameter t restricted to the interval -11< t< 11. The result is shown in table 2. Since the
correctness of these calculations are easily verfied from factorisations of S(n), S(n-1), and

S(n-2) these are given in table 3 for two large solutions taken from an extension of table 2.

Table 3. Factorisation of two Smarandache-Fibonacci Triplets.

n= 16,738,688,950,356 =2%331193:15,269* S(n)= 215,269
n-1= 16,738,688,950,355=51971,3991,7416,977 S(n-1)=" 6977

n-2= 16,738,688,950,354=27*19235331323.561 S(n-2)= 23,561
n=  19,448,047,080,036 =2%3%43%17,093’ S(n)= 217,093
n-1= 19,448,047,080,035=57193761761:17,027 S(n-1)= 17.027
n-2= 19,448,047,080,034=2971,6093,631:17,159 S(n-1)= 17.159

Conjecture. There are infinitely many triplets n, n-1, n-2 such that S(n)=S(n-1)+S(n-2).

Questions:

1. It is interesting to note that there are only 7 cases in table 2 where S(n-2) is two times
a prime number and that they all occur for relatively small values of n. Which is the next
one?

2. The solution for n=26245 stands out as a very interesting one. Is it a unique case or is
it a member of family of Smarandache-Fibonacci triplets different from those studied in this

article?

References:

C. Ashbacher and M. Mudge, Personal Computer World, October 1995, page 302.

M. Mudge, in a Letter to R. Muller (05/14/96), states that:
"John Humphries of Hulse Ground Farm, Little Faringdo,
Lechlade, Glovcester, GL7 3QR, U.K., has found a set of
three numbers, greater than 415662, whose Smarandache
Function satisfies the Fibonacci Recurrence, i.e.
S(2091204) = 67, S(2091205) = 202, S(2091206) = 269,
and 67 + 202 = 269.
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THE SOLUTION OF SOME DIOPHANTINE EQUATIONS
RELATED TO SMARANDACHE FUNCTION

by

-

Ion Cojocaru and Sorin Cojocaru

In the present note wesolve two diophantine eqations concerning the Smarandache
function.

First, we try to solve the diophantine eqation :
S =y (1

It is porposed as an open probiem by F. Smarandache in the work [1], pp. 38 (the

problem 2087).

Because S(1) = 0, the couple (1,0) is a solution of eqation (1). If x =1 and y 21, the
eqation there are no (1.y) solutions. So, we can assume that x > 2. It is obvious that the couple

(2,2) is a solution for the egation (1).

If we fix y = 2 we obtain the equation S(x°) = 2* . It is easy to verify that this eqation

has no solution for x € {3,4}, and for x 25 we have 2* > x* 25(x%), so 2* > S(x°). Consequently
for every x e N"\{2}, the couple (x,2) isn't a solution for the egation (1).
We obtein the equation S(2") = y°, y 23, fixing x = 2. It is know that for p = prime

number we have the ineqality:
S(p) sper 2

Using the inequality (2) we obtein the inequality S(2”) <2ey. Because y 23 implies y*>2y,
it results y">S(2") and we can assume that x 23 and y 23.
We consider the function f: [3,o]— RZ defined by f{x) =},— where y 2 5 is fixed.

This function is derivable on the considered interval, and fi(x) = LTy In the point
X, = % it is equal to zero, and f{x ) = f(l—:-y-) =y~ (iny)’.
Because y 2 3 it results that Iny > 1 and y* > I, so f{x) > 1. For x > x_, the function {'is

strict incresing, so f{x) > f{x ) > 1, that leads to y* > x” 2 S(x"), respectively y* > S(x*). For
x < x, the function fis strict decreasing, so f{x) > f{x_) > 1 that lands to y* > S(x"). There fore,

the only solution of the eqaution (1) aré the couples (1,0) and (2,2).
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SOLVING THE DIOPHANTINE EQUATION
x'-y* = S(x) (3)

It is obvious that the couples (1,1) is a solution of the egaution (3).

