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Smarandache Sequences: Explorations and
Discoveries with a Computer Algebra System
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Technology and Manag. School Department of Mathematics
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Abstract

We study Smarandache sequences of numbers, and related problems,
via a Computer Algebra System. Solutions are discovered, and some
conjectures presented.
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2-subtractive/3-3-additive relationship, Smarandache partial perfect additive
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1 Introduction

After a good look on the Mathematics Unlimited—2001 and Beyond [5], which
addresses the question of the future of Mathematics in the new millennium, it
is impossible not to get the deep impression that Computing will be an integral
part of many branches of Mathematics. If it is true that in the XXst century
Mathematics has contributed, in a fundamental way, to technology, now, in the
XXIst century, the converse seems to be also a possibility. For perspectives on
the role of Computing in Mathematics (and the other way around) see (2, 4, 9].

Many powerful and versatile Computer Algebra Systems are available nowa-
days, putting at our disposal sophisticated environments of mathematical and
scientific computing. They comprise both numerical and symbolic computation
through high-level and expressive languages, close to the mathematical one. A
large quantity of mathematical knowledge is already available in these scientific
systems, providing eflicient mathematical methods to perform the desired cal-
culations. This has two important implications: they spare one a protracted



process of programming and debugging, so common to the more conventional
computer languages; they permit us to write few lines of code, and simpler pro-
grams, more declarative in nature. Qur claim is that explorations with such
tools can develop intuition, insight, and better qualitative understanding of the
nature of the problems. This can greatly assist, the proof of mathematical results
(see an example in Section § 2.1 below).

It is our aim to show that computer-assisted algebra can provide insight and
clues to some open questions related to special sequences in Number Theory.
Number Theory has the advantage of being easily amenable to computation
and experimentation. Explorations with a Computer Algebra System will allow
us to produce results and to formulate conjectures., We illustrate our approach
with the mathematics Maple system (all the computational processing was car-
ried with Maple version &, on an AMD Athlon(TM) 1.66 GHz machine), and
with some of the problems proposed by the Romanian mathematician Florentin
Smarandache.

Maple was originated more than two decades ago, as a project of the Sym-
bolic Computation Group of the University of Waterloo, Ontario. It is now a
registered trademark product of Waterloo Mapile Inc. We refer the reader to
(19, 13] for a gentle introduction to.Maple. For a good account on the Smaran-
dache collection of problems, and for a biography of F. Smarandache, see [10].

We invite and exhort readers to convert our mathematical explorations in
the language of their favorite Computer Algebra System; to optimize the algo-
rithms (we have followed the didactic approach, without any attempt of code
opiimization}; and to obtain the results for themselves. The source be with you.

2 Smarandache Digital Subsequences

We begin by considering sequences of natural numbers satisfying some given
property together with all their digits.

2.1 Smarandache p-digital subsequences

We are interested in the following Smarandache p-digital subsequences. Let
p = 2. From-the sequence {n”}, n € Ny, we select those terms whose digits
are all perfect p-powers. For p = 2 we obtain the Smarandache square-digitol
subsequence: we select, only those terms of the sequence {ng}:;o whose digrts
belong to the set {0,1,4,9}. With the Maple definitions

> pow := (n,p) -> seq(i”p,i=0..n):

> perfectPow := (n,p) => evalb(n = iroot(m,p)~p):

> digit := (a,num) > irem{iquo(mum,10" (length(num)-n)) ,10);

> digits := n ~> map(digit, [$1. -length(n)],n):

> digPerfectPow :=

>  (a,p) ~> evalb(select (perfectPow,digits(n),p) = digits(n)):

the Smarandache square-digital subsequence is easily obtained:



> s8ds := n -> selact(digPerfectPow, [pow(n,2)],2):

We now ask for all the terms of the Smarandache square-digital subsequence
which are less or equal than 10000%:

> ssds(10000);

[0,1,4,9, 49,100, 144, 400, 441, 900, 1444, 4900, 9409, 10000, 10404, 11449,
14400, 19044, 40000, 40401, 44100, 44944, 90000, 144400, 419904, 490000,
491401, 904401, 940900, 994009, 1000000, 1004004, 1014049, 1040400,
1100401, 1144800, 1440000, 1904400, 1940445, 4000000, 4004001, 4040100,
4410000, 4494400, 9000000, 9909904, 9941409, 11909401, 14010049, 14040009,
14440000, 19909444, 40411449, 41990400, 49000000, 49014001, 49140100,
49999041, 90440100, 94090000, 94109401, 99400900, 99940009, 100000000)]

In [3, 18] one finds the following question:

“Disregarding the square numbers of the form N x 10%, k¢ N,
N also a perfect square number, how many other numbers belong
to the Smarandache square-digital subsequence?”

From the obtained 64 numbers of the Smarandache square-digital subsequence,
one can see some interesting patterns from which one easily guess the answer.

Theorem 1. There exist an infinite number of terms on the Smarandache
square-digital subsequence which are not of the form N x 10%, keN, Na
perfect square number.

Theorem 1 is a straightforward consequence of the following Lernma.

Lemma 2. Any number of the form (10’“‘l -+ 4) X105+ 14 ke N, (144, 10404,
1004004, 100040004, ...), belong to the Smarandache square-digital subsequence.

Proof. Lemma 2 follows by direct calculation:
(10%+F1 +2)7 = (105! 4 4) x 105+ 4 4.
|

We remark that from the analysis of the list of the first 64 terms of the
Smarandache square-digital subsequence, one easily finds other possibilities to
prove Theorem 1, using different but similar assertions than the one in Lemnma 2.
For example, any number of the form (10+2 4 14) x 105+2 449, k € N, (11449,
1014049, 100140049, ...), belong to the Smarandache square-digital subsequence:

(10%+2 £ 7)" = (105+2 - 14) x 10¥+2 4 49.

Other possibility, first discovered in [12], is to use the pattern (4 x 1051 1 4) x
L10%*1 41, k & Np (441, 40401, 4004001, ...), which is the square of 2 x 105+ +1.
Choosing p = 3 we obtain the Smerandache cube-digital subsequence,



> scds := n -> select(digPerfectPow, [pow(n,3)],3):

Looking for all terms of the Smarandache cube-digital subsequence which are
less or equal than 10000° we only find the trivial ones:

> scds(10000);

[0, 1, 8,1000, 8000, 1000000, 8000000, 1000000000, 8000000000, 1000000000000]

We offer the following conjecture:

Conjecture 3. All terms of the Smarandache cube-digital subsequence are of
the form D x 10 where D € {0,1,8} and k € Ny.

Many more Smarandache digital subsequences have been introduced in the
literature. One good example is the Smarandache prime digital subsequence,
defined as the sequence of prime numbers whose digits are all primes (see [18]).

Terms of the Smarandache prime digital subsequence are easily discovered
with the help of the Maple system. Defining

> primeDig := n -> evalb(select(isprime,digits(n)) = digits(n)):
> spds := n -> select(primeDig, [seq(ithprime(i),i=1..0)]):

we find that 189 of the first 10000 prime numbers belong to the Smarandache
prime digital subsequence:

> nops(spds(10000));

189

2.2 Smarandache p-partial digital subsequences

The Smarandache p-partial digital subsequence is defined by scrolling through
a given sequence {an}, n > 0, defined by some property p, and selecting only
those terms which can be partitioned in groups of digits satisfying the same
property p (see [3}]). For example, let us consider {a,} defined by the recurrence
relation a, = ap_; + apn_2. One gets the Lucas sequence by choosing the
initial conditions a9 = 2 and a, = 1; the Fibonaccs sequence by choosing ag =
0 and a; = 1. The Smarandache Lucas-partial digital subsequence and the
Smarandache Fibonacci-partial digital subsequence are then obtained selecting
from the respective sequences only those terms n for which there exist a partition
of the digits in three groups (n = g1g2¢3) with the sum of the first two groups
equal to the third one (g1 + ga == g3).
In (3, 17, 16] the following questions are formulated:

“Is 123 (1+2 = 3) the only Lucas number that verifies a Smaran-
dache type partition?”



“We were not able to find any Fibonacci number verifying a
Smarandache type partition, but we could not investigate large num-
bers; can you?”

Using the following procedure, we can verify if a certain number n fulfills
the necessary condition to belong to the Smarandache Lucas/Fibonacci-partial
digital subsequence, i.e., if n can be divided in three digit groups, gig2g3, with
gl4+gl=g3.

> spds:=proc(n)}

> local ndl, nd2, nd3, nd, gl, g2, g3:

> nd:=length(n);

> for nd3 to nd-2 do

> g3:=irem(n,107nd3);

> if length(g3)*2>nd then break; fij;

> for ndl from min(nd3,ud-nd3-1) by -1 to 1 do
> nd2:=nd-nd3-nd1;

> gl:=iquo(n,10" (nd2+nd3));

> g2:=irem(iquo{n, 10°nd3), 10°nd2);

> if g2>=g3 then break;fi;

> if gl+g2=g3 then printf("id (Ad+}d=)d)\n",n,gl,g2,g3);fi;
> od; .

>

>

Now, we can compute the first n terms of the Lucas sequence, using the
procedure below.

> lucas:=proc(m)

> local L, i:

> L:=[2, 1]:

> for i from 1 to n-2 do L:={L{J,L{i}+L[i+1]1]:0d:
> end proc:

With n = 20 we get the first twenty Lucas numbers

> lucas{20) :

(2,1,3,4,7,11,18,29,47,76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349]
Let L be the list of the first 6000 terms of the Lucas sequence:
> L:=lucas(6000):

(elapsed time: 1.9 seconds) !

It is interesting to remark that the 6000*" element has 1254 digits:

YThe most significant time calculations are shaowed, in order to give an idea about the
involved computation effort.



> length(L[6000]);

1254

The following Maple command permit us to check which of the first 3000
elements belong to a Sarandache Lucas-partial digital subsequence.

> map(spds, L{1..3000]):

123 (1+2=3)
20633239 (206+33=239)

(elapsed time: 7hS0m)

As reported in {15}, only two of the first 3000 elements of the Lucas sequence
verily a Smarandache type partition: the 11** and 36 elements.

> L(11], L{36];

123, 20633239

‘We now address the following question: Which of the next 3000 elements of
the Lucas sequence belong to a Smarandache Lucas-partial digital subsequence?

> map(spds, L[3001..6000]):
(elapsed time: 67h59m)

The answer turns out to be none: no number, verifying a Smarandache type
partition, was found between the 3001** and the 000" term of the Lucas se-
quence.

The same kind of analysis is easily done for the Fibonacci sequence. We compute
the terms of the Fibonacci sequence using the pre-defined function fibonaceci:

> with(combinat, fibonacci):
> [seq(fibonacci(i), i=1..20)];

[1,1,2,3,5,8,13, 21, 34,55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765)

Although the 6000** Fibonacci number is different from the 6000t" Lucas
number

> evalb{(fibonacci(6000) = L[6000]1):

false

they have the same number of digits

10



> length(fibonacci (6000)) ;

1254

In order to identify which of the first 3000 Fibonacci numbers belong to the
Smarandache Fibonacci-partial digital subsequence, we execute the following
short piece of Maple code:

> map{spds, [seqg{(fibonacci(i), i=1..3000)1):
832040 (8+32=040)
(elapsed time: 8h32m)

This is in copsonance with the result reported in [13]: only one number,
among the first 3000 numbers of the Fibonacci sequence, verifies a Smarandache
type partition — the 30** one.

> fibonacci(30);

832040

As before, with respect to the Lucas sequence, we now want to know which
of the next 3000 numbers of the Fibonacci sequence belong to the Smarandache
Fibonacci-partial digital subsequence,

> map(spds, [seq(fibonacci(i), i=3001..6000)1):
(elapsed time: 39h57m)

Similarly to the Lucas case, no number, verifying a Smarandache type par-
tition, was found between the 3001*" and the 6000t" term of the Fibonacci
sequence,

3 Smarandache Concatenation-Type Sequences

Let {an}, n € N, be a given sequence of numbers. The Smarandache concabe-
nation sequence agsociated to {an} is a new sequence {s,} where s, is given
by the concatenation of all the terms aq, ..., @,. The concatenation operation
between two nurobers o and b is defined as follows:

> conc := {a,b} -> ax10"length(b)+b:

In this section we consider four different Smarandache concatenation-type sub-
sequences: the odd, the even, the prime, and the Fibonacci one.

i1



> oddSeq =1n -> select(type, [seq(d,i=1..n)],0dd):
> evenSeq := n -> select(type, [seq(i,i=1..n)],even):
> primeSeq := n -> [seq(ithprime(i),i=1..n)]:

> with(combinat, fibomacci):

> fibSeq := n —> [seq(fibonacci(i),i=1..n)]:

> # ss = Smarandache Sequence

> ss := proc(F,n)

> local L, R, i:

> L := F(n):

> R := array(l..nops{L)): R[1] := L[1]:

> for i from 2 while i <= mops(L) do

> R{i] :=conc(R{i~1],L[il):

> end do:

>  evalm(R):

> end proc:

Just to illustrate the above definitions, we compute the first five terms of the
Smarandache odd, even, prime, and Fibonacci sequUences:

> ss(oddSeq,10);

[1,13,135,1357, 13579
> ss(evenSeq,10);

2,24, 246, 2468, 246810)

> ss(primeSeq,5);

[2,23,235,2357,23571H
> s5(fibSeq,5);

[1,11,112,1123,11235)

Many interesting questions appear when one try to find numbers among the
terms of a Smarandache concatenation-type sequence with some given property.
For example, it remains an open question to understand how many primes are
there in the odd, prime, or Fibonacci sequences. Are they infinitely or finitely in
number? The following procedure permit us to find prime numbers in a certain
Smarandache sequence.

’

> ssPrimes := proc(F,n)

> local ar, i:

> ar := select(isprime,ss(F,n)):
>  convert{ar,list):

> end proc:

12



There are five prime numbers in the first fifty terms of the Smarandache odd
sequence;

> nops (ssPrimes(oddSeq, 100));

5

five prime numbers in the first two hundred terms of the Smarandache prime
sequence; )

> nops (ssPrimes(primeSeq,200));

5

and two primes (11 and 1123) in the first one hundred and twenty terms of the
Smarandache Fibonacel sequence. '

> ssPrimes (fibSeq, 120);

[11,1123]

It is clear that only the first term of the Smarandache even sequence is prime.
One interesting question, formulated in {1, Ch. 2], is the following:

“How many elements of the Smarandache even sequence are twice
a prime?”

A simple search with Maple shows that 2468101214 is the only number twice a
prime in the first four hundred terms of the Smarandache even sequence (the
term 400 of the Smarandache even sequence is a number with 1147 decimal
digits}.

> ssTwicePrime := proc(n)

> local ar, i:

> ar := select(i—>isprime(i/2),ss(evenSeq,n)):
> convert(ar,list):

> end proc:,

> ssTwicePrime (800);

(2468101214]

4 Smarandache Relationships

We now consider the so called Smarandache function. This function S(n) is
important for many reasons (cf. [10, pp. 91-92]). For example, it gives a
necessary and sufficient condition for a number to be prime: p > 4 is prime if,
and only if, 5(p) = p. Smerandache numbers are the values of the Smarandache
function.

N

13



4.1 Sequences of Smarandache numbers

The Smarandache function is defined in [16] as follows: S{n) is the smallest
positive integer number such that S(n)! is divisible by n. This function can be
defined in Maple by the following procedure:

> S:=proc(n)

> local i, fact:
> fact:=1:

> for i from 2 while irem(fact, n)<>0 do
> fact:=fact#*i:
> od:

> return i-1:
> end proc:

The first terms of the Smarandache sequence are easily obtained:

> seq(S(n),n=1..20),

1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5

A sequence of 2k Smarandache numbers satisfy a Smarandache k-k additive
relationship if

S(n)+S(n+1)+ - +S(n+k-1) = Sin+k)+Sn+k+1)+ -+ S(n+2k—1).

In a similar way, a sequence of 2k Smarandache numbers satisfy a Smarandache
k-k subtractive relationship if

S(n)—=Sn+1)— - —=Sn+k—1) = Sn+k)—S(n+hk+1)—--~S(n+2%—1).
In [3, 17] one finds the following questions:

“How many quadruplets verify a Smarandache 2-2 additive rela-
tionship?”

“How many quadruplets verify a Smarandache 2-2 subtractive
relationship?”

“How many sextuplets verify a Smarandache 3-3 additive rela-
tionship?”? . :

To address these questions, we represent each of the relationships by a Maple
function:

> add2 2:=(V,n)->V[(n]+Vin+1]1=V[o+2] +V [0+3] :
> sub2_2:=(V,n)->V[u]-V[n+1]1=V[n+2] -~V [n+3] :
> add3_3:=(V,n)->Vinl+V{n+1]1+V {0+2] =V (0+3} +V (n+41+V [n+5] :

14



We compute the first 10005 numbers of the Smarandache sequence:
> 38N:=[seq(5(i),i=1..16005)]:
(elapsed time: 59m29s)

With the following procedure, we can identify all the positions in the se-
quence V that verify the relationship F.

> verifyRelation:=proc{F,V)
>  local i, VR: VR:=[]:

> for i to nops(V)-5 do

> if F(V,i) then VR:=[VR[], i]l: fi:
> od:

> return VR;

> end proc:

We can answer the above mentioned questions for the first 10000 numbers of
the Smarandache sequence.
The positions verifying the Smarandache 2-2 additive relationship are:

> Vi:=verifyRelation(add2_2,S3N);

V1:=1[6,7,28,114,1720,3538,4313, 8474]

Similarly, we determine the positions verifying the Smarandache 2-2 sub-
tractive relationship,

> V2:=verifyRelation(sub2_2,85N);

V2= (1,2,40, 49,107, 2315, 3913, 4157, 4170
and the positions verifying the Smarandache 3-3 additive relationship:
> V3:=verifyRelation(add3_3,SSN);

V3 .= [5,5182, 9855

The quadruplets associated with the positions V1 (2-2 additive relationship)
are given by

> map(i->printf ("S(LA)+S(%a)=S(%d)+S{%d) [hd+%d=%d+Y%d]\n",
1,1+1,3+2,i+3,5(1),8(i+1),5(i+2),8(i+3)), V1):

S(B)+S(7)=S(8)+3(9) [3+7=4+6]
S(7)+5(8)=5(9)+3(10) [T+4=6+5]
5(28)+5(29)=S(30)+5(31) ([7+29=5+31]
S(114)+S(115)=3(116)+3(117) [19+23=29+13]
S(1720)+8(1721)=8(1722)+5(1723) [43+1721=41+1723]
5(3538)+8(3539)=5(3540)+5(3541) [61+3539=59+3541]
5(4313)+3(4314)=8(4315)+3(4316) [227+719=863+83]
S(B474)+3(8475)=3(8476)+5(8477) [223+113=163+173]

15



We remark that in M. Bencze’s paper [3] only the first three quadruplets were
found. The quadruplets associated with the positions V2 (2-2 subtractive rela-
tionship)} are:

> map{i->printf ("S(ld)-SUAd)=S(%4d)~-S(%d) [Ua-Yd=%d-%d]\n",
i,3+1,142,1+3,8(4) ,8(i+1) ,8(i+2),8(i+3)), Vv2):

5(1)-3(2)=8(3)-5(4) [1-2=3-4]

5(2)-8(3)=5(4)-58(6) [2-3=4-5]
3(40)-5(41)=8(42)-5(43) [5-41=7-43]
5(49)~-8(50)=8(51)-8(52) [14-10=17-13]
S{107)-58(108)=S(109)-5(110) [107-9=109-11]
5(2315)-3(2316)=5(2317)-5(2318) [463-193=331-61]
5(3813)~-5(3914)=5(3915)-5(3916) [43-103=29-89]
5(4157)-5(4158)=5(4159)-5(4160) [4157-11=4159~13]
S(4170)-5(4171)=S(4172)-8(4173) [139-97=149-107]

Only the first two and fourth quadruplets were found in {3]. The following three
sextuplets verily a Smarandache 3-3 additive relationship:

> map(i->printf ("S(Ad)+S(%d)+S (%d) =S (%d) +S (%d) +S (%d)
Ura+Za+ha=s%a+%d+%d]\n" ,1,1i+1,1+2,1+3,i+4,1+5,
5(1),8(i+1),8(4+2),8(i+3) ,S(i+4),8(i+5)), V3):

3(5)+S(6)+3(7)=8(8)+S(9)+5(10) [5+3+7=4+6+5]
8(5182)+5(5183)+5(5184) =5 (5185)+S(5186)+5(5187) [2591+73+9=61+2593+19]
S(9855)+3(9856)+5(9857) =3 (9858) +5 (9859} +3 (9860) [73+11+9857=53+9859+29]

Only the first sextuplet was found by M. Bencze’s in [3]. For a deeper analysis
of these type of relationships, see [6, 8|.

4.2  An example of a Smarandache partial perfect additive
sequence

Let {an}, n > 1, be a sequence constructed in the following way:
ap=az =1
Qop+1 = Gpi1 — 15
Ggp+2 = app1 + 1.

The following Maple procedure defines a.,.

> a:=proc(n)
option remember:
if (n=1) or (u=2) them return 1:
elif type(n, odd) then return a({n-1)/2+1)-1:
else return a((n-2)/2+1)+1:
fi:
end proc:

Y V¥ VWV VWY
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In {3] the first 26 terms of the sequence are presented as being
> 4:=1,1,0,2,-1,1,1,3,-2,0,0,2,1,1,3,5,-4,-2,-1,1,-1,1,1,3,0,2:

One easily concludes, as mentioned in (7], that starting from the thirteenth term
the above values are erroneous. The correct values are obtained with the help
of our procedure:

> seq(a(i),i=1..26);

1,1,0,2,-1,1,1,3,-2,0,0,2,0,2,2,4,-3,-1,-1,1,—-1,1,1,3,~1,1

We prove, for 1 < p < 5000, that {a,}isa Smarandache partial perfect additive
sequence, that is, it satisfies the relation

a1+az+---+ap=ap+1+ap+2+---+a2p. (1)
This is accomplished by the following Maple code:
> sppasproperty;:=proc(n)

> local SPPAS, p;

>  8PPAS:=[seq(a(i},i=1..n)];

> for p from 1 to iquo(n,2) do

> if evalb(add(SPPAS[il, i=1..p)<>add(SPPAS[il, i=p+1..2*p))
> then return false;

> fi;

> 0d;

> return true;

> end proc:

> sppasproperty(10000);

true
(elapsed time: 11.4 seconds)

We remark that the erroneous sequence A does not verify property (1). For
example, with p = 8 one gets:

> add(A{i],i=1..8)<>add(A[i],1i=9..16);
8 £ 10

5 Other Smarandache Definitions and Conjec-
tures
The Smarandache prime conjecture share resemblances (a kind of dual assertion)

with the famous Goldbach’s conjecture: “Every even integer greater than four
can be expressed as a sum of two primes”.
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5.1 Smarandache Prime Conjecture

In (3, 17, 16] the so called Smarandache Prime Congecture is formulated: “Any
odd number can be expressed as the sum of two primes minus a third prime
(not including the trivial solution p = p + ¢ — ¢ when the odd number is the
prime itself)”.

We formulate a strong variant of this conjecture, requiring the odd number
and the third prime to be different (not including the situation p = k + ¢ — p),
that is, we exclude the situation addressed by Goldbach’s conjecture {where the
even integer 2p is expressed as the sum of two primes & and g).

'The number of times each odd number can be expressed as the sum of two
primes minus a third prime, are called Smarandache prime conjecture numbers.
It seems that none of them are known (cf. [3]). Here we introduce the notion
of strong Smarandache n-prime conjecture numbers: the number of possibilities
that each positive odd number can be expressed as a sum of two primes mi-
nus a third prime, excluding the trivial solution and imposing our requirement
that the odd number and the third prime must be different, using all possible
combinations of the first n primes.

Given n, the next procedure determines such numbers for all positive odd
integers less or equal than {im.

> spcn:=proc(lim, n)

> local y, =z, i, primos, num, mat:

> mat:=array(l..lim, 1..2,[seq([‘?°, 01, i=1..lim)1):
> primos:=seq(ithprime(i), i=1..n);

> for i from 1 to n do

> for y in [primos[i..n]] do

> for z in [primos] do

> mum: =primos {i]+y-z;

> if (num>=1 and num<=lim and type(mum, odd) and
> z<>primos[i] and z<>y and z<>num) then

> if mat[oum, 2]=0 then mat([num, 1]:=[primes(i], y, zl:
> fi:

> mat [mum, 2] :=mat[num, 2]+1;

> f1i:

> od:

> od:

> od:

>  for i by 2 to lim do

> if mat(i, 2]=0 then printf("%d=? (0 possibilities)\n", i):
> else printf ("%d={d+%d-%d (%d possibilities)\n", i,
> op{mat i, 1]), mat{i, 2]):

> fi:

> od:

> evalm(mat):

> end proc:
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All positive odd numbers less or equal than 19 can be expressed according to
the conjecture, using only the first six primes.?

> spcn(19,6):

1=242-3 (6 possibilities)
3=5+5-7 (3 possibilities)
5=3+13-11 (2 possibilities)
7=5+5-3 (2 possibilities)
9=3+11-5 (7 possibilities)
11=3+13~5 (3 possibilities)
13=6+11-3 (2 possibilities)
156=5+13-3 (5 possibilities)
17=7+13-3 (3 possibilities)
19=11+11-3 (3 possibilities)

(elapsed time: 0.0 seconds)

As expected, if one uses the first 100 primes, the number of distinct possibilities,
for which each number ¢an be expressed as in our conjecture, incresses.

> spen(19,100):

1=2+2-3 (1087 possibilities)
3=5+5-7 (737 possibilities)
5=3+13-11 (1015 possibilities)
7=3+17-13 (1041 possibilities)
9=3+11~5 (793 possibilities)
11=3+13-5 (1083 possibilities)
13=3+17-7 (1057 possibilities)
15=3+17-5 (770 possibilities)
17=3+19-5 (1116 possibilities)
19=3+23-7 (1078 possibilities)
(elapsed time: 1.8 seconds)

How many odd numbers less or equal to 10000 verify the conjecture??
> SPCN1:=spcn(10000,600) :

(elapsed time: 30mS9s)

> n:=0: for i by 2 to 10000 do if SPCN1i(i,2]>0 then n:=n+l; fi; od:

4406

Using the first 600 primes, only 4406 of the 5000 odd numbers verify the con-
jecture. And if one uses the first 700 primes?

2For each number, only one of the possibilities is showed.
31n the follow spen procedure calls, we removed from its definition the last for loop (spen
without screen output).
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> SPCN2:=spcn(10000,700) :
(elapsed time: 49m34s)

> n:=0:
> for 1 by 2 to 10000 do if SPCN2{i,2]>0 then n:=n+1; fi; od;
> n;

5000

Using the first 700 primes, all the odd aumbers up to. 10000 verify the con-
Jecture. We refer the readers interested in the Smarandache prime conjecture
to [14].

5.2 Smarandache Bad Numbers

“There ave infinitely many numbers that cannot be expressed as the difference
between a cube and a square (in absolute value). They are called Smarandache
Bad Numbers(l)” — see [3].

The next procedure determines if a number n can be expressed in the form
n = |z* ~ y*| (ie, if it is a non Smarandache bad number), for any integer z
less or equal than Tng.. The algorithm is based in the following equivalence

n=lg* -9y} o y=+23-n vV Y=z +n.

For each z between 1 and z,4,, we try to find an nteger y satisfying y =
Vo3 —nory = vz® + n, to conclude that 7 is a non Smarandache bad number.

> nsbn:=proc{n,xmax)

> local x, x3:

> for x to xmax dao

> x3:=x"3;

> if issqr(x3-n) and x3<>n then return nfx, sqrt(x3-n)l;
> elif issqr(x3+n) then return nfx, sqrt(x3+n)]; fi;

> od:

> return n[‘?¢, ‘?¢]

> end proc:

F. Smarandache [16] conjectured that the numbers 5, 6, 7,10,13,14,. .. are prob-
ably bad numbers. We now ask for all the non Smarandache bad numbers which
are less or equal than 30, asing only the z values between 1 and 19. We use

the notation 7, , to mean that n = |z% — yal‘ For example, 133 means that
1=|2% - 3% =|8 -9

> NSBN:=map(nsbn, [$1..30],19);
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NSBN = [1273, 23,6,31,2,42,2, 577,677, 72,1,81,3,93,6, 102 7,
1134, 121547, 1317,70, 1477, 151 4,162 3,172 5,183 3, 195 12, 206 14,
2177,223,7, 2339, 2415, 255 10, 263,1, 2777, 282 6, 207 7, 3010 53]

As proved by Maohua Le in [11], we have just shown that 7 and 13 are non
Smarandache bad numbers: 7 = [2% — 12| and 13 = [17® — 702|. The possible
Smarandache bad numbers are:

> select(n->evalb(op(l,n)=‘7?"), NSBN):

[52,2,62,2,102,2, 149 9, 169 7, 219 7,277 7, 297 o]

Finally, we will determine if any of these eight numbers is a non Smarandache
bad number, if one uses all the z values up to 10%.

> map(nshn, (5,6,10,14,18,21,27,29] ,10°8) ;

(51,7,67,2,107 2,147 7, 167 7, 217 2,277 7, 295 4]
(elapsed time: 14h30m)

From the obtained result, we conjecture that 5,6, 10, 14, 16, 21, 27, and 29, are
bad numbers. We look forward to readers explorations and discoveries.
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Palindrome Studies
(Parti)

The Palindrome Concept and Its Applications to Prime Numbers

Henry Ibstedt
Glimminge 2036
280 60 Broby
Sweden

Abstract: This article originates from a proposal by M. L. Perez of American
Research Press to carry out a study on Smarandache generalized palindromes [1]. The
prime nurnbers were chosen as a first set of numbers to apply the development of
ideas and computer programs on. The study begins by exploring regular prime
number palindromes. To continue the study it proved useful to introduce a new
concept, that of extended palindromes with the property that the union of regular
palindromes and extended palindromes form the set of Smarandache generalized
palindromes. An interesting observation is proved in the article, namely that the only
regular prime number palindrome with an even number of digits is 11.

1. Regular Palindromes

Definition: A positive integer is a palindrome if it reads the same way forwards and
backwards.

Using concatenation we can write the definition-of a regular palindrome A in the form
A=K X2X3... Xp- . X3X2X) OT X X2X3... XXy, . .X3X2X)

where x, £ {0, 1,2, ...9} fork=1,2,3, ..n, except X #

Examples and Identification: The digits 1, 2, ..., 9 are trivially palindromes. The
only 2-digit palindromes are 11, 22, 33, ... 99.

Of course, palindromes are casy to identify by visual inspection. We see at once that
5493945 is a palindrome. In this study we will also refer to this type of palindromes as
regular palindromes since we will later define another type of palindromes.

As we have seen, palindromes are easily identified by visual inspection, something we
will have difficulties to do with, say prime numbers. Nevertheless, we need an
algorithm to identify palindromes because we can not use our visual inspection
method on integers that occur in computer analysis of various sets of numbers. The
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following routine, written in Ubasic, is built into various computer programs in this
study:

10 'Palindrome identifier, Henry Ibstedt, 031021
20 input " N";N

30 s=n\10 :r=res

40 while s>0

50 s=3\10 :r=10*r+res

60 wend

70 print n,r

80 end

This technique of reversing a number is quite different from what will be needed later
on in this study. Although very simple and useful it is worth thinking about other
methods depending on the nature of the set of numbers to be examined. Let’s look at
prime number palindromes.

2. Prime Number Palindromes

We can immediately list the prime number palindromes which are less than 100, they
are: 2, 3,5, 7 and 11. We realize that the last digit of any prime number except 2 must
be 1,3, 7or9. A three digit prime number palindrome must therefore be of the types:
1x1, 3x3, 7x7 or 9x9 where xe{0, 1, ..., 9}. Here, numbers have been expressed in
concatenated form. When there is no risk of misunderstanding we will simply write
2x2, otherwise concatenation will be expressed 2_x 2 while multiplication will be
made explicit by 2-x-2.

In explicit form we write the above types of palindromes: 101+10x, 303+10x%,
707+10x and 909+10x respectively. :

A 5-digit palindrome axyxa can be expressed in the form:
a_000_a+x-1010+y-100 where ag{l, 3, 7, 9}, xe{0, 1, ..., 9} and ye{0, 1, ..., 9}

This looks like complicating things. But not so. Implementing this in a Ubasic
program will enable us to look for which palindromes are primes instcad of looking
for which primes are palindromes. Here is the corresponding computer code (C5):

10 "Classical 5-~digit Prime Palindromes (C5)
20 'October 2003, Henry Ibstedt

30 dim V(4),0(4)

40 for I=1 to 4 :read V(I):next

50 data 1,3,7,9

60 T=1000%

70 for I=1 to 14

80 U=0:"Counting prime palindromes

S0 A=V (I)*T ’
100 for J=0 to 9
110 B=A+1010*J
120 for X=0 to 9

130 C=B+100*K

140 if nxtprm{C-1)=C then print C :inc U
150 next :next

160 U(I)=U

24



170 next
180 for I=1 to 4 :print U{I):next
190 end

Before implementing this code the following theorem will be useful.
Theorem: A palindrome with an even number of digits is divisible by 11.

Proof: We consider a palindrome with 2n digits which we denote Xy, Xg, ... X,. Using
concatenation we write the palindrome

ATX1X2. . XnXp-..X2Xi
We express A in terms of Xy, Xa, ... X, in the following way:

A= (10" D (107+10)+x3 (1077 +10%)+ . xo(107™"+10™")
or

A= %107 +105Y (O
k=l

We will now use the following observation:

10%-1=0 (mod 11) for q=0 (mod 2)
and
10%1=0 (mod 11) for g=1 (mod 2)

We re-write (1) in the form:

A=Y x (10" £1+10*"' £1) where the upper sign applies if k=1 (mod 2) and
k=1

the lower sign if k=0 (mod 2).
From this we see that A=0 (mod 11) for n=0 (mod 2).

Corollary: From this theorem we learn that the only prime number palindrome with
an even number of digits is 11,

This means that we only need to examine palindromes with an odd number of digits
for primality. Changing a few lines in the computer code C5 we obtain computer
codes (C3, C7 and C9) which will allow us to identify all prime number palindromes
less than 10'® in less than 5 minutes. The number of prime number palindromes in
each interval was registered in a file. The result is displayed in table I.

Table 1. Number of prime number palindromes

Number of
Number palindromes
of of type
digits T...... 1 3...... 3 7 e, 7 9.enss 9 Total
3 5 4 -4 2 15
5 26 24 24 19 93
7 190 172 155 151 648
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9 1424 1280 1243 1225 5172
Table 2. Three-digit prime number palindromes
(Total 15)
Interval Prime Number Palindromes
100-199 | 101 131 151 181 191
300-399 | 313 353 373 383
700-799 | 727 757 787 797
200999 | 919 929
Table 3. Five-digit prime number palindromes
{Total 93)
10301 10501 10601 11311 11411 12421 12721 12821 13331
13831 13931 14341 14741 15451 15551 14061 16341 16561
16661 17477 17971 18181 18481 19391 19891 19991
30103 30203 30403 30703 30803 31013 31513 232323 30473
33533 34543 34843 35053 35153 35353 35753 36263 36563
37273 37573 38083 38183 38783 39793
70207 70507 70407 71317 71917 72227 72797 73037 73237
73637 74047 74747 75557 76367 76667 77377 77477 77977
78487 78787 78887 79397 79497 79997
70709 91019 93139 93239 93739 94049 94349 94449 94849
4949 95959 96289 96449 94749 97379 97579 97879 98389
28689
Table 4. Seven-digit prime number palindromes
{Total 468)
1003001 1008001 1022201 1028201 1035301 1043401 1055501 1062401
- 1065601 1074701 1082801 1085801 1092901 1093901 1114111 1117111
17120211 1123211 1126211 1129211 1134311 1145411 1150511 1153511
1160611 1163611 1175711 1177711 1178711 1180811 1183811 1184811
1190911 1193911 1194911 1201021 1208021 1212121 1215121 1218121
1221221 1235321 1242421 1243421 1245421 1250521 1253521 1257521
1262621 1268621 1273721 1276721 1278721 1280821 1281821 1284821
1287821 1300031 1303031 1311131 1317131 1327231 1328231 1333331
1335331 1338331 1343431 1360631 1362631 1363631 1371731  137473]
1390931 1407041 1409041 1411141 1412141 1422241 1437341  144444]
1447441 1452541 1456541 1461641 1463641 1444441 1449441 1484841
1489841 1490941 1496941 1508051 1513151 1520251 1532351  153535]
1542451 1548451 1550551 1551551 1556551 1557551 1565651 1572751
1579751 1580851 1583851 1589851 1594951 1597951 1598951 1400041
1609061 1611161 1416161 1628261 1630361 1633361 1640461  144346)
1646461 1454561 1657561 1658561 1660661 1670761 1684861 1485861
1688861 1695941 1703071 1707071 1712171 1714171 1730371 1734371
V737371 1748471 1755571 1761671 1764671 1777771 1793971  180208]
1805081 1820281 1823281 1824281 1826281 1829281 1831381 1832381
1842481 1851581 1853581 1856581 1845681 1874781 1878781 1879781
1880881 1881881 1883881 1884881 1895981 1902091 1908091 1909091
1917191 1924291 1930391 19346391 1941491 1951591 1952591 1957591
1958591 1963691 1968491 1969491 1970791 1974791 1981891 1982891
1984821  19878%1 1988891 1993921 1995991 1998991
3007003 3002003 3007003 3014103 3026203 3064603 3065603 3072703



3073703 3075703 3083803 3089803 3091903 3095903 3103013 3106013
3127213 3135313 3140413 3155513 3158513 3160613 31464413 3181813
3187813 3193913 3196913 3198913 3211123 3212123 3218123 3222223
3223223 3228223 3233323 3236323 3241423 3245423 3252523 3256523
3258523 3260623 3267623 3272723 3283823 3285823 3284823 3288823
3291923 3293923 3304033 3305033 3307033 3310133 3315133 3319133
3321233 3329233 3331333 3337333 3343433 3353533 3362633 3364433
3365633 3348633 3380833 3391933 3392933 3400043 3411143 3417143
3424243 3425243 3427243 3439343 3441443 3443443 3444443 3447443
3449443 3452543 3460643 3466643 3470743 3479743 3485843 3487843
3503053 3515153 3517153 3528253 3541453 3553553 3558553 35634653
3569653 3586853 3589833 3590953 3591953 3594953 3401063 3407063
3618163 3621263 3627243 3435363 3643443 3646463 3670763 3673763
3680863 34898463 3498963 3708073 3709073 3714173 3717173 3721273
3722273 3728273 3732373 3743473 3746473 3762673 3763673 3765673
3768673 3769673 3773773 3774773 3781873 3784873 3792973 3793973
3799973 3804083 3806083 3812183 3814183 3824283 3829283 3834383
3842483 3853583 3858383 3863683 3864683 3867683 3849683 3871783
3878783 3893983 3899983 3913193 3914193 3918193 3924293 3927293
3931393 3938393 3942493 3946493 3948493 3964493 3970793 3983893
3991993 3994993 3997993 3998993

7014107 7035307 7034307 7041407 7044407 7057507 7065407 7069607
7073707 7079707 7082807 7084807 7087807 7093907 7094907 7100017
7114117 7118117 7118117 7129217 7134317 7136317 7141417 7145417
7155517 7156517 7158517 7159517 7177717 7190917 7194917 7215127
7226227 7246427 7249427 7250527 7256527 7257527 7261427 7247627
7276727 7278727 7291927 7300037 7302037 7310137 7314137 7324237
7327237 7347437 7352537 7354537 7362637 7365637 7381837 7388837
7392937 7401047 7403047 7409047 7415147 7434347 7434347 7439347
7452547 7461647 7486647  TA72747 - TATS5747  TAB5847 74846847 7489847
7493947 7507057 7508057 7518157 7519157 7521257 7527257 7540457
7562657 7564657 7576757 7584857 7592957 7594957 7400067 7611167
7619167 7622267, 7630367 76323867 7644467 7654567 76462667 7665667
7666667 7668667  T6&9667  TETATET  TEB1867 7690967 7693967 7694947
7715177 7718177 7722277 7729277 7733377 7742477 7747477 7750577
7758577 7764677 7772777 7774777 7778777 7782877 7783877 7791977
7794977 7807087 7819187 7820287 7821287 7831387 7832387 7838387
7843487 7850587 7856587 7865687 7867687 7868687 7873787 7884887
7821987 7897987 7913197 7916197 7930397 7933397 7935397 7938397
7941497 7943497 7949497 7957597 7958597 7960697 7977797 7984897
7985897 7987897 7996997

7002009 9015109 9024209 9037309 9042409 9043409 9045409 9046409
7049409 9067609 9073709 9076709 9078709 9091909 9095909 9103019
2109019 9110119 9127219 9128219 9134319 9149419 9149419 9173719
7174712 9179719 9183819 9196919 9199919 9200029 9209029 9212129
P217129 9222229 9223229 9230329 9231329 9255529 9249629 9271729
9277729 9280829 9286829 9289829 9318139 9320239 9324239 9329239
9332339 9338339 9351539 9357539 9375739 9384839 9397939 9400049
P414149 9419149 9433349 9439349 9440449 94446449 9451549 9470749
P477749 9492949 9493949 9495949 9504059 9514159 9524259 9529259
9547459 9556559 9558559 9561659 9577759 9583859 9585859 9586859
601069 9602069 9604069 Q610169 9620269 9624269 9626269 9632369
9634369 9645469 9450569 9657549 9670769 9684849 9700079 9709079
711179 9714179 9724279 9727279 9732379 9733379 9743479 9749479
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9752579
9782879
9818189
2888889
9219199
9938399

9754579
9787879
7820289
2887889
92921299
9957599

9758579
9788879
9822289
2894989
9923299
99465699

762679
9795%79
9836389
9902099
9924299
9978799

9770779
9801089
9837389
9907099
9927299
9980899

9776779
9807089
9845489
9908099
9931399
7981899

Q779779
9809089
2852589
9916199
9932399
9989899

2781879
2817189
9871789
92918199
9935399

Of'the 5172 nine-digit prime number palindromes only a few in the beginning and at the end
of each type are shown in table 5.

Table 5a. Nine-digit prime palindromes of type 1__1
(Totat 1424)

100030001
100404001
101030101
101343101
101414101
101949101
102272201
102676201
103060301
103333301

195878591
196333691
197030791
197202791
197616791
198080891
198454821
198919891
199242991
199515991 .

100050C01
100656001
101060101
101373101
101717101
101999101
102343201
102686201
103161301
103363301

195949591
196363691
197060721
197292791
197868791
198131891
198565891
199030921
199323991
199545991

100060001
100707001
101141101
101414101
101777101
102040201
102383201
102707201
103212301
103464301

195979591
196696621
197070791
197343791
197898791
198292891
198656891
192080991
199353991
199654991

160111001
100767001
101171101
101424101
101838101
102070201
102454201
102808201
103282301
103515301

126000691
196797691
1970907921
197454791
197919791
198343891
198707891
199141991
199363991
199767991

100131001
100888001
101282101
101474101
101898101
102202201
102484201
102838201

1103303301
103575301

196070691
196828691
197111791
197525791
198040821
198353891
198787891
192171991
199393991
199909991

100161001
100999001
101292101
101595101
101919101
102232201
102515201
103000301
103323301
103696301

196323691
196878691
197121791
197606791
198070891
198383891
198878891
199212991
199494991
199999991

Table Sb. Nine-digit prime palindromes

{Total 1280)

oftype 3_3

. 300020003
300313003
300868003
301434103
301969103
302333203
302555203
303050303
303565303
303979303

394191493
394767493
395717593
396202693
396219493
397666793

300080003
3005465003
300922003
301494103
302030203
302343203
302644203
303121303
303616303
304050403

394212493
395202593
395727593
326343693
396929693
397909793

300101003

300656003
300959003
301555103
302070203
302444203
302676203
303161303
303646303
304090403

394333493
395303593
395868593
396454693
397141793
398040893

300151003
300808C03
301050103
301626103
302202203
302454203
302858203
303272303
303757303
304131403

394494493
395363593
395898593
396505693
397242793
398111893

28

300181003
300818003
301111103
301686103
302303203
302525203
302898203
303292303
303878303
304171403

394636493
395565593
3946070493
396757693
397333793
398151893

300262003
300848003
301282103
301818103
302313203
302535203
302909203
303373303
303929303
304191403

394696493
395416593
396191693
3946808693
397555793
398232893



398252893 398363893 398414893 398474893 398616893 398664893
398676893 398757893 398838893 398898893 399070993 399191993
399262993 399323993 397464993 399484993 399575993 399595993
399616993 399686993 399707993 399737993 3997467993 399878993

Table &¢, Nine-digif prime palindromes of type 77
(Total 1243)

700020007 700060007 700090007 700353007 700363007 700404007
700444007 700585007 700654007 7006466007 700717007 700737007
700848007 700858007 700878007 700989007 701000107 701141107
701151107 701222107 701282107 701343107 701373107 701393107
701424107 701525107 701595107 701606107 701434107 701727107
701747107 701838107 701919107 701979107 701999107 702010207
702070207 702080207 702242207 702343207 702434207 702515207
702575207 702626207 702646207 702676207 702737207 702767207
702838207 702919207 702929207 702989207 703000307 7030460307
703111307 703171307 703222307 703252307 703393307 703444307

795848597 795878597 7946060697 794080697 796222497 796252697
796353697 796363697 796474697 796494497 796515697 796636697
796666697 796707697 796717697 T6TATERT7 796848697 796939697
TR72862797 797363797 797303797 T97444797 797525797 797595797
797676797 797828797 797898797 797939797 797949797 798040897
798181897 798191897 798212897 7981292897 798373897 798383897
798454897 798535897 798545897 798646897 798474897 798737897
798797897 798818897 798838897 798919897 798989897 799050997
799111997 792131997 799323997 799363997 799383997 799555997
799636997 799686997 799878997 799888997 TF99939997 799959997

Tables d. Nine-digif prime palindromes of type 99
(Total 1225)

700010009 900050007 200383009 900434009 900484009 900505009
200515009 900565007 900757009 900808009 900838009 900878009
200919009 200929009 901040109 901131109 901242109 901252109
901272109 901353107 901494109 901585109 901606109 901626109
901656109 901684109 2016246109 901797109 901929109 901949109
- 902151209 902181209 202232209 902444209 902525209 902585209
902757209 902828209 902888209 903020309 903131309 903181309
903292309 903373309 903383309 903424309 9035465309 903616309
903646309 903727309 903767309 903787309 903797309 903878309
903979309 904080409 904090409 $04101409 904393409 904414409

994962499 995070599 995090599 995111599 995181599 995303599
995343599 995414599 995555599 995694599 995757599 995777599
996020697 996101699 996121699 996181699 996242699 996464699
996494699 996565699 996828699  99665669F 996686699 996808699
996818699 9946878699 994929499 994949699 996989499 997030799
PI7V1799 997393799 997464799 997474799 997555799 997737799
997818799 997909799 997949799 998111899 998121899 998171899
998202899 998282899 998333899 998565899 998446899 998757899
798898899 998939899 998979899 999070999 999212999 999272999
999434999 999454999 999565999 999674999 999486999 999727999
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An idea about the strange distribution of prime number palindromes is given in
diagram 1. In fact the prime number palindromes are spread even thinner than the
diagram makes believe because the horizontal scale is in interval numbers not in
decimal numbers, i.e. (100-200) is given the same length as (1.1:10° -1.2-10%).

Distribution of Prime Palindromes

200
180
160
140
120
100
80
60
40
20 -] 11

O_Fn E—
LALLM LA v I I TITi7

1 4 7 101316 19 22 25 28 31 34 37 40 43
Intervais as defined

Number of palindromes

Diagram 1
Intervals 1-9: 3-digit numbers divided into 9 equal intervals.
Intervals 11-18: 4-digit numbers divided into 9 equal intervals
Intervals 19-27: 5-digit numbers divided into 9 equal intervals
Intervals 28-36: 6-digit numbers divided into 9 equal intervals
Intervals 37-45: 7-digit numbers divided into 9 equal intervals

3. Smarandache Generalized Palindromes

Definition: A Smarandache Generalized Palindrome (SGP) is any mteger of the form
X1X2X3..-%n. . - X3X2X OF X(X2X3.. XnXq. .. X3X2X

where Xy, X2, X3,...Xn are natural numbers. In the first case we require n>1 since

otherwise every number would be a SGP.

Briefly speaking xx & {0,1,2, ...9} has been replaced by x; ¢ N (where N is the set of
natural numbers).

Addition: To avoid that the same number is described as a SGP in more than one
way this study will require the x¢ to be maximum as a first priority and n to be
maximum as a second priority (cf. examples below).

Interpretations and examples: Any regular palindrome (RP) is a Smarandache
Generalized Palindrome (SGP), i.e. {RP} < {SGP}.

3 is a RP and also a SGP

123789 is neither RP nor SGP

123321 is RP as well as SGP
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123231 isnotaRPbutitisaSGP 1 23 23 1

The SGP 334733 can be written in three ways: 3 3 47 3 3, 3_3473 3 and 33 47 33.
Preference will be given to 33 47 33, (in compliance with the addition to the
definition).

780978 is a SGP 78_09_78, i.c. we will permit natural numbers with leading zeros
when they occur inside a GSP.

How do we identify a GSP generated by some sort of a computer application where
we can not do it by visual inspection? We could design and implement an algorithm to
identify GSPs directly. But it would of course be an advantage if methods applied in
the early part of this study to identify the RPs could be applied first followed bya
method to identify the GSPs which are not RPs. Even better we could set this up in
such a way that we leave the RPs out completely. This leads to us to define in an
operational way those GSPs which are not RPs, let us call them Extended
Palindromes (EP). The set of EPs must fill the condition

{RP} U {EP}={GSP}

4. Extended Palindromes

Definition: An Extended Palindrome (EP) is any integer of the form

X1X2X3...Xp. .. X3X0X; OF X1X2X3...Xn Xy - - X3%7X)
where Xy, X3, X3,...X, are natural numbers of which at least one is greater than or equal
to 10 or has one or more leading zeros. xy is not allowed to not have leading zeros.
Again X, should be maximum as a first priority and n maximum as a second priority.

Computer Identification of EPs

The number A to be examined is converted to a string S of length L (leading blanks
are removed first). The symbols composing the string are compared by creating
substrings from left L, and right Ry. If L; and R, are found so that L; = Ry then A is
confirmed to be an EP. However, the process must be continued to obtain a complete
split of the string into substrings as illustrated in diagram 2.

Ly

Diagram 2
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Diagram 2 illustrates the identification of extended palindromes up to a maximum of
4 clements. This is sufficient for our purposes since a 4 element extended palindrome
must have a minimum of § digits. A program for identifying extended palindromes
corresponding to diagram 2 is given below. Since we have Le=R, we will use the
notation Z for these in the program. The program will operate on strings and the
deconcatenation into extended palindrome elements will be presented as strings,
otherwise there would be no distinction between 690269 and 692269 which would
both be presented as 69_2 (only distinct elements will be recorded) instead of 69 02
and 69_2 respectively.

Comments on the program
It is assumed that the programming in basic is well known. Therefore only the main
structure and the flow of data will be commented on:

Lines 20 — 80: Feeding the set of numbers to be examined into the program. In the
actual program this is a sequence of prime numbers in the interval a;<a<a,.

Lines 90 ~ 270: On line 130 A is sent off to a subroutine which will exclude A if it
happens to be a regular palindrome. The routine will search sub-strings from left and
right. If no equal substrings are found it will return to the feeding loop otherwise it
will print A and the first element 7, while the middle string S; will be sent of to the
next routine (lines 280 — 400). The flow of data is controlled by the status of the
variable u and the length of the middle string.

Lines 280 ~ 400: This is more or less a copy of the above routine. S, will be analyzed
in the same way as S in the previous routine. If no equal substrings are found it will
print S; otherwise it will print Z; and send $; to the next routine (lines 410 — 520).

Lines 410 — 520: This routine is similar to the previous one except that it is equipped
to terminate the analysis. It is seen that routines can be added one after the other to
handle extended palindromes with as many elements as we like. The output from this
routine consists in writing the terminal elements, i.e. S» if A is a 3-element extended
palindrome and Zs and Ss if A is a 4-element extended palindrome.

Lines 530~ 560: Regular palindrome identifier described earlier.

10 'EPPRSTR, 031028

20 input "Search interval al to a2:";Al,A2
30 A=Al

40 while A<A2

50 A=nxtprm(A)

60 gosub 90

70 . wend

80 end

20 S=str(d)

100 M=len(S)

110 if M=2 then goto 270
120 S=right(5,M-1)

130 U=0:gosub 530

140 if U=1 then goto 270
150 Il=int({(M-1)/2)

16Q U=0
170 for I=1 to Il
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180 if left(S,I)=right(S,I) then

190 :Z1=1left (S, I}
200 tMI=M-1-2*I:S1l=mid (85, I+1,M1)
210 :U=1

220 endif
230 next
240 if U=0 then gotc 270

250 print A;" ";Z21;

260 if M1>0 then gosub 280
270 return '

280 I2=int {M1/2)

290 U=0

300 for J=1 to I2
310 1f left(S1,J)=right(S1,J) then

320 1Z2=left (S1,J)

330 (M2=M1-2*J:82=mid (S1,J+1,M2)

340 :U=1

350 endif

360 next

370 if U=0 then print " ";Sl:goto 400
380 print " ";Z2;

390 if M2>0 then gosub 410 else print
400 return

410 I3=int (M2/2)

420 |, U=0

430 for K=1 to I3

440 if left(82,K)=right (582,K) then

450 123=left (52,K)

460 M3=M2-2*K:53=mid (S2,K+1,M3)

470 :U=1

4380 endif

430 next

500 if U=0 then print " ";S52:goto 520
510 print " ";Z3;" ";S83

520 return

530 T="n

540  for I=M,o 1 step -l:T=T+mid(S,I, 1) :next
550 if T=S then U=1l:'print "a=";a;"is a RP"
560 return

5. Extended Prime Number Palindromes

The computer program for identification of extended palindromes has been
implemented to find extended prime number palindromes. The result is shown in
tables 7 to 9 for prime numbers < 10’. In these tables the first column identifies the
interval'in the following way: 1 — 2 in the column headed x 10 means the interval 1-10
to 2-10. EP stands for the number of extended prime number palindromes, RP is the
number regular prime number palindromes and P is the number of prime numbers. As
we have already concluded the first extended prime palindromes occur for 4-digit
numbers and we see that primes which begin and end with one of the digits 1, 3, 7 or
9 are favored. In table 8 the pattern of behavior becomes more explicit. Primes with
an even number of digits are not regular palindromes while extended prime
palindromes occur for even as well as odd digit primes. It is easy to estimate from the
tables that about 25% of the primes of types 1...1,3...3, 7...7 and 9...9 are extended
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prime palindromes. There are 5761451 primes less than 10°, of these 698882 are
extended palindromes and only 604 are regular palindromes.

Table 7. Extended and regular palindromes
Intervals 10 -100, 100 — 1000 and 1000 -10G00

x10 EP RPF___ P x 10° EP RP P x 100 EP RP P
1-2 0] 1 4 1-2 0 5 21 1-2 33 135
2-3 0 2 2-3 0 16 | 2-3 0 127
3.4 0 2 3-4 0 4 16 3-4 28 120
4-5 0 3 4-5 0 17 4-5 0 119
5-6 0 2 5-8 0 14 5-6 0 114
6-7 0 2 6-7 0 16 6-7 0 117
7-8 0 3 7-8 0 4 14 7-8 30 107
8-9 0 2 §-9 0 15 8-9 0 110
9-10 0 11 9-10 0 2 14| 9-10 27 112
Table 8. Extended and regularsoalind"romes
Intervals 10* -10° and 10° — 10°
x10° EP RP P X10° EP RP P
1-2 242 26 1033 1-2 2116 8392
2-3 12 983 2-3 64 8013
3-4 230 24 958 3-4 2007 7863
4-5 g 930 4-5 70 7678
5-6 10 924 5-6 70 7560
6-7 9 878 6-7 69 7445
7-8 216 24 - 902 7-8 1876 7408
8-9 10 876 8-9 63 7323
9-10 203 19 879 9-10 1828 7224
. Table 9. Extended and regulargalindromes
Intervals 10° -10° and 10° — 107
x 10° EP RP P x 10’ EP RP P
1-2 17968 190 70435 1-2 156409 606028
2-3 739 67883 2-3 6416 587252
3-4 16943 172~ 66330 3-4 148660 575795
4-5 687 65367 4 -5 6253 567480
5-6 725 64336 5-8 6196 560981
6-7 688 63799 6-7 6099 555949
7-8 16133 155 63129 7-8 142521 551318
8-9 694 62712 8-9 6057 547572
9-10 15858 151 62090 9-10 140617 544501

We recall that -the sets of regular palindromes and extended palindromes together
form the set of Smarandache Generalized Palindromes. Diagram 3 illustrates this for
5-digit primes.
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Extended and Regular 5-digit Prime Palindromes

300

250

200

150

100

Number of palindromes

50

1 2 3 4 5 6 7 8 9
(10000-99999) divided into 9 intervals

Diagram 3. Extended palindromes shown with blue color, regular with red.

Part I of this study is planned to deal with palindrome analysis of other number
sequences.
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Abstract

In this paper we have constructed two chains of semifields. All semifields in the
chains are Smarandache semifields. Every member of the chain is an extension
semifield of Ordered equilateral Integral triangles with Zero triangle such that it is a

semivector space over R,

Key words: Ordered integral triangle, Zero triangle, Equilateral integral triangle
Smarandache semiring, Smarandache semifield, Smarandache semivector space.

1. Introduction

Recently there has been an increasing interest in the study of Smarandache semirings
and associated structures. We propose to construct two chains of infinite Smarandache
semifields by defining Equilateral triangles.

An ordered integral triangle as defined in [1] is a triplet (a,b,c) where (a,b,c) are
positive integers satisfying a>b2¢,b +¢>a.
Let us consider a set R'={(a b, c)ab,cc I'yazbzeb+c>a} {0} where
0=(0,0,0). We shall call 0 as a Zero triangle.
We define the sum + and the product - of triangles as
(a,8,,¢)) +(ay,b,,¢,) = (a, + a,,b +b,,c +c,)
and
(a,b,¢)(ay,b,,¢,) = (a,b,¢)
where
a=2aa,—(bc,+cb,)
b=Zaa, -(ac, +ca,)
¢=2Zaa, —(ab, +ba,)
where
36
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Laa, =aa, +hh, +cc,
It is not difficult to see that;
i) (R!,+) is a commutative semigroup with identity (0,0,0).
i) (R!,) is a semigroup (in fact a monoid)
1i) Multiplication distributes over addition.
iv) {LL1) is the multiplicative identity.
v) Commutativity holds for multiplication.
Thus, (R, +,") is a commutative semiring.
Also,
vi) (ay,b,¢)+(a,,b,,6,) =(0,0,0) = a =a,=b =b =c =c,=0
Thus, (R!,+,-) is a strict commutative semiring with unity (1,1, 1). See [2].
vii) Let x.y =0 where x,ye R'. Then x=0 or y=0
We conclude that
s Al (R!,+,) is a semifield.
A triplet (a,b,c) where (a,b,c) arc positive rational numbers satisfying
azbzc,b+c>a is called an ordered rational triangle. -
Consider the following set
RE ={(a,b,c)la,b,cc Q",azbzcb+c>a) {0} where 0 is a zero triangle. Then,
it can be verified that (R?,+,.) is a strict commutative semiring with unity (1,1,1).
Also, R? is without zero divisors.
Thus,
s A2 (R2,+,.) is asemifield.
A triplet (a,b,c) where (a,b,c) are positive real numbers satisfying
azbzxzc,b+c>a is called an ordered real triangle.
Consider the set
RY ={(a,b,c)a,bce R, azbzcb+c> ap {0} where 0 is a zero triangle. Then,
it can be verified that (R",+,.) is a strict commutative semiring with unity (1,1,1).
Also, RY is without zero divisors.
Thus, ,
e A3 (R*,+,) is a semifield.
Consider the set,
R ={(ab,c)lab,ce R",azb=c} {0} where 0 is a zero triangle. Then, it can be
verified that (R ,+,.) is a strict commutative semiring with unity (1,1,1).
Also, R_is without zero divisors.

Thus,
s Ad (R ,+,.) is a semifield.

Result: From Al, A2, A3 and A4 we obtain a chain of semifields as
s (A RoR'oROR R

Where R/ is areal equilateral triangle defined in (A7)
Ordered cquilateral triangles lead us to a new chain of semifields. A triplet (a,a,a)
where g e R is called an ordered equilateral real triangle.
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Consider the following set
R ={(a,a,a)ae R} {0} where 0=(0,0,0).
Then, (Ri »+,.) s a strict commutative semiring with unity (1,1,1) and is without zero

divisors.
Thus,

. A5 (Rf,+,) is a semifield.
Similarly, triplet (a,a,a) where ae Q" is called an ordered equilateral rational

triangle.
Consider the following set

RS ={(a,a,a)lac 0"} {0} where 0=(0,0,0).
Then, (R?,+,) is a strict commutative semiring with unity (1,1,1) and is without zero
divisors.

Thus,

. A6 (RZ +,.) is asemifield.
Similarly, a triplet (a,a,a) where ae " is called an ordered equilateral Integral
triangle.

Consider the following set

R, ={(a,a,a)laec I'}\u {0} where 0=(0,0,0). _
Then, (R! ,+,) is a strict commutative semiring with unity (1,1,1) and is without zero

divisors.
Thus,

s A7 (R ,+,) is a semifield.
Result: From A1, A2, A5, A6 and A7 we obtain a chain of semifields as
. (B) RoRFSRE SRS R

2. Some Observatipns

1. Members of ordered equilateral triangles act as scalar multiples for every
semifield in the chain.

E.g. let (a,a,a)e R} and (x,y,z)e R . Then
(a,a,a)(x,y,z) = (ax,ay,az) = a(x, y, z).
Thus, multiplication by (a,a,a) e R amounts to component wise
multiplication. Hence, we call (a,a,q) a magnifier.
2. There is a chain of magnifiers
R SR o R
Every semificld in the chains (A) and (B) is of characteristic 0 .
Every semiring except R;, in chains (A) and (B) is a Smarandache semiring.
Every semifield in the chains (A) and (B) is an extension semifield of R
R! is a prime semifield as it has no proper subsemifield.

All the members in the chains are semivector spaces over the semifield R
All the semifields in the chains (A) and (B) are Smarandache semi fields
because they contain A4 as a proper subset where A is
a. A4={(0,0,0,(p,p,p),(2p,2p,2p),..(rp,rp,rp)} Which is isomorphic
38
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with 4" = {0, p,2p...rp..} which is a k-semi algebra [2].
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On Numbers That Are Pseudo-Smarandache And
Smarandache Perfect
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In a paper that is scheduled to be published in volume 31(3) of Journal of Recreational Mathematics
enttled “On A Generalization of Perfect Numbers”[ 1], Joseph L. Pe defines a generalization of the

definition of perfect numbers. The standard definition is that a number n is perfect if it is the sum of its’
proper divisors.

Pe expands this by applying a function to the divisors. Therefore, a number n is said to be f-perfect if
k
n= 2 f(d)
i=1

for f an arithmetical function.

The Pseudo-Smarandache function is defined in the following way:

Feor any integer n > 1, the value of the Pseudo-Smarandache function Z(n) is the smallest integer m such
that 1 +2+3 +. ..+ mis evenly divisible by n.

This function was examined in detail in {2].

The purpose of this paper is to report on a search for numbers that are Pseudo-Smarandache and
Smarandache perfect.

A computer program was written to search for numbers that are Pseudo-Smarandache perfect. Tt was run up
through 1,000,000 and the following three Pseudo-Smarandache perfect nurbers were found.
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n=4 factors 1, 2

n=0 factors 1,2, 3

n =471544 factors 1, 2,4, 8, 58943, 117886, 235772
This leads to several additional questions:

a) Are there any other Pseudo-Smarandache perfect numbers?

b) Ifthe answer to part (a) is true, are there any that are odd?

) Is there any significance to the fact that the first three nontrivial factors of the only large number are
powers of two?

The Smarandache function is defined in the following way:

For any integer n > 0, the value of the Smarandache function S(n) is the smallest integer m such that n
evenly divides m factorial.

A program was also written to search for numbers that are Smarandache perfect. It was run up through
1,000,000 and only one solution was found.

n=12 factors -1,2,3,4,6
This also leads to some additional questions:
d) Are there any other Smarandache perfect numbers?

e) If the answer to part (a) is true, are there any that are odd?
£ Is there any significance to the fact that n has the first three nontrivial integers as factors?
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Abstract,

The Pseudo Smarandache Functions Z (n ) are defined by David
Gorski [11.
This new paper defines a new function K(n) where n N, which is

a slight modification of Z(n) by adding a smallest natural number
k. Hence this function is “Near Pseudo Smarandache Function

( NPSF ).

Some properties of K(n) are presented here, separately, according
to as n is even or odd. A continued fraction consisting NPSF is
shown to be convergent [3]. Finally some properties of K’ ( 1 ) are

also obtained.

MS Classification No: 11-XX
Keywords: Smarandache Functions, Pseudo Smarandache Functions,

Diphantine Equation, Continued Fractions, Covergence.

1.1 Definition

Near Pseudo Smarandache Function ( NPSF) K is defined as

follows.
K:N — N definedbyK (n)=m,where m=Xn + k and k

is the smallest natural number such that n divides m .

1.2 : Following are valuesof K(n) forn<15
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n Sn k K(n)

1 1 | 2

2 3 1 4

3 6 3 9

4 10 2 12

5 15 5 20

6 21 3 24

7 28 7 35

8 36 4 40

9 45 9 54

10 55 5 60

11 66 11 77

12 78 6 84

13 91 13 104

14 105 7 112 |
15 120 15 135 |

For more such values see appendix A

2.1 Properties

(i)
(a)

(b)

k=n iftnis odd and n/2 ifnis even.
Let 7 be odd,

Then (n+ 1) iseven and hence (n+ 1) /2 is an integer.
o 2n =n(n+1)/2, being multiple of n, is divisible by n.
Hence ndivides Xn + k iff ndivides k i.e. iff kis a multiple

of n. However, as & is smallest k = n.

Let n be even.

ThenZn + k=n(n+1)/2 + k = n’/2 + n/2 + &k

Asnis evenhence n/2 is an integer and n’/2 is divisible by n.

Hence n divides n + k iff ndivides n/2 + &k
Le.iff n < n/2 + kor k> n/2.

However ,as kissmallest k = n/2.
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(ii)

(iii )

(iv)

(v)

(vi)

K(n)=n(n+3)/2 ifnisodd and K(n})=n(n+2) /2
if n is even.

K(n) =Zn+k= n(n+1)/2 + [
If nisodd then k =nand hence K (n) =n(n+3)/2
Ifniseventhenk=n/2andhenceK(n) =n(n+2)/2.

Forall neN; n(n+2) /2 < K(n) < n(n+3)/2
Weknow K (n) iseithern(n+2) /2 Or n(n+3)/2
depending upon whether # is even or odd .

Hence forall neN; n(n+2) /2 < K(n) < n(n+3)/2

Forall neN; K(n) > n
AsK(n)>n(n+2)/2=mn+ ni/2 > n
Hence K(n) > n forall neN.

K is strictly monotonic increasing function of n.
let m<n “.m+!< nie. m + (3-2) < n
Orm+3<n+2 Som<nand m+3 <n + 2
m(in+3)<n(n+2)
Or m(m+3)/2 < n(n+2)/2
K(im) <K (n)

Hence K (n) is strictly monotonic increasing function of .

K(m+n) # K(m) + K(n)

and K(m.n) = K(m) . K(n)
WeknowK(2)=4,K(3)=9,K(5) =20, & K(6)= 24
SoK(2) + K(3)=4+9=13 &K(2+3)=K(5)= 20
HenceK(2v+ 3)=#K(2) +K(3)
AlsoK(2) . K (3)=4.9=36 & K(2.3)=K(6)=24
Hence K(2.3)# K(2).K (3)
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22 (i) K(2n+1)-K(2n) = 3n+2
K(2n+1)=(2n+1)(2n+4)/2=2n+5n+2

K(2n)=2n(2n+2)/2 =2n°+ 2n
Hence K(2n+1)— K(2n) = 3n + 2
(i) K(2n)-K(2m) = 2(n-m)(n+m+1)
K(2n)=2n{2n+2)/2 =2n’+ 2n
S K(2n) —K(2m) =2(n*-m?*)+2(n-m)

Hence K(2n) - K(2m) = 2(n-m)(n+m+1)

(i) K(2n+1)-K(2n-1) = 4n+3
K(2n+1)=(2n+1)(2n+4)/2=2n’+5n+2
K(2n~1)=(2n-1)(2n+2)/2=2n"+ n-1
Hence K(2n+1)-K(2n-1) = 4n+3

(v) K(n)-K(m)=2"""K(n+m) where
n + m

m,n areeven and n>m.

K(n)-K(m) =g(n+2)— i;f(mu)
=-{(n2+2n—m2—2m)
2

=§{(n2_—m2)+2(n—m)}

=(";m](n+m+2)

1 n+m

= (n—-m) (n+m+2)

n+m

n - m
= — " K(n+m)
n+m_
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(v) LetK(n)=m and

(a) Letn beeven then n.m is a perfect square iff (n+2) / 2isa
perfect square.

(b) Letn beodd then n.m isaperfect square iff (n+3)/2 isa
perfect square.

(c) n.misa perfect cubeiffn=2or3.

() IHfniseventhenK(n)=m=n(n+2)/2
Sn.m= n"(n+2)/2 Hence if niseventhen n.m isa

perfect square iff (n+2) / 2 isa perfect square.

(b) IlfnisoddthenK(n)=m=n(n+3)/2
inm.m=n’(n+3)/2 Henceif nisodd then n.m isa

perfect square iff (n+3) / 2 isa perfect square.

(c) Letnbeeven andletrn=2p
Then m=K(n)=K(2p)=2p/2(2p +2)

n.m=(2p). p.2(p+1)=(2p).(2p).(p+1)
n. misaperfectcube iff p+1=2p
ie iff p=1ie iffn=2

Letnbeodd andletn=2p-1 ‘

Then m=K(n)=K(2p-1) = (2p-1)(2p—-1+3)/2
=(2p-1)(p +1)

tw.m=(2p-1). (2p-1). (p+1)

.~ n . m isa perfect cube iff p+1=2p-1

ie iff p=2ie iffn= 3

~n=2and n= 3 are the only two cases where n .m isa

perfect cube.

Verification :-K(2)=4 & 2.4=8 = 2°
K(3)=9 & 3.9=27=237
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2.3 Ratios

(i)

(i)

(iii)

Kin) n

= if n is odd.
Kin+l1) n+1

Asnisodd .. n+1 iseven. Hence K(n) =nin+3)/2

and K (nt1) = (n+1)(n+1+2)/2
= (n+1)(n+3)/2
Hence — (™) _ _ if 1 is odd.
K(nw}]) n+1
K(n) = n(n+2)

= if n is even.
K(n+1) (n+1)(n+4)

Asniseven .. n+Jisodd.Also K(n) =n(n+2)/2 and

K(ntl) =(n+l1)(n+1+3)/2 =(n+1)(n+4)/2

K(n) = n(n+2)

= if 71s even.
K(n+1) (n+1)(n+4)

Hence

K(2n) n
K(2n+2) n+2
K(2n) =2n(2n+2)/2=2n(n+1)
K(2n+2) =(2n+2)(2n+4)/2 =2(n+1)(n+2)

K(2n) n
K(2n+2) n+2

Hence

24 Equations

(1)

(ii)

Equation K (n) = n has no solntion.

WeknowK (n) =n(n+2)/2 OR n(n+3)/2

S K(n) =niff n(n+2)/2 =n OR n(n+3)/2=n
Le.fff n=0 OR n= —] which is not possible as n € N.

Hence Equation K (n) = n has no solution.

Equation K(n) = K( n+ 1) has no solution.
If niseven (orodd) then n+ 1 isodd (or even)
Hence K (n) = K(n+1)

iffnin+2)/2 =(n+1)(n+4)/2
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(iii)

(iv)
(a)

)

OR n(n+3)/2 =(n+1)(n+3)/2
le.iff n(n+2) =(n+1)(n+4)
OR n(n+3)=(n+1)(n+3)
e iff n°+2n =n’+5n+4 OR n+3n =n’+4dn+3
ieiff 3n+4=00R n+3=0
ieiff n=-4/3 OR n=-3 which is not possible as n € N.

Hence Equation K(n) = K( n+ 1) has no solution.

Equation K(n) = K( n+2) has no solution.
If niseven (orodd) then n+ 2 is even (orodd) .
Hence K(n) = K(n+2)
Yfn(n+t2)/2 =(n+2)(n+4)/2
OR n(n+3)/2 =(n+2)(n+5)/2

leiff n(n+2) =(n+2)(n+4)

| OR n(n+3)= (n+2)(n+5)
i.e.iff n*+2n=n’+6n+8 OR n'+3n=n’+7n+10
ieiff 4n+8=0 OR4n+10=9
ieiff n=-—2 OR n=-5/2 which is not possible as n € .,

Hence Equation K (n) = K( n + 2) has no solution.

To find # for which K (n) = n?
ietnbeeven.

Then K (n) = n’ iffn(n+2)/2 = n?
i.e.iﬂn2+2n =2n? Or n(n—2)=0‘
Le. iffn=0o0rn =2 Hencen =2 is the only

even value of n for which K(n) = n?

Let n be odd.

ThenK(n)=n’ if n(n+3)/2 = n?
le.iff n’+3n =20 Orn(n-3)=0
lLe. iffn=00rn=3. Hencen=3 isthe only
odd value of n forwhich K (n) = n?

So 2 and 3 are the only solutions of X (n) = n*
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2.5 Summation and product
(i) For n odd Y K(2n) - X K(2n—-1) =K(n)
ZK(2n) =Xn(2n+2)=25n(n+1)=2X(n’+n)
ZK(2n-1) =X(2n-1)(2n+2)/2n
=X (2n-1)(n+1) =% (2n” +n -1

S XK(2n)~ ZXK(2n—1) =Z(n+1) =n(n+1)/2 + n
=n(n+3)/ 2=K(n)
Hencefor n odd X K(2n) - S K(2n-1) = K(n)

Gi) 2. K(a") = K(a)+K(a®)+K(a’) +. .. + K(a")
m=1

= afa" -1}

m (a™' +3a+2) if ais even

_a(a"-1)

a1 (a™ +4a+3) if a is odd

(a) Letais even. Then

m=n

2 K(a") K (a)jrK(a®)+ K(a’) +. . .+ K(a")

m=]

=a(a+2)/2 +a’(a*+2)/2+ a’(a’+2)/2

+...+ a"(a"+2)/2
= (a/2 + a)+(d72 + &)+
(a2 + &)+ ...+(d"/2 + 4o
=(1/2) {a’ +a* + a® +. . . +a¥}
+fa +a’ +a’ .. +a")

=(1/2)fa’+ (a’)? + (a®)? +.. .+ (a®)" }

+fa +a’ + al v+ 4"
2n n
I lat=1)  a(a-1)
2 a’ -1 a-1
_a (a”—])(a"+1)+ a(a”~1)
2 (a-1)(a+1) a-1

_ afa"-1) {a (a"+1) 2}
20a-1) (a+1)

_a(a"-1) |a™ +a+2a+2
2(a-1) (a+1)
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afa”" 1) nii
= 2 727 2

2Na 1) (a™ +3a+2)
Hence K(a) + K(a’) + K(a’) +. . .+ K(a")

afa” —-1)

a™ +3a+2) if a is even
2(a’ -1) ( /

(b) Letaisodd. Then

m=n
D K(a")wK(a)yrK(a®)rK(a®) +. . . + K(a")
m=/!
=a(a+3)/2 +a*(a’+3)/2+ a’(a’+3)/2
+...+ afa®+3)/2
= (V){d + 3a+a + 38 +4d
+ 3+ .+ 34"}
=(1/2) fa’* +a' + a® + . . +a2"}
+{a +a’ +ad’ +. .. +a"}
=(1/2) {[a’+ (a®)? +. ...+ (a®)" ]
+3f{(a +a’ + d’ +. . . +a")}
1 a1 3a(a” -1
ZE{aZ(ah1)+ 2—1 )}

- afa"-1) |a (ar"+])+ 3
2a-1) (a+1)

_ala"=1) {a”"’+a+3a+3} '

2(a-1) (a+1)
- a(an—l) n+
= —2—(02__1) (a 1+4a+3)
Hence K(a) + K(a’) + K(a®) +. . .+ K(a")
oa’~1) (a™' +4a+3) if a is odd

2(a® -1)

(ii) I K(2n) = 2". n!.( n+l)!
OK(2n)=T 2n(2n+2) /2 =11 2n(n +1)
=112 .0n.T(n+1)
=2n.nl. (n+l)!

Hence Il K(2n) = 2". nl . ( n+1)!
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(iv)

HK(2n-1) = (1/2". 2n! .n!( n+l)
NK(2n-1)=TI (2n-1)(2n+2) /2
=Tl (2n—~1) (n+1)
=II (2n-1) (n +1)
=T (2n—1) 10 (n +1)
= (2n-D!(n+1)!
=(1/2n). 2n! . n! (n+l)

2.6 Inequalites

(i) (a)

(b)

For even numbers a and b > 4 ; K(a.b)>K(a).K(b)
Assumethat K(a.b ) < K(a) . K(b)

ie ab(ab+2)/2 < a(a+2)/2 . b(b+2)/2
tab+2 < (a+2).(b+2) /2

ie. ab < 2(a+b) . . . . . . . . (A)
Nowasaandb>4 solet a=4+h , b =4+ k for some
h,keN. . (A)=(4+h)(4+k)<(8+2h)+ (8+2k)
Le.16 + 4h + 4k + hk < 16 + 2h + 2k

ie2h+ 2k + hk <0 . . . . . . . (D
Butash,k eV, hence 2h + 2k + hk > 0

This contradicts (1) Hence if both @ and b are even and
a,b>4 then K(a.b)> K(a).K(b)

For odd numbers a,5>7; K(a.b ) > K(a).K(b)
LetK(a. b ) < K(a) . K(b)

ieab(ab+3)/2 < a(a+3)/2 . b(b+3)/2
Lab+3 < (a+3) . (b+3) /2

ie. 2ab+6 < gb+3a+3b+9

or ab < 3a+ 3b+ 3 .. e (B)
Nowas a,b>7 solet a=7+h, b=7+k forsomeh, ke W
S BY(THR)(T+E)<3(7+h)+3(7+k)+3

16.49 + 7h + 7k + hk < 45 + 3h + 3k

ied + 4h + 4k + hk <0 . . . . . (1)
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Buth keW hence 4 +4h+4k+hk > 0
This contradicts ( IT) Hence K(a.b) > Kf(a). K(b)

(c) For a odd,b evenand a,b>5; K(a.b )> K(a).K(b)
Let K(a.b) < Kfa). K(b)
ieab(ab+2)/2 < a(a+3)/2 . b(b+2)/2
tab+2<(a+3).(b+2) /2 v
ie. ab < 2a+3b+ 2 . . . . N (8]
Now a,b>5 solet a=6+h and b=6+k
forsomeh, ke W
SO (6+h)(6+k) < 2(6+h) + 3(6+k) + 2
ie.36 + 6h + 6k + hk < 12 +2h + 18 + 3k + 2
iedh+ 3k + hk+4 <0 . . L+ . . . (H)
But hkeW .. 4dh+ 3k + hk+ 4> 0
This contradicts (II1) Hence K (a.b ) > K(a) . K(b)

Note :- It follows from ( xii ) (a), (b) and (c) that in general if
a,b>5 then K(a.b)> K(a). K(b)

(ii) Xf ,a>5 thenforall ne N; K(a") > n K(a)
Asa>5.‘.K(a”)=K(d.a.a... n times)
>K(a).K(a).K(a)uptontimes
>{K(a)}" 2 nK(a)
Henceif @ > 5 thenforall ne N; K(a") > n K(a)

2.7 Summation of reciprocals.
n=wm 1
Il:—'] K (2 n )

(i)

is convergent.
K(2n)=2n(2n+2)/2 = 2nmn+1)
1 _ 1 1

K(2n) 2n(n+])= 2r12(]+;]41)S

1/ n?

So series is dominated by convergent series and hence it is

convergent.
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oo
(i) ;EJK(Zn——I)

is convergent.

K(2n—1)=(2n-1) (2n+2)/2 = (2n=1) (n+1)

] /
K(2n-1) (2n-1)(n + 1)

] .
n2(2—%)(]+%)
<1/n*

Hence by comparison test series is convergent.

«" 1
o K (n)
K(n)>n( nt2)/2
1 < 2
K(n) = n?(l1+ 2/n)

g

(iii)

is convergent.

<1/n?

Hence series is convergent.

<" K (n
(iv) Z -—(——)" is divergent.
n=1 n
K(n) S + 2 5 I
n 2 2

Hence series is divergent.

28  Limits,

. K (2n)

no o 2n
K(2n)=2n(2n+2)/2 = 2nm+1)
E22n =2 n=n(n+1)

K(2n) 2n(n+1)

Z2n n(n + 1)

lim K (2n )

no> @ Z 2 n
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. K(2n-1)
i) = 2
(i) e S (Zn - 1)

K(2n—1)=(2n-1)(2n-1+3)/2

= (2n-1)(2n+2)/2=(2n-1)(n+1)
X2n-1 = 2n(n+1)/2-n=n’

K(2n-1) _(2n-1)(n+1)
d(2n-1) n’ -

(2-Lyr+ L
n n

lim K(2n~1)_2

ne e > (2 - 1 )

(i) fiiﬂi;;:i;j = 1
K(2n+1)=(2n+1)(2n+1+3)/2
=(2n+1)( n+2)
K(2n-1)=(2n-1)(2n-1+3)/2
= (2n-1)(2n+2)/2=(2n-1)(n+1)
K(2n+ 1) (2n+1)(n+ 2)
K(2n-1) (2n —-1)(n+ 1)

; 2
or K (2n+ 1) 2+ 7)1+ ")
K(2n - 1) 1 ]

(2 - =)(1+ =)
n 14

lim K (2 n + 1)
no o K (2 n - 1 )

= 1

. ) K (2n+ 2)
™ . K (2n)
K(2n+2)=(2n+2)(2n+2+2)/2
=2(n+1)(n+2)

K(2n)= 2n(2n+2)/2 =2n(n+1)

CK(2n+2)  2(n+1)(n+2)

= 1

K(2n) 2n(n+ 1)

K(2n+ 2) 2
OR K(2n) _(]+n)

im K(2n+2)=]

n 5o K(Zn)
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29 Additional Properties.