Because x’-y* = S(x) it results x = y (otherwise we have S(x)=0, i.e, x =1 = y). We
prove that the equation (3) has an unique solution.

Case]: x>y. Therefore it exists aeN" so x=y+a, (y+a)-y™ = S(y+a) or

Stv=2)

(I1+3y-y= - But (1+3) <e* Itresults e - y* > S‘—:,"-’ false inequality fory > e (e* - y*< 0
fory >e). Sowehavey=1o0ry=2 Ify =1 we have x-1 = S(x). In this situation it is
obvious that x is a compound number. If x = p}'py’...pa" is the factorization of x into prims
wich p, = p , a = 0, ij = Ln, then we have S(x) = max S(p;') = S(pt"), 1< e< r But, because
S(x) = S(pe") < peae < x -1 it results that S(x) < x - 1, that is fals.

Ify =2, we have x°* - 2* = S(x). For x 2 4 we obtein x* -.2* < 0, and for x € {2,3} there is
no solution.

Case II: x < y. Therefore it exists b > O such that y = x + b. Then we have
X (x+b)x=5(x), sox" - (1 + ) =< L <.

But, because (1 + )* < e” we obtain x” - €* < |, which is a false inequality for x>4. If
x =2, then 2 -y° = 2, an equation which fas no solution because 2’ - y* 2 7 fory 2 5.

If x = 3, then 3"-y’ = 3, an equation which has no solutions fory e {1.2,3}, because, if
y 24 itresults 37 -y’ 217.

Therefore the equation (3) admits an unique solution (1,1).

REFERENCES
[1] F. Smarandache : An infinity of unsolved problems concerning a Function in the
Number Theory ( Presented at the 14th American Romanian Academy Anual cOnvention, hoid
in Los Angeles, California, hosted by the University of Southern California, from Apnl 20 to
April 22, 1989 ).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CRAIOVA, CRAIOVA 1100, ROMANIA
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Problems
Edited by

Charles Ashbacher
Decisionmark
200 2nd Ave. SE
Cedar Rapids, 1A 52401
FAX (319) 365-5694
e-mail 71603.522@compuserve.com

Welcome to the inaugural version of what is to be a regular feature in Smarandache
Notions! Our goal is to present interesting and challenging problems in all areas and at all
levels of difficuity with the only limits being good taste. Readers are encouraged to submit
new problems and solutions to the editor at one of the addresses given above. All solvers
will be acknowledged in a future issue. Please submit a solution along with your proposals
if you have one. If there is no solution and the editor deems it appropriate, that problem
may appear in the companion column of unsolved problems. Feel free to submit computer
related problems and use computers in your work. Programs can also be submitted as part
of the solution. While the editor is fluent in many programming languages, be cautious in
submitting programs as solutions. Wading through several pages of obtuse program to
determine if the submitter has done it right is not the editors idea of a good time. Make
sure you explain things in detail.

If no solution is currently available, the problem will be flagged with an asterisk*. The
deadline for submission of solutions will generally be six months after the date appearing
on that issue. Regardless of deadline, no problem is ever officially closed in the sense that
new insights or approaches are ailways welcome. If you submit a problem or solution and
wish to guarantee a reply, please include a self-addressed envelope or postcard with
appropriate stamps attached. Suggestions for improvement or modification are also
welcome at any time. All proposals in this initial offering are by the editor.

The Smarandache function S(n) is defined in the following way

Forn > 1, S(n) = mis the smallest nonnegative integer such that n evenly divides
m factonal.

New Problems
1) The Euler phi function ¢(n) is defined to the number of positive integers not exceeding
n that are relatively prime to n.

a) Prove that there are no solutions to the equation
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¢(S(m)) = n
b) Prove that there are no solutions to the equation
S(¢(n)) = n
c) Prove that there are an infinite number of solutions to the equation
n-¢(S(n)) =1
d) Prove that for every odd prime p, there is a number n such that
n - ¢(S(n)) = p+l
2) This problem was proposed in Canadian Mathematical Bulletin by P. Erdos and was
listed as unsolved in the book Index to Mathematical Problems 1980-1984 edited by
Stanley Rabinowitz and published by MathPro Press.
Prove that for infinitely many n
$(n) < ¢(n - $(n)).

3) The following appeared as unsolved problem (21) in Unsoived Problems Related To
Smarandache Function, edited by R. Muller and published by Number Theory
Publishing Company.

Are there m,n k non-null positive integers, m,n # 1 for which
S(mn) = m* * S(n)?

Find a solution.
4) The following appeared as unsolved problem (22) in Unsolved Problems Related to
Smarandache Function, edited by R. Muller and published by Number Theory
Publishing Company.

Is it possible to find two distinct numbers k and n such that

logsny S(n¥)
is an integer?

Find two integers n and k that satisfy these conditions.
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5) Solve the following doubly true Russian alphametic

IBA 2

IBA 2

TPU 3
CEMb 7

where 2 divides ZIBA, 3 divides TPV and 7 divides CEMBE.
Can anyone come up with a similar Romanian alphametic?
6) Prove the Smarandache Divisibility Theorem
If a and m are integers and m > O, then
(a™-a)m-1)!
is divisible by m.

Which was problem (126) in Some Notions and Questions in Number Theory,
published by Erhus University Press.

7)LetD=1{0,12,3,4,56,7,8,9 }. Forany number 1 < n < 10, we can take n unique
digits from D and form a number, leading zero not allowed. Let P, be the set of all
numbers that can be formed by choosing n unique digits from D. If 1 is not considered
prime, which of the sets P, contains the largest percentage of primes?

This problem is similar to unsolved problem 3 part (a) that appeared in Only Problems,
Not Solutions, by Florentin Smarandache.

*8) The following four problems are all motivated by unsolved problem 3 part (b) that
appeared in Only Problems, Not Solutions, by Florentin Smarandache.

a) Find the smallest integer n such that n! contains all 10 decimal digits.
b) Find the smallest integer n such that the n-th prime contains all 10 decimal digits.
c) Find the smallest integer n such that n contains ail 10 decimal digits.

d) Find the smallest integer n such that n! contains one digit 10 times. What is that digit?
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PROPOSED PROBLEMS

by

M. Bencze

(i) Solve the following equations:
1) S*x)+S*(y)=S(@ ., keZ x,y,z€eZ
where S' is the Smarandache function and S(-n) = -S(n)

4 1 1 1

D575 sy s "
5_ 1 1 1

3) H—S(x)+S(y)+S(z)’ n>35

4) S5 (x) = S*¥(y)
5) S(éx x:) = S“(E:‘.l xk) , UeZ
6) S(x) - S'(2) = §" (x-2)
7 $sox)= TSPy
k=1 k=n
8) 25(x')- S (y)=1

9 S(x+§+z) N S(x)+ S(3y)+ S(2) _ _g_[s(_x-;_y) +S(_y_;_z) +S(£¥)}

10) S(x1') - S(x37) ... S(xa*) = S(x,31)

11) (12 - S(x57) ... S(x5y) = S(xa")

12) S(x) = u (y) , where p is the Mébius function
13)$2Qu) = X .. X HHQ)

Qa11Qo Q1Q; QlQ:

14) S(x)=B, , where B, is a Bernouili number
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(i)

(iii )

(iv)

(v)

(vi)

(vii)

( viii )

15) S(x+y) ( S(x) - S(y) ) = S(x-y) ( S(x) + S(y) )
16) S(x) =F, , whereF, is a Fibonacci number

17);21 S(KP) = ilsp(k)

k=

$ s - (20

k=1

18)

19)2 S(k?) = S(n(m- 123(2n+ l))

2 _ o[n2(m+1)?
20)k2=:l S(k3) = s(——————4 }
21) 3 k(SK)) = (S +1))! -1

k=1

2 1 _ _S(n)
22)?::, SK)Sk+1)  Sh+1)

Solve the system

S(x) + S(y) = 25(2)
S(x) - S(¥) = $*(2)

Find n such that n divides the sum
136D £ 250+ (=10 + 1
May be writen every positive integer n as
n=Sx)+28(y)3S(z) ?