(1)

(ii)

(iii)
(a)

(b)

Let C be the continued fraction of the sequence {K(n)}

C=K(1)+ K(Zé”)
K(3)+ K76
K(5)+—“~—)————
K(7)+ . ..
_ ks K2 K(4)  K(6)

K(3)+ K(5)+ K(7)+

K(2rn)  2n'+2n
K(2n+1) 2r’+5n+2

The n ™ term T, =

Hence T, <1 foralln and .. with respectto [3], Cis

convergent and 2 < C < 3.

K (2"-1)+1isa triangular number.

Letx =2 n then

K(2n-1)+ 1= K (x-1)+1
= {(x—1)(x+2)/2) + 1
={x+x}/2

=x(x+1)/2 which is a triangular number.

Fibonacci sequence does not exist in the sequence { K(n) }
If possible thenlet K(n) + K(n+1) = K(n-+2) for some

n where n is even.
Lon(n+2)/2+(n+1)(n+4)/2=(n+2)(n+4)/2
St 2n)+(ni+5n+4)=n’+6n+8

-1+ /17
2

2

n° +n—-4=0 OR n = which is not

possibleas n e N.

Let K(n)+K(n+1)=K(n-+2) for somenwhere nis odd.
T n(n+3)/2+(n+1)(n+3)/2=(n+2)(n+5)/2
S (n+3) (2n+1)=n*+7n+10

n’ =7 OR n = .\/_7 which is not possible as # € N.
Hence there is no Fibonacci sequence in { K(n)}

Similarly there is no Lucas sequencein { K(n) }
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(iv) K(n) > max{K(d) : Whered is a proper divisor of n and n
is composite }.
As d is a proper divisor of n .. d < nand as function K is
strictly monotonic increasing hence K (d) < K (n ).
So for each proper divisor d we have K (n) > K(d )
and hence K(n)> max{K(n)}

(v) Palindroﬁtes in { K(n) }
K(ll)=77, K(21)=252, K(29) =464,
K(43) =989, K(64)=212

are only Palindromes forn < 100 .

(vi)  Pythagorean Triplet
We know that (5, 12, 13 ) is a Pythagorean Triplet.
Similarly (K (5), K(12),K(13) ) is aLinear Triplet because
K(5)+ K(12)=K(13).

(vii) K(2") =2"(2"+2)/2=2%"1 4 2"
S K(27)=2°+23=32+8=40 and 40 + 1 = 41 is prime.
Similarly K (2%) =27 +2% =128+ 16 =144 and 140 — [ =
139 is prime.
Hence it is conjectured that K (2")—1 or K(2")+1is

prime.

31  Tofind K~ when nis odd

K(n)=n(n+3)/2 =t (say)

L on =K‘1(t)Alsoasn(n+3) /2 =t

-3+, 9+81t —3+J9+8t
on= ' OR KTI(L)=11= —

2 2

-3+ 9+8¢
OR K'(¢t,) = ’

2
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3.2

33

Note:

(1)

(1)

(1)
(it)
(iii)
(iv)
™)

(vi)

(vii)

In the above expression plus sign is taken to ensure that
K7'(t,) enN
Also K™'(t,) e N iff /9 + 8¢, isan odd integer

and forthis 9+ 8¢, should be a perfect square.

From above two observations we get possible values of ¢,

as 2, 9, 20, 35 erc . .

Following are some examples of K (t:)

r t, K'(t)=n,lq.= t,/n,
1 2 1 2
2 9 3 3
3 20 5 4
4 35 7 5
5 54 9 6
6 77 11 7
7 164 13 8

Following results are obvious.
Kitt,)=n,=2r-1
tr=1t, 4 + (4r—1)

L= n.q,=(2r=1)q,

ny =g, +(r-2)

b=t + r.n,

Every t,. isa triangular number.

As t,—t,_; = 4r—1]

- SeconddzﬁierenceDz(t,) =dr—1—-[{4(r-1)-1]=4
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3.4

3.5

3.6

To find K~/ when n is even

(I)

(1)

(i)
(i)
(iii)
(iv)
(v)
(vi)
(vi)
(vii)

 viii )

K(n)=n(n+2)/2 =t (say)

T on =K“1(I)Alsoasn(n+2) /2 =t

—2+,/4 8t
=N oR Kl (1)=n = 141530

2
OR K™'(t,) = ~I+JI+2( = n,
Note:
In the above expression plus sign is taken to ensure that
K'(t,) eN
Also K '(t,) e N iff misanoddinteger.

and for this first of all 7+ 2¢, should be a perfect square.
of some odd integer.
From above two observations we get possible values of ¢,

as 4, 12, 24, 40 etc . .

Following are some examples of K (t,)

r t, K'(t,)=n, [q,= t,/n,
1 4 2 2
2 12 4 3
3 24 6 4
4 40 8 5
5 60 10 6
6 84 12 7
7 112 14 8

Following results are obvious.
‘K—](t,)=n,=2r_

t,=1t,_; + 4r

lr = nrq, =2r. q,;

n, =g, +(r-1)

Lt,=2t,_y +(r+1).n,
tr=n,{n,-r+1]

Every t, is a multiple of 4

t, =4 p where p is a triangular number.

Forr=8 t,=144,n.=16and q,=9. Soforr=8; 1,, n,, and q,
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are all perfect square.

(ix) As t,—t,.; = 4r

.2 Second diffterence D (t,) =4r —[4(r—1)] =4

3.7 Monoid
LetM={K'(2), K'(4), K'(9), K" (12) ... }bethe
collection of images of K including both even and odd n.
Let o stands for multiplication. Then (A, #) is a Monoid.
For it satisfies (1) Closure (1) Associativity (1I1) Identity
Here identity is K (2 ) .
In fact (M, @) is a Commutative Monoid,
As inverse of an element does not exist in M hence it is not a group.

Coincidently, M happens to be a cyclic monoid with operation + .
Because K/ (9)= [K'(2)]°
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Valuesof K(n)forn= 1.To 100

Appendix - [A]

n n k K(n) n Zn K K(n)
1 1 1 2 26 351 13 364
2 3 1 4 27 378 27 405
3 6 3 9 28 406 14 420
4 10 2 12 29 435 29 464
5 15 5 20 30 465 15 480
6 21 3 24 31 496 31 527
7 28 7 35 32 528 16 544
8 36 4 40 33 561 33 594
9 45 9 54 34 595 17 612
10 55 5 60 35 630 35 665
11 B6 11 77 36 666 18 684
12 78 6 84 37 703 37 740
13 91 13 104 38 741 19 760
14 105 7 112 39 780 39 819
15 120 15 135 40 820 20 840
16 136 8 144 41 861 41 902
17 153 17 170 42 903 21 924
18 171 9 180 43 946 43 989
19 190 19 209 44 990 22 1012
20 210 10 220 45 1035 45 1080
21 231 21 252 46 1081 23 1104
22 253 11 264 47 1128 47 1175
23 276 23 299 48 1176 24 1200
24 300 12 312 49 1225 49 1274
25 325 25 350 50 1275 25 1300
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n Zn k K(n) n zn k K(n)
51 1326 51 1377 76 2926 38 2964
52 1378 26 1404 77 3003 77 3080
33 1431 53 1484 78 3081 39 3120
54 1485 27 1512 79 3160 79 3239
55 1540 55 1595 80 3240 40 3280
56 1596 28 1624 81 3321 81 3402
57 1653 57 1710 82 3403 41 3444
58 1711 29 1740 83 3486 83 3569
59 1770 59 1829 84 3570 42 3612
60 1830 - 30 1860 85 3655 85 3740
61 1891 61 1952 86 3741 43 3784
62 1953 31 1984 87 3828 87 3913
63 2016 63 2079 88 3916 44 3960
64 2080 32 2112 89 4005 89 4094
65 2145 65 2210 90 4095 45 4140
66 2211 33 2244 91 4186 91 4277
67 2278 67 2345 92 4278 46 4324
68 2346 34 2380 93 4371 93 4464
69 2415 69 2484 94 4465 47 4512
70 2485 35 2520 95 4560 95 4655
71 2556 71 2627 96 4656 48 4704
72 - 2628 36 2664 97 4753 97 4850
73 2701 - 73 2774 98 4851 49 4900
74 2775 37 2812 99 4950 99 5049
75 2850 75 2925 100 5050 50 5100
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ON THE k-POWER FREE NUMBER SEQUENCE

ZBANG TIANPING

Department of Mathematics , Northwest University
Xi'an, Shaanxi, P.R.China

ABSTRACT. The main purpose of this paper is to study the distribution properties
of k-power free numbers, and give an interesting asymptotic formula.

1. INTRODUCTION AND RESULTS

A natural number 7 is called a k-power free number if it can not be divided by
any p*, where p is a prime number. One can obtain all k-power free number by the
following method: From the set of natural numbers (except 0 and 1)

-take off all multiples of 2%(i.e. 2%, 26+1 ok+2 )

-take off all multiples of 3%.

-take off all multiples of 5%.

...and so on (take ‘off all multiples of all k-power primes).

Now the k-power free number sequence is 2, 3, 4,5,6,7,9,10,11,12,13,14,15,17, - - - .
In reference [1], Professor F. Smarandache asked us to study the properties of the
k-power free number sequence. About this problem, it seems that none had stud-
led it before. In this paper, we use the analytic method to study the distribution

properties of this sequence, and obtain an interesting asymptotic formula. For con-
 venience, we define w(n) as following: w(n) = r, if n = p{*ps*-..p%. Then we
‘have the following:

Theorem. Let A denotes the set of all k-power free numbers. Then we have the
asymptotic formula |

sz(n) = E-(l—?(lkn)—m)— +O(zlnlnz),

n<r
neA

where ((k) is the Riemann zeta-function.

Key words and phrases. k-power free numbers; Mean Value; Asymptotic formula.
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2. SEVERAL LEMMAS

Lemma 1. For any real number z > 2, we have the asymptotic formula

Zw( n)=zlnlnz+ Az + O (ln$>

n<T

Z w(n) =z(nlnz)? + 0O (rlnlnz).

n<e
- 1 1
whereA-7+Z(1n(l—5) +5).
P
Proof. (See reference [2]).

Lemma 2. Let p(n) is Mébius function, then for any real number z > 2, we have
the followmg identity

= pnjun) 1 1
2w T

s -
n=1 p P 1

Proof. From the definition of w(n) and p(n), we have

— p(nwin) & p(n) p|n i np 1o~ pln)
D=y Z Z =-2.5 2
" n (p =1 T et

I e N S OR W AREE  SS IS
- zp:ps ('n=l n§>(1 ps) h C(S);ps_li

This proves Lemma 2.

Lemma 3. Let k > 2 is a fized integer, then for any real number z > 2, we have
the asymptotic formula

z(Inln z)?
Z w(m)u(d) = —_Qal?c)_) +O(zlnlnz).
dfm<a

Proof. From Lemma 1, we have

> mud) = Y ud) Y wim)

dkm<z d(a:%c' m<z/dk
z
= Z u(d)(dk(lnln —)? +O( lnlnEE)>
dSm%
~ p(d) klnd\\?
=z Z F(lnlnx—#lnln <1- s +0O(zlnlnz)
dgm%

u{d) Ind
z(Inln )Z 7 tO|ehlnz 37 - | +O@hing)
d<zk
w(lnlna:)2
=————=——+0(zlnlnz).
iy o)

This proves Lemma 3. 63



Lemma 4. For any real number x > 2, we have the estimate
S WAd)uld) = Ofz).
d*m<z
Proof. From Lemma 1, we have

>, Fdud) = Y Adud Y 1= Z [ }

dkmsx d<$-‘% 77'L<.’1:/d}c

2 .
_zz (d +o > W) | = O=).

d(:r: k ds:c%
This proves Lemma 4.

Lemma 5. For any real number x > 2, we have the estimate

S WP((d,m)u(d) = O(z).

dem<z

Proof. Assume that (u,v) is the greatest common divisor of © and v, then we have

2, Alldmud) = 30 )3 3 ) =3 D) Y e [

df*m<z d<:1:% uld m<z/d* d<:z:k u|d
- ulm —
u(d) 3 2w
uld
—-mz +0 Z /.L(d)Zuﬁ(u) =0 (z).
de% uld

This proves Lemma 5. _
Lemma 6. For any.real number z > 2, we have the asymptotic formula

Y wdw(m)u(d) = Czlnlnz + O(z),

‘dkm<ax
— 1 1
where C = —"Cm Zp: FE_:T

Proof. From Lemma 1 and Lemma 2 we have

> wdwmpd) = > widud) S wm)

d’“mgz d<:|:% mS:l,‘/dk
zlnln . Az z

= 3 wl(@u(d) (~—-—-dk +Fe0(722))

d<:1:% E
_ klnd wdp(d) /s

-7 Zl (1“1”““1“( oz ))*‘Am > = 0(q5)

d(zTc' d<z®
w(d)p(d) Ind T
(““1”““)2_“*0 * Y e | 70 (s
d<z

= C’mlnlnzz+0(z).

This proves Lemma. 6. 64



ZHANG TIANPING

3. PROOF OF THE THEOREM

In this section, we shall complete the proof of the Theorem. For convenience we
define the characteristic function of k-power free numbers as follows:

1, ifnis a k-power free number;
u(n) = .
0, otherwise.

From Lemma 3, Lemma, 4, Lemma 5 and Lemma 6, we have

2P =Y ) Y ) = Y wAdEmud)

n<x n<z dk|n d*m<z
neA

= > (w(d) +w(m) - w((d, m)))? u(d)

dkm<z

= Y @+ Y P+ Y W m)uld)

dém<z d*m<z dkm<x

+2 Z w(d)w(m)u(d) | + O Z w(dyw(m)
dem<z dEm<z
_ (z(lnlnm)2
S\ (k)
z(lnlnz)?

This completes the proof of the Theorem .

+0(z lnlnm)) +2(Czlnlnz + O(z)) + O(z Inln z)

’
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ON THE k-POWER COMPLEMENT AND
k-POWER FREE NUMBER SEQUENCE

ZHu WEIY!

College of Mathematics and Physics Science, Zhejiang Normal University
Jinhua, Zhejiang, P.R.China

ABSTRACT. The main purpose of this paper is to study the distribution
properties of &-pawer free numbers and k-power complement numbers, and
give an interesting asymptotic formula.

1. INTRODUCTION AND RESULTS

Let k > 2 is a positive integer, a natural number n is called a k-power
free number if it can not be divided by any p*, where p is a prime number.
One can obtain all k-power free number by the following method: From
the set of natural numbers (except 0 and 1)

-take off all multiples of 2%(i.e. 2F, 2k+1 0k+2

-take off all multiples of 3%.

-take off all multiples of 5*.

-..and so on (take off all multiples of all k-power primes).

For instance, the k-power free number sequence is called cube free sieve
if k = 3, this sequence is the following 2, 3,4, 5,6,7,9,10,11, 12, 13, 14, 15, 17

Let n > 2 is any integer, a(n) is called a k-power complement about n
if a(n) is the smallest integer such that n x a(n) is a perfect k-power, for
example a(2) = 2871 q(3) = 351 g(25) =1, - -- .

In reference [1], Professor F. Smarandache asked us to study the prop-
erties of the k-power free number sequence and k-power complement num-
ber sequence. About these problems, it seems that none had studied them
before. In this paper, we use the elementary method to study the dis-
tribution properties of these sequences, and obtain an interesting asymp-
totic formula. For convenience, we define Q(n) and w(n) as following:
Qn) =o1+as +...+a;, w(n) =7, if n=pfps? - -p be the factor-
ization of n into prime powers. Then we have the following Theorem.

Key words and phrases. k-power free numbers; k-power complement numbers, Mean
Value; Asymptotic formula. '
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Theorem. Let A denotes the set of all k-power free numbers. Then for
any real number £ > 2, we have the asymptotic formula

3 ofam) = e S a0 (),

neA

where ((s) is the Riemann zeta-function, u(k) is a constant depending only
on k .

2. SEVERAL LEMMAS

Lemma 1. For any real number x > 2, we have the asymptotic formula

S w(n )—xln]nx+Am+O(1 x)

naT

Zﬂ(n) =zlnlhz+Bz+0 (ﬁ;)

n<s

whereAz’Y-l-Zp:(ln(l—;l)) )B A Zp(p—l)

Proof. (See reference [2]).

Lemma 2. For any real number x > 2, we have the asymptotic formula

Z w(n) = ¢ Hk)zlnlng + Az~ (k) + Cz + O (ln_m_a;) .

n<zx
ncA

Proof. Let (u,v) denotes the greatest common divisor of w and v. Then
from Lemma 1 we have

Yowm) = wm) Y ud= Y whnd)ud= 3 ud Y wind)

ngji ngz dkln dkﬂSE d<:1:7t' ﬂ-S-’-E/dk
ne =
= 2. uld) [ > (wcn)w(d)—w((n,d)»}
d<a® n<z/d
=3 uld) 3w+ Y wded 5] - X k@Y 3
a<zt nSafdk d<z® d<z® uld HST/d"

Az . z
= Z u(d) |:dk ].Il].n dk +‘ dk +O(IIHI1 (1,#—1%_@;))]

d<z®

+$Zg—@%:igd—)—r0(z’klnm)—2p(d)z [ }

d<z® d<z® uld
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dk

o] foe) _ﬁﬂ
= zinloe ; H% . AI; “ék Z u(d)cu(d) Z w(d) 0 5

d=1
-1 -1 e
(K)zlnlnz + Az¢ (k)+cx+o(m).
where )
= p(dw(d) S op(d) Y,
C = Z Lkt el A Z e w

d=1 d=1
This proves Lemma 2.

Lemma 3. For any real number z > 2, we have the asymptotic formula

> Qn) = ¢ k)rlninz + Be¢™ ()+Dx+o(E%).

R<x
neA

Proof. From Lemma 1, we have

2_0m=3"0m Y ud= Y Qndud =3 pd) 3 Qmd)

<z < kin i L n<zc/d*
2;A n<z dk| df*n<z d<z® <z/d
= wd) { > (9<n)+kﬂ(d))}

d<I-‘1: ﬂSI/d"
= Z @ Y o Z d) kY d)[ ]

dgmk n<z/d d<mk
= 2 1aln & B‘“ 0 {min (1, -
= % w0 e e B0 (s (152

d<z¥

+ kx Z u(d)ﬂ (a:% Inz:)
d<zk

— mmif_‘gﬂ +B$i%§;ﬂ +’wi u(dzl?(d)
d=1 _

= ¢"YB)xInlnz + Bo(=' (k) + Dz + O ( nx) ,
where

2, w(dQ(d
D=kZ'u( c)ik()'
d=1

This proves Lemma 3.

3. Proor or THE THEOREM

In this section, we shall complete the proof of the Theorem. According
to the definition of k-power complement number and &- -power free number,
and applying Lemma 2, 3, we have

Y Qnxan) =k wn)= .0+ 3 Qa(n))

n<z n<z n<x n<z
ngA neA ncA neAd

68
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or

Y. Q@m) =k wmn) -3 Qn)

nsz n<z n<z
neA ncA nEA

=k [¢TMk)rtalng + Az¢H (k) + Cz + O (fg”
— [C“l(k)mlnlnﬂs-f- Bl‘qu(k) +Dz+0 (_‘7:_)}

Inz
_(k=Dazlhlnz ?(z)lnm +uBs+0 (2.
where kA— B
u(k) = —C—(—k)— +kC —-D
This completes the proof of the Theorem .
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On the 80th Problem of F.Smarandache(I)

He Xiaolin Guo Jinbao
College of Mathematics and Computer Science,Yanan University,Shaanxi China 716000

Abstract Using analytic methold,this paper studies the first power mean
of a(n) and its generation, and gives a mean value formula,where a(n) is the
sequence in problem 80 of“ only problems not solutions” which was presented
by professor F.Smarandache.

Keywords number-theoretic function; mean-value; asymptotic formula

In 1993,number-theoretic expert F.Smarandache presented 100 unsolved problems in
[1],it arose great interests for scholars.Among them,the 80th problem is:

Squareroot: 0,1,1,1,2,2,2,2,2.3.3,3,3.3,3,3,4,4,4,4,4,4,4.4. 45 5.5.5 5.5.5,5,5,5.5.,6,6.6,6.6
6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7.8,8,- - -

Study this sequences.

7

We donote the sequence in problem 80 as a(n),it is not difficult to show that a(n) =

[v/1 ],where [z] is the maximal integer that is no more than z.

1. Mean-value about a{n)

Theorem 1 Tet n be a positive integer , and a(n) = [\/n |,then

3]

3
Ya(n) =Y [Vrl= izt + Sz 4 O(zh)
3 2
n<z n<z
Proof For an arbitray positive NUMBER =,there must existS positive integer
N such that N <z < (N + 1)%,50 we have

¢

> aln) =3 [vn]

n<r n<T
= 3 Mil+ 3 Vil+-+ 3 WVil+ o)
1322 22<i< 32 N2<i<e<(N+1)?
=3-1+5-1+~-+[(N+1)?—N2]-N+O(N)
=3 (27 + 1)j + ON)
J<N

=237+ j+OW)
iN <N
1
= 2NN + DN + 1)+ AN (N + 1) + O()
3

I 3Ny O(N)
3 2
)

oy

2 3
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2. Generalized mean-value about a(n)

Theorem 2 Let 1 be a positive integer, and a(n) = [n %] then

Z Z[?’H =~x3+5:1:+113:§+0($:17)
< <z 2 4
n<x n
Proof > a(n) = Z[ﬂ%]
n<r n<r

= 3 B+ X B+ Y oW

13323 23<ic3? N3 (N +1)3

=T7-1+419-24 -+ (N +1)3= N%.N + O(N)

=2 G+1* -7+ 0@

J<N

=3 #4333+ i+0m)

J<N J<N J<N
1 1 1
=3[GN(V + D+ 3- g+ DEN + 1)+ oN(N +1) + O(N)

2N4+5N?+ 4N2+O(N)
% %+%z+%m%+0(r )

[

Genarally,we have the following
Theorem 3 Let n be a positive integer,and a(n) = [n %] then

Y an) = Y] = ™ 4 0f)

n<z n<T k+1

Proof Z a{n) = Z[n%]

n<z n<z
= ¥ G+ ¥ G+ > G+ oW
16 <25 ok <j¢ 3k ngigz<(N+1)k

=3[+ 1) -+ o)
IXN

k k k

=5 GF+ Y A Y 7+ O(N)

J<N 1 JEN | 9 =Nk
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If we generaliz it from other view ,we can also have
Theorem 4 Let n be a positive integer,and b(n) = (a(n))? = [\/n [?,then

Lo =TT - 122+ 2+ 0()

n<r 3

Proof Y b(n) =3 [Vn]?

n<x n<x

= Y MiP+ 3 WiP++ >, Wi+ on?

12<ic2? 23 <i<3? N<Li<a<(N+1)?
:3-1+5-4+---+[(N+1)2—N2]N2+O(N2)
= >_[G+1* =545 + O(N%)

FETY

—2 3 2+ Y A+ 00V

J<N j<N

[;N(N L+ -é[.N(N + 12N + 1) + O(N?)

4

3
= %a:z + %z% + O(x)
Theorem 5 Let n be a positive integer,and b(n) = (a(n))® = [/n % then

S bn) =3 [Vn]? =—a:2+2:c +O0(z %)

Nt

=2-
1 3 2
=3 N+ O(N7)

n<x n<z
Proof 3 b(n)= 3 [vn
nLT nsz
= Y WiP+ ¥ WViP+--+ > Wi+ oW
12<ic2? 22332 N2<i<a<(N+1)?

=3-1456-8+4-+[(N+1)2 ~ NN + O(N?)

= TG+ 12~ 75 + O(N)

JEN
=23 7+ 3 P2 +0W?
JSN <y
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= 2. NN + 12N + (BN +3N — 1) + [HV(N + 1) + O)

g -
= gN5 + %N‘* + O(N?)

= %mg + 2:1:2 + O(wé)

Theorem 6 Let n be a positive integer,and b(n) = (a(n))* = [y/n |¥ then

ILOED YN I SRCIES

n<x nsz k+2

Proof » b(n)=) [Vnl*

n<z n<r

= > MMiF+ 3 Wi+ >, WMifF+owk

13<ia? 22 i< 32 N2 (N 41)2

=3-15F4+5.25 + ... + [(N 4 1)2 - N N*  O(N¥)

= 31 +1)% - 5455 + O(NF)
I<N

=22jk+1+ Z]k—FO(Nk)

jsN <N

k2 k+1
O(N
Pz PO
= kizz%g'-f_()(g:&%i)

=9.
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On the 80th Problem of F.Smarandache(1I)

He Xiaolin Guo Jinbao

College of Mathematics and Computer Science, Yanan University,Shaanxi China 716000

Abstract The main purpose of this paper is to study the first power mean
of d(a(n})); p(a(n)) and their generations,and a sery of regular result is ob-
tained,where ¢(n) is Euler totient funstion,d(n) is divisor function and a{n)
15 the sequence in problem 80 of “only problems not solutions” which was
presented by professor F.Smarandache.

Keywords number-theoretic function; mean-value; asymptotic formula

In 1993, professor F.Smarandache presented 100 unsolved problems in [1])it arose great
interests for scholars. Among them,the 80th problem is:

Square root: 0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,
6,6.6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8 8, - -

Study this sequences.

We donote the sequence in problem 80 as a(n),it is not difficult to show that a(n) =

n |,where[z] is the maximal integer that is no more than r.
4 i)

1. Mean-value of d(a(n))and it’s generalization

Theorem 1 Let n be a positive integer,and a(n) = [\/7 ], d(n) be divisor func-

tion,then
Z da{n)) = Z d([vn]) = %z logz + (2(: - %) z -+ O(:r%)

n<e nsz
Where ¢ is Euler’s constant.

Proof Z d(a(n)) = 2 d([vn])

nz n<e

= > dVid+ Y dVih+-+ 2 d([Vi]) + O(N°)

12<iq? 22<i3? NI<i<a<(N+1)2

=3.d(1) +5-d(2) 4 + [(N +1)% = N2d(N) + O(N?)

= (2 + 1)d() + O(N¥)

JEN

Let AN) = 3 d(j) = Nlog N + (2c—~ )N + o(N )P

J<N

.f(7) = 27 + 1,by Abel’s

identity[Q];we have

. N

> (27 +1)d(j) = A(N)F(N) - A1) /(1) */ A(t)f'(t)at
<N, .

= [Nlog N + (2e — 1)N + O(N7)](2N + 1) — A(1)f(1) — /lN [tlogt — (2c— 1)i + O(NF)] - 24z
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$olte

s N N .
=2N"log N +2(2c ~ 1)N* + O(N )_2/ ﬂogtdt_2/ (QC—I)tdt-2/ O(t%)dt
1 1 - 1

=2V log N —2(2¢ — YN + O(N¥) - N1og N 1 LV? - 2(2 — V? + O(v})
= N?logN + (2(:—— %) N2 4 O(N?)
S0
2 dla(n) = >~ (2j + 1)d(j) + O(N9)

i<N J<N

= N?log N + (QC - é) N? £ O(N?) + O(N)

1 1
= -éxlog:c+ (26 - 5) T+ O(J:%)

Similarly,we have

Theorem 2 Let n be a positive integer,and a(n) = [né], d(n) be divisor function,then

3 dla(n) = 3 d(ind]) = 3zloga -+ (20— 5) @+ 0@

n<z n<x

Where ¢ is Euler’s constant.

Proof Y d(a(n)) = 3 d([“%])

n<z n<z

= ¥ dE )+ X AN+ S d(t]) + o)

132’ 2338 N3<i<p(N+1)3

=7-d(1) +19-d(2) +--- 4 [(N + 1)® — N)d(N) + O(N?)

= > (3% £ 3 + 1)d(j) + O(V?)
JEN

Let AN) = 3 d(j) = Nlog N + (2c — YN + OVH™ 7(j) = 32 + 35 + 1, simi-

jEN
larly , we have

3 + 33 + 1)d() = AN F(N) — A1) [ awrme

J<N
= [Nlog N + (2¢ - 1)N + O(N?)](3N2 + 3N + 1y — /1N [tlogt — (2c — 1)t + O(¢2)](6t + 3)dt

=3N%log N +3(2c — 1)N® + O(N3) + 3N log N +3(2c — 1)N? + Nlog N + (2c — )N

v N N, N N
72— 1)N—/ 61% log td —/ 6(2c — 1)12dt + O (/ smt) —f 3tlogtdt—/ 3(2¢ — 1)tat
1 1 1 1 1
Because
v » 2
f 6t logtdt = 2N3log N — 5N3 + e,
1
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N
/ 6(2¢ — 1)t2dt = 2(2c — 1)N® + o,
1

N 3 5 3
/ 3tlogtdt:§N IogN—aNQ+CS,
1

So

, : . . .
(355 +35 +1)d(5) = 3N log N 4+ 3(2c = 1)N® — 2N%10g NV + §N3 —2(2c— 1)N? + O(N3)
JEN

= N¥log N -+ (2c - -é) N® 4+ O(NE)

As a result,we have

3 da(n)) = 3 d(fn3))

JEN <N
= > (35% + 35 + 1)d(j) + O(N?)
J<N

= N3log N + (20— %) N3+ O(N2) + O(N¢)
1 1 5
= gxloga:+ (2c- 5) T+ O{zs)

Theorem 3 Let n be a positive integer , and a(n) = {n%],d(n) be divisor func-
tion,then

Y da(n) = 3 d(ink]) = 1ologz + O()

n< Nz

Proof Y d(a(n))=>_ d([n])

n<e n<r

> odEE)+ Y @) e+ S d(lid) o)
1k i 2k 2k <43k NE<i<z<(N+1)*

= (25 = 1)d(1) + (3¢ —2)d(2) + .- + [(V + 1)F — N¥d(N) + O(N?)

]

= Y[+ 1)F — 4d(5) + O(Ne)
<N

Let A(N) = Z d(j) = Nliog N + (2¢ — 1}N+O(N%)[2]

JEN

JFG) =[G+ 1)F — %] then

3 (34 0 = 4d0) = AN)F00 - AW~ [ A7

J<N

= [Nlog N + (2¢ = 1)N + O(N)][(V + 1)F — N*] — A(1)£(1)
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_ /‘V [tlogt + (2 — 1)t + O(£5)](k{t + 1R — gty
1

k

1

k
=[NlogN + (2~ )N+ O(N7)](} NEh

=1 i

k-1

_k/ [tlogt — 2(2e — 1)t + O¢3 (Z t*1=1qy

k

1

k

1

I

N
NFlog N — /1 1 log kdt + O(NF)

N¥log N N¥log N + O(N*)

— N*log N + O(NF)

So

2. Mean-value of ¢{a

Theorem 4 Let
function,then

n<z

Zd(an) Zd 71;

n<z n<z

= > [G + 1)k — 5*ld0) + o)

Jj<N

= N¥log N + O(N*) + O(V)

1
=T log z + O(z)

(n)) and it’s generalization

n be a positive integer,and a(n) = [/7n ],(n) be Euler totient

pla(n)) = Zw[f =—x2+0(zlogz)

n<y

Proof Z wla(n)) = Z w([vn])

n<z

= > o

12<i<2?

n<z

Vid+ Y e(Vil 4o+ > e(Vi]) + O(N)

22 <i<3? N2 (N+1)2

= 3p(1) + 5p(2) + -+ [(V + 1) = N2p(IV) + O(I)

=) (2j+ 1)

J<N

(J) + O(N)
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Let A(N) = 3 o(j N + O(Nlog N, £(3) = 27 + 1 then
<N

S 21+ (i) = AN - A1) - [ A0 (hat
J<N '

- {%m +OW IogN)] (2N +1) - /1 " L%t? + 0t logt)} 24t
6

N+ O(N®1og N) — %Nu“* + O(N?%log N)
= %N‘g + O(N? log V)

Then

2oe(vr]) = 37 (25 + () + O(N)

n<y JEN
4
= FN3 + O(N?log N) + O(N)
4
= ;5.7:% + Oz log z)

Similarly,we have

Theorem 5 Let n be a positive integer,and a(n) = [n%],tp(n) be Euler totient
function then
Y elan)) =3 p(nd) = ~—$3 +O(zlog z)
n<r n<z
Proof 3} (a(n) = 3" o([n3])
n<z n<z

= 3 e+ T el ++ S i)+ o)

13<ig2? 2<ic3d NELi<z < (N+1)3

To(1) +90(2) + - 4+ [(V + 1) —~ N3p(N) + O(N)

Il

= > (3% +3i + 1)e(d) + O(N)

J<N

Let A(N) = Z o(N) = —3-N2 +O(Nlog ), £(7) = 372 + 35 + 1 then
I<N

365 +35 + Upl) = A — AWsW - [ A e

J<N
N

- {%N2+O(NlogN)} (3N2 4+ 3N + 1) —f [%tg—f—O(tlogtﬂ (6t + 3)at
1 J

9 e 9 3

*Ter 2ﬂ.2N + O(N”log N)
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So
S w(liT]) = 37 (352 4 35 + Dply) + O(N)

n<r <N

9
= ﬁpﬂ + O(N3log N) + O(N)

232 s + O(zlogz)

Theorem 6 Let n be a positive integer,and a(n) = [n%},(p(n) be Euler totient
function,then

> wlalm) = 3 plinf]) = s '® + Olsloga)
N n<e
Proof 3 pla(n) = 3" ¢([nt])
n<zL n<z

= X e+ Y e +--+ S oty + oW

1h<ig ok 2k ik NE<i<az{N+1)k
= Y[+ D = iFe(s) + O()
JEN

Let A(N) = 3 o) = S5N% + O(Nlog M), 7(3) = [(5 + ¥ — "} then
F<N

S+ 1% = ) = AN - 407~ [ A

JS<N
3 . kr3 _ -
= [gNQ +O(N logN)J [(V + 1) — N¥) _/1 [7—5# + O(tlog t)] E{(t + 1)t — 5 1at
_ 3k ke k _kE-1)3
= N O(NVRlog N) — 2
— ﬁk k+1 k
"G l)7r2N -+ O(N"log N)
So
1
2 wela(n)) = 3 o([nk))
n<T n<
= 2 [G + 1F = 5*le(5) + O(N)
JsN
6k k41 k
=GN OV logN) + O(N)
6k kbl
= W-’r 4 O(zlog x)
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Smarandache Concatenated Magic Squares

Muneer Jebreel Karama
ssmathhebron@yahoo.com
S5-Math-Hebron / UNRWA / Field Education Officer /
Box 19149 / Jerusalem / Israel.

Abstract:

In this article, | present the results of investigation of
Smarandache Concatenate Magic Squares formed from the
magic squares, and report some conjectures.

Key words:

Magic Square, Smarandache Concatenate Magic
Squares, Smarandache Prime - Concatenate Magic Squares.

1) Introduction:

A magic square consists of the distinct positive integers , 1 ,2
;- N, such that the sum of the n numbers in any horizontal ,
vertical , or main diagonal line is always the same constant, for
more details see [1],[2],and [3].

2) Smarandache Concatenated Magic Squares
(SCMS):

SCMS is formed from concatenation of numbers in magic
squares such that the sum of the n numbers in any horizontal,
vertical, line is always the same constant, but not necessary main
diagonal the same constant.

3) Examples:

Consider the following magic square (4x4), figure .1

14 24 25 11

19 17 16 22

15 21 20 18

26 12 13 23
Figure .1
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Then we can formed many Smarandache Concatenated Magic

Squares,

such as in figure.2 (concatenation the numbers in magic squares

horizontally)

Or as in figure.3 (concatenation the numbers in magic squares

vertically)

1424 2425 2511 1114

1917 1716 1622 2219

1521 2120 2018 1815

2612 1213 1323 2326
Figure .2

1419 2417 2516 1122

1915 1721 1620 2218

1526 2112 2013 1823

2614 1224 1325 2311
Figure .3

or many concatenation digits such as in figure .4,5 and 6 .

142425

242511

251114

111424

191716

171622

162219

221917

152120

212018

201815

181521

121323

132326

232612

261213

Figure 4

14242511

24251114

25111424

11142425

19171622

17162219

16221917

22191716

15212018

21201815

20181521

18152120

26121323

12132326

13232612

23261213

Figure .5

1424251114

2425111424

2511142425

1114242511

1917162219

1716221917

1622191716

2219171622

1521201815

2120181521

2018152120

1815212018

2612132326

1213232612

1323261213

2326121323

Figure .6
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4) Conjectures:

1) There are infinitely many Smarandache Concatenated Magic
Squares formed from one magic square.

2) The sum of the n numbers in any horizontal, vertical, line is
always the same constant , and follow concatenated pattern,

for example the concatenate pattern in figures 1,2,3,4,5and 6 ,

follow concatenate pattern which is : 74, 7474,747474

,74747474,7474747474 ..., and so on .

5) Smarandache Prime - Concatenate Magic

Squares: is formed from concatenation of only primes numbers in
magic squares [ see , JRM,30:1,p297] such that the sum of the n
numbers in any horizontal, vertical, line is always the same
constant, but not necessary main diagonal the same constant.

Example : this example found in [JRM,30:1,p297]

101 029 083

053 071 089

059 113 041
Figure .7

¢

Then we can form the following Smarandache Prime - Concatenate
Magic Squares , Figure.8 and 9 .,

101029 | 029083 | 083101

053071 | 071089 | 089053

059113 | 113041 | 041059
Figure .8

101029083 | 029083101 | 083101029

053071089 | 071089053 | 089053071

059113041 113041059 | 041059113
Figure .9

The sum of the n numbers in any horizontal, vertical, line is
always the same constant , and follow concatenated pattern,

for example the concatenate pattern in figures 7,8, and 9 , follow
concatenate pattern which is : 213, 213213,213213213 ..., and so
on .
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6) Conjectures:

There are infinitely many Smarandache Prime - Concatenated
Magic Squares formed from only prime’s magic squares.

7) Open Question:

1) Are there Smarandache Prime - Back Concatenated Magic
Squares?

Z) Are there Smarandache Back Concatenated Magic Squares?
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PROOF OF FUNCTIONAL SMARANDACHE ITERATIONS

ZHENG J]ANFENG
Shaanxi Financi & Economics Professional College
Xianyang, Shaanxi, P.R. China

ABSTRACT: The paper makes use of method of Mathematics Analytic to prove Functional
Smarandache Iterations of three kinds.

I.Proving Functional Smarandache Iterations of First Kind.
Kind 1.

Let f:A4— 4 beafunction, such that f(x)<x forallx, and min { f(x),xe 4} >y
different from negative infinity.
Let f have p=>1 fix points: mSx<x < <xp. (The point x is called fix, if
f)y=x.1.
Then:
S71(x) = the smallest number of iterations k such that
J

]:(f(---{”(x)--i): constant.

iterted k times

Proof: I.When A< Q or AcR, conclusion is false.

Counterexample:
Let A=[0,1] with f(x)=x®, then f(x)<x, and x =0, x,=1 are fix points.

Denote: 4, (x)= ﬁf(...f(x)...)) v Aix)=f(x), (n=1,2,-).

n fmes

then 4 (x)=x2 (41,2, ). ,
For any fixed x=0, x=1, assumed that the smallest positive integer k exist, such that
An(x)=a (constant), hence, 4,.,(x)=7(4,(x))= f(a)=a, that is to say a be fix point.

k+1 -
So x2 =0 or 1, = x=0 or 1, this appear contradiction. If AcZ, let A be set of all

rational number on [0,1] with f(x)=x", using the same methods we can also deduce
contradictory result.
This shows the conclusion is false where AcQ or AcR.

I1. when AcZ, the conclusion is true.

(). If x=x, (x, is fix point, 7=1,--p ). Then S =fx)=x=4,(x). So for any

positive integer n, 4,(x)=x ( 7=l,-p), = ST1(x)=1.
| s

Keywords and phrases. Functional iterations; fix point; limit.
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(2). Let x#x, (xisfixed,i=l,« p), if f@)=x, (i=l,p), then STl(x)=1, if
S

SxX)#x but f(f(x))= 4,(x)=x, ( 7=1,*p ), then ST1(x)=2. In general, for fixed
/
positive integer k, if A (X)) # x; A= x; 0 A (%) # x;, but A (x) = x; then

ST1(x)=k
f

(3). Let x#x; (xis fixed ), and for Vne N A0 #x; (i=1,-p), this case is

no exist.

Because x is fix point, my < < Ay(X) << 4,(x) < 4(x) <x. So sequence {4,001 is
descending and exist boundary, this makes know that {4,(x)} is convergent. But, each item
of {x4n(x)} is integer, it is not convergent, this appear contradiction. This shows that
the case is no exist.

(4). Let x#yx, (xisfixed,i=l,+ p), if exist the smallest positive integer k such
that 4,(x)=a ( a=x, ), it is yet unable. Because A =4, x)=a ,
A ()= F(A4,(x) = f(a)=a, this shows that a is fix point , namely, a=yx,, this also
appear contradiction.

Combining (1), (2), (3) and (4) we have

S71(x) = the smallest number of iterations % such that
oy ,

S fx)--)= x; (x; is fix point, 7=1,-p ).
iterted k times
This proves Kind 1.
We easily give a simple deduction.
Let f:4->4 bea function, such that f(x)<x forallx, and min{ f(x),xed} > Mo »

different from negative infinity.
Let f(mg) = myg, namely, my 1s fTix point, and only one.

Then: S/1(x) = the smallest number of iterations k such that
f .
FUC L)) = my-
lterted k times .
2.Proving Functional Smarandache Iterations of Second Kind.

Kind 2.
Let g:4— 4 be a function, such that g(x)>x for all x, and let & > x.
Then:

SI2(x,b) = the smallest number of iterations k such that
g

g(g(--g(x)--))2b.

iterted k times
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Proof: Firstly, denote: B, (x)= g(g(--g(x)--), ( n=1,2, ).

[. Let ACZ, for ¥ x<b, xeZ, assumed that there are not the smallest positive
integer k such that B, (x)=b,then for V neN have B,(x)<b, so
X< Bi(X) <By(x) < < B,(x) < <b.
This makes know that {Bn(x)} is convergent, but it is not convergent. This appear
contradiction, then, there are the smallest k such that B,(x)=b.
[I. Let AcQ or AcR.
(1). For fixed x<A. If g(x)=>g(b)>b, then B.(x)zg(x)>b ( neN ), SI2(x,bh)=1,

g
if g(x)<g(d) but By(x)2g(b)>b,then B (x)2g®B)>b ( n>2 ), S12(x,b) =2. In.
g

general, if PB(x)<g(b), By(x)<g®) ,~ B, (x)<g(®), but By (x)=zg(b)>b, then
SI2(x,b)=k.
g

(2).For fixed x<b, B (x)<g(b), ( neN ) then
X< By(X) <By(x) < - < B (x) <--- < g(b),
so {B,(x)} is convergent. Let l_i)Ian(x) =h" B,(x)<g®y ( nenN ), . b*Sg(b).
D. p=gb). imp,(x)=p" - for e=g(b)~b>0, 3 positive integer k, when n>k such
that |B,(x) gb)<e. So B,(x)>g(b) s=g(b) (g(b) b)=b. That is to say there are the -
smallest & such that B (x)>56. 2). b < g®). v gh)> b*, <o {B,(x)} does not converge
at g(h). So Jgy>0, for VN, 34, when n >N, such that Bnl(x)——g(b*) >gy, then,
B, () 2g()+e, - B,(x)>p+go. On the other hand, B,(x)<p" ( neN ),

B, (x)< b then p'+g, <Bp,(x)< b, but this is unable. This makes know that there is not

the case.

By (1) and (2) we can deduce the conclusion is true in the case of A belong to Q or
. .

Combining I. andII., we have: for any fixed x>b there is
SI2(x,b) = the smallest number of iterations k such that
g .

g(g(--g(x)--))2b.
o ovy Z

iterted k times

This proves Kind 2.

3.Proving Functional Smarandache Iterations of Second Kind.
Kind 3.

Let h: A— 4 be a function, such that &(x) < x for all x, and let b < x.
Then:
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SI3(x,b) = the smallest number of iterations k such that
h
h(h(---h(x)--)) < b.
—_—

iterted k fimes

Using similar methods of proving Kind 2 we also can prove Kind 3, we well not prove
again in the place.

We complete the proofs of Functional Smarandache Iterations of all kinds in the place.

REFERNECES
1. “Functional Iterations” at http://www. gallup. unm. edu/" smarandache/bases. txt
2. East China Normal University Department of Mathematics Writing, Mathematics Analytic,
People’s Education Press, Shanghai, 19824,
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ON THE INFERIOR AND SUPERIOR £-TH POWER PART
OF A POSITIVE INTEGER AND DIVISOR FUNCTION

ZHENG JIANFENG
Shaanxi Financial & Economics Professional College,
Xianyang, Shaanxi, P.R.China

ABSTRACT: For any positive integer », let a(n) and 5(n) denote the inferior and superior k-th power
part of n respectively. That is, a(n) denotes the largest k-th power less than or equal to », and b(n)
denotes the smallest k-th power greater than or equal to n. In this paper, we study the properties of
the sequences {a(n)} and {b{r}}, and give two interesting asymptotic formulas.

Xey words and phrases: Inferior and superior k-th power part; Mean value; Asymptotic formula.

1. INTRODUCTION

For a fixed positive integer £>1, and any positive integer n, let a(n) and b(n) denote the inferior
and superior k-th power part of n respectively .That is, a(n) denotes the largest k-th power less than
or equal to , b(n) denotes the smallest k-th power greater than or equal to n. For example, let £&=2
then a(l)=a(2)=a(3)=1,a(¥)=a(5)= -—-=a(7)=4, --,b(1)=1, b(2)=b(3)=b(4)=4, b(5)=b(6)=
=b(8)=8+; let k=3 then a(l)=a(2)= ---=a(7)=1, a(8)=a(9)= ---=a(26)=8,--,b(1)=1, b(2)=b(3)= -
=b(8)=8, b(9)=b(10)==--=h(27)=27---. In problem 40 and 41 of [1], Professor F. Smarandache asks
us to study the properties of the sequences {a(n)} and {b(n)}. About these problems, Professor
Zhang Wenpeng [4] gave two interesting asymptotic formulas of the cure part of a positive integer.
In this paper, we give asymptotic formulas of the k-th power part of a positive integer. That is, we
shall prove the following:
Theorem 1. For any real number x>1 , we have the asymptotic formula

1——]—+£

Zd(a(n))—}a:’( )“IAOxlnkx+Ax1nk1 +od A xinx s dpx+ O(x 26N
n<x '

where 4, 4, --- A, are constants, especially when & equals to 2, 45=I; d(n) denotes the
Dirichlet divisor function, # is any fixed positive number.

For the sequence {h(n)} , we can also get similar result.
‘Theorem 2. For any real number x>1, we have the asymptotic formula

leee

d(b(n))——w( 6 ye- tlnkx+Axlnklx+ + A xInx+ Ax+ Ox 2% )
k-1 k

ol kk’ kx 7)

2. A SIMPLE LEMMA
To complete the proof of the theorems, we need following
Lemma 1. For any real number x>1, we have the asymptotic formula
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d(n*)= k“‘Bxln"x+Bxln“x+ +B, xInx+ B x+0(x? S
k-1

nix
By are constants, especially when k=2, 4p=1; ¢ is any fixed positive number.

d(n )

where By, B;, ---

Proof. Let 5 = o + i be a complex number and f(s) = Z

n=l1

Note that d(n*) << n", So it is clear that f{s) is a Dirichlet serics absolutely convergent in

Re(s)>1, by the Buler Product formula [2] and the definition of d(n} we have

f(S)EH(1+d(pk) d(pu) -+—dQ—Im—)+---]

25 ns
P

p"p P

L 2k+l kn+1 J
+...

k+1
_H( p?.s + + Pns
= ¢ O[] (1+(k-1);17j

INSEPT . 1
=¢2(s)n[(1+—~) ~Cha 5= J
” ps pZA P(k I)s
k+1
=D g, 0
aalen)
where ¢(s) is Riemann zeta-function and H denotes the product over all primes.

7

From (1) and Perron’s formula [3] we have

Ydwrt)=o— " :;i ((23)) g = ds+ 0( A J : e

nsx

1
where g(s) is absolutely convergent in Re(s)>z+&'. We move the integration in (2) to
1 .
Re(s) = 5 + & . The pole at 5 =1 contributes to
(3)

6
i(—)"“lBox,ln'c x+leln"“1 x+o+ B xInx+ Byx,

where B,, B, ,.. B are constants, especially when k=2 B, =1.

1 . Yo
For 5 Lo <l,notethat (s)=C(o+it) < It| 2" . Thus, the horizontal integral contributes to
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LI x2
2 4
O[X +T], (4)

and the vertical integral contributes to
11-5
0{ xz In* T] . (5)

1 3
On the line Re(s) =5+ &, taking parameter 7' = x2, then combining (2), (3), (4) and (5) we

have

k-1 1
Za’(n"):l —67 Boxln"x-i-B]xln"“x+---+ka+ x2 |
N\

nsx

This proves Lemma 1.

3. PROOFS OF THE THEQREMS ‘
Now we complete the proof of the Theorems. First we prove Theorem 1.
For any real number x >1, Let M be a fixed positive integer such that

M* <x<(M+1), (6)

then, from the definition of afn), we have

Sdam=%  Tdam+ Y dam)

niz m=2 (m-1)* <n<m* M*<n<x

=¥ Sdety+ Yaar

m=l m* <nefman)t M* gnsx

=S ot 4y Dd(m) +0[ 5 d(M")J,

m=1 M*Lns(M+1)*

y ,
= kY m*d(m*) + O(M* 1+ (7

m=1
where we have used the estimate () << n®.

Let B(y) = Zd(nk) , then by Abel’s identity and Lemma 1, we have

n<y

f m*d(m*) = M*'B(M) - (k - 1) jM V2 B(y)dy +0()

= M""[%(%)""BDAJ In* M+ BMIn* A +... +BM]
L
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~ (k- 1)]'"(%(%)“130})*4 m*y+ By "y 4o+ Bkyk‘l)ajz

k—~1-+5
+0 (M 2
1

k-1 1
_ {6 BM In*M+CM " M+ +C._M+0 M 27| (8)
kk’ 7[2 0 1 k-1

Applying (7) and (8) we obtain the asymptotic formula

k-1 1,
> d(a(n) = f;j BOM"ln"M+C1M"]nHM+-~+C‘HM"+O{Mk2 J (9)

nsx

where B),C,,---,C, ; are constants.
From (6) we have the estimates

O<x~M"<(M+D)"-M" =kM*" + C2M*2 ... 41

k-1

=M"“(k+Cf;§J—+---+XJlk_—])<<xT, (10)
and
Ink 1 ‘e
In*x=k"In* M + =k In* M+O(x* ). (11)
- |
Combining (9), (10) and (11) we have
1
b———+g
3 d(a(n ))—kk'( 2)" YgxIn® x4 Axin® b v 4, whx+ dpx+ 0 %),
n<sx kn

where 4y equals to By .

This proves Theorem 1.

Using the methods of proving Theorem 1 we can also prove Theorem 2. This completes the proof of
the Theorems.
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1. INTRODUCTION

This paper considers the following ten recurrence type Smarandache sequences.

(1) Smarandache Odd Sequence : The Smarandache odd sequence, denoted by {OS(n)} =1,
is defined by (Ashbacher [1])

OS(n)=135 ... 2n-1), n>1. (1.1)
A first few terms of the sequence are
1,13 135, 1357, 13579, 1357911, 135791113, 13579111315, .

(2) Smarandache Even Sequence : The Smarandache even sequence, denoted by {ES(n)}~ =t
is defined by (Ashbacher [1])

ES(n)=24...(2n), n>1. (1.2)
A first few terms of the sequence are
2,24, 246, 2468, 246810, 24681012, 2468101214, ...,
of which only the first is a prime number.
(3) Smarandache Prime Product Sequence : Let {p,}“,= be the (infinite) sequence of primes
in their natural order, so that p,=2, p,=3, ps=3, ps=7, ps=11, ps=13,
The Smarandache prime product sequence, denoted by {PPS(n)} =1, 18 defined by
(Smarandache [2])
' PPS(H)—plpz...pn+l, n>1. (13)
(4) Smarandache Square Product Sequences : The Smarandache square product sequence of
the first kind, denoted by {SPS1(n)}” -1, and the Smarandache square product sequence of
the second kind, denoted by {SPS2(n)}*, =1, are defined by (Russo [3])
SPSi1(n)=(1%(2%)...(n»)+1=(n!)*+1, n>1, (1.4a)
‘ SPS2(n)=(1%) (2%)...(n*)~-1=(n!)*~1, n>1. (1.4b)
A first few terms of the sequence {SSPi(n)}*,-1 are
SPS1(1)=2, SPS1(2)=5, SPS((3)=37, SPS1(4)=577, SPS1(5)=14401,
SPSi(6)=518401=13x39877, SPS1(7)=25401601=101x251501,
SPS1(8)=1625702401=17x95629553, SPS1(9)=131681894401,
of which the first five terms are each prime.
A first few terms of the sequence {SPS2(n)}”,= are
SPS2(1)=0, SPS2(2)=3, SPS2(3)=35, SPS2(4)=575, SPS2(5)=14399,
SPS2(6)=518399, SPS2(7)=25401599, SPS2(8)=1625702399, SPS2(9)=131681894399,
of which, disregarding the first term, the second term is prime, and the remaining terms of
the sequence are all composite numbers (see Theorem 6.3). '
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(5) Smarandache Higher Power Product Sequences : Let m (>3) be a fixed integer. The
Smarandache higher power product sequence of the first kind, denoted by,
{HPPS1(n)}"s=1, and the Smarandache higher power product sequence of the second kind,
denoted by, HPPS2(n)} =y, are defined by

HPPS1(n)=(1"™)2™)...(n™+1=(n))"+1, n>1, (1.3a)
HPPS2(n)=(1")(2™)...(a™M-1=(ny™-1, n>1. (1.5b)

(6) Smarandache Permutation Sequence : The Smarandache permutation sequence, denoted

by {PS(n)}“s=1, is defined by (Dumitrescu and Seleacu 4D

PS(n)=135...(2n-1)(2n)(2n-2)...42, n>1. (1.6)
A first few terms of the sequence are
12,1342, 135642, 13578642, 13579108642, ....
(7) Smarandache Consecutive Sequence : The Smarandache consecutive sequence, denoted
by {CS(n)} ™1, is defined by (Dumitrescu and Seleacu E3);

CS(n)=123...(n—)n, n=1. (1.7)
A first few terms of the sequence are
1,12, 123, 1234, 12345, 123456, ....
(8) Smarandache Reverse Sequence : The Smarandache reverse sequence, denoted by,
{RS(n)}“n=y, is defined by (Ashbacher [1])

RS(n)=n(n—1)...21, n=1. (1.8)
A first few terms of the sequence are
1,21,321, 4321, 54321, 654321, ....
(9) Smarandache Symmetric Sequence: The Smarandache symmetric sequence, denoted by
{S5(n)} =1, is defined by (Ashbacher [1])
1,11,121, 12321, 1234321, 123454321, 12345654321, ....
Thus,

SS(n)=12...(n-2)}(n-1)(n-2)...21, n=3; SS(1)=1, SS(2)=11. (1.9)
(10) Smarandache Pigrced Chain Sequence : The Smarandache pierced chain sequence,
denoted by {PCS(n)}.~", is defined by (Ashbacher [1]) \
101, 1010101, 10101010101, 101010101010101, ..., (1.10)
which is obtained by successively concatenating the string 0101 to the right of the
preceding terms of the sequence, starting with PCS(1)=101.
As has been pointed out by Ashbacher, all the terms of the sequence {PCS(M)} =t I8
divisible by 101. We thus get from the sequence {PCS(n)},-", on dividing by 101, the
sequence {PCS(n)/101}4=;". The elements of the sequence {PCS(n)/101} - are
1, 10001, 100010001, 1000100010001, .... (1.11)
Smarandache [5] raised the question : How many terms of the
sequence{PCS(n)/101},-," are prime?
In this paper, we consider some of the properties satisfied by these ten Smarandache
sequences in the next ten sections where we derive the recurrence relations as well.
For the Smarandache odd, even, consecutive and symmetric sequences, Ashbacher (1]
raised the question : Are there any Fibonacci or Lucas numbers in these sequences?
We recall that the sequence of Fibonacci numbers, {F(n)},~”, and the sequence of
Lucas numbers {L.(n)},=", are defined by (Ashbacher [1])
F(0)=0, F(1)=1; F(n+2)=F(n+1)+F(n), n>0, (1.12)
L(0)=2, L(1)=1; L(n+2)=L(n+1)+L(n), n=0, (1.13)
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Based on computer search for Fibonacci and Lucas numbers, Ashbacher conjectures
that there are no Fibonacci or Lucas numbers in any of the Smarandache odd, even,
consecutive and symmetric sequences (except for the trivial cases). This paper confirms the
conjectures of Ashbacher. We prove further that none of the Smarandache prime product and
reverse sequences contain Fibonacci or Lucas numbers (except for the trivial cases).

For the Smarandache even, prime product, permutation and square product sequences,
the question is : Are there any perfect powers in each of these sequences? We have a partial
answer for the first of these sequences, while for each of the remaining sequences, we prove
that no number can be expressed as a perfect power. We also prove that no number of the
Smarandache higher power product sequences is square of a natural number.

For the Smarandache odd, prime product, consecutive, reverse and symmetric
sequences, the question is : How many primes are there in each of these sequences? For the
Smarandache even sequence, the question is : How many elements of the sequence are twice
a prime? These questions still remain open.

[n the subsequent analysis, we would need the following result.

Lemma 1.1 : 3)(10™+10"+1) for all integers m,n>0.

Proof : We consider the following three possible cases separately :

(1) m=n=0. In this case, the result is clearly true,

(2) m=0, n=1. Here,
10™+10"+1=10"+2=(10"-1)+3,

and so the result is true, since 3|10"-1=9(1+10+10%...+10"").

(3) m>1, n=1. In this case, writing
10™+10"+1=(10™-1)+(10"-1)+3,

we see the validity of the result. [

2. SMARANDACHE ODD SEQUENCE {0S(n))®»

The Smarandache odd sequence is the sequence of numbers formed by repeatedly
concatenating the odd positive integers, and the n-th term of the sequence is given by (1.1).
For any n=1, OS(n+1) can be expressed in terms of OS(n) as follows : For n>1,

OS(n+1)=135 ...(2n—-1)(2n+1)
=10°0S(n}+(2n+1) for some integer s>1. (2.1)
More precisely, '
. s=number of digits in (2n+1).
Thus, for example, OS(5)=(10)0S(4)+7, while, OS(6)=(10)OS(5)+11.
By repeated application of (2.1), we get
0S(n+3)=10° OS(n+2)+(2n+5) for some integer s21

:105[10t OS(n+1)+(2n+3)]+(2n+5) for some integer t>1 (2.22)

=10""[10" OS(n)+(2n+1)]+(2n+3)10°+(2n+5) for some integer u>1, (2.2b)
so that

sH+u s+t

OS(n+3)=10 +(2n+3)10%+(20+5), (2.3)
where s>t>u>1.
Lemma 2.1 : 3| OS(n) if and only if 3| OS(n+3).
Proof : For any s, t with s>t>1, by Lemma 1.1,
3| [(2n+1)10° " +(2n+3)10°+(2n+5) =20+ (10T 4+10%+1)+(10°+2).

The result is now evident from (2.3). O

OS(n)*+(2n+1)10
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From the expression of OS(n+3) given in (2.2), we see that, for all n>1,

OS(n+3)=10°" OS(n+1)+ (2n+3)(2n+3)

=10 OS(n)+ 2n+1)(20+3)(2n+5).

The following result has been proved by Ashbacher [1].
Lemma 2.2 : 3| OS(n) if and only if 3 |n. In particular, 3 | OS(3n) for all n>1.

In fact, it can be proved that 9]0S(3n) for all nx>1.

We now prove the following result.
Lemma 2.3 : 5| 0S(5n+3) for all n>0.
Proof : From (2.1), for any arbitrary but fixed n>0,

OS(5n+3)=10" OS(5n~2)+(10n+5) for some integer s>1.

The r.h.s. is clearly divisible by 5, and hence 5 | OS(5n+3).
Since n is arbitrary, the lemma is established. _

Ashbacher [1] devised a computer program which was then run for all numbers from
135 up through O8(2999)=135...29972999, and based on the findings, he conjectures that
(except for the trivial case of n=1, for which OS(1)=1=F(1)=L(1)) there are no numbers in the
Smarandache odd sequence that are also Fibonacci (or, Lucas) numbers. In Theorem 2.1 and
Theorem 2.2, we prove the conjectures of Ashbacher in the affirmative. The proof of the
theorems relies on the following results.
Lemma 2.4 : For any n=1, OS(n +1)>10 OS(n).
Proof : From (2.1), for any n>1,

OS(n+1)=10" OS(n)+(2n+1)>10° OS(n)>10 OS(n),
where s21 is an integer. We thus get the desired inequality. [
Corollary 2.1 : For any n>1, OS(n+2)-0S(n)>9[{0S(n+1)+0S(n)].
Proof: From Lemma 2.4,
OS(n+1)-0S(n)>9 OS(n) for all n>1. (2.4)
Now, using the inequality (2.4), we get
OS(n+2)-08(n)=[O8(n+2)~0S(n+1)]*+[OS(n+1)-0S(n)]>9[0S(n+1)+OS(n)],
which establishes the lemma. [
Theorem 2.1 : (Except for n=1,2 for which OS(1)=1=F(1)=F(2), 0S(2)=13=F(7)) there are
no numbers in the Smarandache odd sequence that are also Fibonacci numbers.
Proof : Using Corollary 2.1, we see that, for all n>1, '
OS(n+2)}-0S(n)>9[0S(n+1)+0OS(n)]>0S(n+1). (2.5)
Thus, no numbers of the Smarandache odd sequence satisfy the recurrence relation (2.10)
satisfied by the Fibonacci numbers. O
By similar reasoning, we have the following result.

Theorem 2.2 : (Except for n=1 for which OS(1)=1=L(2)) there are no numbers in the
Smarandache odd sequence that are Lucas numbers.

Searching. for primes in the Smarandache odd sequence (using UBASIC program),
Ashbacher [1] found that among the first 21 elements of the sequence, only OS(2), OS(10)
and OS(16) are primes. Marimutha [6] conjectures that there are infinitely many primes in the
Smarandache odd sequence, but the conjecture still remains to be resolved.

In order to search for primes in the Smarandache odd sequence, by virtue of
Lemma 2.2 and Lemma 2.3, it is sufficient to check the terms of the forms OS(3n+1), n>1,
where neither 3n+1 nor 3n—1 is of the form 5k+3 for some integer k1.
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3. SMARANDACHE EVEN SEQUENCE {ES(n)}*,-,

The Smarandache even sequence, whose n-th term is given by (1.2), is the sequence of
numbers formed by repeatedly concatenating the even positive integers.
We note that, for any n>1,

ES(n+1)=24 ...(2n)(2n+2)
=10 ES(n)+(20+2) for some integer s>1. (3.1)
More precisely,
s=number of digits in (2n+2).
Thus, for example, ES(4)=2468=10 ES(3)+8, while, ES(5)=246810=10% ES(4)+10.
From (3.1), the following result follows readily.
Lemma 3.1: For any n>1, ES(n+1)>10 ES(n).
Using Lemma 3.1, we can prove that
ES(0+2)~ES(n)>9[ES(n+1)+ES(n)] for all n=1. (3.2)
The poof is similar to that given in establishing the inequality (2.1) and is omitted here.
By repeated application of (3.1), we see that, for any nx1,
ES(n+2)=10" ES(n+1)+(2n+4) for some integer t=1
=10t[1 0" ES(n)+(2n+2)]+(20+4) for some integer u>1
=10"" ES(n)+(2n+2)10+(2n+4),
so that
ES(n+3)=10° ES(n+2)+(20+6) for some integer s>1
=10°[10" ES(n+1)+(2n+4)]+(2n+6)
=10"""ES(n)+(20+2) 10"+ (2n+2)10%+(2n+6), (3.3)
for some integers s, t and u with s>t>u>].
From (3.3), we see that

ES(0+3)=10"" ES(n+1)+(2n+4)(2n+6)

=10 ES(n)+(2n+2)(2n+4)(2n+6).
Using (3.3), we can prove the following result.
Lemma 3.2 : 1f 3| ES(n) for some n=1, then 3 | ES(n+3), and conversely.
Lemma 3.3 : Forall n>1, 3 | ES(3n).
Proof : The proof is by induction on n. Since ES(3)=246 is divisible by 3, the lemma is true
for n=1. We now assume that the result is true for some n, that is, 3 | ES(3n) for some n.
Now, by Lemma 3.2, together with the induction hypothesis, we see that
ES(3n+3)=ES(3(n+1)) is divisible by 3. Thus the result is true for n+1. [1
Corollary 3.1 : For all n=1, 3| ES(3n-1).
Proof : Let n (21) be any arbitrary but fixed integer. From (3.1),
ES(3n)=10° ES(3n-1)+(6n) for some integer s>1.
Now, by Lemma 3.2, 3| ES(3n). Therefore, 3 must also divide ES(3n~1).
Since n is arbitrary, the lemma is proved. []
Corollary 3.2 : For any n>1, 3 1 ES(3n +1).
Proof : Let n (21) be any arbitrary but fixed integer. From (3.1),
ES(3n+1)=1OSES(3n)+(6n+2) for some integer s>1.
Since 3 | ES(3n), but 3 does not divide (6n+2), the result follows. I
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Lemma 3.4 ; 4 lES(Zn) for all n>1.
Proof : Since 4 | ES(2)=24 and 4 ’ES(4)=2468, we see that the result is true for n=1,2. Now,
from (3.1), for n>1,

ES(2n)=10° ES(2n-1)+(4n),
where s is the number of digits in (4n). Clearly, s>2 for all n>3. Thus, 4]10° if n>3, and we get
the desired result. 7

Corollary 3.3 : For any n20, 4 { ES(2n+1).
Proof : Clearly the result is true for n=0, since ES(1)=2 is not divisible by 4. For n>1, from
(3.1),

ES(2n+1)=10" ES(2n)+(40+2) for some integer s>1.

By Lemma 3.4, 4| ES(2n). Since 4 1 (4n+2), the result follows. (]
Lemma 3.5 : For all n=1, 10 | ES(5n),
Proof : For any arbitrary but fixed n>1, from (3.1),
ES(50)=10° ES(5n~1)+(10n) for some integer s>1.

The result is now evident from the above expression of ES(5n). O
Corollary 3.4 : 20|ES(10n) for all n>1.
Proof : follows by virtue of Lemma 3.4 and Lemma 3.5. a

Based on  the computer findings  with  numbers up  through
ES(1499)=2468...29962998, Ashbacher [1] conjectures that (except for the case of
ES(1)=2=F(3)=L(0)) there are no numbers in the Smarandache even sequence that are also
Fibonacci (or, Lucas) numbers. The following two theorems establish the validity of
Ashbacher’s conjectures. The proofs of the theorems make use of the inequality (3.2) and are
similar to those used in proving Theorem 2.1. We thus omit the proof here.
Theorem 3.1 : (Except for ES(1)=2=F(3)) there are no numbers in the Smarandache even
sequence that are Fibonacci numbers.
Theorem 3.2 : (Except for ES(1)=2=L(0)) there are no numbers in the Smarandache even
sequence that are Lucas numbers.

Ashbacher [1] raised the question: Are there any perfect powers in ES(n)? The
following theorem gives a partial answer to the question.

Theorem 3.3 : None of the terms of the subsequence {ES(2n-1)}"1= is a perfect square or
higher power of an integer (>1).
Proof : Let, for some n>1,

ES(n)=24 ...(2n) =x? for some integer x>1.
Now, since ES(n) is even for all n>1, x must be even. Let x=2y for some integer y=1. Then,

ES(n)y=(2y)*=4y?,
which shows that 4 | ES(n).

Now, if n is odd of the form 2k-1, k=1, by Corollary 3.3, ES(2k-1) is not divisible by

4, and hence numbers of the form ES(2k-1), k=1, can not be perfect squares. By same
reasoning, none of the terms ES(2n~1), n>1, can be expressed as a cube or higher powers of
an integer. [
Remark 3.1 : It can be seen that, if n is of the form kx10°+4 or kx10°+6, where k (1<k<9)
and s (21) are integers, then ES(n) cannot be a perfect square (and hence, cannot be any even
power of a natural number). The proof is as follows : If

ES(n)=x* for some integer x>1, (*)
then x must be an even integer. The following table gives the possible trailing digits of x and
the corresponding trailing digits of x* ; -
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Trailing digit of x Trailing digit of x?

QN N

4
6
6

8 4
Since the trailing digit of ES(kx10°+4) is 8 for all admissible values of k and s, it follows that
the representation of ES(kx 10°+4) in the form (*) is not possible. By similar reasoning, if n is
of the form n=kx10°+6, then ES(n)=ES(kx10°+6) with the trailing digit of 2, cannot be
expressed as a perfect square (and hence, any even power of a natural number). Thus, it
remains to consider the cases when n is one of the forms (1) n=kx10°, (2) n=kx10°+2,
(3) n=kx10°+8 (where, in all the three cases, k (1<k<9) and s (=1) are integers). Smith [7]
conjectures that none of the terms of the sequence {ES(n)}®- is a perfect power,

4. SMARANDACHE PRIME PRODUCT SEQUENCE {PPS(n)}*-

The n-th term, PPS(n), of the Smarandache prime product sequence is given by (1.3).
The following lemma gives a recurrence relation in connection with the sequence.
Lemma 4.1: PPS(n+1)=py, PPS(n)—(pn+1~1) for all n1.
Proof : By definition,
| PPS(0+1)=pip2 ... pupi1 +1=(p1p2. .. pu )Pt 1 ~pas 1+,
which now gives the desired relationship. O
From Lemma 4.1, we get
Corollary 4.1: PPS(n+1)-PPS(m)=[PPS(n)~1](pn+1—1) for all n21.
Lemma 4.2 : (1) PPS(n)<(p,)"" for all n24, (2) PPS(n)<(p,)"? for all n>7,
(3) PPS(m)<(p)* for all n=10, (4) PPS(n)<(pn+))"" for all n>3,
(5) PPS(1)<(pn+1)" > for all n26, (6) PPS(n)<(pu+1)"™ for all n>9.
Proof : We prove parts (3) and (6) only, the proof of the other parts is similar.
To prove part (3) of the lemma, we note that the result is true for n=10, since

PPS(10)=6469693231<(p10)’=29"=:17249876309.
Now, assuming the validity of the result for some integer k (=10), and using Lemma 4.1, we
see that,

PPScH1)=psr PPS(K)~(prs1~1) <picss PPS(K)

: <prs1(p)™™ (by the induction hypothesis)

<(Prr (P )" =)™,
where the last inequality follows from the fact that the sequence of primes, {pn} ny. is
strictly increasing in n (21). Thus, the result is true for k+1 as well.
To prove part (6) of the lemma, we note that the result is true for n=9, since

PPS(9)=223092871<(p10)*=29%=594823321 .
Now to appeal to the principle of induction, we assume that the result is true for some integer
k (29). Then using Lemma 4.1, together with the induction hypothesis, we get

PPS(k+1)=pir PPS(K)~(prr1~1)<pxr1 PPS(K)<prrt (i) = (pres )F 2.
Thus the result is true for k-+1.

All these complete the proof by induction. 00

Lemma 4.3 : Each of PPS(1), PPS(2), PPS(3), PPS(4) and PPS(5) is prime, and for n>6,
PPS(n) has at most n—4 prime factors, counting multiplicities.
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Proof : Clearly PPS(1)=3, PPS(2)=7, PPS(3)=31, PPS(4)=211, PPS(5)=2311 are all primes.
Also, since

PPS(6)=30031=59x509, PPS(7)=510511=19x97x277, PPS(8)=9699691=347x27953,
we see that the lemma is true for 6<n<8.

Now, if p is a prime factor of PPS(n), then P=pn-1. Therefore, if for some n=9, PPS(n)
has n-3 (or more) prime factors (counted with multiplicity), then PPS(n)>(pn)"",
contradicting part (6) of Lemma 4.2.

Hence the lemma is established. [

Lemma 4.3 above improves the earlier results (Prakash (8], and Majumdar [9]).

The following lemma improves a previous result (Majumdar [10]).

Lemma 4.4 : For any n>1 and k>1, PPS(n) and PPS(n+k) can have at most k—1 number of
prime factors (counting multiplicities) in common.
Proof : For any n>1 and k>1,

PPS(n+k)-PPS(n)=pips...pa(PasiPasa. .. Prk—1). 4.1)
If p is a common prime factor of PPS(n) and PPS(n+k), since ppysy, it follows from (4.1)
that p | (Pn+1Pn+2- - Park—1). Now if PPS(n) and PPS(n+k) have k (or more) prime factors in
common, then the product of these common prime factors is greater than (py)*, which can
not divide ppvipnsa. . . Prrk— 1 <(Prsg)

This contradiction proves the lemma. (]

Corollary 4.2 : For any integers n (=1) and k (21), if all the prime factors of pyrpnsa.. . pusi—1
are less than pye, then PPS(n) and PPS(n+k) are relatively prime.

Proof : [f p is any common prime factor of PPS(n) and PPS(n+k), then pj( pus(posa.. Po—1).
Also, such p>p, contradicting the hypothesis of the corollary. Thus, if all the common
prime factors of PPS(n) and PPS(n+k) are less than Pa+k> then (PPS(n),PPS(n+k)=1. (]

The following result has been proved by others (Prokash [8] and Majumdar [10D.
Here we give a simpler proof.

Theorem 4.1: For any n>1, PPS(n) is never a square or higher power of an integer (>1).
Proof : Clearly, none of PPS(1), PP3(2), PPS(3), PPS(4) and PPS(5) can be expressed as
powers of integers (by Lemma 4.3).
Now, if possiblé, let for some n>6,
PPS(n)=x" for some integers x (>3), £ (>2). (*)
Without loss of generality, we may assume that £ is a prime (if £ is a composite number,
letting £=pr where p is prime, we have PPS(n)=(x")"=NP, where N=x"). By Lemma 4.3, E<n+4
and so € cannot be greater than py_s (£2pn-s = £>n-4, since p,>n for all n>1). Hence, £ must
be one of the primes py, ps,..., Pn-s. Also, since PPS(n) is odd, x must be odd. Let x=2y+lfor
some integer y>0. Then, from (x),
P1p2-.pa=(2y+1)"~1
L £ :
=@)*OEN A ) @2y, (*)
1 £-1
If £=2, we see from (**), 4 | PtP2-..Pa, Which is absurd. On the other hand, for £>3, since
el P1P2...Pn, it follows from (**) that £ | v, and consequently, €2 ] Pip2...Pa, Which is impossible.

Hence, the representation of PPS(n) in the form (*) 1s not possible.

Using Corollary 4.1 and the fact that PPS(n+1)-PPS(n)>0, we get

PPS(n+2)—PPS(n)=[PPS(n+2)—PPS(n+1)]+[PPS(n+1)~PPS(n)]
>[PPS(n+1)-1](pnia—1)
>2[PPS(n+1)-1] for all n>1.
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Hence,
PPS(n+2)~PPS(n)>PPS(n+1) for all n>1. (4.2)

The inequality (4.2) shows that no elements of the Smarandache prime product
sequence satisfy the recurrence relation for Fibonacci {or, Lucas) numbers. This leads to the
following theorem.
" Theorem 4.2 : There are no numbers in the Smarandache prime product sequence that are
Fibonacci (or Lucas) numbers (except for the trivial cases of PPS(1)=3=F(4)=1(2),
PPS(2)=7=L(4)).

5. SMARANDACHE SQUARE PRODUCT SEQUENCES {SPSi(n)}® s, {SPS2()},-,

The n-th terms, SPSi(n) and SPS2(n), are given in (1.4a) and (1.4b) respectively.
In Theorem 5.1, we prove that, for any n>1, neither of SPSi(n) and SPSz(n) is a square of an
integer (>1). To prove the theorem, we need the following results.
Lemma 5.1: The only non—negative integer solution of the Diophantine equation x*-y?=1 is
x=1, y=0.
Proof : The given Diophantine equation is equivalent to (x-y)(x+y)=1, where both x—y and
x+y are integers. Therefore, the only two possibilities are
(1) x=y=1=x+y, (2)x~y=—l=x+y,
the first of which gives the desired non-negative solution. 0
Corollary 5.1: Let N (>1) be a fixed number. Then,
(1) The Diphantine equation x*~N=1 has no (positive) integer solution x,
(2) The Diophantine equation N-y?=1 has no (positive) integer solution y.
Theorem 5.1 : For any n>1, none of SPSi(n) and SPS2(n) is a square of an integer (>1).
Proof : If possible, let

SPSi(n)=(n !)*+1=x* for some integers n>1, x>1. :
But, by Corollary 5.1(1), this Diophantine equation has no integer solution x.

Again, if

SPS2(n)=(n !)*-1=y? for some integers n>1, y>1,
then, by Corollary 5.1(2), this Diophantine equation has no integer solution y.

All these complete the proof of the theorem. [ :

In Theorem 5.2, we prove a stronger result, for which we need the results below.

Lemma 5.2 : Let m (22) be a fixed integer. Then, the only non-negative integer solution of
the Diophantine equation x*1=y™ is x=0, y=1.
Proof : For m=2, the result follows from Lemma 5.1. So, it is sufficient to consider the case
when m>2. However, we note that it is sufficient to consider the case when m is odd; if m is
even, say, m=2q for some integer g>1, then rewriting the given Diophantine equation as
(y)*—x*=1, we see that, by Lemma 5 -1, the only non-negative integer solution is y%=1, x=0,
that 1s x=0, y=1, as required.

So, let m be odd, say, m=2q+1 for some integer q=1. Then, the given Diophantine
equation can be written as

=y oIy =Dy ). (***)

From (***), we see that x=0 if and only if y=1, since yH 4y 410,

Now, if x#0, from (***), the only two possibilities are
(1) y-1=x, y*%+y* 4 +1=x.

But then y=x+1, and we are led to the equation (x+1)2q+(x+1)Zq"1+...+(x+l)2+2=0, which is
impossible.
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(2) y=1=1, y9+y? ¢ 1=y,
Then, y=2 together with the equation
x2=24_ (5.1)
But the equation (5.1) has no integer solution x (>1). To prove this, we first note that any
integer x satisfying (5.1) must be odd. Now rewriting (5.1) in the following equivalent form
(=DEFD=2(2%-1)(2%1),
we see that the Lh.s. is divisible by 4, while the r.h.s. is not divisible by 4 since both 2%-1 and
2%+1 are odd.
Thus, if x=0, then we reach to a contradiction in either of the above cases. This
contradiction establishes the lemma. [
Corollary 3.2 : Let m (22) and N (>0) be two fixed integers. Then, the Diophantine equation
N*+1=y™ has no integer solution y.
Corollary 5.3 : Letm (22) and N (>1) be two fixed integers. Then, the Diophantine equation
x*+1=N"™ has no (positive) integer solution x.
Lemma 5.3 : Let m (22) be a fixed integer. Then, the only non-negative integer solutions of
the Diophantine equation x —y =1 are ( 1) x=1, y=0; ( 2) x=3, y=2, m=3.
Proof : For m=2, the lemma reduces to Lemma 5.1. So we consider the case when m23,
From the given Diophantine equation, we see that, y=0 if and only if x=£1, giving the
only non-negative integer solution x=1, y=0. To see if the given Diophantine equation has
any non-zero integer solution, we assume that x=1.
If m is even, say, m=2q for some integer g1, then x2~y’"5x2~(yq)2=l, which has no
integer solution y for any x>1 (by Corollary 5.1(2)).
Next, let m be odd, say, m=2q+1 for some integer q=1. Then, x*~y*7"'=1, that is,
(1) )=y .
We now consider the following cases that may arise :
(1) x=1=1, x+1=y*9""
Here, x=2 together with the equation y**"'=3, which has no integer solution y.
(2) x—l=y, x+1=y*.
Rewriting the second equation in the equivalent form (y*~1)(y%+1)=x, we see that (y*+1) [ X.
But this contradicts the first equation x=y+1 if ¢>1, since for g>1, yq+1>y+1*x
If g=1, then
y-Dy+1=x = y-1=1, y+1=x,
so that y=2, x=3, m=3, which is a solution of the given Diophantine equation.
(3) x~1=y" for some integer t with 2<t<q, q=2 (so that x+1=y2q_t+l).
In this case, we have
2x=y [1+y%
Since x does not divide v, it follows that
1+y2 T =Cx for some integer C21.

q t)+1]

Thus,
2x=y'(Cx) = Cy'=2.

If C=2, then y=1, and the resulting equation x*=2 has no integer solution. On the other hand,
if C#2, the equation Cy'=2 has no integer solution. Thus, case (3) cannot oceur.