Prove that

[S(x) + S(y) + S@)! + ISX)| + IS(y)| + IS(2)| =

> IS(x) + S(YI + IS(y) + S@)I +1S(2) + S(x)|
forall x,y,z e Z

Find all the positive integers x, y, z for which

(x+y+z) + S(x) + S(y) + 8(z) 2 S(x+y) + S(y+2) + S(z+x)

There exists an infinity of prime numbers which may be writen under the form

P=S (x)+S(y)+S*@) +S(t) ?

LetM,, M,, ..., M, be finite sets and a; =card(M; n M;), b; = S(a;). Prove that

det(a;) 20 and det(b,)20.
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( 1x ) Find the sum

)RS YD)

QilQa  Ql0s Qe SEQ1)

( x) Prove that

- . - t. al
Z:. S2(K) - S(k) 1s Iration

(xi) Find all the positive integers x for which
T x* -1 D [ ]
S\ (n+D(x-1) J —S( )
where [x] is the integer part of x.
(xii) There exists at lest a prime between S(n)!, and S(n+1)! ?

(xiii) Ifo e S, is a permutation, prove that

3otk o(k) >3 L

k=1 S™(K) k=1 kK

Current address:

RO - 2212 Sacele
Str. Harmanului, 6
Jud. Brasov, ROMANIA
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PROPOSED PROBLEM*

by
I. M. Radu

Show that (except for a finite set of numbers) between S(n) and S(n+1) there exist at
least a prime number. (One notes by S(n) the Smarandache Function: the smallest integer such
that S(n)! is divisible by n.)

If N(n) denotes the number of primes between S(n) and S(n+l), calculate an
asymptotic formula for N (n).

Some comments:

If n or n+1 is prime, then S(n) or S(n+1) respectively is prime. And the above
conjuncture is solved.

But I was not able to find a general proof It might be a useful thing to apply the
9
8
Bertrand Postulate / Tchebychev Theorem (between n and 27 there exist at least a prime)

The last question may be wnting as

Brensch Theorem (if n > 48, then there exist at least a prime between n and n), in stead of

N,(n) = [TI(S(n + 1)) -TISM)] ,

where I1(x) is the number of primes < x,
but how can we compose the function ITand S ?

References:

[1] Dumitrescu Constantin, "The Smarandache Function”, in "Mathematical Spectrum”,
Sheffield, Vol. 29, No. 2, 1993, pp. 39-40.

[2] Ibstedt Henry, "The F. Smarandache Function S(n): programs, tables, graphs,
comments", in "Smarandache Function Journal”, Vol. 2-3, No. 1, 1993, pp. 38-71.

*Charles Ashbacher (U.S.A.), using a computer program that computes the values of S(n) conducted a
search up through n<1,033,197 and found where there is no prime p, where S(n)<p<S(n+1). They are
as follows:

n=224 and S(n) =8, S(n+1)=10

n = 2057 and S(n) =22, S(n+1)=21

n= 265225 and S(n) = 206, S(n+1) =202

n = 843637 and S(n) = 302, S(n+1) = 298
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PROPOSED PROBLEMS

by
M. R. Mudge

Problem 1:

The Smarandache no prime digits sequence is defined as follows:
1,4,6,8,9,10,22,1,1,14,1,16,1,18,19,0,1,4,6,8,9,0,1,4,6,8,9,40,41,
42,4,44,4,46,4,48,49,0,...

(Take out all prime digits of n.)
Is it any number that occurs infinetely many times in this sequence?
(for example 1, or 4, or 6, or 11, etc.).