All these complete the proof of the lemma. [J
Corollary 5.4 : The only non-negative integer solution of the Diophantine equatlon xX—y'=1
15 x=3, y=2.
Corollary 5.5 : Let m (>3) be a fixed integer. Then, the Diophantine equation x*~y™=1 has
x=1, y=0 as its only non-negative integer solution.
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Corollary 5.6 : Let m (>3) and N (>0) be two fixed integers. Then, the Diophantine equation
x’-N™=] has no integer solution x.
Corollary 5.7 : Let m (=3) and N (>1) be two fixed integers with N+3. Then, the Diophantine
equation N2~y"‘=1 has no integer solution.
We are now in a position to prove the following theorem.
Theorem 5.2 : For any n>1, none of the SPSi(n) and SPSx(n) is a cube or higher power of an
integer (>1).
Proof : is by contradiction. Let, for some integer n21,
SPS,(n)=(n! )2+1:ym for some integers y>1, m23.
By Corollary 5.2, the above equation has no integer solution y.
Again, if for some integer n>1,
SPSa(n)=(n!)*~1=z° for some integer z>1, s=>3,
we have contradiction to Corollary 5.7. 1

The following result gives the recurrence relations satisfied by SPSi(n) and SPS,(n).

Lemma 5.4 ; For all n>1,

(1) SPS)(a+1)=(n+1)*SPS,(n)-n(n+2),

(2) SPSa(n+ )=(n+1)’SPS(n)+n(n+2).
Proof : The proof is for part (1) only. Since

SPSy(n+1)=[(a+ DI+ 1=(n+ 1) (n1)>+1]~(n+1)2+1,
the result follows. O
Lemma 5.5 : For all n>1,

(1) SPS(n+2)-SPS(n)>SPS;(n+1),

(2) SPSy(n+2)-SPSy(n)>SPSy(n+1).

Proof : Using Lemma 5.4, it is straightforward to prove that
SPS(n+2)-SPS,(n)=8PSy(n+2)-SPSy(n)=(n!)* [(n+1)X(n+2)*-1].

Some algebraic manipulations give the desired inequalities. [

Lemma 5.5 can be used to prove the following results.

Theorem 5.3 : (Except for the trivial cases, SPS,(1)=2=F(3)=L(0), SPS,(2)=5=F(5)) there are
no numbers of the Smarandache square product sequence of the first kind that are Fibonacci
(or Lucas) numbers.

Theorem 5.4 : (Except for the trivial cases, SPSy(1)=0=F(0), SPSy(2)=3=F(4)=L(2)) there are
no numbers of the Smarandache square product sequence of the second kind that are
Fibonacci (or Lucas) numbers.

The question raised by Iacobescu [11] is : How many terms of the sequence
{SPS(n)}™s= are prime?

The following theorem, due to Le [12], gives a partial answer to the above question.
Theorem 5.5 : If n (>2) is an even integer such that 2n+1 is prime, then SPSi(n) is not a
prime.

Russo [3] gives tables of values of SPSi(n) and SPS(n) for 1<n<20. Based on
computer results, Russo [3] conjectures that each of the sequences {SPSi(n)}%,~ and
{SPS2(n)} " contains only a finite number of primes.

6. SMARANDACHE = HIGHER ~ POWER  PRODUCT  SEQUENCES
{HPPS (1)} ®nei, {HPPSy(1)} ey

The n-th terms of the Smarandache higher power product sequences are given in (1.5). The
following lemma gives the recurrence relation satisfied by HPPS(n) and HPPS;(n).
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Lemma 6.1 : For all n>1,
(1) HPPS (0t 1)=(n+1)"HPPS (n)~[(n+1)™+1],
(2) HPPSQ(n+1):(n+1)"‘HPPS;;_(n)-I—[(nH)mH].
Theorem 6.1: For any integer n>1, none of HPPPS (n) and HPPS(n) is a square of an integer
(>1).
Proof : If possible, let

HPPS,(n)=(n!)™+1=x? for some integer x>1.
This leads to the Diophantine equation x’~(n!)™=1, which has no integer solution x, by virtue
of Corollary 5.6 (for m>3). Thus, if m>3, HPPS(n) cannot be a square of a natural number
(>1) for any n>1.

Next, let, for some integer n>2 (HPPS2(1)=0)

HPPS(n)=(n!)"-1=y* for some integer y>1.
Then, we have the Diophantine equation y2+1=(n!)m, and by Corollary 5.3, it has no integer
solution y. Thus, HPPS,(n) cannot be a square of an integer (>1) for any n>1. O
The following two theorems are due to Le [13,141].
Theorem 6.2: If m is not a number of the form 2' for some £=1, then the sequence
{HPPS,(n)}*,=| contains only one prime, namely, HPPPS | (1)=2.
Theorem 6.3: If both m and 2™-1 are primes, then the sequence {HPPS,(n)}* - contains
only one prime, HPPS,(2)= 2"-1; otherwise, the sequence does not contain any prime.
Remark 6.1 : We have defined the Smarandache higher power product sequences under the
restriction that m>3, and under such restriction, as has been proved in Theorem 6.1, none of
HPPS(n) and HPPS,(n) is a square of an integer (>1) for any n>1. However, if m=3, the
situation is a little bit different : For any nzl, HPPS,(n)=(n!)*~1 still cannot be a pertect
square of an integer (>1), by virtue of Corollary 5.3, but since HPPS (n)=(n!)*+1, we see that
HPPS1(2)=(2!)*+1=3", that is, HPPS(2) is a perfect square. However, this is the only term of
the sequence {SPPS;(n)} = that can be expressed as a perfect square.

7. SMARANDACHE PERMUTATION SEQUENCE {PS(1)} “ e

For the Smarandache permutation sequence, given in (1.6), the question raised (Dumitrescu
and Seleacu [4]) 1s : [s there any perfect power among these numbers?

Smarandache conjectures that there are none. In Theorem 7.1, we prove the
conjecture in the affirmative. To prove the theorem, we need the following results.
Lemma 7.1 : For n>2, PS(n) is of the form 2(2k+1) for some integer k>1.
Proof : Since for n>2,

PS(n)=135...(2n~1)(2n)(2n--2)...42, (7.1)
we see that PS(n) is even and after division by 2, the last digit of the quotient is 1. [
An immediate consequence of the above lemma is the following.
Corollary 7.1 : For n22, 2*| PS(n) if and only if £=1.
Theorem 7.1: For n>1, PS(n) is not a perfect POWer.
Proof : The result is clearly true for n=1, since PS(1)=3x2% is not a perfect power. The proof
for the case n>2 is by contradiction.
Let, for some integer n>2,
PS(n)=x" for some integers x>1, £>2.
Since PS(n) is even, so is x. Let x=2y for some integer y>1. Then,
PS(n)=2y)=2"y", '
which shows that 2° l PS(n), contradicting Corollary 7.1. (]
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To get more insight into the numbers of the Smaradache permutation sequence, we
define a new sequence, called the reverse even sequence, and denoted by {RES(n)}%~ as
follows :

RES(n)=(2n)(2n-2)...42, n>1. (7.2)
A first few terms of the sequence are
2,42, 642, 8642, 108642, 12108642, ...
We note that, for all n>1,

RES(n+1)=(2n+2)(2n)(2n—-2)... 42
=(2n+2)10*+RES(n) for some integer s>n, (7.3)
where, more precisely,
s=number of digits in RES(n).
Thus, for example,
RES(4)=8x10°+RES(3), RES(5)=10x10*+RES(4), RES(6)=12x10°+RES(5).

Lemma 7.2 : For all n=1, 4 | [RES(n+1)-RES(n)].
Proof : Since from (7.3),

RES(n+1)-RES(n)=(2n+2)10° for some integer s (=n>1),
the result follows. (]
Lemma 7.3 : The numbers of the reverse even sequence are of the form 2(2k+1) for some
integer k>0. ’
Proof : The proof is by induction on n. The result is true for n=1. So, we assume that the
result is true for some n, that is,

RES(n)=2(2k+1) for some integer k>0.
But, by virtue of Lemma 7.2,

RES(n+1)»-RES(n)=4k' for some integer k>0,
which, together with the induction hypothesis, gives,

RES(n+1)=4k'+RES(n)=4(k+k"+2.

Thus, the result is true for n+1 as well, completing the proof. O
Lemma 7.4 : 3| RES(3n) if and only if 3| RES(3n-1),
Proof : Since,
RES(Bn)=(6n)1OS+RES(3n_1) for some integer s>n,

the result follows. O i

By repeated application of (7.3), we get successively
RES(n+3)=(20+6)1 0™ +RES(n+2) for some integer s=n+2
=(2n+6)IOS+(2n+4)1Ot+RES(n+1) for some integer t=n+1
=(2n+6)10*+(2n+4)10+(2n+2)10*+RES(n) for some integer u>n, (7.4)
so that, ‘
RES(n+3)-RES(n)=(2n+6)10°+(2n+4)1 O[+(2n+2)1 0", (7.5)
where s>t>u>n>1.

Lemma 7.5 : 3| [RES(n+3)}-RES(n)] for all n>1.
Proof: is evident from (7.5), since
3| (2n+6)107+(2n+4)10%(20+2) 10"
=10"[(2n+6)(10°"+10"+1)=2(10°"+2)]. {1
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Corollary 7.2 : 3 |RES(3n) for all n>1.
Proof : The result is true for n=1, since RES(3)=642 is divisible by 3. Now, assuming the
validity of the result for n, so that 3| RES(3n), we get, from Lemma 7.5,
3] RES(3n+3)=RES(3(n+1)), so that the result is true for n+1 as well.
This completes the proof by induction. [
Corollary 7.3 : 3 | RES(Gn-1) for all n>1.
Proof : follows from Lemma 7.4, together with Corollary 7.2. O
Corollary 7.4 : For any n=0, 3 { RES(3n+1).
Proof : Clearly, the result is true for n=0. For n>1, from (7.3),
RES(3n+1)=(6n+2)10"+RES(3n) for some integer s>3n.
Now, 3 | RES(3n) (by Corollary 7.2) but 3 )( (6n+2). Hence the result. O
Using (7.4), we that, for all n>1,
RES(n+2)-RES(n)
=[RES(n+2)-RES(n+1)]+[RES(n+1)-RES(n)]
=[(20+4)10-1JRES(n+1)+[(2n+2)10"-1]RES(n), (7.6)
where t and u are integers with t>u>n+1.
From (7.6), we get the following result.
Lemma 7.6 : RES(n+2)-RES(n)>RES(n+1) for all n>1.

PS(n), given by (7.1), can now be expressed in terms of OS(n) and RES(n) as
follows : For any n>1,

PS(n)=10" OS(n)+RES(n) for some integer s>n, (7.7)
where, more precisely,
s=number of digits in RES(n).

From (7.7), we observe that, for n>2, (since 4110° for s>n>2), PS(n) is of the form
4k+2 for some integer k>1, since by Lemma 7.3, RES(n) is of the same form. This provides
an alternative proof of Lemma 7.1.

Lemma 7.7 : 3 | PS(3n) for all n=1.
Proof : follows by virtue of Lemma 2.2 and Corollary 7.2, since
PS(3n)=10° OS(3n)+RES(3n) for some integer s=3n. (J
Lemma 7.8 : 3| PS(n) if and only if 3 | PS(n+3).
Proof : follows by virtue of Lemma 2.1 and Lemma 7.5. []
Lemma 7.9 : 3| PS(3n-2) for all n>1. |
Proof : Since 3 |PS(1)=12, the result is true for n=1. To prove by induction, we assume that
the result is true for some n, that is, 3| PS(3n-2). But, then, by Lemma 7.8, 3| PS(3n-1),
showing that the result is true for n+1 as well. 1
Lemma 7.10 : For all nz1, PS(a+2)-PS(n)y>PS(n+1).
Proof : Since
PS(n+2)=10° 0S(n+2)+RES(n+2) for some integer s=n+2,
PS(n+1)=10" OS(n+1)+RES(n+1) for some integer t>n+1,
PS(n)=10" OS(n)+RES(n) for some Integer u2n,
where s>t>u, we see that
PS(n+2)-PS(n)=[10° OS(n+2)-10" OS(n)]+[RES(n+2)-RES(n)]
>10°[0S(n+2)-08(n)[+[RES(n+2)-RES(n)]
>10' OS(n+1)+RES(n+1)=PS(n+1),
where the last inequality follows by virtue of (2.4), Lemma 7.6 and the fact that 10°>10". 0
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Lemma 7.10 can be used to prove the following result.
Theorem 7.1 : There are no numbers in the Smarandache permutation sequence that are
Fibonacei (or, Lucas) numbers.
Remark 7.1 : The result given in Theorem 7.1 has also been proved by Le [15]. Note that
PS(2)=1342=11x122, PS(3)=135642=111x1222, PS(4)=13578642=1111x12222,
as has been pointed out by Zhang [16]. However, such a representation of PS(n) is not valid
for n25. Thus, the theorem of Zhang [16] holds true only for [<n<4 (and not for 1<n<9).

8. SMARANDACHE CONSECUTIVE SEQUENCE {CS(n)}%=1
The Smarandache consecutive sequence is obtained by repeatedly concatenating the positive

integers, and the n-th tem of the sequence is given by (1.7).
Since

CS(n+1)=123.. (n~D)n(n+1), n=1,
we see that, for all n>1,
CS(n+1)=10° CS(m)*+(n+1) for some integer s>1, CS(1)=1. 8.1
More precisely,
s=number of digits in (n+1).
Thus, for example, CS(9)=10 CS(8)+9, CS(10)=10% CS(9)+10.
From (8.1), we get the following result :
Lemma 8.1 : For all n=1, CS(n+1)~CS(n)>9 CS(n).
Using Lemma 8.1, we get, following the proof of (2.1),
CS(n+2)-CS(n)>9[CS(n+1)+CS(n)] for all n=1. (8.2)
Thus,
CS(n+2)-CS(n)>CS(n+1), n>1. (8.3)

Based on computer search for Fibonacci (and Lucas) numbers from 12 up through
CS(2999)=123...29982999, Asbacher [1] conjectures that (except for the trivial case,
CS(D=1=F(1)=L(1)) there are no Fibonacci (and Lucas) numbers in the Smarandache
consecutive sequence. The following theorem confirms the conjectures of Ashbacher.
Theorem 8.1 : There are no Fibonacei (and Lucas) numbers in the Smarandache consecutive
sequence (except for the trivial cases of CS(1)=1=F(1)=F(2)=L(1), CS(3)‘123—L(10))
Proof : is evident from (8.3). O
Remark 8.1 : As has been pointed out by Ashbacher [1], CS(3) is a Lucas number. However,
CS(3)=CS(2)+CS(1).

Lemma 8.2 : Let3|n. Then, 3| CS(n) if and only if 3| CS(n—1).

Proof : follows readily from (8.1). 0

By repeated application of (8.1), we get,
CS(n+3)=10° CS(n+2)+(n+3) for some integer s=1
~=1OS[10t CS(n+1)+(nt+2)]+(n+3) for some integer t>1

=10""[10" CS(n)y+(n+1)]+(n+2)10%+(n+3) for some integer u>1
=10"""" CS(n)+(n+1) 10" H(n+2) 10%+(n+3), (8.4)

where s=t>u>1.

Lemma 8.3 : 3| CS(n) if and only if 3| CS(n+3).

Proof : follows from (8.4), since

3|[(n+1)10°"+(n+2) 10*+(n+3)]=[(n+ 1) 105"+ 105+1)+(10%+2)]. O
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Lemma 8.4 : 3| CS(3n) for all n>1.
Proof : The proof is by induction on n. The result is clearly true for n=1, since 3 | CS(3)=123.
So, we assume that the result is true for some n, that is, we assume that 3 ] CS(3n) for some n.
But then, by Lemma 8.4, 3 | CS(3n+3)=CS(3(n+1)), showing that the result is true for n+1 as
well, completing induction. [
Corollary 8.1 : 3{CS(3n-1) for all n>1.
Proof: From (8.1), for n>1,
CS(3n)=10" CS(3n—-1)+(3n) for some integer s>1.
Since, by Lemma 8.4, 3|CS(3n), the result follows. O
Corollary 8.2 : 34 CS(3n+1) for all n=0.
Proof : For n=0, CS(1)=1 is not divisible by 3. For n=1, from (8.1),
CSG3n+1)=10" CS(3n)+3n+1),
where, by Lemma 8.4, 3 ’ CS(3n). Since 3 1 (3n+1), we get desired the result. O
Lemma 8.5 : For any n>1, 5 l CS(5n).
Proof: Fornx1, from (8.1),
CS(5n)=10" CS(5n--1)+(5n) for some integer s>1.
Clearly, the r.h.s. is divisible by 5. Hence, 5 { CS(5n). O

For the Smarandache consecutive sequence, the question is : How many terms of the
sequence are prime? Fleuren [17] gives a table of prime factors of CS(n) for n=1(1)200,
which shows that none of these numbers is prime. In the Editorial Note following the paper
of Stephan [18], it is mentioned that, using a supercomputer, no prime has been found in the
first 3,072 terms of the Smarandache consecutive sequence. This gives rise to the conjecture
that there is no prime in the Smarandache consecutive sequence. This conjecture still remains
to be resolved. We note that, in order to check for prime numbers in the Smarandache
consecutive sequence, it is sufficient to check the terms of the form CS(3n+1), n>1, where
3n+1 is odd and is not divisible by 3.

¢

9. SMARANDACHE REVERSE SEQUENCE {RS(n)}"s-i

The Smarandache reverse sequence is the sequence of numbers formed by concatenating the
increasing integers on the left side, starting with RS(1)=1. The n-th term of the sequence is
given by (1.8).

Since,

RS(n+1)=(n+1)n(n-1)...21, n>1,
we see that, for all, n>1,
RS(n+l)=(n+1)lOs+RS(n) for some integer s>n (with RS(1)=1) (9.1)
More precisely,
s=number of digits in RS(n).
Thus, for example,
RS(9)=9x10°+RS(8), RS(10)=10x10"+RS(9), RS(11)=11x 10" '+RS(10).
Lemma 9.1 : For all n>1, 4| [RS(n+1)-RS(n)], 10| [RS(a+1)-RS(n)].
Proof : For all n21, from (9.1),
~ RS(n+1)-RS(n)=(n+1)10° (with s>n),
where the r.h.s. is divisible by both 4 and 10. O
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Corollary 9.1 : For all n>2, the terms of {RS(n)}"= are of the form 4k+1,
Proof : The proof is by induction of n. For n=2, the result is clearly true (RS(2)=21=4x5+1).
So, we assume the validity of the result for n, that is, we assume that
RS(n)=4k+1 for integer k>1.
Now, by Lemma 9.1 and the induction hypothesis,
RS(n+1)=RS(n)+4k'=4(k+k")+1 for some integer k'>1,
showing that the result is true for n+1 as well, [
Lemma 9.2 : Let 3 | n for some n (=2). Then, 3 l RS(n) if'and only 1f 3 ] RS(n-1).
Proof : follows immediately from (9.1). O
By repeated application of (9.1), we get, for all n1,
RS(n+3)=(n+3)10+RS(n+2) for some integer s>n+2
=(n+3)10°+(n+2)10+RS(n+1) for some integer t2n+1
=(n+3)1 OS+(n+2)10t+(n+1)10u+RS(n) for some integer u>n, (9.2)
where s>t>u. Thus, ‘
RS(n+3)=10"[(n+3)10° " +(n+2)10™"+(n+1)]+RS(n). (9.3)
Lemma 9.3 : 3| [RS(n+3)-RS(n)] for all nx1.
Proof : is immediate from (9.3). O
A consequence of Lemma 9.3 is the following.
Corollary 9.2 : 3| RS(3n) if and only if 3 | RS(n+3).

Using Corollary 9.2, the following result can be established by induction on n.

Corollary 9.3 : 3 l RS(3n) for all n>1.

Corollary 9.4 : 3 | RS(3n~1) for all n1.

Proof : follows from Corollary 9.3, together with Lemma 9.2. O

Lemma 9.4 : 3 {RS(3n+1) for all n>0.

Proof : The result is true for n=0. For n>1, by (9.1),
RS(3n+1)=(3n+1)10°+RS(3n).

This gives the desired result, since 3 | RS(3n) but 3 /f (Bnt+l1). 0

The following result, due to Alexander [19], gives an explicit expression for RS(n) :

i-1
> (1+Llog j)
n =1
Lemma 9.5 : For all n21, RS(n)=1+2, i*10
: )

In  Theorem 9.1, we prove that (except for the trivial cases of
RS(1)=1=F(1)=F(2)=L(1), RS(2)=21=F(8)), the Smarandache reverse sequence contains no
Fibonacci and Lucas numbers. For the proof of the theorem, we need the following results.
Lemma 9.6 : For all n=1, RS(n+1)>2RS(n).

Proof : Using (9.1), we see that
- RS(n+1)=(n+1)10°+RS(n)>2RS(n) if and only if RS(n)<(n+1)10°,
which is true since-RS(n) is an s-digit number while 10° is an (s+1)-digit number. [J
Corollary 9.5 : For all n21, RS(n+2)-RS(n)>RS(n+1).
Proof : Using (9.2), we have
RS(n+2)-RS(n)=[RS(n+2)-RS(n+1)+[RS(n+1)-RS(n)]
=[(n+2)1 Ot—(n+ D10 H2[RS(n+1)-RS(n)]
>2[RS(n+1)-RS(n)]
>RS(n+1), by Lemma 9.6.

This gives the desired inequality. O
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Theorem 9.1: There are no numbers in the Smarandache reverse sequence that are Fibonacci
or Lucas numbers (except for the cases of n=1,2).

Proof : follows from Corollary 9.5. O

For the Smarandache reverse sequence, the question is : How many terms of the sequence are
prime? By Corollary 9.2 and Corollary 9.3, in searching for primes, it is sufficient to consider
the terms of the sequence of the form RS(3n+1), where n>1. In the Editorial Note following
the paper of Stephan [18], it is mentioned that searching for prime in the first 2,739 terms of
the Smarandache reverse sequence revealed that only RS(82) 1s prime. This led to the
conjecture that RS(82) is the only prime in the Smarandache reverse sequence. However, the
conjecture still remains to be resolved. Fleuren [17] presents a table giving prime factors of
RS(n) for n=1(1)200, except for the cases n=82,136,139,169.

10. SMARANDACHE SYMMETRIC SEQUENCE {SS(n)}* =

The n-th term, S8(n), of the Smarandache symmetric sequence 1s given by (1.9).
The numbers in the Smarandache symmetric sequence can be expressed in terms of the
numbers of the Smarandache consecutive sequence and the Smarandache reverse sequence as
follows : For all n>3,

SS(n)=10° CS(n—1)+RS(n-2) for some integer s>1, (10.1)
with SS(1)=1, SS(2)=11, where more precisely,

s=number of digits in RS(n-2).
Thus, for example, SS(3)=10 CS(2)+RS(1), SS(4)=10? CS(3)+RS(2).

Lemma 10.] : 3| SS(3n+1) for all nx>1.
Proof : Let n (21) be any arbitrary but fixed number. Then, from (10.1),
SS(3n+1)=10° CS(3n)+RS(3n-1).
Now, by Lemma 8.4, 3 | CS(3n), and by Corollary 9.4, 3 ] RS(3n-1). Therefore, 3 | SS(3n+1).
Since n is arbitrary, the lemma is proved. O
Lemma 10.2 : For any nz1, (1) 34 SS(3n), (2) 3 { SS(3n+2).
Proof : Using (10.1), we see that
SS(3n)=10° CS(3n—-1)+RS(3n-2), n>1.
By Corollary 8.1, 3 | CS(3n—-1), and by Lemma 9.4, 3 *RS(3n~2). Hence, CS(3n) cannot be-
divisible by 3,
Again, since _
SS(3n+2)=10° CS(3n+1)+RS(3n), n=1,
and since 3 *CS(Bnﬂ) (by Corollary 8.2) and 3 ( RS(3n) (by Corollary 9.3), it follows that
SS(3n+2) is not divisible by 3. (0

Using (8.3) and Corollary 9.5, we can prove the following lemma. The proof is
similar to that used in proving Lemma 7.10, and is omitted here.
Lemma 10.3 : For all n21, S§(n+2)-SS(n)>SS(n+1).

By virtue of the inequality in Lemma 10.3, we have the following.
Theorem 10.1 : (Except for the trivial cases, SS(1)=1=F(1)=L(1), SS(2)=11=L(5)), there are
no members of the Smarandache symmetric sequence that are Fibonacci (or, Lucas) numbers.

The following lemma gives the expression of SS(n+1)-SS(n) in terms of CS(n)-CS(n-1).
Lemma 10.4 : SS(n+1)-SS(n)=10°"[CS(n)~CS(n-2)] for all n>3, where
s=number of digits in RS(n-2), s+t=number of digits in RS(n-1).
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Proof : By (10.1), for n>3,
SS(m)=10° CS(n—-1)+RS(n-2), SS(n+1)=10>" CS(n)+RS(n—1),

so that
SS(n+1)-8S(n)=10°[ 10" CS(n)-CS(n—1)]+[RS(n—1)—RS(n—2)]
=10°[10'CS(n)~CS(n—-1)+n-1)] (by(9.1)). )
But,
1, if 2<n--1<9
t={ ' =number of digits in (n—1).

m+1, if 10™<n-1<10™"~1 (for all m>1)
Therefore, by (8.1)
CS(n—1)=10' CS(n-2)+(n~1),
and finally, plugging this expression in (¥***), we get the desired result. [
We observe that SS(2)=11 is prime; the next eight terms of the Smarandache
symmetric sequence are composite numbers and squares :
SS(3)=121=117% SS(4)=12321=(3x37)*=111%,
SS(5)=1234321=(11x101)*=1111% SS(6)=123454321=(41x271)*=11111%
S8(7)=12345654321=(3x7x 1 1x13x37)*=111111%,
SS(8)=1234567654321=(239x4649)=1111111%,
SS(9)=123456787654321=(11x1010101)*>=11111111%,
S8(10)=12345678987654321=(9x37x333667)*=(111x1001001)y>=111111111%
For the Smarandache symmetric sequence, the question is : How many terms of the
sequence are prime? The question still remains to be answered.

11. SMARANDACHE PIERCED CHAIN SEQUENCE {PCS(0)}yr®

In this section, we give answer to the question posed by Smarandache [5] by showing that,
starting from the second term, all the successive terms of the sequence {PCS(n)/101}4=1",
given by (1.11), are composite numbers. This is done in Theorem 11.1 below.

We first observe that the elements of the Smarandache pierced chain sequence, {PCS(n)}n—l ,
satisfy the following recurrence relation :
PCS(n+1)=10* PCS(n)+101, n=2; PCS(1)=101. : , (11.1)
Lemma 11.1 : The elements of the sequence {PCS(n)} " are
101, 101(10%*+1), 101(10*+10*+1), 101(10'2+10%+10%+1), .
and in general,
PCS(n)=101[10*"D+10*"2+ . +10%+1], n>1. (11.2)
Proof : The proof of (11.2) is by induction on n. The result is clearly true for n=1. So, we
assume that the result is true for some n.
Now, from (11.1) together with the induction hypothesis, we see that
PCS(ni+1)=10* PCS(n)+101
=10*101(10*™Y+10% 24 +10%+1)]+101
=101(10"+10*" D+ +10*+1),
which shows that the result is true for n+1. O
It has been mentioned in Ashbacher [1] that PCS(n) is divisible by 101 for all n>1, and
Lemma 11.1 shows that this is indeed the case. Another consequence of Lemma 11.1 is the
following corollary.
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Corollary 11.1 : The elements of the sequence {PCS(n)/101},-,” are

1, x+1,x TX‘H X+,
and in general

PCS(n)/101=x""4+x"2+.. +1, n>1, (11.3)
where x=10". '
Theorem 11.1 : For all n>2, PCS(n)/101 is a composite number.
Proof : The result is true for n=2. In fact, the result is true if n is even as shown below : If n
(24) is even, let n=2m for some integer m (>2). Then, from (11.3),

PCS(2m)/101 =M I k]

M+ (k)
~(x+1)(x2‘“ il .+13

that is, PCSQ2m)/101=(10*1)[10*™ V410%™ 2Dy | 413, (11.4)
which shows that PCS(2m)/101 is a composite number for all m (22).

Next, we consider the case when n is prime, say n=p, where p (=3) is a prime. In this case,
from (11.3),

PCS(p)/lOl =P xR == 1D (x-1).
Let y=10® (so that x=y°). Then,

pesp) XP-1 yP=1 0 (FP-1)(yP+1)

101 x—1 2

vl (y+1)y-1)

{(y D HyP DDy )

(y+D)iy-1)

=7y YT LD P Ry )
that is, PCS(p)/101=[10*" D=1 03P 2410204 | +1][10%P D102 -D . +1],  (11.5)
so that SPC(p)/101 is a composite number for each prime p (23).
Finally, we consider the case when n is odd but composite. Then, letting n=pr where p is
the largest prime factor of n and r (>2) is an integer, we see that
PCS(n)/101=PCS(pr)/101
_Xpr*l_;_xpr—2+ +1
—l l)(XP LpyP 2y +1)+XP(F 2)(XP L2, A1)
PP D)
=(x"" x4 .+12[xp(f‘”+x"“‘2_)+. 1)
that is, PCS(ny/101=[10%PD410% Dt +1][10%De10%CDy 41, (11.6)
and hence, PCS(n)/101=PCS(pr)/101 is also a composite number.
All these complete the proof of the theorem. 0
Remark 11.1 : The Smarandache pierced chain sequence has been studied by Le [20] and
Kashihara [21] as well. Following different approaches, they have proved by contradiction
that for n>2, PCS(n)/101 is not prime. In Theorem 11.1, we have proved the same result by
actually finding out the factors of PCS(n)/101 for all n>2. Kashihara [21] raises the question :
Is the sequence PCS(n)/101 square-free for n>2? From (11.4), (11.5) and (11.6), we see that
the answer to the question of Kashihara is yes.
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ABSTRACT. The fulfiled euclidean plane is the real projective plane IT completed
with the infinite point of its infinite line denoted TI°. This new incidence structure
is a structure with neighbouring elements, in which the unicity of the line through
two distinct points is not assured. This new Geometry is a Smarandacheian struc-
ture introduced in [10] and {11], which generalizes and unites in the same time:
Euclid, Bolyai Lobacewski Gauss and Riemann Geometries.
Key words: Non-euclidean Geometries, Hjelmslev-Barbilian Geometry, Smaran-

dache Geometries, the fulfilled Euclidean plane.

1. HJELMSLEV-BARBILIAN INCIDENCE STRUCTURES

When the first Non-euclidean Geometry was introduced by Bolyai and
Lobacewski even the great Gauss said that people were not prepared to receive
a new Geometry. Now we know and accept many kinds éf new Geometries. In 1969
Florentin Smarandache had put the problem to study a new Geometry in which the
parallel from a point to a line to be unique only for some points of points and lines
and for the others: none or more. More general: An axiom is said Smarandachely
denied 1f the axiom behaves in at least two different ways within the same space (i.e.,

validated and invalided, or only invalidated but in multiple distinct ways). Thus, a
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Smarandache Geometry is a geometry which has at least one Smarandachely denied
axiom.

Are nowadays people surprise for such new ideas and new Geometries? Certaintly
not. After the formalized theories were introduced in Mathematics, a lot of new
Geometries could be acéepted and semantically to be proved to be non-contradictory
by the models created for them as in {1], 2], [3], (4], [3], (6], (8], [9], [12].

Definition 1.1. We consider P, D, I the sets which verify:

(1) PXD':@

(2) [IcPxD

The elements of P are called points, the elements of D are called lines and I defines
an incidence relation on the set P x D. (P, D, I) is called an incidence structure.
If (P, d) € I we say that the point P &€ P and the tine d € D are incident.

In the incidence structures introduced by D. Hilbert were accepted the axiom:

Axiom 1.1. P, € P, d; € D, (Pod;)el,4,5=1,2imply P, = P, or dy = ds.

In [3] J. Hjelmslev generalized these incidence structures considering (P, D, [) in
which this axiom is denied, and the uniqueness of a line incident with two different
points is not assured.

Definition 1.2. Two distinct points P, P, € P of a (P,D,I) are said to be
neighbouring, denoted P, o Pg, if there are at least dy,dy € D, d; # dy such that:

(3) (Bdy) €I, 4,7=1,2

?

An incidence structure (P,D,I) with a neighbouring relation is denoted

(P,D,1,0).
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D. Barbilian proved that such incidence structures are consistent, considering in

[1] a Projective Geometry over a ring. Later such structures were studied in (2], [4]

(51, [6], (8], (9], [12].

?

2. THE FULFILLED EUCLIDEAN PLANE

The mathematical model for the real projective plane I is:
(4) Pl ={(oX,0Y,pZ)| X,Y,Z,p €R, p+#0}\ {(0,0,0)}
where (XY, Z) are homogeneous coordinates for a point
(5) D' = {lga,qb,qdl] a,b,c,g € R, ¢ £ 0} \ {[0,0,0]}

is the set of the lines of the TT plane.
The incidence between a point M (X,Y,Z) and a line [a, b, ¢] is defined through

the condition
(6) aX +bY +¢cZ =0
The infinite line denoted through [oo] has the equations [0, 0, 1} or:
(7) Z=0.
The infinite points of the TI plane have homogeneous coordinates of the type:
(8) (X,Y,0), X*4+Y?10

Let we observe that in IT any line has its infinite point - except the infinite line
[o<]. In this note we introduce it.

Definition 2.1. The infinite point of the infinite line [oo] is T(0,0,0) (the unique
point which were not considered in P in (4)).

From (6) and (8) we can see that 17 (0,0, 0) an infinite point incident with any line

from 7.
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Definition 2.2. The real projective plane I completed with the point U(0, 0, 0)
is called the completed real projective plane or the fulfilled euclidean plane,

denoted T,
Definition 2.3. We denote P” := P'U{(0, 0, 0)} or P” := P'U{{/}. The incidence

relation 7 C P x D’ now we prolonge it at I’, I’ © P” x D’ such that:

(9) [,I'P’XD’ =1
and
(10) Ula,VaeD

3. THE INCIDENCE STRUCTURE WITH NEIGHBOURING OF ORDER k

Definition 3.1. In an incidence structure (P, D, I, o) with neighbouring ele-
ments we define an order of neighbouring of two lines d; € D, i=1,2. The lines
d, and dy are called neighbouring of order k if there are exactly k& distinct points

incident with them, that is:
(11) (di,P) e, i=1,2, J=1k

Definition 3.2. An incidence structure (P,D,1,0) in which any two lines are
neighbouring elem;ants of order £ is called a Hjelmslev Barbilian plane of order k.

Theorem 3.1. The fulfilled euclidean plane T is an incidence structure with
neighbouring lines Hielmslev Barbiliah of order two.

Proof. Any two lines from II are incident with exactly one point, II being a
projective plane. In II° any two lines are incident also with the point U(0,0,0)
which was not considered in II.

If two lines a and b from II are incident with the P point, that is:

(12) “ Pla,b
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then in T the lines a and b are incident with the two points P and U. Such we have:
(13) Pol

that, is — after definition 1.2 — P and U are neighbouring points.

The lines a and b of D’ are neighbouring lines of order two:
(14) a oy b,
because we have:
(15) P,UI'a,b, a +#b,

for any two distinct lines from II°.

If o or b is the infinite line [oc] then P from (12) is an infinite point. If a and b
are different of the line [oc] then P is a propre point of 7.

In any case a and b are always incident with exactly two points from IT". Such we
proved that IT" is a Hjelmslev-Barbilian plane of order two.

If I is the real projective plane of a TI-euclidean plane we can see that:
(16) eIl

Definition 3.3. In the real space we consider a sphere § tangent in P to a II
" euclidean plane and let be ¥V the diametral opposite point of P on the S. We define

the stereographyc projection of the pole N from S to IT°:
(17) f:S—T
F(M) .= M" where {M'}) = NMNnTI

and

fINY =T
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Such through f we obtain a bijection between the all points of S and the points
of T

Some others applications of TT° we gave in [14] as a transdisciplinary study given

after the notions given in [7].
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Resumo

Dando jus & matemdtica experimental, mostramos como o Maple pode
seT usado na investigagho matemética de algumas quest3es actualmente sem
resposta na Teoria dos Ntimeros. A tese defendida é que os alunos de um
curso de Matemstica podern facilmente usar o computador como um lugar
onde se excita e exercita a imaginagio.

1 Introducao

Albert Einstein é conhecido por ter ditc que “a imaginagio & mais importante
que o conhecimento”. Se assim é, porqué esperar pelo mestrado ou doutoramento
para comegar a enfrentar problemas em aberto? Nio ¢ a criatividade prerrogativa
dos mais novos? Em [3] mostrei como com muito pouco conhecimento é possivel
debrugar-mo-nos sobre algumas questdes actualmente sem resposta na Teoria de
Computagdo. Aqui, e a propésito do ano 2003 ter sido escolhido pela APM como
o ano da Matemdiica e Tecnologia, vou procurar mostrar como o computador e um
ambiente moderno de computacao algébrica, como seja o Maple, podem ser exce-
lentes auxiliares na abordagem a “quebra-cabecas” que 2 matemdtica dos nimeros
actualmente nos coloca. A minha escotha do sistema Maple prende-se com o facto
de ser este o programa informatico actualmente usado na cadeira de Computadores
no Ensino da Matemdtica, no Departamento de Matemsatica da Universidade de
Aveiro. Desta maneira os meus alunos serdo prova viva de que basta um semes-
tre de “tecnologias na educaggo matemética”, para nos podermos aventurar por
* “mares ainda néo navegados”. O leitor que queira aprender sobre o Maple poderd
comegar por consultar o nosso site de Computadores no Ensino da Matemdtica:
http://webct.ua.pt/public/compensmat/index.html.

2 Numeros felizes

Seja n € N um. nimero natural com representagio decimal n = d . . . dg, 0<d; <9
(#=0,...,k), e denotemos por o(n) a soma dos quadrados dos digitos decimais de
n: a{n) = Ef:()(di)g. Dizemes que n é um naimero feliz se existir um r € N tal
que (go---oo)(n) =1. Por exemplo, 7 ¢ um nimero feliz (r = 5),

|

T Vezes

o(7) = 49, 5(49) = 97, ¢(97) = 130, o(130) = 10, o(10) = 1;

1
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enquanto 2 nao:

7(2) = 4, o(4) = 16, o(16) = 37, o(37) = 58, o (58) = 89,
a(89) = 145, o(145) = 42, o(42) = 20, o (20) = 4 ...

Vamos definir em Maple a fungao caracteristica Booleana dos niimeros felizes. Comegamos
por definir a fungdo digitos que nos devolve a sequéncia de digitos de uma dado
nimero n

> digitos := n ~> seq(iquo(irem(n,107i),10"(i-1)),i=1. .length(n)):
> digitos(12345);

5,4,3,2,1
A fungao o é agora facilmente construfda

> sigma := n -> add(i"2,i=digitos(n)):
> sigma(24);

20
O processo de composicio da fungio o é obtido usando o operador @ do Maple;

> s = (n,r) > seq((sigma@@i)(n),i=1..1):
> s(7,5);

49, 97, 130, 10, 1
> 5(2,9);
4, 16, 37, 58, 89, 145, 42, 20, 4

Para automatizarmos o processo de decisao se um ntimero & feliz ou NA0, TeCOITEMOs
a alguma programagao. O seguinte procedimento deve ser claro.

> feliz := proc(n)
local L, v:
L= {};
v := sigma(n): )
while (not (member(v,L) or v=1)) do
L := L union {v}:
v = sigma(v):
end do:
if (v = 1) then true else false end if:
end proc:

vV V VV V V V VY

Podemos agora questionar o sistema Maple acerca da felicidade de um determinado
nimero.

> feliz(7);
true
> feliz(2);
false .
A lista de todos os niimercs felizes até 100 & dada por

> select(feliz, [$1..100]);
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[1,7,10,13,19,23,28, 31,32, 44,49, 68, 70,79,82,86,91,94,97,100]
Concluimos entao que existem 20 nimeros felizes de entre os primeiros 100 naturais
> nops(select(feliz, [$1..100]));
20

Existem 143 nimeros felizes n&o superiores a 1000; 1442 nao superiores a 10000; e
3038 nao superiores a 20000:

> nops(select{(feliz, [$1..1000]));
143

> nops(select(feliz, [$1..10000]));
1442

> nops(select(feliz, [$1..20000]));
3038

Fstas dltimas experiéncias com o Mapie permitem-nos formular a. seguinte conjec-
tura.

Conjectura 1. Cerca de um sétimo de todos os miimeros séo felizes.

Uma questio interessante é estudar nimeros felizes consecutivos. De entre os
primeiros 1442 nimeros felizes podemos encontrar 238 pares de nimeros felizes
consecutivos (o mais pequeno é o (31,32));

> felizDezMil := select(feliz, [$1..10000]):
> nops(select{i—>member(i,felizDezMil) and
member(i+1,felizDezMil) ,felizDezMil)) ;

238

onze ternos de niimeros felizes consecutivos, o mais pequeno dos quais é o (1880, 1881, 1882);

1

> select (i->member(i,felizDezMil) and
" member(i+l,felizDezMil) and
member (i+2,felizDezMil) ,felizDezMil) 3

(1880, 4780, 4870, 7480, 7839, 7840, 8180, 8470, 8739, 8740, 8810]

dois quaternos de nimeros felizes consecutivos, o mais pequeno dos quais é o
(7839, 7840, 7841, 7842);

> select(i—->member(i,felizDezMil) and
member (i+l,felizDezMil) and
member (i+2,felizDezMil) and
member(i+3,felizDezMil),felizDezMil);

[7839,8739]
e nenhuma sequéncia de cinco nimercs felizes consecutivos.

> select(i—>member(i,felizDezMil) and
member(i+1,felizDezMil) and
member (i+2,felizDezMil) and
member(i+3,felizDezMil) and
member(i+4,felizDezMil),felizDezMil);
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Sabe-se que a primeira sequéncia de cinco ntmeros felizes consecutivos comega com
0 44488,

feliz(44488) and feliz(44489) and feliz(44490) and
feliz(44491) and feliz(44492);

true

E também conhecida uma sequéncia de 7 nimeros felizes consecutivos, que comega
com o ndmero 7899999999959059999999996 (vide [4]).

3 Sucessoes de Srﬁarandache

Dada uma sucessio de inteiros {n}, a correspondente sucessdo de Smarandache
{55} é definida por concatenagio de inteiros como se segue:

51 :u1,32=u1u2,...,sn:-u1~--un,

Estamos interessados na sucessao de Smarandache associada acs mimeros felizes.
Os primeiros elementos desta sucessio sio:

L, 17,1710, 171013, 17101319, 1710131923, 171013192328,17101319232831, ...

Comegamos por implementar a concatenagdo de inteiros em Maple.

> conc := (a,b) -> ax10"length(b)+b:
> conc(12,345);

12345

Formando a lista dos nidmeros felizes até wm certo n, € usando a fun¢io conc acima
definida, a correspondente sucessao de Smarandache ¢ facilmente obtida.

> sh := proc(a)
> local L, R, i:
> L := select(feliz,[$1..n]):
> R := array(i..nops(L),L):
> for i from 2 by 1 while i <= nops(L) do
> R{i]:=conc(R[i~-1],L[i]):
> end do:
>  return(R):
> end proc:
"Como

> select(faliz, [$1..31]);
[1,7,10,13,19,23,28,31]
os primeiros 8 valores da sucessio de Smarandache sioc entio
> print(sh(31));
‘ [1,17,1710, 171013, 17101319, 1710131923, 171013192328, 17101319232831]

Existem Inuitas questdes em aberto associadas i sucessio de Smarandache dos
nimeros felizes (vide [2]). Umas dizem respeito & existéncia de nimeros primos
Da sucessio; outras & existéncia de ndmeros felizes, Fagamos agora alguma inves-
tigagao a este respeito. Usando o Maple é facil coneluir que de entre os primeiros
143 termos da sucessio de Smarandache dos nimeros felizes, apenas 3 sao primos.
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> primos := select(isprime,sh(1000)):
> nops{[seq(primos[i],i=1..143)1);

3

Se fizermos print (primos) vemos que os trés primos sio 52 =17, 55 = 17101319 e
543 {s43 € um primo com 108 digitos decimais).

> primos{2], primoes[5];
17, 17101319
> length(primos[43]);

108

Apenas sio conhecidos estes niumeros primos pa sucessio de Smarandache dos
nimeros felizes. Permanece por esclarecer se eles serdo ou nao em ndmero finito
(vide [1]).

Existem 31 nimeros felizes de entre os primeiros 143 termos da sucessio de
Smarandache dos nimeros felizes:

> shFelizes := select(feliz,sh(1000)):
> nops([seq(shFelizes[i],i=1..143)1);

31

Recorrendo ao comando print (shFelizes) vemos que esses nimeros sao o 81, 811,

S14, $30; 531, 535, S48, 552: 558, 562, 567, 569, 571; 5761 $77, 578, 582, S83, 585, 508, $104»
5108, 5110, S114, §115, 5117, 5118, 5119, 5122, 5139 € Sw40. A titulo de curicsidade, s14¢9
tem 399 digitos:

> length(shFelizes[140]);

399

Muito existe por esclarecer relativamente & existéncia de nimeros felizes consecu-
tivos na sucessio de Smarandache dos nimercs felizes. Olhando para cs resulta-
dos anteriores vemos que o par mais pequeno de nimeros felizes consecutivos & o
(830, 531); enquanto o terno mais pequeno é o (s7g, 577, 578). Quantos termos con-
secutivos sdo possiveis? B capaz de encontrar exemplos, digamos, de seis ndmeros
felizes consecutivos? Estas e outras questdes estio em aberto (wide {1]). Ferramen-
tas como o Maple sio boas auxiliares neste tipo de investigagdes. Fico A espera de
algumas respostas da sua parte.
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Calculating the Smarandache Numbers
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Abstract

The Smarandache Numbers are:
1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7,11,23,4,10,13,9,7,29,5,31,8,11,17,7,6,37,
19,13,5,41,7,43,11,6,23,47,6,14,10,17,13,53,9,11,7,19,29,59,5,61,31,7,8,13,11,67.17
23,7,71, 6,73,37,10,19,11,13,79,6,9,41,83.7, ...

and defined as the smallest integer m such that n divides m! Finding the exact value of
a(n) is an open problem, and this paper presents an effective algorithm for

determining the value of a(n).

>

Keywords
Smarandache functions, factorial, prime numbers

Introduction

The process involved is fairly simple, and we need to know the factorisation of n.
From this factorisation, it is possible to exactly calculate by which m each prime is
satisfied, i.e. the correct number of exponents appears for the first time. The largest of
these values gives a(n).

Satisfying %k
T

o satisty p*, we find the lowest m such that pk divides m!.

For e){ample, if we look at 3*=81, then m=9 suffices and is also the lowest possible
value of m we can achieve.

We can see that m=9 suffices, as 9!=1.2.3.4.5.6.7.8.9, of which 3,6 and 9 are
multiples of 3, and 9 happens to be 3°. As 3, 6 and 9 are the first multiples of 3, this
implies m=9 is minimal.

The key to finding m lies in the value of'k, and with the distribution of 3’s over the
integers.

The pattern of divisibility by 3, beginning with 1, is;
0010010020010010020010010030....

For the purpose of the Smarandache numbers, we can remove the 0°s from this, as we
are only concerned with accumulating enough 3’s.

(A)11211211311211211311211211+41...
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The pattern present here can be generalized at a basic level to allow us to calculate the
values of the sums whenever a number appears for the first time.

This gives us the sub-sequences 1, 112, 112112113, etc..., and we are interested in
the sums of these, i.e.:

(B) 1,4, 13,40 ...

This 1s the partial sums of 1+3+9+27+.__, and this is result of evaluating (3"-1)/2.
Now we can deduce the value of m from k, where does k appear in B? Our k in the
example was 4, and this appears as B(2). This means that to reach 3* we need 3 terms

from A (=3%"), and multiplying by 3 gives the answer we require of 9.

But how about 3***? To calculate m for this, we reduce in by as many possible of the
terms of A.

A fuller list of A is:

(pari/gp code)

three(n)=(3"n-1)/2

Jor (n=18,printl(three(n)","))

1,4,13,40,121,364,1093,3280,

364 is too large, but 121 is Ok. 333-121=212, and again 212-121=91.
121 is A(3), so the data collected so far is [2*5]

Continuing, 91-2*40=11, and 11-2*4=3, and 3=1*3, thus we have the data [2%5,2%4,
2%¥2, 3*1]. ’

To interpret this data, we just re-apply it to the distribution of 3’s. 2*5 means that we
need 2*3* consecutive multiples of 3 — by this stage we have satisfied 3**?. 2*4 means

that we add a further 2*3° multiples of 3, 2*2 means that we add a further 2*3!
multiples of 3, and finally we add 3* multiples of 3.

The whole sum is therefore 2*81+2*¥27+2*3+3*1=162+54+6+3=225, and this gives
us the answer directly: (225*3)! = 675! is the smallest factorial that 3*** divides.

This can be proven with a small Pari program:

? for(i=1,2000,if(i!263°333==0,print| (i) break))
673

Calculating a(n)
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Then we need to calculate the m value for each prime and exponent, and a(n) is the
largest.

This Pari/GP code performs the necessary calculations

{

findm(x,y)=local(m,n,x1);

m=0;n=1;x1=x-1;

while (((x*n-1)/x1)<=y,n++);n--;

while (y>0,

while (((x*n-1)/x1)<=y,y-=((x"n-1)/x1);m+=(x"(n- IMin--);
x*m

}

This is the findm() function. n is boosted until larger than necessary, and then
trimmed down one so that is must be less than or equal to y. Then y is decreased by
the largest possible value of (x"n-1)/(x-1) possible until y=0. m is continually
incremented throughout this process as appropriate, and the returned value is x*m.

{
smarandache(n)=local(f,fl,ms);
if (n==1,1,

factor(n);fl=length(f],1]);
ms=vector(fl,i,0);

for (i=1 fl,ms[i]=findm(f[1,1],f[i2]);
vecmax(ms))

}

The smarandache() function returns 1 if n is 1, otherwise it creates the ms vector of
lowest possible m values, and returns the largest value.

The program results in this data:

?for (i=1,100,print] (smarandache(i)","))
1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7,11,23,4,10,13,9,7,29,5,31,8,11,17,
7,6,37,19,13,5,41,7,43,11,6,23,47,6,14,10,17,13,53,9,11,7,19,29,59,5,61,31,7,8,1
3,11,67,17,23,7,71,6,73,37,10,19,11,13,79,6,9,41,83,7,17,43,29,11,89,6,13,23 31,
47,19,8,97,14,11,10,

which give-a 100% correlation with the sequence given in the abstract.

At 100Mhz, it takes about 1 minute to generate the sequence to n=10000.

Reference:
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Neil Sloane, The Encyclopaedia of Integer Sequences, Sequence # A002034,
http://www.research.att.com/cgi-

bin/access.cgi/as/njas/sequences/eisA.cgi? Anum=A002034
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On Additive Analogues of Certain Arithmetic

Functions

Jozsef Sandor
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1. The Smarandache, Pseudo-Smarandache, resp. Smarandache-simple functions

are defined as ([7], [6])

S(n) = min{m € N: a|m!}, (1)
Z(n) = min {mEN: mm;—l)} (2)
Sp(n) = min{m € N: p”|m!} for fixed primes p. (3)

The duals of 5 and Z have been studied e.g. in [2], [5], [6]:

Se(n) = max{m € N: mln}, (4)
Z.(n) :max{mEN: m_(m%}_)w'n} ’ (5)

We ’note here that the dual of the Smarandache simple function can be defined

in a similar manner, namely by
Spe(n) = max{m € N: m!|p"} (6)

This dual will be studied in a separate paper (in preparation).
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2. The additive analogues of the functions S and S, are real variable functions,
and have been defined and studied in paper [3]. (See also our book 6], pp. 171-174).
These functions have been recently further extended, by the use of Euler's gamma
function, in place of the factorial (see [1]). We note that in what follows, we could
define also the additive analogues functions by the use of Euler’s gamma function.
However, we shall apply the more transparent notation of a factorial of a ‘positive
integer.

The additive analogues of § and S, from (1) and (4) have been introduced in 3]
as follows:

S(@)=min{meN: z <ml}, 5:(1,00) R, (7
resp.
Si(z) =max{meN: ml <z}, S,:[l,00) >R (8)

Besides of properties relating to continuity, differentiability, or Riemann integra-

bility of these functions, we have proved the following results:

Theorem 1.

log z
Selz) ~ loglogz (z = o0) ®)
(the same for S(z)). -
Theorem 2. Thr,; series ,
= 1
e — 10
2 S (10

s convergent for o > 1 and divergent for o < 1 (the same for S.(n) replaced by

3. The additive analogues of Z and Z, from (2), resp. (4) will be defined as

Z(z):min{mEN: xgm;“”} (11)
Z.(x) = max {m eN: TW_;L}—) < :c} (12)
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In (11) we will assume z € (0, +o0), while in (12) z € 1, +oo).

The two additive variants of S,(n) of (3) will be defined as
P(z) = Sp(z) = min{fm € N: p® <ml}, (13)
(where in this case p > 1 is an arbitrary ﬁv;:ed real number)
Pu(z) = Spulz) = max{m e N: m! <p°} - | (14)

From the definitions follow at once that

(k- 1)k k(k+1)
2 ’ 2

Zx)=k & z¢ for k> 1 (15)
( |

k(k+1) (k k+2)
Z*(m)=k®w€{(+),(+l)(+)> (16)
2 2
For z > 1 it is immediate that
Zu(z)+ 12 Z(z) > Z,(x) (17)
‘Therefore, it is sufficient to study the function Z,(z).
The following theorems are easy consequences of the given definitions:
Theorem 3.
' 1
Z(x) ~ E\/&c +1 (z— o0) (18)
Theorem 4.
= 1
- 15 convergent for o > 2 19
2Ty =
- 1
and divergent for o < 2. The series ———— 15 convergent for all o > 0.
P eATIE
klk+1 k+1 2
Proof. By (16) one can write L;—l <z< (—4_-—)2(—114};), sok?+k—2z <0
and &%+ 3k -2 — 2z > 0. Since the solutions of these quadratic equations are k 5 =
~-1lEtv8x+1 | =3x8z +1 ) V8r+1-3
— resp. kza = — and remarking that B S— >
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1 < z > 3, we obtain that the solution of the above system of inequalities is:

ke {1@??__1} if zell,3);
(20)
kE’(ﬁT;gE—S,\/ﬁ?_l} i x &3 +oo)
So, forz >3
—-——_‘/1—*28_”_3 < Z(z) < h—u@“ ! (21)

unplying relation (18).
Theorern 4 now follows by (18) and the known fact that the generalized harmonic
(0]
1
i — i gent only for 8 > 1.
series nz=1 —7 18 convergent only for

The things are slightly more complicated in the case of functions P and F,. Here

1t is sufficient to consider P,, too.

First femark that

Plr)=m & z¢

! !
logm! log(m + 1)) | (22)

logp’  logp
The following asymptotic results have been proved in (3] (Lemma 2) (see also

(6], p. 172)

m loglog m)! log log m!
1 I~ mlog: —_— =~ — ] — 23
og T~ T l0g ™, log m! " loglog(m + 1)! (m— o0} (23)

By (22) one can write

log 1 ! | log log(: 1)
mloglogm! — m loglog p < mlog x < mloglog(m + 1) — (loglogp) m 7
logm! log m! = logm! log m! log m!
. log x )
giving - ~ — 1 (m — o0), and by (23) one gets log z ~ log m. This means that:
ogm!

Theorem 5.
log P(z) ~logz (z — o) (24)

The following theorem is a consequence of (24), and a convergence theorem

established in [3]:
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(es]
1/ logl
Theorem 6. The series Z - ( °6 ogn) is convergent for a > 1 and diver-
n

log P.(n)

n=]

gent for o < 1.

=~ 1 [loglogn\*”
Indeed, by (24) it is sufficient to study the series Z — (M) (where
n

logn

n>ng

no € N is a fixed positive integer). This series has been proved to be convergent for

@ > 1 and divergent for o < 1 (see [6], p. 174).
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Many researchers study prime numbers for the curiosities that they possess rather than
the position they occupy at the foundations of Number Theory. This study may be in
any numbers of areas from applications to multimedia to searching for special or
unusual primes. It is truly awe inspiring to see how much time can be expended on
prime numbers without a realistic application.

In this article, a sequence of prime numbers, called Recursive Prime Numbers, is
identified before a complete search is undertaken to verify that the sequence is finite
by finding all existing prime numbers of the specified form. This could be done with
considerable effort by hand, but here a simple computer program has been used to
speed the calculations. So now the question. must be answered; what are recursive
prime numbers. The easiest way to answer that is to say that a prime number is
recursively prime if the number js prime can be constructed by adding a digit to an
already recursive prime number.

1. Recursive Prime Numbers

The idea of Recursive Prime Numbers arose when asked if it were possible to create
infinite sequences of prime numbers by adding digits to the end of an existing prime.

Definition 1. 4 number is said to be a recursive prime number if it and all of the
- initial segments of the decimal expansion are prime. We can recursively define those
numbers as follows:

a) 2, 3, 5, 7 are recursive prime numbers

b) if agay...ay is a recursive prime number and ayay..a,a,,q is a prime number

then ayay..ayay,,| is a recursive prime number as well.

Example 1. 23333 is a recursive prime number since 2, 23, 2333 and 23333 are all
prime.

Although, with only a little examination it becomes clear that it is very unlikely that
such an infinite sequence could be found, still the concept is one that is quite
interesting and demanded some attention. It is not a difficult task to systematically
find all prime numbers of this form. Let us consider the following sets of prime
numbers

Ma)y={a},V a {2357} | ' (1)

gy = {10-x+ y:xe L a), ye{1,3,7,9},10 - x+ yis prime}v nx1 (2)
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L@)=U L'(a), Y ac {2,357, 3)

nzl

where Z'(a) represents the set of the recursive prime numbers which start with the
digit @ and have # digits.

We used Java computation to generate the set L(a) of all the recursive prime numbers
that start from the digit a (see Figure 1). The program chooses to use Java’s long type
as opposed to the reference type, Biginteger. This choice was made to simplify the
code in the expectation that there would be no need for the increased size provided for
Biglnteger. Similarly, a simple trial division primality test has been used in lieu of a
- more efficient test since the numbers are expected to remain relatively small in all
cases (see Figure 1). There are many references available for those interested in
primality testing, [Knuth, ***], [Shallit, 1996], [Romero, 1998].

The code creates two queues queueOld and queueNew for the sets L'(a) and 7"/ (a)
respectively. Initially, the queue queueOld contains the digit a. The loop for simulates
Equation (2) by generating the elements of queueNew from the elements of queueQld
and the set of last digits. An element prime of queueOld is removed from the queue,
which is concatenated with the last digits {1, 3, 7, 9}. Ifa prime number is obtained,
we insert it in the queue queueNew. When all those numbers are composite, we find
that queueNew is empty, therefore the computation finishes.

public Vecter listRecurs(long a){
LinkedList queueOld = new LinkedList();
LinkedList queueNew = new LinkedList();
Vector primes = new Vector();

queueCld.addLast (new Long(a)); // digit is added to queue
long [] lastDigit = {1, 3, 7, 9};

for (int n=1;! queueOld.isEmpty () ;n++) |
// generate queueNew for the set L™!(a)

while (! queueOld.isEmpty{)){
// get an element prime from queueOld
long prime = ((Long)queueOld.removeFirst()).longValue();
primes.addElement (new Long(temp));

// generate all the recursive prime numbers from prime
for (int i = 0; i < lastDigit.length(); i++) |
long primeNext = prime * 10 + lastDigi(i];
if(this.testPrimality (primeNext))
queueNew.addLast (primeNext) ;

}

while (! queueNew.isEmpty()){
long nr = ((Long)queueNew.removeFirst()).longValue();
gueueOld.addLast (nr) ;

}

}

return primes;
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public Boolean testPrimality(long num) {

if (this.getLong()==2 || this.getlong({)==3)return isPrime:;
if (this.getLong(]%2==0 || this.getLlong()%3==0)return isComposite;
for (int i=5; i<{long) ath.floor (Math.sqrt (this.getLong())); i+=4)
{ Zf {this.getLong() % i == Q) return isComposite;
i+= 2; '
if (this.getLong() % i == 0) return isComposite;

}

return i1sPrime;

}

Figure 1. Java program to list all recursive prime numbers.
The following theorem establishes the correctness of our computation.

Theorem 1. The contents of queueOld before the n-th iteration of the loop for is
L™(a), therefore the contents of the vector primes is L{a).
Proof. Induction is used for this proof.
Since the queue queueOld initially contains only g, we find that the property holds for
n=1. Suppose that before the n-th iteration the contents of queueOld is L'(a). In the
loop for we generate queueNew as follows:

- for any element prime of queueOld= I."(g) and for any lastDigit{1]

- if prime*10-+lastDigit[i] is prime then add it to queueNew
Therefore, the contents of queueNew will be identical as 1™ (a). At the end of this
iteration the elements of queueNew are transferred to queueOld therefore before the
iteration (n++1)-th the contents of queueOld is L™ /(a).
*
The computation relieved that the sets L"(a) are empty for values n>8. Therefore, each
digit 2, 3, 5, 7 generates only a finite number of recursive primes. This is detailed in
the next section. -

2
/\
23 29
_,—”f”\\\\‘\\\ |
233 239 293
N |
2333 2339 2393 2399 2939
PN | | f
23333 23339 23399 23993 29399
" | | |
233993 239933 293999
| | l
2339933 2399333 2939999
l |
23399339 29399999

Figure 2. Recursively constructed prime numbers with starting digit 2.
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2. Series of Recursive Primes

In order to gain a better understanding of recursive prime numbers it is necessary to
view the results for each starting digit separately, beginning with 2. With 2 as a
starting digit there are only two possible extensions for each number; 3 or 9. This is
due to the fact that concatenating a 1 or 7 at any stage causes the number to become
divisible by 3. The results can be visualised as a tree as in Figure 2.

Since at any stage there are only two possible digits to add, this case results in a
binary tree. It is interesting to note that the right child of each of the nodes 29, 239
and 233 result in long “slender” branches. It is these branches that result in the longest
sequences for this case, two of which are eight digits long. In total there are 24 primes
in this tree. As it will be seen later this is the joint largest tree in terms of nodes, and
shares the same longest sequences with each of the other trees. It is interesting that
this case, despite its limitation of potential digits, is not limited in size at all. In fact,
this is the only tree that has two sequences of length 8.

Unlike the previous case, when the number begins with 3 there are 4 potential digits
to concatenate to the number at some stages. There are still some limitations. For
example 3 and 9 result in coraposite numbers at the first stage but otherwise are
options at subsequent step. Meanwhile, at the first concatenation 1 and 7 result in new
primes but following that any sequence can only have one more of these numbers
before they become divisible by 3. This tree is not a bmary tree, but it very nearly is.
Only one node, 31, has three children. As can be seen in the following i image.

3
/\
31 37
/R /\
311 313 317 379
. /\
31119 31|37 3733 3739 37@99

l | PN |

31193 31379 37337 37339 37397

l |

373379 37339

|

3733799
|

37337995
Figure 3. Recursively constructed prime numbers with starting digit 3.

This case results in 23 prime numbers, one less than the previous case and also shares
the eight digit longest sequence. One element that is found in this sequence that is
absent from the previous example is twin primes. In fact, there are two pairs of primes
found in this tree; (311, 313) and (37337, 37339).

138



/N

23 59

N

583 599

5939

TN

59393 59399

593933 593993

5939333

59393339
Figure 4. Recursively constructed prime numbers with starting digit 5.

The case with 5 as the first digit produces the most unusual trees. While the other
cases result in reasonably broad trees, this case results in a slender tree. Also, the
other cases result in 23 or 24 primes, but this case results in just 12 primes. As well as
this, it shares the limitation of potential digits with the first case examined, again
allowing only 3 and 9 to be concatenated to the number at each stage. Yet
surprisingly, the longest sequence found is 8, equal to that of all the previous cases.

7

T N

71 73 79

719 ’ 733 738 797
| PN |

7193 7331 7333 7393
| l |
71933 73331 73939
|
719333 7398391 739303 739397 739399

] /\

7393913 7393931 7393933

73939133
Figure 5. Recursively constructed prime numbers with starting digit 7.

The final case to be examined is the tree rooted at 7. Again there are limitations on the
use of 1 and 7 for these numbers. In this case, since the numbers begin with a 7, every
sequence can contain just one of either 1 or 7 at any subsequent stage. As with each of
the trees seen previously, this also shows some interesting characteristics.

Firstly, it is not a binary tree with two nodes having too many children. The node 7
has three children while interestingly 73939 has four children, one for each possible
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digit. This is a unique occurrence in this search. This tree has 24 primes, making it as
large as the first example and also has a longest sequence of 8 digits. However,
possibly the most interesting feature of this tree is that it contains five pairs of twin
primes; (71, 73), (7331, 7333), (739391, 739393), (739397, 739399), and (7393931,
7393933).

Conclusions

This article has proposed a new class of prime numbers called “recursive primes”.
Using Java computation all the recursive prime numbers have been generated. It has
been identified only 83 numbers that are recursive primes. Among them 5 pairs of
twin primes have been found.
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Smarandache Sequence of Happy Cube Numbers

Muneer Jebreel, SS-Math-Hebron, UNRWA
Field Education Officer, Box 19149
Jerusalem, Israel

Abstract : I have studied the Smarandache Happy Cube Numbers and [ have got
some interesting results and facts . I have discovered some open problems a bout the
Happy Cube and Smarandache Happy Cube Numbers .

Keywords : Fixed Happy Cube Number (FHCN), Cyclic Happy Cube Number
(CHCN), Consecutive fixed happy cube numbers , General Happy Cube
Numbers(GHCN), Happy numbers , Fibonacci numbers , Lucas numbers , Pell
numbers , Smarandache Fixed Happy Cube Numbers (SFHCN), Reversed
Smarandache Fixed Happy Cube Numbers(RSFHCN), Smarandache Cyclic Happy
Cube Numbers (SCHCN), Reversed Smarandache Cyclic Happy Cube
Numbers(RSCHCN), Smarandache General Smarandache Happy Cube
Numbers(SGHCN), ), Reversed Smarandache General Smarandache Happy Cube
Numbers(RSGHCN)

Definitionl : A positive integer is called Fired Happy Cube Numbers (FHCN) in
case, if you are cubing its digits and adding them together one time you got the same
number .

For example , 370 =3° + 7° + 0%, and , 371 = 3%+ 7 + 13 _ it follows that 370
and 371 are both considered as Fixed Happy Cube Numbers (FHCN).

While it’s worth notably that any permutation of the digits of the(FHCN) doesn’t

end with the same.integer e.g. 730 # 3° - 7 + o° In this case , the integer called
unhappy cube .

S0 the proposed sequence of the FHCN, is FHCN= { 1,153,370,371,407, ... }.

Open Problems needing answers

Is the sequence of the proposed FHCN finite or infinite 2

If it is infinite, what is the next number of 407 ?

What is the density of FHCN ?

[s there any sequence of FHCN following a definite mathematical patterns?
How many primes are there in FHCN 2

Is there FHCN and Happy Number at the same time ?
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7. Is there relations between FHCN and the following numbers :Happy Numbers,
Fibonacci Numbers , Lucas Numbers , and Pell Numbers ?

8. What about other bases or higher powers of FHCN?
9. We have 370 , and 371 consecutive FHCN, are there other consecutive
FHCN?
Smarandache Fixed Happy Cube Number ( SFHCN )
Detinition2 : Smarandache Fixed Happy Cube Number ( SFHCN ) is the number
formed from FHCN , as a result :
SFHCN = { 1, 1153, 1153370, 1153370371, 1153370371407 s eee Je

Note the following observations :

1. 1153 is a prime number.
2. 1153370 is happy number ( Because 12 +12 +5% +32 +37 +72+02 > 92 442
> 947 217437 107 > 12407 > 1
3. 1153370371407 . if we are squaring the digits and adding them together we

get the number 153 i.e. FHCN.

Open Problems needing answers

1) How many prime numbers are there in SFHCN 2
2) How many SFHCN and Happy Numbers are there at the same time ?
3) Is there a relationship between SFHCN and FHCN numbers ?
4) Are there consecutive SFHCN?
Reversed Smarandache Fixed Happy Cube Number (RSFHCN)
Definition3 : Reversed Smaraﬁdache Fixed Happy Cube Number (RSFHCN ) is the
number formed from SFHCN , as a result -

RSFHCN = { 1, 1531, 3701531, 3713701531 , 4073713701531, ... }.

Note the following observations :
1. 1531, and 3713701531 are bothe prime- RSFHCN .

2.3701531 is happy - RSFHCN .

Open Problems needing answers

1) How many prime numbers are there in RSFHCN ?

2) How many RSFHCN and Happy Number are there at the same time ?
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3)

4)

1y
2)
3)
4)
5)
6)

7

8)

9)

3.

Is there a relationship between RSFHCN and SFHCN ?

Are there consecutive RSFHCN?

Definition4 : A positive integer is called Cyclic Happy Cube Numbers (CHCN), in
case , if you are cubing its digits and adding them together many times you got the
same number .

Forexample , 160 > 1’ +6°+ 0> 2172+ 13+ 7 >
352 >3+ 57 +2% > 160. So 160 is cyclic happy cube numbers .

Consequently the proposed CHCN,is CHCN= {55, 133, 136 ,160,217 ,244,
250,352,919,1459, ... }.

Note that the numbers 919, and 1459 are prime numbers ,and the number 55 is
Fibonacci number.

Open Problems needing answers

Is the sequence of the proposed CHCN finite or infinite ?

What is the next number of 1459 ? If exist !

What is the density of CHCN 9

Are there any sequence of CHCN following a definite mathematical patterns?
How many primes are there in CHCN 9

Is there CHCN and Happy Number at the same time ?

Is there a relations between CHCN and the following numbers : Happy
Numbers , Fibonacci Numbers , Lucas Numbers | and Pell Numbers ?

What about other bases or higher powers of CHCN?

Are there CHCN, 2,3,4,5 ,... etc , conseeutive CHCN?
Smarandache Cyclic Happy Cube Number ( SCHCN)

Definition5 : Smarandache Cyclic Happy Cube Number ( SCHCN ) is the number
formed from CHCN , :
hence SCHCN = { 55, 55133, 55133136, 55133136160, ... }.

Open Problems needing answers

How many prime numbers are there in SCHCN 2
How many SCHCN and Happy Number are there at the same time ?

Is there a relation between SCHCN and CHCN ?
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4. Are there consecutive SCHCN?

S. What is the density of SCHCN ?

6. Is there any sequence of SCHCN following a definite mathematical patterns?
7. How many prime numbers are there in SCHCN 2
8. Is there SCHCN and Happy Number at the same time ?

9. Is there a relation between SCHCN and the following numbers : Happy
Numbers , Fibonacci Numbers , Lucas Numbers , and Pell Numbers ?

10. What about other bases or higher powers of SCHCN?
11. Are there SCHCN, 2, 3,4,5,... etc , consecutive SCHCN?
Reversed Smarandache Cyclic Happy Cube Number (RSCHCN)
Definition6 : Reversed Smarandache Cyclic Happy Cube Number ( RSCHCN ) is the
number formed from SCHCN ,
Consequently, RSCHCN = { 5513355, 13613355 ,16013613355, ... }.

Open Problems needing answers

1. How many prime numbers are there in RSCHCN ?

2, How many RSCHCN and Happy Number are there at the same time ?
3. Is there a relation between RSCHCN and CHCN 2

4. Are there consecutive RSCHCN?

3. What is the density of RSCHCN ?

6. Is there any sequence of RSCHCN following a definite mathematical
patterns?
7. How many prime numbers are there in RSCHCN 2

8. Are there RSCHCN and Happy Number at the same time ?

9. Is there a relation between RSCHCN and the following numbers : Happy
Numbers , Fibonacci Numbers , Lucas Numbers , and Pell Numbers ?

10. What about other bases or higher powers of RSCHCN?

11. Are there RSCHCN, 2,3,4,5,... etc , consecutive RSCHCN?
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2)

Definition 7 : If there are union between the set of the (FHCN) and (CHCN) , We
will get the General Happy Cube Numbers (GHCN), namely ;
GHCN={1, 55,133,136,153,160,217,244,250,352,370,371,407,919,1459,. )
Definition 8 :Smarandache General Happy Cube Numbers Jformed from GHCN ie.
SGHCN={1,155,155133,155133136,155133136153,...}.
Definition 9 : Reversed Smarandache General Happy Cube Numbers , which formed
from SGHCN ,
RSGHCN={1, 531 ,133551,136133551,160153136133551,...}.
All the above opened questions need answers .

Curious notes :

The digit 8 doesn’t appear . So is there happy cube number has in its digits the
digit 8?, or as I think it is impossible !

The sum of the digits of any General Happy Cube Number follows the
pattern { 1, 10,7,10,9,7,10,10,7,10,10,11,9,19,19,...}.

Acknowledgment: The author is grateful for Mr. Akram Jawabreh.
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ON THE DIVISOR PRODUCT SEQUENCES

ZHU WEIYI

College of Mathematics, Physics and Information
Science, Zhejiang Normal University
Jinhua, Zhejiang, P.R.China

ABSTRACT. The main purpose of this paper is to study the asymptotic property of
the divisor product sequences, and obtain two interesting asymptotic formulas.

1. INTRODUCTION AND RESULTS

A natural number a is called a divisor product of 7 if it is the product of all
d(n

positive divisors of n. We write it as Py(n), it is easily to prove that Pyn)=n"2",

where d(n) is the divisor function. We can also define the proper divisor product

of n as the product of all positive divisors of n but n, we denote it by py(n), and
(
pa(n) =n

d{n)
2

~h. Tt is clear that the P;(n) sequences is
1,2,3,8,5,36,7,64,27,100,11, 1728, 13, 106, 225, - - - -
The p4(n) sequences is |
1,1,1,2,1,6,1,8,3,10,1,144,1, 14, 15,64, 1,324, 1, 1, 400,21, - - - .

In reference (1}, Professor F. Smarandache asked us to study the properties
of these two sequences. About these problems, it seems that none had studied
them before. In this paper, we use the analytic methods to study the asymptotic
properties of these sequences, and obtain two interesting asymptotic formulas. That
is, we shall prove the following two Theorems.

Theorem 1. For any real number z > 1, we have the asymptotic formula

1 1
Z Pd(’n,) =Inlnz+ Cl + O(Eﬂ-’,‘-)-

n<z
where Cy is a constant.
Theorem 2. For any real number z > 1, we have the asymptotic formula

)

Inln z

1

> =7(z) + (Inlnz)? + Blnlnz + Cy + O(
pa(n) , Inz

n<z:

where 7(z) is the number of all primes <z, B and Cy are constants.

Key words und phrases. Divisor products of n; Proper divisor products of n ; Asymptotic
formula..
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2. SOME LEMMAS

To complete the proof of the theorems, we need following several lemmas.

Lemma 1. For any real number x > 2, there is a constant A such that

1 1
Y~ =lnlnz+A+0(—).
orad Inz

Proof. See Theorem 4.12 of reference [2].

Lemma 2. Let z > 2, then we have

1 1
S22 ezt o0
< P Inz

where C is constant.

Proof. See reference [4].

Lemma 3. Letx > 4, p and q are primes. Then we have the asymptotic formula

1
Z (lnlnq:)z-i—Alnln:c-l—C'g—i—O(lnlnlnx),
q<qu T
where A and Cy are constants.
Proof. From Lemma'1 and Lemma 2 we have
2
1
Siloyivl (sl
pa<z ¥ p<¢‘ q<1 PEVE
Inp 1
=2 1 - Sl
> = (nlnx+1n(1 m)+A+0(m))
P<\/—
1 \2
(lnlnx+A—-ln2+O( ))
Inz
Inp 1 1Inp, 1,lnp 1. lnp
_2 nl | =& il Sl [ Sanad 0%
Z (n nE (lnx+ 2(1111-) * 3(111:1;) * n(lnfb) -
p<f
lnln:c 1 :
+24 Z ) — (1nlnm+A—ln2+O(——))
Inz Inz
p<\/“
= (lnlnz)? +2A1nln$+C'3+O(1n1nI)
Inz

This proves Lemma 3. 145



3. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. First we prove
Theorem 2. Note that the definition of pa(n), we can separate n into four parts
according to d(n) = 2,3,4 or d(n) > 5.

2, ifn=p, pi(n)=1;
3, if n=p? py(n) =p;
dln) = 4, if n=p;p; or n = p*; py(n) = p;p; or p*;
din) 4

> 5, others, py(n) =n"7"
Then by Lemma 1, 2 and 3 we have
1 1 1 1 1
DEFEDNEID DL SE IS DE R UL SR
n<a ©4 p<z pips<z T picy pi<z n<z,d(n)>s M 2

= 7(z) +(lnlnm)g:—2Ah11n;r+C3+O(lnlnx

)+ Inlnz + A~
Inz

1 1 1
1n2+0(m)+04+0<x—%> +C5+O(ﬁ)

=m(z)+ (lnlnz)? + Blulnz + C, +O(1I]1nh;$).

This completes the proof of Theorem 2.

Similarly, we can also prove Theorem 1. Note that the definition of Pi(n), we
have

1 1 1 1
2R T2 G o L

1 1
—_— + -

p<e pip; <z Pz pP<z n<a,d{ny>s ™ 7
=Inlnz+C;+ 0(1—:;).
This completes the proof of Theorem 1.
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ON THE CUBIC RESIDUES NUMBERS
AND k-POWER COMPLEMENT NUMBERS

ZHANG TIANPING

Department of Mathematics, Northwest University
Xi’an,Shaanxi, P.R.China

ABSTRACT. The main purpose of this paper is to study the asymptotic property of
the the cubic residues and k-power complement numbers {where k > 2 is a fixed
integer), and obtain some interesting asymptotic formulas,

1. INTRODUCTION AND RESULTS

Let a natural number n = p$* - py? - - --p2" | then az(n) = pfl -pﬂ? - --pP is called
a cubic-power residues number, where 3; = min(2, q;),1 <i<r; Also let k > 2 is
a fixed integer, if b (n) is the smallest integer that makes nby(n) a perfect k-power,
we call bg(n) as a k-power complement number. In problem 64 and 29 of reference
[1], Professor F. Smarandache asked us to study the properties of the cubic residues
numbers and k-power complement numbers sequences. By them we can define a
new number sequences az(n)bx(n). In this paper, we use the analytic method to
study the asymptotic properties of this new sequences, and obtain some interesting
asymptotic formulas. That is, we shall prove the following four Theorems.

Theorem 1. For any real number x > 1, we have the asymptotic formula
6$k+1
(k+1)m2

> aa(n)bg(n) =

n<r

R(k+1)+ 0 (gh+i+),

where € denotes any fized positive number, and

R%+&)=II(L+—~£iigm—>

- Pr+pf—p—1

if k=2 and

k—j+3 k k—j+3
_ : p p . -
lﬂk+1%—tl 1+2§@;:ﬁ;€ﬁn*f: (p+ 1) (pF+D0+3) = pleFi)

if k> 3.

Key words and phrases. cubic residues numbers; k-power complement numbers; Asymptotic
formula; Arithmetic function .

147



Theorem 2. Let p(n) is the Buler function. Then for any real number z > 1, we
have the asymptotic formula

6$k+1 * k+i+te

n<z

where

R k+1)= 1+ -
( ) 1;[( PP+ 2p5 +2pt +2p3 +2p2 + 2p+ 1 p24p
if k=2, and

1 k prits k=2 pEiHE _ pheit
R*(k+1) = 1-— — + . .
l;I PPtp ; (p+ 1)ph+ls ; (p+ 1) (plE+LE+7) — plh+1)7)
if k> 3.
Theorem 3. Let a >0, 04(n) = Y d*. Then for any real number z > 1, we have
dln
the asymptotic formula
b . 6Zka+l k O ka+i+s
2 oalastmbu(n) = s Rk 1) + 0 (h i),
where :
(] 1 3a_1 2a+1 4(1_1
Rika+1)=]] (1 p2+ L )P+ p
p + 1 atl T (p32atl) _patly(pa 1)
P
ifk=2, and
phatl k (k—j+3)a+1
P - P
R(ka +1 H, 1 + ( ]ca+1 + p I 1 _ l)p(ka+l)j
p F=2
k 84
+Z (k —j+3)a+1 —p
— k) (ka+1) _ plkatl
= p+ 1 p 1)(1)( Fket1) p( a+ )J)

ifk>3.

Theorem 4. Let d(n) denotes Dirichlet divisor function. Then for any real number
z > 1, we have the asymptotic formula

Bx 1
Z d(az(n)bk(n)) = 2R(l) - fllogz) 4+ O (:ci-i—a) ’
n<z
where f(y) 15 a polynomial of y with degree k. and

R =] (14 (pfl)a e 5))

p+p p p

r
k=2, and
k o _ (k+1 feo g1
R =] 1+Z<k 3= (7))ot “Y S
; = (p+ 1)k+1 b (p+ )L (pi—L — k1) ~ (p £ [)F+1

if k> 3. 148



2. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. Let

[e-0]

=3 03(”)[%(”)‘

ns
n=1

From the Euler product formula [2] and the definition of asz{n) and by (n) we have

6 =] (1 N as(pgsk(p) . aa(pz)sic(pz)) +)

> P

1 9, 1 b4 1
= (1+ps-—2 +p (pQ.s + F;)(l __p—ZS))

_ C(s—k) P’ +p
- C@2(s— k) I;I (1 v 1)(p? — 1))

if k=2, and
a3(P)be(p) | aa(p®)bi(p?) |
f(S)MH(l_i_ ps p2.9 —
P.
ko k—j k—j-+2
— 2\~ P 1 P
"_H(l—*— 3—k+p ZZ pjs +(1 pia)zp(k-ﬂ)s)
P J=
1 pa-k k pk—j+2 k pk j+2
= H(l + ps-k + 1 +pa—k Z pja - Z p(k+y)s - pIs
. k . k .
C(s = k) p°mIt? p* It
=l 1+ g+ - -
et -0y L 2 G L ) )
if k£ > 3.
Obviously, we have inequality
— be(n) 1
b < 2 I am(n) k
em(moml <nts 1) RS < oy

where ¢ > k + 1 is the real part of 5. So by Perron formula (3]

am ()bi(n) 1 T xs 2 B(b + o)
Z—(T-L—————“/ f(s+so)—ds+0(h)
b 3

5 i -
n<z n°o . 29 —iT T

1
+0 (xl_”"H(?w) min(1, %‘i)) +0 (a:""“H(N) min(1, ﬁ)) :
T
where N is the nearest integer to «, ||z|| = |z — N|. Taking sq =0, b=k + 2,’
T =z%, H(z) = 2*, B(o) = —+—, we have

3 1 k+2+:T C(S _ k) ® ’ 1a.
S omin) =g [ TG Ty s + Ot
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where

P’ +p .