Solution by Dr. Igor Shparlinski,
School of MPCE
Macquarie University
NSW 2109, Australia
Office E6A 374
Ph. [61-(0)2] 850 9574
FAX [61-(0)2] 850 9551
e-mail: igore@mpce.mg.edu.au
http: //www-comp.mpce.mg.edu.au/ igor

It seems that: if, say n has already occured,-then for example

n3, n33, n333, etc. gives an infinitely many repetitions of this
number.

Problem 2:

The Smarandache no square digits sequence is defined as follows:
2,3,5,6,7,8,2,3,5,6,7,8,2,2,22,23,2,25,26,27,28,2,3,3,32,33,3,35,
36,37,38,3,2,3,5,6,7,8,5,5,52,52,5,55,56,57,58,5,6,6,62, ...

(Take out all square digits of n.)

Is it any number that occurs infinetely many times in this sequence?
(for example 2, or 3, or 6, or 22, etc. ?)

Solution by Carl Pomerance (E-mail: carl@alpha.math.uga.edu) :
If any number appears in the sequence, then clearly it occurs
infinitely often, since if the number that appears is k, and it

comes from n by deleting square digits, then k also comes from
10n.

Problem 3:

How many regions are formed by joining, with straight chords, n point
situated regularly on the circumference of a circle ?

The degeneracy from the maximum possible number of regions for n
points on the circumference of a circle seems aimost intractable in general.

Perhaps the use of regularly distributed point, i.e. separated by 27“ radians,
produces the Smarandache Portions of Pi (e) !!
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Unsolved Problems
Edited by

Charles Ashbacher
Decisionmark
200 2nd Ave. SE
Cedar Rapids, IA 52401
FAX (319) 365-5694
e-mail 71603 .522@compuserve.com

Welcome to the first installment of what is to be a regular feature in Smarandache
Notions! In this column, we will present problems where the solution is either unknown or
incomplete. This is meant to be an interactive endeavor, so input from readers is strongly
encouraged. Always feel free to contact the editor at any of the addresses given above. It
is hoped that we can together advance the flow of mathematics in some small way. There
will be no deadlines here, and even if a problem is completely solved, new insights or more
elegant proofs are always welcome. All correspondents who are the first to resolve any
issue appearing here will have their efforts acknowledged in a future column.

While there will almost certainly be an emphasis on problems related to Smarandache
notions, it will not be exclusive. Our goal here is to be interesting, challenging and maybe
at times even profound. In modern times computers are an integral part of mathematics
and this column is no exception. Feel free to include computer programs with your
submissions, but please make sure that adequate documentation is included. If you are
someone with significant computer resources and would like to be part of a collective
effort to resolve outstanding problems, please contact the editor. If such a group can be
formed, then sections of a problem can be parceled out and all those who participated will
be given credit for the solution.

And now, it is time to stop chatting and get to work!

Definition of the Smarandache function S(n):

S(n) = m, smallest positive integer such that m! is evenly divisible by n.
In[1], T. Yau posed the following question:

For what triplets n, n+1, and n+2 does the Smarandache function satisfy the Fibonacci
relationship

S(n) + S(n+1) = S(n+2)?

And two solutions
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S(9) + S(10) =S(11);  S(119) + §(120) = S(121)
were given.
In [2], C. Ashbacher listed the additional solutions

S(4900) + S(4901) = S(4902); S(26243) + S(26244) = S(26245);
S(32110) + S(32111) = S(32112) ; S(64008) + S(64009) = S(64010);
S(368138) + S(368139) = S(368140) ; S(415662) + S(415663) = S(415664)

discovered in a computer search up through n = 1,000,000. He then presented arguments
to support the conjecture that the number of solutions is in fact infinite.

Recently, Henry Ibstedt from Sweden sent a letter in response to this same problem
appearing in the October issue of Personal Computer World. He has conducted a more
extensive computer search, finding many other solutions. His conclusion was, "This study
strongly indicates that the set of solutions is infinite." The complete report has been
submitted to PCW for publication.