1 fhk=2;
H( T GE=T) ThEE
ps—]+2 ps—]—{-Q .

+ - . if k> 3.
— o F G gy | HE2

(p*=F + 1)ps* £

=
&,
!
Lo
/‘;\
+
I

To estimate the main term

L/‘k+2+iT C(s = k)

:I,'S 1
_ "= R(s) —ds + O(z*T2+%),
207 Jpaoir S5 =R =)

we move the integral line from s = k+ 2+ T to 5 = k + % +17". This time, the
function
(s ~ k)z*
C(2(s ~ k))s
have a simple pole point at s == k + 1 with residue (—,ﬁg;—(Q—)R(k +1). So we have
1 k+2+iT k+5+iT k+3—iT k+-2—4T A
P / +/ -l-/ +/ MR(S)ds
2\ Jgyamir k42447 kLT k+i—ir ) C(2(s —&))s
pk+1

We can easy get the estimate

1 PR3 HET k42—iT R A
— / + / L=k R(s)ds
211\ Jrpopir k+loiT C(2(s —k))s

< /’““ ((o =k +4T) 2
k+1

(Rlo —kray) ST
1, /"‘%‘” (s — k)a?

218 Jiryir C(2(s = k))s

f(s) = R(s)

$k+2

do <

and

C(1/2 + it) zP+3

Als)ds C(L-+2at) ¢

dt <« zk+its,

T
«f
40

Note that {(2) = %2, from the above we have

6Ik+1

Z G.3(TL)bk('ﬂ) = m

n<x

Rk+1)+0 (mk+%+s) _

This completes the proof of Theorem 1.
Let

fl(S)ZZMMﬂ, f2(3)=zg°ﬁt(:3b_’“(”)~), fals)

150

n=1

=3 destnto))



From the Euler product formula [2] and the definition of w(n),oa(n) and d(n), we
also have

-] (1 . w<a3<§>sbk<p>> N w(aa(ppz)fk@ D, )

_ <1+pé:p+%p”—p+p3—ﬁ)@_i__ﬂ

. D p2s p3s 1— p—2s
1 1 -p)p° +
= (1 + ps—2 B ps——l + (p pSf)Epps p))
p

g )

P —p pot

2,

Pt p(lc+j)s _pjs

fl(s):H(l+psl—k DS k+1 +Zp

k—j+2 k‘l ko k—j+2 k—j-+1
—Ji+ i+ pH'—p J+)

3—5+2 —-p s—j+1

_ C(s—k) 1 p
—WEI(I P g Z 7 F 1)

k —j—’—2 ps—j+1
Z (p k+7)s _ ij)

j=2 ]=1
if k> 3.
Mﬂ=qhm)ﬂ( 3h(f+uw“4m+ﬁ~w)
2(s — 2a)) pr2e L1\ pe (p% —p)(p> — 1)
if k=2, and

— pika k p(S-j)a+s — po—ka

(s — ko)
fals) = 2(s—ka) IPI <1+ - ka+1)(pa—1)p ; (p*=*e + 1) (p™ — 1)pi=

k .
+Z p(3 J)OH-S,_pS ka
= @R (e - 1 (pkEDs — pis)

ifk>3.
(3(3) ( p33 ( 3p® +4 3 1 ))
= 1+ — T, Ty
fa(S) §3(25) I;‘[ (ps + 1)3 p33 + ps pzs p33
ifk =2 and
k+1 £ (& -4 k+1 p(k—j+l)s
fa( i-‘rl S)H 1+ ( (Jk))l
(R L o (p° + )%

k

k—j+3 1

+; (p* + 1)*+1(p—1s _ pl—F= Is) - (ps+1)k+1)
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if k> 3.

By Perron formula [3] and the method of proving Theorem 1, we can obtain
the other results. Generally we can use the same method to study the asymptotic
properties of the number sequences am (n)br(n) (where m, & > 2 are fixed integers),
and obtain some interesting asymptotic formulas. ‘
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A CONJECTURE CONCERNING THE
SMARANDACHE DUAL FUNCTION

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
PR.China

Abstract: In this paper we verify a conjecture concerning the
Smarandache dual function.

Key words: Smarandache dual function; factorial; gap of primes

For any positive integers n, let S'(n) denote the greatest positive
integer m such that n=0 (mod m!). Then S'(n) is called the
Smarandache dual function. In (2], Sandos conjectured that

Sk 2 1) )=g-1, (i)
Where k is a positive integer, q 1s the first prime following 2k+1. In this
paper we prove the following result. |

Theorem. (1) holds for any positive integér k.

Proof. Since g is a pri-me with ¢ > 24+1, we have

(26~ 1) (2k + 1120 (mod ¢). (2)

Supported by the National Natural Science Foundation of China
(No.10271 1()4..), the Guangdong Provincial Natural Science Foundation
(No.011781) and the Natural Science Foundation of the Education

Department of Guangdong Province (No.0161).
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It implies that S*((2/f~1)! Ck+1))<g-1. Further, since ¢ is the least

prime with ¢ >24+1, by Bertrand Postulate (see [1, Theorem 418]), we

have

qg=>2(2k+1). (3)
Hence, by (3), any prime divisor p of ¢-1 satisfies

p<2k-1. (4)

For any positive integer a and any prime p, let ord,a denote the
order of p in a. It is a well known fact that
ord n! = fi[-?;J, ()
r=1 P
where [x] s the Gauss function of x. We now suppose that
S*((2k ~ 1) (2k + 1))<<g—1. Then there exists a prime p sucn that
ord,(24-1)!+ord ,(2k+ 1)1 < ord,(g-1)!. _ (6)
Hence, by (5) and (6), we get

[2k:1J+[2kjl}<[q71J
P L P p

tor a suitable positive integer 7. From (7), we get

L e
{ukr11+{2kle+lg[gi | ®

plLr p

=~
=~
R

whence we obtain
- 4k<<q-1. (8)
It foilows that g=>4k+2, a contradiction with (3). Thus, we get

*

S((2k - 1) (2% + 1))=g~1. The theorem is proved.
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A NOTE ON THE 29-TH SMARANDACHE’S PROBLEM*

Liv HONGYAN! AND LoU YUANBING2

1 Department of Mathematics, Xi’an University of Technology
Xi'an, Shaanxi, P.R.China
2 Department of Mathematics and Physics, Tibet University
Lasa, Tibet, P.R.China

ABSTRACT. Let n be a positive integer, ax(n) be the k-th complement number of n.
In this paper, we study the mean value properties of the k-th complement number
sequences, and give an interesting asymptotic formula.

Classification Number: 11B37 11B39

1. INTRODUCTION

For any positive integer n to find the smallest integer ax(n) such that nag(n) is
a perfect k-power(k > 2), we define that ax(n) is the k-th complement number of
n. Let n. = p{*p3® - p2», then ag(n) = pPp ... oy Where a; + 3; = 0(modk)
and 3; < k,i=1,2,---,m. In problem 29 of [1], Professor F.Smarandach asked us
to study the properties of the k-th complement number sequences. In this paper,
we use the analytic methods to study the mean value properties of this sequences,
and give an interesting asymptotic formula, That is, we shall prove the following:

Theorem. For any positive number z > 1, we have the asymptotic formula

S den(m) ot oy v 0 (a%7).
n<

dlar(n))
k k=1 2
where g(k)‘= H [1 + T 0 + p%+k—3(p gy 4t m} ; d(n)

is the Dirichlet divisor functzon, ¢(n) is Euler function, £ is any fized positive
number.

Especially taking ¥ = 2, we have
Corollary. For any positive number > 1, we have the asymptotic formula

d(az 1te
Zqo(azn))”"" H( J/Blp —1>)+O(‘“+>‘

n<z

Key words and phrases. complement number; mean value properties; asymptotic formula.
* This work s supported by the N.S.F. and the P.S.F. of P.R. China.
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2. PROOF OF THE THEOREM

In this section, we shall complete the proof of the Theorem. Let

_ = d(ag(n))
i) = Z d(ak(n))ns’

n=1

From the Fuler product formula [2] and the definition of ay (n) we have

)= 3 eelr))

i1 ¢lak(n))ne
T et )
I e e )
-
=11 [ o (1)—? +"'+¢<p>p(k~5(5él-pt)}
~ T g kkllz)f Tt g
)l} [1 T 2(p— Oy " p‘“*éfp——ll)pi’s L m}

1

where {(s) is Riemann-zeta function. Taking b = %4— ﬁ;, T = x2%, then by Perron
formula [3] we have

v

dlak(n)) 1 btil z* m_b z*logz
> Soctd) = 5 o 1O B0 () o=

n&T

1 b1 s

xr 1
- il spte
2 b—3iT f(S) 3 ds + O (-T ) )

. 1 1
Taking a = 5 + Togz» We have

b+1iT a+T g—iT b1 T 2% 1
27” /— / »/a+iT +/a—::T = fles [f(s)_;’z]

H[ PR Sut S }
» prTR- 2( ~1)  prtk=3(p_1) P (p—1)

Note that the estimate

1 a+iT xs
%/ﬂ_ﬂ f(s)?

1
& p3E +s;
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i L
o 10| < T e
and it .
5% a+i; f(S)ESs— < x;j-s < xﬁ‘*‘E’
we have
) d(ax(n))
2 Bla ()
L k k—1 2
Bl Y = = T TR T R )

This completes the proof of the Theorem.
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ON THE -FULL NUMBER SEQUENCES

XU ZHEFENG

Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

ABSTRACT. The main purpose of this paper is to study the asymptotic property
of the k-full numbers (where k& > 2 is a fixed integer), and obtain some interesting
asymptotic formulas.

1. INTRODUCTION AND RESULTS

Let k > 2is a fixed integer, a natural number n is called a k-power free number
if p* { n for any prime p. If p | n implies p* | n, we call n as a k-full number.
In problem 31 of reference [1], Professor F. Smarandache asked us to study the
properties of the k-power free number sequences. It is clear that there are some
close relations between k-power free number sequences and k-full number sequences.
In this paper, we use the analytic method to study the asymptotic properties of
k-full number sequences, and obtain some interesting asymptotic formulas. That
is, we shall prove the following six Theorems.

Theorem 1. For any real number z > 1, we have the asymptotic formula
6k - 21 +% 1

Zn:_L_%H(H : )w(xlﬁw),
G+ LT G -

ncA
n<T

-

where € denotes any fized positive number.

Theorem 2. Let ¢(n) is the Euler function. Then for any real number z > 1, we
have the asymptotic formula

Gk: :L'H'k p—p 1ol
—;ﬂ'+5) .

-

Key words and phrases. k-full number; Asymptotic formula; Arithmetic function.This
work is supported by the N.S.F.(10271093) and P.N.S.F of P.R.China.
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Theorem 3. Let a >0, ou(n) = 5" d*®. Then for any real number z > 1, we have
din
the asymptotic formula

Theorem 4. Letd(n) denotes Dirichlet divisor function. Then for any real numnber
T 2 1, we have the asymptotic formula

_ 6k-g¥ (2pF — 1) 5 (MY pri-i — gphti
;d( " 1;[( i (p+ 1)k+1(ph — 1)2 - f(logz)

n<z

+ 0 (zfl‘?+€) .
where f(y) is a polynomial of y with degree k.

Theorem 5. For any real number z > 1, we have the asymptotic formula

2 eallmm) = 5T (14 ﬁ(l;;—-ﬁ) I (1)

neAd ptm p+1 w8 |m p(p’“ - 1)
n<z B<k
I[ (1435t S 2T ) (2
X 14+ Y p~ P4 == ( )+O( k+5).
1
PP 1=k p(p* -1 plm P
B>k

where m is any fized integer, (m,n) denotes greatest common divisor of m and n.

Theorem 6. For any real number > 1, we have the asymptotic formula

To((m,n)) 6k - <t ! (pﬁ P l)p")
2 rellmn = E(H@Jﬂxp%—n)ﬂn( Po¥ — 1)
n<z . B<k
y i P =P 08\ 1 (2N | (e

pg[m( ;c BRh plpx — 1) )yn(p+l)+o( )

B>k

2. PROOF OF THE THEQREMS

In this section, we shall complete the proof of the Theorems. For convenlently
we define a new number theory function a(n) as follows:
1, ifn=1;
a(n)= ¢ n, ifnisa k-full number

0, if nis not a k-full number
180



It is clear that

Zn = Za(n).

neA n<w
n<r

Let

sl =340

From the Euler product formula [2] and the definition of a(n) we have

k alpktl
f(S) - H (l + apks) + p((f-l-l)s) - )

1 1
T i)
1 1
= L1 (1 50 TL {1+ e )
_ S(E(s 1) L 1
" C(2k(s - 1)) H (1 N CRESFo 1)) -

where ((s) is Riemann zeta function. Obviously, we have inequality

i a(n)

n=1

1

la(n)| <mn, <

where o > 1 — % is the real part of s. So by Perron formula [3]

b41T s
yam_ L f(3+30)%dsTO(M)

nez nSe 2171' b—iT T

+0 (1‘1_”°H(2z) min(1, %—I ) +0 (w”“OH(N) min(1, ﬁ)) ,

where N is the nearest integer to =, ||z = |z - N|. Taking s9 = 0, b = 2 + -3

T =z'*%, H(z) = z, B(o) = ——, we have
k

urw +E—iT C(Qk(s—l))

n<xe

Z a(n) = _1_ /2+7;+iT MR(S)?(ZS + O(xl"'?li"'*'a),

where

1
7= 1 (1+ gy

P

To estimate the main term

;/2+%+iTM
247 24 L—iT C(2k(s - 1))s
161

R(s)ds,



we move the integral line from s = 2 + % LiiTtos=1+ % £ 7. This time, the

function
C(k(s ~ 1))z

C(2k(s —1))s

have a simple pole point at s = 1 + % with residue

f(s) = R(s)

kzlT 1
Gine B(1+ £)- So we have

1 24 £ +iT I+ o +iT 1 —iT 2+1—iT (s — R
1 VAR A B ACCRIN
20\ Jay 1 ir 241 4T Lo +iT 1+ it | C(2k(s —1))s
ol (o)
G e U e
We can easy get the estimate
1 4+ 55 +iT 2+1 T E(s — 1))z
[ Clk(s ~1)s b
2t \ o g 144 —ir ) C(2k(s — 1))s

25| C(k(o =1 +4T ¥
< [ S 1)
1+
and

C(2k(o =141 O 7

1 14 4 —iT .

[T et [

i, 1+ ok T C(2k(s — )) 0

Note that ((2) = %, from the above we have
6k -$1+7} 1 1+ +e

Zn—_*—(k+l)7r21](l+ T >+O(a: 7% )

neA (p+.1)(p" _1)

n<z

24+ L
T k 1+517€

do <

=T

C(1/2 + ikt) z1* 7

B(s)ds C(1F 2ikt) ¢

dt < gltaete.

This completes the proof of Theorem 1.
Let oo

MB

!!

n=1 n=1 n=1

neA neA ncA

f4(3) — Z UQ((;T;,TZ)), | fS(S) — Z (p((::l: ﬂ))
nea neA

From the Euler product formula [2] and the definition of w(n),o4(n) and d(n), we
also have

k k+1 o 1
fl(s):H(l""(ﬁ;ﬁ)+i§f+1)s)+'”) H(l+ 153)(1-— L ))

P P po!

_ Clk(s—1)) p—pt .
- ((2k(s - 1)) I;I (1 * (p*s=1D + 1)(pe —p)) ’
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C(k(s — ) L (p*~= ~1)p* 5, (517)& bt pro 1) |
T k(s —a)) ]‘;‘[ L (pk(s—a) + 1)(ps«a — 1)(198 - 1) ) ’

B C;H_l(ks) (2ps _ 1) Zf;"zl (kjl)pk(k+l—i)s - kp(k2+1)s .
fa(s) = CFFI{3ks) 1;[ (1 + ;

(pFs = 1)*+I(ps = 1)2

co((m, p* oo l(m, pFtt
=T (14 202D 2allmmty

| 1
11 1+ e =
7o (%) S oar) | calp?)
X H (1+pka(1_.l.)> H (1+Z i +p’”(1—;};)>

2 i 2/ /) p0m =k P
B<k B>k
and
((ks) p* ) 1
1
f5(s) ((2ks) H P41 pgn * Pk + 1 (p* - 1)
p? ~ph-t ) Sp—pl P pp
x H (1 5 ks 1 H 1 +Z 18 + ks 1 N
wim A PO S P Prt= )
A<k B>k

By Perron formula [3] and the method of proving Theorem 1, we can obtain the
other results.
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A NOTE ON THE 57-TH SMARANDACHE’S PROBLEM

Liv HoONGYAN AND ZHANG WENPENG

1. Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China
2. Department of Mathematics, Xi'an University of Technology
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ABSTRACT. For any positive integer n, let v} be the positive integer such thai: the
set {1,2,--- »71} can be partitioned into n classes such that no class contairs integers
Z, ¥, = with 2¥ = z, let 7y be the positive integer such that: the set {1,2,--- T2}
can be partitioned into n classes such that no class contains integers z, v, z with
T +y = & In this paper, we use the elementary methods to give two sharp lower
bound estimates for r; and ro.

1. INTRODUCTION

For any positive integer n, let 7, be a positive integer such that: the set
{1,2,--. , 71} can be partitioned into n classes such that no class contains integers
T, Y, z with z¥ = z. In [1], Schur asks us to find the maximum rq, and there is the
same question when no integer can be the sum of another integer of its class. About
these problems, it appears that no one had studied them yet, at least, we have not
seen such a paper before. These problems are interesting because it can help us
to study some important partition problem. In this paper, we use the elementary
methods to study Schur’s problem and give two sharp lower bound estimates for r,
and 7. That is, we shall prove the following:

Theorem 1. For sufficiently large integer n, let r be a positive integer such that:
the set {1,2,--- | r1} can be partitioned into classes such that no class contains
integers x, y, z with z¥ = z. For any tnteger m with m < n + 1, we have the
estimate )

ry > n™rh

Theorem 2. For sufficiently large integer n withn > 3, let T be a positive integer
such that: the set {1,2, ... .72} can be partitioned into n classes such that no class
contains integers x, 1y, z with z + y=2z. We have the estimate

re > 277.{—1‘

Key words and phroses. Smarandache'’s problem; Partition; Lower bound..
* This work is supported by N.5.F.(10271093) and P.N.S.F. of P.R.China
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2. PrROOF OF THE THEOREMS

In this section, we complete the proof of the Theorems.

First let ry = ™! and partition the set {1,2,---, 7} into n classes as follows:
P

Class 1: 1, n+1, n+2 cee o™

Class 2: 2, n™+1, nm™+ 2, cee o 2nm

Class 3: 3, 2n™ 41, 2n™ 4+ 9, s, 3n™.

Classk: &k, (bA-Dnm+1, (k=1n™+2, -, ko™

\ Classn: 7, (n—-1)n™+1, (n—Unm™+2, ..., n¢p7Fl

It is clear that Class k contains no integers x, y, z with z¥ =z for k = 2,3,4,- - , n.
In fact for any integers «,y,z € Class k, k = 2,3,4,--- ,n, we have

2V > (k- 1™+ 1) > k(k— DF i s g s

or
z¥ > pE-UeTHl o ppm s
On the other hand, whenn > m —1, we have (n+2)™*D > n™ and (n+1)(*+2 >
n'™. So Class 1 contains no integers z, i, z with z¥ = z, if n > m — 1.
This completes the proof of the Theorem 1.

Then let 5 = 2% and partition the set {1,2,--- ,ry} into n classes as follows:
( Class 1: 1, 2, on g on—l L2,
Class 2:  2+1, 22, 22 4+ 1, 22 4+ 2, on+l
Class 3: 22 +2+1, 23 23 41, , 28242242
Class 4: 23 =22 4241, 24 24 41, , 24234929
Class k:  2F=h 4 2k=2 4 o041, 2k 9k , 2k pokmlg 92
Classn: 20149724+ 4941, 927 2741 ... 9na9n-l . 192.9

It is clear that Class k contains no integers z, y, z with z+y =z for k = 3,4, - - -

, 7.
In fact for any integers z,y,z € Class k, k = 3,4,--- ,n, we have
AR Lt I S A LSS LR Lt N Eag§

On the other hand, when n > 3, we have (22 + 1) + (22 +2) < 2 and 1 + 2 <
2" 4271 4.+ 24 1. So Class 1 and Class 2 contain no integers z, y, = with
z+y=2zifn>3

This completes the proof of the Theorem 2.
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Diverse Algorithms To Obtain Prime numbers Based
on the Prime Function of Smarandache

Sebastian Martin Ruiz
Avda. de Regla 43, Chipiona 11550
Spain
E-mail: smrutz@telefomicanet

Abstract: In this article one gives seven formulas, six of the author S. M.
Ruiz, and one of Azmy Ariff. One also gives their corresponding algorithms
programmed in MATHEMATICA.

In the first four formulas all the divisions are integer divisions.

FORMULA 1: Formula to obtain the nth prime [1], [3]:

2({niogn fu) sc Ji
plmy=1+ > 1= > 11+ 242> ((G-D/s—j/s) | [j|] /m

k=1 J=2 s=|

ALGORITHM 1: (G is the Smarandache Prime Function in all Algorithms)

DDIi_}:=Sum[Quotientfi,k}-Quotient{(i-1),k],{k,1,Floor[Sqrt{i]}}]
G[n_}:=Sum|1+Quotient[(2-2*DD{j]).jl.{j.2,n}]
P[n_):=1+Sum[1-Quotient{G[k],n],{k.1,2*(Floor[n*Log[n]]+1)}]
Do[Print[P{n]," ",Prime([n]],{n,1,50}]

FORMULA 2: Formula to obtain the next prime [2], [3].

wilp)=1+p+ 3 T ||| 202301 )|/

k=p+l j=p+l

ALGORITHM 2:

p=input["input a positive integer number:"]
DD[i_]:=Sum[Quotient[i j]-Quotient([(i-1),j], {.1.Floor[Sqri[il]}]
Gli_]-=-Quoatient[(2-2*DDIi]),i}

FIm_}:=Product{G[i]{i,p+1,m}]
S{n_}:=Sum[F[m],{m,n+1,2"n}]

Print{"nxt(",p,")=",p+1+3[p]]
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FORMULA 3: Formula to obtain the next prime in an arithmetic progression a+dn [4]:

k Jarjd
nxt(a,d)(py=p+d+d. i H {~[(2+2 Z((a+jd—1)/s—(a+jd)/5)}/(a+jd)ﬂ

k=lH{p-a)(d j=l+{p-a)id

ALGORITHM 3: Example for the arithmetic progression 5+4n

a=5

5

dd=4

4

M=20

20

=5

5
DD[i_]:=Sum[Quotient[(a+i*dd),j]—Quotient[a+i*dd—1,j],
{j,1,Sqrtlat+i*dd]}]
G[i_]:=—Quotient[(2~2*DD[i]),(a+i*dd)]
F[m_]:=Product[G[i],{i,(p—a)/dd+1,m}]

S{n_]1:=Sum[F[m], {m, (p~a)/dd+1,M}]

While[p<a+ (M-1) *dd+1,Print["nxt(",p,")=",p+dd+dd*S[p]] -,
p=p+dd+dd*s [p]]

nxt (5)=13

nxt (13)=17
nxt (17)=29
nxt (29)=37
nxt (37)=41
nxt (41)=53
nxt (53) =61
nxt (61)=73
nxt (73)=89

FORMULA 4: Formula to obtain the next prime in all positive increasing integer
sequence g, |, ={/(m)},..

NXT,(p) = f[f"l p+1+ > [T

k27 (p)l =7 ()

(G is the same of the previous algorithm 2)
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ALGORITHM 4:
Example 1: For a, =n" +4

M=40

40

f{n_]:=n"3+4

f1lp_l=(p-H"(1/3)

Glx_[:=Quotient[(2+2*Sum|Quotient[(x-1) , s]-Quotient[x , s}, {5, 1, Sqrt[x]}]), x]
NXT[p_]:=fIf 1[p]+1+Sum|[Product{G[f[jil.{j . f L{p]+1 , k}], {k, f 1{p]+1,M}]]
p=il1]

3

While[p < f[M], (Print[ NXT[p},”“, PrimeQ[NXT{p]l]; p=NXTIpDI

31 True
347 True
733 True
6863 True
15629 True
19687 True

(It is necessary that f{M) > NXT(p) so that the result is correct.)

Example 2: For a, =n* +1

M=125

125

fin_]:=n"2+1

f 1[p_}:=Sqrt[p-1]

G{x_|:=Quotient[(2+2*Sum|Quotient[(x-1) , s}-Quotient[x , s], {s, 1, Sqrt[x]}}), x}
NXT{p_]:=fIf 1[p]+1+Sum[Product{G[f(j]],{j , f 1{p]+1 , K}], {k , f H{p]+1,M}]]
g=f[11 ’

White[p <1{M], (Print[ NXT[p},” “, PrimeQ[NXT]{p||]; p=NXT[pD]

5 True

17 True

37 True

101 True

197 True

257 True

401 True

577 True

677 True

1297 True

1601 True

FORMULA 5: Algorithm to obtain the prime numbers based on Newton’s method
applied to the function gamma [3].
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(*NEWTON'S METHOD APPLIED TO THE CALCULATION OF PRIME
NUMBERS *)

ndiezfs_]:=N[s,10]

$Post=ndiez

ndiez

P={3

%

er=10.~(-3)

0.00001

Blx_i_j_l=(-1YP}}

EB{x_,i ,j ]=Floor{B[x1,j]+er]

LL{x ,i }=Log[P[{ill,x-1.}

EE[x i J=Floor{LL[x,i]+er]
Sx_i_1=SumfEB[x,i,jl,{, LEE[x,il}]
F[x_,n_J:=Gamma[x]-Product{(P[[i]])"S[x,i],{i,1,n-1}]
xx=0.

0.

Dol {xx=xx+25.,

Dolxe=xx-Flxx,i)/ (Gamma[xx]*PolyGammaf0. xx])
{175} ,P=Join[P, {xx} ], Print[xx," ", Primelil]},{i,1,50}]

FORMULA 6: Formula to obtain twin primes:

For odd n > 7, the pair (n, n+2)} of integers are twin primes if and only if

) -

where the summation is over odd values of i through j = ]_%J

‘

AGORITHM 6: Algorithm to check if a given number is part of a

couple of twin primes (Ruiz-Ariff):

Infl]:= n=2000081; If[Sum[Floor[(n+2)/i]-Floor[{(n+l) /il
+ Floor{n/i]=~ Floor{(n-1)/i},{i,1,FlooxrIn/3],2}]

== 2, “True”, “False’]

Qut{1j= True

FORMULA 7: (Azmy Ariff): Ifa >0, ¢y=0 and {e,, e,, ..., ex} is an admissible set of
positive integers in the open interval (0, n—2), then (n, n+e,, ntes, ... , nter) is a sequence of

S g

j=0
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ALGORITHM 7:

The following example is a non-optimum implementation with a = 3 to search for prime
quadruplets (n, n+2, n+6, n+8) below 10000.

Inf2]:= a=3; n=10000; e={0, 2,6, 8};

Do[If[Sum[i*a Floor[(j+el[k]1)/i]l, {k, Lengthlell}, {1,

]}]== Length[e] + 3*a+ Sum[i*a Floor[{j+e[[k]] -1)/i},
{k, Length[el},{i, J}]1, Print(Table[j+e[[k]],
{k, Length[e]l }111,{3, n}]

{5, 7, 11, 13}

{11, 13, 17, 19}

{101, 103, 107, 109}

{191, 193, 197, 199}

{821, 823, 827, 829}

{1481, 1483, 1487, 1489}

{1871, 1873, 1877, 1879}

{2081, 2083, 2087, 2089}

{3251, 3253, 3257, 3259}

{3461, 3463, 3467, 3469}

{5651, 5653, 5657, 5659}

{9431, 2433, 9437, 9439}
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ON THE SIMPLE NUMBERS AND
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ABSTRACT. A number n is called simple number if the product of its proper divisors
is less than or equal to n. In this paper, we study the mean value properties of the
sequence of the simple numbers, and give several interesting asymptotic formulae.

1. INTRODUCTION

A number 7 is called simple number if the product of its proper divisors is less
than or equal to n. For example: 2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,---.
In problem 23 of [1], Professor F.Smarandach asked us to study the properties
of the sequence of the simple numbers. Let A is a set of simple numbers, that
is, A = {2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,---}. In this paper, we use
the elementary methods to study the properties of this sequence, and give several
interesting asymptotic formulae. That is, we shall prove the following:

Theorem 1. For any positive number > 1, we have the asymptotic formula

v ! (nlnz)?+ Byinlns+ By +0 (lnln"") ,
eyl | Inz
n<z

where By, By are the constants.

Theoreni 2. For any positive number = > 1, we have the asymptotic formula

> = (@) + CiInlnz + Gy + 0 (1“1”) .
! o(n) Inz

n<r

where Cy, Cy are the constants, ¢(n) is Euler function.

Key words and phrases. The simple numbers ; Mean value properties; Asymptotic formula.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.

171



Theorem 3. For any positive number > 1, we have the asymptotic formula

Inl
3 e~ (alng)®+ Dilalug + Dy + 0 ( = ”) ,
=4 a(n) Inx

n<x
where Dy, Dy are the constants, o{n) is divisor function.

2. SOME LEMMAS

To complete the proof of the Theorems, we need the following two Lermmas:
First Let n be a positive integer, pa(n) is the product of all positive divisors of n,

that is, py(n) = H d. g4(n) is the product of all positive divisors of n but n, that
din

is, gq{n H d. Then we have
din,d<n

Lemma 1. Let n € A, then we have n =p, orn = p?, orn = p°, or n = pq four
cases.

Proof. From the definition of pg(n) we know that

:Hd:H%.

din din

So from this formula we have

(1) pg(n):deHg:Hn:nd(").

d|n din din

where d(n Z 1. From (1) we immediately get pg(n) = n “# and

din

IJE
(2) . Qd(ﬂ) _ H d = d]:L _ nd(;) 1.

din,d<n

By the definition of the simple numbers and (2), we get n %5 -1 < n. Therefor we
have

d(n) < 4.

This inequality holds only for n = p, or n = p? or n = p®, or n = pg four cases.
This completes the proof of Lemma 1.

Lemma 2. For any positive number z > 1, we have the asymptotic formula

1 1
Z i Z= (Inlnz)? + ByInlnz + By + O (1? nx) ,
pevi p 172 1z



where B, Ba are the constants.

Proof. 1t is clear that

(3)

Applying

(4)

we obtain

(5)

Z llnln—m

p<VT

Y

Inlnz Z

T
r

p<T

pS\/_p

If m > 2, note that «(z) =

Zln

p<VE

From (6) and note that Z ;
m v

"p
p

= (Inlnz)®+ Bylnlnz + O (

Z lln(ln:v — Inp)

Zl—lnlnm-i-C’l—f—O( ! )
Inz

=Inlnz (lnln\/_-l-Cl +0 (l 1$))

Inz

lnlnx)

+—g——1—0( ) then we have

/zﬁmzydw(w

m:”/_f (Vz) + O(1) /Qf () 1y2 L
(W (mzﬂ—))

/235 i_y_ (ln:gy)) S iy

Y

0 In™ 2y In™z In™!
+ 2m~2 + mom om—1

y..m 1 m—2

is convergent, we have
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_ 2:_£(¥£Z+ mi?_+'”+‘lfif,+'”>
ps\/_p nr 2n“x min"x
2 1 m
TLZ?Y) ')lnlegp—ij“‘erlnmmZmpp_‘_”.
<VE p<vE R eVE
1
Inz

1 1. In"™" g
( ln$+0(1>>+“‘+m1nm$ (mzm 111 £+O<m)>+

Inz
lnp

1
where we have used the asymptotic formula E = glnx + O(1) and the
P &
p<VE

power series expansion In(l — z) = —(z + -""2—9 + -+ “"m +---). From (3), (5) and
(7) we immediately get

1 l
Z Zlln’ = (Inlnz)? + Bylnlnz 4+ By + O (ln n:z:) .
P P Inx

SV

This proves Lemma 2.

3. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. From Lemma 1 we
have

IEEDIED I ED I DI

nEA p<a: p«<z q<Jy: q<m
n<x P7#q
(8) =Y+ Z Z -
p<m 3<.c pq<a:

Applying (4) and Lemma 2 we get

1 1
siayiyi(sl)(s!
pq<z p<\/" q<x/p p<VT ESVER S

T 1
=2 - 11—+C+O<—--—
Zp(nnp 1

p<V

=2§:%mmg—%n§:;+o(i—§:1

p<VE p<VT

— ((lnlnsﬂ)2 + Celnlnz+C3+ 0 (1?111:6))

(9) (111111J:)2+O4ln1nx+05+0(lnhm).
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1 . CoL
Combining (4), (8) and (9) and note that Z — 18 convergent, we immediately

pisz
obtain Il
1 ;
Z e (lnln;v)z +ByInlnz+ By +0 ( o na‘) )
n Inz
ncA
n<T

This completes the proof of Theorem 1.
Now we complete the proof of Theorem 2 and Theorem 3. From the definitions

and the properties of Euler function and divisor function, and applying Lemma 1
we have

1 1 1 1 B
2w LTIt N et L ot L Ty

P P

neAa p*<a pP<z pg<x
n<z P#q
and
1 1 1 1 1
D R I R DR I el
2 3 2 !
o) ol ep e A g TP AP+l pq§$(p+1)(q—rl)
n<x P#q
1 1 1 1 : .
Note that = — F ————— and Z ——— 18 convergent, then using the

p=l  p plp=1) > pp+1)
methods of proving Theorem 1 we can easily deduce that

S L (nnz)? 4 Cylnlnz 4 Oy + O (ml”>
= é(n) Inz

nxT

and

1 | Inl
3 = (Inlnz)?+ Dy lnlnz + Dy + O ( = ”) .
= o(n) Inz

n<z

This completes the proof of the Theorems.
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THE DIVISIBILITY OF THE SMARANDACHE
COMBINATORIAL SEQUENCE OF BEGREE TWO

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjlang, Guangdong

PR.China

Abstract: In this paper we prove that there has only the consecutive
terms of the Smarandache combinatorial sequence of degree two are
pairwise coprime.

Key words: Smarandache combinatorial sequences; consecutive

terms; divisibility

Let r bea positive integer with »r>1. Let SCS(r)= {a(r,n)}f:l be
the Smarandache combinatoriall sequence of degree r. Then we hz}v’e
a(r,)=n(n=1,2,+r) and a(r,7)(n>r) is the sum of all the products of
the previous terms of the sequence taking r terms at a time. In [2],
Murthy asked that how many of the consecutive terms of SCS(r) are
pairwise coprime.

T . +1- % -~ e e R 1. IS S R Iy -~ r o
111 Llub‘ p'd.p(:l' We S0lve tis plUUlC‘I[l [0 r—4. Yve PI'UVC LI1e
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Theorem. For any positive integer n, we have a(2, n+1)=0 (mod
a (2,n)).

By the above mentioned theorem, we obtain the following
corollary immediately.

Corollary. There has only the consecutive terms 1,2 of SCS(2) are
pairwise coprime.

Proof of Theorem. Let b(n)=a(2,n) for any n. Then we have
b(1)=1 and b(2)=2. It implies that the theorem holds for n=1.

By the define of SCS(2), it n=>1, then we have

b(n)=b(1)b(2)+ -+ bln—=2)b(n = 1)

B et S
b(n) = b(1)6(2)++-+bln = 2)b(n ~1) |
(60) -+ b 1) (a)F () 4520 )

from (1) and (2)1that
bl +1)= -12—((b(1)+ g b(n =) = (B ()40 - 1})}
= b(r) = O(mod b(r)).

Thus, the theorem is proved.

References

[1] G.H. Hardy and E.M. Wright, An introduction to the theory of
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(2] A. Murthy, Some new Smarandache sequences, functions and

partitions, Smarandache Notions J. 11(2000), 179-183.
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THE SMARANDACHE ¢ -SSEQUENCE

Maohua Le
Department of Mathematics

Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong

P.R.China

Abstract: In this paper we completely determine the Smarandache

@ -sequence.

Key words: Smarandache @ -sequence; Euler totient function;

diophantine equation

For any positive integer #, let »(n) be the Euler totient function of

n. Further, let the set

A={nln=kp (n), where £ is a positive Integer}. (1)

Then, all elemerits n of 4 form the Smarandache @ -sequence (see [2]).
I this paper we completely determine this sequence as follows.

Theorem. Let {a(x)}?:l be the Smarandache ¢ -sequence. Then

we have

al(x)

1, if x=1
2, if x=2,

Y (2)
ple+i)iz. if x>1 and x is odd, s
pF/2=i if x>1 and x is even.
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Proof. We first consider the elements of 4. We see from (1) that
these elements are solutions of the equation
n=ke (n). (3)
Clearly, (n,k)=(1,1) 1s a positive integer of (3). [f n>>1, let

n=ppsopy (4)
be the factorization of n. By [1, Theorem 62], we have
()= p " o3 pE o = 1oy = 1) (p, - 1), (5)
Substitute (4) and (5) into (3), we get
PPy Ps :k(Pl“I)(Pz_I)“'(PQ_I) (6)

If nis even, then pi=2 and ps,--,ps; are odd primes. Since p-1
(i=2,+--,s) are even integer, we find fron (6) that either s=1 and =2 or
s=2, p,=3 and &=3. It follows that (3) has positive integer solutions
(n,k)y=(2",2) and (2".3,3), where r is a positive integer.

If n is odd, then (6) is impossible, since pj=1,2,--+,5) are odd
primes and p-1(;=1,2,--,5) are even integers.

Thus, by the above analysis, we obtain (2) imunediately.
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TWO FUNCTIONAL EQUATIONS

Maohua Le

Department of Mathematics
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Abstract: In this paper we solve two problems concerning the
pseqdo Smarandache function.
Key words: pseudo Smarandache function, sum of distinct

divisors; divisors function

For any positive integer »n, let Z(n), b(n) and d(n) denote the

pseudo Smarandache function, the sum of distinct divisors and the

Y

divisors function of » respectively. In [1], Ashbacher proposed the
following two problems.

Problem 1, [s there infinite many positive integers n of the
equation |

Z(n)=5(n)

SN
[y
S’

with-n#2', where r is a nonnegative integer.
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Problem 2. How many positive integer solutions n are there to the

equation
Z(n)=d(n). (2)

In this paper we completely solve these problems as follows.

Theorem 1. The equation (1) has only the positive integer
solutions n=2", where r is a nonnegative integer.

Theorem 2. The equation (2) has only the positive integer
solutions »=1, 3 and 0.

Proof of Theorem 1. It is a well kown fact that n=2" is a solution
of (1). Let # be a positive integer solution of (1) with n#2". Then, by
(3], we have |

Z(n)<n. (3)
Since 5(rz) zn+1, (1) is impossible by (3). The theorem is proved.

Proof of Theorem 2. By [l], a computer search up through

7=10000 yielded (2) only the solutions »=1, 3 and 10. Let # be &

positive integer solution with #>>10000, and let

n=pitpyt - pe (4)
be the factorization of n. By [2, Theorem 273], we have
d(n) = (a; + ey + 1) (e, +1). (5)

On the other hand, let =Z(n). Since
| %r(r +1)=0 (mod ), (6)
we have #(¢t+1)22n. It implies that

Z(n):tzé(x/8n+l)>l.4l4«/;, (7)

since n > 10000. For any prime p and any positive integer «, let
/2

Aot )= 2— ()

o+ 1
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Then, by (2),(4),(5),(7) and (8), we get
Lataflpe ) rlpe ) o b, (@)

Since
1, if p=2and =6 or p=3 and a>1.
)z (10)
( ) tg, if p>3,

Lo

we find from (4) that (9) is impossible if #2>10000. Thus, the theorem

1s proved.
References

(1] C. Ashbacher, The pseudo Smarandache function and the classical
functions of number theory, Smarandache Notions J. 9(1998), 78-81.

[2] G. H. Hardy and E. M. Wright, An introduction to the theory of
numbers, Oxford University Press, Oxford, 1938.

[3] H. Ibstedt, On the pseudo Smarandache function and iteration
problems, Smarandache Notions J. 12(2001), 36-43.

182



TWO FORMULAS FOR SMARANDACHE LCM RATIO
SEQUENCES
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Abstract: In this paper we give two reduction formulas for
Smarandache LCM ratio sequences SLRS(3) and SLRS(4).

Key words: Smarandache LCM ratio sequence; reduction formula

For any #¢>1) positive integers x,,x, " .x,, let (x1,%2,7°x;) and
[x)1,%2,7-",x/] denote the greatest common divisor and the least common
multiple of x;,x3,--,x, respectively. Let r be a positive integer with »> 1.

For any positive integer n, let
[n,n+l,--4,n+r—l]
[1’2’...’,»]

Then the sequence SLRS(r)= {T(r,n)}f:, is called the Smarandache

T(r,rz)=

(1)

LCM ratio sequence of degree r. [t is easy to see that

T(2,n)=-—n(n+1)

to -
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for any positive integer a. In [2], Murthy asked that find reduction
formulas for 7(r,n). In this paper we solve this open problem for »=3 or
4. We prove the following result.

Theorem. For any positive integer 1, we have
r-l—n(n-l— D(rn+2), if n is odd,
T(3,n)=1° 2)

MEﬁUHJXn+2LHniMwm1

and

%rz(n+l)(n+2)(n+3), if n#0 (mod3),
T(4m = 2 3)
:/E//z(rh'~ D(n+2)(n+3), if n=0 (mod 3).

The proof of our theorem depends on the following lemmas.

Lemma 1 ([1, Theorem 1.6.4]). For any positive integers ¢ and b,
we have (a,b)[a,b]=ab.

Lemma 2 ([1, Theorem 1.6.5]). For any positive integers s and s <<

¢, we have

(xhxz?'“’x ): ((xlf”’xx)’(xs+l"“3xl))

and

[}Cpxz;"':xr]:[[xl""xs]’[xsﬂ"”uxt]]'

Proof of theorem. By Lemmas | and 2, we get

b2l ple 2= ((Z:IR,(::;))} (4)
Since (nt+1, n+2)=1, we get from (4) that
[,n+ 1 2= n,(nt 1) (nT2)]. (5)

Further, since (n,n+1)=1, we have
(. D)+ 2) = o 2) = {

Hence, by Leﬁma I, we obtain from (5) and (6) that
(4 1)(n fﬂ

(n+ln+2)

1, 1if 7 1s odd,

2, if n 1s even.

(6)

[n,n+1,n+2}:{n
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n(n+1)(n+2), if nis odd,
=11 . (7)
R n(n+D(n+2), if n iseven.
Since [1,2,3]=6, we get (2) by (7) immediately.
Similarly, we have
[+ Ln+2,n+3]={nn+1][n+2,n+3]
= n(n+1) ,QZ F2)nt3) = [n(n +1),(n+2)(n+ 3)]
(m,n+1) (n+2,n+3)
Since [1,2,3,4]=12 and
2,1 n#0 d3), .
(1), (n +2)(r +3))={ nE0 mod3) 9)

6,1f n=0 (mod3),
we obtain (3) by (8) immediately. The theorem is proved.
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AN EQUATION CONCERNING THE SMARANDACHE
LCM FUNCTION

Maohua Le
Department of Mathematics

Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R.China

Abstract: In this paper we completely solve an open problem
concerning the Smarandache LCM function,
Key words: Smarandache function; Smarandache .MC function;

diophantine equation

For any positive integer n, let S(n) be the Smarandache function.
For any positive integer £, let L(k) be the least common multiple of
1,2,-- k. Further, let SL(n) denote the least positive integer k such that
L(k)=0 (mod #). Then SL(n) is called the Smarandache LCM function.
In [2], Murthy "showed that if 5 is a prime, the SL(n)=S(n)=n.
Simultaneously, he proposed the following problem.

SL(n)y=S(n), S(r)# n? (1)

Supported by the National Natural Science Foundation of China
(No.10271104), the Guangdong Provincial Natural Science Foundation
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In this paper we completely solve the above mentioned problem as
follows:

Theorem. Every positive integer » satisfying (1) can be expressed as

n=12 or n=plippfip, @)
where p\,pa,-*,p,, p are distinct primes and ay,Qy, -, @, are positive
integers satisfying p>p™ (=12, ).

The above theorem means that (1) has infinitely many positive
integer solutions 7. The proof of our theorem depends on the following
lemmas.

Lemma 1 ([1]). Let

n=plipytepl (3)
be the factorization of 7. Then we have
S(n) _ max(S(pf" ),S(pzal )S(p,a ) .

Lemma 2 ([1]). If p®is a power of prime, then S(pa)z 0 (mop p).

Lemma 3 ([1]). If p%is a power of prime such that a>1 and
pY ¥4, then S(pa )<pa.

Lemma 4 ([2]). If (3) is the factorization of », then SL(n)=max

(pf“,péz%--upf")-

Proof of Theorem. Let n be a positive integer solution of (1).
Further, let (3) be the factorization of n, and let
p” :max(pfz',pgz,---,p,a’). (4)
By Lemmas 1 and 4, we get from (1), (3) and (4) that
p* =SLn)=S(n)=S(pT"), <)<t (5)

By Lemma 2, we have S(pj-r”)s() (mod p;). Hence, by (5), we get
p=p; and
| P =5(p). (6)

If p® =4, then from (4) we get n=4 or 12.
Since S(4)=S(12)=4 and S(n)#n, we obtin n=12.
It a=I, then from (4) we get /=¢. Since S(n)#n, we see from (3)
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that r> 1. Let »=t-1. Then, by (3), we obtain (2). Thus, the theorem is

proved.
References

[1] LBalacenoiu and V.Seleacu, History of the Smarandache function,
Smarandache Notions J. 10(1999), 1992-201.

(2] A-Murthy, Some notions on least common multiples, Smarandache
Notions J. 12(2001), 307-309.

188



ON THE 45-TH SMARANDACHE’S PROBLEM*

GAO JING AND LIU HUuaANING

Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

ABSTRACT. For any positive integer n, let k(n) be the smallest integer such that
nk(n) is a factorial nurber. In this paper, we study the hybrid mean value of k(n)
and the Mangoldt function, and give a sharp asymptotic formula.

1. INTRODUCTION AND RESULTS

For any positive integer n, let k(n) be the smallest integer such that nk(n) is a
factorial number. For example, k(1) — 1, k(2) — 1, k(3) — 2, k(4) = 6, k(5) — 24,
E(6) — 1, k(7) — 720, ---. Professor F. Smarandache [1] asks us to study the
sequence. About this problem, we know very little. The problem is interesting
because it can help us to calculate the Smarandache function.

For any prime number p and positive integer n, let Sy(n) be the smallest integer
such that Sp(n)! is divisible by p™. Professor F. Smarandache [1] also asks us to
study this sequence. It seems that k(n ) relates to Sp(n). In fact, let n — p*,
then we have k(p®) — Sy(a)!/p®. Let n — p{'ps? -+ p2r, where p1,pa, - ,pr are
distinet prime numbers. It is not hard to show that

‘

K(pytpa® o) = Max{Sp (@)lfi = 1,2, r}/ (2 p57 - p7).

In this paper, we study the hybrid mean value of k(n) and the Mangoldt function,
and give a sharp asymptotic formula. That is, we shall prove the following theorems.

Theorem 1. If x> 2, we have

1
ZA ) logk(n) - -Easzlog:c+0(:c2),

n<x
where

Ay () logp, ifn isaprimep;
A(n) —
) 0, otherwise.

Key words and phrases. Factorial quotients; Hybrid mean; Asymptotic formula; Smarandache.
*This work is supported by the N.§.F.(10271083) and P.N.S.F of P.R.China.
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Theorem 2. Ifx > 2, we have

1 4
Z A(n)logk(n) — 5% log = + O(z%),
n<x -

where A(n) is the Mangoldt function.

It is an unsolved problem whether there exists an asymptotic formula for 7 log k(n).
. : n<
We con’ecture that
2

Zlogk(n)f%J:ZTO( g )

e log

2. SoMeE LEMMAS

To complete the proofs of the theorems, we need the following lemmas.
Lemma 1. If z > 2 we have
log[z]! — zlogz — z + O{log z),

where [y] denotes the largest integer not exceeding y.
Proof. This is Theorem 3.15 of {2].

Lemma 2. For any prime number p and positive integer n, let Sp(n) be the smallest
integer such that Sp(n)! is divisible by p™. Then we have

n{p — 1) < Sp(n) < np.

Proof. Tt is obvious that Sp(n) < np.
On the other hand, by Theorem 3.14 of 2] we have

Spmt— [ o7, a(pl)fi[sp(n)},

pm
PLESp(n) m=1 - S

where [] denotes the product over prime numbers not exceeding - Note that
m<x

o™ | Sp(n), we get

~—

X = Sp(n OOS,_-,TL Sp(n
weaty =3 (B0 < 5 -

This proves Lemma 2.
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3. Proors or THE THEOREMS

In this section, we complete the proofs of the theorems. From Lemma 1 and the
definition of k(n) we have

Z Ai(n)logk(n Z log plog(p — 1)!

n<T p<x
= Elogp ~1)log(p — 1) = (p— 1)+ O(log(p— 1))} = > _ [plog’ p+ O (plogp)] .
p< <L .
Let
{ 1, if n is prime;
a(n) = .
0, otherwise,
then

Za(n)—w(m)-—“lozaj-i—O( = )

et log®z

By Abel's identity we have

Zplogzp — z a(n)nlog®n — x(x) zlog’ x — / 7(t) (log2 t+ 2logt) dt
2

p<z n<x

r—-:c2log:c+0($2)—/ (tlogt + O(¢)) dt
J2

We can easily get

z

1
tlogtdt — 53:2 logz + O(z?),
5 2

Therefore

1
> plog’p — —2-$2 logz + O(z?).
psx

Similarly we can get,

Zplogp<< z.
p<

So we have

1
ZAI ) log k(n) - -;$210g$+0(:z:2).

<

This proves Theorem 1.
From Lemma 1, Lemma 2 and the definition of k(n) we have

ZA 10gk z log plog (Sp()!/p™)

n<z pe<z
= Y logp[Sp(e) log Sp(a) = Sp(a) + O (log Sp(a)) — alogp]
p* <z
= Z [aplog p+ Ofaplogplog )] = Z Z [aplog2p+0(aplogploga)}.
pﬂr{g; a<logzz PS:EL/C:
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Note that

> > aplog®p =D plogip- > Y oplog’p

allogyz pglie p<x 2<a<log, & pLgl/e

& Z ax?/ e log2 Ve & Iog4 x

2<a<Llog,
and
Z Z aplogplog o — Z Z aplogplog o
a<llog, x pLpl/a I<a<log, . pLel/e
& Z alog ez log £/ < zlog® zloglog z,
2<a<log, =
50 we have

> Aln)logk(n) — %xz logz + O(z?).

n<z

This completes the proof of Theorem 2.
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ON THE MEAN VALUE OF SMARANDACHE
DOUBLE FACTORIAL FUNCTION*

Gao Jing AND Liv HUuANING

Department of Mathernatics, Northwest University
Xi’an, Shaanxi, P.R.China

ABSTRACT. For any positive integer n, the Smarandache double factorial function
df(n) is defined to be the smallest integer such that df{n)!! is a multiple of n. In this
paper, we study the hybrid mean value of the Smarandache double factorial function
and the Mangoldt function, and give a sharp asymptotic formula.

1. INTRODUCTION AND RESULTS

For any positive integer n, the Smarandache double factorial function d(n) is
defined to be the smallest integer such that ds(n)!' is a factorial number. For
example, ds(1) — 1, ds(2) — 2, df(3) = 3, ds(4) — 4, d;(5) — 5, d¢(6) — 6,
ds(7) = 7, ds(8) — 4, ---. Professor F. Smarandache [1] asks us to study the
sequence. About this problem, we know very little. There are many papers on the
Smarandache double factorial function. For example, some arithmetic properties
of this sequence are studied by C.Dumitrescu, V. Seleacu [2] and Felice Russo {3],
[4]. The problem is interesting because it can help us to calculate the Smarandache
function.

In this paper, we study the hybrid mean value of the Smarandache double fac-
torial function and the Mangoldt function, and give a sharp asymptotic formula.
That is, we shall prove the following theorems.

Theorem 1. If z > 2, then for any positive integer k& we have

k—1 4
Z Ai(n)ds(n) — z* L + fm ) y0 =) )
. 2 log™ z log" z

n<r m=1

where
logp, ifn tsaprimeD;
Arln) = gp, i ap p
0, otherunse,
and a,m(m —1,2,--- ,k— 1) are computable constants.

Key words and phroses. Double factorial numbers; Hybrid mean value; Asymptotic fermula.
*This work i3 supported by the N.S.F.(10271093) and P.N.S.F of P.R.China.

193



Theorem 2. Ifz > 2, then for any positive integer k we have

Zz\(n)df(n)~z2( +ZIOU )4,_ ( lk )

< log"* =

where A(n) is the Mangoldt function.

2. SOME LEMMAS
To complete the proofs of the theorems, we need the following lemma.

Lemma 1. For any positive integer o, if p > (2cx — 1) we have
df(p®) = (2a — L)p.
Proof. This is Theorem 5 of [4].

3. PROOFS OF THE THEOREMS

In this section, we complete the proofs of the theorems. Let

1, ifn is prime;
a(n) = .
0, otherwise,

then for any positive integer k we have

%a(n)zw(m)- 1ng< 3 ) (@fﬁﬁ)

By Abel’s identity we have

Z Ads(n) — Zp'lo Z a{(n)nlogn — w(z) - zlogz — /m m(t) (logt + 1) dt
2

n<z p<z n<z

2o z?
= z° (1 + — + O(—5—)
m—1 Iogr T log™ z
k-1 k-1
= t m! t m! (logt + 1)
_ $ 4 Lt -+ O dt
/2 ( Tlogt mz; log™ ¢ - logt Z “log™ ¢ ( loghtts
R z?
2 TTL.
— — O - . 3
‘ (‘2 + Z: logm:z:) + <logk:c)

m=1
where a,,(m —1,2,--- ,k — 1) are computable constants. Therefore
k-1
.1 Qon x4
plogp —x° | = + . +O< - >
p;m - (2 ,; log ”’) log" =
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S0 we have

ZAl(n)df(n) — z* £+ kil Im )+ 0 _mi_) )
2 it log™ x D'kz

n<z

This proves Theorem 1.
It is obvious that d(p®) < (2 — 1)p. From Lemma | we have

> Anyds(n) = > logp[(2e—Lpl+ > logp[ds(p®) — (20— 1)p].

n<x p* <z pr <z
p<(2—1)
Note that
> (a—Dplogp— > plogp= > > plogp(2a—1)— Y plogp
o<z pr<z a< BT pgpl/a pe<x
—=legp © —
= Z Z plogp(2a —1) < Z az?*logzt/* < zlogz
2Cag gy pSat/e 2casiE
and

> logplds(p®) - Qe -1l >, > oaplogp

pe <z a<lees p<(2a-1)
p<(2—1) TOeES
< Z (20 ~ 1)*alog(2a — 1) < log® z,
< IT%‘;-;-
so we have
1 g 2
ARy =22 [ = + m + O : .
S A= (343 pom) o (e
n<r . m=1

This completes the proof of Theorem 2.
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The Density of Generalized Smarandache Palindromes

Charles Ashbacher
Charles Ashbacher Technologies
Hiawatha, JA 52233 USA

Lori Neirynck
Mount Mercy College
1330 Elmburst Drive
Cedar Rapids, [A 52402 USA

An integer 1s said to be a palindrome if it reads the same forwards and backwards. For example,
12321 is a palindromic number. It is easy to prove that the density of the palindromes is zero in
the set of positive integers.

A Generalized Smarandache Palindrome (GSP) 1s any integer of the form

1833 . . . 848y, . . . 43808 O Q183 . . . . 8gln. - - - A3dd
where all a; a; a; . . . a, are integers having one or more digits [1], [2]. For example,

10101010 and 101010
are GSPs because they can be split into the forms
(10)(10X(10)(10) and (10)(10)(10)

and the segments are pairwise identical across the middle of the number.

As a point of clarification, we remove the possibility of the trivial case of enclosing the entire
number

12345 written as (12345)

which would make every number a GSP. This possibility is eliminated by requiring that each
number be split into at [east two segments if it is not a regular palindrome.

Also, the number 100610
is considered to be dGSP, as the splitting
(10)(06)(10)

leads to an interior string that is a separate segment, which is a palindrome by default.
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Obviously, since each regular palindrome is also a GSP and there are GSPs that are not regular
palindromes, there are more GSPs than there are regular palindromes. Therefore, the density of
GSPs 1s greater than or equal to zero and we consider the following question.
What is the density of GSPs in the positive integers?
The first step in the process is very easy to prove.
Theorem: The density of GSPs in the positive integers is greater than 0.1.
Proof: Consider a positive integer having an arbitrary number of digits.
Apdn. . . . 33,3y

and all numbers of the form

Kz .. (k)

are GSPs, and there are nine different choices for k. For each of these choices, one tenth of the
values of the trailing digit would match it. Therefore, the density of GSPs is at least one tenth.

The simple proof of the previous theorem illustrates the basic idea that if the initial and terminal
segments of the number are equal, then the number is a generalized palindrome and the values of
the interior digits are irrelevant. This leads us to our general theorem.

Theorem: The density of GSPs in the positive integers is approximately 0.11.

Proof: Consider a positive integer having an arbitrary number of digits.

apadn.t .. . A2d1dp

If the first and last digits are equal and nonzero, then the number is a generalized palindrome. As
was demonstrated in the previous theorem, the likelihood of this 15 0.10.

If a, = a; and a,; = ag, then the number is a GSP. Since the GSPs where a, = ay have already been
counted in the previous step, the conditions are

a,=a and a,, =3, anda, # ag

The situation is equivalent to choosing a nonzero digit for a,, and decimal digits for a,.; and ag
that satisfy these conditions. This probability of this is easy to compute and 1s 0.009.

If a, = a5, 2,7, = a; and a,; = ay, then the number is a GSP. To determine the probability here, we
need to choose six digits, where a, is nonzero and the digits do not also satisfy the conditions of
the two previous cases. This is also easily computed, and the value is 0.0009.

The case where a, = a3, 2, = a, 2,5 = a; and a,5 = 8, 18 the next one, and the probability of
satisfying this case after failing in the three previous cases is 0.0000891.

The sum of these probabilities is 0.10 + 0.009 + 0.0009 + 0.0000891, which is 0.1099891.
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This process could be continued for initial and terminal segments longer and longer, but the
probabilities would not be enough to make the sum 0.11.
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ON THE CUBE FREE NUMBER SEQUENCES

Zuu WEIyI

College of Mathematics, Physics and Information
Science, Zhejiang Normal University
Jinhua, Zhejiang, P.R.China

ABSTRACT. The main purpose of this paper is to study the asymptotic property of
the cube free numbers, and obtain sorme interesting asymptotic formulas,

1. INTRODUCTION AND REsuLTs

A natural number a is called a cube free number if it can not bhe divided by any
b®, where b > 2 is an integer. One can obtain all cube free numbers by the following
method: From the set of natural numbers (except 0 and 1)

-take off all multiples of 2%(i.e. 8, 16, 24, 32, 40, ...).

-take off all multiples of 33.

-take off all multiples of 53,

---and so on (take off all multiples of all cube primes).

Now the cube free number Sequences is 2, 3,4,5,6,7,9, 10, 11,12,13,14,15,17, - - -,
In reference [1], Professor F. Smarandache asked us to study the properties of the
‘cube free number sequences. About this problem, it seems that none had studied
it before. In this paper, we use the analytic method to study the asymptotic prop-
erties of this sequences, and obtain some interesting asymptotic formulas. That is,
we shall prove the following three Theorems.

Theorem 1. Let A denotes the set of all cube free numbers. Then we have the
asymplotic formula ’

2 aL,
o= i 0(st),
a<c

where € denotes any fizred positive number, C(s) is the Riemann zeta-function.

Theorem 2. Let A denotes the set of all cube free numbers, o(n) is the Fuler
Junction. Then we have the asymptotic formula
+e) '

:L'2 3
2o =g [ (= 5ty ) <o (o

acA
L a<lzx

b,

Key words and phrases. Cube free numbers; Asymptotic formula; Function of number theory.
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Theorem 3. Let A denotes the set of all cube free numbers, d(n) is the Dirichlet
divisor function. Then we have the asymptotic formula

361Hp +2p—~— (IMH ) - 24¢'(2)

2
a€4
ol
In 1
Y eraianis) o)
(p* +2p+3)(1 +p)
oQ
where ('(2) = Z > denotes the summation over all primes.

n=2

2. PROOF OF THE THEOREMS
In this section, we shall complete the proof of the Theorems. For conveniently
we define a new number theory function a(n) as follows:
0, in=1,
a(n)=<¢n, fkfnn>1,k>2
0, ifk3|nn>1k>2

It is clear that

j{:cz:=§z:a n

acA n<z
a<z

) =1+ i “é’_j).

n=1

Let

From the Euler product formula (2] and the definition of a(n) we have

a(p) a(p®)\ _ L 1 . Gs—1)
fs) = H(1+ p p2s )—H(l+p3‘1 +p2("““1)) T CB(s—1)"

P P

By Perron formula [3] we have

boriT s
sl i/ i Fls +50) Sds + 0 (fM)
b—iT

nso 2T T
n<z

+o( 1=0 [/ (2:5) min(1, I-T—))Jro( () min(1, = Il)>

Taking. so =0, b= 3, T = z7, H(z) = z, B(o) = —L+, in the above formula ,
then we have

‘ 1 SHT*(S_*Q__I .
:‘/—;a( n) = 2z7r_/3 o CB(G-1)) s ds+ O(zate).
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To estimate the main term

1 3 s — 1)z
2 a—ir C(3(s — 1))50{8’

we move the integral line from s =3+ 4t to s = % ~+3¢. This time, the function

(s — 1)z

1) = et =s

have a simple pole point at s = 2, so we have

3+1T -g-+iT 3T 33T — 1)g? 2
2 i’ spir Jaor C(3(s—1))s 2¢(3)
We can easy get the estimate

1 /gw ¢(s — 1)z°

3
— T ds| & T2 TE
2ir Js_ir C3(s= 1)s ’

L /"*”‘ (s=Dz* | oo

2ir Jy r CBEG-D)s | ST
and

1 3+:T — 3+

___/ s~ 1)a* < B

217 %+iT C(B(S - 1))8 T

Taking T = xg, we have

Za=2a(n):§%+0($%+e).

aCA n<z (
a<z

This completes the proof of Theorem 1.
@ a.(n) d{a(n))
Let =1+ d =1+ e
et fi(s) = E an f2(s) E —

n—
From the Euler product formula [2] and the definition of a(n), we also have

A

1 1 1
- H P21 pi | p2s—1

_ C(s—l) 3 pl 41 .
iy 1} (1 )
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P
¢*(s) ( 2 )
= 14+ —— .
¢2(2s) I;I (p* +1)?
By Perron formula {3} and the method of proving Theorem 1 we can easy obtain

— z? p+1 +e) .
;‘P(G)—ml}(l~p3+p2+p)+0(m +)’
asz

‘ 2
p +2p+3
S = [[ 722
a 5 (1+p)
a<z

N AT a8 plnp phte
() (1 U= v4§(p2+2p+s)<1+p>))+o( )

This proves the Theorem 2 and Theorem 3.
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ON THE 49-TH SMARANDACHE’S PROBLEM*
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ABsTRACT. For any prime number p and positive integer n, let Sp(n) be the smallest
integer such that Sp(n)! is divisible by p™. In this paper, we study the mean value of
the Dirichlet series with coefficients Sp(n). We also show that S,(n) closely relates
to Riemann Zeta function, and give a few asymptotic formulae involving Sp(n) and
other arithmetic functions.

1. INTRODUCTION AND RESULTS

For any prime number p and positive integer n, let Sp(n) be the smallest integer
such that Sp(n)! is divisible by p™. For example, S3(1) = 3, 53(2) = 6, S3(3) = 9,
S3(4) = 9, S3(5) = 12, 53(6) = 15, S3(7) = 18, - --. It is obvious that p | Sy(n) and
Sp(n) < np. Professor F. Smarandache [1] asks us to study the sequence. About
this problem, we know very little. The problem is interesting because it can help
us to calculate the Smarandache function.

It seems that Sp(n) closely relates to Riemann Zeta function. In fact, for real s >
1, we consider the Dirichlet series with coefficients S,(n). The series Y. S,(n)n=*
converges absolutely as s > 2 since S,(n) < np. In this paper, we study the mean
value of the Dirichlet series with coefficients Sp(n), and give a few asymptotic
formulae involving Sp(n) and other arithmetic functions.

Theorem 1. For any given s, we have

Z%sn_) =(-DCs = 1)+ Rils,p), s>72

n=1
3 M”L‘Z"(”) _p —g(ls)i(sl)— 2) + Ra(s,p), s>3,
where
-1 < logn+logp $(n) (logn+10gp)
Ri(s,p) < log2 Z py , Ra(s,p) < log2 Z ns

n=1
From our theorem we know that S,(n) closely relates to Riemann Zeta function.
Using our formulae we can calculate the mean value of S,(n).

Key words and phrases. Primitive numbers; Dirichlet series; Mean value; Asymptotic formula.
*The author expresses his gratitude to Professor Zhang Wenpeng for his very helpful and detailed
instructions. This work is supported by the N.S.F.(10271093) and P.N.S.F of P.R.China.
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2. Some LEMMAS
To complete the proof of the theorem, we need the following lemma.

Lemma 1. For any prime number p and positive integern, let Sp(n) be the smallest
integer such that Sp(n)! is divisible by p™. Then we have

nlp-1)< 8, (n)<( n lOg(’”‘p))(p 1).

log 2
Proof. By Theorem 3.14 of [2] we have
Sp<'fb)| - H pi’(m)1 a(Pl) — Z [ (n)}
PLE5,(n) mot b P
where [ denotes the product over prime numbers not exceeding z. Note that

p1&T
p" | Sp(n), we get

neap =3 [2] < 5 S S

On the other hand, p™f (Sp(n) — 1)! since p | Sp(n). Therefore

1>Z[ n)—l]_zspm)—l _ gy Smot s

= pm = p-—~1 log 2
Pm_sp(")_l
So we have
log(np) log(np)
< n-1+ 2"y p-1)+1< —= 2 ) (p—1).
Sp(n) < (n 14+ Tog? p—-1)+1<{n+ Tog 9 (p—1)

This proves L.emma 1.

3. PrROOF OF THE THEOREM

In this section, we complete the proof of Theorem 1. From Lemma 1 we have

Sp(n) =n{p—1)+ O ((p — 1)(logn +logp)).

From Theorem 3.2 of [2] we immediately get
o] S )
E —(pul)C(s—l)-’rRl(s,p), 5> 2,
where
— 1 logn +logp
R i
(s, < log2 Z ns

Similarly we can deduce other formula.
This completes the proof of Theorem 1.
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PAPER MODELS OF SURFACES WITH CURVATURE
CREATIVE VISUALIZATION LABS
BALTIMORE JOINT MATHEMATICS MEETINGS

HOWARD ISERI

DEPARTMENT OF MATHEMATICS AND COMPUTER INFORMATION SCIENCE
MAxsFIELD UNIVERSITY

MANSFIELD, PA 16933

ABITRACT. A modal of a cone can be constructed from a piece of paper by removing a wedge
and taping the edges together. The paper models discussad here expand on this ides (oue or more
wadges are added and/or removed). These models are flat everywhere, except at the “cone points,”
5o the geodeaics aro locally straight lines in a natural sense. Non-Kuclidean “effects” are easily
quantifiable using basic geometry, the Gauss-Bonnet theorem ie a naturally imuitive concept, and
the connection betwesn hyperbolic and slliptic geometry and curvature is dearly seen.

1, OBJIECTIVES AND NOTES

The notion that a2 geometric space can be manipulated is an idea that I would like to instill
in students. A number of behaviors of lines/geodesics can be found by cobstructing a variety of
surfaces, [ believe that this can be of value, as it is in topology where metric spaces with marginally
intuitive propertiey sre readily available. All of the models described in the labs are essentially
2-manifolds, so the notion that there are many accessible manifolds will hopefully be carried by the
student into a study of differential geometry or topology.

The local geometry of these paper models corresponds directly to the geometry of smoothly curved
surfaces, so they can be used as an introduction to a study of Riemannian geometry. Geodesics
on these surfaces are easy to find, since they are straight lines when the paper is flattened, and
a protractor can measure the angle defect, which is essentially equivalent to a measure of total
curvature. Since the Gauss curvature is an infinitesimal version of the angle defect, the definition
of Gauss curvature car be motivated in terms of these models. Furthermore, there is a polyhedral
version of the GQauss-Bonnet theorem that s easy to see, and this can be used fo make sense of the
smooth version.

These labs come from a series of projects 1 gave to three students deing an independent study
course in geometry. The three worked together on these projects with very little help from me, and
while these students were stronger than average, I think the labs ave appropriate for outside-of-class
assignments that are independent of the main course of study. I would assign one lab a week in the
month prior to starting non-Kuclidean geometry.

2. INTRODUCTION

The geometry of a sphere is fundamentally different from that of the plane. The essence of this
difference is captured in the Gauss curvature, where the sphere has constant positive curvature and
the plane has zero curvature everywhere. This difference in curvature and geometry manifests itself
in the inability to build paper models of the sphere out of flat pieces of paper. A cylinder, on the
other hand, ig easily constructed from paper, and correspondingly has the same (Gauss) curvature
and local geometry as the plane. In fact, the geodesics on the cylinder correspond to straight lines
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on the paper when flat, and a cylindrical paper model quickly leads to the realization that the
cylindrical geodesics are helixes (degenerate and non-degenerate).

A cone can alse be constructed fram paper. The geodesics, while not as easily described as for
the cylinder, can be seen the same way. One characteristic that the cone and sphere share is that
no region containing the vertex can be flattened {without tearing the paper). The cone and sphere
also share a notion of positive curvature and an elliptic geometry.

The cone formed by removing a wedge measuring @ radians is defined to have an angle defect equal
to 0. I prefer the term dmpulse curvature, since the angle defect corresponds to a Gauss curvature
singularity at the cone point with a finite integral. In fact, if you were to smoothly round off the
vertex of the cone and integrate the Gauss curvature, you would get a total curvature of precisely 8.
As a result, the Gauss-Bonnet theorem extends nicely to angle defects. Actually, the Gauss-Bonnet
theorem on a cane is obvious once you know what to look for, and perhaps we should say that the
Gauss-Bonnet theorem is an extension of a polyhedral version due to Descartes. All of this applies
equally well to hyperbolie geometry, since adding a wedge introduces a negative sngle defect and a
negative total curvature.

Figure 1. A pair of geodesics with three points of intersection

3. A SAMPLE PROBLEM FROM LaB 2

One of the problems in Lab 2 asks the students to construct a surface that has a pair of geodesics
with three points of intersection. If the geodesics are to be configured as in Figure 1, they will form
two regions bounded by 2-gons. The Gauss-Bonnet theorem requires that the total enrvature in
each region must equal the angle sum of its bounding 2-gon. If we want the angle at the middle
intesection point to be & radians, therefore, then we need to introduce total curvature greater than
# inside each region. In terms of cone points, we need to introduce two cone points by removing
wedges that measure more than 8 radians.

FIGURE 2. We can remove wedges measuring more than 8 radians.

We can construct the surface as follows. Start with two lines intersecting at a single point as in
Figure 2. We can make the pair of lines intersect twice more by removing two wedges, and clearly
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% must be greater than & (without using the Gauss-Bonnet theorem at all). The result is two cone
points each with total curvature 1.

F1GURE 4. The paper model corresponding to Figure 3 looks like this.

The particular values for 8 and 4 can vary greatly, but @ = 45° and ¢ = 90° is convenient to draw,
and a paper model ean be constructed from the diagram in Figure 3. I have drawn one geodesic solid
and one broken to distinguish them. Note that the continuations of each geodesic must intersect -
the cut'at the same angle, so it’s easy to do with a ruler and protractor, if you choose convenient
angles. The resulting paper model is shown in Figure 4.

Figure 5. The angle defect corresponds to total curvature.
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4. Gauss-BONNET THEOREM

I do not address the Gauss-Bonnet theorem in any of the labs, but after the students have
completed the last lab, I would leck at the cone point versionof the Causs-Bonnet theorem. From
here, the definition for Gauss curvature on a smooth surface should make sense intuitively.

The basic idea can be seen using circles and spheres. Consider a cirele of radius r centered at the
cone point of a cone with angle defect §, as in Figure 5. In the plane, this circle will have curvature
K= i Since the local geometry on the cone is Euclidean away from the cone point, the geodesic
curvature for this circle as a curve on the cone must be the same. That is, k, = L. What is different
about this circle and a circle in the plane with the same radius, is that the circle on the cone has a
smaller circumference. In fact, the difference must be 8r.

‘We can now compute the total geodesic curvature.

(1) /qus=1/ ds='(2mr 6r) =2 4.
C ) rJo T

Since curvature measures the rate of rotation of the tangent vector, it should make sense to students
that the total rotation for a simple closed curve in the plane must always be 2x. Since any small
deformation of the circle essentially takes place in the plane, it should also make sense that the total
rotation for a simple closed curve around the cone point will always be 27 minus the angle defect.
In any case, the formulation of the Gauss-Bonnet theorem should seem natural.

Compnring Equation (1) to the Gauss-Boanet theorem,

(2) / g ds = 2w / K dA,
C Fid

it’s obvious that the angle defect corresponds with the total curvature [ K dA. In fact, I think it
makes perfect sense to motivate the definition of the Gauss curvature X in terms of this formula. I
might start out by doing the following.

FiGure 6. The circle of tangency will have the same geodesic curvature on both surfaces.

Consider a sphere tangent to a cone, as shown in Figure 6. The geodesic curvature for the circle of
tangency will be the same on both surfaces. Therefore, the total curvature for the regions contained
by the circle on both surfaces should be the same. We can then require that the Causs curvature
be an infinitesimal version of the total curvature and that it be constant on the sphere. That is,

(3) \ 8:/KdAzK/ dd = K 1%,
. D D
and
1
{4) K= .
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I think the actual computation is a bit tricky, but there may be a simpler way. In any case, the area
integral is

2 b
== 2 si pdt = K 08
(5) /D dA = /0 /0 Blsinp dpdt = R*(1  cos ¢)27,

where the parameters p and ¢ are the phi and thets from spherical coordinates. To express this
expression in terms of €, note that the circumfereace of the circle € is 2nr  @r on the cone. If the
radius of this circle in space is p, then this circumference is also 2wp. Since Hsing = p, we have
that

(6) 277  Or = 2wRsind,
and

R
(M) #=2x(1 sin @),

T
Now, tan¢ = 7, 50

Cos ¢
6= 1 1 =27 p}.

(8) 2m( sin sing) = 2x{1 cos¢)

Equations (5) and (8) establish equation (3).

5. Furrurr READING

Total curvature was studied at least as far back as Descartes, where he used the term inclination
of the sofid angle in his investigations of convex polyhedra. It seems that the term angle defect is
now standard. As mentioned, Descartes also had a formula that is 2 Gauss-Bonnet theorem for
convex polyhedra, T've found some historical bits about this in [1], but I'm not sure if Gauss knew
about Descartes’ work when he was studying the curvature of surfaces. I intend to check this out
eventually, but I get the sense that the geometry of cone points is too obvious to mention for working
geometers, so this may have been the case for Gauss as well,

I first became aware,of Descartes’ work with angle defects from an article by H, Gottlieb called
“All the way with Gauss-Bonnet” in the Math Monthly [2], and an article on the AMS website called
“Descartes’s lost theorem” [4]. The first article is an excellent second introduction to curvature.

My general interest started through my involvement with the Smarandache Geometry Club (Ya-
hoo). The members of this club were interested in geometric spaces that satisfied Euclidean axioms
in some instances and violated them in others. This would be somewhat normal in a Riemannian
manifold, and I remembered reading about something Jeff Weeks called Ayperbolic paper in The
Shape of Space ([6]). This hyperbolic paper was constructed by taping equilateral triangles together
so that there were seven triangles around each vertex. The result is a paper model with a bunch
of cone points with angle defect equal to . Building on this idea, I was able to build a lot of
models that exhibited properties that the members of the club were looking for, and I eventually
wrote a little book on the subject called Smamndache Manifolds ([3]). I think one of the difficulties
in motivating proofs in Euclidean geometry is that students have a hard time imagining how any
of the theorems could not be true. It’s hard to justify s confusing proof for a statement that is
obviously true. This book has lots of counter-examples. I have copies to give away, 50 let me know,
if you want one.

I think cone points come up in the study of orbifolds, but they seem to fit most naturally in an
area called computational geometry. I know almost nothing about either of these subjects, but [5]
is a nice, accessible article by two leading computational geometers.
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DIE SMARANDACHE'sche KLASSE VON PARADOXIEN

Herausgegeben von Charles T. Le
Ubersetzung: Bernd Hutschenreuther
Rietzstrasse 41

; 01139 Dresden, Germany
E-mail: Bernd. Hutschenreuther@sz-online.de

<A> sei ein Attribut, und <Nicht-A> seine Negation. Dann gilt:

Paradox 1. ALLES IST <A>, <Nicht-A> AUCH.
Beispiele:

E11; Alles ist mdglich, das Unmdgliche auch.
E12: Alle sind anwesend, die Abwesenden auch.
E13: Alles ist endlich, das Unendliche auch.
Paradox 2. ALLES IST <Nicht-A>, <A> AUCH.
Beispiele:

E21: Alles ist unmdglich, das Mdgliche auch.

E22: Alle sind abwesend, die Anwesenden auch.
E23: Alles ist unendlich, das Endliche auch.
Paradox 3. NICHTS IST <A>, NICHT MAL <A>.
Beispiele:

E31: Nichts ist perfekt, nicht mal das Perfekte.
E32: Nichts ist absolut, nicht mal das Absolute.
E33: Nichts ist endlich, nicht mal das Endliche.
Bemerkung: Die drei Arten der Paradoxe sind dquivalent. Man nennt sie: die
Smarandache'sche Klasse von Paradoxen.

Allgemeiner gilt:

Paradox: ALLE (Verb) <A>, <Nicht-A> AUCH

(<Die verallgemeinerte Smarandache'sche Klasse von Paradoxien>

Wenn wir <A> durch ein Attribut ersetzen, finden wir ein Paradox.

Analysieren wir das erste Beispiel: (E11):

<Alles ist moglich, das Unmdgliche auch.>

Wenn dieser Satz wahr ist, erhalten wir <das Unmégliche ist auch moglich>, was ein
Widerspruch ist;

deshalb ist der Satz falsch (in der Objektsprache).

Aber der Satz kann wabr sein, weil <Alles ist moglich> <das Unmbgliche ist moglich>
einschliefit, d.h.

<es ist méglich, unmégliche Dinge zu haben>,

was korrekt ist (in der Metasprache).

Natiirlich gibt es von dieser Art auch erfolglose Paradoxe, aber die vorgeschlagene Msthode
fiihrt noch zu schonen anderen. '
Betrachte das folgende Wortspiel, das an Einstein erinnert:

Alles ist relativ, die (Theory der) Relativity auch!

Weiterhin:
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1. Der kiirzeste Weg zwischen zwei Punkiten ist das Maander! (¥)

2. Das Unerklirbare ist, natiirlich, durch das Wort: "unerkidrbar" erkiért!

(*) Anmerkung des Ubersetzers: Bekannt ist anch das Sprichwort: Der kiirzeste Weg
zwischen zwei Punkten ist der Umweg.
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CONVERGENCE OF THE SMARANDACHE GENERAL CONTINUED FRACTION

BOUAZZA EL WAHBI
DEPARTEMENT DE MATHEMATIQUES ET INFORMATIRQUE
FaCULTE DES SCIENUES

B.P.2121 TETOUAN

Moroeco.

ABSTRACT. We give a positive angwer to the Smarandache General Continued Fraction convargencs (gee
(2.
The Smarsndache Geperal Continned Fraction sssoclated with the Smarandachs reverse sequence
1,231,321, 4321, 54321, ..., 1211100987654321, ..., s given by

(1) 1+

{Ser for more details [2]).
Define the sequences {a,}azo and {6, }.0 by :

oy = l,al = 12,1,!2 = 123,
bo =1,bp = 21,8y = 321, ...
We verify easily that

10im ) 1
@) Gy = 108, + (2 + 1) and bop; = 10b, +

, forany n > 0.

With notations of [1], the continued fraction (1) can be written as follows:

ag + b'l+ E‘—L+—b—2l~+ ..... +—b"—‘l+

la lan laz lan
Let -g—kbe the result of the &£*" reduce of continued fraction:
k ‘
b b b
(3) ao 2Ly bil ol el
Jjar  Jas  eg lax

Thus we define two sequences {Aa}azo and {B,}uze of real numbers. Using the clementary algebraic
theory of continued fraction given by Euler (see [1]) we have the following,

Lemma 0.1. The sequences {A,},»o end {B.}nzo satisfy the following statements:
Ap = GpAp-1 +bufua, for n2>2, Ay =0 and Ay = e,
B = anBn-y +bnBu-y, for n>2 Bey =0 and By = 1.