Another problem dealing with the Smarandache function has been given the name Radu's
problem, having been first proposed by I. M. Radu[3].

Show that, except for a finite set of numbers, there exist at least one prime number
between S(n) and S(n+1).

Ashbacher also dealt with this problem in [2] and conducted another computer search up
through n = 1,000,000. Four instances where there are no primes between S(n) and
S(n+1) were found.

n=224=2%2%2*2%2*7 S(n)=8 n+l=225=23%*3*5*5 §(225)=10
n=2057=11*11%17 S(n)=22 n+1=2058 = 2*3*7*7*7 $(2058) = 21
n= 265225 = 5*5*103*103 S(n) =206 n+1 = 265226 =2%13*101*101
S(265226) = 202
n= 843637 = 37*151*151 S(n) =302 n+1 = 843638 = 2*19*149*149
S(843638) = 298

The fact that the last two solutions involve the pairs of twin primes (101,103) and
(149,151) was one point used to justify the conjecture that there is an infinite set of
numbers such that there is no prime between S(n) and S(n+1).

Ibstedt also extended the computer search for solutions and found many other cases
where there is no prime between S(n) and S(n+1). His conclusion is quoted below.

"A very large set of solutions was obtained. There is no indication that the set would be
finite."
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This conclusion is also due to appear in a future issue of Personal Computer World.
The following statement appears in [4].

11416 = 745 + 234° + 4028 + 474 + 7026 + 894% +1077°

This is the smallest known solution for 6th power as the sum of 7 other 6th powers.

Is this indeed the smallest such solution? No one seems to know. The editor would be
interested in any information about this problem. Clearly, given enough computer time, it
can be resolved. This simple problem is also a prime candidate for a group effort at
resolution.

Another related problem that would be also be a prime candidate for a group effort at
computer resolution appeared as problem 1223 in Journal of Recreational

Mathematics.

Find the smallest integer that is the sum of two unequal fifth powers in two different
ways, or prove that there is none.

The case of third powers is well known as a result of the famous story concerning the
number of a taxicab '

1729 = 13 + 123 = 9* + 10
as related by Hardy[4].
It was once conjectured that there might be a solution for the fifth power case where the
sum had about 25 decimal digits, but a computer search for a solution with
sum < 1.02 x 10? yielded no solutions[5].
Problem (24) in [6] involves the Smarandache Pierced Chain(SPC) sequence.
{ 101, 1010101, 10101010101, 101010101010101, . .. }

or

SPC(n) =101 * 1 0001 0001 ...0001

| -1
where the section in | ---- | appears n-1 times.

And the question is, how many of the numbers
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SPC(n) / 101 are prime?

It is easy to verify that if n is evenly divisible by 3, then the number of 1's in SPC(n) is
evenly divisible by 3. Therefore, so is SPC(n). And since 101 is not divisible by 3, it
follows that

SPC(n)/ 101

must be divisible by 3.

A simple induction proof verifies that SPC(2k)/101 is evenly divisible by 73 for
k=123 ...

Basis step:

SPC(2)/101 = 73*137
Inductive step:

Assume that SPC(2k)/101 is evenly divisible by 73. From this, it is obvious that 73
divides SPC(2k). Following the rules of the sequence, SPC(2(k+1)) is formed by
appending 01010101 to the end of SPC(2k). Since

01010101/ 73 = 13837
it follows that SPC(2(k+1)) must also be divisible by 73.

Therefore, SPC(2k) is divisible by 73 for all k > 0. Since 73 does not divide 101, it
follows that SPC(2k) / 101 is also divisible by 73.

Similar reasoning can be used to obtain the companion result.
SPC(3 + 4k) is evenly divisible by 37 forallk > 0.

With these restrictions, the first element in the sequence that can possibly be prime when
divided by 101 is

SPC(5) =1010101010101010101.

However, this does not yield a prime as
SPC(5)=41* 101 * 271 * 3541 * 9091 * 27961.