In consequence, we have:
ApBna— An1Bn = ("'1)(“'”bobl...bn-.1, foranyn > 1
And if B, # 0, for any n > 0, We have,
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An An—1
S Ll ()
B‘n Bl’l—-l

An sasy computation gives,

(net) 1b2.c b

,yforanyn > 1
Bn—).Bn

A, = 1y boby b
— =gt Y (TN
B. 0 Z( ) Biy1Be

Hence, we have the following result
Lemma 6.2. The Smaranduche General Continued Fraction (1} is convergent if and only if the alfernate

series 3 (1) "_I)M}— is also convergent.
By B
k=1 k—1L%

Let {rg,}y >0 be the sequence of positive real numbers defined by

bﬂbl"'bﬁ.—l
Up i=———— forn > 1
™ Bp-1 B, -
We have,
a —u . b()bl-"b bObl n. ‘1
it i Ban+1 'n.—lB
botn..bw_1, by 1

. B‘r: BrH—l N B’n-—l l.
byl bn-—l bnBa ”*Bn+1
Bn 1 L n—an+l

And using the lemma 0.1 , we get

byby ...bm—1 [b'n.—‘ bng1(Brn—t— Gna B
Bn—an

Untpl—=Un =
e —~L Bvr-+1

And by (2) we have
10t
b‘rl."l bn-Ll =‘—9bn'— —‘—"E)“'_S 0
Becauge the B.'a are positive, we deduce that the seguence {a, fnx >¢ iz decressing. Qn the other hand,
we have, B, H, 1 = [0, By + buB—2]Ba— > baba...b, By By, which implies that

boby..bn 1 by 1

Un < = =
b‘2 bi}-“anl BD anl b,

The last inequality assert that Hm u, = 0. Finally, we have the result

Ther 4 O

Theorem 0.1. The Smurendache General Continued Frackion (1} is convergent.

¢
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The first 10" Smarandache Symmetric Numbers

Muneer Iehres!

S8-Math-Hebron / UNRWA / Field Education Officer /
Box 19149 f Jerusatem / Israsi

Abstract: In this articke , we present some important observations of the first 10"
Smarandache Symmetric Nwmbers
i :

- . e e siom ol ameeemmde e 2o TR Y e = mblepn o BT OO .
( exchide the secund nemper t.a. L Fs and the TEEE WGTESaE0 OF SRty .

In {1] ,the first 10" Smarandache Symmstric Numbers
{ excluding number 11 ), namely ;

1,121, 12321, 1234321, 123454321, 12345654321 ,

1234567654321 |, 123456787554321 | 12345678987654321 . (1)

Consider { 1 } |, then convert this numbers o the following triangle:

1
123
12321
1234321
123454321
12345654221
1234567654321
123456787654321
12345678387854321

The following observation may interest readers of Smarandache
Notions Joumat ;

1) The area ( in the number of all digits in the above triangie ) of
this triangle agual 9%, which is a square .

2) The terminat digits follow the patterm 1,1,1 |, . | 1, which is a
square .

3)

4) The initial digits follow the pattern 1,1,1, ..., 1, which is a
square .

5) The sum of the digits of any number equal perfect square ,
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Example ; 121

12345578987654321 8

Hence , the sum of digits follow the pattern 12 ,27,3%,..., 9°

6} The number of digits follew the pattemn 1,3,5,7,..,17 ,and the
suUm is , wWnidh is @ square , namely 81.

7) If we take any column in the friangle then cubing the digits then

sum them , we get square for example | take column 5, then

we have 12345 , cubing this digits and sum ; 1°+23+3% 4434532157

S0, cubing the digits in columns and sum them, follow the pattern

1% ,3%,67, 107 ,15%,21%, 282,367, 452 .

8) Any number in the triangle is a perfect square and there is no

prime , hence the number follow the pattern :

1%,11%,111%, 11117 ,111117,1111112, 1111111%3,111111112,

1111111112,

9) The bias of triangle looks like 9! , and 8! So if we multiply the
bias by its component we gel square( 9!X8! = square) .

Know convert the triangle to the following matrix , namesly

(111111111
122222222
123333333
12344 4 444
123455555
123456666
123456777
123456788
(123456789

Notes :

1) The matrix is a square one ( 9x9).

2) The matrix is symmetric a round the diagonal.
3) The detriment equal 1 , which is a square .

4) We can get this matrix by the following two matrices ;
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where the

TOWS or

1,131,1311,111,...,113111111

I

10
11
11
11
11
11
11
11
11

e e b ik e

0000000
000000 O

000000

1

1
1
1
1
1

00000
10000
11000
11100
11110
11111

column represent

1111117111
Or1111111
001111111
000111111
000011111
000 001111
000060 0111
000000 011
000000001

Reference:

the

pattern

[1] Ashbacher. Charles . Pluckings Form the Tree of Smarandache
Sequences and Functions- chapter 1: hitp/fsww. Ashbacher.com/
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On the 57-th Smarandache’s problem

Liu Huaning and Zhang Wenpeng
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

Abstract

For any positive integer n, let 7 be the positive integer such that:
the set {1,2,--- .7} can be partitioned into n classes such that no
class contains integers x, y, z with zy = z. In this paper, we use the
elementary methods to give a sharp lower bound estimate for 7.

§1. Introduction

For any positive integer n, let 7 be a positive integer such that:
the set {1,2,---,r} can be partitioned into n classes such that no
class contains integers «, y, z with zy = z. In [1], Schur asks us to
find the maximum r. About this problem, it appears that no one had
studied it yet, at least, we have not seen such a paper before. The
problem is interesting because it can help us to study some important
partition problem. In this paper, we use the elementary methods to
study Schur’s problem and give a sharp lower bound estimate for r.
That is, we shall prove the following:

Theorem For sufficiently large integer n, let r be a positive in-
teger such that: the set {1,2,--- v} can be partitioned into n classes
such that no class contains integers z, y, z with xy = z. For any
number £ > 0, We have

> n‘z(l—s)(n—l) )

Whether the upper bound of r is n2("=Y or there exists another
sharper lower bound estimate for r, is an interesting problem.

keywords: Smarandache’s problem; Partition; Lower bound.
*This work is supported by the N.S.F.(10271093) and the P.S.F. of P.R.China.
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§2. Proof of the Theorem

In this section, we complete the proof of the Theorem.
Letr = [77,2“‘5)(”“13'} and partition the set {1,2,---, [ng(l‘g)(”_l)]}
into n classes as follows:

Class 1: 1, [pl-eln=b] nit=aln-l ] e, [pAtimEltes1)

Class 2: 2, n+1, n+ 2

’ T

Class 3: 3, ]T”L‘-T)‘—S— + 1, BRI +2,
~(n(1—s)(n—1)w1)' , '<n(1~5)(n-1)_1)' )
Class k: k, _—nmji)_k_- + 17 W + 27 T n(n—1)-

-

"(n(l—s)m—l)ml)‘ -(n(lfs)(n.fl)___].)

(nt1=<)n- mlq

nwl

-(n(l—a)(ﬂ.—l)_l>-‘ ﬂ(ﬂ’(lfr:)(n‘-l)il)- { (ni=5)a=1)_1) il
[ nil—e}{n-1) j|

Class n: n, |~———a——r|+1, |——ef| +2 -, [n(l*‘f)(”’l) - lJ .

where {y] denotes the integer part of y.

It is obvious that Class & contains no integers z, vy, z with zy = z
for k= 1,3,4, -+ ,n. In fact for any integers z,y,z € Class k, k =
3,4, .- ,n, we have

T AL R (n{l=9)m=1 1)
Ty > kX ([ nin-1) -k }A{-l) 7 [n(’n—l:)"'(k+l) z5

n(l—s)(n—-l)_l
On the other hand, L‘ﬁfﬁl‘f‘ﬁ— tends to zero when n --+ oo,

so for sufficiently large integer n, Class 2 has only one integer 2.
This cornpletes the proof of the Theorem.
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SOME PROBLEMS CONCERNING THE SMARANDACHE
SQUARE COMPLEMENTARY FUNCTION ( 1)

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
PR.China

Abstract: For any positive integer n, let S85C(n) denote the
Smarandache square complementary function of n. In this paper we
prove that the difference [SSC(n+1)— SSC(n)| is unbounded.

Key words: Smarandache square complementary {unction:

difference; Pell equation

For any positive integer n, let SSC(n) denote the least positive
integer m such that mn is a perfect square. Then SSC(n) is called the
Smarandache square complementary function (see [1]). In [3], Russo

asked if the difference

Supported by the National Natural Seience Foundation of China
(No. 10‘27110‘!4), the Guangdong Provincial Natural Science Foundation
(No.011781) and the Natural Science Foundation of the Education

Department of Guangdong Province (No.O161).
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is bounded or unbounded? In this paper we solve this problem as
follows.

Theorem. The difference is unbounded.

Proof. Let d be a positive integer with square free. By [2, Theorem
10.9.1], there exist two positive integers x and y such that

2

x*-dy’=1. (2)
Let n=dy’. Then from (2) we get n+1=x’. By the define of the
Smarandache square complementary function, we have
SSC(n)=d, SSC(n+1)=1. (3)
Therefore, by (3), we get
\SSC(n+1)=8SC(n) =d 1. (4)
Since there exist infinitely many positive integers d with square.free.,

we see from (4) that the difference (1) is unbounded. Thus, the theorem

is proved.
References
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SOME RESULTS CONCERNING THE SMARANDACHE DECONSTRUCTIVE SEQUENCE

Jason Earls

513 N. 3rd Street
Blackwell, OK 74631 USA
Emall: jcearls@kskc.net

ABSTRACT

In this note some new primes which were found in the
Smarandache Deconstructive Sequence (SDS(n)) are reported

=2

unusual sequences involving $DS(n) are given, along with
a list of factorizations for SDS(n). All computations ware
done with PARI/GP (3], except where noted.

I INTRODUCTION

The Smarancache Deconstructive Sequence, SDS(n)
(A007923) [4] is:

1,23,456,7891,23456,789123,4567891,23456789, 123456789, . ..
in which the lengths of the terms increase by 1, and the
digits sequentially repeat 1-9. Smarandache first defined this
sequence in (5].

IT PRIMES IN 5DS(n)

In [1] Ashbacher listed eight primes that arise in the
Smarandache Deconstructive Sequence:

23, 4567891, 23456789, 1234567891, 23456789123456789,
234567892123456789123, 567891234567891234567891,
1234567891234567891234557891

The author has found five more.

The values of n for which SDS(n) is prime are:
2,7L8,10,l7,20,25,28,31,38,61,62,355,

Wwith no more terms being found for n <= 500.

For example, SCS(28) = 1234567891234557891234567891
which is the last prime in Ashbacher's lis~.

The largest prime the author found, SDS (355) =

7891234567891234567891234567691234567389123456)\
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789123456789123456789123456789123456789123456\
789123456789123456789123456789123456789123456\
789123456789123456789123456789123456789123456\
789123456789123455789123456789123456789123456\
783123456789123456789123456789123456789123456\
789123456789123456789123456789123456789123456\
7891234567891234567891234567891234567891

has been proven prime with Primo r21.

IIT SOME UNUSUAL SEQUENCES INVOLVING SDE {n)

If we sum the sguares of the individual digits of SDS(n) we
get the following sequence:

(a} 1,13,77,195,90,208,272,284,285,286,298,362,480,375,493,557,

For example, 172 = 1; 272 + 372 = 13; 472 + 52 + 62 = 77;
Th2 + 872 4+ 972 + 172 = 195, etc.

Are there any squares in sequence (a) above? .

Yes. For the following values of n the sum of the
squares of the digits of SDS(n) is a square:

1,100,280,346,568,721,lOZl,1153,1657,2548,2565,
2584,3673,4537,4801,5545,6004,6826,7156,

Is this sequence infinite?

Another question one might ask concerning sequence (a)
is, will any primes occur?

For the following values of n the sum of the
squares of the digits of 3SDS(n) is prime:

2,16,17)19,21,33,38,39,52,53,56,57,69,70,73,74,
75,88,91,93,105,106,llO,125,128,141,142,145,147,
177,181,196,197,199,213,214,217,219,231,235,237,
254,268,272,273,285,290,303,304,305,309,322,323,...

We conjecture that this sequence is infinite.

If we sum the individual digits of SDS(n) after raising the
digit to its own power we get the following sequence:

(b) 1,31,50037,405021249,50068,4C5021280,405071286,405071316,...
For example, 171 = 1; 272 + 373 = 31; 474 + 5~5 + 676 = 50037, etc.
After searching for primes in sequence (b), these values of n
such that the sum of the digits of SDS{n) when raised to their

OWn power 1s prime were found:

2,21,32,33,69,92,93,94,107,123,140,163,164,248,269,
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272,291,307,326,345,364,377,392,393,433,434,448,453,
454,485,487,502,519,538,573,580,626,627,685,718,755,
757,809,865,866,878,917,955,973,986,988,1024,1028,1048

’

We conjecture that this sequence is infinite.

IV FACTORS OF SDS(n)

In closing, we provide a list of factars for the first
fifty values of SDS(n).

SDS1:

8]

SDS2:

23

3DS3;

27~3.3.19

SDS4 .

13.607

SDS5:

2°5.733

SDS6:

3.17.15473

SDS7:

4567891

5Ds8:

23456789

SDS9:

372.3607.3803

SDS10:

1234567891

SDS11:

59.397572697

5DS12: ,
277.3.23.467.110749
SDS13:
37.353.604183031
SDS14:
2°7.13.23.47.13040359
SDS15:
3.19.13844271171739
SDS16:
739.1231.4621.1086619
SDS17:
2345678912345678%
5D518:
372.7.11.13.19.3607.3803.52579
SDS19:
31.241.1019.162166841159
SDS20:
23456789123456789123
SDS21:
277.3.19.83.67247.11217082711
SDS22:
13.1171.5009.103488876927413

SD523: 024



27°7.37139.4934332239074993

5DS24:

3.29.53.19447.5949239.1479230321

SDS25:

4567891234567891234567831

3DS26:

31.120817.6262548234815488507

SDS27:

373.757.3607.3803.440334654777631.

SDS28:

1234567891234567831234567891

SDS29:

20393.16338731.70399426574704481

SDS30:
277.3.43.27664065%976791976953536163
SDS31:

78912345678591234567891234557891

5Ds832:
277.13.67.439.166657.2875758147251799619
SDS33:
3.19.43.151.16856533753487164258652456703
SD534:
3€71.14074661.884083787828586256%50561
SD535:
11083.5908159.9973889.119776913.2998604101
SD536:

3“2.7.11.13.19.101.3607.3803.9901.52579.999999000001
50837

5077076293.243165124963105984043672887

SDS38:

234567891234567891234567891234567589123

5D839:

277.3.19.626081583685292110001081583685209211

5DS40:

13.1794115880987.3@16274343701.112170916993561

5DS41:

2“7.3547.19141.1822695439.1480875933915409449259

SDS42:

3.36677.77890601.6953106199727.13242377845224779

5DS43:

17.268699484386346543209875954974581837327523

5D544:

17.911.98981.9659394263.240869841259.6576837459611

3D3S45:
3”2.31.41.271.3607‘3803.238681.2906161.4185502830133110721
SDS46:

47.15667.62788723633.26702358442667031058467275423

SDS47:

857.27370815779996253352925074823170115663310139

SDE48: g
2A7.3.157089311.7572475819198513188475662796700757119
5DS45:
17.593.138599.31074683.1398187430503.129989759693837375161
SDS50:
2A7.13“2.461.66173.3920187843941.9067410177727179700576871
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AN ASYMPTOTIC FORMULA INVOLVING
SQUARE COMPLEMENT NUMBERS

LoUu YUANBING

Department of Mathematics and Physics, Tibet University
Lhasa, Tibet, P.R.China

ABSTRACT. The main purpose of this paper is to study the mean value properties of
the square complement number sequence {S(n)}, and give an interesting asymptotic
formula involving S(n).

1. INTRODUCTION AND RESULTS

For each positive integer n, we call S(n) as a square complement number of
n, if S5(n) is the smallest positive integer such that nS(n) is a perfect square.
In reference [1], Professor F.Smarandache asked us to study the properties of the
sequence {S(n)}. About this problem, we know very lLittle at present. The main
purpose of this paper is to study the asymptotic property of this sequence, and
obtain an interesting asymptotic formula involving square complement numbers.
That is, we shall prove the following result:

Theorem. Let real number & > 3, S(n) denotes the square complement number of
n. Then we have the usymptotic formula ‘

Z CI(S(R)) =cizlnz + ez + O(:c%'i'e),

nlr

where d(n) is the divisor function, € > 0 be any fized real number, ¢, and c; are

defined as following:
6 . 1
Cy == —~— B —
1 2 (p+ 1)2 ?

C 6 R 2(2p+ 1)lnp _
5 Wzg(l (p+1)2> (Z(P—JL)(zﬂrl)(;D-F?)Jrz7 1>’

p

the product and summation over all prime p, v is the Euler’s constant.

Key words and phrases. Square complement numbers; Sequence; Asymptotic formula.
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2. PrOOF OF THE THEOREM

In this section, we shall complete the proof of the Theorem. First we need the
following:

Lemma. Let real number y > 3, then we have the asymptotic formula

S d(m)lu(n)l = iy lny + by + O(y=T9),

n<y

where p(n) 1s the Mobius function, ¢\ and cy are defined as following:

381 (, 1
T p+1)2)"
p
36 1 2lnp 4lnp
d = 1——~h> R O el IS S
; W4p( (p+1)? <Zp:(p—l)(p+2) %:p2~1T

Proof. Let T = \fy, A(s H ( T l) ) Then from the Perron formula
p
P

(See Theorem 2 of reference {2]) , we can obfain

1+e+id -2/ s
S dmiu) = 5 [ Sl aLas 40,

2m
n<y

where p(n) is the Mdbius function, € > 0 be any real number.

Moving the integeration line to Re(s) = % + ¢, here s = 1 is a second order pole

of CC ((,,33)) Als )%—, and the residue of this function at s = 1 is

(*(s) v N :
E{fls <§2(25)A(s)—5— =cylny + cyy.

where ¢} and ¢, are defined as following:

g 36 . 1
1_‘71_4 (p+l)2 ’

P

;36 ‘_ 1 2lnp
CQ“W‘*I;[@ (p+1)2>(2(p+1 )(p+2) Z ”L%_l)'

> -

IJ\*‘
—

Z d(n)|u(n)] = cyylny + chy + Oy

nsy

This proves the Lemma. 228



Now, we shall complete the proof of the Theorem. From the above Lemma we
have

Y d(S(n))= > d(S(ak?))

n<r ak2<z

= > dla)|p(a)

ak?<zx

= 30 dia)lu(e)

k<TolE

I
S
:——An\

H
—
=
s
[3%)
+
o
e
?-A
Q
+
&
TN
RS
T e
i
~—

k<VE
(1) :QQ)xmr+@£(f+%K(Dx+OCﬁﬂ>
Let
) mzc’lc‘(?):%];[(l—m),
and
c2 = ¢4((2) + 21 (2) = ¢4 ¢(2) — 2¢,¢(2) ? p;ﬂfl

_E_ B 1 22p+ 1) lnp _—
? “wﬁp(l(i+w)<%:@—n@+n@+m+2fl>‘

Combining (1), (2) and- (3), we immediately deduce the asymptotic formula

Z d(S(n)) =cirlnz + coz + O($°+E),

nlz
This completes the proof of the Theorem.
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On a problem concerning the Smarandache Left-Rigth sequences

Felice Russo
Via A. Infante 7
67051 Avezzano (Aq) Iraly

felice.russo@katamail com

Abstract

In this paper a problem posed in [1] and concerning the number of
primes in the Smarandache Left-Right Natural number sequence

(SLRNN) and in the Smarandache Lefi-Right prime (SLRP) sequence is
analysed.

Introduction

In[1] the author defined the SLRNN and SLRP sequences in the following way:

SLRNN - Starting with 1 append alternatively on the left and on the rigth the next natural
numbers:

1,21, 213, 4213, 42135, 642135, 6421357, 86421357, 864213579, 86421357910,

........

SLRP - Starting with the first prime 2 append alternatively on the left and on the right the next
primes: .

2,32,325,7325,732511, 13732511, 1373251117, 191373251117, 19137325111723,........

In the section dedicated to those two sequences the following open question is reported:

How many terms are prime numbers?

Moreover by defining as additive primes those prime numbers which sum of digits is prime too,
this second question is also reported:

How many terins are additive prime?
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Results

In the table 3 and 4 the first 40 terms for the SLRP and SLRNN sequences respectivley are
reported.

By looking at the tables 5 and 6 regarding the prime factors of the first 25 terms of both the
sequences, we can see clearly the for the SLRNN sequence a clear pattern emerge. In fact all the
terms a(n) with n=3-%k+2 and n=3.k+3 (where k=0,1,2,3....) are divisible by 3 while those with
n=10-k+5 and n=10-k+6 are divisble by 5.

On the contrary for the SLRP sequence any pattern is visible.

According to those considerations and thanks to an Ubasic code the first 575 and 717 terms of
the SLRP and SLRNN sequence respectively have been tested for primality.

The last term tested for both the sequences has 2103 and 2043 digits respectively.

Here a summary table for both the sequences.

Start/end prime | # digits Prime

2 1 2

19/17 12 191373251117

37/31 20 37291913732511172331

139/149 76 139131113107101897971615343372919137325l117233141475967738397103109127137149
3117307 163 311293281271263251239229223199193181173......... 161197211227233241257269277283307

Table 1. Prime in the SLRP sequence

Start/end numb. | # digits Prime

120/121 253 120118116114112110108106104102100.......__.... 101103105107109111113115117119121
Table 2. Primes in the SLRNN sequence

According to those results the percentage of the primes inside the two sequences is 0.87% and
0.14% for the SLRP and SL.RNN respectively.

Actually the percentage is so low that this seems to point out that the number of primes is finite.
Open question: Is the number of primes in the SLRP and SLRNN finite?

Let’s now check if those primes are also additive. For the primes of the sequence SLRP we have
that 4 out of 5 are additive being the sum of digits equal to 2, 41, 71 and 631. The only prime

that 1s not additive is that starting with 139 and ending with 149 which sum of digits is 296 that
1s composite. About the SLRNN sequence the only prime found is not additive because the sum

of the digits is equal to 1027 that is a composite number.
According to those results the following two conjecure can be posed:

Conjecture 1: The number of additive primes inside the sequence SLRP is finite

Conjecture 2: The number of additive primes inside the sequence SLRNN is null.
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-

2

32

325

7325

732511

13732511

1373251117

DO S0l | O] Lnf ] W b

191373251117

19137325111723

2919137325111723

291913732511172331

37291913732511172331

3729191373251117233141

433729191373251117233141

43372919137325111723314147

5343372919137325111723314147

334337291913732511172331414759

61534337291913732511172331414759

6153433729191373251117233141475967

716153433729191373251117233141475967

71615343372919137325111723314147596773

7971615343372919137325111723314147596773

797161534337291913732511172331414759677383

89797161534337291913732511172331414759677383

8979716153433729191373251117233141475967738397

1018979716153433729191373251117233141475967738397

1018979716153433729191373251117233141475967738397103

1071018979716153433729191373251117233141475967738397103

1071018979716153433729191373251117233141475967738397103109

1131071018979716153433729191373251117233141475967738397103100

1131071018979716153433729191373251117233141475967738397103100127

1311131071018979716153433729191373251117233141475967738397103100127

1311131071018979716153433729191373251117233141475967738397 103109137137

1391311131071018979716153433729191373251117233141475967738397103100127137

1391311131071018979716153433729191373251117233141475967738397103100127137149

1511391311131071018979716153433729191373251l17233141475967738397103109127137149

1511391311131071018979716153433729191373251117233141475967738397103109127137149157

1631511391311131071018979716153433729191373251l17233141475967738397103109127137149157

1631511391311131071018979716153433729191373251117233141475967738397103109127137149157167

1731631511391311131071018979716153433729191373251117233141475967738397103109127137149157167

Table 3. First 40 terms of sequence SLRP
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1

21

213

P RTTIIY

4213

42135

642135

6421357

[==1 LN 1 e \ TRV

86421357

9 364213579

10 | 10864213579

11 ] 1086421357911

12 | 121086421357911

13| 12108642135791113

14 ] 1412108642135791113

151 141210864213579111315

16 | 16141210864213579111313

17 | 1614121086421357911131517

18 | 181614121086421357911131517

19 | 18161412108642135791113151719

20 | 2018161412108642135791113151719

21| 201816141210864213579111315171921

221 22201816141210864213579111315171921

23 | 2220181614121086421357911131517192123

24 | 242220181614121086421357911131517192123

25 | 24222018161412108642135791113151719212325

26 | 2624222018161412108642135791113151719212325

27 | 2624222018161412108642133579111315171921233527

28 | 28262422201816141210864213579111315171921232527

29 | 2826242220181614121086421357911131517192123252729

30 | 302826242220181614121086421357911131517192123252729

31| 30282624222018161412108642135791113151719212325272931

32 | 323028262422201816141210864213579111315171921232527293 1

33 | 323028262422201816141210864213579111315171921232527293133

34 | 34323028262422201816141210864213579111315171921232527293133

35 | 3432302826242220181614121086421357911131517192123252729313335

36 | 363432302826242220181614121086421357911131517192123252729313335

37 | 36343230282624222018161412108642135791113151719212325272931333537

38 | 3836343230282624222018161412108642135791113151719212325272931333537

39 | 383634323028262422201816141210864213579111315171921232527293133353739

40 | 40383634323028262422201816141210864213579111315171921232527293133353739

Table 4. First 40 terms of sequence SLRNN
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Prime

2x2x2x2x2

5x5x13

5x5x293

13x29x29x67

13x1056347

TxTx28025333

Prime

O OO 1| O L Ll PO

7x13x 210300275953

10 | 3x 973045775037241

11 | 7x6763xC

12 | Prime

13 11x38393xC

14 | 7xC

151 137xC

16 | 3x11x157x2179xC

17 | 4519xC

18 | 3x239x593x144725040140349010212526739

19 | 11x5197xC

20 | 3x3x3x83x89xC

21 | 43x53x113xC

22

23 1 127x3343x42841xC

24 | 3x3x3xTx7x7xC

25 1 19xC

Table 5. Prime factors for the sequence SLRP (here C indicates a composite number)

1

3x7

3x71

11x383

3Ix5x53x53

3x5x13x37x89

79x31283

3x3x3x11x43x67%x101

O o]~ Q| ) = W ] —

3x3x96023731

—
<o

17x41x113x271x509

—_—
—_—

3x19x37x53x419x23197

—
N

3x10477x12433x309857

o
(V5]

11x29x179x2683x79037111

3x107xC

3x5x7x13x103451182574050631

5xC

3x3x3x3x3x3xC

3x3xC

17x10683183593318903406353714807

0] — | | pe| | e
O O] oo| ~3| A |

3x 672720470702880711930371050573

[
o

3xC

b
[N

281x54601xC

[\
(O]

3x13x35381xC

[y
B

3x35153x2296818494525086397759867921481497

25 | 5x5x17x37x127x593xC

Table 6. Prime factors for the sequence SLRNN (here C indicates a composite number)
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Some Properties of The Happy Numbers and the Smarandache H-
Sequence

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, 1A 52233

Abstract:

The happy numnbers are those where the iterated sums of the squares of the digits terminates at 1. A
Smarandache Concatenate Sequence is a set of numbers formed by the repeated concatenation of the
elements of another set of numbers. In this paper, we examine some of the properties of the happy numbers
as well as a concatenation sequence constructed from the happy numbers.

Introduction:

Definition: Given any positive infeger n, the repeated iteration of the sum of the squares of the decimal
digits either terminates at 1 or enters the cycle

4> 16 -> 37 > 58 > 89 > 145 > 42 > 20 -> 4,
If the iteration terminates at 1, the number is said to be Happy[1].
For example, 13 is Happy, as |
1+9=10=1+0=1,

i3

the Happy numbers less than or equal to 100 are { 1,7, 10, 13, 19, 23, 28, 31, 32, 44,49, 68, 70, 79, 82, 86,
91, 94, 97, 100 }. If 2 number is Happy, thea the aumber formed by appending an arbitrary number of zeros
to the right is also Happy. Therefore, the set of Happy numbers is infinite.

Happy numbers turn out to be rather common, and Guy[1] notes that about 1/7 of the positive integers
appear to be Happy.

To examine this in more detail, a computer program was created to determine and count the number of

Happy numbers up through an upper limit. The counts and percentages for upper limits of one million
through ten million were computed and are summarized in table 1.
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Table 1

Percentage of Happy Numbers

0.144
0:143
0.142
0141

0.14
0.139

Humbers

Percent Of Happy

12345878310
Upper Limit In Millions

From this figure, it is clear that the percentage of Happy numbers is near 1/7 = 0.142, but shows a small
amount of variation.

In his paper, Gupta|2] describes the Smarandache H-Sequence[2], constructed by repeatedly appending
Happy numbers on the right side. For example, the first five elements of the sequence are

SH(1) =1
SH(2) = 17
SH(3) = 1710

SH(4) = 171013
SH(5) = 17101319.

Gupta also defines the Reversed Smarandache H-Sequence, which is constructed by appending the happy
numbers to the left side. For example, the first five elements of the sequence are

RSH(1) =1
RSH(2) = 71
RSH(3) = 1071

RSH(4) = 131071
RSH(5) = 19131071,

Primes in the SH and RSH sequences.

Gupta conducts a search for primes in both the SH and RSH sequences. Three primes were found in the
first 1000 terms of the SH sequence and they are SH(2) , SH(5) and SH(43). Eight primes were found in the
first 1000 terms of the RSH sequence and they are RSH(2), RSH(4), RSH(5), RSH(6), RSH(10), RSH(3 1),
RSH(255) and RSH(368). This is hardly surprising, as happy numbers can end with any of the decimai
digits, six of which { 0, 2,4, 5, 6, 8 } immediately eliminate the SH sequence element as a possible prime.
However, with the trailing digit always being 1 for elements in the RSH sequence, there is no immediate
elimination of the number as a possible prime. Assuming that all digits are equally likely to be the trailing
digit of a happy number, then with six out of ten immediately eliminating the possibility of it being prime,
the ratio of three to eight seems quite reasonable.

The trailing digits of the set of Happy numbers.
Which brings us to a related question.
Are the trailing digits of the set of Happy numbers equally dispersed among the ten decimal digits?

At first glance, the answer to this question would appear to be false. Since zeros can be appended to any
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Happy number to generate another Happy number, it would appear that the percentage of trailing zeros in
Happy numbers would be greater than the average of 0.1.

A program was written in the language Java to test this question. The long data type in Java occupies eight
bytes of memory and can store positive integers up to 9223372036854775807. Therefore, it is used in the
computation of the Happy numbers. As the Happy numbers are generated, the trailing digit is extracted and
the count of the number of times each digit appears is stored. These numbers are then displayed when the
program terminates. The program was run several times, computing all Happy numbers less than n, where n
was incremented in steps of one million. For each run, the percentage of the Happy numbers less than the
upper bound that have a trailing zero was computed. The results for runs with upper limits from 1 million
through 10 million are summarized in figure 2.

Figure 2

Percentage of Trailing Zeros

0.106
0.104
0.102

a.1
0.098

Percent zeros

1 2 3 4 5 6 7 8§ 89 10

Upper limit in millions

Note that the percentage of Happy numbers that end in zero is greater than 0.10, but the graph exhibits a
decreasing rate as the upper limit increases.

This leads to the unsolved question.
Is the percentage of Hapi)y numbers that end with a zero greater than 0.10?
The evidence here suggests that it is in fact near 0.10.

Similar questions can be asked concerning the percentages of Happy numbers that terminate with each of |
the remaining nine digits. Figure 3 is a chart of the percentage of Happy numbers that end in a one as the

upper limit steps from one through ten million.

Figure 3
Percentage of Trailing Cnes

Percent Ones

1 2 3 4 5 &6 7 8 9 10
Upper Limit in Millions
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Figure 4 is a chart of the percentage of Happy numbers that end in a two as the upper limit step from one
million through ten million.

Figure 4

Percentage Of Trailing Twos

Percent Twos

12 3 4 5 6 7 8 9 10
Upper Limit In Millions

Figure 5 is a chart of the percentage of Happy numbers that in a three as the upper limits step from one
millicn through ten million.

Figure 5

Percentage of Trailing Threes

Percent Thre

1 2 3 4 5 6 7 8 9 10
Upper Limit In Millions-

Figure 6 is a chart of the percentage of Happy numbers that end in a four as the upper limits step from one
million through ten million.

Figure 6
Percentage of Trailing Fours

0.0995
0.098
0.0985
0.098
0.0975
0.097

Percent Fours

1 2 3 4 5 6 7 8 9 10
Upper Limit In Millions
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Figure 7 is a chart of the percentage of Happy numbers that end in a five as the upper limits step from one
million through ten million.

Figure 7

Percentage of Trailing Fives

Percent Fives

12 3 4 5 B 7 B8 9 10
Upper Limit in Millions

Figure 8 is a chart of the percentage of Happy numbers that end in a six as the upper limits step from one
million through ten million.

Figure 8

Percentage of Trailing Sixes

0.102-
0.1,
0.098
.0.096
0.094 -

Percent Sizes

1 2 3 4 5 6 7 8 9 10
Upper Limit in Millions

Figure 9 is a chart of the percentage of Happy numbers that end in a seven as the upper limits step from one
million through ten million.

Figure 9
Percentage of Trailling Sevens

Percent Sevens

1 2 3 4 &5 B 7 8 9 10
Upper Limit in Mitlions
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Figure 10 is a chart of the percentage of Happy numbers that end in an eight as the upper limits step from
one million through ten million.

Figure 10

Percentage of Trailing Eights

Percent 'Eights

1 2 3 4 5 B 7 8 9 10
Upper Limit in Millions

Figure 11 is a chart of the percentage of Happy numbers that end in a nine as the upper limits step from one
million through ten million.

Figure 11

-Percentage of Trailing Nines

ines
o

Percent N
o
e
L0
&

1 2 3 4 5 8§ 7 8 9 0
' Upper Limit in Millions

From these figures, it is clear that the percentages of the trailing digits of Happy numbers are generally
evenly distributed for the ranges examined. '

The Smarandache H-Sequence One-Seventh Conjecture

Gupta also makes the following conjecture in his paper about numbers in the Smarandache H-sequence.

Conjecture:

About one-seventh of the numbers in the Smarandache H-sequence belong to the initial H-sequence.

A computer program that uses the BigInteger class in Java was written to test this conjecture. The
Biglnteger class allows for the manipulation of very large integers whose only limit is the amount of
machine memory. The program was run for all Happy numbers up through 15,000 and these numbers were
used to construct the corresponding SH numbers. Percentages of the elements in the SH sequence that are

also in the H-sequence were computed for each 1000 SH numbers and the resuits are summarized in figure
12.
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Figure 12

The Percentage of Smarandache H-Sequence
Numbers that are Happy

0.16
0.15
0.14
0.13

are Happy

~ Sequence
Numbers that

Percentage of
Smarandache H.

— ™ w P @ — "W
= == T

Thousands of Happy Numbers

As you can see, the percentage of Smarandache H-sequence numbers that are also Happy appears to
asymptotically approach 0.14. This is slightly less that the one-seventh value stated by Gupta.

Contrasting figure 12 with figure 1, it is clear that the percentage of Smarandache H-sequence numbers
that are also Happy has less variation and appears to be smaller that the percentage of numbers that are

Happy.
Question:

Is the percentage of Smarandache H-sequence numbers that are Happy less than the percentage of integers
that are Happy?

Consecutive SH Numbers

Gupta also mentions consecutive SH numbers that are also Happy and finds the smallest such pair: SH(30)
and SH(31). He moves on to find examples where three, four and five consecutive SH numbers are also
Happy. He closes that section with the question:

Can you find examples of six and seven consecutive SH numbers?
The program previously mentioned that computed the percentages of H-sequence numbers that are also
happy also searched for examples of six or seven consecutive Happy numbers and found no such sequences
for the values of SH(10000) through SH(15000).
References:

{1] Guy, R. K., Unsolved Problems in Number Theory, E34, Springer-Verlag, 2nd Ed., 1994.

[2] Gupta, S.°S. "Smarandache Sequence of Happy Numbers", online article at
http://www.gallup.unm.edu/~smarandache/Gupta.htm.
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SOME SMARANDACHE-TYPE SEQUENCES AND PROBLEMS
CONCERNING ABUNDANT AND DEFICIENT NUMBERS

Jason Earls
513 N. 3rd Street
‘Blackwell, OK 74631 USA

Abstract: We define some new sequences involving Smarandache operations on the
sets of deficient and abundant numbers. We give conjectures and ask questions about

these sequences somewhat similar to certain problems posed in Smarandache's book Only
Problems, Not Solutions! [7].

1. INTRODUCTION

A number n is called abundant if o(n) > 2n (A005101), perfect if o(n) = 2n
(A000396), and deficient if o(n) < 2n (A005100), where o(n) denotes the sum of all
positive divisors of n (A000203) [6]. Concerning perfect numbers, it is not known when
they were first studied, however, the first mathematical result about them occurs in
Euclid’s Elements written around 300 BC. More relevant to this paper is the
- text Introductio Arithmetica, written by Nicomachus around 100 AD, in which
Nicomachus first classified all numbers based on the concept of perfect numbers, thus
giving us the definitions (listed above) of abundant and deficient numbers, with which
~ this paper deals [4].

Concerning abundant numbers, two of the more interesting facts about them is that in
1964 T. R. Parkin and L. J. Lander showed that all numbers greater than 20161 can be
expressed as the sum of two abundant numbers [2]; and around 1000 AD, Abu Mansur
ibn Tahir Al-Baghadadi found the first smallest odd abundant number: 945 [5].

Perfect numbers have attracted more interest through the years than abundant and
deficient numbers, no doubt due to the fact that they are intimately connected with
Mersenne primes. But despite all of the extensive study of perfect numbers, there are still
crucial unsolved problems. For example: Are there infinitely many perfect numbers?
Does an odd perfect number exist? No one knows. But no matter how much more
attractive the perfect numbers may seem when compared with the abundant and deficient
numbers, in this paper we leave the perfect ones alone and devote our energy only to the
abundants and deficients.

What we offer in this paper are some Smarandache-type sequences and problems with
the questions asked being very much in the spirit of Florentin Smarandache's wonderful
book Only Problems, Not Solutions! [7]. Also it should be mentioned that in constructing
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and exploring the problems below we made extensive use of the software package
PARI/GP [3]; and that all of the conjectures made were based on a small amount of
analysis and a lot of empirical evidence via a personal computer. And now we close this
mtroduction with a quote from Sir Winston Churchill (1874-1965):

“I had a feeling once about Mathematics - that I saw it all. Depth beyond depth was
revealed to me - the Byss and Abyss. I saw - as one might see the transit of Venus or
even the Lord Mayor's Show - a quantity passing through infinity and changing its
sign from plus to minus. I saw exactly why it happened and why the tergiversation
was inevitable, but it was after dinner and I let it go” [1].

2. SEQUENCES AND PROBLEMS

(1) Smarandache Consecutive Abundant sequence (SCA); concatenate the first n
abundant numbers.

12, 1218, 121820, 12182024, 1218202430, 121820243036, 12182024303640,
1218202430364042, 121820243036404248, 12182024303640424854, ...

Will there always be at least one prime factor of any SCA number that has never
before appeared as a prime factor in any earlier SCA number? That is, if

SCA = p,"p,™...p,™, is their always a p; in any SCA number distinct from all
previous SCA numbers? We conjecture: yes. ‘

(2) Smarandache Consecutive Deficient sequence (SCD); concatenate the first n deficient
numbers.

1,12, 123, 1234, 12345, 123457, 1234578, 12345789, 1234578910, 123457891011,
12345789101113, 1234578910111314, 123457891011131415,...

How many primes are among these numbers? Will there always be at least one prime
factor of any SCD number > 1 that has never before appeared as a prime factor in any
earlier SCD number? We conjecture: yes.

(3) Smarandache Abundant-Deficient consecutive sequence; a_d where a is the nth
abundant number and d is the nth deficient number, with " " representing
concatenation. -

121, 182, 203, 244, 305, 367, 408, 429, 4810, 5411, 5613, 6014,

6615, 7016, 7217, 7819, 8021, 8422, 8823, 9025, 9626, 10027,
10229, 10431, 10832, 11233, 11434, 12035, 12637, 13238,...
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How many primes are there among these numbers? How many squares?

{4) Smarandache Odd Abundant-Deficient consecutive sequence; oa_od where oa is

the nth odd abundant number and od is the nth odd deficient number, with "_"
representing concatenation.

9451,15753,22055,28357,34659,40951 1,4725i3,535515,577517,
598519,643521,661523,682525,724527,742529,787531,808533,...

We conjecture that there are an infinite amount of primes among these numbers.
How many of these numbers are triangular?

(5) Deficient numbers such that the sum of their individual digits after being raised to
their own power, become abundant numbers.*

15,26,33,39,50,51,57,62,68,69,75,79,82,86,93,97,99,
118,127,141,147,165,167,172,178,181,187,207,217,235,
239,242,244,248,253,257,259,271,275,277,284,293,295. ...

E.g. 147 is a deficient number and 1! + 4* + 77 = 823800 is an abundant number.

Are there infinitely many consecutive terms in this sequence? We conjecture: ves.
Axe there infinitely many A-tuples for these numbers? -

*We remark here that with modern software freely available on the Internet, such
as PARI/GP [3], it is easy to find large values of this sequence when searching a
small neighborhood. For example, it took only a few seconds to find:

12345678901234567890123456793, which is a number with the property stated
above.

(6) Abundant numbers such that the sum of their individual digits after being raised to
their own power, is also an abundant number.

24.42,66,96,104,108,114,140,156,174,176,180,222,224 228,
270,282,288,336,352,354,392,396,400,444,448,464,516,532,
534,560,572,576,594,644,650,666,702,704,708,714,720,740,...
E.g. 24 is an abundant number and 2* + 4* = 260 is also abundant,
Are there infinitely many consecutive numbers in this sequence?

What is the asymptotic estimate for the number of integers less than
10™ that have the property stated above?
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(7) Abundant numbers such that the sum of the factorials of their individual digits is an
abundant number.

36,48,54,56,66,78,84,88,96,336,348,354,364,366,368,378,

384,396,438,444,448 456,464,468,474,476,486,498,534,544,
546,558,564,576,588,594,636,644,648,654,666,678,...

E.g. 36 1s an abundant number and 3!+6!= 726 is abundant.

Are there an infinite amount of odd numbers in this sequence? We conjecture: yes.

Are there an infinite amount of consecutive terms in this sequence? We conjecture:
yes.

(8) Abundant-Smarandache numbers; n such that S(n) is an abundant number, where S(n)
1s the classic Smarandache function (A002034) [6].

243,486,512,625,972,1024,1215,1250,1536,1701,1875,1944,...
What is the 1000th term of this sequence?
Investigate this sequence.

(9) Abundant-Pseudo Smarandache numbers; n such that Z(n) is an abundant number,
where Z(n) is the Pseudo-Smarandache function (A011772) [6].
13,19,25,26,31,37,39,41,42,43,49,50,56,57,61,67,70,71,
73,74,75,76,78,79,81,82,84,89,93,97,98,100,101,103,108,
109,111,113,114,121,122,127,129,133,135,139,146,147, ...

Investigate these numbers.

(10) Smarandache Abundant-Partial-Digital Subsequence; the sequence of abundant

numbers which can be partitioned so that each element of the partition is an abundant
number. E.g. 361260 is an abundant number and it can be partitioned into 36_12_ 60

with 36, 12 and 60 all being abundant.

Find this sequence.

{(11) Abundant numbers A such that when the smallest prime factor of A is added to the
largest prime factor of A, it is also an abundant number.

246



5355,8415,8925,11655,13218,16065,16695,16998,19635,20778,
21105,23205,24558,25245,26436,26775,28338,29835,30555,
31815,33996,34965,37485,39654,40938,41556,42075,42735,...

E.g. the smallest prime factor of 5355 is 3 and the largest is 17; 17+3=20, an
abundant number.

What are some properties of these numbers?
What are the first ten abundant numbers A, such that A = 7 (mod 10)?

(12) Abundant numbers A such that the sum of the composites between the smallest and
largest prime factors of A is also an abundant number.

114,228,304,342,380,438,456,474,532,570,608,684,760,798,822,834.836,
876,894,906,912,948,1026,1064,1140,1182,1194,1216,1254,1314,1330,1368,
1398,1422,1460,1482,1520,1542,1580,1596,1644,1668,1672,1710,1752,1788,. ..

E.g. the smallest prime factor of 114 is 2 and the largest is 19. The sum of the
composites between 2 and 19 is: 4+6+8+9+10+12+14+15+16+18 = 112, an abundant
number.

What are some properties of these numbers? Are there any consecutive numbers in
this sequence?

(13) Smarandache Nobly Abundant numbers; n such that t(n) and o(n) are both abundant
numbers, where t(n) is the number of divisors of n and a(n) is the sum of the
divisors of n.

60,84,90,96,108,126,132,140,150,156,160,180,198,204,220,224,228,234,240,252,
260, 276,294,300,306,308,315,336,340,342,348,350,352,360,364,372,380,396,414,
416,420,432,444,460,476,480,486,490,492,495,500,504,516,522,525,528,532,...

E.g. the number of divisars of 60 is 12 and the sum of the divisors of 60 is 312, both
abundant numbers.

What are some properties of these numbers?

(14) Smarandache Nobly Deficient numbers; n such that t(n) and o(n) are both deficient
numbers, where t(n) is the number of divisors of n and (n) is the sum of the
divisors of n.

1,2,3,4,7,8,9,13,16,21,25,31,36,37,43,48,49,61,64,67,73,81,93,97,100,109,
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111,112,121,127,128,144,151,157,162,163,169,181,183,192,193,196,208 211,
217,219,225,229,241,256,277,283,289,313,324,331,337,361,373,381,397,400,. ..

Investigate this sequence.

(15) Smarandache Consecutive Abundant Digital Sum Deficient numbers; consecutive
abundant numbers such that their digital sums are deficient numbers.

5984,5985

7424,7425

11024,11025
26144,26145
27404,27405
39375,39376
43064,43065
49664,49665
56924,56925
58695,58696

E.g. 5984 and 5985 are consecutive abundant numbers and their digital sums
5+9+8+4 =26 and 5+9+8+5 =27, are both deficient numbers.
Is this sequence infinite? We conjecture: yes.

(16) Smarandache Powerfully Abundant numbers. Let the abundance of n be denoted
o(n) = a(n) - 2n, where o(n) is the sum of all positive divisors of n; then the
sequence is the least number m such that the abundance of m is equal to —10".

11,101,5090,40028,182525,2000006,
Is this sequence infinite?* What is the 100th term?

*If n is given, then it seems likely that there is some integer r>=1 such that
p=2"+10"-1is prime. Ifitis, then ®(2"" * p) =-10" [8].

(17) Let the deficiency of n be denoted a(n) = 2n — o(n). Below is the sequence of n
such that a(n) = t(n), where t(n) is the number of divisors of n.

1,3,14,52,130,184,656,8648,12008,34688, 2118656,...
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Is this sequence infinite? Investigate this sequence,

(18) Let the deficiency of n be denoted au(n) = 2n — o(n). Below is the sequence of n
such that a(n) is a perfect square* and sets a new record for such squares.

1,5,17,37,101 ,197,257,401 ,577,677,1297,1601,2597,2917,3137,4357,5477,
7057,8101,8837,12101,13457,14401,15377,15877,16901,17957,21317,22501,
24337,25601,28901,30977,32401,33857,41617,42437,44101,50177,52901,55697, ...

E.g. «(37)=36 a square which sets a new record for squares. a(101)=100 a square
which sets a new record for squares.

2597 is the only non-prime value >1 in the sequence above. What is the next
non-prime value? Investigate this sequence.

*Kravitz conjectured that no numbers exist whose abundance is an odd square [9].

(19) Least deficient number of n consecutive deficients such that all are abundant
numbers when they are reversed.

21,218,445,2930,4873,...

E.g. 218 is deficient and 812 is abundant, 219 is deficient and 912 is abundant;
hence 218 is the least number in a chain of 2. 445 is deficient and 544 is abundant,
446 is deficient and 644 is abundant, 447 is deficient and 744 is abundant; hence 445
is the least number in a chain of 3.

Is this seqence infinite? Investigate this sequence.

~(20) Let &(n) be a function that sums the deficient numbers between the smallest and
largest prime factors of n.

1,2,3,2,5,5,7,2,3,14,11,5,13,21,12,2,17,5,19,14,19,59,23 5,
5,72,3,21,29,14,31,2,57,134,12,5,37,153,70,14,41,21 43,59,
12,219,47,5,7,14,132,72,53,5,50,21,151,326,59,14,61,357,. .

E.g. &(n)= 59 because the smallest and largest prime factors of 22 are 2 and 11; the
sumn of deficient numbers between 2 and 11 is 2+3+4+5+7+84+9+10+11 = 59.
Investigate this function.
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ON SMARANDACHE REPUNIT N NUMBERS

Jason Earls
513 N. 3rd Street
Blackwell, OK 74631 USA

Abstract: We define three new sets of numbers somewhat similar to Repunit numbers {1]
and the Smarandache Unary numbers[2], which we call Smarandache Repunit N (SRN)
numbers. We report primes, properties, conjectures and open questions concerning SRN
numbers. Some subsidiary sequences are given along the way.

Reason’s last step is the recognition that there are an infinite number
of things which are beyond it. — Blaise Pascal, Pensees. 1670.

1. Introduction

In 1966 A. H. Beiler coined the term "repunit” for numbers consisting of N
copies of the digit 1. The term repunit comes from the words "repeated" and
"unit". Beiler also gave the first table of known factors of repunits [1]. These
numbers have the form '

R,= 10"-1/9

It is still an unsolved problem as to whether there are infinitely many primes
mn R, and much computer time has been expended looking for repunit
primes as well as factors. For example, In 1986 Williams and Dubner
proved Rgs; to be prime [7]. In 1999 the search was extended by Dubner
who found the probable prime Rygg0:[8], and L. Baxter later discovered the
probable prime Rggqs3 [6]. Concerning factors of repunits, Andy Steward
currently maintains a project to collate all known data on factorizations of
generalized repunits {9], which have the form

GR®. = b™1/b-1.

In this paper we consider three new classes of numbers based on repunits,

and similar to Smarandache Unary numbers (Smarandache Unary numbers

are formed by repeating the digit 1 p, times, where p, is the n-th prime),

which we call Smarandache Repunit N numbers. Now for some definitions.
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Definition: Smarandache Repunit Ending N numbers (SRE) (A075842) [4]
are defined as R, N where R, is the nth Repunit number with N
concatenated to the end; or n 1’s followed by n. These have the form

SRE = (10™1)/9*10" + n, where L is the number of
decimal digits of n.

11,112, 1113, 11114, 111115, 1111116, 11111117, 111111118,
1111111119, 111111111110, 1110110111111, 1111111111112,
111111111111113, ...

Definition: Smarandache Repunit Beginning N numbers (SRB) (A075858)
[4] are defined as N_R, where R, is the nth Repunit number with N
concatenated to the beginning, or n followed by n 1’s. These have the form

SRB = n*10™+(10™1)/9.

11,211,3111, 41111, 511111, 6111111, 71111111, 811111111,
9111111111, 101111111111, 1140001110220, 1210 11111112111,
1311111111 1110, ...

Definition: Smarandache Beginning and Ending N numbers (SRBE)
(A075859) [4] are defined as N_R,, N, where N is concatenated to the
beginning and end of the n-th repunit number. These have the form

SRBE = n*10"™" +10" * R + n, where R is the n-th repunit and
L 1s the number of decimal digits of n.

111,2112,31113,411114, 5111115, 61111116, 711111117,
111111118,91111111119, 10111111111110, 1111111111111171,
1211111111111112, ...
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In this paper we consider the problem of determining which values in all
three classes of Smarandache Repunit N numbers are prime, give some other
properties of these numbers, make conjectures, and offer some open
questions.

2. Prime Smarandache Repunit N Numbers

2.1 The known values of n such that SRE(n) is prime (A070746) [4] are:
1, 7,709, 2203, 4841,

Using PARI/GP [3] and the primality proving program Primo [5], SRE(709)
was found and certified prime by the author. The probable prime
SRE(2203) was also found by the author and Rick L., Shepherd found the
probable prime SRE(4841). Regarding the author’s computer search, it
consisted mainly of brute force with a couple of simple modular arguments
to weed out the numbers which were obviously not prime.

Conjecture: There are infinitely many SRE primes.

2.2 The known values of n such that SRB(n) is prime (A068817) [4] are:

1,2,5,7,10, 16, 20, 65, 91, 119, 169, 290, 428, 610, 905, 1051,
3488, 4526, 6445, ’

Using Chris Nash’s primality proving program Prime Form [10], the
probable primes SRB(4526) and SRB(6445) were found by the author. We
are unaware of how many of the values in the above list have actually been
certified prime. Regarding the author’s computer search, it consisted mainty
of brute force.

Conjecture: There are infinitely many SRB primes.
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2.3 Concerning SRBE primes, there are none.

Proof: Obviously the digital sum of every SRBE number is a multiple of
three; this follows from their definition. And since it is a well known fact
that if the digital sum of a number is divisible by three, then the number is as
well. Hence, there are no SRBE primes.

3. Other Properties of Smarandache Repunit N Numbers and
Related Quesitons

3.1 SRE Numbers.

Concerning squares in SRE numbers, none were found up to SRE(10000).
Heuristically, it seems highly unlikely that there will ever be a square SRE
number. A program was written in PARI/GP [3] to search for the least
square with n consecutive 1's and none out of the eight squares found came
close to exhibiting the required digit pattern of SRE numbers.

Conjecture: There are no square SRE numbers.

Open question: Are there any SRE cubes or higher powers?

Some values n such that SRE is divisible by the sum of its digits are:
2,6,44,51, 165, 692, 1286, and 4884.

Open question: Are there infinitely many SRE numbers with the above
property? '

Some values n such that the sum and product of the digits of SRE numbers
(and SRB numbers) are both prime are:

13,71, 1112, 1115, 1171, 1711, 5111,

Open question: Are there infinitely many SRE numbers with the above
property?
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3.2 SRB Numbers
Concerning squares in SRB numbers, there are none, and the proof is simple.

Proof: All squares greater than 9 must terminate in one of the following two
digit endings:

00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41,
44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96.

Obviously no SRB number will be a square, since by definition all SRB’s
terminate with the digits ‘11°.

Open question: Are there any SRB cubes or higher powers?

Some values n such that SRB is divisible by the sum of its digits are:
33, 659, 2037, 5021.

Open question: Are there infinitely many SRB numbers with the above
property?

3.3 SRBE Numbers

Concerning square SRBE numbers, none were found up to SRBE(10000).
It seems unlikely that there will be any SRBE squares, but the proof seems
difficult. The same empirical evidence given above for the nonexistence of
square SRB numbers applies to square SRBE numbers as well.
Conjecture: There are no square SRBE numbers.

Open question: Are there any SRBE cubes or higher powers?

Digression: Notice that if we divide the SRBE number 31113 by the
Product of its digits we get 31113/9 = 3457, a prime.

Open question: Are there infinitely many SRBE numbers with the
above property?
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Some Simple Advantages Of Reasoning In Intuitionistic Neutrosophic
Logic

Charles Ashbacher
Charles Ashbacher Technologies
Hiawatha, IA 52233 USA

Abstract: The traditional form of reasoning in logic and automated reasoning is severely limited
in that it cannot be used to represent many circumstances. In this paper, we demonstrate two
simple examples of the superiority of intuitionistic neutrosophic logic in representing the data of
the real world.

The Definition of Intujtionistic Neutrosophic Logic

Intuitionistic neutrosophic logic is an extension of fuzzy logic, where the elements are assigned a
four-tuple (t, i, f, u) representation of their truth value. t is the value of truth, i the value of
indeterminacy, f the value of false and u is the degree to which the circumstances are unknown.
The sumn of the four terms is 1.0 and all are greater than or equal to zero, which maintains
consistency with the classical and fuzzy logics. The logical connectives of and (A), or (V) and not
(—) can be defined in several ways, but here we will use the definitions used by Ashbacher to
define INL2[1].

Definition 1:
~(ty, 1y, f1, W) = (£, iy, ts, wy)

(th ila fb ul)/\ (tZ’ iz: f27 u2)=(t=min{tl :t2}’ izlut—f'—ua f:max{fl sz }7
u=min{ Uy ,Uz})

(t)_, il, fl, ul) v (tz, iz, fz, {12) = (t = max{h ,tg_ }, i= 1 —t—'f“ u, f= mm{fl ,fg }, u= mm{ u; U } )
It is easy to verify that the elements of INL2 are closed with respect to these definitions of the

basic logical connectives. Furthermore, many of the algebraic properties such as the associative
and commutative laws also hold for these definitions.

An Example of Clauses In Automated Reasoning

In automated reasoning, facts are defined by stating instances of a predicate. For example, in
Wos|2], the clause

FEMALE(Kim)

is used to represent that Kim is a female. A set of clauses is then developed which stores the
knowledge of all persons who are female. Clauses such as

MALE(John)

are used to represent that John is a male. A query to the database of facts will have a form
similar to
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FEMALE(Kim)?

which is asking the question, “Is Kim female?” In standard reasoning, the response would be a
yes or a true if the database of facts contains a clause of the form

FEMALE(Kim)
or there is a line of reasoning that leads to the conclusion that Kim is female.

In the case where there is no such fact or line of reasoning, the response would be no or false.
Therefore, a negative response could be a no that was inferred from the data or a case where Kim
does not appear in the database of females. The difference between these two conditions is
substantial and the INL2 allows for them to be distinguished. If any form of knowledge can be
inferred about the query, the value returned would be computed from the values. In the case
where there is no information about the clause, the value returned by the query would be
(0,0,0,1), which could be interpreted as unknown or unsupported by the facts. This value can
then be considered the default for all items not in the database.

Using Intuitionistic Neutrosophic Logic In The Representation of Gender
In his book, Wos[2] uses the fact
“MALE(Kim)
to infer that Kim is female. Such rigid, two gender representations are in fact inaccurate.
According to the Intersex Society of North America (http://www isna. org) approximately 1 in
2000 children are born with a condition of “ambiguous” external genitalia. The condition ranges

in a continuous manner from slight differences from the standard structure to a complete,
functioning set of male and female reproductive systems.

Intersex conditions cannot,be represented by the classical reasoning, for example if a person has
the functioning sex organs of both gender, then to say either FEMALE(x) or MALE(x) is true is
to arbitrarily assign a gender. F uzzy systems are also of little value, for if MALE(x) and
FEMALE(x) are both assigned values of 0.50, then the data supports the notion that the person is
half male and half female. This is just as ipaccurate, as the person is simultaneously of both sexes
rather than made up of parts of both.

These ambiguities are easy to describe using intuitionistic neutrosophic logic. By assigning a
nonzero value to the indeterminate value, it is then possible to represent the full spectrum of
possible genders. For example, a value of (0, 1, 0, 0) assigned to FEMALE(Jane) could mean
that Jane has complete sets of both sex organs.
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SMARANDACHE ITERATIONS OF THE FIRST KIND ON
FUNCTIONS INVOLVING DIVISORS AND PRIME FACTORS

Jason Earls

513 N. 3rd Street
Blackwell, OK 74631 Usa
Email: jcearls@kskc.rnet

ABSTRACT

In this paper we consider Smarandache Iterations of the First
Kind 72} upon four new functions which deal with divisors and prime
factors of positive integers, make conjectures and give some open
problems.

I INTRODUCTION

Consider Smarandache Iterations of the First Kind where a
function, f{n) <= n for all n, is iterated until it reaches a constant
value. For example, let d(n) be the number of positive divisors of n
and 2 the constant value to be reached. For n=8 we would have:

d(d(d(8))) = d(d(4)) = d(3) = 2.

Thus SI1 _d(8) = 3, because it takes 3 iterations to reach
the constant value 2.

Or, another way to represent this is:

8 -> 4 -> 3 -> 2; and say 8 takes three "steps” to reach 2
when iterating the function d{n).

In this paper’'we will drop the SI1 notation, use the "step”

terminology, and also investigate some functions where £(n)
is not <= n for all n.

II INVESTIGATIONS AND OPEN PROBLEMS

(A) Let f({n) be a function giving the absclute value of the
largest prime factor subtracted from the largest proper divisor of a
positive integer n:

f{n)=abs(lpd(n)-Lpf(n)).

(Here we take the absolute value to avoid getting negative values.)
For example, when n=13, the largest proper divisor is 1 and the
largest prime factor is 13, which would be:

1 - 13 = -12 and {-12] = 12, so £(13) = 12.

If we iterate the function f(n), how many iterations will it take

for a given integer n to reach 0? E.g. iterating £{13) gives:

259



13 -> 12 =-> 3 -> 2 -> 1
Iterating £(412) gives:
412 -> 103 -> 102 -> 34

Here 1s the sequence of the
zero upen iteration for n=1

Now a natural question to ask is:
requiring k steps to reach 0 when iterating f(n)?

programming package PARI/GP

the following table of these numbers for k <= 19

Number of steps

-
W @15 e W

i i sk el el
WO~ gy U W N

Note that 1, 12, and 52

"smallest number" sequence above.
there is an abundance of primes here.

the largest prime factor of
p is always 1. Because f(p)
steps for f(p) to reduce to

-> 0; 5 steps to reach 0.

~=> 0; 4 steps to reach 0.

number of steps it takes f£(n) to reach

to 100 (AD75660) [1]:

5,1,1,2,3,2,3,3,%,1,2,2,1,
1,1,2,3,2,3,3,2,1,2,2,1,4,
2,3,1,2,3,4,1,4,5,2,3,1,4,
2,3,3,1,3,1,1,1,3,4,3,2,3,

what is the smallest number
Using the

a program was written to construct
(AC74347) [1]:

[3]

Smallest number
1
2
3
12

13

52
53
C 131
271
811
1601
2711
8111
132997
34589
74551
147773
3105867
621227

are the only non-prime values in the

Of course it is easy to see why
f(p)=p-1 for any prime p since
p 1s p and the largest proper divisor of
will always equal p-~1 it will take more
zero upon lteration.

Open problems: What is the next non-prime number in this sequence,

if one exists? What is the

20th term of this sequence?

We conjecture that the above sequence: smallest number requiring
k steps to reach zero when iterating the function

f({n)=abs (lpd{(n)-Lpfin}), is

finite. Or stated another way, there is

a nurber K such that no number requires greater than K steps when

iterating f(n)

(B)

to reach zero.

Next we will perform the same operation but instead of using
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the largest proper divisor, we will define a function g({n) with Lpf(n)
and the largest common difference between consecutive divisors when
they are ordered by size, or: g(n)=Lcdd(n)-Lpf(n).

E.g. for n=9, the divisdérs of 9 are [1, 3, 9] with the largest
difference between consecutive divisors being 9%9-23=6. And the largest
prime factor being 3 and 6-3=3, so g(9}=3. When iterating this
function it becomes apparent that every number will eventually

reach 0 or -1, so we can ask for a sequence of the number of

steps it takes any n to reach 0 or -1 when iterating g(n). Heres are
the first one hundred wvalues (A0756b61) [1]:

fu—

~

[N e
~

-

~

-

SN N

1 7

~

=W e

r 7 1

~

I ’

-~ 0~
- 0w

=W W N

-~

\\
NN

~ 0~

’
14

e
N
W W
W N
BN
~
NN
~ ~ -
W W R
G N
Y ¥
v W W
R

~

W = W

I ’ f
’ 4 ’ r ’
’ r r ’ 4 4 r

7 7

Again, we ask the guestion: what is the smallest number
requiring k steps for the iterated function g(n) to reach ¢ or -17?
Below is a table of these numbers for k <= 26 (A074348) [1]:

Smallest number

Number of steps

oy
W0 0~ ey U W N

L
w N

o
nous

N N i
= O W M~ ;

b
he

NN
[ L I~y OS]

1
8
24
45
75
160
273
429
741
1001
1183
1547
2645
3553
4301
5423
10880
23465
33371
39109
49075
74011
98933
104371
107911
163489

Obviously none of the terms in the above sequence will be
prime since the largest common difference between any prime p is
p-1 and the largest prime factor of a prime is p, and (p-i)-p = -1,
therefore all primes will take one step only to reach -1.

Also, the author noticed no pattern when lcoking at the
factorizations ¢f the "smallest number" sequence above.

Open problem: What is the value for k=277

261

We conjecture that



this sesquence is finite (although not necessarily at k=26}.

(C) Now we will add a new concept to our iterative work, the
ceoncept c¢f reversing the elements of n in the functions we have been
exploring. This may seem unnatural, but let's get a little
adventurous, shall we?

Consider the function we worked with in section A, except now
we Wwill reverse lpd(n) and Lpf{n):

hin)=abs (reverse(lpd(n))~reverse(Lpi(n)))
that is, we are taking the absolute value of the reversal of the
largest proper diviscor of n minus the reversal of the largest prime
factor of n. This is an erratic function, and notice that since
h(n) is not <= n for all n:

123456789 10 11 12 13 14 15 16 17 18 19 20
hin) 012040620 010 330 0 0 670 6 59% 4
It deviates slightly from the definition of Smarandache Iterations of
the First Kind.

Here is the sequence of the number of steps it takes h(n) to reach
zero for n=1 to 100:

Again, the question is asked, what is the smallest number
requiring k steps for the iterated function h(n) te reach 02
Balow is a table of these numbers for k <= 12.

Number of steps Smallest number
1
2
3
12
31
23
56
102
193
257
570
1129

B
N OWm-3o U WP

The interesting thing to notice in the above table is that due
to the reversal of lpd(n) and Lpf(n), the "smallest number" segquence
above is not monctically increasing, i.e. 31 is the smallest number
which takes 5 steps to reach 0, while 23 is the smallest number which
takes 6 steps to reach zero. Also, note that there are seven primes
and five non-primes in the above sequence. S50 one class is not
predominating this sequence as in the others, at least for
the first twelve values.

Open problem: What is the value requiring 13 steps?
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We conjecture that this sequence is finite (although not
necessarily at k=12).

(D) Now we will use the functicn in section B, except we will
reverse its divisor/factor elements. That is, we will use:

i{n) = abs(reverse(Lcdd(n))-reverse(Lpf(n)})
and observe what happens wher 1t i1s iterated. First notice that
i(n) is not <= n for all n:

n 1234567891011 12 13 14 15 16 17 18 19 20 21 22
i(n) 1110101230¢ 10 310 0 4 610 610 4 34 0

Number of steps it takes i(n) to reach one or zero for n=1 to 100:

Table for k <= 19 of smallest number requiring k steps for the
iterated function i(n) to reach one or zero:

Number of steps Smallest number
1 2
2 8
3 24
4 48
5 54
6 176
7 215
8 161
9 287

10 ’ 650
11 512
12 609
13 432
14 455
15 . 749
16 774
17 2650
18 2945
19 : 2997

Again this sequence is not menotonically increasing. There are
no primes except 2 in the "smallest number”" sequence above since for

any prime p, i(p) will always give a power of 10; this follows from
the definiticn of our function. To see this, let's take the prime 569
as an example. Lcdd(569)= 568 and Lpf(569)}=569. When we reverse and
subtract we get 965-865=100. So, for any prime p, i{p)=10"1l(p)-1,
wnere 1l(x) is the number of digits of x. And for all p > 7, i(p) will
take 2 steps to reach 0. We conjecture that this sequence is finite
(although not necessarily at k=19).

CONCLUSION
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We have introduced four new functions having to do with prime
factors and divisors of integers, made four conjectures regarding
the finiteness of sequences involving Smarandache Iterations of the
First Kind upon these functions, as well as giving some open problems.
Our motivation for using prime factors and divisors in the functions
is that other iterations have been explored with operations of
multiplication {41 and addition of digits, along with some of the
more common number thecretic functions [5], and thus we thought it
would be interesting to investigate the underlying structure of
integers through some unusual functions involving divisibility
concepts when performing Smarandache Iterations of the First
Kind.

On a computer related note, we realize that an interpreted
algebra package such as PARI/GP, which the author used when
preparing this paper, is not the best way to investigate the open
problems given. A better way would be to write much faster programs
in C or a similar programming language.

In closing, we suggest one more idea that we have not yet
explored. The author thinks it would be very interesting to iterate
the function j(n)=Lpf{n)-Ndcd(n), where Lpf(n) is the largest prime
factor of n and Ndcd(n) is the number of distinct differences between
consecutive divisors of n, when ordered by size (A060682) [1]. Let
us know your results regarding iteration of this function!
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ABSTRACT
in this paper some basic properties of the Smarandache Sum of
Composites Between Factors function are given, investigations are
reported, conjectures are made, and open pfoblems are given. As
far as the author knows, this function is new and has never been

investigated previously.

KEYWORDS:
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I INTRODUCTION

The Smarandache Sum of Composites Between Factors function
SCBF(n) is defined as: The sum of composite numbers between the
smallest prime factor of n and the largest prime factor of n (A074037)
[1]. Exampie: SCBF(14) = 10 since 2*7=14 and the sum of the composites
between 2 and 7 is: 4+6=10.
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The first 50 values of SCBF(n) are:

n  SCBF({n) n  SCBF(n)

1 0 26 49
2 0 27 0

3 0 28 10
4 0 29 0

5 0 30 4

6 0 31 0

7 0 32 0

8 0 33 37
9 0 34 94
10 4 35 6
11 0 36 0
12 0 37 0
13 0 38 112
14 10 39 49
15 4 40

16 0 41 0
17 0 42 10
18 0 43" 0
19 0 44 37
20 4 45 4
21 10 46 175
2 a7 47 0o
23 0 48 0
24 49 0
25 0 50 4

H SOME PROPERTIES OF SCBF(n):

(A) SCBF(p) = 0, for any prime p, or p*k, and integers |
of the form 24i*34j, where i, ], and k are positive integers.
This follows from the definition.
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(B) If i and j are positive integers then SCBF(24i*5%)=4,
SCBF(24i*74))=10, etc. More generally, to allow other prime factors
between the smallest and largest, if i and k are positive integers
and j is a nonnegative integer, then SCBF(2"i*3"j‘S"k)=4, etc.
This follows from the definition.

(C) SCBF(n) is not a multiplicative function.
E.g. ged(14,15) = 1. SCBF(14*15) = 10 and SCBF(14)*SCBF(15) = 40.

i INVESTIGATIONS AND OPEN PROBLEMS

Using PARVGP [2], a software package for computer-aided number
theory, the author has explored and compared SCBF(n) with some of the
more cormmon number theoretic functions as well as some of the more

obscure functions in the hope of finding interesting results.

(A) There are solutions to SCBF(n) = n, although they are very
rare. Dean Hickerson [3] found one such solution, not necessarily the
smallest, which is: SCBF(245220126046) = 245220126046. His method was
to search for a prime p for which the sum S of the composites from 2
to p is a multiple of 2p. His reasoning was that since S < p*2/2, S
can't have any prime factors larger than p (or less than 2), so S
satisfies SCBF(n) = n. According to [3] the probability that S is
divisible by 2p is 1/(2p); since the sum of the reciprocals of the
primes diverges slowly to infinity, there are probably infinitely many
solutions of this type, although they will be very rare.

Is 245220126046 the smallest even solution to SCBF(n) = n? What
is the smallest odd solution?

(B) When SCBF(n) is compared with some of the more common number
theoretic functions, it is relatively easy to find solutions (although
the following two sequences were not thoroughly analyzed). E.g. some
solutions to bigomega(n) = SCBF(n), where bigomega(n) is the number of

prime factors of n, (with repetition) are:
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40,60,90,100,135,150,225,250,375,3584,5376,8064,

and solutions to SCBF(n) = d(n), where d(n) is the number of divisors
of n are:

10,15,112,175,245,567,4802,7203,

(C) Solutions n such that SCBF(n) = S(n) where S(n) is the
Smarandache function {A002034) [1], [4] are:

350,525,700,1050,1400,1575,1792,2100,2800 (AQ74055) {1]

Note that all of these numbers are of the forms: 2/i"3A*5AK* 7M1,
2N BAMTAK, 3ABATTAK, or 221777k, with S(x) and SCBF(x) being
10. What is the first term in the sequence not having the
aforementioned forms? Are there an infinite number of solutions
to the above funclional equation?

(D) Some solutions n such that SCBF(n) is prime (A074054) [1]
are:

a) 22,33,44,66,88,99,106,110,132,134,154,155,159,165,176,178
With the primes being:

b) 37,37,37,37,37,37,1049,37,3'}',1 709,37,331,1049,37,37,3041,
Note that in sequence D.a. above, there are consecutivé values listed.
Are there an infinite number of consecutive values? Are there an
infinite number of triple consecutive values such that SCBF(n) is a
prime? For example:

SCBF(889) = 6397, SCBF(890) = 3041; SCBF(891) = 37.

Due to the abundance of solutions found from a computer search for

sequence D.a, we are confident enough to conjecture that there are an
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infinite number of consecutive and triple consecutive solutions.
Concerning sequence D.b above, what is the first palindromic

prime value? The author has found none for n <= 10000. Yet due to the

erratic nature of the primes arising in the above list, we are

confident enough to conjecture that there will be at least one

palindromic prime solution in sequence D.b. What is the first prime

in sequence D.b consisting of fifty digits?

(E} From a purely recreational viewpoint, it is often
interesting to work with some of the more base 10 dependent functions
to find surprising results. The rest of this paper deals with some of
these base 10 dependent functions,

Let SFD(n) be the sum of factoriais of the digits of n (A061602)
[1]. Are there an infinite number of solutions to SCBF(n) = SFD(n)?
The author has found only three solutions:

120,200,1000.

Example: 120 = 243*3*5 and 4 is the only composite between 2 and 5;
11+2140! = 4,

(F) Let SDS(n) be the sum of squares of digits of n (A003132)
{1]. Are there an infinite number of solutions n to SCBF(n) = SDS(n)?

The author has found the following solutions:
20,200,2000,2754,5681,15028,19152,20000,25704,27945,31824,

Example: 2000 = 244*53 and 4 is the only composite between 2 and 5:
282+0/2+00 24072 = 4,

{E) Let R(n) be the reversal of n. Are there an infinite
number of solutions to SCBF(n) = R(n)?

IV CONCLUSION
The SCBF(n) function has been compared with various other number
theoretic functions and fruitful avenues of research are still very

much open. Different bases could be explored as well as making
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comparisons with other functions not mentioned here. The SCBF(n)
function also suggests that other functions can be defined by summing
different classes of numbers which lie between the smaliest prime
factor and the largest prime factor of any integer. For example,
S8BF(n) could be the sum of the square free numbers between the
smallest and largest prime factors of n. STBF(n) could be the sum of
the triangular numbers between the smallest and largest

prime factors of n. SPBF(n) could be the sum of the palindromes
petween the smallest and largest prime factors of n. The odd and even
numbers could be summed between the smallest and largest prime

factors of n as well. All of these functions should be investigated!

Thanks to Dean Hickerson for helpful comments concerning the
SCBF(n) function.
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ON THE MEAN VALUE OF m-TH POWER FREE NUMBERS*

Ya0o WEILI

College of Mathematics and Computer Science, Yanan University
Yanan, Shaanxi, P.R.China

ABSTRACT. A positive integer n is called m-th power free number if it can not be
divided by m-th power of each prime. The main purpose of this paper is to give a
k-th power mean value formula for the m-th power free numbers.

1. INTRODUCTION

A positive integer n is called m-th power free number if it is not multiples of
2™, 3™, 8™, 7™ ... p™ and so on. That is, it can not be divided by m-th power
of each prime. Generally, one obtains all m-th power free numbers if he takes off
all multiples of m-power primes from the set of natural numbers (except 0 and 1).
Let a(n,m) denotes the m-power free sequence . In problem 31 of [1], Professor
F.Smarandach asked us to study the properties of this sequence. In this paper, we
use the elementary methods to study the mean value properties of this sequence,

and give its k-th power mean value formula. That is, we shall prove the following
maln conclusion:

Theorem. For any positive integer x > 1 and n > 0, we have the asymptotic
formula

k41

k+1 C(m +O( ) f k=0

k41 .
> af(n,m) = k_;c(l)+ <<mk)+0( W) ifk <0 butk#—1;
niw logx -

where ((m) is the Riemman-zeta functzon.

If m = 3, then the sequence become the cube free number, from our theorem
we may deduce the following:

Corollary. For any positive integer z > 1 and n > 0, we have the formula

ght! L . .
E+1 Z’(IET +0(zF+3) if k>0
. k41 B L .
'r?.Sﬂ’-' 1 r Cr 3) _ . B
o 3@'2((3) +O0(z™?) ifk=—1.

Key words and phrases. M-th power free numbers; Mean value property; Asymptotic formula.
* ‘This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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2. PROOF OF THE THEOREM

In this section, we shall use elementary methods and the Euler summation for-
mula to complete the proof of the theorem. First for any positive integer z > 1 and
n > 0,1 k>0, we have the asymptotic formula

Z a®(n,m) = Z n® Z p(d) = Z d™ p(d) Z n*

n<e n<z dm|n d<xt/m n<ax/dm
ERL k
— dmlc d (dm) T
Z “’()<k+1 o dmk
d<gl/m
Tkt M(d) k+1
k1 g T
d<gt/m
.Tk;+1 1
- O k+1/m
k+1¢(m) T Ol )

Furthermore, if £ < 0 but & # —1, we have

Yetmmy= 3 amha Y

n<ez d<glt/m n<z/dm

> d™u(d) (%« +C(=k)+ 0 (d%-;) )

dSIl/m

itk ,Ll.(d)
. Wt _ dmk d Jk—l—l/m
S EEE Y Rl + 0k
dS;cl./m dsml/m

ri+k ] L C(—k)
1+ &kC(m)  ((—mk)

i

Il

i

+ O(a:k“"l/m)
Note that

- n 1
F(m)tg%l:@

we have

Fm) = i u(nT)ﬂl:gn _ (m)
n=1

From this formula, we can immediately get

H

— pu(n)logn _ ('(m)
D T
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If k= -1, we have

Z————a(nlm) S e Y-

n<T dsmunl n<@/dm
pld), =
= FAZ oo =
> T los

d<zt/m
d
= Z %(log:r - mlog d)

dsml/'m.

o

_ logz p(dylogd . 1 .,
= o) mnz::l TR O(z )
_logz  ('(m)

T {m) T " (m)

This completes the proof of the Theorem.

+ O(zt™™)
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A NOTE ON THE SMARANDACHE DIVISORS OF DIVISORS SEQUENCE
AND TWO SIMILAR SEQUENCES

Jason Earls
513 N. 3rd Street
Blackwell, OX 74631 USA

In [1l] Murthy defined the Smarandache Divisors of Divisors
sequence as T 1 = 3, and T n-1 = d{T n), the number of diviscrs of
T n, where T _n is smallest such number:

3, 4, 6, 12, 72, 5359872, 272186 * 37255,...
For example, 12 is the smallest number having 6 divisors.

Also in [X] Murthy conjectured that after incrementing the above
sequence by 1:

4, 5, 7, 13, 73, 559873, ...
it will contain all primes from the second term onward.

The purpose of this short note is to show that Murthy's Divisors
of Divisors sequence contained arrors from the 5th term onward, and
based on this fact we give two counterexamples to Murthy's conjecture.

A program was written in PARI/GP {[2] to compute the Smarandache
Divisors of Divisors sequence and the terms 3,4,6,12,60,5040,
were given. The value 72 was listed im the original sequence and while
72 dees have 12 divisors, 60 is the keast such number and therefore
should ke the 5th term. Seeing that cur computed sequence differed
from Murthy's sequence, we lookad these 6 terms up at OEIS [3] and
the correct version of the Smarandache Divisors of Civisors sequence
was found (A005287) [3]--

3, 4, 6, 12, 60, 5040, 293318625600,
6700591682045851683714764389274211123/
33837297640990904154667368000000000000

which when incremented by 1 becomes--

4, 5, 7, 13, 61, 5041, 293318625601,
6700591682045851683714764389274211129/
33837297640990904154667968000000000001

Concerning Murthy's conjecture, that all of the terms in the
incremented sequence will be prime from the second term onward,
notice that 5041 = 71"2; and the factors of

6700591682045851683714764389274211123/
338372876409909041546673680000C0000001
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are:

127 * 25624431339 *
205899454650832422686209906658432939349460456698031746583235457

which are both counterexamples to the conjecture.
Open question: What i1s the next term of the Smarandache Divisors
of Divisors sequence?

TWO NZW SMARANDACHE SEQUENCES

1. Let sopfr(r) denote the sum of primes dividing n (with
repetition) (A001414) [3].

n 1234567891011 12 13 14 15 16 17 18 1&g 20
sopfr(n) 0234557866 711 713 9 8 817 8 19 9

Let s{l})=2, s(ntl) = least k with sum of prime factors (with
repetition) = s(n}+1l (RO75721) [3]:

2,3,4,5,8,14,26,92,356,1412,5636,185559, 556671,
Example: 92 is a term because it's the smallest number such that its
sum of prime factors is equal to the previous term + 1;

92 = 272%23 and 2+2+23 = 26+1.

Conjecture: This sequence is infinite.

2. Let t(l}=2, t(n+l)= least k with sum of squares of digits = t(n).
2,11,113,78,257,18888,
For example, 113 is a term because the sum of its digits after
being squared i1s equal to 11, the previous term;

11 = 17°2+172+4372.

Problem: What is the next term of this seguence?
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Formula to Obtain the Next Prime Number in Any Increasing Sequence of
Positive Integer Numbers

Sebastiin Martin Ruiz
Avda. de Regla 43, Chipiona 11550 Spain
smaranda(@teleline.es
www telefonica.net/c/smruiz

Abstract:

In this article I give a generalization of the previous formulas [11,121.[3]
to obtain the following prime number, valid for any increasing sequence of
positive integer numbers in the one that we know the aloebralc expression
of its nth term.

THEOREM: Let{a,} ., anincreasing sequence of positive integers of which we
know the algebraic expression of its nth term,; that is to say:
Itexists f:N — N suchthat f(n)=a,
As f itis increasing also:

Itexists f~':N -> R inverse function of f
Letpe {a" }”Zl a term of the sequence, (It doesn't have to be prime)

Let us consider the expression obtained by me [1],[2],[3].[4] of the Smarandache prime
function:

[3 k _l
Gk) = — [;{?J_{ D :{1 if k is composite

k 0 ifk is prime

]_xJ =13 the greatest integer less than or equal to x.