Furthermore, since the elements of the sequence SPC(5k), k > 0 are made by appending
the string
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01010101010101010101 =41 * 101 * 271 * 3541 * 9091 * 27961

to the previous element, it is also clear that every number SPC(5k) is evenly divisible by
271 and therefore so is SPC(5k)/101.

Using these results to reduce the field of search, the first one that can possibly be prime is
SPC(13)/101. However,

SPC(13)/101 =53 * 79 * 521 * 859 * .
SPC(17)/101 is the next not yet been filtered out. But it is also not prime as
SPC(17)/101 =103 * 4013 * ...
The next one to check is SPC(29)/101, which is also not prime as

SPC(29)/101 =59 * 349 * 3191 * 16763 * 38861 * 43037 * 62003 * ..

SPC(31)/101 is also not prime as

SPC(31)/101 =2791 * ...

At this point we can stop and argue that the numerical evidence strongly indicates that
there are no primes in this sequence. The problem is now passed on to the readership to
perform additional testing or perhaps come up with a proof that there are no primes in this
sequence.
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Review of

Have Some Sums To Solve: The Compleat Alphametics Book, by Steven Kahan,
Baywood Publishing Company, Amityville, NY, 1978. 114 pp.(paper), $12.45 including
poastage, ISBN 0-89503-007-1.

At Last!! Encoded Totals Second Addition, by Steven Kahan, Baywood Publishing
Company, Amityville, NY, 1994. 122 pp.,(paper), $12.45 including postage,
ISBN 0-89503-171-X.

To many people, alphametics, problems where letters replace digits and those letters form

the words of a message, are enjoyable to do, but clearly restricted to the area known as
recreational mathematics. However, such an approach is simplistic. Solving a properly
constructed alphametic is an exercise in logic and basic number theory that forces the
solver to use many elementary rules of arithmetic and algebra if the solution is to be found
in a reasonable length of time.

Steven Kahan, the longtime editor of the Alphametics Column of Journal of
Recreational Mathematics, is clearly the leading expert on this form of problem and
these two books present many of his best efforts. The problems and messages are quite
good and detailed solutions to all problems are included.

For example, replace the letters of the following message with digits so that the addition
is correct

ROMANS
ALSO
MORE
OR
LESS
ADDED

b+ + 4+ 4

LETTERS

If you like logic puzzles or are a teacher looking for extra credit problems that involve
more complex, yet elementary mathematics, either or both of these books would be an
excellent solution to your problem.

Reviewed by
Charles Ashbacher
Decisionmark

200 2nd Ave. SE
Cedar Rapids, IA 52401
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Review of

Circles: A Mathematical View, by Dan Pedoe, The Mathematical Association of
America, Washington, D. C, 1995. 144 pp. $18.95(paper). ISBN 0-88385-518-6.

Although it is the simplest of all nonlinear geometric forms, the circle is far from trivial. It
is indeed a pleasure that The Mathematical Association of America chose to reprint an
update of this classic first printed in 1957. Geometry teaching has been in retreat for many
years in the US and that has been a sad (and very bad) thing. It is also puzzling as so
many people say that the reason why they cannot do mathematics (i.e. algebra) is that they
need to see something in order to understand it. Furthermore, the first mathematical
education most children receive contains the differentiation of shapes and their different
properties.

Circles and lines as used in geometry are abstractions that are easily grasped, much
simpler to many than the abstract generalizations of algebra. One can only hope that this
book signals a rebirth in interest in geometry education. Without question, it can be used
as a text for that education and would help parent a rebirth. To remedy this modern
affliction and make the matenal available to the current readership, a chapter zero was
included. This new chapter is used to introduce the background concepts and terminology
that could be assumed when it was first published.