And their improved expression [3]:

G(k) = —Hz + 22 (( ~1 /s k/b)]/k:l where all the divisions of this last expression

are integer d1v1sxons.
~ Then the next prime number in the sequence is:

NXTf(p)=f{f“(p)+l+ I B [<[610))

kS~ (pyr j=f 7 (et
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REMARKS:
1: It is necessary that pe{a,} sothat f~'(p)itisan integer number.

2: Although the sum in the expression NXTis not enclosed, we can calculate the sum

until a given M, to obtain a computable algorithm that then will see .(Examples).

The only inconvenience is , that when making this truncation, the last value obtained in
the algorithm is not correct in general , but all the other values are correct. (Examples).
3:With the improved expression of G(k) the calculation is much quicker. ‘
4:The function is increasing in strict sense. i.e.:

j<k=a, <a and a, #a,
Many sequences of integers numbers are increasing in strict sense.

5: The algorithm that is obtained is of polynomial complexity if £ is of polynomial
complexity (Examples).

PROOY:

Letpe{a, }"21 = {f(n)}”Zl as we already said, It doesn't have to be prime. p = f(j,)
with j, = 1.

NXT,(p)=fljo +1+ 3. T[G(FUD)

kzjo+1 j=j,+1

Al

2. TTetrun= 3 T1euuin+3 TIGU Gy =+

kzjo+l j=ju+1 k= jy+1 j=jo+] kzji j=jy+1

Where f(j,) =g is the next prime number to f(j,) = p in the sequence {f(n)}

nxt "

Jo+1<j<j ~1 and f(n) increasing, it implies that
p<fN<qg Jj:jo+l<j<ji~L

Therefore f() is composite for all j: j, +1< j < j, ~1,for which:
GUfUN=1 j:j,+1<j<j -1

On the other hand  G(f(/,)) =0 =G(q) since g s prime.
Returning to the previous expression has that:

(9 =ji~1=Up +D+14 3 0= j, = j, -1

kz jy

Lastly we have that:

NXT (p)= f(js +1+ j, = j, =1 = f(j,) = ¢ and the theorem is already proved.
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EXAMPLES: [ give three examples of the algorithm in MATHEMATICA language.:
Example 1:

M=40
40
filn_ ]=n"2+3
f1{p_] == Sqrt[p - 3]
Glx_] :=-Quotient|[(2 +
2*Sum([Quotient[(x - 1), s] - Quotient[x, s}, {s, 1, Sqrt[x]}]), x]

NXT[p ] = _

f[fl[p] + 1 + Sum[Product[G{f[j]], {j, f1[p] + 1, k}], {k, f1[p] + 1, M}]]
p =11}
4
While[p < f[M], (Print[NXT(p], " ", PrimeQ[NXT[p][; p = NXT[p])]
7 True
19 True
67  True
103 True
199  True
487 True
787 True
1447 True
1684 False

It is observed that the last value is not correct due to the truncation.

¢

Example 2:

M=40
40
fln_] :==n"3+4
filp_] = (p-H"(1/3)
G[x_] :=-Quatient[(Z +
2*Sum|[Quotient[(x - 1), 5] - Quotient|x, s, {s, 1, Sqrt[x]}]), x|

NXTip_] := :

f{f1{p] + 1 -+ Sum|[Product{G{f]j}], {i, f1{p] + 1, k}), {k, f1[p] + 1, M;}l}
g=ﬂﬂ
While[p < f[M], (Print[NXT[p], " ", PrimeQ[NXT(p]]]; p = NXT[p])]
31 True
347 True
733 True
6863 True

15629 True

19687 True

68925 False
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It happens the same thing with the last value.

Example 3:

M =125
125
fin_J=n"2+1
fi{p_] := Sqrt[p - 1]
G[x_] :=-Quotient[(2 +
2*Sum[Quotient[(x - 1), s] - Quotient[x, s], {s, 1, Sqrt[x]}]), x]

NXT[p_]:=

11 ﬂ[%l + 1+ Sum([Product[G([jl], {j, ft[p] + 1, 1], {k, fl[p] + 1, M}]]
p=
2

While[p < f{M], (Print[NXT{p], " "', PrimeQ[NXT[p}]}; p = NXT[p])]
5 True
17 True
37 True
101 True
197  True
257  True
401 True
577  True
677  True
1297  True
1601 True
2917  True
3137 True
4357 True
5477 True
7057  True
8101 * True
8837 True
12101 True
13457 True
14401 True
15377 True
15877 True

Except at most the last one, all the values obtained by the algorithm are correct.
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Smarandache Non-Associative (SNA-) rings

W.B. Vasantha Kandasamy
Department of Mathematics

Indian Institute of Technology
Chennai-600036

In this paper we introduce the concept of Smarandache non-associative rings,
which we shortly denote as SNA-rings as derived from the general definition of a
Smarandache Structure (i.e., a set A embedded with a week structure W such that a
proper subset B in A is embedded with a stronger structure S). Till date the concept of
SNA-rings are not studied or introduced in the Smarandache algebraic literature. The
only non-associative structures found in Smarandache algebraic notions so far are
Smarandache groupoids and Smarandache loops introduced in 2001 and 2002. But they
are algebraic structures with only a single binary operation defined on them that is non-
associative. But SNA-rings are non-associative structures on which are defined two
binary operations one associative and other being non-associative and addition distributes
over multiplication both from the right and left. Further to understand the concept of
SNA-rings one should be well versed with the concept of group rings, semigroup rings,
loop rings and groupoid rings. The notion of groupoid rings is new and has been
introduced in this paper. This concept of groupoid rings can alone provide examples of
SNA-rings without unit since all other rings happens to be either associative or non-
associative rings with unit. We define SNA subrings, SNA ideals, SNA Moufang rings,
SNA Bol rings, SNA commutative rings, SNA non-commutative rings and SNA
alternative rings. Examples are given of each of these structures and some open problems
are suggested at the end.

Keywords: Non-associative ring, groupoid ring, group ring, loop ring, semigroup ring,
SNA-rings SNA subrings, SNA ideals, SNA Moufang rings, SNA Bol rings, SNA
commutative rings, SNA non-commutative rings and SNA alternative rings.

This paper has 5 sections. In the first section we just recall briefly the definition of
non-associative rings and groupoid rings. In section 2 we define SNA-rings and give
examples. Section 3 is devoted to the study of the two substructures of the SNA-rings and
obtaining some interesting results about them. The study of rings satisfying identities
happens to be a very important concept in the case of non-associative structures. So in
this section we introduce several identities on SNA-rings and study them. The final
section is devoted to some research problems, which alone can attract students and
researchers towards the subject.

1. Preliminaries

This section is completely devoted to recollection of some definitions and results
S0 as to make this paper self-contained.
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Definition : A ring (R, +, 0) is said to be a non-associative ring if (R, +) is an additive
abelian group, (R, 0} is a non-associative semigroup (that is the binary operation o on R
1s non-associative) such that the distributive laws

ao(b+c)=aob+aocand(a+b)oc=aoc+bocforalla b, ce Rare satisfied.

Definition : Let R be a commutative ring with one. G any group (S any semigroup with
unit) RG (RS the semigroup ring of the semigroup S over the ring R) the group ring of

the group G over the ring R consists of finite formal sums of the form Za (n < o)
i=l
that is i runs over a finite number where ¢ € R and gi e G (g € S) satisfying the

following conditions

[X=3

i Zam—ZBm o, =p fori=1,2,.

i=l

1. En:(ximi + iBimi = i(oci +B,)m,

ii. (z o, I, ZJBimi J: Zykmk , My = mymy; where v = Zoyf;
i=] i=|

tv.  nmy=mrforalle Randmie G (m; € S).

V. rz rm, = Z(rq ym; forallr € R and Zrim; € RG. RG is an associative ring with
=l i=l

0 e R acts as its additive identity. Since 1€ R wehave =1 .GcRGandR. e =
R — RG where e 1s the identity element of G.

For more about group rings and semigroup rings please refer [4, 7, 10]. If we replace
the group G in the above definition by a loop L we get RL the loop ring which will
satisfy all the 5 conditions (i) to (v) given in definition. But RL will only be a non-
associative ringas I € R and e € L we have R < RL and L ¢ RL. Any loop ring RL is an
example of a non-associative ring with unit. For more about loop rings please refer [1, 3,
6, 8, 9] and about loops and groupoids refer [1, 2]. Now we define groupoid rings.
Groupoid rings though not found in any literature to the best of our knowledge can be
defined for any commutative ring R with identity 1. For G any groupoid the groupoid
ring RG is the groupoid G over the ring R consists of all finite formal sums of the form

Eri g; (1 running over finite integer) ; € R and g G satisfying the conditions i to v
i

given in the definition of group rings. But a groupoid ring is a non-associative ring as G

1s non-associative. Clearly IG < RG but R & RG in general for the groupoid G may or
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may not contain the identity element in it. Thus only when the groupoid G has the

identity element 1 we say the groupoid ring RG to be a non-associative ring with unit.
Here we give examples of a non-associative ring without unit.

Example 1.1: ]et Z be the ring of integers and L be a loop given by the following table:

Fllla|a|a|as]as
1 |1 Ja |a|ay|aslas
arja | 1 laslas|a| ag
B afas |1 lagfa|as
d3 | a3 | d4 | Q4 1 ds | as
alagazias a1 |a
As | A5 | ax | a4 | 2; | A3 e

Clearly the loop ring ZL is a non-associative ring with unit.

Example 1.2: Let Z be the ring of integers and (G, *) be the groupoid given by the
following table:

*laojap|ay]ay|a
A | | Ay | 84 [ Ay | A3
Ay | @1 {43 3] a |y
dp | @y | d4 | ay | a3
A3 a3 | d | afagiay
dg | a4 1 3 |3 | a| a

Clearly (G, *) is a groupoid and (G, *) has no identity element. The groupoid ring ZGis a
non-associative ring without unit element.

For more about groupoids, loops, loop ring, group ring, semigroup rings, please refer [1-
10].

Result: All loop rings RL of a loop L over the ring R are non-associative rings with unit.
The smallest non-associative ring without unit is of order 8 given by the following
example.

Example 1.3: Let Z, = (0, 1} be the prime field of characteristic 2. (G, *) be a groupoid
of order 3 given by the following table:

lelel oo
Bt | 81 | 8 | g4
g2 1 84 | & | &
g | 8 | & | &
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Z,G 18 the groupoid ring having only 8 elements given by {0, g1, 82, 83, g1 + &2, &2 + g3,

g1+ g3, 1 + 2 + ga}. Clearly, Z,G is a non-associative ring without unit. This is the
smallest non-associative ring without unit known to us.

2. SNA-rings with Examples
Here we introduce the notion of SNA-rings and illustrate them with examples.

Definition 2.1: Let S be a non-associative ring. S is said to be a SNA-ring if S contains a
proper subset P such that P is an associative ring under the operations of S.

Example 2.1: Let Z be the ring of integers and L be the loop given by the following table.
ZL the loop ring of the loop L over the ring Z is a SNA-ring.

*

ay d | a3 & | 85 | A | Ay
€ c ay d | a3 4 | as | a | a7
aq dy £ as5 a2 ds d3 d7 dq

as az as e ag as ar 2V} a
a3 | a3 42 | 3¢ e az A | A as
4 | A4 as | a3 | ag € a; | as | @
ds | as | a3 § ay | a4 | a € A | 8
dg ds ay a4 d1 as az € d3
a7 a7 dq | ds a2 dg d3 €

ForZ .e=2Z c 7. Zis a proper subset of ZL, which is an associative ring. Further if H;
= {e, &) is the cyclic group generated by a;; fori =1, 2,3, ..., 7. Clearly ZH; ¢ ZL is the
group ring of the group H; over Z which is a proper subset of ZL. So ZL. is a SNA-ring
leading as to enunciate the following interesting theorem.

Theorem 2.2: Let L be a loop and R any ring. The loop ring RL is always a SNA-ring.

Proof: Clearly by the very definition of the loop ring RL we have RI ¢ RL so the ring R
serves a non-empty proper subset, which is an associative ring. Hence the claim.

Example 2.2: Let R be the reals, (G, *) be the groupoid given by the following table:

W= || *
IO OO
el B R L VS
SIS NN
(UNE e RS o OS]
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RG is a non-associative ring which is a SNA-ring as R (2) is an associative ring which is
a proper subset of RG as this SNA-ring has no unit element. Thus it is a Smarandache
non-associative ring without unit When we take 0 € G we assume 0 = 0 for all non-zero
re RandOg=0forallge G.

Example 2.3: Let Z be the ring of integers. (G, *) be a groupoid given by the following
table:

wnlalwin|—|ol «
ale|lolaln|lclo
N =1 E NS FN

O || Do

AIDO[( RO [W

SOHR|IO| &
Ol | A

Consider the groupoid ring ZG, this has no identity but ZG is a non-associative ring,
which has a proper subset ZH, where H = {0, 3} is a sermigroup so ZH is an associative
ring. Thus ZG is a SNA-ring.

Example 2.4: Let Q be the field of rationals. (G, *) be the groupoid with unit element e
given by the following table:

#

W=k Ne | OO

ol ECIE V) Ranl RVS Y UL § RUS}

OlW| o R ta]e

O O|W|—|i]

IO [ — =

srlwlnl=lclo
riwwl—lolola

Clearly the groupoid ring QG is a SNA-ring Q . ¢ = Q = QG where Q is the associative
ring. Further QG is a SNA -ring with unit. Now in view of these examples we obtain the
following results.

Theorem 2.3: Let R be any ring and G a groupoid with identity. Then the groupoid ring
RG is a SNA-ring.

Proof: Obvious from the fact that identity element exists in G soR . = R ZRGsoR
serves as the associative ring to make RG a SNA ring with unit.

Theorem 2.4: Let R be a ring if G is a Smarandache groupoid then the groupoid ring RG
18 @ SNA-ring.
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Proof: Clearly the groupoid ring RG is a non-associative ring. Given G is a Smarandache
groupoid; so by definition of Smarandache groupoid G contains non-empty subset P of G
such that P is a semigroup. RP is a semigroup ring of the semigroup P over the ring R, so
that RP is an associative ring, which is a proper subset of RG. Thus RG is a SNA-ring.

3. Substructures of SNA-rings
In this section we introduce the two substructures viz. SNA subrings and SNA ideals.

Definition 3.1: Let R be a non-associative ring. A non-empty subset S of R is said to be a
SNA subring of R if S contains a proper subset P such that P is an associative ring under
the operations of R.

Now we have got two nice results about these SNA subrings, which are enunciated as
theorem.

Theorem 3.2: Let R be a non-associative ring; if R has a SNA subring then R is a SNA
subring.

Proof: Given R is a non-associative ring such that R contains a proper subset S which is a
SNA subring that is S contains a proper subset P which is an associative ring. Now Pc §

and S ¢ R so P < R that is R has a proper subset P that is an associative ring. Hence R is
a SNA-ring.

To prove the next theorem we consider the following example.

Example 3.1: Let Z be the ring of integers (G, *) be the groupoid given in example 2.3.
Clearly the groupoid ring ZG is a non-associative ring. Now consider the subset P = {0,
2,4]) Pis a sub groupoid of G so ZP is also a groupoid ring ,which is non-associative and
ZP is a subring of ZG. Clearly ZP is not an associative subring. So in view of theorem
3.2 we.can say if R is a SNA-ring and has a subring which is not a SNA subring of R.

This leads us to the following theorem.

JTheorem 3.3: Let R be a SNA-ring. Every subring of R need not in general be a SNA
subring of R,

Proof: From example 3.1 we see that ZH where H is generated by (0, 2, 4) is a subring of
R as it has no proper subset, which is a non-associative ring. So ZH is a subring, which is

not a SNA subring of R.

Now we proceed on to define SNA ideal.
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Definition 3.4: Let R be any non-associative ring. A proper subset I of R is said to be a
SNA right/left ideal of R if

1. Tisa SNA subring of R; say J < 1, J is a proper subset of I which is an associative
subring under the operations of R.

2. Forallie Iandje Jwe have eitherijorjiisinJ

If I'is simultaneously both a SNA right ideal and SNA left ideal then we say Iis a SNA
ideal of R.

Example 3.2. Let Z be the ring of integers (G, *) be a groupoid of order 8 given by the
following table:

~H ORI — O] ¥
NN W OO
IO I [~ [N —
HIVWIIO NN~
N[OV S|
(SRR Ll fo Y ROV Y Fan g LN
WO ~I]— O

IV WO AN Y] ROy
NI =INW S b o

Clearly ZG is a SNA-ring as H = {2} is a semigroup. The semigroup ring ZH is a non-
empty proper subset, which is an associative ring. Clearly 1= Z (0, 2, 4, 6 is a SNA ideal
of ZG. It is easily verified that I = Z{0, 2, 4, 6) is not an ideal of ZG. Similarly we see I; =
Z(1, 3, 5, 7) is also a SNA ideal of ZG, which is not an ideal of ZG. Consequent of this
example and the definition of SNA ideals we have following two theorems.

Theorem 3.5, Let R be any non-associative ring. If R has a SNA ideal then R is a SNA-
ring. : :

Proof. Obvious from the fact that if R has a SNA ideal say [ then we have proper subset J
C I'such that J is a SNA subring of R. So by theorem 3.3 R is a SNA-ring.

Theorem 3.6: et R be any non-associative ring. I be a SNA ideal of R, Then I in general
need not be an ideal of R.

Proof: By an example. Consider the non-associative ring given in example 3.2. Clearly
Z{0, 2, 4, 6) is a SNA ideal of ZG but Z{0, 2, 4, 6) is not an ideal of ZG as 3[Z(0, 2, 4, 6)]
=71, 3,5, 7). Clearly Z(0, 2, 4, 6) # Z(1, 3, 5, 7) in fact they are disjoint sets. Hence the
claim.
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Example 3.3: Let 7 be the ring of integers. (G, *) be as given in example 2.3. Clearly
Z(0, 2, 4) is an ideal of ZG but Z(0, 2, 4) is not a SNA ideal of ZG as Z(0, 2, 4) has no
proper subset P such that P is an associative subring of Z(0, 2, 4). Hence the claim.

4. SNA-rings satisfying certain identities

In this section we define SNA-rings satisfying certain classical identities like Bol,
Moufang etc. and obtain some interesting results relating to the loop rings of the loop and
groupoid rings of the groupoid. We give examples of them to make it explicit.

Definition 4.1: Let R be a non-associative ring we say R is a SNA Moufang ring if R
contains a subring S where S is a SNA subring and for all x, y, z in § we have
(X *y)*(z*x)=(x*(y * 2)) * x, that is the Moufang identity to be true in S.

Examples 4.1. Let Z be the ring of integers and let (L, .) be the loop given by the
following example:

0 e Bl | 8 |8 |84 |85
€ [C |8 |8 18 |8 |85
g[8 | € g 18 182 |84
B2 |82 |8 |€ |84 18 |
83 183 [ 84 |81 |C |8 |&
84 184 |83 |8 |8 € | &
s 185 [ 82 |8 18 (& [¢€

Clearly L is not a Moufang loop. Consider the loop ring ZL. ZL is a non-associative
which is a SNA-ring. Clearly L is not a Moufang loop. But ZL is a SNA-Moufang ring as
Z(e,g1) is a proper subset of ZL such that Z ¢ Z(e, g1) is an associative subring of Z{e,g;).
Now it is easily verified Z{e, g)) satisfies the Moufang identity for every x, y, z & Z(e.
g1)-

Example 4.2: Let Z be the ring of integers (G, *) be the groupoid given by the following
table: )

*10] 112131415
0jo0l4]2]0(4]2
L1311 {5[3}11]5
210(412[0]4]2
3131115311135
41014120} 4]2
S{3j1}15]3}1]5

ZG is the groupoid ring of G over Z. Clearly, every subring of ZG satisfies Moufang
dentity as every element of ZG satisfies Moufang identity, in fact ZG is a non-
associative ring, which satisfies Moufang identity so ZG is a SNA-ring. Here it has
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become important to say that one needs to define such rings as these rings have not been
found any place in literature.

Definition 4.2. A non-associative ring R is said to be a Moufang ring if the Moufang
identity, (x * y) * (z* x) = (x * (y * z))* X is satisfied forall x, y, z € R.

In view of this we have the following interesting result.

Theorem 4.3: If R is a Moufang ring and if R is a SNA-ring Then R is a SNA Moufang
ring.

Proof. By the very definition used in this paper.

Definition 4.4: Let R be a non-associative ring R is said to a Bol ring if R satisfies the
Bolidentity (x * y) * z) *y =x * ((y *z) * y) forall x, y, zin R.

Trivially all associative rings satisfy Bol identity hence we take only non-associative
rings.

Definition 4.5: Let R be a non-associative ring. R is a said to be a SNA Bol ring if R
contains a subring S < R such that S is a SNA subring of R and we have the Bol identity
(x*y)*z)*y=x*((y *2z) *y) to be true forall x, y, z in S.

In view of this we have the following theorem.

Theorem 4.6: Let R be a non-associative ring, which is a Bol ring If R, is also a SNA-
ring then R is a SNA Bol ring.

Proof: Clear from the' very definitions given in this paper.

Example 4.3: Let Z be the ring of integers, L be the loop given by the following table:

*

Ll EXSEN RS E o N NI RV RS RS
R ARl R N RORY Fo ) RN RN

(RO =[]

LUSH BooRl B\ R LW oy U BN Ho Y Ko
[¢' 38 KU Koo Il (O USRI RTR RSN NG I |

~t|e ] Bl —]o

NNl |lwin|-lo o
FN ENAIUVE Yo R R SRRV R X e Il T
Uij— s (o (O]

Clearly this loop is not a Bol loop so the loop ring ZL is not a Bol ring. But this loop ring
Zl.is a SNA Bolring as Z ¢ Z(e, 5)  ZL is a SNA Bol ring.

In view of this we have the following theorem.
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Theorem 4.7: If R is a non-associative ring which is a SNA Bol ring R need not in
general be a Bol ring.

Proof: Using the very definition and the example 4.3 we get the result.

Definition 4.8: Let R be any non-associative ring, R is said to be a right alternative ring if
(xy) y =x (yy) for all x, y € R. Similarly R is said to be left alternative ring if (xx) y =x

(xy) for all x, y € R. Finally we say R is an alternative ring if it is simultaneously both
right alternative and left alternative.

Example 4.4: 1.et Z be the ring of integers and L be a loop given by the following table:

*le || g g |glgs
€ C 181 | 8 | 8 | 84| Zs

L& € g3 | B5 | Z2 1 84
82 | 82 | 85| € | B | g | g
B3 | 8 | 84 | & e g | &2
B4 | Ba | 31 8 | S| e | g
s | 85 | 82 | B4 | 81 | & | €

The loop ring ZL is a right alternative ring as the loop L itself a right alternative loop.

Example 4.5: 1.et Z. be the ring of integers and L. be a loop given by the following table:

*lei 11231415
elef| 1 ]12|3]4]5
, 111 ]ets5|413]|2
2121 31lel 1|54
313|514 1el|21]1
4141211 15el3
S|1514(13(12|11e

Consider the loop ring ZL, it is easily verified that ZL is a left alternative ring as the loop
L is left alternative. In view of this we have the following results, which will be stated
after defining the concept of SNA alternative rings.

Definition 4.9: Let R be a ring, R is said to be SNA right alternative ring if R has a
subring S.such that S is a SNA subring of R and S is a right alternative ring that is (xy) y
= X (yy) is true for all x, y €S. Similarly we define SNA left alternative ring. f R is
simultaneously both SNA right alternative ring and SNA left alternative then we say R is
a SNA alternative ring.

Example 4.6: Let Z be the ring of integers. (G, *) be the groupoid given by the following
table:
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N iWIN|— O] %
NIRIWIN KOO

Wi|— O] — | r—
R[E|[WINDIR O

Nj— 1O |tnfr—iwa|w

R RIWIN RO
= [Ojn|— L ]tn

The groupoid ring ZG is a SNA-ring. Further, we have ZG to be an alternative ring as
well as a SNA alternative ring.

Definition 4.10: Let R be non-associative ring. R is said to be a SNA commutative ring if
R has a subring S such that a proper subset P of S is a commutative associative ring with
respect to the operations of R,

Note: Even if R is non-commutative, still R can be a SNA commutative ring. Further we
see trivially all commutative non-associative rings R will be SNA commutative rings. We

say R is a SNA non-commutative ring if R has no SNA commutative subring.

Example 4.7 Let Z be the ring of integers and L be a loop given by the following table:

ES

s |w|ol—|o

b A lnfo j— |-
Rlnl—0 Wik
—ip 0 B |u|w(w
Wl | —bo| i
DO fn|tn

ikl —io |o

The loop ring ZL is a non-associative ring. Clearly ZL is also a SNA commutative ring.
AsZ cZ (e, 3) = ZL. Z(e, 3) is a SNA subring of ZL, which has a proper subset Z, Z is
an associative commutative subring of ZL. Thus we ZL is non commutative but ZL is a
SNA commutative ring.

Example 4.8: Let Z be the ring of integers (G, *) be a groupoid given by the following
table:

N WIN— O] %
BN 1N E el B §iS] Fan ] Fan)

Ldlrs [tn W] —ftnfm—

NO[AR N[ ORI

~pln | W= lnlLafw
OO
Ui —h[La]—ttn
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Consider the groupoid ring ZG. Clearly ZG is non-associative non-commutative ring. But
ZG 1s a SNA commutative ring as Z(3) < Z(0, 3) < ZG. Clearly ZG is non-commutative
but ZG is SNA commutative ring. Hence the claim.

5. Problems:

This section is completely devoted to some open problems some may be easy and some
of them may be difficult.

Problem 1: Find the smallest non-associative ring. (By smallest we mean the number of
elements in them that is order is the least that is we cannot find any other non-associative
ring of lesser order than that).

Problem 2: Is the smallest non-associative ring a SNA-ring?

Problem 3: Find SNA-ring of least order.

Problem 4. Can on Z, be defined two binary operations so that Z, is non-associative (n<
oc)?

Problem 5: Find the smallest SNA-ring, which is a SNA Bol ring.
Problem 6: Does their exist SNA-rings other than the ones got from
1. loop rings,
2. groupoid rings

Problem 7: Find a SNA-ring R in which every ideal of R is a SNA ideal of R.

Problem 8: Find conditions on the ring R so that every subring of R is a SNA subring of
R. '

Problem 9: Characterize the SNA-rings R which has ideals but none of them are SNA
ideals of R.

Problem 10: Characterize those ring R in a SNA-ring which has subrings but none of the
subrings in R are SNA subrings of R.
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Abstract

In this paper we define Smarandache pseudo- ideals of a Smarandache ring. We prove
every ideal is a Smarandache pseudo-ideal in a Smarandache ring but every
Smarandache pseudo-ideal in general is not an ideal. Further we show that every
polynomial ring over a field and group rings FG of the group G over any Jfield are
Smarandache rings. We pose some interesting problems about them.

Keywords:

Smarandache  pseudo-right ideal, Smarandache pseudo-left ideal, Smarandache
pseudo-ideal.

Definition [1]: A Smarandache ring is defined to be a ring A such that a proper subset
of A is a field (with respect to the same induced operation). Any proper subset we

understand a set included in A, different from the empty set, from the unit element if
any, and from A.

For more about Smarandache Ring and other algebraic concepts used in this paper
please refer [1], [2], [3] and [4].

Definition 1 Let (A, +, ¢) be a Smarandache ring. B be a proper subset of A BcA)

which is a field. A nonempty subset S of A is said to be a Smarandache pseudo-right
ideal of A related to B if

1. (S, +) is an additive abelian group.
2.ForbeBandseS,sebe S,

On similar lines we define Smarandache pseudo-left ideal related to B. S is said to be a
Smarandache pseudo-ideal (S-pseudo-ideal) related to B if S is both a Smarandache
pseudo-right ideal and Smarandache pseudo-left ideal related to B.

Note: It is important and interesting to note that the phrase "related to B" is important
for if the field B is changed to B' the same S may not in general be S-pseudo-ideal
related to B' also. Thus the S-pseudo-ideals are different from usual ideal defined on a
ring. Further we define S-pseudo-ideal only when the ring itself is a Smarandache ring.
Otherwise we don’t define them to be S-pseudo-ideal. Throughout this paper unless
notified F[x] or R[x] will be polynomial of all degrees, n — o.
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Theorem 2 Let F be a field. F[x] be a polynomial ring in the variable x. F[x] is a
Smarandache ring.

Proof: Clearly F < F[x] is a field which is a proper subset of F[x], so F[x] is a
Smarandache ring.

If F is a commutative ring then we have the following:

Theorem 3 Let R[x] be a polynomial ring. R be a commutative ring. R[x] is a
Smarandache ring if and only if R is a Smarandache Ring.

Proof: If R is a Smarandache ring clearly there exists a proper subset S of R which is a
field. So R[x] is a Smarandache ring.

Conversely if R[x] is a Smarandache ring we have S < R such that $ is a field. So R
must be a Smarandache ring. Since R[x] = {i rixi/ri eR}. R[x]} cannot contain any
i=0

polynomial which has inverse. Hence the claim.

Example [: Let Q[x] be the polynomial ring over the rationals. Clearly Q[x] is a
Smarandache ring. Consider S = <n(x2 +1)/ne Q> is generated under ' +'. Clearly QS
< Sand SQ < S. So S is a S-pseudo-ideal of Q[x] related to Q.

Theorem 4 Let R be any Smarandache ring. Any ideal of R is a S-pseudo-ideal of R
related to some subfield of R but in general every S-pseudo-ideal of R need not be an
ideal of R.

Proof: Given R is a Smarandache ring. So ¢ # B, B — R is a field. Now | is an ideal of

R.SolIRgTand RI 1. Since Bc Rwe have Bl cIand IB < 1. Hence I is a S-pseudo-
ideal related to B.

- To prove the converse, consider the Smarandache ring given in Example 1. S is a S-
pseudo-ideal but S is not an ideal of Q[x] as xS is not contained in S. Hence the claim.

Example 2: Let R be the field of reals. %[x] be the polynomial ring. Clearly R[x] is a
Smarandache ring. Now Q < R[x] and R < R[x] are fields contained in R[x]. Consider

S = (n(x*+1)/neQ) generated additively as a group. Now S is a S-pseudo-ideal
p

relative to Q but S is not a S-pseudo-ideal related to R. Thus this leads us to the
following result.

Theorem 5 Let R be a Smarandache ring. Suppose A and B are two subfields of R. S be
a S-pseudo-ideal related to A. S need not in general be a S-pseudo-ideal related to B.

Proof: The example 2 is an illustration of the above theorem.
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Based on these properties we propose the following problems:

Problem 1 Find conditions on the Smarandache ring so that a S-pseudo-ideal which are
not ideals of the ring related with every field is a S-pseudo-ideal irrelevant of the field
under consideration.

Problem 2 Find conditions on the Smarandache ring so that every S-pseudo-ideal is an
ideal.

Example 37212 ={0, 1,2, 3, ..., 11} be the ring. Clearly Z, is a Smarandache ring for A
= {0, 4, 8} is a field in Z;; with 4* = 4 (mod 12) acting as the multiplicative identity.
Now § = {0, 6} is a S-pseudo-ideal related to A. But S is also an ideal of Z;5. Every
ideal of Zy; is also a S-pseudo-ideal of Z;; related to A.

Problem 3 Find conditions on n for Z, (n not a prime) to have all S-pseudo-ideals to be
ideals.

Example 4 Let My, be the set of all 2 x 2 matrices with entries from the prime field Z,
=1{0,1}.

o - o ollo oo ool K S0 TG
o o 0 ol 00 S OH e )

matrices under usual matrix addition and multiplication modulo 2.

be the ring of

0 0Yf1 O .
Now My, is a Smarandache ring for A = {(0 0],(0 Oj} is a field of My, Let S =

0V(1 1
{(g 0}{0 OJ}’ S is a Smarandache pseudo-left ideal related to A but S is not a

1 1 0 1 0 I 0
Smarandache pseudo-right ideal related to A for )x = as &
: 00,0 o) {oo 0 0

S.Now B = {(O OJ,[O Oj} is also a field. S = {[O O],(l l]} is a left ideal related
0 00 1 0 0/0 0

0 0Y/0 O
to B but not a right ideal related to B. C = {(0 0}(1 1]} 1s a field. Clearly S is not a

Smarandache pseudo-left ideal with respect to C. But S is a Smarandache pseudo-right
ideal with respect to C.

Thus from the above example we derive the following observation.
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Observation: A set S can be a Smarandache pseudo-left ideal relative to more than one
0 1
field. For § = {(O EJ((I) OJ} is a Smarandache pseudo-left ideal related to both A and
AN
B. The same set S is not a Smarandache pseudo-left ideal with respect to the related

o 0 0
field C = i{o OJ[? J} but S is a Smarandache pseudo-right ideal related to C.

Thus the same set S can be Smarandache pseudo left or right ideal depending on the

0 0 0
related field. Clearly S is a S-pseudo-ideal related to the field D = {[0 OJ{(I) J} .
Definition 6 Let R be a Smarandache ring. I be a S-pseudo-ideal related to A, A = R (A
a field). I is said to be a Smarandache minimal pseudo-ideal of R if I is another S-
pseudo-ideal related to A and (0) ¢ I; < limplies I, =l or I, = (0).

Note: The minimality of the ideal may vary in general for differeﬁt related fields.

Definition 7 Let R be a Smarandache ring. M is said to be a Smarandache maximal
pseudo-ideal related to a subfield A, A < R if M, is another S-pseudo-ideal related to A
and if M ¢ M, then M = M,.

Definition 8 Let R be a Smarandache ring. A S-pseudb-iclieéfI related to a field AAc
R is said to be a Smarandache cyclic pseudo-ideal related to a field A, if I can be
generated by a single element.

Definition 9 Let R be a Smarandache ring. A S-pseudo-ideal I related to a field A Ac
R is said to be a Smarandache prime pseudo-ideal related to A if x » yelimpliesx eI
ory el '

Lxample 5. Let Z, = (0, 1) be the prime field of characteristic 2. Z,[x] be the polynomial
ring of all polynomials of degree less than or equal to 3, that is Z;[x] = {0, 1, x, x*, x°,
I+x, 1 +x2, 1+x3,x+x2,x+x3, x2+x3, 1 +x+x3, | +x+x2, 1 +x2+x,x+x2+x3,
I+x +x*+ x3}. Clearly Zo[x] is a Smarandache ring as it contains the field Zs.

S={0, (1 +x), (1 +x, (x+ x3)} is a S-pseudo-ideal related to Z, and not related to
ZQ[X].

Example 6. Let Z, = (0,1) be the prime field of characteristic 2. S3={1, p1, P2, D3, P4» Ps}

I 23 13 2

1 2 3 12 3 1 2 3 1 2 3
»P3= , Da = and ps = . 7583 be the group ring
(321} P L213] bs (231) Ps [312} 23 sroup mng

of the group S; over Z,. Z,S; is a Smarandache ring. Z2S3 = {1, p1. pa, p3, Pas ps, 1 +pi,
L+py, o prtp2atps+pstps l+pi+pa+ps+py+ps). Now A = {0, pa+ps}isa

. 1 2 3 1 2 3
be the symmetric group of degree 3. Here | = ( ], pL = ( J, p: =
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field A © Z,S;. Let S= {0, 1 + p; + py + p3 + ps + ps} be the subset of Z,S5. Sis a S-
pseudo-ideal related to A. S is also a S-pseudo-ideal related to Z,

Theorem 10 Let F be a field and G be any group. The group ring FG is a Smarandache
ring.

Proof: F is a field and G any group FG the group ring is a Smarandache ring for F <
FG is a field of the ring FG. Hence the claim.

Theorem 11 Let Z; = {0,1}be the prime field of characteristic 2. G be a group of finite
order say n. Then Z,G has S-pseudo-ideals, which are ideals of Z,G.

Proof: Take Zy = {0, 1} as a field of ZG. Let G = {gi, g2, ..., gu1, 1} be the set of all
elements of G. Now S = {0, (1+g, + g2+ ...+ go.1)} is a S-pseudo-ideal related to Z, and
S is also an ideal of Z,G. Hence the claim.

Problem 4 Find conditions on the group G and the ring R so that the group ring RG is a
Smarandache ring?
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Abstrxact: In Riemannian {(differential) geometry, the differences between
Euclidean geometry, elliptic geometry, and hyperbolic gecmetry are understood in
terms of curvature. I think Gauss and Riemann captured the essence of geometry
in their studies of surfaces and manifolds, and their point of view is
spectacularly illuminating. Unfortunately, curvature is highly non-trivial to
work with. I will talk about a more accessible version of curvature that dates
back to Descartes.

Curvature

The Gauss curvature K is a generalization to surfaces of the curvature x¥ for
curves that is covered in calculus. The curvature for the graph of a function £
is clesely related to the concavity, and since £'' is the derivative of the
slepe of the tangent line, the concavity tells us how fast the slope is
changing. In other words, it is a measure of how much the curve is curving. The
concavity, however, tells us the rate of curvature relative to distances along
the X-axis. Therefore, the relationship between concavity and the shape of the
curve is distorted. This distortion is eliminated in the curvature by
considering the rate at which the unit tangent vector changes direction relative
to distances along the curve. Of course, with curvature comes the usually messy
arclength parameter ds.

Somewhat surprising is the fact that curvature has a nice geometric
interpretation. The curvature of a circle of radius r is k = 1/r, and if the
curvature at some point of a curve is ¥, then a circle of radius r = 1/Kk will be
the best fit circle at that point. For example, at the point (0,0) on the graph
of f£(x) = x?, the curvature is x = 2, which is the same as the curvature for a
circle of radius r = 1/2 (see Figure 1).

05 1 15
Figure 1. The curvature at (0,0) is X = 2 for both the circle and the parabola.

The Gauss curvature at a point on a surface (in RY) is the product of the
maximum and minimum curvatures relative to a vector normal to the surface. Here,
curvature “towards” the normal vector is positive, and curvature “away” is
negative. For example, at the point {0,0,0) on the surface f(x,y) = X* - y{
there are both positive and negative curvatures relative to the normal vector K
= [0,0,1] (see Figure 2). Above the Xx-axis, we have a parabola with curvature
Knax = +2 at (0,0,0), and below the y-axis, we have a parabola with curvature Kuwa
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= -2 at (0,0,0). The Gauss curvature at (0,0,0) is K = (+2)(-2) = —-4. This
surface would have a (non-homogensous) hyperbolic geometry because of its
negative curvature.

Figure 2. Saddle-shaped surfaces have negative Gauss curvature.

On the other hand, at the point (0,0,0) on the surface f(x,y) = x* + ¥’*$, the
curvatures are Kpin = Kmax = +2 in all directions. Therefore, the Gauss curvature
is K = (+2)(+2) = +4 (see Figure 3). This surface would have a {non-homcgeneous)
elliptic geometry because of its positive curvature. Note that if the normal

vector points downward, then K = (-2} (~2) = +4, 50 the choice of normal vector
deces not affect the value of K.

Figure 3. Bowl-shaped surfaces have positive Gauss curvature.

Elliptic and hyperbolic geocmetry

The Buclidean, hyperbolic, and elliptic plane geometries obtained from
variations of Hilbert's axioms (see [4] and [3]) would correspond to surfaces
(Riemannian 2-manifolds) with constant Gauss curvature. The Xy-plane has
constant Gauss curvature K = 0. The unit sphere has constant Gauss curvature K =
+1 (see Figure 4), and a model for the elliptic geometry axioms in Appendix A of
{3] can be chtained by identifying antipodal points on the unit sphere. This is
sometimes called the projective plane.
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Figure 4. The sphere has constant positive Gauss curvature.

Surfaces with constant negative Gauss curvature are more difficult to construct.
The pseudosphere is a surface with constant Gauss curvature K = -1 (see Figure
5, which is a graph of the parametric eguations X = cos U sin Vv, ¥ = sin U sin
v, Z = ln tan (v/2) + cos V).

Figure 5. The pseudosphere, 6 has constant negative Gauss curvature.

The pseudosphere has the same local geometry as the hyperbolic plane, but the
global geometry is very different (e.g., the pseudosphere has tiny circles with
no centers). The hyperbolic plane is generally visualized through a projection
like the Poincaré disk {(see Figure 6).

05

Figure 6. The Poincaré disk is a projection of the hyperbolic plane.
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Geometric formulas in the different geometries
One characteristic difference between the three geometries is reflected in the

angle sum of a triangle. In Euclidean gecmetry, the angle sum is 180°, It is
smaller than this in hyperbolic geometry and larger in elliptic geometry. In
particular for a triangle with area A and angles a, P, and ¥, on the unit sphere
{1) a+ P +y=mn+ A,

and in the hyperbolic plane

(2) a+ P +y=m- A

Similarly, the formula for the circunference of a circle with radius R differs
among the geometries. On a surface with K = -1,

(3) Gy

2n sinh (R),

and with K = +1

(4) Ce

i

2% sin(R).

We can see the relationships in the graphs of Figure 7. In the Euclidean plane,
the circumference of a circle is directly proportional to the radius. The
circumference grows more quickly in the hyperbolic plane, and on the sphere, the
circumference grows more slowly, and in fact, decreases for radii greater than
n/2. We can interpret this as saying that the hyperbolic plane spreads out more
quickly than the Euclidean plane, and the sphere spreads out mors slowly. I
think this interpretaticn 1s as important as the saddle/bowl characterization of
curvature.

0 05 1 15 2 25 3
Figure 7. The circumferences of circles of radius R.

Comparisong through projections

The projection of the hyperbolic plane onto the Poincaré disk is such that the
deformation of distances is symmetric about the origin. In particular, if a
point is a distance r from the origin in the Poincaré disk, then its distance
from the origin in the hyperbolic plane R is a function of r. The derivative of
R, therefore, describes the relationship between distances in the Poincaré disk
and distances in the hyperbolic plane. In particular, the circumference of a
circle with radius I centered at the origin will be 27r in the Poincaré disk and
2nr dR/dr} = 2m sinh(R) in the hyperbolic plane. This function R must therefore
satisfy the separable differential equaticn
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(3) r dR/dr = ginh(R),

and modulo a constant multiple, we must have

(6) R = 2tanh'r = ln((l+r)/(1l-1))
or
(7) r = tanh({(R/2).

It seems, therefore, that the Poincaré disk is the only Euclidean model that has
a rotaticnally symmetric metric.

Since the circumference formula for a circle in elliptic geometry is similar to
tne formula in hyperbolic geometry, we can look for a rotatiocnally symmetric
metric for elliptic geometry. On a surface with constant curvature K = +1, the
circumference of a circle of radius R is C. = 2% sin(R). The differential
equation resembles eguation (5),

(8) r dR/dr = sin(R),
and so

(9) R = 2tan’'r

or

(10} r = tan{R/2).

This corresponds essentially to stereographic projection, so we see that
stereographic projection and projection onto the Poincaré disk are comparable
abjects. In fact, stereographic projection restricted to the projective plane
maps onto the unit disk (see Figure 8). Note that under this prcojection,
antipodal points on the boundary of the unit disk are identified, so the lines
shown are actually closed c¢urves.

02 04,05 08

Figure 8. The image of the projective plane under stereographic projection.

Under these two projections, we can see the characteristic incidence properties
of hyperbolic and elliptic gecmetry. The metric properties are represented
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accurately, as well, but not in a linear fashion. Therefore, it is difficult to
separate metric properties of the non-Euclidean geometries from the properties
of the projection.

Impulse curvatures

Probably the most important aspect of non-Euclidean geometry that is not obvious
from the projections is that lines are strailght in both hyperbolic and elliptic
geometry. One advantage of studying “lines” (geodesics) on curved surfaces is
that the geodesic curvature is zero, and it is the space that curves rather than
the lines. The big drawback, of course, is that the only curved surface that we
can reasonably get our hands on is the sphere, and a Lénért Sphere [7] costs
$70.

I would like to propose another source of examples. Instead of working with
curved surfaces, consider surfaces with all of its curvature concentrated at
isolated points. This allows us to construct models out of paper, since the
curvature will be zero almost everywhere. The lines (gecdesics) on thase
surfaces are also very naturally straight. The simplest example would be a cone.
Here the geometry is mostly Buclidean, but also elliptic. The basic idea here
actually predates Gaussian curvature, and is due to Descartes (see [2]). It also
matches amazingly well with the big Gaussian curvature formula from the Gauss-
Bonnet theorem. The standard terminology in this context uses terms like angle
defect. I prefer the term impulse curvaturej.

Impulse functiocns

Impulse functions are used in applications where a phenomena acts over a very
short period of time (see [1]). In such instances, it is more convenient, and
probably more accurate, to assume that this action is instantaneous. The
corresponding impulse function must have properties that the usual real-valued
function does not. For example, an impulse function & would have constants ty
and k such that 8(t) = 0 if t#%;, and d8(t) = ® if t=t;, and the integral of & is
X over any interval containing tg.

g)B
c \
A
Figure 9. Impulse curvature for a curve.

Impulse curvature for curves

We will start by defining impulse curvature for curves. Consider Figure 9.

The circle in Figure 9 has radius r, so its curvature is k¥ =1/r. Since the
curvature is the rate at which the tangent vector changes direction, if we
integrate the curvature from point A to point B, we get the total changes in
directicon for the tangent vector. Since the curvature is constant, this integral
is simply the length of the arc times the curvature, and
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total curvature = r 8 1/r =8

Therefcre, from A to ¢ the tangent vector has turned to the left 8 radians.

The polygonal curve ABC is straight everywhere except at B. Since the segment AB
is tangent to the circle at A and the segment BC is tangent to the circle at C,
the initial and terminal tangent vectors are the same as for the arc AC. The
total change in direction along the path ABC, therefore, must be 6. Clearly, all
of this change cccurs at the point B, where the curvature is, in some sense,
infinite. If there is a curvature function for the path ABC, then it must be an
impulse function. The curvature is zero everywhere except at B, where the
curvature is infinite, and the integral of this curvature function is 9. We will
say that the path ABC has impulse curvature 0 at B.

An application of this concept (a.k.a. angle defect) concerns angle sums of
polygons, which are different depending on the number of sides. The angle sum of

a triangle in the plane is ® radians. For a quadrilateral, it is 2%, and for a
pentagon, it is 3®/2. It is easily shown that the total impulse curvature for

any polygon in the plane is 27. Here, integrating curvature arcund a polygon is
equivalent to summing the impulse curvatures at the vertices.

90\\

(AN

Figure 10. We can make a cone by removing a wedge.

Impulse Gauss curvature .

The surface of a cone has zero Gauss curvature everywhere except at the vertex,
where the curvature is, in some sense, infinite. The Gauss curvature function K
for a cone must therefore be a 2-dimensional impulse function. ALl that needs to
be determined is the value of the integral around the vertex. We can get a
pretty good idea of what it should be from an example. In Figure 10, we have the
ingredients for a cone. The cone is formed by removing the 90° wedge in the
upper right and identifying the two rays bounding the wedge. The fact that the
Gauss curvature is zero everywhere (except at the vertex) corresponds to the
fact that this cone-is constructed out of a flat piece of paper.

We can compute what the impulse Gauss curvature needs to be from the Gauss-—
Bonnet theorem. For a simple closed curve C bounding a simply connected region D
on a smooth surface, the Gauss-Bonnet theorem states that the Gauss curvature K

of the surface and the geodesic curvature ¥ (curvature within the surface) of
the curve are related by the formula
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(11) b K da=2n - [. x ds.

The circle of radius r in Figure 10 has geodesic curvature ¥ = 1/r. Its
circumference is 2nr, and on the cone, after removing a quarter of it, the
circumference is 3nr/4. Therefore,

(12) o K dA = 2m - 3mr/4 - 1/r = %/2 radians = 90°.

We will say that the impulse Gauss curvature at the vertex of this cone is 7/2
radians or 90°. The derivative formulas for the trig functions assume radian
measure, but other than that, there is no essential difficulty in switching back
and forth between degrees and radians. The Gauss-Bonnet theorem is simpler in
radians, of course, but it seems to be more convenient to work in degrees
otherwise.

It should be clear that there is nothing special about 90°. So if we remove a O-

wedge, then the impulse Gauss curvature should be 8. This all indicates several
important insights into the concept of Gauss curvature. One is that the natural
units for Gauss curvature should be units of angle measure, although the
definition suggests radians squared. Another is that a pesitive Gauss curvature
can be thought of in terms of a sector of space missing (relative to Ruclidean
geometry) . Of course on a smooth surface, the sectors are infinitesimal, and
~they are not all removed from a single point.

Also in Figure 10 are several lines. On the cone, these become two geodesics.
Note that they are both locally straight, and they exhibit elliptic behavior.
Here we see that having “less space” around the vertex has a fundamental effect
on the relationship betwesen lines.

Lines near an elliptic cone point
Forming a cone by removing a wedge leaves a vertex with positive impulse Gauss
curvature. We will call the vertex an elliptic cone point. The behavior of lines

near an elliptic cone point will exhibit behavior associated with lines in an
elliptic geometry.

Figure 11. A cone with impulse Gauss curvature 60°.

In Figure 11, we have a cone with a 60° wedge removed, so the vertex will have

positive impulse Gauss curvature +60° = +n/3 radians. Cutting along the heavy
dotted lines will allow us to draw the geodesics easily. Since this surface is
flat everywhere (except at the cone point}), geodesics are straight in the
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Euclidean sense. We can draw them with a ruler. To extend a geodesic acrcss a
cut, line up the edges and draw the gsodesic straight across with a ruler.

At the point P in Figure 11 is the start of a geodesic. With a ruler, continue
it across the cut marked B and extend it as far as possible. This geodesic

should intersect the other geodesic drawn near the letter Q. This forms a 2-gon
PQ.

With a protractor, measure the impulse curvatures at P and @. These should be
around 145° and 155°. Since the 2-gon PQ encloses the elliptic vertex with
impulse Gauss curvature 60°, we can check the Gauss-Bonnet theorem.

On the curve, the curvature is zero everywhere except for the two impulse
curvatures. Therefore, integrating around the 2-gon is equivalent to summing the
impulse curvatures, Jm X ds = 145° + 155°. Similarly, if D is the disk bounded
by the 2-gon PQ, then J, K dA = 60°. We have then, 60° = 360° - (145° + 155°) .

Draw segments QR and PR. Note that there are two triangles POR, since there are
two segments (R. Note also that these two triangles are not congruent, but they
satisfy the SAS criterion. Furthermore, since one of the triangles contains the

elliptic cone point and the other does not, their angle sums and total impulse
curvatures are different.

Lines arocund a hyperbolic cone point

Adding a wedge creates a “cone” with a kind of saddle shape. The result is an
impulse Gauss curvature that is negative, and we will call the vertex a
hyperbolic cone point. The behavior of lines near a hyperbolic cone point is
similar to that of lines in a hyperbolic geometry.

In Figures 12 and 13, we have the ingredients for a cone with impulse Gauss
curvature -60°.

,/,/--—‘;5—6—5__\\N
Ll B .
B
".‘ A:'

Figures 12 and 13. Adding a 60° wedge creates a cone point with impulse Gauss
curvature -60°.

Cut along the heavy dotted lines and continue the geodesics indicated at P and
Q. These should be parallel (i.e., they do not intersect).

Check the Gauss-Bonnet theorem by considering a quadrilateral that contains the
hyperbolic cone point.

An example with multiple cone points
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There are hardly any restrictions on constructing surfaces with multiple cone
points (I don't think you can construct one with total Gauss curvature greater
than 27), and I think it would be helpful for students to be able construct
counter-examples to theorems in Euclidean geometry.

My interest in flat surfaces with cone points began with a search for examples
of Smarandache geometries. My book [5], which can be downloaded for free,
contains some explorations in this context similar to the ones presented here.
One example that I thought was interesting had something that I called a
hyperbolic point.

A Smarandache Geometry 1is a geometry which has at least one smarandachely
denied axiom (1968).

An axiom 1s said smarandachely denied if the axiom behaves in at least two
different ways within the same space (i.e., validated and invalided, or only
invalidated but in multiple ways).

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian
geometries may be united altogether, in the same space, by some Smarandache
geometries. These last geometries can be partially Euclidean and partially
Non-Euclidean.

One of the first things proved in hyperbolic geometry is that through a point P
not on a line I, there are infinitely many lines parallel to 1. Hilbert's
hyperbolic axiom requires only twc (see [4]), but it is easily shown that all
of the lines between these two parallels are also parallel. Smarandache wondered
if there were any manifolds where there were only finitely many parallels (see
[9]). My example has exactly two, but uses cone points. A variation of this
example follows. I was later able to extend this to smooth surfaces (see [6]).

Since the cone points are parts of the space, we need to define how a geodesic
passes through one. We use the straightest geodesic concept of [8], which says

that the geodesic should make two equal angles at the cone point. For example,
arocund a cone point with impulse curvature ~60°, there is an “extra” 60° for a

total of 420°. A geodesic passing through this cone point would make two 210°
(straight) angles. .

150 7
150 , -, Fie
L ~"B
B
A | A p
| m n
AlA B BJ/C

Figures 14 and 15. The lines m and 2 are the only lines through P that are
parallel to 1.
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In Figures 14 and 15, the endpoints of the segment marked B are hyperbolic cone
peoints with impulse Gauss curvature -30°, and the endpoints of the rays marked D
and E are elliptic cone points with impulse Gauss curvature +30°. The line n

passes through one hyperbolic cone point making two 195° angles and one elliptic

cone point making two 1657 angles. This line n should lock straight after the
edges have been identified.

Also after the edges have been identified, it should be clear that both lines m
and 0 are parallel to 1. It is alsoc true that every other line through P will
intersect I. Draw in a couple before taping up the surface to verify this.

After identifying the edges, note that the lines I and m and the boundaries of
the diagram form a quadrilateral with four right angles. Is it a rectangle? Is
it a parallelogram?

References

1. W.E. Boyce and R.C. DiPrima, Elementary Differential Eguations and Boundary
Value Problems, John Wiley and Sons, New York, 1992,

2. H. Gottlieb, All the way with Gauss-Bonnet and the sociology of mathematics,
The American Mathematical Menthly 103 (6), 457-469, 1996.

3. M.J. Greenberg, Buclidean and Non-Euclidean Geometries, W.H. Freeman and
Company, New York, 1974.

4. D. Hilbert, Foundations of Geometry, Open Court, La Salle, IL, 19871.

5. H. Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM, USA,
2002. (available at www.gallup.unm.edu/~smarandache/Iseri-book.pdf)

6. H. Iseri, A finitely hyperbolic point on a smooth manifold (dvi-preprints
available).

7. Lénart Sphere, Key Curriculum Press, www.keypress.com

8. K. Polthier and M. Schmies, Straightest geodesics on polyhedral surfaces,
Mathematical Visualizations, 1998.

9. F. Smarandache, Paradoxist Mathematics, Collected Papers (Vol. II, 5-28),
University of Kishinev Press, 1997.

v

309



SMARANDACHE-GALOIS FIELDS

W. B. Vasantha Kandasamy
Department of Mathematics
Indian Institute of Technology, Madras
Chennai - 600 036, India.
E-mail: vasantak @md3.vsnl.net,in

Abstract: In this paper we study the notion of Smarandache-Galois fields and
homomorphism and the Smarandache quotient ring. Galois fields are nothing
but fields having only a finite number of elements. We also propose some
interesting problems.
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Definition [2]: The Smarandache ring is defined to be a ring A such that a
proper subset of A is a field (with respect with the same induced operations).
By proper set we understand a set included in A, different from the empty set,
from the unit element if any, and from A.

Definition 1: A finite ring S (i.e. a ring having finite number of elements) is
said to be a Smarandache-Galois field if S contains a proper subset A, A < §

such that A is a field under the operations of S.

Clearly we know every finite field is of characteristic p and has p" elements,
O<n<oe.

Example 1: LetZy0={0,1,2,3,4,5, .., 9} be the ring of integers modulo 10.
Zio is 2 Smarandache-Galois field. For the set A = {0, 5} is a field for 5* = 5

acts as a unit and is isomorphic with Z,.

Example 2: LetZs = {0, 1,2, ..., 7} be the ring of integers modulo 8. Zg is not
a Smarandache-Galois field, for Z; has no proper subset A which is a field.

Thus we have the following interesting theorem.

Theorem 2: Zpn 1s not a Smarandache field for any prime p and for any n.

Proof: Zg; is the ring of integers modulo p". Clearly Z is not a field for p“.p°

= 0 (mod p") whenr +s =n. Now any q € Z, if not a multiple of p will
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generate Z , under the operations addition and multiplication. If q is a multiple

of p (even a power of p) then it will create zero divisors. So Z . cannot have a

proper subset that is a field.

Theorem 3: Let Zy, be the ring of integers modulo m. m = P1-..Po t > 1, where
all p; are distinct primes. Then Z, is a Smarandache-Galois field.

Proof: Let Zn be the ring of integers modulo m. Let m = pi...pt, for every
prime p; under addition and multiplication will generate a finite field. So Z,, is
a Smarandache-Galois field.

Example 3: Let Z¢ = {0, 1, 2, ...,5}. Clearly {0, 2, 4} is a field with 4> = 4
(mod 6) acting as the multiplicative identity. So {0, 2, 4} is a field. Similarly
{0, 3} is a field. Hence Z4 is a Smarandache-Galois field.

Example 4: Let Z195 = {0, 1, 2, ...,104}be the ring of integers modulo 105.
Clearly A = (0, 7, 14, 21, 28, ..., 98} is a field with 15 elements. So Zyps is a
Smarandache-Galois field,

Example 5: Let Zos = {0, 1, 2, ... ,23} be the ring of integers modulo 24. {0, 8,
16} is a field with 16 as unit since 16° = 16 and {0, 8, 16} isomorphic with Z;.
S0 Za4 1s a Smarandache-Galois field.

Note that 24 = 2°.3 and not of the form described in Theorem 3.

Example 6: Z;>= (0,1, 2, ..., 11}. A= {0, 4, 8} is a field with 47 =4 {mod
12) as unit. So Z,; is a Smarandache-Galois field.

¢

Theorem 4: Let Zn, be the ring of integers with m = Pi'p,. Let A =
{pr".2p;". . (p2 =Dp;*.0). Then A is a field of order p, with p% . p% =
p;" for some o and p{ acts as a multiplicative unit of A.

Proof: let Zn and A be as given in the theorem. Clearly A is additively and
multiplicatively closed with 0 as additive identity and p{" as multiplicative
identity.

We now pose the following problems:
Problem 1: Zn is the ring of integers modulo m. If m = p%™ ..., p* with one of

o = 1, 1 i<t Does it imply Zy has a subset having p; elements which forms
a field?
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Problem 2: If Z, is as in Problem 1, can Zy contain any other subset other
than the one mentioned in there to be a field?
Further we propose the following problem.

Problem 3: Let Zy be the ring of integers modulo m that is a Smarandache-
Galois field. Let A < Z,, be a subfield of Zn. Then prove |Alm and 1Al is a
prime and not a power of prime.

A natural question now would be: Can we have Smarandache-Galois fields of
order p* where p is a prime? When we say order of the Smarandache-Galois
Jfield we mean only the number of elements in the Smarandache Galois tield.
That is like in Example 3 the order of the Smarandache-Galois field is 6. The
answer to this question is yes.

Example 7: Let Z,[x] be the polynomial ring in the variable x over the field Zp
(p a prime). Let p(x) = po + piX + ... + pax" be a reducible polynomial of degree
n over Z,. Let [ be the ideal generated by p(x) that is I = <p(x)).

Z,(x]
I=(p(x))

Now =R 1s a ring.

Clearly R bas a proper subset A of order p which is a field. So their exists
Smarandache-Galois field of order p" for any prime p and any positive integer
n.

Example 8: Let Z3[x] be the polynomial ring with coefficients from the ficld
Zs. Consider x* + x* + 1 € Z3[x] 1s reducible. Let I be the ideal generated by

Z5(x] _
__HI._,__{

x4 x* + 1. Clearly R = LI+ L T+2, 14+ 1+2% T+x+1, I+x+2,

IT+2x+ LI+ 2x +2, T+ x4 T+, ., T+ 2x + 2 + 2x% + 2} having 81
elements . Now

{I,I+1,1+2}cRisafield. So R is a Smarandache-Galois field of order 3*.

Theorem 5: A finite ring is a Smarandache ring if and only if it is a
Smarandache-Galois field.

Proof: Let R be a finite ring that is a Smarandache ring then, by the very
definition, R has a proper subset which is a field. Thus R is a Smarandache-
Galois field.

Conversely, if R is a Smarandache-Galois field then R has a proper subset
which is a field. Hence R is a Smarandache ring.

This theorem is somewhat analogous to the classical theorem "Every finite

integral domain is a field" for "Every finite Smarandache ring 1s a
Smarandache-Galois field".
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Definition 6: Let R and S be two Smarandache-Galois fields. ¢, a map from
R to §, is a Smarandache-Galois field homomorphism it ¢ 15 a ring
homomorphism from R to S.

Definition 7: Let R and S be Smarandache Galois fields. We say ¢ from R to S

is a Smarandache-Galois field isomorphism if ¢ is a ring isomorphism from R
to 5.

Definition 9: Let 7, be a Smarandache field. A < Z,, be a subfield of Z,,. Let
re Asuchthatr#0, r* = r (mod m} acts as the multiplicative identity of A.

Define %= {012,..., r-1}. We call {i—} the Smarandache quotient ring and

m

Z .. o
the operation on m: {O,1,..., r-1} is usual addition and multiplication

modulo r.

Theorem 9: Let Z, be a Smarandache-Galois field. A < Z, be a subfield of

L. %‘}- the Smarandache quotient ring need not in general be a Smarandache

ring or equivalently a Smarandache-Galois field.

Proof: By an example. Take Zy = {0 1, 2, ..., 23} be the ring of integers
modulo 24, Let A = {0, 8, 16}: 16° = 16 (mod 24) acts as multiplicative
identity for A. {A} =1{0, 1, 2, ..., 15}. Clearly T 2“) is not a Smarandache ring

or a Smarandache-Galois field.
‘Thus, motivated by this we propose the following:

Problem 4: Find conditions on m for Zy to have its Smarandache quotient
ring to be a Smarandache ring or Smarandache-Galois field.

Example 10: 7,,= {0, 1, ..., 11} is the ring of integers modulo 12. A = {0, 4,
1,2

2

8) is a field with 4° = 4 (mod 12) as multiplicative identity. ——%‘—2——= {0,

1ty

3} (mod 4) is not a Smarandache-Galois field or 2 Smarandache ring.

?

Example 11: Zp = {0, 1,2, ..., 20} is the ring of integers modulo 21. A = {0,
7, 14} 1s a subfield. {ZA} {0,12,....6}mod 7 is not a Smarandache-Galois field.

Let B = {0,3,6,9,12,15,18} < Z,;. Clearly B is a field with 15" = 15 {mod 21)
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N . zZ .
as a multiplicative unit. Now, ———2'——-—-—-{O,1,2,...,14} is a Smarandache-
{0,3,6,9,12,15,18}

Galois field.
Thus we have the following interesting:

Problem 5: Let Zy be the Smarandache ring. Let A be a subset which is a

field. When does an A exist such that —ZR'-“—is a Smarandache-Galois field?
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Abstract: In this paper we study the Smarandache semi-near-ring and near-
ring, homomorphism, also the Anti-Smarandache semi-near-ring. We obtain
some interesting results about them, give many examples, and pose some
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Definition [1 Pilz]: An algebraic system (N, +, *) is called a near-ring (or a

right near-ring) if it satisfies the following three conditions:

@) (N, +) is a group (not necessarily abelian).

(it) (N, *) is a semigroup.

(i) (o + 02) ® n3=n;en; + nyens (right distributive law) for all n;, ny, 13 €
N.

Definition [1 Pilz]: An algebraic system (S, +, ») is called a semi-near-ring

(or right semi-pear-ring) if it satisfies the following three conditions:

(i) (S, +) is a semigroup (not necessarily abelian).

(i) (S, ») is a semigroup.

(1) (m+n)ens=nyen;+mensforalln,nynze S (right distributive
law).

-Clearly, every near-ring is a semi-near-ring and not conversely. For more
about semi-near-rings please refer [1], {4], [S], [6], (7], (8] and [9].

Definition 1: A non-empty set N is said to be a Smarandache semi-near-ring
if (N, +, *) is a semi-near-ring having a proper subset A (A < N) such that A

under the same binary operations of N is a near-ring, that is (A, +, *) is a near-
ring.

Example 1: Let Ziy = (0, 1, 2, 3, .., 17} integers modulo 18 under

multiplication. Define two binary operations x and e on Z3 as follows:
X is the usual multiplication so that (Zs, X) is a semigroup;
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aeb=aforalla, be Z;.

Clearly (Zys, ®)is a semigroup under . (Zg, X, ) is a semi -near-ring. (Zg, X
*) is a Smarandache semi-near-ring, for take A = {1, 3, 5, 7, 11, 13, 17} (A, X,
*) is a near ring. Hence the claim.

]

Theorem 2: Not all semi-near-rings are in general Smarandache semi-near-
rings.

Proof: By an example,

Let Z™ = {set of positive integers}. Z* under + is a semlgroup Define # a binary
operationonZ ' asaeb=aforalla,be Z*. Clearty Z" under o is a semigroup.
Now (Z", +, @) is a semi-near- ring which is not a Smarandache semi-near-ring.

Now we give an example of.

Example 2 (of an infinite Smarandache semi-near-ring):

Let Muxa = {(a5)/ a; € Z}. Define matrix multiplication as an operation on M.
(M, X) is a semigroup. Define 'o' on M., as A » B = A for all A, B € Muy.
Clearly (Mpxn, X, *) Is a Smarandache semi-near- ring, for take the set of all nxn
matrices A such that IAl # 0. Denote the collection by A Awa € Mo
Clearly (Apn, X, ®)is a near-ring.

Example 3:

Let Zos = {0, 1, 2,...,, 23} be the set of integers modulo 24. Define usual
multiplication X on Zaq. (Zag, X) is a semigroup. Define '¢' on Zys asa e b =a
for all a, b € Zy. Clearly Zy is a semi-near-ring. Now Za4 is also a
Smarandache semi-near-ring. For take A = {1, 5, 7, 11, 13, 17, 19, 23}. (A%,
e)isa near—ring. So, Za41s a Smarandache semi-near-ring.

Motivated by the examples 3 and 4 we propose the following open problem.

Problem 1: LetZ, = {0, 1,2, ..., n-1} set of integers. n = pl.plt, where py,

P2, ... , pr are distinct primes, t > 1. Define two binary operations "' and ‘s’ on
Z,. X is the usual multiplication. Define 's'on Z, asaeb=aforalla, b e Z
LetA={1,q, ., q ) whereq, ..., qr are all odd primes different from py, ..
peand qq, ..., gr € Z,.

-

Prove A is a group under x. Solution to this problem will give the following:

Result: Z,={0, 1,2, ..., o-1} is a Smarandache semi- -near-ring under x and
defined as in Examples 1 and 3. Thus we get a class of Smarandache semi-

near-rings for every positive composite integer. Now when t = 1 different
cases arise.
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Example 4: Z,= (0, 1,2, 3} is a Smarandache semi-near-ring as (Zs, X, #) is a
semi-near-ring and (A = {1, 3}, %, ¢)is a near-ring,

Example 5: Z5=1{0,1,2,3,4, ... 8}. Now (Zo, %, ®) i3 a semi-near-ring. (A =
{1, 8}, X, ) is a near-1ing so Zs is a Smarandache near-ring. Clearly 8 is not a
prime number.

Example 6: Let Zys = {0, 1,2, 3, ..., 24}. Now (Zs, X, *) is a semi-near-ring.
{A=1{1, 24}, %, ] is a near-ring. Thus Z,s is a Smarandache semi-near-ring.

Theorem 3: Let (sz, X, ®) be a semi-near-ring. Clearly (sz, X, #) is a

Smarandache semi-near-ring.

Proof: Let (A = {1, pz-l}, X, ®) is a near-ring. Hence {sz, X, ®) is a

Smarandache semi-near-ring.

Hence we assume t >1, for non primes one can contribute to near -ring under

(x,*).

Corollary: Let (Zp" , X, ) be a semi-near-ring. (Zp“ , X, #) is a Smarandache

near-ring.

Proof: Take A = {1, p"-1} is a near-ring. Hence (an , X, *) 15 a Smarandache

semi-near-ring.
Thus we have a natural class of finite Smarandache semi-near-rings.

Definition 4 (in the classical way):
N is said to be a Smarandache near-ring if (N, +, #) is a near-ring and has a
proper subset A such that (A, +, ) is a near-field.

Now many near-rings contain subsets that are semi-near-rings, so we are forced
" to check:

Definition 5: N is said to be an Anti-Smarandache semi-near-ring if N is a
near-ring and has a proper subset A of N such that A is a semi-near-ring under
the same operations of N,

Example 7: Let Z be the set of integers under usual + and multiplication 's’ by
asb=aforalla, be Z (Z, +, *) is a near-ring. Take A =Z" now (Z*, +, ) is a

semi-near-ring. So Z is an Anti-Smarandache semi-near-ring,

Example 8: Let My = {(ay) / a; € Z}. Define + on M, as the usual addition
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of matrices and define » on My, by A B = A forall A,B e Musn- M, +, ©)
is a near-ring. Take A, = {(a) /aje Z'}. Now (A, +, ) is a semi-near-ring.
Thus Muxa is an Anti-Smarandache semi-near-ring.

We propose the following:

Problem 2: Does there exist an infinite near-ring constructed using reals or
integers, which is not an Anti-Smarandache semi-near-ring?

Example 9: Z[x] is the polynomial ring over the ring of integers. Define + on
Z[x] as the usual addition of polynomials. Define an operation * on Z[x] as
p(x) » q(x) = p(x) for all p(x), q(x) € Z[x]. Clearly (Z[x], +, ) is an Anti-
Smarandache semi-near-ring, for (Z'[x], +, ) is a semi-near-ring,

Now it is still more interesting to find a solution to the following question (or
Problem 2 worded in a negative way):

Problem 3: Find a finite Anti-Smarandache semi-near-ring.

Definition 6: Let N and N, be two Smarandache semi-near-rings. A mapping
h: N — Ny is a Smarandache semi-near-ring homomorphism if h is a
homomorphism.

Similarly one defines the Anti-Smarandache semi-near-ring homomorphism:

Definition 7: Let N and N; be two Anti-Smarandache semi-near-rings. Then
h: N — Ny is an Anti-Smarandache semi-near-ring homomorphism if h is a
homomorphism.

‘

References:

[1] G. Pilz, Near-rings, North - Holland Publ. and Co. (1977).

[2] J. Castillo, The Smarandache Semigroup, International Conference on
Combinatorial Methods in Mathematics, Il Meeting of the project
'Algebra, Geometria e Combinatoria’, Faculdade de Ciencias da
Universidade do Porto, Portugal, 9-11 J uly 1998.

3 R. Padilla, Smarandache Algebraic Structures, Bulletin of Pure and
Applied Sciences, Delhi, Vol. 17 E., No. I, 119-121, (1998)
http://www.gallup.unm.edu/~smarandache/ALG-S-TXT.TXT

(4] W. B. Vasantha Kandasamy, Idempotents in group semi-near-ring, IPB
Bulletin Sci., 13-17, (1991).

(5] W.B. Vasantha Kandasamy, Zero divisors in group semi-near-rings,
Riazi J. Karachi Math. Assoc., Vol. 14, 25-28, (1992).

[6] W. B. Vasantha Kandasamy, Zero divisors in semi-loop near-rings,
Zeszyty Nauk. Poli Rzesz., (79-84, 1994),

318



(7]
(8]
(9]

W. B. Vasantha Kandasamy, The units of semigroup semi-near-rings,
Opscula Math., Vol. 15, 113 -114, (1995).

W. B. Vasantha Kandasamy, Complex Polynomial near-rings, Analele
Stiin, Ale Univ,, Vol. IV, 29 - 31, (1995).

W. B. Vasantha Kandasamy, Idempotents and semi-idempotensts in
near-rings, J. of Sichuan Univ. Vol. 33, 330 - 332, (1996).

319



SMARANDACHE SEMI-AUTOMATON AND
AUTOMATON

W. B. Vasantha Kandasamy
Department of Mathematics
Indian Institute of Technology, Madras
Chennai - 600 036, India
E- mail: vasantak@md3.vsnl.net.in

Abstract: In this paper we study the Smarandache Semi-Automaton and
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Definition 1: Let S be a non-empty set. Then {S) denotes the free groupoid
generated by the set § as a basis.

We assume the free semigroup generated by S is also contained in the free
groupoid generated by S.

Remark: Even a(bc) # (ab)c for a, b, ¢ € S. So unlike a free semigroup
where the operation is associative in case of free groupoid we do not assume
the associativity while placing them in the juxtaposition.

Definition [W.B.Vasantha Kandasamy]: A groupoid G is said to be a
Smarandache groupoid, if G contains a non-empty proper subset S such that
S 1s a semigroup under the operations of the groupoid G.

Theorem 2: Every free groupoid is a Smarandache free groupoid.

Proof: By the very definition of the free groupoid we have the above
theorem to be true.

Definition [R. Lidl, G. Pilz]: A Semi-Automaton is a triple = = (Z, A, 8)
cousisting of two non-empty sets Z and A and a function 8: Z X A — Z, Z is

called the set of states, A the input alphabet, and & the next state function of
.

Definition [R. Lidl, G. Pilz): An Automaton is a quintuple A = (Z, A, B, &,

L), where (Z, A, 8) is a semi automaton, B is a non-empty set called the
output alphabet and A: Z x A — B is the output function.
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Now it is important and interesting to note that Z, A, and B are only
non-empty sets. They have no algebraic operation defined on them. The
automatons and semi automatons defined in this manner do not help to
perform sequential operations. Thus, it is reasonable to consider the set of
all finite sequences of elements of A including the empty sequence A, In
other words, in our study of automaton we extend the input set A to the free
monoid A and similarly for B. We also extend § and A from 7Z x A to Z
XA by definingze Zand a, ..,a, e A by

(z.A)

3 = z

§(z,a,) = § (z.a,)

S(zaa,) = 3((a)a,)

8 (z,a,a,..a, )= ) (S(z,a,az...an_l),an)
and

L:ZxA—>Bbyr:ZxA—>B

by

A (z,A) = A

A (z.a,) = A (z.a,)

~ (z,a,az) = A (z,al)?«.(ﬁ(z,al),az)
A (z,a,3,..a )= A (z,al)X(S(z,all),az...ar)

The semi-aﬁtomaton s = (Z, A, 8) and automaton A = (Z, A, B, §, A) are
thus generalized to the new semi-automaton = = (Z, K,S) and new
automaton A =(Z, A, B, 3, ).

Definition 3: =, = (Z, XS,-SS) 1s said to be a Smarandache semi-

automaton if A = (A) is the free groupoid generated by A, with A the unit
element adjoined with it. Thus the Smarandache semi-automaton contains
= = (Z, A,3) as a new semi-automaton which is a proper sub-structure of
5.

"Or equivalently, we define a Smarandache semi-automaton as one which
has a new semi-automaton as a sub-structure.

The advantages of the Smarandache semi-automaton is: if the triple = = (Z,
A, 8) is a semi-automaton with Z, the set of states, and d: Z X A — Z is the
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next state function, and when we generate the Smarandache free groupoid
by A and adjoin with it the empty alphabet A then we are sure that A has all
free semigroups. Thus each free semigroup will give a new semi-automaton.
Thus by choosing a suitable A we can get several new semi-automatons
using a single Smarandache semi-automaton.

Definition 4: A_S: (Z,KS,ES,SS,XS) is defined to be a Smarandache
automaton if A = (Z, X,_B_,S,-?:) is the new automaton, and KS and E-S

the Smarandache free groupoids so that A = (Z,K,E,S,X), the new

automaton got from A andA | is strictly contained in & _.

Thus Smarandache Automaton enables us to adjoin some more elements
that are present in A and freely generated by A, as a free groupoid; that will
be the case when the compositions may not be associative. Secondly, by
using Smarandache Automaton we can couple several automatons as:

= VU V7,
AU A, U Aq
B, UB;u...uB,
7\.1 | 7\.2 U.uJ 7\4“
= Sudu.Ub,

o> W N
I

where the union of A; U A and §; U &; denote only extension maps as U’ has
no meaning in the composition of maps, where A ; = (Z;, A;, By, &, A fori=
1, 2, 3, .., n and A = P:-; U 1;:—2 u...uP:mn. Now A_”n =
., XS,ES;XS,SS) is the Smarandache Automaton. A machine equipped
with this Smarandache Automaton can use any new automaton as per need.

Definition 5: A = (Z,,A,.B,,5..%) is called Smarandache sub-
automaton of Z-\: = (ZZ,KS,E,SS,IS) denoted by A—S'S P: it Zy ¢ 7>
and 3, and A, are the restriction of 5, and X, respectively on Z; x A, and

A_;' has a proper subset H < P:' such that H is a new automaton.

Definition 6: Leta andA , be any two Smarandache Automatons
\WhereP:: (Z1, A,,B,,5,,A,) and A_2= (Za, XQ,EQ,EZ,E). Amap ¢: A,
toA—z is a Smarandache Automaton homomorphism if ¢ is an automaton

homomorphism from ?-: ansz .



And ¢ is called a monomorphism (epimorphism or isomorphism) if ¢ is an
automaton isomorphism from A janda ,.

Definition 7: Leta | andA , be two Smarandache automatons, where A=
(Zi, A,B.6.%) and a,= (Z, A,.B,,5,,%,). The Smarandache
Automaton direct product of ZTI andA_2 denoted by Pz—l X P:—z is defined as
the direct product of the automaton A | = (Z;, A, By, 8, A) and A , = (Z,,
Az, B2, 85, M) with A | X Ao = (Z) X Zy, Ay X Ag, By X By, 8, A) with 8((zy,

22), (a1, a2)) = (Bi(z1, az), Sa(z2, a2)), M(z1, 22), (a1, 22)) = (Milz, 22), hal(za,
az)) for all (z1, z2) € Z; X Zp and (ay, a2) € A; X A,.

Remark: Here in A—l b A—zwe do not take the free groupoid to be

generated by A X A, but only free groupoid generated by A, x A, Thus the
Smarandache Automaton direct product exists wherever an automaton direct
product exists. We have made this in order to make the Smarandache

parallel composition and Smarandache series composition of automaton
extendable in a simple way.

Definition 8: A Smarandache groupoid G, divides a Smarandache
groupoid Gy if the the groupoid G, divides the groupoid Go, that is: if Gy is a
homomorphic image of a sub-groupoid of Gi,. In symbols: G||G,. In the
relation: divides is denoted by .

Definition 9: LetA—l= (Z, X,ﬁ,a ,7:1) andA-—z = (Zz,X,"E,_SZ,XZ) be two
Smarandache Automaton. We say the Smarandache Automaton A_l divides
the Smarandache automaton PT;_ if A_._l: (Z1, K,E,S],X,)divides A_2=
(Za, A, §,E7_,X2>, ie. if A—l 1s the homomorphic image of a sub-automaton
of Pz—z Notationally A—l IAMMZ.

Definition 10: Two Smarandache Automaton A [andA are said to be

equivalent if they divide each other. In symbols & ~A ;.

Theorem 11:
1. On any set of Smarandache Automata the relation 'divides' that is 'I' is
reflexive and transitive and '~' is an equivalence relation.

2. Isomorphic Smarandache Automaton are equivalent (but not
conversely),

Proof: By the very definition of 'divides’ (or ) and the equivalence of two
Smarandache Automaton the result follows.
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ABSTRACT

In this paper, we study the notion of Smarandache zero divisor in semigroups and rings.
We illustrate them with examples and prove some interesting results about them.
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Throughout this paper, S denotes a semigroup and R a ring. They need not in general be
Smarandache semigroups or Smarandache rings respectively. Smarandache zero divisors
are defined for any general ring and semigroup.

Definition 1 Let S be any semigroup with zero under multiplication (or any ring R). We
say that a non-zero element a € S (or R) is a Smarandache zero divisor if there exists a
non-zero element b in S (or in R) such that a.b = 0 and there exist x, y & S\ {a, b, 0} (or
x,ye R\ {a, b, 0}), x#y, with

l. ax=0o0rxa=0
2. by=0oryb=0and
3. xy#0oryx#0

Remark If S is a commutative semigroup then we will have ax = 0 and xa = 0,yb=20

and by = 0; so what we need is at least one of xa or ax is zero 'or' not in the mutually
exclusive sense.

Example 1 Let Z;; = {0,1,2,...,,11} be the semigroup under multiplication. Clearly, Z2 is
a commutative semigroup with zero. We have 6e Z,, is a zero divisor as 6.8 = O(mod
12). Now-6 is a Smarandache zero divisor as 6.2 = O(mod 12), 8.3 = O(mod 12) and 2.3 £
O(mod 12). Thus 6 is a Smarandache zero divisor. It is interesting to note that for 3e Z,,,
3.4 = 0(mod 12) is a zero divisor, but 3,4 is not a Smarandache zero divisor for there does

not exist a x,ye Z;3 \ {0} x #y such that 3.x = O(mod 12) and 4y = O(mod 12) with xy #
O(mod 12).
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This example leads us to the following theorem.

Theorem 2 Let S be a semigroup under multiplication with zero. Every Smarandache
zero divisor is a zero divisor, but not reciprocally in general.

Proof: Given S is a multiplicative semigroup with zero. By the very definition of a
Smarandache zero divisor in S we see it is a zero divisor in S. But if x is a zero divisor in
S, it need not in general be a Smarandache zero divisor of S. We prove this by an
example. Consider the semigroup Z, given in example 1. Clearly 3 is a zero divisor in
Ziz 25 3.4 =0(12) but 3 is not a Smarandache zero divisor of 12.

a b

Example 2 Let Syq = {(
c

a,b,c,de Z, = {0,1}} be the set of all 2 x 2 matrices

with entries from the ring of integers modulo 2. Sy, is a semigroup under matrix

1 0 0 0
multiplication modulo two, Now 0 0 in Ssyo is a zero divisor as 0 1 € S2.2 18 such

o obo o of = [ os 2o o) = o L5 oo o)
Now take x = {g (1)} and y = li? g:! n Syueo. We have [g (ﬂ[é g}={g g:l but
A e K e R K P
L ST S SR O T O O

0
Hence {O 0 1s a Smarandache zero divisor of the semigroup Soxs.

Example 3 Let Ryz = {(aij )such tha.ta-lj €Z,= {0,1,2,3}} be the collection of all 3x3

matrices with entries from Z;. Now Ry is a ring under matrix addition and
multiplication modulo four. We have

1 00
0 0 0 |e Rax3 is a Smarandache zero divisor in Rax.
0 0 2

For
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1 0 0Y0O O O 0 0 0 0 0 0Y0 0 O
00 0J0 1 O0|={0 0 Ofand|0 3 210 0 0 € R,; such that
0 0 2(0 2 2 0 0 0 0O 0 20 2 2
1 0 0Y0O 0 O 0 0 0
00 0j0 3 2|={0 0 0
00 2(0 0 2 60 00
0 0 0Y1 0 0 0 0 0
0 3 210 0 0l=(0 0 0
0 0 2/0 0 2 000
0 0 0YOD O O 0 0 0
0 1 00 0 0|={0 0 O
0 2 2j0 2 2 0 00
0 0 0Y0 0 0 0 06 0 0
0 0 010 L O0|=|0 0 0f=|0
0 2 2/0 2 2 0 2 0 0 0
0 0 0Y0O O O 0 00
0 3 210 0 0=|0 0 0
0 0 2|0 2 2 0 0 0
0 0 0YD 0 O 0 0 0 0 00
0 0 0]0 3 2|=]0 0 0|0 0 0
0 2 2{0 0 2 0 2 0 0 0 0
1 0 0
So{0 0 O |is Smarandache zero-divisor in Rays.
0 2

Example 4: Let Z = {0, 1, 2, ...., 19} be the ring of integers modulo 20. Clearly 10 is a
Smarandache zero divisor. For 10 . 16 = O(mod 20) and there exists 5, 6 &€ Za \ {0} with

5% 16 =0 (mod 20)
6 x 10 =0 (mod 20)
6 X 5 = 10(mod 20),

Theorem 3 Let R be a ring; a Smarandache zero divisor is a zero divisor , but not
reciprocally in general.
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Prooft By the very definition, we have every Smarandache zero divisor is a zero divisor.
We have the following example to show that every zero divisor is not a Smarandache
zero divisor. Let Zyo = {0,1,2,...,9} be the ring of integers modulo 10.

Clearly 2 in Z is a zero divisor as 2.5 = O(mod 10) which can never be a Smarandache
zero divisors in Zy. Hence the claim.

Theorem 4 Let R be a non-commutative ring. Suppose xe R\{0} be a Smarandache zero
divisor; with xy = yx = 0 and a,be R\{0,x,y}satisfying the following conditions:

1. ax=0and xa=0,
2. yb=0and by =0 and
3. ab=0andba=0.

Then we have (xa + by)* = 0.

Proof: Given xe R\{0} is a Smarandache zero divisor such that xy = 0 = yx. We have
a,beR\ {Ox,y}such that ax = 0 and xa # 0, yb = 0 and by # 0 with ab = 0 and ba # 0.

Consider (xa + by) = xaby + byxa + xaxa + byby using ab = 0, yx = 0, ax = 0 and yb=0
we get (xa + by) = (.

Theorem 5 Let R be a ring having Smarandache zero divisor satistying conditions of
Theorem 3, then R has a mlpotent element of order 2.

Proof: By Theorem 5 the result is true.
We propose the following problems.

Problem 1: Characterize rings R in whzch every zero divisor is a Smarandache zero
divisor.

Problem 2: Find conditions or properties about rings so that it has Smarandache zero
divisors.

Problem 3: Does there exists rings in which no zero divisor is a Smarandache zero
divisor 7

Problem 4: Find group rings RG which has Smarandache zero divisors ?

Problem 5:.Let G be a group having elements of finite order and F any field. Does the
elements of finite order in G give way to Smarandache zero divisors ?
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SOME PROBLEMS CONCERNING THE SMARANDACHE
SQUARE COMPLEMENTARY FUNCTION (1)

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong

P.R.China

Abstract: In this paper we solve three diophantine equations
concerning the Smarandache square complementary function.
Key words: Smarandache square complementary function;

diophantine equations

For any positive integer #, let SSC(n) denote the Smarandache
square complementary function of n (see [1]). In [2], Russo proposed

three problems concerning the equations

SSC(n) = SSC(n+1)-SSC(n+2), (1)
SSC(n)-SSC(n+1)=SSC(n+2), (2)

and
SSC(n)-SSC(n +1) = SSC(n +2)SSC(n+3), (33

[}

in this paper we conmpletely solve these problems as foliow

Su;ﬂported by the National Natural Science Foundation of China
(No.10271104), the Guangdong Provincial Natural Science Foundation
(No.011781) and the Natural Science Foundation of the Education

Department of Guangdong Province (No.0161).
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Theorem. The equations (1), (2) and (3) have no positive integer
solutions #.

Proof. Let » be a positive integer solution of (1). Then from (1) we

get
SSC(m=0 (mod SSC(n+1)). (4)

By [2, Theorem 6], we have
n=0 (mod SSC(n)), n+1=0 (mod SSC(r+1)).

—
wn
—

Since ged (n, nt+1)=1, we get from (5) that

ged (SSC(n), SSC(at1))=1. (6)
Hence, by (4) and (6), we obtain SSC(n+1)=1. It implies that n+!=m",
where m1 1s a positive integer.

[t m is even, then n is odd and ged (n, n+2)=1. It follows that

gcd (SSC(n), SSC(r+2))=1. (7)

Since SSC(n+1)=1, we get from (1) that
SSC(m)=SSC(n+2). (8)
The combination of (7) and (8) that SSC{m=SSC{m+23=1. It implies

that n=/*, where I is a positive integer. But, since ptl=m’, it is
impossible. ‘

Ilfn 1s odd, then ged(n, nt+2)=2. Since SSC(n+1)=1, then (8) holds
and SSC(n)=SSC(n+2)=2. It implies that

n‘:2x2, n+2=2yz, (9)
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L P,
where x,y are positive integers. Buy, by (9), we obtain y=x"+1, a
contradiction. Thus, the equation (1) has no positive integer solution #.

By the same argument, we can prove that (2) and (3) have no

positive integer solutions ». The theorem is proved.
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SOME PROBLEMS CONCERNING THE SMARANDACHE
SQUARE COMPLEMENTARY FUNCTION (II)

Maochua Le

Departinent of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong

PR.China

Abstract: In this paper we discuss a diophantine equations
concerning the Smarandache square complementary function.
Key words: Smarandache square complementary function:

diophantine equations

For any positive integer n, let SSC(n) denote the .Smarandache
square complementary function of n (see [1]). In [2], Russo asked that
it the equation

SSC(mn) = mkSSC(n), (1
has positive integer solutions (m, #n, k). In this paper we prove the
following result.

Theorem. The positive integer solutions (m, n, k) of (1) satisfy k=1.
Moreover, (1) has infinitely many positive integer soiutions (m, n, k)=

(z, &, ') with &=1, where a,b are coprime positive integer with square frec.

Supported by the National Natural Science Foundation of China
(No.10271104), the Guangdong Provincial Natural Science Foundation
(No.011781) and the Natural Science Foundation of the Education

Department of Guangdong Province (No.0161).
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Proof. Let (m, n, k) be a positive integer solution of (1). Further,
let d=gcd (m, n). Then we have
m=da, n=db, (2)
where a,b are coprime positive integers. Substitute (2) into (1), we get
SSC(mn) = SSC(d*ab) = SSC(ab) =SSC(a)SSC(b)

) ©
= (da)" SS5C(db),
since ged (a, H)=1. By (3), we have
SSC(a)SSC(h)=0 (mod aY). (4)
[t1s a well known fact that
a=0 (mod §SC(a)), b=0 (mod SSC(b)). (5)
Since ged (a, b)=1, we see from (4) and (5) that
SSC(a)==0 (mod aY). (6)

Further, since SSC(a)<a, we find from (6) that A=1. It implies that
the solutions (m, n, k) of (1) satisty k=1.

On the other hand, if ¢ and b are coprime positive integers with
square free, then we have

SSC(ab)y=SSC(a)SSC(b)=aSSC(h). (7)

[t implies that«(m, n, k)=(a, b, 1) is a positive integer solutien of (1}

Thus, the theorem is proved.
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SOME PROBLEMS CONCERNING THE SMARANDACHE
SQUARE COMPLEMENTARY FUNCTION (IV)
Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R.China

Abstract: In this paper we determine all solutions of an
exponential diophantine equations concerning the Smarandache square
complementary function.

Key words: Smarandache square complementary function;

exponential diophantine equations

For any positive integer #n, let SSC(n) denote the Smarandache
square complementary function of » (see [1]). In [3], Russo asked that
solve the equation

SSCn) +SSC(n) ™+ +8SC(n)=n, r>1. (1)
In this paper we completely solve this problem as follows.
Theorem. All positive integer solutions (1, r) of (1) are given by

the fallowing two cases.
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( 1) (n, r)=(363, 5).
(i1) (n, r)=(ab’, 2), where @ and b are coprime positive integers
satisfying a>1, b>1, a=p*-1 and a is square free.
The proot of our theorem needs the following lemma.
Lemma ([2]); The equation
x'-1

l =y, x>, y>1, r>2 (2)
‘-

has only the positive integer solution (x, y, r)=(3,11,5).
Proof of Theorem. Let (x, r) be a positive integer solution of (1).
Let x=SSC(n). Then from (1) we get
sl )=, (3)
Since »>1 we see from (3) that #>> 1.
[tis a well known fact that # can be expressed as
n=pieplalql ()
where py,-+* p, and g1,°*,q, are distinct primes, ay, -,  are odd
positive integers and  f),---, B, are even positive integers. We see from
(4) that
x=SSC(ry=p,"*p, ()
Since ged (x, g otxt)=1, we get from (3), (4) and (5) that
oy =-=qa,=1 and
x" -1,

1 :x“‘+---+x+lquﬁ'--~q,’6’. (6)
¥ —

Since f,---, 3, are even, let b> :ql'mqfﬂ'. Then b is a positive

integer satisfying
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X ‘I:bz' (7)

x—1
By Lemma, if 2, then from (7) we get (x, b, m)=(3,11,5). It
implies that (n, 7)=(363, 5) by (4) and (1 5).
If »=2, then we have
xt|=b?, (8)
Let a=x. By (4), (5) and (7),wé obtain the case ( 11 ) immediately. Thus,

the theorem is proved.
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SOME PROBLEMS CONCERNING THE SMARANDACHE
SQUARE COMPLEMENTARY FUNCTION (V)

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R.China

Abstract: In this paper we discuss the convergence for two series

concerning the Smarandache square complementary function.

Key words: Smarandache square complementary function; series;

convergence

For any positive integer n, let SSC(n) denote the Smarandache

square complementary function of n (see [1]). Let

i |
Sy =y —,
| %sscw
> 1
S — _1 n ,
: Zﬁ " Sscm

where a is a positive number. In [2], Russo proposed two

concerning the convergence of the series (1) and

(1)

problems
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Theorem 1. If a <1 then S, is divergeﬁce.
Theorem 2. The series S is divergence.
Proof of Theorem 1. Let ¢(z) denote the Riemann ¢ -function.
Then we have
2EDINE (3)
n=11
if z is a positive number. It is a well known fact that SSC(n)<n for -
any n. Hence, by (1) and (3), we get
Sy 2¢(a). (4)
Notice that é’(a) is divergence if a <. Thus, we see from (4) that S,
is divergence if a <1. The theorem is proved.

Proof of Theorem 2. Let

0 1 ‘
,,72.;:0 SSC(2m+1) ()
We see from (2) that
0 [ sJe ] . i
S’) = (_1/ (__1)2 (2/?7‘%‘1)7 e . (6)
- ,722:1 SSC(H /Z“ Z::o\ ’ SSC(2/( (2m + 1))
Since
, SSC(2m+1), if k
SSC(Z" (Zm ) j SC2m+1), i is even, 7
! (2SSC(2m + 1), if k is odd,
we get from (5), (6) and (7) that
S2=—S+;S+S+;S+S+---. (8)

[t implies that S; is divergence. The theorem is proved.
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THE SMARANDACHE COMBINATORIAL
SEQUENCES

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R.China

Abstract: Let » be a positive integer with r=>1, and let SCS(r)
denote the Smarandache combinatorial sequence of degree r. In this
paper we prove that there has only the consecutive terms 1,2,-r of
SCS(r) are pairwise coprime.

Key words: Smarandache combinatorial sequences; consecutive

terms; divisibility

Let r be a positive integer with »>1. Let SCS(r)= {a(r,n)};@:l
denote the Smarandache combinatorial sequenée of degree ». Then we
have

a(r,n)y=n, n=1,2,"

I3 ()

b
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and a(rn)(n>r) is the sum of all the products of the previous terms of
the sequence taking » terms at a time. In [2], Murthy asked that how
many of the consecutive terms of SCS(r) are pairwise coprime. In this
respect, Le [1] proved that SCS(2) has only the consecutive terms 1,2
are pairwise coprime. In this paper we completely solve this problem as
tollows.
Theorem. For any positive integer » with =1, SCS(r) has only
the consecutive terms 1,2,7-+,~ are pairwise coprime.
Proof. By the define of SCS(»), if nzr, then we have
a(r,n):Za(r,nl)a(r,nz)---a(r,,n,,), (2)
where (#,12,*,1,) thrbugh over all integers such that 1 S»<Tny<T--- <<
n.<n. Hence, by (2), we get the recurrence
a(r,n+1):a(r,n)a(r——1,n—1)-+-a(r,rz). (3)
Therefore, we find from (3) that if n>r, then
a(r,n+1)=0. (mod a(r,n)). {4)
It implies that SCS(r) has no consecutive terms after a(r,#) are pairwise

coprime. Thus, by(1), the theorem is proved.
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A CONJECTURE CONCERNING
INDEXES OF BEAUTY

Maohua Le
Departiment of Mathematics

Zhanjiang Normal College
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Abstract. In this paper we prove that 64 is not an index of beauty.

Key words: divisor, index of beauty,

For any positive integer n, let d(x) be the number of distinct
divisors of n. It 13 a well known fact that if
(1) =l py e p)
is the factorization of 1, then we have
{(2) d(n)=(a, + Day + 1) {a, +1
(see[1]). For a fixed positive integer m, it there exist a positive integer

7 such that

I4)
/3 -
3 m= —-
A0
d{
th s | - i . .
wen a7 s calied an index of beauty. Recently, Murthy [2] nronosed the

following conjecture:

Conjecture Every positive integer is an index ol beauty.

In this paper we give a counter-example for the above-mentioned
conjecture. We prove the following result:

Theorem 64 is not an index of beauty.

Proof We now suppose that 64 is an index of beauty. Then there

exist a positive integer # such that



(4) n=64d(n).

We see from (4) that » is even. Hence, n has the factorization

(5) n=2"p"-p’,

where p, -, p, are odd primes with p,<<---<{p,, a, is a positive
integer with a,==0, a,, -*-, a, are positive integers. Let

(6) b=a, —o0.

By (4), (5) and (6), we get

(7) 20 pie pt = (b4 T)(a, +1)-(a, + 1),
Since p,, -+, p, are odd primes, we have
. 2
®) pr > (a4 1), i= 1
3 _

From (7) and (8), we get

(9) b+7=2"

TN
J
__“
d
[V
~J
>
)

It implies that b<2.
If b=2, then from (7) we get =1 and
(10) 4 dph = 9(aI + 1),
whence we get p;=3, a, =2 and
(11) 4.3 =g +1.
Since 4-3%7* >4(1 + (a, - 2)log3)>4(a, —1)>a, +1, (11)is impossible.

If b=1, then from (7) we get
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(12) i p =4(a, +1)(a, +1),
Since p,, -, p, are odd primes, (12) is impossible.
[f h=0, then from (7) we get
(13) pipl=a, +1)(a, +1)
We see from (.13) that a,+1, ---, a+1 are odd. It implies that a;, -, a,
are even. So we have ¢,=2 (i=1, -+, r) and
(14) Pt z3a, +1)i=1,r
By (13) and (14), we get /=1. Further, by (13), we obtain p,=7 and
(15) 797 =, + 1,

However, since a,=2, (15) is impossible. Thus, 64 is not an index of

beauty. The theorem is proved.
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THE SMARANDACHE-RIEMANN ZETA SEQUENCE

Maohua Le
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Abstract. [n this paper we prove that the Smarandach-Riemann
sequence Is not a sequence of integers. Moreover, no tWo mnteger
terms of this sequence are relatively prime.

Key words: Riemann zeta function, Smarandache-Riemann zeta

sequence

For any complex number s, let
. . _ " —¥
(1) C(s)=2k
k=]
be the Ricmann zeta function. For any positive integer 7, let 7, be a

number such that

/) B 7 JT;’_N
< L) = —
(2) ¢ (2n) —_
where 7 is ratio of the circumference of a circle to its diameter. Then

the sequence 7 ={7.}" is called the Smarandache-Riemann zeta

sequence. In [2] Murthy helieved that T

Stmultaneous, he proposed the following conjecture:
C‘oxxjectur'e No two terms of T are relatively prime.
In this p\aper we prove the following results.
Theorem 1 If ord (2, @2mH<2n-2, where ord (2, (2n)!) is the

order of prime 2 in (2r)!, then 7', is not an integer.



Theorem 2 No two integer terms of T are relatively prime.

Since ord (2, 141)=11<012=2.7-2, by Theorem 1, we find that 7"is -
not a sequence of integers. However, by Theorem 2, the above-
mentioned conjecture holds for all integer terms ol 7"

Proof of Theorem 1 It is a well known fact that

2n-1 . 2n

2
"2 = (=) ———B, ,n>1,
(3) é("‘n) ( 1) (2”)' "

where B, is a Bernoulli number (see [1]). Notice that

B ( 1)!7 CI!I > 1
= — 1 Z
(%) | ! )

"

bl

where a, and b, are coprime positive integers satistying

(5) 206 31b,,n=t.
By (2), (3) and (4), we get
(27m)h
= —*—-ﬁ——i,f’l >1.
(6) " zzuﬂa

2]

Since ged (a,, b,)=1 and b, is even, we see that a, is odd. Theretfore,

o e N al l B . bage N T - 1
Proof of Theorem 2 Let 7, and 7, be two integer terms ot / with

m+n. By (6), we get
(2m)b,

= A 2me
m 2uln la

24

(7)

Since ng (2* 3):g0d (Cl:,“, bm):ng (Cl”, bn)r:l’ 3\/7”1 and Blb” by (5)7 we
get from (6) and (7) that 3|7, and 3|7, respectively. It implies that ged
(7,, T,)=3>1. The theorem is proved.

References

[1] G. H. Hardy and E. M. Wright, An introduction to the theory
of numbers, Oxford Univ. Press, Oxford, 1937.

[2] A. Murthy, Some more conjectures on primes and divisors,

Smarandache Notions J. 12(2001), 311-312.
347



On Third Power Mean
Values Computation of Digital Sum Function in Base »

Li Hailong
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Abstract: letm=a,n™ +a,n* +...... +a.n* where 1<a <n =12, 5 k>k>->
i 2 ¥ E] i B4 1 2

k.20, a(mn)y=a +a,+-+a_, for A,(N,n)= > a“(mn) (k=1,2,3). An exact
meN

calculating formula for 4, (N, n) (k=1,23) isgiven.

Key word: base » function of digital sum mean value

§1 Introduction and Main Results

In problem 21 of [1], Professor F.Smarandache asked us to study the properties of the sequences of digital
sum. In paper [2] and [3] we give exact calculating formulas for A (N,n)and A4,(N,n). In this paper
we give an exact calculating formula for 4, (V, n) . For convenience , let

3

n(n—1) _n(n=1(2n-1)
) » @,(n)= 6 .

=l
go/;("):;fk s @1("):

First we have the following.
Definition. Assume n (n>2) be a fixed positive integer, for any positive integer m in
base n , let m=an" +a,n™ 4o van® | where F, >k, > >k, 20, 1<aq, <n,

i=1,2,---,5.Then

almp)=a, +a, +------ +a, and for any positive integer r, A(N,n)= Z a’(mn) .
m<N
Theorem 1. Let N =a,n" +a,n** +--+an"  where &, >ky>->k 20; 1<a, <n;

i=1,2,---,s, Then

A(N,n)

=Y kap, (n(2n-1) +%(n =Dk =30k )+ 30,00 2ap,0i)p (k) +nk g, (a)) + 3ng, (n)
(=D, @,)0, (k) + 60:(@))+ 10 @) 4303 @, ka0, () + s (a,) + (n~ D

i=1 i-l
PP (6) + 241 (@) () + 52T @, (= 0k, + (g, 1)+ (5 a)) h?.
“ J=1 J=t

" This work is supported by the N.S.F. and PN.S.F. of P.R.China
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Corollary 1. Let N =2% 40k (.. .. +2k-“, where £, > ky>-->k, 20, then
A3 (N,2) = Z (k,3 + 327 = 1 + 60— 12 - 1)k, + 8 - 1)3)2""?
i1
Corollary 2. [et N:allOk‘ +ale"z T +a IOk",where I<a; <10, i=12-10;

ky>ky>-->k 20 , then
A (N, 10) =

255 (40go,2(a,) + 3645k (k, = 3) + 180k,a,(a,* + $a, + 14) + 15390k 20, ~ 24300k, +a, — 1) +

i=}

i i-1 i-1 i
300 a,)(36p,(a,) + 4p,(a,)+3k,a,(27k, +11))+ 60a, (Xa,) (% +a -1+ 40(F a,)? )1 (i
= =t =1

§2 Proof of the theorem

In this section, we complete the proof of the theorem . First we have six simple lemmas.

Let n, aare positive integers, k is an integer, we have five lemmas.

Lemma 1'%, A (n*,n) = nmlknk. (D
Lemma 2, 4 (ank,n):g((n~l)k+(a~1))n/‘. (2)
Lemma 3°L 4, (0% 0) = (kep, (n) + (n — Do, (mp, (k) )n* | (3)
Lemma 4],
4, (an" ,n) = (kap, (n) + np, (a) + (n - D, (e, (k) + 2k, (myp, (a) )t (4)
Lemma 5. "
1 .
Ay (n* )= (kg (20~ 1) + ~ =1k =3))+ 60, (m)p, (m)gp, (). )
Proof. 'We only prove the identity (5)
If k=1, then
The left of the equation = 4, (n,n) = a® (1, n) + (2 1, A) 4 oeneee +a’(n—-1,n)
=17 +2% 4oenn +(n—1)°
=¢, (n).

The right of the equation = n;r)l2 (n)-n'= @12 (n).
So the left and right of the equation (5) equals, the proposition is correct .
Assume k = p, lemma (5) is correct. That 1s,
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402" m =(po. (m((2n -1 +%(n ~D(p =3)p)+ 60, (R)p, (M, ()"

Then A, (n"'. n)= > a’(m,n)

In<l1/)+|
= > a’(mn)+ >, a(mn)+--+ 2 a’(m,n)
mren? n? <m<ank (n=-1n? smenl™!

=y a3(m,n)+ 3 (a(m,n)+l)3+---+ > (a(m,n)+(n--1))3

ment 0smen? Q<men?

=n Y a’(mn)+3 Y az(m,n)(’fi)+3 5 a(m,n)(nz_liz)+('§i3)n"

m<n? m<nt ment

=nd;(n”,n)+3p(n)A4,(n" ,n)+ 3p,(mA4,(n”,n)+o, “(m)n?.
Combining inductive assume, (1) and (2), we immediately get

4,07 1) = (pp 2 ()20 1) -%(n ~D(p =3)p)+ 60, (e, (e, ()" +3p, () pe, (1)
+ 0, (M, (p)n - ) + ji:(n ~Dp, () + 0, (myn”
= {(p+ D ({(2n -1 +%(n =D(p =2)(p+1)+ 60, (M, (m)p, (p+1))n"2.

So lemma 5 is also correct for k= p+1.

Lemma 6.

A, (an*,n) = (kaqof(n)((zn‘n+§<n—1>(kﬂ3>k)+3<oz (m(2a, (), (k) + kng, ()

+3n, (m{(n =D, (), (k) + kg, (@) + 00, (@) ' ®)

proof. A (an" n)= Z'aB(m,n)

m<an 4

=Y dmm+ YT dmn)+x > al(mn)
ment ' aF <mean® (a-t)n* sm<an®

=Y d(mn+ ¥ (a(m,n)+l)3+-‘-+ > (a(m,n)+(a—1))3

men® 0<m<n Osm<n

a’(m, n)(ai HEEDY a(m,n)(ii2)+(ii3)nk

m <)7A

=ay a’(mn)+3 }:

men® men®

= ad; (n*, n)+3p(a) 4, (n", m+3p, (@) 4, (7", n)+ g, (a)n*
Combining (1), (3) and (5), we get
4 (an*,m=(kacaf(n)((zn—1>+§<n~1><k—3)k)+3coz (m)2ag, (e, (k) + knp, (a))
300 (M1 =V ()p, (k) + kp, (a)) + (@)t 2

Thi | 6.
18 proves lemma 350



Now we use the above six lemmas to complete the proof of the theorem,

A, (N,n)=Y a’(m,n)

m<N

= Y a(mn)+ > a’(mn)+---+ > a’(m,n)

meayn*i ar®t simcap™ vagn*2 Ne-an®s smeN

8=l
= ¥ a(mn+ Y (a(m,n)+a,)3+---+ 3 (a(m,n)+Za,)3
m<ayn®l 0<m<a,n®? Osmea,n’s . i=l

s =1 -]

=3 Ay (ant)+33 (Za)4,(a,n") +3i(’i a,) 4 (an* )+ 3 (3 a,y an
i=l

=1 i=l j=1 i=l j=)
From (2), (4) and (6), we have
AJ(Na ﬂ)

=Yk, elen -1 +% (n =Dk, = 3)k,)+ 30, (m) 2,0, (D@, (k) +nk,p, (a,)) + 3np, (n)

f=]

i-]

(=D (@) (k) + kipy (@) + 70 (@) +30(Y, @, )k .0, (m) + npy (a,) + (n - Dha,

o, (W, (k) + 2k,0,(a,)p, (n>)+§n2af<§j a;) ((n-1k, +(a, =1))+n’q, ('2 a,y o

J=1 4=l

This completes the proof of the Theorem.
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A lucky derivative

Henry Bottomley
5 Leydon Close, London SE16 5PF, U.K.
se16@btinternet.com http://www.se16.btinternet.co.uk/hgb/

Question:

What is the value of the derivative of f{(x) = exwhen x = e?

Lucky answer:

We know that the derivative of g(x) = x"is g'(x) = n.x™",
and when x = n this is g'(n) = n.n™' = nn,

so the derivative of f(x) = e*xwhen e =x is f(e) = x.ex! = xx=e® = 15.15426....

As a check, note that f(e) = e¢ = f(e) and g(n) = n" = g'(n).
Comments

This is in the tradition of other lucky mathematics. For example, when simplifying
the fraction 16/64, canceling the 6s in the numerator and denominator leaves the
correct result of 1/4. o

In the smarandacheian lucky answer to the derivative, the only incorrect part is
the word "so". The derivative of f(x) = ex with respect to x is f(x) = e*, not x.ex"
(uniess x = e in which case thése are equal).

Conversely, x.e*! has the indefinite integral (x-1).ex'+C rather than ex+C.

The derivative of h(x) = ¢xis h'(x) = loge(c).c* for a positive constant c,

and so when x = ¢ it is h'(c) = loge(c).c¢, not ¢© (unless ¢ = e in which case these
are equal). .

This lucky (i.e. wrong) derivative method can produce the correct answer to the
more general question:

"What is the value of the derivative of h(x) = cx when x = ¢.loge{c)?"
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(if ¢ is a positive integer then x is close to the ¢t prime number):
h'{c.loge(c)) = c.loge(c).co199:01 = loge(C).C98e(C).
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A Classification of s-Lines
in a Closed s-Manifold

Howard Iseri
Dept. of Mathematics and Computer Information Science
Mansfield University
Mansfield, PA 16933
hiseri@mnsfld.edu

Abstract: In Smarandache Manifalds [1], it is shown that the s-sphere has both closed and
open s-lines. It is shown here that this is true for any closed s-manifold. This would make
each closed s-manifold a Smarandache geometry relative to the axiom requiring each line
to be extendable to infinity, since each closed s-line would have finite length.
Furthermore, it is shown that whether a particular s-line is closed or not is determined
locally, and it is determined precisely which s-lines are closed and which are open.

Introduction

Recall that an s-manifold is the union of equilateral triangular disks that are identified
edge to edge. Furthermore, each vertex is shared by exactly five, six, or seven distinct
triangles, and each edge is shared by exactly two distinct triangles. The s-lines are
defined to be curves that are as swaight as possible. In particular, they are straight in a
very natural sense within each triangle and across the edges. Across vertices, s-lines
make two equal angles (see {1]). In general, a manifold is closed if it is compact and has
no boundary, like the surface of a sphere or torus. Here, the term closed is used in the
same way that it is used in simple closed curve. Since each edge is identified in an s-
manifold, there is no boundary. Therefore, an s-manifold being closed is equivalent to its
consisting of a finite number of triangles.

In [1], the concept of a Jocally linear projection was used to investigate the behavior of s-
lines in the s-sphere. We will expand on that investigation here.

Locally Linear Projections

The plane can be tiled by equilateral triangles. The tiling we will use is the one that has
the segment from (0,0) to (1,0) as one of the edges, and we will focus initially on the
triangle that lies above this segment. A locally linear projection of an s-line / from an s-
manifold is constructed as follows. Choose a segment from [ that spans one of the
triangles. We identify this triangle with the one that lies above the segment from (0,0) to
(1,0) so that exactly one point of / lies on this segment. This can be done in several ways.
We then extend this segment in one direction, exactly as it extends in the s-manifold. Ata
vertex, we will maintain the angle that lies to the right of the projection.

In this tiling, all points in the plane can be expressed as a linear combination of the
vectors {1,0] and [1/2,\/3/2]‘ The vertices of the triangles correspond to those linear
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combinations with integer coefficients. The linear combination a[1,0] + b[1/2, V3/2] has
rectangular coordinates (a+b/2, V3b/2). In rectangular coordinates, the point (x,y)
corresponds to (x—y/\/S)[l,O] + (yN3)[1/2, N3/2]. Tt follows that a line from the origin to
any vertex will have slope m = V3b/(2a+b) with a and b integers. If a line from the
origin has slope m = \JSy/x with x and y integers (i.e., m is a rational multiple of \/3),
then it will pass through the vertex (x~y)[1,0] + y[1/2, ¥3/2]. In other words, a line will
pass through the origin and another vertex, if, and only if, it is a rational multiple of /3.
Clearly, this can be extended to the following.

Lemma 1. 4 line passing through a vertex will pass through another vertex, if, and only
if, its slope is a rational multiple of 3.

The locally linear projection of an s-line will change directions only at certain vertices. It
1s reasonable to talk about the slope m of the projection and the angle 6 it makes with
the positive x-axis, even though it may change from segment to segment. The relation
between these is m =tan 8. When an s-line passes through an elliptic vertex (one with
five triangles around it), the slape of its projection is reduced by 30°. When it passes
through a hyperbolic vertex (one with seven triangles around it), the slope of its
projection is increased by 30°. Since tan(6+30°) = \/3(tan o3 + 1/3)/(1 - tan 6/V3

and tan(6-30°) = V3(tan 6/V3 — 1/3)/(1 + tan B/3), it is clear that tan(8+30°) and
tan(8-30°) will be rational multiples of V3 whenever tan 0 is. This gives us the
following.

Lemma 2. The angle of a locally linear projection of an s-line is constant modulo 30°,
and its slope will always be a rational multiple of N3, or it will always be an irrational
multiple of V3.

Classification of Closed and QOpen s-Lines

Given some closed s-manifold, it would seem that whether a particular s-line is closed or
not would depend on the global structure of the s-manifold. We will show, however, that
we can determine this by looking at a segment of the s-line in any of the triangles of the
s-manifold.

Let / be an s-line. We look ata segment of it that spans some triangle, and consider a
locally linear projection A based on this segment. The slope of the initial segment in the

triangle above the segment from (0,0) to (1,0) has a slope m. We will show the
following,

Theorem. The s-line | is closed if m is a rational multiple of N3, and | is openif m
is an irrational multiple of 3 .

In the case that m is a rational multiple of V3, we know that the slope of A may
change, but the slope will always be a rational multiple of V3. Lemmas 1 and 2 show
that if A passes through one vertex, then it must pass through infinitely many. If this is



the case, and since the angle is constant modulo 30°, there must be infinitely many of
these vertices where A enters these vertices at precisely the same angle. Each of these
corresponds to / entering a vertex on the s-manifold at a particular angle with one of the
edges. Since this can only happen a finite number of ways, / must enter a particular
vertex on the s-manifold an infinite number of times in exactly the same way. This can
only happen if / is closed.

If A does not pass through a vertex (and so / does not either), then A is a straight line
in the plane. Its initial point has coordinates (c,0) with 0 <c <1 and slope m = yV3/x
where both x and y are integers. For each positive integer z, A passes through the
point [c,0] + z(x~y)[1,0] + zy[1/2, ¥3/2]. This is a point, which is a distance ¢ from the
left endpoint of the horizontal edge from some triangle in the tiling. This corresponds to /
intersecting some edge in the s-manifold in a particular way, and this can only happen a
finite number of different ways. It follows that / intersects a particular edge exactly the
same way an infinite number of times, and this can only happen if / is closed.

On the other hand, if / is closed, and / passes through a vertex, then any projection
must pass through infinitely many vertices. This can only happen if m is a rational
multiple of V3. If / passes through no vertex, then its projection A is a straight line.
Since / is closed, it intersects edges in only finitely many different ways. Therefore, A
must intersect two horizontal edges in exactly the same way. In particular, for some 0 <c
<1, the intersections must be [c,0] + af1,0] + b{1/2, ¥ 3/2] and [c,0] + A[1,0] + B[1/2,
~3/2]. The slope is, therefore, m = \/B(B-b)/(Z(A-a)+(B-b)) a rational multiple of V3.

Conclusion

The axiom, each line is extendable to infinity, is S-denied in every closed s-manifold. We
can say that this axiom is S-denied densely, since we can look at all of the s-lines at each
point, and all the angles that correspond to closed s-lines are (topologically) dense in the
interval [0°,360°], as are the angles that correspond to open s-lines. In other words,
within any angle emanating from a point P, no matter how small, there are closed and
open s-lines in the interior of the angle.

The arguments presented here hold in any s-maaifold, except for the parts depending on
there being a finite number of triangles. In particular, if a projection of an s-line has a
slope that is a rational multiple of V3, then it will intersect edges and vertices in only a
limited number of ways. Its local structure, therefore, is in some sense periodic.
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A BASIC CHARACTERISTIC OF TWIN PRIMES AND ITS GENERALIZATION

Sebastian Martin Ruiz Azmy Ariff
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ABSTRACT.  The sum of powers of positive divisors of an integer,
expressed in terms of the floor function, provides the basis Jor another
characterization of twin primes in particular, and of prime k-tuples
generally.  This elementary characterization is deployed in a software
test for prime k-tuples using Mathematica®.

Keywords: Prime k-tuples, twin primes, primality test, number and sum
of divisars, floor function.
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Introduction

Prime numbers [6] are integers > / divisible only by unity and itself. Thus, 2, 3,5, 7, 77, {3,
17,19, 23,29, 31, 37, 41, ... are the first few primes. And, twin primes [12] are those pairs
of primes, like (5, 7) or (13001, 13003), differing by 2.

There are exactly 27 412 679 such twins up to ten billion compared to 455 052 511 individual
primes below the same limit. The largest known twin primes are 665 557 035 - 2509 & 1,

each of 24 099 digits, discovered by David Underbakke and Yves Gallot [3] on November 28,
2000.

What condition is necessary for a number pair to be twin primes ? In 1949, P 4 Clement {4]
characterized twin primes by proving that for z > 2, the pair (n, n+2) of integers are twin
primes if and only if 4[(n—1)!+11+n = 0 mod n(n+2). Unfortunately, this test has no
practical application due to the high cost of computing the factorial function.

By comparison, the following alternative characterization, found by Ruiz in 2000 and reported
by Eric W Weisstein {17] on the Internet, is computationally friendlier.

Theorem 1 For a =z 0, thepair (», n+2) of integers are twin primes if and only if

(N e e R

where | x | is the floor function {8] [9] denoting the greatest integer not
exceeding x.

This article provides a proof of the above result, its generalization to other prime 4-tuples, and
the Mathematica® [16] (18] code for implementing the k-tuple primality test.

Preliminaries

This article is dependent on the following simple fact published in the following article of The

Smarandache Notion Journal: [14] and seldom explicitly mentioned in standard texts on

number theory. Known exceptions are those by Trygve Nagell [11] and David M Burton [2].
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-1
Lemma 1 Forn>0, LEJ "Ln : J =/ or 0 according as / divides # or not.
i i

Proof We recall the division algorithm [15] which states that for any integers n and
i, with 7 positive, there are unique integers g (guotient) and r (remainder)
such that n = gi+r, where i > r > 0.

By the division algorithm, if i | n then r = 0 giving HJ =g, l_—"“—'_' =q-l.

i

Otherwise, i > r > 0 giving |_1J = L"T_,J =g. W

We now consider the two arithmetic functions [10] t(n) and o,(n) which are intimately related
to the above property. The divisor function T(n), the number of positive divisors of 7, is

expressed as Z '| 1, while the sum 6,(n) of the " powers of the positive divisors of » can be

written as Zd’” d®. Thus, t(n) = o, (n) and Lemma 1 implies the relationships:

- S
o T

In what follows, the arithmetic functions /%) and o) shall be defined only for positive
values of their arguments. And, / is neither prime nor composite.

Defining proper divisors of n as those excluding / and », we derive a more efficient version
of relation (1) with minimal change.

j r—
Lemma 2 Forn> 1,1t =2+ ZGEJ - Ln - IJJ where ; is the highest proper divisor
i

14

i=2

of n, the summation being 0 if j is nonexistent.

Proof Clearly, none of j+1, j+2, ..., n—1 are divisors of n and the constant 2
accounts for the cases i = / and 7 = » which are not proper divisors of . M

In general, it is sufficient to assume that j is EJ or L%_l according as » is even or odd. In

particular, it may be possible to choose the parity of i for specific cases of n.  Applying such
resources on Theorem 1, we readily obtain the example:

Corollary 1 For odd n > 7, the pair (i, n+2) of integers are twin primes if and only if

Sl ) -

where the summation is over odd values of i through ; = |_§J

We next establish two lemmas, including an extended expression for o (n+e), which will
become useful in proving Theorem 1 and its generalization.

Lemma 3 Ifa=0and n+2) > ¢ > 0, then
. < _a( n+e Ln-&e—] a
Calnt+e) = 1 — + (n+e
(n+e) 2/ 1\ p ; (n+e)
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Proof Clearly(n+2)>e>0—>2>n+621—> nee =/forl<j<e
n+/ n+j _
n+e n+e nte—{
so that Zi"“”fﬁ—{nn&g ID Zz - Zi”:(me)a
i=n-1 ! [ —

Thus ca(n+e) Z QYHBJ‘LYH?_ID by (2)

I

o
i=1 ! !

Lemma 4 Foraset {I, m, m, ..., my} of positive integers,
£ k
Yo m)=k+> mf
i=/ i=/
if and only if m,, m,, ..., my are all primes.
Proo The condition in the lemma is evidently sufficient. To prove equivalence,

we note that
Gg(m[) 1+ mf
by counting only the non-proper divisors of m; and therefore

Dom)= Y Iy mf 3)

over equal summation limits.

Without loss of generality, suppose now that ,(m,) > 1 + m{,

k k
that is k+Zm," —Zcra(m,.) > I+m]
i=1 i=2
k k
or Do (m) < (k=D+> m!
i=2 i=2

which contradicts (3), and therefore Ga(m,) =1 + m*.

Hence m, is prime. Similarly, the hypothesis Gaf(m;i) > 1+ m’ yields a
contradiction for each other / and the result follows. u

Proof of Theorem 1

If the pair (n, n+2) of integers are twin primes, then by definition,
Ca(n) + Ga(n+2) =2+ n" + (m+2)* e
From (2) and Lemma 3, we also have

| ca(n)+ca(n+2)=if°u"j2H”;”J+H_L";IJ},rm_z)“
Hence : Zj; ﬂ"‘:zJ [”ﬂ 2+n° +Z u””J L”I‘IJ] (5)

Conversely, if (5) holds then (4) is implied and Lemma 4 completes the proof. u
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A generalization

Aset {e;, e;, ..., ex} of positive integers is said to be admissible if n, nte;, n+e,, ..., nteis
not excluded by divisibility considerations as a possible sequence of primes. Thus, {2, 6}
and {4, 6} are admissible sets. But {2, 4} is not, as {1, nt+2, nt+4} is never a prime triplet
when n > 3. Hans Riesel [13] discusses a method of determining admissible sets.

Thegrem 2 Ifaz0,ey=0and {¢, e;, ..., e is an admissible set of positive integers in
the open interval (0, n-2), then (n, nte,, nte,, ..., n+ey) is a sequence of
primes if and only if

g g

i=} H

= i=l j=0
Proof If (n+ey, nte;, n+e,, ..., nter) is a prime (k+1)-tuple, then by definition
k k
Yo nre)=1+k+ D (n+e,) (6)
J=n =0

From (2) and Lemma 3, we also have

gaa(mj) _ Z{ZH*J

n+e; -1

\! &
: J‘}Z(He;)” 7
! ) =

Equating (6) and (7) and simplifying, we obtain

gia(iun@J“im _Jm ke ®

= i i

i=1 =0 !

Conversely, if (8) holds, then (6) is implied and Lemma 4 completes the
proof. H

A variation :

Theerem 2, as it stands, requires » > max{e,, e, ..., e;} — 2 through its dependence on the

open interval (0, n+2). However, that restriction may be removed by avoiding Lemma 3 in
the proof of the theorem.

Proof By Lemma 1, if (n+¢;) is prime, then
: k . - =
L At+e; nte; -1 “+ Fi=i
Z - - - =</ ifi=n
! i i )
’ 0 otherwise

Therefore, if (n+ey, n+e,, nte,,..., ntey) are all primes, then

if”fzﬂ"+_efJ_|~"+e{‘]‘Lumn” ©)
=l j=0 z z J)

as all other terms, involving non-divisors, vanish.
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However, if any one of (n+ey, n+e,, nte,, ..., n+e;) is composite, then by
Lemma 1, (9) becomes

N

!

due to a proper divisor of the composite element. Thus, equality is only
possible for prime (k+/)-tuples. l

Software codes

The more common methods of preparing a list of twin primes do not rely upon any test for
such pairs. Instead, some sieve [5] [7] [13] method is employed to sift out all primes below a
required limit and a simple search then extracts the twins.

On the other hand, given a pair (, n+2) of integers, Corollary 1 represents a possible test to
simultaneously determine if they are twin primes without using a list of primes. It may not
be the fastest available twin-primality test but its implementation is fairly straightforward as
shown by the interactive Mathematica® dialogue:

Infl]:= n=200.0081; If[Sum[Floor([(n+2) /1i]- Floor [ (n+1) /i]
+ Floor[n/i]- Floor[{n-1)/i],{i,1,Floor{n/3],2}]
== 2 “True”, “False”]

Qutiil]= True

Note that the #loor [x/y] function may be replaced by its equivalent Quotient [x, y] which is
somewhat faster [1].

The following example is a non-optimwm implementation of Theorem 2 with @ = 3 to search
for prime quadruplets (1, n+2, n+6, n+8) below 10000.

Inf2]:= a=3; n=10000; e={(0, 2, 6, 8};

DolIf[Sum([i”a Floox{(j+ellk]1)/i], {k, Lengthlel}, (i, 311
== Length{e] + J"a + Sum[i”a Floor[(j+e[[k]] -1)/1i] ;.
{k, Length(el}, (i, j}], Print{Table[j+e[[k]],

{k, Length[el}111,(3, n}]

{5, 7,11, 133

{11, 13, 17, 19}

{101, 103, 107, 109}

{191, 193, 197, 199}

{821, 823, 827, 829}

{1481, 1483, 1487, 1489}

{1871, 1873, 1877, 1879}

{2081, 2083, 2087, 2089}

{3251, 3253, 3257, 3259}

{3461, 34583, 3467, 3469}

{5651, 5633, 5657, 5659}

{9431, 9433, 9437, 9439}
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Formula to obtain the next prime in an arithmetic proeression

Sebastian Martin Ruiz
Avda. de Regla 43
Chipiona 11550, Spain

Abstract: In this article, a formula is given to obtain the next prime in an
arithmetic progression.

Theorem: We consider the arithmetic progression a+di >0 of positive integers
with GCD(a,d) =1 and considering that the final term is a+ dM istosay 0 <i< M .

Let p aterm in the arithmetic progression (it doesn’t have to be prime).
Then the next prime in the arithmetic progression is:

a+jd

v . 12_ Z}(L(aud)/sj—ua+jd-1)/sj)

nmxt(a,dp)=p+d+d- -
k=1+(pa)/d j=1+{p-a)/d a+jd

and the improved formula:

k=1+({p-a)/d j=l+{p-a)/d g=1

M & Jarjd
mxt(a,d)(p)=p+d+d- Y I {—Hzﬁuz Zd((a+jd—1)/5—(a+jd)/s)J/(a+ja')ﬂ

Where |_x _] =is the floor function. And wherex/ y is the integer division in the

mproved formula.
Proof:

By a past article [1] we have that the next prime function is:

nxt(p)=p+1+ ZP f[ - 2"1(LLIJL1;ID

k=p+li=p+

Where the expression of the product is the Smarandache Prime Function:

Gl = i zf i is composite
0 if i isprime
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We consider that a + j,d is the next prime of a number p in an arithmetic progression
a+ jd . Wehave that Gla+ j,d)=0.
And for all j such that p <a+ jd <a+ j,d we have thatG(a + jd) =1.

It is deduced that:

k . Jo—b . £ , 0 k > jO _'].
[16@+idy= []Ga+jad)]]Gla+ jay= _
J=lt(p-a)id J=te(p-a)ld 72y 1 k<j,-1

since the first product has the value of 1, and the second product is zero since it has the
factor G(a+ j,d)=0.

As aresult in the formula nxt(a, d) the non zero terms are summed until j, -1 and has
the value of 1.

Jo=l
met(a, d)(p)=p+d+d- Y l=p+d+d-(j,~1+1-1-(p-a)/d) =

k=1+{p-a)/d

=p+d+jd-d-pra=a+j,d
And the result is proven .

The improved formula [2] is obtained by considering that the sum, in the Smarandache
prime function, until the integer part of the square root and multiplied by 2 the result.
Also the floor function is changed |_xJ for the integer division operator x/y that it

faster for the computation.

Let us see an example made in MATHEMATICA:

a=5 ' :

5

dd=4

4

M=20

20

P=3

5

DD[i_]:=Sum[Quotient][ (a+i*dd),j]l-Quotient[a+i*dd-1,j],
{j.,1,Sqrtl[a+i*dd]}]

G[i_ ]:=-Quotient{(2-2*DD[i]) , (a+i*dd)]
Fim ]:=Product{G[i], {i, (p-a)/dd+1,m}]
S[n_]:=Sum[F[m], {m, (p-a) /dd+1 ,M}]
While[p<a+ (M-1) *dd+1,Print["nxt (",p, ")=",p+dd+dd*sS [pl]:
p=p+dd+dd*sS|[p]]

nxt (5)=13

nxt (13)=17

nxt (17)=29

nxt (29)=37

nxt (37)=41 364



nxt (41)=53

nxt (53) =61

nxt (61)=73

nxt (73)=89

The question is that if these formulas can be applied to prove the Dirichlet’s Theorem
[3]for arithmetic progressions.

That is to say: does any arithmetic progression a+ jd such that GCD(a,d) =1 have
infinite primes?
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SMARANDACHE SEQUENCE OF TRIANGULAR NUMBERS

Shyam Sunder Gupta
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Abstract:

In this article, we present the results of investigation of Smarandache
Concatenate Sequence formed from the sequence of Triangular Numbers and report some
primes and other results found from the sequence

Key words:

Triangular numbers, T-sequence, Smarandache T-sequence, Reversed
Smarandache T-sequence, Prime.

1. Introduction:

Triangular numbers are formed by adding up the series
1+2+3+4+54+6+7...... The general formula for nth triangular number is given by n{n+1)/2.
So, the sequence of triangular numbers starts [1]

1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,

Let us denote the sequence of Triangular numbers as T-sequence. So, the sequence of
Triangular numbers,

T={1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,.......... }e

2. Smarandache Sequence:

LetS,5,,83,...,8S4,...bean infinite integer sequence (termed as S-
sequence), then the Smarandache sequence [2] or Smarandache Concatenated sequence
{3] or Smarandache S-sequence is given by

S], 8182, 818283 . 818283 L. Sn

Also Smarandache Back Concatenated sequence or Reversed Smarandache S-sequence is

St, 8281, 538.8, R Sh ... 83858,

3. Smarandache T-Sequence:
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Smarandache sequence of Triangular numbers or Smarandache T-sequence is the sequence
formed from concatenation of numbers in T-sequence ( Note that T-sequence is the sequence of
Triangular numbers). So, Smarandache T-sequence is

1,13, 136, 13610, 1361015, 136101521, 13610152128, 1361015212836,

Let us denote the n™ term of the Smarandache T-sequence by ST(n). So,
ST(1)=1

ST(2)=13

ST(3)=136

ST(4)=13610 and so on.

3.1 Observations on Smarandache T-sequence:

We have investigated Smarandache T-sequence for the following two problems.
(1) How many terms of Smarandache T-sequence are primes?
(i1) How many terms of Smarandache T-sequence belongs to the initial T-sequence?

In search of answer to these problems, we find that

(2) There are only 2 primes in the first 1000 terms of Smarandache T-sequence. These are ST(2)
=13 and ST(6) = 1361011521. It may be noted that ST(1000) consists of 5354 digits.

(b) Other than the trivial 1, there is only one Triangular number i.e. ST(3)=136, in first 1000
terms of Smarandache T-sequence and hence belongs to the initial T-sequence.

Open Problem:
(1) Can you find more primes in Smarandache T-sequence and are there infinitely
many such primes?
(i1) Can you find more triangular numbers in Smarandache T-sequence and are there
infinitely many such triangular numbers?

4.0 Reversed Smarandache T-Sequence:

It is defined as the sequence formed from the concatenation of triangular
numbers (T-sequence) written backward i.e. in reverse order. So, Reversed Smarandache T-
sequence is

1,31,631, 10631, 1510631, 211510631, 28211510631, ............
Let us denote the n™ term of the Reversed Smarandache T-sequence by RST(n). So,
RST(1)=1

RST(2)=31

RSH(3)=631

RSH(4)=10631 and so on.
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4.1 Observations on Reversed Smarandache T-sequence:

(a) As against only 2 prime in Smarandache T-sequence, we found 6 primes in first 1000 terms
of Reversed Smarandache T-sequence. These primes are:

RSH(2) = 31

RSH(3) = 631

RSH(4) = 10631

RSH(10) = 55453628211510631

RSH(12) = 786655453628211510631
RSH(14) = 10591786635453628211510631

(b) Other than the trivial I, no Triangular number has been found in first 1000 terms of Reversed
Smarandache T-sequence.

Open Problem:

(1) Can you find more primes in Reversed Smarandache T-sequence and are there
infinitely many such primes?

(11) Can you find triangular numbers in Reversed Smarandache T-sequence and are
there infinitely many such triangular numbers?
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Abstract: As a philosophical analysis of some fatal paradoxes, the paper distinguishes the conceptual difference between
representation of truth and source of truth, and leads to the conclusion that in order to acquire the genuine source of truth,
independently of specific representations possibly belonging to different worlds, one is necessary to ignore all the ideas, logics,
conceptions, philosophies and representable knowledge even himself belonging to those misleading worlds, returning to his infant
nature, as a preliminary step for his cultivation of unconstrained wisdom. It also carries out some coordinative crucial issues as
natural-doctrine, minded-unwitting, logic-infancy, conception-deconception, determinacy-indeterminacy. The paper tries to verify the
role of neutrosophy and neutrosophic logic in religious issues and open a gateway toward the oriental classics, excavating the lost
treasure.

Keywords: Neutrosophy, Dao, de-conception, logic, infancy, sensation.
1. Introduction

Although men is constantly achieving in science, but based on a quantum mechanics scientist's dream, we might have moved no
further (In his dream he saw the speedy moving bicycle (he lived in that period) advanced no further. But when he stepped into this
world in his dream, he felt he was moving fast by bicvcle).

Human being is normally educated in a confusing way — we have created such a “science” even without any knowledge of
existence and non-existence: “Everyone can not sée himself a second ago, everyone can not see himself for the time being and
everyone can not see himself a second future. Everyone could not know what the existence of self is. Everyone is also difficult to say
the non-existence of self”, and therefore taken those images as true or real, and furthenmore created such truths belonging to this
bewildering world.

Different educations yield different understanding toward truth. I don’t stand for the magnificence of a theory, since such truth and
false inter-yield each other, and hardly can one reach the proper perception: neither left nor right, so a great philosopher also commits
mistakes in spite of his profound piece. The key lies in the subjectivity toward a truth, thus comes the saying that truth varies, or truth
be adapted to modern ages.

Let’s examine some sophisticated issues to see whether correct:
® We don’t intend to create something as judgment, for any judgment is prone to yield selfishness: like, dislike, etc. Truth is
written to conduct our behavior, therefore it does not lie in any sophisticated model, but in our conduct, as we often contradict our
own aphorisms in behavior. Thus the issue turns to the understanding of our nature, which is not expressed or represented in any fixed
form, or truth cannot be absolutely fixed in form too.

The point is: -

1. Although the absolutely natural mental state is free of logic and only with the most (absolutely) right genuine instinct, but it is
shown as normal, as if he had his private opinion in appearance, even though he has nothing of his own in essence (But my current
knowledge is too far from the point).

2. If one really gets rid of all ideas and minds, he is ther no more than a stone — Truth is alive not dead.

3. One needs to abandon all his previous ideas only to adapt to the greatest education, not to abandon his brain,

4. In order to acquire the genuine source of truth, independently of specific representations possibly belonging to different worlds,
one is necessary to compromise, neglect even to get rid of all the ideas, logics, conceptions, philosophies and knowledge but only
belonging fo those misleading worlds, returning to his infant nature, as a preliminary step for his cultivation of unconstrained wisdorm.

®  Tomy previous assertion that “name is merely our mental creation. It is rather a belief than an objective being, and varies among
different people. ”[5], an explanation can be: In practice we have to assume that for incomplete knowledge system as in ordinary
human, one can regard truth existing in relativity to individual’s practical situation. Truth exists in variant form corresponding to the
variant form of individual error. The absolute truth, even there exists, is not perfectly shown in any particular form (it has no form),
and therefore inexpressible with symbols. So in this sense it is absolutely absurd to sedulously look for absolute truth in theoretical
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manner; and only in this sense the most complete logic system is by no means complete, or, complete is incomplete.
The point is: If there were no particular forms to carry out an education that can correct our mistakes and misunderstandings, there
would have been no education one can accept. In this way what one looks for is a proper form of education rather than the voidness.

® (The above paper) “In fact, this belief of ‘it is’ is always critical (Buddhism). In Buddhist saying, all such beliefs are created by
ourselves.”

The point is:
1. To our ordinary minds we normally employ our illuding consciousness, but to those who understand the essence, it is not at all
critical.
2. Buddhism doesn’t tell us to negate everything, nor is it nihilism. It tells us to completely abandon our subjectivity and really
understand everything. Although there are great prejudices in every ordinary man, this is not to say there doesn’t exist absolute
rightness. Nor is the world a nihility where there is nothing but our imaginations. The world appears differently to the different mental
realms of individuals.
3. Although I am a Buddhist, but only a beginner, like a primary school student, and naturally full of mistakes and
misunderstandings. But important: a tiny difference can lead us to the hell (“one word’s difference from the sutra is equal to the
devil’s saying”). So [ have no qualification to speak any truth illustrated in Buddhism.

®  “There is no absolute fact.”[6]
The point is: absolute truth doesn’t non-exist, but perceived with wisdom eyes.

®  (The same paper) “There is fact, but merely beliefs created by ourselves.”
The point is: we cannot deny the existence of the genuine and ultimate reality — we cannot assert that there is nothing objective in
the world but our subjectivity.

©  (The same paper)“When we see wind blowing a pennant we will naturally believe we are right (that it is the wind or the pennant
that moves) in our consciousness, however it is subjective (actually it is our minds that move). In other words, what we call the
objective world can never absolutely be objective at afl.”

The point is that it is anti-Buddhism. Buddhism exhibits absolutely that all living creatures can definitely reach the absolute
objectiveness through the proper education.

®  (The same paper) “Whenever we believe we are objective, this belief however is subjective too.”
This is absolutely wrong for a wise mind.

®  (The same paper) “In fact, all these things are merely our mental creations (called illusions in Buddhism) that in turn cheat our
consciousness: There is neither pennant nor wind, but our mental creations. ”

The point is that [ am unqualified to explain. It may be our imperfect consciousness (vikalpa, as I imagine as separative (splitting)
mind) that takes them as wind move and the pennant move, but we cannot say that wind and pennant are merely mental creations
instead of objective being.

® (The same paper) “The world is made up of our subjective beliefs that in tum cheat our consciousness. This is in fact a
curnulative cause-effect phenomenon.” )

The point is: We can say that we are constantly cheating our selves with our constant subjective illusions we are creating in every
fraction of second, but we cannot say that the world is made up of subjectivity = a kind of nihilism rather than Buddhism.

® (In a lot of papers, but mostly in [7]) “Everyone can extricate himself out of this maze of illusion (in some sources it is
miswritten as “...is illusion™), said Sakyamuni and all the Buddhas, Bodhisattvas around the universe, their number is as many as that
of the sands in the Ganges.”

The maze means our subjectivity. We learn Buddhism just to conquer subjectivity and really objectively understand the world. It is
shown in Buddhism Sutras that everyone can achieve it, but the maze not mentioned, so it is implied.

®  (The same paper) “Fact: a Belief rather than Truth.”

The same nihility error as above. Knowledge exists in the contradiction between known and unknown for us — those known is a
tiny drop and those unknown is an ocean. In this sense, facts or truth relative to our ordinary conception can hardly reveal the reality,
but it doesn’t mean there is no reality.

® (The same paper) “There is no truth and false actually: there is because the outcome has to meet someone’s desire - they are
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merely the atiributes of a tradeoff. One false deed can be true in another perspective, e.g., eating much is good, because of the
excellent taste and nourishment, but it is also bad when he gets weighted. Neutrosophy shows that a true proposition to one refarential
system can be false to another.”

The pomt is: although the same truth can be illustrated in contradictory languages relative to the specifics of individual minds, we
cannot say there is no self-enlightenment - This is arrant subjectivism and arrant anti-Buddhism. For example, ignorance of
cause-effect doesn’t mean the non-existence of cause-effect. Cause-effect universally appears in every action even every mental move

(idea). Ignorance of natural Dao (natural way, natural law) doesn’t mean the non-existence of such Dao.

@  (The same paper) “Whenever we hold the belief ‘it is ...", we are loosing our creativity. Whenever we hold that ‘it is not ...", we
are also loosing our creativity. Our genuine intelligence requires that we completely free our mind —neither stick to any extremity nor
to ‘no sticking to any assumption or belief’.”....“As we mentioned previously, whenever there is truth, there is also false that is born
from/by truth—this abstraction (distinction) is fatal to our creativity”...“Because everything believed existing, true or false, is nothing
more than our mental creation, there is no need to pursuit these illusions, as illustrated in the Heart Sutra...”

The point is:
I. Creativity is an easy metaphor for our inner “wisdom”, “nature of instinct”, but far from explicit, since the inner wisdom
germinates from a tiny seed, naturally grows up in wind and storm — not at all something created.
2. There is only a tiny step between the genuine truth and fabrication. Truth pertains to a natural way, but when anything private
added in, it deteriorates.
3. Mental creation comes from our private mind, but we cannot deny our wise beliefs — the right belief is the light in the darkness,
not at all our mental creation, although normally mixed with our mental creations.
4. It is absurd for a kid to comprehend the mind of a PhD. It is far more to explain the Heart Sutra with our knowledge. More we
explain, more absurd we are. Therefore it has been far too absurd for me to explain Buddhism. [ am far, far, far away from qualified.

[n general, it is not that we should abandon mind, but should abandon our private mind to adapt to the universal mind. As to the
universal mind, let’s see:

2. Morality and Doctrine

Is oriental culture a kind of science? There lies a crucial difference in that western science seeks the exterior solutions outside out
heart. However, our ancient sages illustrated that human is an integral part of the universe, and all the phenomena never skip out of
out heart. And very fortunately, many wise men did succeed in cultivating their heart to testify the profound truth. So our eastern
classics focus on our inner cultivation,

The question arises from Dr. Smarandache’s reflection to Liaofan’s Four Lessons: “Neutrosophy is a tool to measure the truth of
an idea, not necessarily a philosophy in itself. Liaofan’s learning lessons are full of a kind of popular aphorisms™. Then I tried to
refer  to  hitp//wwwamtb oresg/2/2 10/2 10 _1/2 10 Lhun, a link in  the Dallas Buddhist  Association
(http://www.amtb-dba.org/Enelish/index.htiml), to find an explanation, but unfortunately in Chinese. Here I try my reluctant
nterpretation (I am not at all qualified to translate Buddhism and hardly possible to explain. Please contact the corresponding Taiwan
or Singapore website, where there are plenty of English versions of texts and videos of Buddhism, to request the standard translation).

What is Dao (Tao)? It is the natural principle all over the universe, the natural order, the essentiality of nature. The great universe
has its order and rule, where the education of ancient-sages roots. Education stems from here, and human being has to obey the natural
principle — it is Dao. In our Chinese notion of the integral of human and nature, heaven, earth and human are an integral whole.
Human should understand the heart of heaven. What is the heart of heaven? The natural law, natural rule. For human, it is the human
relationship, of husband-wife, brothers and sisters, monarch-subjects, friends, etc. It is the natural rule, not regulations or systems,
nor schools or doctrines. Man conforming to it is said to practice Daoism. There is practice, there is gain bodily and heartily, called
virtue or moral which is the partial standard of daily conduct. However, this partial standard should accord to the universal Dao and
natural law. This is where the education of ancient sages roots.

Chinese emphasized education from prenatal influence. A pregnant mother should be upright in heart, correct in appearance, for
every intention, pleasure, anger, sorrow or joy, influences the fetus. Chinese understood this principle, and therefore their babies were
very well gifted, developed in the ten month’s pregnancy. Parents had the responsibility for their children...... As | often mentioned,
disaster falls nowadays, and still severe in the future, why? I have only one answer: “suffer from disobeying the olds (the Buddha,
Laozi, Confucius, etc.).” It is the power of culture that makes China survive for thousands of years, and the marrow of culture lies in
education... ... The rulers were supported by people, for they didn’t administrate with their own imperial edicts, but with the sage’s
education of Confucianism, Buddhism and Daoism. So the society maintained peace, enjoying the wise period of prosperity, all
attributed to the ancient education, so they benefited from the olds’ teachings. Since the Republic of China, very unfortunately,
Chinese lost their national self-confidence, and have therefore fallen into such a tragic situation: so overwhelmingly worship and keep
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the blind faith in the foreign countries, as to overthrow our own culture. Yes, but is there any better substitute to benefit people? If no,
troubles arise [2].

3. Minded and Unwitting:

The neutrality in neutrosophics seems similar to “Madhyma-pratipada” and “Mean” in Chinese culture, which might mean proper
(no mental move, no self consciousness added, as if no self exists, I believe): neither left nor right, but neutrosophy is conveying
different meanings at present. For example, if A stands for white and Anti-A black, then Neut-A should mean gray, however either
black or white can add to our subjectivity and should not be adhered to (as we are blind to the ultimate truth, it can be more wrong to
imagine the being and non-being), otherwise we are unconsciously moving into this dimensional world that inhibits our access to the
“infinite dimensional” world.

Lf the quantum world reveals the more general objectivity, it is very possibly that an expert in classical physics less apt at quantum
physics, due to his default education. Same to human conflict, with each insisting on his own sphere of truth due to his default
education or his private manner of perception, even incomplete or misleading. A possible conciliation lies in compromising —
diminishing his minded way, to reach the understanding of another sphere:

(The idea of) A diminishes toward no-sticking-to-A

(The idea of) B diminishes toward no-sticking-to-B
Since a fact reflected from the mirror of A implies the private background (referential point) of A and the creation (including the
negative, distorted) of A, both need to be compromised to see a mutual base.

Provided that A implies a more general way that covers B, should A ignore his idea? Sure, since the relatively more complete idea
is misinterpreted in the language, background or referential system of B. As | mentioned in earlier paper [5], the best language should
be no (no-sticking-to) language.

If everyone could ignore the idea of himself, there would be no misunderstanding in the world. Therefore, the best idea would be
No (self) Idea or nene self-idea (1 don’t mean a stone, a nthility, but a natural way). However, man would be too clever to believe it.

So the conciliation to current crises lies in education: if we find our education contrary to the nature, not only should we
compromise, but also diminish and abandon 1t (e.g., the “n-dimensional” manner) to adapt to an universal (“infinite dimensional™)
manner — to loose is to gain, no loss, na gain: One needs to abandon his old to adapt to the new, abandon his private mind to reach the
universal one, abandon the ilfusion to acquire the true, abandon the capricious to acquire the eternal.

It 1s also dangerous if we persist in the leaves but blind to the trunk or root. For example, science is developed to change destiny,
but what on earth is destiny? Liaofan’s Four Lessons [10] shows the principle and practice to change destiny. But no understanding is
beyond practice — we can never reach the correct understanding by any means of judgment or measurement based on our “scientific”
referential manner, as I mentioned that science would reflect the same world in which few is able to command fate.

I eventually find that it would be the fault of logic itself — whenever there is logic, there is incompleteness - logic is a relatively
dead representation of our live sensation:

4. Logic and Infancy ‘

The question arises from the English learning for Chinese on which I find that the students spend a huge amount of time in
reciting vocabulary but acquire far less. See a talk with friends:

“Why can it be wrong?”

“Because what they have learned is not English —they are merely symbols, an illusion.”

“Why?”

“Do they reflect the symbols in English or in Chinese logic? As a matter of fact they first reflect the symbols in Chinese, and then
carty out the logic inference in Chinese way! Are they learning English or Chinese?”

“What’s the point?”

“The point is, what they have learned are merely such pointers that point to English — symbols are supposititious, one cannot infer
anything without experience, so [ call their effort in vain.”

“Then what is the true manner?”

“The sensation of English. All your activities, reading, listening, oral and writing, all serve this motif. Chinese students failed just
in this — they pay too much attention to grammar rules and Chinese logic in interpretation, as if they are always interpreting the
English literals in Chinese logic, however, it is just such logic that inhibits the sensation.”

“Do you mean my logic inhibits my language aptitude?”

“As you know, the best language learner is infant baby — the success lies just in the ignorance of logic. Logic can be a kind of dead
sensation: when one infers in logic, does he exploit his sensation any more?”

“Do you mean we should feel English instead of inferring?”

“No, just the opposite: no sticking to feelings, ideas (that are in fact no more than distraction), even ignoring yourself (e.g., the
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role of a student busy for exams), can you concentrate on the author’s role, even unconscious of acquiring of English, like a baby
learning in playing. Learning is equivalent to playing a role that needs great concentration. Sensation is shapeless, like ‘creativity’. We
can never shape them.”

“But it 1s a too far away goal.”

“Sure, you’d employ all the means to understand the context, but soon when you have done, try to abandon such means to build
up your English sensation. When one is able to walk, does he still carry the crutches along with him?”

“But how can [ read English without referring to its Chinese meaning?”

“Can you read without referring, as if they had no meaning? Whenever you mind what they mean, you are using your Chinese
logic again. Comprehension would lie in the ignorance of comprehension — or otherwise how can you forget yourself in the role of the
author?”

“Then how do you find some famous language teachings of English like those of Li Yang and Zhong Daolong?”

“Li Yang's Crazy English negates the sensation theory, but his manner happens to enhance the sensation by inhibiting logical
reasoning. He leads the students to perform all his hand gestures while reciting English just, in my personal opinion, to get rid of all
the mental distraction from their learning habit. Professor Zhong Daolong’s reverse (as contrary to the impatience for success of
students) learning manner conducts student’s coordination of all their possible senses: see English, listen to English, write in English,
speak English, etc., simultaneously, with special emphasis on dictation rather than on reading with merely eyes, just to serve the same
motif - to abandon their imagination, to get rid of mental distraction, for in this manner no one has time to apply logic any more.”

“You mean to retrieve our own ability of an infant baby?”

“A famous Taiwan educationist Professor Wang Caigui made a through investigation, and asserts that the crucial or deciding
learning period of a whole life span is from 0 to 3% year, including antenatal education. Children are naturally gifted with the innate
aptitude in everything: whatever seed you plant, all absorbed in like foam rubber. However their innate aptitude diminishes with the
age grows, disturbed or distracted by worries or vexations, or even withers beyond the age of 13, so a great figure should accept
earlier education of the giants.”

“Can one retrieve that afier the age of 132”7

“Sure, as long as he is resolved to conquer the distraction.”

“How?”

“First, don’t apply logic (pertaining to our misleading education, since we have been educated in a wrong way), since logic itself
brings you distraction. Never mind what you acquire, toward unintentionality. Second, recite (or silently) the greatest pieces as long as
you have time, such as Confircius’s, Laozi’s, or very simply just “Amitabha”, to constantly replace distraction.”

“Does Amitabha have any meaning?”

“The innate aptitude of Children lies just in this: they never guess the meaning. Whenever you guess or infer the meaning, you are
seeking distraction unwittingly.”

“Does it work?”

“It is not my personal invention, but from our lost Chinese classics. A patient of diabetes was suffering from insomnia, and failed
in all her effort of counting numbers: 1, 2, 3, 4, 5, 6, 7, 8 9, 10... After my wife changed her mind to recite Amitabha, she
mmmediately had a perfect sleep. The point is, never add more distraction or any doubt. The power lies just in you confidence and
concentration.”

“Why did she fail by counting numbers?”

“l am afraid the numbers help nothing (there are such eases when one builds up his internal power of concentration with aumbers,
but I prefer the external power. With this help, in fact, one can eventually cultivate his correct intemal power), but Amitabha (there are
infinite means in Buddhism, not necessary this one) signifies the greatest power of the universe which she resonates with.”

“Then, you believe our mind acts as a receiver tuner?”

“Exactly. A child can resonate with any signal he perceives, such as sentimental wound or evils, entirely absorbed like foam
rubber, and performs it as soon as he grows up. On the contrary, the Classics Recital Program for Children initiated by Prof. Wang
signifies a great education manner. Classics bring you the source of human wisdom. To recite these classics is an important path to
develop potential, to learn language, to enhance cultivation, and to open the gates of wisdom for children. On account of our own
Chinese culture, [ would prefer Daodejing of Laozi, Buddhist scriptures, The Great Leamning, the Doctrine of the Mean, etc. Children

" should not be asked to understand the meaning of the books, but should be led to recite all the books line by line, and paragraph by
paragraph.”

“Do you believe logic is a minor, subordinate or trifle aspect of intelligence?”

“A head of School of [nformation Engineering and Automation of the Xi’an University of Technology alluded to the emphasis on
logical thinking ir engineering. I answered, if the logics come from the celebrity, how can one escape or surpass the constraints of the
celebrity?

Logic is relative to the world one belongs to, e.g., the ant’s world, the bird’s world, each has its own characteristic of logic. Is our
world the perfect one?” :

“No.”
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“Are we willing to be confined to the Jogic of the imperfect world? If one believes in the after life, then his present realm of mind
determines his future life.”

“But nearly all the students take the word list (Chinese logic in word interpretation) or grammatical structure (structural logic)
highly important.”

“If the average rate of passing the exam is 10 percent, you have the same probability.”

“I would not. But logic is really important,”

“Logic merely acts as a language of sensation, not at all the essence of wisdom, and could be the dead representation of our live
sensation. People need it to express their sensations, to communicate. It is in fact a scientific language, not wisdom. Great
mathematicians are often philosophers, but however, mathematicians often find faults in their basic axiom systems, and many
mathematicians assert that it is sensation that conducts logic deduction.”

So my conclusion is: Logic always has limitation but sensation does not; Logic is relative and sensation is not confined as long as
one is resolved to cultivate; Logic is relatively dead but sensation is alive. But to cultivate sensation one needs to escape all the
distraction (for the sticking manner) from logics, knowledge, even the concept of sensation, returning to the infant nature — seemingly
ignorant of everything, but however, great wisdom often lies in the fool: “Where ignorance is bless, it is folly to be wise.”

Now that logic can never be complete, one can infer that conception itself yields incompleteness as long as it employs logical
means, i.e., conception yields anti-conception. Let’s now discuss:

5. Conception and De-conception:

In education, especially in English as a second language for Chinese, when students meet a new concept or word, phrase, they are
normally eager to immediately get directly to its interpretations (in Chinese, or in mathematics and science, from existing concepts),
however, since each school or thought is limited to a specific background or referential frame, and it is usually hardly possible for one
to turn to such multi-points of focus. Then, I am considering “defocusing” to maintain refocusing: forget all the distractions and get to
the right route.

Like things in the world, science and technology also exist in alternation of fashions, e.g., quantum world can be completely
different from classical physics. This makes people meditate: how can a well educated scholar change his point of view? Unless their
minds turned to the infancy - unknown.

In English learning for Chinese, those always interpreting it in Chinese never catch the essence of English, for they would always
understand English in Chinese logic, background, or points of view, never switch to the heterogeneous referential point of view. So
one has to abandon his native language to command a foreign language. This is another case of the infancy effect —as we know infant
language aptitude lies in its ignorance of thinking, reasoning, or idea, logic ~ no knowledge, no rules.

Thus arises the challenge to the change of mind: to learn but never to assume known — the way of humility:

Being the entrance of the world,
You embrace harmony ’
And become as a newborn
Chapter 28 of Daodejing [8]
See alse Chapter 4 of Liacfan’s Four Lessons - The Fourth Lesson: Benefits of the Virtue of Humility [10].

Like things in the world, whenever there is birth, there is also death from this distinction:

When beauty is abstracted
Then ugliness has been implied;
When good is abstracted

Then cvil has been implied.

So alive and dead are abstracted from nature,

Difficult and easy abstracted from progress,

Long and short abstracted from contrast,

High and low abstracted from depth,

Song and speech abstracted from melody,

After and before abstracted from sequence.
Chapter 2 of Daodejing [8]

Same to a concept, i.e., concept is always accompanied by anti-concept as in the taiji figure, whenever there exists such a
distinction. Then one should argue about the role of concept: both positive and negative roles integrated in one entity. Is there a proper
way of conception that can effectively inhibit the negative role, or the death of concept? Sure, just to keep it indistinct, as in its
original, unspecified, indeterminate or infant state — keep it primitive, immature, as if unborn, even we need it for communication to
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different spheres of mind. So it is wise to vacate our mind (free our mind) to maintain “creativity” (an improper metaphor for a
wisdom seed) alive (on going), as in an infant way. In fact, creativity lies in the ignorance of creativity as against the confined or
constrained (e.g., to a spot oriented world - A science fiction film has compare our globe to a tiny spot in the universe) way.
Otherwise, a philosophy can be believed true when it serves our motif, and false when it doesn’t. In this manner, the world would be
led into a self-centered society as our self-centered ideology expands, bringing all the people into the real nihility — no gleam of truth
can be seen anymore in this blind world. What time, however, will human being sacrifice our own motif to adapt to the motif of the
universe?

To command science, one has to abandon (ignore) science. To acquire genius, one has to abandon (ignore) genius. To acquire
himself, one has to forget or loose himself. But important: abandoning everything only to get to the right education, the route of
absolute truth — we are not defocusing actually but changing our focus to the universal mind.

6. Truth and Absolute Truth

The discussion originates from Dr. Florentin Smarandache in our common book Neutrosophic Dialogues: “What I argue about 1s
that we are not sure if we know ALL POSSIBLE WORDS.”

[ have to argue that is the *“truth” true or the truth points to a true world of understanding, namely the source of truth?

Truth in the former sense is capricious (wuchang in Chinese, or anitya, anityatd in Sanskrit). This makes people feel that there
might be no absolute truth.

What I understand the absolute truth is the universal mind, the harmony with the universe. All branches of truth must serve this
motif, or in vain if deviate from it. This might be the reason why people feel in vain to seek truth, because it is assumed to serve
private purpose rather than the harmony of human being or that of the universe.

It may not be the fault of the truth, but the reflection from a self-centered mental world. This might be the reason why we never
get to a universal truth, since we never correct our sins (see Chapter 2 of Liaofan’s Four Lessons — The Second Lesson: Ways to
Reform [10]).

A pointer to the truth is different from the truth. Any form of symbols serves only as such pointers. For example, when one draws
an elephant on the blackboard, it is no more than a figure. When one points to the moon, should we regard his finger as the moon? So
we say, truth is also false, since we adhere to such symbols, blind still.

The absolute truth, as the harmony with the universe, would appear as the absolutely natural behavior than a school of philosophy
— when one is completely melt into the universe, there would be no distinction in his mind between himself and the nature, and every
intention reveals the kindness of the nature, nothing evil at all. So he would not distinguish anything unnatural — never stand in the
illuded perspective. Of course he may never be aware that there is a philosophy or truth in his mind.

Does it then mean there is nothing to follow, as there is nothing we can hold in hand? No, since every good education is teaching
us the correct way rather than the correct symbaols — to correct our mistakes (see Chapter | of Liaofan’s Four Lessons — The Third
Lesson: Ways to Cultivate Goodness [10]).

Does it mean there is no truth? If to the god (I mean a being who is identical to the truth), he would answer no — no philosophy
needed, for he understands everything by intuition, or, the pver-truth is no more than false, sine the manner would sentence a live truth
to death (by dead truth I mean the fixed mind inflexible to literal or other forms of changes). But to our ordinary man with countless
mistakes, truth exists in the implication of our faults: misbehaviors or misunderstandings - misbehavior or misunderstanding
definitely leads to unlucky effect or even misfortune, so truth comes (see Chapter 1 of Liaofan’s Four Lessons — The First Lesson:
Learning to Create Destiny [10]).

Truth has no absolute language to represent, [ am afraid, It is represented, according to the language of us (how can ope fix the
live truth into some dead symbols reflected differsntly by different realms of mind). It is neither proper for us (in our blind world) to
measure — is it possible to measure a more general teaching (scientifically, the “infinite dimensional” manner) with any clumsy, unapt
measurement (e.g., infinite dimensional manner)? In his measuring, he is accumulating doubts to his genuine consciousness (he is
unconsciously reflecting the symbols with his illuded consciousness). So a good way would be more efficiently shown through
conduct, behavior, etc., to correct our mistakes and misleading opinions (see Chapter 2 of Liaofan’s Four Lessons — The Second
Lesson: Ways to Reform [10]).

[s there the absolute truth in science? Personally, if it serves the well being of people, there is. But if serves the greediness, there
also is — to teach us to abandon science, since, as the symbol of the nature, Dao in my belief is of the nature of humility, sacrificing
itself to nonentity and thus spreading all over the universe - as large (or in scientific term, as many dimensions) as the infinity.
Therefore, to reach the universal perspective of the absolute truth, one has to sacrifice any ideology of habitual referential model.
Refer to Chapter 4 of Liaofan’s Four Lessons - The Fourth Lesson: Benefits of the Virtue of Humility [10] for more.

So here | conclude that; The absolute truth is only seen by heart when one abandons all the possible knowledge, philosophies
belonging to the different possible worlds that bewilder him. This should be a necessary means for one to get rid of all the distractions
from these realms, and cultivate himself in practice to the true light of unification.
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Aware of the relativity of the forms of the absolute truth, one may argue about the similarity between absolute truth and nihility.
Defmitely no. In the Chinese room experiment [9], the Englishman will manipulate symbols in Chinese, and he will give a correct
answer in Chinese, but is not conscious of what he did. Nihility implies a dead consciousness. However, not only is a genuine
consciousness alive, it also reflects the genuine truth.

Just as Lu You (of Song dynasty) wrote (my personal interpretation, as 1 failed to download an English piece):

The road seems ending in the hills and streams, T doubt,

But I see the dense willow trees and bright flowers of another village.
Don’t worry about yourself, only by forgetting yourself can you follow the light, or you never understand the truth due to your endless
doubt.

7. Dual Trends of Neutrosophy

What creates the world?

1. The Tao that can be trodden is not the enduring and The Way that can be experienced is not true;
unchanging Tao. The name that can be named is not the enduring The world that can be constructed is not true.

and unchanging name. The Way manifests all that happens and may happen;
2. (Conceived of as) having no name, it is the originator of The world represents all that exists and may exist.
heaven and earth; (conceived of as) having a name, it is the

mother of all things. To experience without intention is to sense the world;
3. Always without desire we must be found, If its deep To experience with intention is to anticipate the world.
mystery we would sound; But if desire always within us be, Its These two experiences are indistinguishable;

outer fringe is all that we shall see [4]. Their construction differs but their effect is the same.