No one can truly appreciate the intellectual achievements of the ancients as summarized
by Euclid without doing some of the problems. There is also a stark beauty to a form of
mathematics where the tools are a compass, straightedge and a mind. Particularly in the
age of calculators and computers. All of the basic, ancient, results concerning circles are
covered as well as some very recent ones. The theorems are well presented and complete
without being overdone. In keeping with the ancient traditions, pencil, paper, compass and
straightedge are the only tools used. A short collection of solved exercises is also
included.

Like the books of Euclid, this work will grow old but never dated. It was destined to be a
classic when it was first printed and remains so today.

From Erdos to Kiev: Problems of Olympiad Caliber, edited by Ross Honsberger, The
Mathematical Association of America, 1995. 250 pp., $31.00(paper). ISBN 0-88385-324-
8.

Mathematicians by definition have a love affair with good problems, and this is a
collection of the best. While designed to be at a level for mathematical olympiad use, all
mathematicians will find something in here that will stretch them. Some are at the level
where the solution requires a simple insight, but others may require reaching for your
thinking cap. However, all can be solved using arguments considered within the reach of
an olympic mathlete. Which is encouraging. It is nice to know that there are young people
who can do problems that force me to strain a few neurons. Solutions are included, most
of which were created by the editor. The problems are taken from geometry, number
theory, probability and combinatorics.

Another high quality entry in the series of problem books by Ross Honsberger, this is a
book for all mathematicians, potential olympiads to professionals.

Reviewed by
Charles Ashbacher
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Review of

An Introduction to the Smarandache Function, by Charles Ashbacher,
Erhus University Press, 1995, 60 pp. (paper), $7.95.
ISBN 1-879585-49-9

s slim volume patently lives up to its title. It does '
give zglintroduction tg the Smarandache function reaching from ;ts
definition all the way to an enumeration and brief discussion o
several unsolved problems. Theorems are_c%ear%y stated and p;oofs
are always supplied. However, the exposition is relatlve;y lively
and informal, lending to this book‘’s readability gnd brev;ty. One
could get an overview of the topic by skimming this book in an
hour or two, skipping the proofs and algorithmg. The more ’ '
diligent reader will spend considerably more time constructing his
own examples to illustrate the proofs and test the a;gorlthms.

Chapter one covers basics of the number theoretic Smaranqache
function, S(n), where n is a positive integer. Included are its
definition, 16 theorems and a ready-to-use C++ program for
computing values of this function. A background in Number Theory
is certainly helpful for approaching this topic, but not
absolutely necessary. Just in case, the chapter begins with a one
bage summary of the idea of divisibility and definitions of the
standard arithmetic functions f, s and t. It culminates with a
theorem characterizing the range of S(n). The author has
considerable experience in computer investigations of this and
other topics in number theory and recreational mathematics. In
addition to the C++ implementation, he has supplied a UBASIC
program, useful for handling extremely large numbers which surpass
the maximum allowable integer size of C++.

Chapter two takes up some deeper questions. Topics
include iteration and fixed points of the Smarandache function as
well as solutions of numerous equations such as the Fibonacci-like
relation S(n+2) = S(n+l) + S(n) . Various problems are presented
and solved. Many other, as yet unsolved, problems are presented.
In the latter case the author often furnishes a conjecture along
with helpful rationale. The reader is led to the jumping off
place, ready for his own foray into unresolved areas of
investigation. These conjectures and pPlausibility arguments are
clearly labelled as such and hence distinguishable from the
theorems and proofs with which they are interspersed.

This book is not without its niggling errors, mostly
typographical and obvious enough as to cause no serious confusion.
A few discrepancies in terminology and notation were also noted,
probably not uncommon in the literature pertaining to a mathematical
topic which is less than 20 years old. As Ashbacher notes in his
introductory material, the Smarandache function was created in the
1970’'s and first published in 1980. In this work, he has given us
a bibliography guiding us to works published in the intervening
years and provided a good roadmap taking us from the beginnings to
the current state of knowledge of his topic.

Reviewed by

Lamarr Widmer

Associate Professor of Mathematics
Messiah College, Grantham, PA 17027
E-mail: widmer@mcis.messiah.edu .
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