Beyond the gate of experience flows the Way,
Which is ever greater and more subtle than the world 8].
Men normally care too much about the fragmental details of the universe to maintain the hidden integral. In fact, every mind is
gifted with the gene of the universal mind: the integral of our ultimate inner nature which is identical with that of the universe. This is
what [ call yang in I-Ching (the originator) - it is formless, shameless, timeless ... the completely opposite world from our believed
consciousness. So | call it the prior natal aspect, or wuji in the Taiji figure, or possibly Dao in Daoism.
We illustrate this character of no-desire (actually it is no mental But if there is desire, we can break the unification (denoted by
move, through which to achieve the greatest desire) as wuji: wuji state) into taiji (moving mind):
T ® In this way, we see the integrity of When beauty is abstracted
/ \ the universe. Then ugliness has been implied;
\\ @  Orin Chinese saying, the unification When good is abstracted
prlomatal <A> - o
j of man and heaven. Then evil has been implied [8]
laji  give birth the one to (the idea of) the

\ Juy
other ...[4]

And with the desire growing: But still, there remain both propensities: the integral way and the
g g prop
splitting way:

So 1t is that existence and non-existence

It is crucial that we would rather create more symbols theoretical How can one then reach the truth? First, understand the universal

than follow a natural way. . heart that lies in non self desire. Second, abandon our splitting
manner (mental creations). The undo principle (to undo our
mental change):
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® [ someone points to the moon, can we
reach the moon by holding fast his fingers?
® [f someone points to the truth, can we
reach the truth by holding fast his theories? |
® Because in this way we are merely e
holding fast such pointers that point to \ hei
ey reality, not reaching anything of reality. What h,
we have reached are merely such road signs.

—

s T

the \\
splitting way
Sanm—— ( pricrnatal <A>

returns to \

an infant way \\
S i

taijl

Then does wuji imply anything nihility or absolute voidness, absolute empty? Definitely no. Let’s see:

How much can your mind contain?

for a full cup: for an empty cup: e For the no cup:
K‘\“*’—_’//
No more, because it is fully occupied. One cup. It can contain the universe, because it is
not confined to any form, shape or
boundary.

As illustrated in Chapter 28 of Daodejing [8]:
@ Using the male (having no name, it is the originator, or father; having a name, it is the mother, so we cannot partial to either of them
in case of breaking the ym-yang unification - my personal annotation, as follows), being female,
@ Being the entrance of the world (wuji),
® You embrace harmony (Dao)
© And become as a newborn (returning to the originality, the genuine nature).

So the only way is to abandon all our usual way pertaining to our current misteading world, as the preliminary step toward the true
world. Since truth and false in conventional sense are out of the splitting way: (conventional) logic way, so we should also abandon
such logic way to reach the completely natural way, returning to our natural integrity.

How would we then regard neutrosophy?

As either a new concept of more complete truth or a novel class of logic, it follows the birth, growth, prosperity, wither, death
cycle as in every science. Does one prefér a pointer or the ultimate true world?

If neutrosophy pertains to an instant state of art, no need to adhere to it, due to the constant update.

If to the soul of science, it is no logger external any more. So the way also lies in our inner cultivation.

But as the western understanding of the Chinese Middle Way (Doctrine of Mean), it needs to be further developed, for “When
mind is either being or non-being, it falls into the trap of affirmation. When mind is neither being nor non-being, it falls into the trap
of negation.” Either affirmation, or negation, then, is a trap from which one must free oneself in order to reach suunyataa (the ultimate
reality).” [3]

Doctrine of Mean may refer to our mind move: neither left (affirmation, as being) nor right (negation, as non being). So it may
mean to abandon our mind move (wishful desire) rather than to blend or merge our mind moves (wishful desires). The distinction
between current neutrosophic logic and Chinese Middle Way may be:

/ﬁ\
/ N

( . yin in yang

\

S oWl

lierosy

No mental move; Combining being and non-being in the Or mentally creating some new being as
Free of ideas that implies every idea; way of I-Ching (Book of Changes); truth to pursue, in a heresy way.

Dao that implies everything.

‘Dr. Smarandache has once argued that I stand only on the religious background. As a matter of fact, if one finds such scientific
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way fundamentally critical and the religious way more general, he would then reversely regard religious way scientific and so called
“scientific way” religious.

8. Determinacy and Indeterminacy

Does the genuine mind reflect the determinacy? Exactly, it reflects the truth, and in such a world there is no kidding, no confusion,
no upside-down, no wishful thought, no illusion, even no sickness, no death, no unsatisfaction, no evil, and no unintelligent.

Is it too fantastic? Just because a universal mind adds nothing personal or private to his mind, he doesn’t “reason” in logic, but
with intuition — nothing minded (although with the greatest will), and therefore being the universal mind. As discussed previously,
whenever there exists a more or less private mind, there is a private way or partial way, and anything against this private will or
private way should certainty regarded as indeterminate, hence the notion “we live in relativism, approximation, continuously
changing worlds”- we measure everything in a partial, private, more or less self-oriented, even illuding referential manner. We are
blind to the cause-effect ourselves, as if we drive a plane without any knowledge of the landscape, navigation, even our current
position, our destination - we are using the absolutely wrong measurement (o indicate longitude, latitude ... but we are unaware of.,

[s that the reason why we have indeterminacy in neutrosophy? Yes. It should be a gateway to a more realistic specification of the
contradiction between subjectivity and objectivity. Because we know our limitations, we’d better behave in humility, as someone said,
we are sin at birth.

Does humility mean anything in science? People normally over-emphasize the pro science so as to neglect the con. Not only has
neutrosophy summarized both, it also unplies the humility in science — the indeterminacy, indicating both the incomplete and the
illusionary aspects of scientific manner.

Does neutrosophy implies anything religious? Certainly. “When mind is either being or non-being, it falls into the trap of
affirmation. When mind is neither being nor non-being, it falls into the trap of negation.” Either affirmation, or negation, then, is a
trap from which one must free oneself in order to reach suunyataa (the ultimate reality) [3]. _

The pro aspect: Neutrosophy implies that both affimmation and negation are inadequate to illustrate the objectivity, so adds the
indeterminacy serving as the neutrality in between — neither affirmation nor negation, as gnidance to the reality.

The con aspect: Neutrosophy fails to reach a depth realization of neutrality, thus conveying a different meaning from The Doctrine
of Means of Confucianism. Because, from Daodejing (my personal understanding), affirmation and negation are counterparts: They
yield each other - One affirms something while negates something (even the same thing) simultaneously. So one would fail to reach
the “Middle Way” without compromising both affirmation and negation, i.e., ignoring the measurement.

As the conclusion: Neutrosophy should be in integral with pro, con and neither, with the “neither” implying the ignorance of both.
Thus in this way, Neutrosophy implies the ignorance of neutrosophy. Or integrated in one word: humility. However, as one can point
to the moon but fail to reach, one needs to follow an education called “religion” in practice to realize (acquire) the virtue of humility.

9. Final Remarks

As implied in neutrosophy, whenever there is a perspective point, there is self, reflected in the private referential manner, and thus
the incompleteness, and more than partiality: illusions from this self-centered view. A truth is so called absolute, because it is based
on no selfness, absolutely no, and in such a world people do see the truth instead of illusions. In fact, “self’ reflects rather illusions
than objectivity — a blind man see himself (in conventional sense) as self, but a wise man would see himself differently, e.g., as
something external to him, a tool he employs. Therefore, a preliminary step toward the universal understanding is to abandon the self
oriented desire, otherwise no gleam of truth can be seen.

Truth is not a kind of judgment or measurement that we can impose T,I,F values with our contaminated eyes, but the light with
which we see our blindness and ignorance.

Truth suggests more a correct way of life than a useless set of arcane symbols, therefore it is not represented as sciences, but the
Way, the Dao or the wisdom, imbedded in (intrinsic to) every spirit and is sure to be seen as long as one can abandon his private
measurements.

A fatal barrier toward our genuine understanding is the modern contamination: the modern culture, with which Chinese are
diligently following the dust. To open his eyes, one needs to keep away (even in seclusion) from his previous education: culture,
public media, network and even the polluted world, for a tiny pill of poison can spoil a pool of pure water men daily drink. The
danger is far less pernicious from material food than spiritual food.

A polluted mind would never be aware of the current danger. A lady from countryside once blamed for the contamination of water
in Xi’an (in which we are living) which we regarded pure. A human flesh-eater normally enjoin the taste of the dishes, while a
university yang lady who just became a Buddhist (following the teaching), nauseated at the flesh she used to have at the student’s
canteen. My wife in pregnancy also nauseated at the flesh she used to like and then changed her manner forever. Same to a
contaminated mind — one could suddenly be aware of something valuable in a specific environment, like Lt Na (surname and given
name in Chinese), a famous singer who lately became a Buddhist nun in America.
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There is the birth, growth, prosperity, wither and death of logic, but no birth and death of truth. It is the source, a universe,
permanently alive. To discover the underlying truth in neutrosophy, one needs to abandon any logic adherent to it and see directly the
source, through out its countless birth and death cycles.

A pattern 1s true only when completed, implemented, testified and proved in practice, not in superstitious manner. This is the
significant difference between truth and logic.

Absolute truth is independent of our beliefs and measurements — it objectively exists through out the universe and is universally
true in every world, although represented in varying forms to different mental spheres and different phases of individuals. But, it is
also seen as relative in its capricious representations — It is not the fact that the truth varies, but our minds swing, and therefore see the
treatment in dynamic styles. See a poem by a famous Buddhist poet Su Shi in Song Dynasty

A great mountain by vertical and horizontal view,

Far, near, high, low, and each not same.

I can't see the true face of Lushan,

Because | aimn just in there.
and Daodejing Chp.7:

“Heaven is long-enduring and earth continues long. The reason why heaven and earth are able to endure and continue thus long is
because they do not live of, or for, themselves. This is how they are able to continue and endure.

Therefore the sage puts his own person last, and yet it is found in the foremost place; he treats his person as if it were foreign to
him, and yet that person is preserved. Is it not because he has no personal and private ends, that therefore such ends are realised?”[4]

“Nature is complete because it does not serve itself.
The sage places himself after and finds himself before, ignores his desire and finds himself content.”[8]

So the universal truth lies in the abandon of self-desires (As a beginner, I am unqualified to speak anything of Buddhism. For
those who have interest, please find sources in http://www.drba.ore/CTTB/cttb_e.htm, the City of Ten Thousand Buddhas (CTTB,
USA) for English, and another site http://www.physics.utah.¢dw~junyu/larong/index.html for Chinese, and may also find faults in my
assertions). '

10. A Heuristic Dream

It was at the dawn of April 30, 2003, in the dream, [ was asking a repairing booth to have my bicycle repaired ... in the end when
it was all done, 1 suddenly found my bicycle disappeared. I looked around and wonder: “I didn’t leave a half step away, why?” I was
terribly uneasy until half awake and realized that my real bicycle is OK. In the mainland China the majority rely on bicycle that equals
to cars in the United States. It is in fact a basic means of living. Accordingly [ immediately realized that it is a heuristic dream.,

I remember a film about the Sixth Patriarch, Master Huineng, in which he was invited by the Empress Wu (Wu Zetian of Tang
dynasty, the only woman emperor in Chinese history) to the capital (now Xi'an) to teach Buddhism, but he declined, thus made the
empress angry. fust in a while she became aware: “No dharma (method) is dharma (method)” - dharma may be the most natural, not
something we create or seek external to our nature - my personal guess (actually one should never guess, but 1 am afraid readers
would distort the original sense), see Heart Sutra [1]:

When Bodhisattva Avalokiteshvara was practicing the profound Prajna Paramita, he illuminated the Five Skandhas and saw that
they are all empty, and he crossed bevond all suffering and difficulty.

Shariputra, form does not differ from emptiness; emptiness does not differ from form. Form itself is emptiness; emptiness itself
is form. So too are feeling, cognition, formation, and consciousness.

Shariputra, all Dharmas are empty of characteristics. They are not produced, not destroyed, not defiled, not pure; and they
neither increase nor diminish. Therefore, in emptiness there is no form, feeling, cognition, formation, or consclousness; no eyes,
ears, nose, tongue, body, or mind; no sights, sounds, smells, tastes, objects of touch, or Dharmas; no field of the eyes up to and
including no field of mind consciousness; and no ignorance or ending of ignorance, up to and including no old age and death or
ending of old age and death. There is no suffering, no accumulating, no extinction, and ne Way, and no understanding and no
attaining. .

Because nothing is attained, the Bodhisattva through reliance on Prajna Paramita is unimpeded in his mind. Because there is no
impediment, he is not afraid, and he leaves distorted dream-thinking far behind. Ultimately Nirvana! Al Buddhas of the three
periods of time attain Anuitara-samyak-sambodhi through reliance on Prajna Paramita. Therefore know that Prajna Paramita is a
Great Spiritual Mantra, a Great Bright Mantra, a Supreme Mantrz, an Unequalled Mantra. [t can remove all suffering; it is genuine
and not false. That is why the Mantra of Prajna Paramita was spoken. Recite it like this:

Gaté Gaté Paragaté Parasamgaté

Bodhi Svaha!

(It is strongly suggested that one never seek the meaning of the Chinese Classics when he reads, in the way of Chinese Classics
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Recital Project of Prof. Wang mentioned in section 4, or what [ call here the infant way - Whenever he does seek, he is seeking
distraction unwittingly. Plant rather than reap, or he will definitely distort the essence.)

As we know people nowadays are putting all their hearts and soles in the search of science — the supreme method believed by all,
just like the bicycle relied on in the dream. However science is merely a dream, a language of the current illuded world (as stated in
section 4, ants live in their own world and have their own characteristic of language, so do birds and humans), and can suddenly
disappear when we wake up. Even awake, one would find it terribly uneasy with this changed style of manner and would rather prefer
the old custom — it is still harder to adapt to a new life.

What is self? Something we daily rely on? Oh, just the bicycle in the dream - we are repairing it every minute and numerous
people are diligently finding and achieving it through out their lives, but we will eventually find no such self (in the conventional
sense) exists: it is rather a dream than the real self.

Our reflection of the world can be more or less an emersion, a projection, or a developed image of our mind move, lacluding T,LF
in neutrosophy, I hazily figure, although I am still in the maze. But, as implied in all the Buddhist scriptures, EVERYONE CAN
EXTRICATE HIMSELF QUT OF THE MAZE OF ILLUSION — countless people have already succeeded in their cultivation, like
Sakyamuni and all the Buddhas, Bodhisattvas around the universe, their number is as many as that of the sands in countless Ganges.
But preliminarily, stop our mental creativity and imagination, honestly and sincerely follow the greatest teachings. Dr. Smarandache
once blamed at one of our ICM2002 participant’s hotel, dorm 18 of Tsinghua University, for the “strange Chinese custom” that it is
strictly impolite or insulting to “touch” (in his word) young ladies (e.g., wrap his arm about her shoulders). T would have told him to
find strict regulations in Confucianism and all the ancient heritages if he were really interested in Chinese culture instead of blaming.
Without such social regulations, or without strict commandments, neither civilization would have been built up, nor would any
dharma have been actually seen, from any greatest teaching (any greatest culture will definitely in this way deteriorate into the devil’s
saying). So it is more suggested to popularize Confucianism in our current society (in which the most valuable thing is being lost and
the real civilization is dying, impacted by the western modernization), as a preliminary step toward further educations (Confucianism
and Daoism served exactly as the basis in Chinese history for the introduction of Mahayana. So it was an absolutely wise deed to

popularize these Classics as the basic education).
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Abstract: Logic should have been defined as the unity of contradiction between logic director and logic implementation.
Chinese Daoism asserts that everything is defined in the unity of opposites, namely yin and yang, accordingly yang conducts
change and yin brings it up (I-Ching, also known as Book of Changes). In this way logic is redefined in an indeterminate
sivle to facilitate “both A and Anti-A” etc. in neutrosophics of logic. The unity of opposites is also described as neutrality in
neutrosophy. An intermediaie multi-referential model of excitation and inhibition is developed to derive a multiagent
architecture of logic, based on Chinese yin-yang philosophy. This methodology of excitation/inhibition suggests a rhymed
way of logic, leading to a dynamic methodology of weight strategy that links logic with neural network approach. It also
confirms the crucial rofe of indeterminacy in logic as a fatal criiicism to classical mathematics and current basis of science.
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1. Background

What fatal defect do we find in the conventional definition of logic? Although logic plays an important role in science and
technology, some fatal flaws negate its validity and applicability:

Lack of insight in the essence of logic that should lie in the contradiction between conceptualization and implementation.
Even logics of the highest validity can contradict their applicability, as illustrated in the logic “I"ll visit him if it doesn’t rain
and he is in” [1].

The lack of identity between opposites. Do truthness and falseness always antagonize each other? No, there is neutrality
or agreement between them, which combines them into a unity, as illustrated in neutrosophy.

Assuming that for incomplete knowledge system as in ordinary human, there is no absolute truthness and falseness in
reality (as shown in neutrosophy), therefore even the most complete logic system is by no means complete, or, the most
complete is the most incomplete.

Example 1: The sun turns around the earth. Example 2: Ul visit him if' it doesn’t rain and he is in.
<A> <Anti-A> <A> <Anti-A>
The sun turns around The earth turns around It doesn’t rain When I become confident
the earth. the sun. and he 1s in. of it, it is too late to go.
A A
balancing point: ba[ancing point;
This is a relative concept. I should try my luck or make an engagement.

In which aspect do we differ in the definition?
Logic in essence is rather a dynamic balancing act than the static truth-false concepts.
This behavior can be represented in neutrosophy as “both <A> and <Anti-A>" promising a unification in the balancing.
Values in percentage are inefficient to characterize the unification in the tradeotf.

Logic in its social aspect is an integration of distributed actions {conceptualization and implementation), rather than rules
or fuzzy rules only. Logic is derived when people neutralize opinions among countless versions of implementations and
applications, in contrast to the absolute accuracy and completeness in conventional mathematization — how can we measure
unintentionality with intentionality? For this reason, I will write in the non-mathematical pattern, as against the
“mathematical” pattern, for what is called mathematical is no longer mathematical at all in the views of neutrosophy and
Chinese classic philosophies: things will develop in the opposite direction when they become extreme, or “wujibifan” in
Chinese.

The logic “both A and anti-A” can be invalid in conventional logics, but valid in an excitation/inhibition rhythm, at least
they imply each other and live in one family.
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2. Definition of Neutrosophic Logic — A Novel Version
Is logic a fixed concept or an endless evolution? Let’s explore the evolution of logic:

priornatal (prenatal, innate) aspect (void)

4
intention (first implementation)
{
{
full implementation
<A> <Anti-A>
A

If we regard <A> as the positive attitude and <Anti-A> the negative attitude toward a desire, an intention, inspiration,
assumption, etc., <A> and <anti-A> have in this way become logic operators, take “I can speak English” for example:

As positive operator <A>, it doesn’t mean he speaks good English at the moment, but the confidence in his success. In
this way he acts in the positive manner.

As negative operator <Anti-A>, it doesn’t mean he speaks ugly English at the moment, but the lack of confidence in his
success. In this way he acts in the negative manner.

In reality logic comes as the balancing between these two actions, as summarized bellow:

Unity of opposites: both <A> and <Anti-A>

The hidden integral: every mind is gifted with the gene of the
universal mind: the integral of our ultimate inner nature
which is identical with that of the universe. This is what [
call yang in [-Ching (the originator) - it is formless,
shameless, timeless ... the completely opposite world from
our believed consciousness. So 1 call it the prior natal
aspect, or wuji in the Tayji figure, or possibly Dao in
Daotsm.

Postnatal aspect: what we see, acquired knowledge, set of
rules, etc. regarded as a specific implementation of some
source in a specific situation

Priornaial aspect: what is hidden or lies under the phenomena
as the origin of logic. <A> and <Anti-A> should be
derived from the same source, namely priornatal aspect
(can be void in representation, but nothing nihility)

Yinyang perspective: the balancing is based on both priornatal
and postnatal aspects. This unity is called a contradiction.

Practical  description: intention(priornatal, implemented,
indeterminacy), where those implemented have been
represented as truth or false, and those not implemented
have been attributed to indeterminacy.

Key issue: there remains a gap between these two aspects, and
the same source can be carried out in different ways

Simplified description (definition): the unity of contradiction

between logic director and its implementation

Why do we need to describe the prior-natal aspect of logic? The ambiguity of logic definition lies in the indistinction
between conception and implementation. A concept without substantial implementation is usually abstract or even arcane,
because it can never be understood by human (e.g., the primitive intention can be haphazard, underlying or void, i.e. non
intention, such as “why was [ born?”), therefore it is always void of significance. The implementation, howeéver, can seldom
match with exact accuracy with the presumption in concept (as shown in [2] and [3], Logic is always subjective, always
partial), there must be inconsistency or even contradiction between them, therefore, we need to examine the relation (we call
contradiction) between them to carry out the definition:

Logic is defined as the unity of contradiction berween logic director and logic implementation.

The contradiction refers to the unification of divided opposites.

In differential perspective we find such descriptions as truth and false.

In integral perspectives we find: truth in false, false in truth, percentages in truth values, neutrality, indeterminacy, etc,
leading to the evolution of logic in such a cycles as “birth — growth — prosperity — wither - death”, in its limitation to the
unification with non-logic; the unifying way in its ultimate limit resembles the voidness or emptiness we have called, but of
essential difference with those we have imagined.

Should logic be defined on the differential basis or the integral basis of these opposites? Chinese Daoism asserts that
evervthing is defined in the unity of opposites namely yin and yang, where yang conducts change and yin brings it up, so
here I assume that yang directs change and yin implements it (a sample model: excitation and inhibition in unity). The unity
is also described as neutrality in neutrosophy, but my personal inspiration from Dacism indicates more:

Since ordinary human is very limit in his enlightenment on the nature, i.e., his knowledge appears as incomplete in both
time and space domains (space incompleteness means his partiality, and time incompleteness refers to his lack of insight to
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the cause-effect, leading to the lack of insight to essence and nature), I should define a priornatal aspect of knowledge
(referring to the innate aspect) as contrast to the acquired aspect, because all the acquired one is in fact born, grown and
develop from the innate aspect, as if a sophisticated human figure is developed from a single gene. | have to assume this,
even if it can be void in form. The priornatal aspect corresponds to yang.

In practice however, the absolute priornatal aspect is intangible, therefore I exploit a relative concept that an
implementation (e.g., a complete sct of rules) is derived from a relatively “priornatal” intention, which can either be regarded
as the absolute priornatal aspect or an intermediate implementation. So I apply (Priornatal, Implemented, Indeterminacy) as
1ts status.

This status representation has suggested a novel strategy toward association, e.g., when the three components are
represented as operators, or in sets and in recursive manner. ‘

To simplify this discussion, I simply use the contradiction between director (as priornatal aspect) and implementation to
illustrate the essence of logic, which reveals the fact that any set of rules is a specific implementation of a priornatal seed
under/in specific circumstance, condition or situation.

s there any significance in such a contradictory way of definition? Let’s see what this definition reveals:

Logic refers to practical or even endless actions rather than dead rules.

There are always a director and an implementer in every action of logic. The former provides new directions (e.g.,
assumption, idea, assertion) to the action and the later carries it out (provides substantial support, verification, proof or
negation).

There is always contradiction (unity of opposites) between them, with the contradiction sometimes appearing identity and
sometimes antagonistic.

It is this contradiction that defines the validity of logic: truthness, falseness and indeterminacy.

The contradiction shows much more than values do: it is very likely to signify the trend of further development, and
illustrate the status in both quantity and quality.

Neural networking and logic are in fact homogeneous.

So far one may blame for the similarity to conventional logic — an automata that automatically fetches instruction and
interprets it, then carries it out automatically. It is true in appearance, but different in the essence that consistency is only
achieved through the tradeoff between inconsistents — to find the identity, or unity of them. We can alternatively regard the
contradiction as a rhythmed change (like a single pendulum with varying amplitude), in positive-negative endless revolutions.
Unlike mechanical changes, there is an identity, unity or neutrality underlying in the endless generations of the evolution.
This is the point our eastern culture defers from that of the west, Why don’t we regard the opposites as one unity?

As the ultimate limit, when the amplitude of the above pendulum converses to naught, i.e., no longer any distinction
between truth and false, logic seems dying out but our intentions, although without reasoning, is getting closer and closer to
the reality (one needs to understand the entire ancient Chinese culture to understand this philosophy.).

3. The Excitation/Inhibition Loop

How much have men explared the priornatal aspect of the world? I-Ching (Book of Changes) shows that the everything
in the world is made up of two opposite and complementary aspects or attributes (not necessarily priornatal and postnatal, for
convenience we take them as hyper-matter, because we normal people are always inhibiting our perceptions with opposite
excitements — we emphasize to much on the shaped or developed matter forms than the prior-shaped origin): yin and yang,
which in combination produces the five basic hyper-elements (five-phase): wood, fire, earth, metal and water, with each
giving rise to another and inhibiting another as well. The significance of this hyper-matier system has long been proved in
Chinese history and by Chinese medicine. ’

Can we initiate the priornatal aspect of a system in this way? Inspired by the trigrams below, [ primitively define the
mapping (since | am strictly limited in my insight, here I just launch the argument — leave the rest, e.g., to the next
generation): '

Wood character: to resonate to something as source information, and to perceive it, expand its influence.

Fire character: to generalize perceptions into conceptual pattern as guideline.

Earth character: t6 substantialize, nurture and bring up the above conceptual pattern in a particular situation.

Metal character: to formalize, to fix into model, to finalize the design.

Water character: to be skillful, artful, toward accumulative flexibility, so as to reach an instinct, in which all concept or
logic is hidden or implied.

The excitation loop illustrated in I-Ching is:
Wood-yields— Fire—yiclds— Earth-yields— Metal—yields — Water—yields— Wood
The inhibition loop:
Wood-inhibits—Earth—inhibits— Water—inhibits - Fire—inhibits— Metai—inhibits— Wood
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Can we implement the above intention? The above loops are better illustrated with my
inspiration frem the Later Trigrams of King Wen, [ map the trigrams to:

Zhen Agent (of character wood): the impression of a seed breaking through its outer shell A ~‘\
and germinating, but with logic, { believe, the peaceful mind being stirred by an impulse (like Sh ic
the quiet water being stirred by a falling stone), to resonate to something as source information. ﬁ “l l" =]
As in automata where an instruction is given that issues a process except that this is a kind of “ /
stimuli that excites/inhibits another agent. In fact human mind is such an open receiver: it is & qt - /“D
constantiy stirred. Resonance to a good source can plant or promote the growth of a healthy seed %o :. &
rooted in our mind, and that to a pernicious source can spoil or destroy our intelligence. ey

Although a pernicious seed looks favorable at the moment, it promotes our illusions and
corrupts our mind through chronic, and eventually through sudden effect. Normally a man is resonating to varying sources in
a spectrum, and the center of it depends on his underlying will.

Xun Agent {(wood): 1o spread (broadecast) the influence of the above resonance to different senses (or referential frames),
heterogeneous and even opposite, contradictory, for them to feel, percept (interpret):

[ve]
diinterp. )=y _oOfimp)  dfrfi)
=1 3(rf i)
where /nterp. denotes the interpretation, rf1 the reference frame / and /mp. the impulse. The action resembles compiler except
on the multiagent based contradiction compatible multi-referential background. A resolved man can manually inhibits the
pernicious spread of unhealthy influence, and thus kill the virus seeds rooted in his mind. In this way he can change his
destiny with this persisting reform. So is a society — it can definitely step into chaos, disorder and trouble if enhances the free
spread of all kinds of media as in networks. If so, not only should we see the retrogression of mankind, but the pernicious
disaster as well. To 2 common man, his ideology depends heavily on the sources he resonates to, and the public ideology
resonates exactly to the media, not the real truth. In this way the society is killed by the media rather than nuclear weapons,
S0 is mankind.

Li Agent (fire): to assemble the above interpretations into an integral pattern, as a concept, a hypothesis, proposal or
myth serving as a guideline:

[ve]
guideline =fd(inrerp,) =3 / dlimp.)  d(rfi)
=1 8(if i)
The action resembles convention concept tree except that it functions as a concept (or logic) director, conductor or guide, of
even inconsistent components, in a indeterminate manner, like an adviser that helps figure out the general situation, plan, etc.
which need to be developed and implemented in the future or future generations. A good pattern is not neocessarily
recognized by all, due to the diverse seeds active in different people, and different referential manners. Whenever one
chooses a good pattern, it is only through practice to build up his confidence and trust, not merely imaginations. So a pattern
is true only when testified and prowved in practice, not in superstitious manner. Still, only in practice, can one complete and
implement the pattern. This is the significance of a truth.

Kun Agent (Earth): to substantialize, nurture and bring up the above pattern based on current simation (condition,
environment, constraint, etc). It implies the balance with reality (as defined in [3], logic in essence is a kind of balance), i.e.,
a tradeoff between motivation and reality. [t is usually in this action that a balancing point can be found, and the above
beliefs (I have assumed that human is incomplete in his knowledge, in this case truth is only relative, or combined with
subjective beliefs) is verified, modified (through feedbacks to earlier actions), and proved for validity. The action resembles
conventional logical proof except that it works in the indeterminate mode. The action seems to be an obedient verification
(obedient implementation). Even a true pattern serves only as a guideline, not the implemental instructions. Among the
heterogencous minds, there does not exist an exact protocol of regulation, nor an absolute fare law. Laws vary among
situations, and lawyers seldom apply them as doctrines. For example, there are different understandings toward human right
issues, To a superman species should share the same respect as human’s, but to a mean, others, other groups (as rivals) or
other nations (as in the third world) would be less respected  in heart as himself/itself. So the same guideline can be applied
in either unselfish way or in self-centered manner, thus the same truth can remain treasure to some, and pernicious and evil to
others, like a seed prospering in some area or situation, and withering and dying in others.

Dui Ageni (metal): to fix into model, to formalize the implementation. The action resembles conventional knowledge
representation except in the form of agent based active network with all the weight patterns of excitation and inhibition
featuring the balances in all the contradictions. The validity of a good pattern is void without implemental instructions, and
universal truth is arcane without substantial facts or materials supporting it. A college graduate without experience is nothing
more than a bookworm. A real model cannot exist without practical experience. A good philosophy doesn’t mean anything
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without specific implementations. This is the significance of a real model. However, since every specific model grows up in
a specific environment, it is normally absurd to directly copy existing models than to re-cultivate one’s own realistic models.

Qian Agent (metal): to take the principal role by fighting against the old. This is a necessary step in metabolism, and
through this action the developed model above is finalized. The action resembles knowledge update, but it nesds time in a
dynamic neural network to resist the old and build up a new belief (in a new weight pattern). A modet can be temporarily or
locally successtul, but still hard te change the whole mind and the universal belief, because of the old propensity and inertia,
such a great impetus as to kill the novelty. A man can be inspired at some spot, and carry out a model in a favorable situation,
but the heaven would not always keep sunny and mild, there are storms and heavy winds ahead. To stand against the
unfavorable circumstances especially the dreadful environments, one needs to persist in his reform to get rid of the resistance
in his mind, and so to a universal extension. Everyone can play an instant role of the god but only sages have the perfect play
in his daily lite, whether in favorabie or harsh situations.

Kan Agent (water): to be skillful, artful, into accumulative flexibility, as to reach an instinct in which all concept, logic,
after a long conception process, turn onto something hidden or implied. Logic in conventional sense is born as a sort of rule’
or concept until it 1s digested into a kind of instinct, which gives rise to the flexibility in application, or in the end, it is used
unconsciously — without realizing its existence. The previous concepts become hidden in deeper memory. The consequence
of activating the model in endless repetition (bringing about the short cut in thresholds, and the expansion of this
micro-society of activated neurons) has lead to an extremity of expertise. On the other hand, adherence to rules or concepts
can eventually trap one into partiality [3}, loosing the integrity, therefore, “we should have a rest in Kan”. Any method
reveals its theorstical and academic characteristics in application, until one day theory and practice melt into one, a unity, and
melt into practical environments so that the original fixture blurs, liquidized (loosing its rigid shape), sublimated and
distillated into an underlying philosophy, even shapeless. In this way the original fixture diminishes and vanishes in shape.
But to those adherent to its outer shape, they would be inadvertently trapped in subjectivity — the reverse effect at the
extremity.

Gen Agent (earth): the end of logic. Since everything is done unconsciously with great flexibility, even without the
consciousness or concept of doing or not doing something, i.e., no distinction between action and inaction, unaware of
following rules any more, therefore, the original issue becomes naturally obsolete and transformed into a form seemingly
void, we can regard it as gene, but actually far more than it, like something seemingly nothing, as no action, or not-doing,
even he is actually doing, or in action in other eyes. In this way the concept of action dies. At the highest stage, our mental
creativity stops, because we don’t need to add anything redundant to our instinct. At this level our minds stap at rest, as if we
no longer care how to walk for which we struggled at infant age. But there are adverse circumstances when we add additional
desires that trouble our minds. However, science in its evolution would follow the same style, and one day when we ses
through our illusionary desires, we will readily stop our imaginations. This evolution (contrary to that of Darwin) goes on
and on in the limitless birth and death revolution, until one day we really see through all: what constantly born and die ars
merely in our minds, the unjverse remains exactly the same — past, present and future originally unified, no need to split it up
(with so called creativity).

’

Can we see excitation or inhibition in this system? The excitation cycle goes clockwise in the figure. How water triggers
wood in the next cycle? There are new problems in the in new generation of development, as old problems are “settled”
(balanced). Let’s now see the inhibition diametrically:

Dui inhibits Zhen: A built-up model can definitely inhibit our creativity, or unintentional exploration, because of the
restriction with the known model, or loose of curiosity. The resonance to a fixed feature can definitely inhibits us to other or
even hidden features, especially the heterogeneous and contradictory ones. As illustrated in [2], unintentionality contributes
greatly to human creativity.

Qian inhibits Xun: having taken the principal role, the developed knowledge would inhibit the growth and expansion of
previous unfavorable referential sources. '

Kan inhibits Li: since the expertise is hidden in the instinct, is there any need to explore the concept or the philosophy?
No one may ask why he is human instead of a duck, because there seems no problem at this stage — he is using his instinct,
while the conception is at rest.

Other inhibitions (to my knowledge so far, I cannot specify the diagrams);

Wood inhibits Earth: in order to develop new ideas, one has to contradict with previous knowledge substantially, i.c.,
curiosity inhibits obedience. For example, when one resounds to a new saurce as new concept, he would keep critical to the
old; When one refresh his mind in religious way, to keep the new and faint resonance on and on, he has to fight against his
previous sins, i.e., stop obedient to his old propensity.

Fire inhibits Metal: as we know in philosophy (especially neutrosophy and Chinese class philosophies), the most general
or integral pattern of knowledge (as many people described as the absolute truth) is usually intangible: too abstract, too
arcane and abstruse, unable to be represented or fixed in a definite form, or, completeness (complete in both positive and
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negative perspectives, as in neutrosophy: both A and non-A, both A and anti-A) inhibits accuracy (the exact representation).
Conventionat mathematics is inkibiting itseff

Earth inhibits Water: Earth as the implementer is characterized with obedience, opposing flexibility (in reality yin does
not constitute a body or entity without yang, but we are talking about yin aspect).

Are logic and neural approaches contradictory and inconsistent? This methodology of excitation/inhibition suggests a
rhymed resolution to the integral of opposing logics (see [31]), leading to a dynamic weight strategy to be neutralized with
that from neural network approach. And in this novel definition of logic, the two distinct and disjunct approaches come into
one family, and we can predict their real unification theoretically.

4.  Neutrosophic Anpalysis

This hyper-system seems in Chinese manner, is it related with neutrosophy?Logic has never found out where true and
false values are born. In fact, they are born from each other — each from human distinction of the other, and more we care
them, more we adhere to a logic, and thus spoiling our prior intentjon (a live one rather than a dead one), therefore logic
itself undergoes an endless evolution, leading to non-logic.

Therefore, logic is merely an instant image of reasoning: the first atternpt comes out of indeterminacy (e.g., to be engaged
in a study), then the theoretical approach, which when fully developed, is fixed into such a logical model as concept, model
or science, The science, however, will face its final stop when people all adhere to it, and yields uncertainty when men all
take it as absolute certainty (2.g., Newton’s classical physics), due o the incompleteness, or absolute incompleteness of any
fixed model.

First let’s assume the three aspects of referential systems in knowledge base: truthness, falseness and indeterminate,
which lead to: valid information, false information and neutral (balanced) information, as the result of Xun action. Then in Li
action there is confusion in the integral operation: how to combine positive, ncgative and indeterminate attributes, and in
what form is the result? | am afraid it is also in the three T,LF aspects:

T: a positive conception

F: a negative conception :

I: indeterminate conception, including both currently balanced conception and incompletencss in the conception.
i.e, an integration of T,LF, three in one, where the pure T or F being a special instance (extremity) already solved by
conventional means. This is as far as pure conception goes — to plant a seed of concept that is subject to dynamic change.
Since we cannot foresee the result in implemented detail, we have to wait until the seed becomes mature, and this is the
significance of Kun action: to bring up the seed.

Even when mature, there are still three aspects of the grown up model:

The positive aspect,
The negative aspect,
The indeterminate aspect in both senses: balanced and incomplete.

Is it a valid model? Sure, since great deal of experience is gathered through Kun step. As we know every system has its
advantage, weakness and indeterminacy, like every single mathematics. The point is to make the best use of it, i.c., to know
-how to apply the knowledge to a specific situation - to substantialize it. [n fact, one can never find an absolutely complete
model in our real world. '

The developed knowledge may go through extremities: too pesitives (seldom contradictory, as in the classical logic), then
we should take a rest, because of the “wujibifan” effect (reverse effect) indicated in Kan Action, to avoid being trapped in
partiality.

Now every agent works in contradictions of excitation and inhibition, positive and negative... in dynamic balance. When
does it stop? Never, since human is an open system. But to the extremity, when man no longer adds anything to his concept
that has diminished into such an infinitesimal (ignorance and knowledge in unity, because one can see through the concept),
there would be neither beginning nor stop, because in this case, positive and negative are united, asexual or neutral (or void,
because of 1 as being against 0 as non-being).

There are similar approaches from neurology-1-Ching background, see [4] which summarized some of the related
dialectical models and approaches including logics similar to Neutrosophy. But I cannot assure its conformity with the
Chinese Classics (seemingly a combined philosophy). My work is complete independent from any other approach.

5. Concluding Remarks

Although men is constantly achieving in science, but from some gquantum mechanics scientist's saying, we might have
moved no further (In his dream he saw the speedy moving bicycle advanced no further. But when he stepped into this world
in his dream, he felt he was moving fast).

Can one explain many of the unexplainable concepts in neutrosaphy, with this methodology presented above? Sure, a
problem of the implemented and the unimplemented, but the former is relative to some background or axiom — a supposition
or a belief, and thus every logic in this way exists in a default background. This limitation (delicately pre-designed axiom)
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must be abandoned before one can explore anything further,

Logic is in constant evolution, from birth, growth to prosperity, wither and death, but there must lic something
underneath this change. So we pay more attention to the sced of logic while we regard logic only as an instant image,

One can plant either positive or negative seed, due to his confusion with the situation, i.e., a seed illustrated in the agent
model may yield either good (although unfavorable at the point) or bad (even favorable at the point) fruit.

[f one studies the amplitude of this oscillation between true and false, it undergoes a periodical wave from infinitesimal
to maximal and then back to infinitesimal, reflecting both subjectivity and dynamic environment.

[f the above amplitude keeps zero, i.e., no longer any distinction between truth and false, one may reach a practical mind:
a natural mind, in unity with the objectivity, but note the multi-fold implication:
. A casual or instant balance of the opposites can be temporarily reached but soon broken down when one still has his
private desires. A casual or instant unification of the opposites can be temporarily reached but prone to be disturbed if he has
not reached the complete natural way.
2. Anidiot can be blind to any truth and false, but he can never reach this unification as long as he suffers.
3. A stone heart (deprived of consciousness, e.g., an absolutely void consciousness) does not live in the unification, but
Just the opposite: permanent apart of yin-yang. ‘
4. It is the most sophisticated and difficult thing in the world to understand this point (so I am unqualified to mention).
People would sacrifice all their own to follow a correct education. For short let’s ses a metaphor (I add the latter two items):

How much can your mind contain?

for a full cup: for an empty cup: /—~“—~\ | For the no cup:

No more, because it is fully occupied. One cup, It can contain the universe, because it is
not confined to any form, shape or
boundary.

Fuzzy logic is not at all a matter of percentage of beliefs between truthness and falseness as widely applied in
conventional mathematics, but a dynamic balance between <A> and <Non-A>, or <A> and <Anti-A>, with the balancing
point and incompleteness found in <Neut-A>,

Since it is not clear enough to represent this balance in percentages, we need to exploit dynamic weight methodology in
neural approach - aliocating weights to each of <A>, <Non-A>, <Neut-A>, etc,

[ntentionality and unintentionality [2] coexist when both action and non-action are excited (in deferential point of view,
they are alternately fired). It may be hard to believe that opposites can co-exist, but it can be implemented in reality.

Both <A> and <Anti-A> co-exist also in the way that they are alternately excited/inhibited, or one of them is
implemented in such a balance that partially supports both.

<A> yields <Anti-A> when <A> is implemented into 2 contradiction that negates <A>.

<A> yields <Neut-A> when <A> has been implemented into a balance between <A> and <anti-A>.

Absolute accuracy inhibits comprehension, and conception inhibits accuracy — conventional mathematics is self
contradictory. Hence the need to develop indeterminate mathematical patterns like neutrosophy.

Things shown in diversity in different perspectives come out of the same root, but the difference of different selves and
different manners of reflection. To explore information fusion, one needs to cultivate the deeper backgrounds or hidden
layers, and eventually, to the common basis shared by all. In fact, we all stem out of the same root (the deepest layer
commonly owned by all), so do men and nature.

Why do our logics yield contradictions? Because we are so superficial as to take instant images real, see another paper
unpublished: Truth and dbsolute Truth in Neutrosophic Logic. But EVERYONE CAN EXTRICATE HIMSELF OUT OF
THE MAZE OF ILLUSION as long as he is resolved to reform - ignoring or abandoning his previous ideology of this
bewildering world and persistent in the greatest teachings.
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Abstract — This paper presents consciousness as the sum of describable processes, without limiting it only
to verbal understanding. Consciousness is presented as o buffer space of the unconscious, accessed by any
mental decision-taking processes. Consciousness is composed of sequentiol oulputs of non-conscious processes
that form, as frames in a picture, the impression of our ego continuity. The functional consequences on real-life
information fusion problems are then further discussed.
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Motto: Consciousness is just a wondering fashlight in the dark hall of the inexhaustible factory that is the
Uneconscious. :

1 Introduction

Information fusior is not a problem easy to tackle. Coming as a natural objective from various high-
demanding fields of activity, information fusion is an inovative approach on turning the immense flow of in-
formation into precious knowledge. The age of content-independent tools is reaching its peek: from the first
statistical methods to the more modern data mining and text mining tools using machine learning techniques,
researchers tried to automatically classify data in relevant and non-relevant disregarding the particularities of
information. The future tools of information fusion need to artificially understand language (NLP) and, fur-
thermore, consciousness, because information, as a resource, is present in a human-only accessible form. In my
previous article “Premises for.a multimedia Memory” [12], I've defined consciousness as the sum of processes we
are aware of and that, accordingly, can be described at a latter time. Now it is time to analyze the consequences
of this definition and see how well it does describe the actual human mind. The first encountered problem
using this definition was the unknown origin of conscious queries on non-conscious processes, queries that were
presumptively the communication channel between the conscious and the non-conscious mind.

I then realized that we are aware of what we ask ourselves and that we can reproduce verbally any philosoph-
ical question that troubles our mind, but we cannot explain the process of arriving at this question. The logical
thread of sentences is not continuous. The easiest explanation could be the shift of our attention focus. Still,
this only happens when mind is disturbed by exterior factors. But in the process of deep thinking or meditation,
the process is not discontinued by any of those factors: instead, we are making leaps of consciousness, gestalts
that inner-change our focus. At least that is what appears to our conscious minds. So, if we keep the definition
of consciousness as the sum of describable processes, then consciousness reduces to a simple interface between
two non-conscious processes:

Two questions arose from this diagram:
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Figure 1: Consciousness is just a transit space between two non-conscious processes

1. If all questions are made and resolved inside non-consciousness why the need of consciousness?
2. If consciousness is just awareness of the outcome of our non-conscious processes where is our free will?

What we need to discover is the process that inputs the information of the transit space of conscicusness
and has will as the outcome. If the outcome of the process is a choice then a decision was made inside of it.

The diagram changes again according to figure 2:
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Pigure 2: Consciousness is just superficially continuous

Consciousness is in fact it is composed by sequential outcomes of various processes needed in decision-making.
The logic of all processes obeys the laws of neutrosophy ! [10].

In fact, the entire triangle of non-conscious processes forms the human impression of consciousness. We call
conscious a process whose outcomes are often stored in our short-term memory and that can be the object of a
decision-taking process.

! Neutrosophic logic (or Starandache logic). A generalization of fuzzy logic based on Neutrosophy [9]. A proposition is ¢ true,
¢ indeterminate, and f false, where ¢, ¢, and f are real values from the ranges 7', I, F, with no restriction on T, [ , &, or the sum
n==¢-+41i-+ f
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The dialog between non-conscious processes is registered in the “memory stack” and accessed by the decision-
making process. Like in a no-ending genetic algorithm, various solutions of the problem are generated, saved in
the stack and then the best of them is chosen. This representation is internal and anthropological plausible?.

To prove it, we are going to get a little bit metaphysical. If we change the labels of the diagram we will have
this representational juxtaposed-analogy (see figure 3).

Supra vgo
dutbirs / Docides
Good f Bad
Synthesis
Conrceus
will \ will
T—I L |
Ego Alter =z
Adtve Word Pasgve
i .
Questionz / Starcher Answers{ Fuds
Exteqar Intenior
Thests Antithens
Sebcopscious Utconsacus

Figure 3: The common unconscious assumptions made on mind’s structure sustain the 3-stage diagram [4, 5, 6].

To exploit the new discovered framework of consciousness, we need to define a set of specialized terms.

2

Definitions

Model (mental model): A particular view on information.

Key elements of a model:

?These arguments can be further used as according to “Outline of a General Methodology for Consciousness Research” {1}

assumptions/activation
patterns /memorized
instances/classification
rules/integration '
dimensions/ proprietary

queries/action

scenarios/solving scenarios.

. Assumptions = express the ‘genealogy’ of the model (set produced at the time of the making of the

model); [function] places the model in the hierarchy of models/set also used in verbal processing;

. Activation pattern == the prototype created and updated by the memorized instances; [function] acti-

vates the model;

. Memorized instances = instances interpreted and memorized according to the given model; [function]

the backbone of the model / they offer the prototype of the modeled reality and also the fuzzy limits of
the model;

“empirically study our conception of consciousness ... can lead to progress on consciousness itself *
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4. Classification rules = updated with the results of the latest classified instances; [function] rules for
interpreting the new information / rules for predicting future behavior;

5. Integration dimensions® = the points of view from which the information is processed and integrated;
{function] multidimensional access to memories;(value-scale)

6. Proprietary query templates (see query) = created in the interaction with other models; [function]
cross-hierarchical processing;

7. Action scenarios [3] = an asserably of actions from the pool of known possible actions, valued by its
chance of success and utility; {function] the processing power of the model (generating and optimizing
scenarios could be solved through genetic algorithms, especially genetic programming);

8. Solving scenario = a particular form of action scenario, where the actions are all replaced with propri-
etary queries on other models; (function] the interaction scheme of the model;

9. Synthesis mechanism = a non-conscious version of genetic programming; [function] creates a single
version of incoming partial solutions, the explicit form of information-fusion;

The above-mentioned key elements are grouped together in the following manner:

1. [4, 9, 10, 12] The objective model of reality = what is commonly thought as objective knowledge:
awareness of space, time, cause and effect, ete. Also called the generul predictive model of realkity, because
it internally represents the expected behavior of the enviconment in a non-interventionist scenario.

2. [1, 3, 6, 8] The interactive model of reality == the subjective knowledge of possible actions exercisable
by the actor on the given reality. This model is context-dependent because actions are seen as possible
depending on the value-scale used at that particular time.

3. [5] The value scale used at the reference moment.

The interactive model of reality and the value scale compose various attitudinal models that expresses
the subjective view on the world and that is more susceptible to be prone to change.

Main reality model - The winning model at a given time. It is used as a reference plane in the model hierarchy.

Operational models (action models, solving models) ~ particular models that establish the interpretation and
the set of possible actions for a limited part of reality.

Model hierarchy - has the main reality model as the reference plane, but can shift the apalysis to any
other models’ point of view. “This entire hierarchy, comprising all the models is in fact a representational
multi-space, according to Dr. Florentin Smarandache definition (from “Transdisciplinarity, a neutrosophic
method’)[8]:

Let 5y and S; be two distinct structures, induced by the group of laws L, whicﬁ verify the aziom groups

Ay and Az respectively, such that Ay is strictly included in A;. One says that the set M, endowed with the
properties:

a}) M has an S, -structure,

b) There is a proper subset P (different from the empty set O, from the unitary element with respect to Sy,
and from M) of the initial set M which has an Sq-structure,

¢) M doesn’t have an Sy-structure, is called an S)-structure with respect to Sq-structure.

3nategration dimensions are given by the four value scales= Moral scale (evil-good), Aesthetic scale (beautiful - ghastly),
Axiological scale (true/false), Pragmatic scale (useful — inutile).
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Let 5y, Sa, ..., Sk be distinct spoce-structures. We define the Multi-Space [or k-Structured Space) as a set M
such that for each structure §;, 1 < ¢ < k, there s o proper (different from the empty set, from the unitary
element with respect to S;, and from M ) subset M; of it which has that structure. The My, Ms, .., My proper
subsets are different two by two.

Query — a request that contains information shaped to fit the activation pattern. Returns the set of applicable
models;

Objective ~ describes a commensurable state (that can represent the fulfillment of multiple desires);
‘Will - represents the impulse of an objective (or its entropy);
Objective function - the compler structure that generates new objectives; the functional ego.

The Decisional, Questioning and Answering modules - represent the key elements of the proposed
framework (see fig. 2). They are treated as modules because although they represent processing stages, they
are not strictly sequential and they can all run in the same time.

3 Solving an objective. Information fusion using module dynamics.

Module 1 (the questioning module) receives the objective transmitted by the mean of will and searches
for a set of questions that answer the problem according to the main reality model. More generally, it shapes
the queries’ data to fit the solving modules’ activation patterns. The nature of the objective set in the decisional
module (or stage) determines:

e the nature of the attitudinal medel;

e the effective time frame of solving;

» the vegetative functions to be engaged (and their biological counterparts);
= recall of past experience and solving strategies.

On the basis of the attitudinal model, module 1 establishes the solving strutegy® (as a set of queries/questions).
Usually the solving strategy is not complete. If a decision must be made on the next step of the strategy, this
itself becomes an objective and a solving strategy is searched. There could be multiple levels of embedded
solving strategles, but the nature of the last of them is always verbal. The question that arises is: What is the
next step? At this level formal processing comes into play and the problem is solved using abstract represen-
tations®. A solving strategy is produced dynamically by module 1 in dialog with module 2 (the solving module).

Module 2 (the answering module) receives the question (pattern) and searches for eligible models
to describe it. If none of the models fully answers the question, further processing is needed. The set of models
must be restricted and another decision takes place. After that, further questions are made, according
to the elected model.

~ If no alternative models are detected in the unfolding hierarchy no other decision process is started so the
intermediate dialog is not saved into consciousness. The attention focus remains on the last consciously chosen
model. The subsequent queries are all non-conscious:

Objective O — Question Lq
To Answer L Question Ly according to M)
To Answer L2 Question L3 according to Mz

To Answer L[n} do Min]

4An evolved form of action scenarios.
5The abstract form of symbols entices the ability to double-references (referring references), to talk about a previous discussion,
far example.
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Figure 4: The decision module can be recurrently called inside the other modules.

Meodule 3 (the decision module) - The decision module is unique for all the models. It is called anytime
when a high-uncertainty choice must be made. It receives the non-conscious outcome and decides:

a) in the case of a unique model My, if M; is suitable for solving the given problem. If not:
* The question is rephrased (the data is reshaped - calls module 1)
* Another model is searched (calls module 2)

b) in the case of multiple competing models (My, M, Ms, ...) which subset provides a better action
scenario.

The resulting scenario is a synthesis® of actions chosen on the estimated probability of various interpretative
models (My, Ma, Ms, ...) and on the estimated probability of future behavior according to each model. This
mix aims to reduce the overall risk and to maximize the profit.
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Figure 5: Simplified processing diagram for the 1-query, 1-model case

5T0 make the synthesis possible, all the actions must be translated in a set of functions that increase/decrease praximity to the
objective. The functions will be optimized using genetic programming [7]
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4 Model construction

Constructing a model always implies a search. There is no coincidence we are using expressions like searching
for a model or finding @ model. The search for a new model starts with the new acquired data and the results
of failed classifications according to the models normally used. First a set of rules is searched to map the input
and the observed output.

The simplest set of rules will be the rules of memorization itself: instance-based. But mind recognizes
them as describing the same reality, so they must be coherent as a whole. To solve that, mind emits a
number of generalization rules that fit most of the data” . If the rules contradict the meta-model but still have
strong local generalization capacities, the model is considered incoherent with its surroundings and it is isclated
as an operational neutral-maodel (waiting to be coupled with or overthrow the main theory).

If the generalization rules do fit with the main reality model, it begins the search for a particular set of rules
to explain the contradictions (exceptions) with the main theory. Normally, there is not enough information to
single out only one set. So, we will have a set of probable rule-sets® for the new data.

Inside this set the search is done according to various dialog strategies:

» the ego and the alter ego show the pros and the cons of a rule-set using the same main model (inner-
coherence);

¢ the ego and the alter ego are playing the accepted model of reality (meta-model) and the modified model
of reality (if the contradiction would be a main rule).(thesis, antithesis, synthesis){anti-model);

¢ the ego and the alter ego emulate the main model and one of the operational models partly contradicting
the main model (neutral-models) (a new model could represent a link between them or an argument for
one of the models}. However, a new model is not easily accepted as an alternative to the old meta~model,
because it lacks the data to sustain a complex set of generalization rules. Normally, a new model of reality
appears after a series of powerful mental experiences {revelations).

Example:

Main model: Everybody likes me.
New data: Dana doesn’t seem to like me.

Rule sets:
Model (hypothesis)1: Model (hypothesis) 2:
Dana doesn’t like me. Dana likes me.

Dana hides this very well.
Dialog strategy no. 1: ¢

Model 1: Dana doesn’t like me.
Ego Pros: She showed me that.
Alter-ego Cons: Actual contact with Dana/Past positive experience.

Model 2: Dana likes me. Dana hides this very well.
Ego Pros: Actual contact with Dana / Past positive experience.
Alter-ego Cons: She showed me that. She said it to other persons.

Because of the difference of the pros and cons nature, model 1 wins as the result of direct experience.

"The generalization rules are part of the assumptions and help to locate the model referring to the main model of reality. The
generalization rules are in fact the activation pattern of the model. The particular rules Further model the data inside the model
and represent its innovation degree

8Most of the rules are already located in various operational models. The origin of the selected rules is saved as the assumptions
of the model.
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Dialog strategy no. 2:

Model 1: Dana doesn’t like me.
Ego-meta-model (thesis): Everybody likes me.
Alter ego-anti-model (anti-thesis): Nobody likes me. They all pretend. Dana is the exception.

Both of the models are too strict. A synthesis is needed: Some of them like me, some of them pretend and some
of them don’t like me and don’t pretend (Dana).

Model 2: Dana likes me. Dana hides this very well.

Ego meta-model: Everybody likes me.

Alter-ego anti-model: Everybody likes me. They all show it. Dana is the exception.

Both of the models are too strict. A synthesis is needed: All of them like me and some of them show it (because
some of them don’t show it = Dana).

The meta-synthesis:
Some of them like me and show it (< PP), some of them like me and don’t show it (PD), some of them don’t
iike me and pretend (< PP) and some of them don’t like me and don’t pretend (PD).

As we can see the sum of the probabilities (P P=past probability, PD=direct probability) is more than 1.
Dialog strategy no. 3:

Model 1: Dana doesn’t like me. Fgo meta-model (main): Everybody likes me. Alter-ego neutral-model (un-
derground): There is no real love between people. Only mutual interest.

‘Dana doesn’t like me’ can be a relative pro for the non-model. However, it is the nature of the contradiction
that is decisive. For example: ‘Dana is green.” could be a pro for the non-model: There are people from outer
space.

This brings into the discussion the implicit assumptions of the main theory. The origin of these
assumptions is hierarchical inside of a class of models. Classes can be unified only when they have the same
agsumptions from a starting point.

Ego and alter ego

Inside the brain, time, or should I say past, has no meaning. Decomposing parallel processing in two models
of ego and alter ego is just a mean to superficially understand it. Because of memory there is no difference
between space and time: coniparing two models M and M + 1 that occurred sequentially in time is done in
spatial processing®.

The uneasiness of understanding mind’s functioning is due to the fact of time-independent information
(relevant existent information doesn’t have to be really located; it just ‘pops’ into consciousness: something
appears in consciousness when a conceptual model is properly activated). So various models coexist in non-
conscious.

Inner speech

Sequential awareness of parallel processing gave birth to inner speech — an emulation of communication
between two parallel processes. Consciousness validates the results of non-conscious using various frames: For
example, from the time-frame perspective: the short-term actions must not contradict with the long-term strat-
egy.

9M produced M + 1, but M is not replaced by M + 1. they run in parallel and can be compared.
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Along the process of solving the objective the nature of the operational tasks can change and determine a
shift in the attitudinal model. If the attitudinal model changes, the conscious switch between two models is
needed because there is no reference point for the fitness functions of the models.

5 Conclusion and further development

The design of the present processing framework is in fact the first stage of a fully developed autonomous
learning agent, capable of independent information-fusion processing. The present paper is the third in a series
[11, 12] that aims to establish the theoretical principles of its functioning. Further theoretica! discussions are
needed in the following areas: drawing a parallel with the various stages of consciousness [2], tailoring a viable
objective-function, establishing information-fusion capacities (synthesis) capacities using genetic programming,
taking working decisions under the long-short term contradictions pressure. The articles to follow will analyze
each of these subjects.
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A Note on Neutrosophy and Buddhism

Prof. Dr. Huang, Cheng-Gui
Tianjin City, Nankaiqu, Weijinlu 154 hao
Shibeili 4 hao 2 men 204, 300073
People's Republic of China
E-mail: amritahcg@?263.net

I claim that Neutrosophy, by Professor Florentin Smarandache, is a deep thought in
human culture. That gives advantage to break the mechanical understanding of human
culture. For example, according to the mechanical theory: existence and non-existence
could not be simultaneously. Actually existence and non-existence are simultaneously.
Everyone knows that human life is like a way in the empty space of a bird flying.
Everyone can not see himself a second ago, everyone can not see himself for the time
being and everyone can not see himself a second future. Everyone could not know what
1s the existence of self. Everyone is also difficult to say the non-existence of self. So the
existence and non-existence of self are simultaneously. And the existence and
nonexistence of everything are simultaneously, where, the law of excluded middle does
not apply. These basic facts express the depth of Smarandache’s Neutrosophy. He has a
lot of friends in ancient and in nowadays, in the West and in the East.

We know the famous poetry of Buddha’s in his “Diamond Sutra™:

Doing Dream
All active beings are like dreams,
Ilusions, water bubbles, shadows,
Dew-drops, or lightning’s.
Should make view in a ‘way like this.

The life of every one is like a dream, or every one is birth and death in a dream. The
existence of the world is like an illusion, or the world is produced-and vanished like an
llusion. : '

Every one could not distinguish what is a dream and what is his real life. Every one could
not know it is a dream when he is being in a dream.

About this issue, Madhyamapratipad (The Mean), two thousand years ago, Nagarjuna, a
scholar from ancient India, wrote two books, one was titled “Madhyamika-satra”, and
another was titled “Madhyamika Karika” (Treatise of the Middle Way). One thousand
and five hundred years ago, Jizang, a Chinese scholar, wrote a book titled "Commentary
on Madhyamikasatra”. Five hundred years ago, Zongkaba, a scholar from Tibet, wrote a
book titled “Extensive Interpretation of Madyamika-satra”.

From these books we should know the depth of the Neutrosophy.
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Reverse Engineer the Universe!

Hamer B.Tiltep

Pima Cammnity College, EC
Tucson, Arizona usa

Part I. A novel view of the theorization process with examples

Always open with a brief humorous story, they told us in speech class; so
here goes. There was this local TV news item:

The camentator relayed a story of how a small airplane crashed
after the pilot lost control. It seems the pilot was doing "aercbic
exercises"” instead of paying attention to flying. I visualized the
pilot stretched out on the deck doing push-ups. Then I realized the
cammentator had probably meant to say the pilot was doing aerobatic
exercises--that is, aerial acrobatics; loops and rolls and such!

-The physical theorist (not "physical therapist™) when theorizing about such .
things as the effect of gravity on moons, planets, and small airplanes is
really attempting to reverse engineer that aspect or comer of the physical
Universe. "Reverse engineer” is a verb currently in use by software engineers
to refer to the attempt to fathom and list the source code for a computer
program. However, the term can be traced back at least to 1560 in cannection
with hardware when it meant an attempt to fathom and reconstruct the circuitry -
inside a potted electreonic module.

What does it all mean?

—————————————————————— When looked at as a reverse-engineering task, perhaps
same of the mistique is taken out of the process of forming a physical theory.
And looking at it this way, one might think of That Great Self-Made Engineer/
Inventor In The Sky as having designed and constructed (created) the physical
Universe-by whatever process. Along with others Newtom tried to fathom the
design; cosmologists, the construction; Darwin, the life-shaping processes.
The Church reacted by essentially saying God did not need Darwin's help.

When putting the finishing touches on a scientific theory, one may claim to
have fathomed a corner of either:

Category A - The Universe; or
Category B - A somewhat equivalent universe, but not the actual one.

Ptolemy in the second century of the Christian era placed the Earth at the
center of the universe and no doubt believed that to be a Cat'A solution. The
Pope certainly liked it. But later, Copernicus (1473-1543) became convinced
that Ptolemy had found only a Cat'B solution; Galilea (1564-1642) and Newton
(1642-1727) agreed, but popes did not come around until the late 20th century
when that one (John Paul II, as I recall) finally "pardoned” Galileo for
having voiced views the Church did not like.

Today it is generally agreed that the Ptolemaic universe is a Category B
solution, a solution having only transient value. Tt may be that cat'B
solutions, in general, are necessary first steps in theorization; indeed,
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reverse engineering of complex devices and systems--whether manmade or
natural--is perhaps never 100% successful.

Tam Young and his neurcnic color sensor
—————————————————————————————————————— At age 28 Thamas Young announced
before the Royal Society of Landon the basis for a neural system to sense
color--that was his trichromatic theory. He may have intended that his idea
fit Cat'A; however, not all agreed. Helmholtz, as translated:

...such a work would hardly be worth the labor until the science
itself was in a much maturer state than it is at present.

Helmholtz wrote that in 1866. It was not directed overtly at Young whose
idea he was well aware of, but at a "history of physiclogical optics™ which
nevertheless connects firmly to color-vision theorization. So even then,
indications were that Young's idea really belongs in Cat'B. Helwholtz wrote.
other critical things including: "To conceive this theory objectively...would
not be correct.” The reference was obliquely but clearly to Young's idea. Then
the Royal Society renamed Young's idea to the Youmg-Helmholtz Trichramatic
- theory, after which Helmholtz' energies were directed at attempts to prove
Young's idea. But even his final attempt, his "line element" theory, was not
able to do that.

Young stated his 1801 idea like this:

[Since] it is almost impossible to conceive each sensitive
point on the retina to cantain an infinite number of {rescnant]
particles...it becamnes necessary to suppose the number limited,
for instance, to the three principal colors...

The "it is almost impossible" introduction might today be characterized as a
"straw man" using a terribly pejorative term from 1896. At any rate we know
today that it is not the only way to proceed, and Young's final supposition is
not at all necessary.[1l] But by that pronouncement from a highly respected
scientist and its support by the highly prestigious Royal Society, Young's
resanance-based principal-color paradigm became locked-in for 200 years and
still counting as this is being written.

Since that time all recognized attempts to devise a detailed theory of
color vision have been based on that paradigm, assuming three or four
principal or "primary” colors. All have met with incanplete success in
exercises reminiscent of attempts to use epicycles to fine-tume Ptolemy's
theory (over a 1300-year period)! Newton historian Westfall: "Long established
views are not easily surrendered.”

The comnection to petrified knowledge

e e e & term credited to Florentin
Smarandache, "petrified knowledge" applies to the planetary theory of Ptolamy
and to the trichramatic theory of Young. By thusly projecting those two
theories through the same lens, I am assured of never being invited to speak
before the Royal Society! (No loss, since that possibility never existed.)

But, dear reader, both Ptolemy and Young were geniuses in their respective
. times; and it is not my purpose to trash Young any more than it was the
purpose of 15th- and l6th-century theorists to trash Ptolemy; Young did a fine
Job in view of the inadequacy of the times; his trichramatic theory even
defines the color television cameras of today.[2] Only one robot camera that
I am aware of ever did it differently.[3] Whatever the future may bring,
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Young's other work will no doubt continue to stand as testimony to his genius;

- but if we did not question our most sacrosanct theories we would be doing a
disservice to science.

All who call themselves "scientist" must continually be on the lockout for
gems of petrified knowledge. If you can legitimately question the basis for a
long-held view perhaps it has outlived its usefulness and the time has came
for a renewed effort to reverse engineer that corner of the Universe. But
tread carefully; novel claims must be firmly supported. You need more than
simply a desire to see it be so.

Part II. Young Albert Einstein and his electramagnetic time machine

After the turn of the 20th century, relativity and Einstein became hot-
button items in the popular press. It is said that when he was very young
Einstein wondered what it would be like to ride on a beam of light. That early
wonder may have colored his philosophy throughout his life.

The way it was in 1905

—————————————————————— Relativity as presented by Einstein at age 26 had an
exciting Alice-In-Wonderland quality. Not only did he build on ideas of
Minkowski, Lorentz, and others with his special theory,[4] he alsc energized
them by concluding that the speed of light, ¢, is a wniversal speed limit and
suggesting that the ancient human desire to travel in time might truly be
realized if one went fast enough. A contemporary, Jules Henri Poincaré,
independently developed the same mathematical theory but did not take the same
conclusions from it.

Poincare and Einstein agreed that perceived lengths would shrink towards zero
and masses lncrease towards infinity as the body moves faster and faster
approaching c. But ane man concluded from that that the speed of light is
ultimate while the other did not spin it that way! How could the same set of
mathematical, theoretical results lead to two very different conclusions?
Here is one possible Scenario and explanation:

1. Einstein may have been of the what-you-see-is-what-you-get school wherein
if you see a fast-moving arrow shrink and become more massive, then the arrow
must certainly have undergone those changes. And if you see a clock run slower
when it is in motion, then that means time, itself, has slowed as a result of
the motion.[5] That could well lead a student of that schocl to believe that
v>c cannot happen and/or that one can travel through time.

2. Poincaré may have been of the apoearances-can-be-deceiving school wherein
if you see a fast-moving arrow shrink or became more massive or a moving clock
run slow, one can conclude only that there is such an appearance. Ergo, there
is little incentive and no need to postulate either a speed limit or time
travel.

Physicists F.K.Richtmyer & E.H.Kennard (1947): "Perhaps...we have [in the
relativistic effects] a sort of kinematical perspective, analogous in a way to
the ordinary experience that an object appears to change in size as it recedes
into the distance." BAnd, I might add, if we were to observe relativistic
effects on a daily basis, we might come to think of them in just that way.

At any rate, Einstein's view that the speed of an object is limited to the
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value ¢ can be legitimately questioned without endangering the mathematical
integrity of relativity.[6] My friend Florentin Smarandache appears to have
rejected outright Einstein's view concerning a universal speed limit, but on
grounds which I do not fully understand. His views on time travel are unknown
to me.

Time for a change

————————————————— It seems increasingly clear that time is only a made-up
parameter, with change being the real item involved. While it makes sense to
ask whether a change can be reversed (sare can, most cannot), it is quite
meaningless to ask whether time can be reversed. This all cames wnder the
heading, "Getting Real."

Hermann Bondi: "Time must never be thought of as pre-existing in any sense:
it is a manufactured quantity."

John Wheeler: "should we be prepared to see same day a new structure for
the foundations of physics that does away with time? .
Yes, because 'time’' is in trouble.”

Doc Emmett Brown: "The future is not written. It is whatever you make it."

We may spend our energies entertaining one another with stories of time
travel such as Steven Spielberg's "Back to the future," (that 3-part movie
should be seen by every freshman science student) but it. is hoped we would
also explore actual new frontiers by seeking out the truth and not .become
addicted to fantasy. To paraphrase a well-known saying, "Truth is more
exciting than fiction."

With the relativistic effects no longer considered real, the light barrier
vanishes like a phantam. So does time travel. It was fun while it lasted and
we may mowrn its passing; but that would be a mourning wasted for there are
jobs to be done leading to much more exciting times. (Let's have fewer
mornings wasted.) Einstein may forever ride his lightbeam, but that does not
mean the rest of us are similarly constrained.

[Note to Editor: Please note and preserve the two different
[spellings, "mourning” and "morning"; important to the pun.

The following text highlights the old don’ t-confuse-me-with-facts-my-mind-
is-made-up syndrame. It originally appeared in LIGHT WORK, Feb'95, p.3,
copyright Homer B.Tilton. ;

Why not an infinite force?

—————————————————————————— It is often said that the mass of an object tends.
to became infinitely large as its speed tends towards the speed of light.
Certainly that position is backed up by the behavior of subatomic particles
inside particle accelerators or "atam smashers.” That is a fact of
measurement, predicted by the special theory of relativity. That fact is then
given as a basis for proving that the speed of light cannot be exceeded under
any circumstances; for you would need an infinitely large force to accelerate
through the speed of light, and everyone knows that an infinite force is
impossible to generate.

End of discussion? Well, not quite. Consider the following scenario fram a
gedanken technical conference: ‘

The discussion has just reached the point, "everyone knows that an infinite
force is impossible..." when, just as the audience members prepare to-leave, a
young upstant, Norman Nerdnick,speaks up from the rear of the conference hall,
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Norman: 'Scuse me!...If you can have an infinite mass, why can't I have an
infinite force? ‘

Conference speaker: How do you propose to obtain your infinite force?
Norman: The same way you got your infinite mass; by relativistic means.
Conference speaker: Specifically? (Feigning interest...)

Norman: Consider an accelerating rocketship. It derives its thrust fram
material shot out of the exhaust nozzle. Now, as the rocketship goes fastgr'
and faster approaching the speed of light, its mass increases towards infinity
as you pointed out; but the rocket fuel also has its mass increase §owards
infinity, so the thrust produced would tend towards infinity would It not?
Thus we go zipping right through the light barrier like it's not there!

Member of audience: Can we discuss this later? Many of us have another
sessiaon to attend.

Everybody leaves...

References and notes

[1] See Hamer B.Tilton, ™A history of color vision and the modern
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[4] The theory is "special” in that it deals only with inertial systems.
Einstein's original treatment of the famous '"Twins Paradox™ was made before
the general theory was developed. The astronaut twin's motion is not inertial;
and the popularized, published results obtained using the special theory
camnot be trusted because it is a problem fitting the general theory. Those
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HG Wells Telecom

{PREGUNTALE AL CIENTIFICO!

Sociedad Espanola de Exobiologia
Apartado de correos 5115
46009 Valencia (Espafa)
se2x@ono.com

¢ Es posible mandar informacion al pasada? Mi nivel en Fisica es...

- Guillermo, 35 afios, Lima

Gracias por tu aclaracién sobre tu nivel de conocimientos de Fisica; dada la naturaleza de tu
pregunta, es evidente que podemos contestartela mucho mejor si la podemos adaptar a tu nivel y,
como es tu caso, "saltandonos" la explicacion de algunos conceptos que serian bastante
complicados de exponer a alguien que careciera de estos conocimientos. Vamos alla.

En 1972, el matematico Florentin Smarandache afirmé que no existia un limite de velocidad
absoluto en la naturaleza, basandose en la paradoja EPR-Bell (Einstein, Podolsky, Rosen, Beli).
Aunque esta paradoja parece haberse resueito recientemente, existen muchas otras indicaciones
que nos hacen pensar que la hipotesis de Smarandache es correcta, basandonos en la mecanica
cuantica y en algunas de las teorias de unificacién. Si esta hipotesis resultara ser cierta bajo
cualquier circunstancia, habria que modificar algunos conceptos de la Fisica moderna para que
“ajustaran” a la misma; y significaria, en todo caso, una revolucién en las comunicaciones.

Parece que fue Sommerfeld quien constatd por primera vez la posible existencia de particulas mas
veloces que la luz, a las que Feinberg llamo taquiones. Los taquiones tienen masa imaginaria (en el
sentido de que es una masa prohibida por la relatividad), y de hecho nunca han sido detectados
experimentalmente. De todos modos, la relatividad no prohibe directamente la existencia de
particulas sin masa, como el fotdn; lo que de ella se deduce es que si estas particulas sin masa
devinieran superluminicas, viajarian en el tiempo hacia atras. Y por tanto, los fisicos asumieron que
los fendmenos superluminicos no existian en el universo, pues de lo contrario habria que explicar la
paradoja causal, aquello dé "si viajo al pasado y mato a mi abuelo antes de que conciba a mi padre,
entonces no puedo nacer para viajar al pasado y matarle, por tanto naceré y viajaré al pasadoy le
matare, por tanto no naceré y no podré hacerlo, y asi ad infinitum).
Sin embargo, la mecanica cuantica sugiere que la comunicacion superluminica existe. De hecho,
algunas hipdtesis hablan de que la existencia de fenémenos superluminicos en la naturaleza no sélo
es posible, sino necesaria (véanse por ejemplo los trabajos de Gao Shan), y de hecho ahi seguimos
teniendo, explicada o no, la paradoja EPR-Bell. A partir de esto, Smarandache sugirié de nuevo en
1993 que no existia un limite de velocidad abscluto en el universo tal y como postulara Einstein.

La teoria Rodrigues-Maiorino.

Estudiando las soluciones a las ecuaciones de Maxwell y Dirac-Weyl, los brasilefios Waldyr
Rodrigues Jry José Maiorino propusieron una teoria unificada para la construccion de velocidades
arbitrarias en la naturaleza (o sea, cualquier cosa entre cero e infinito). De esta manera, la hipdtesis
Smarandache ascenderia a teoria, y la llamamos "Teoria SRM" (Smarandache-Rodrigues-Maiorino).
Mediante fa SRM, el principio de la relatividad especial sufre una ruptura, aunque los constructos
relativistas de la mecanica cuandica -como la ecuacion de Dirac-, no. Asi mismo, la SRM propone
que una combinacion de espejos adecuadamente ubicados puede acelerar una onda
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electromagnética a velocidades mayores que las de la luz. Esta suposicion seria posteriormente
confirmada por Saari y Reivelt (1997), quienes produjeron una onda superfuminica (llamada "onda
X") mediante una luz de xendn interceptada por una serie de lentes y orificios.

La Teoria SRM es una solucion matematicamente pura de la ecuacién de onda cuantica relativista,
indica que no hay limite de velocidad en el Universo, y es por tanto la teoria mas fuerte en estos
momentes para la construccién de velocidades arbitrarias.

Experimentos superluminicos.

Muchos experimentos, realizados en los llamados "modos evanescentes”, han obtenido ya como
resultado la propagacién hiperluminica. El primer "resultado evanescente” de esta clase 1o obtuvo
Nimtz en 1992, quien produjo una sefial a 4'34c (c = velocidad de la luz en el vacio). Poco después

se dio el lujo de emitir la 407 sinfonia de Mozart por FM, a 4'7¢. Pronto esta barrera fue superada,
hasta los 8c.

En el caso del experimento de Nimtz, no habia quedado claro si se producia violacién de la
paradoja causal. Pero en el afio 2000, Wang, Kuzmich y Dogariu publicaron en Nature que, durante
un experimento de dispersion anémala realizado en la Universidad de Princeton, Princeton lograron
emitir un pulso de luz (compuesto de fotones taquidnicos, masa cero) a la friolera de 310 veces c. En
este experimento, para el que utilizaron dos rayos laser en frecuencias ligeramente distintas
pasando a través de un gas frio de cesio, se pudo observar perfectamente cémo el haz de luz salia
del proyector 62 nanosegundos antes de que entrara.

No obstante, Wang y sus colegas no creen que estos experimentos sirvan para transmitir
informacion al pasado, porque estan basados en efectos de interferencia sobre la velocidad de
grupo. Pero en el mismo nimero de |a revista, Jon Marangos explicaba que en el caso de pulsos de
luz constituidos por un nimero reducido de fotones, se puede argumentar que la velocidad de grupo
es la misma que la de cada foton individual. Si esto lo aplicamos a cada fotén, estariamos hablando
de transmision cuantica de informacion hacia el pasado.

En otro orden de cosas, la Teoria de la Relatividad General postula que la velocidad de la gravedad
es ¢, debido a la restriccion impuesta por la Teoria Especial. Sin embargo, Van Flandern publico
algunos resultados de sus observaciones astrofisicas que indicaban que la gravedad podria ser
superluminica, aunque Ibison, Puthoff y Little los explicaron con una teoria que no necesitaba de
estos fendomenos superliminicos. Por otra parte, la NASA ha observado que algunas galaxias
podrian estar rotando con sus extremos a velocidades mayores que la de la luz, y adn no se ha
encontrado ninguna manera de explicar estas observaciones desde un punto de vista subluminico.
Desde el punto de vista empirico estamos, pues, en una "situacion de empate" aun por determinar.

La maquina Kitano.

En febrero de 2003, M. Kitano, T. Nakanishi y K. Sugiyama de la Universidad de Kyoto (el "Kitano
Lab") sugirieron la construccion de un circuito electrénico sencillo capaz de aprovechar este efecto
de "propagacion negativa” transmitiendo efectivamente informacién al pasado. También plantearon
la posibilidad de situar varios de estos circuitos en cascada para multiplicar el efecto, aunque
advirtiendo que al hacer esto el ruido se dispararia exponencialmente. Que nosotros sepamos, este
dispositivo no'se ha construido todavia.

Taquiones.

Algunos modelos de la teoria de las supercuerdas (nuestro candidato principal a la Teoria

Unificada) incluyen la existencia de los taquiones. Algunos fisicos modifican esta teoria de tal modo

que los taquiones desaparecen; otros, como Freedman, defienden que estas modificaciones son

tncarrectas y los taquiones son necesarios. La teoria de las supercuerdas es probablemente la mas

apropiada para estudiar los taquiones, dado que no obliga a trabajar con masas imaginarias de los
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mismos. Algunos ofros autores afirman que los taquiones se han detectado -aunque de una manera
bastante retorcida- en los efectos atmosféricos de los rayos cOsmicos.

Por tanto, y como conclusién, la respuesta mas razonable a tu pregunta es "puede que si", aunque
todavia no tenemos la absoluta seguridad y nadie ha producido en la practica un mecanismo capaz
de desempenar tal funcién.

hitp:/fwebs.ono.comfse2x
© 2003 Sociedad Espafiola de Exobiclagia

(Todos los derechos reservados. Se permite la reproduccién citande la fuente. 29/06/2003)
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Estacidn Central Tiempo
{PREGUNTALE AL CIENTIFICO!

Sociedad Espafiola de Exobiologia
Apartado de correos 5115
46009 Valencia {Espaiia)
se2x@ono.com

¢ ES 0 serd posible vigjar en el tiempo? :
- Vanessa, 18 afos, Madrid

No solo es posible, sino que lo estames haciendo todo el rato. :-) Como imaginamos que te refieres a sies o
sera posible "saltar" al pasado o al futuro, vamos con ello:

Para empezar, serfa convenients definir qué es el tiempo. Todo el mundo parece saberlo pero, si les pides una
definicion, la genie no sabe muy bien qué contestar. Piénsalo, intenta expresar con palabras qué es el tiempo.
Cuesta, ;verdad?

Es que el tiempo no es una entidad material, sino una dimension. Es, de hecho, fa "cuarta dimension” césmica,
definida como tal -entre otros lugares- en fa Teoria Especial de la Relatividad de Einstein: fargo, ancho, alta y
tiempo (x, y, z, t). Las tres primeras permiten definir la posicion de un objeto en un lugar determinado, la cuarta
en qué momento se encuentra ahi. Y, logicamente, surge la pregunia de nuevao: si se puede comrer adelante y
atras por las otras tres dimensiones, ;no se podra también por la cuara?

El tempo es una dimensidn un tanto especial. Para empezar, en apariencia solo se puede avanzar por €l en un
sentido: hacia adelante, como hacemos todos los dias. Con un matiz; de los propios trabajos de Einstein se
deduce que también se puede recorrer hacia delante aceleradamente: es decir, es posible hacer un "viaje de
ida" en el tiempo. Cuando un objeto se mueve a una cierta velecidad, la dimension tiempao en que esta inmerso
se contrae. O en ofras palabras: contra mas rapidamente viajas por las dimensiones espaciales {largo, ancho,
alto), mas se contrae tu dimensién temparal. Como resultado, para ti el tiempo pasa mas despacio que para el
resto del Universo. El efecto practico es que estarias realizando un "viaje de ida" espaciotempaoral. Conira mas
te acercas al limite de velocidad méaximo para los cuerpos con masa (que es ia velocidad de I3 luz an el vacio,
299.792'458 kilometros por segundo), mas se contrae “tu" tiempo.

A velocidades proximas a l2s de la luz, un segunde "tuyo” serian miles o mitiones de afios “de los demés". Este
efecto se observa, por ejemplo, en los relojes de los satélites, que como vuelan a gran velocidad (decenas de
miles de km/h) comienzan a notarlo levemente y hay que "ponerias en hora” de cuando en cuando desde la
Tierra, usando relojes atdmicos. En resumen, puedes conszguir tu "billete de ida" par la dimensidn tiempo sdlo
con cofrer mucho. Dejo a tu criterio el imaginar qué clases de motores y combustibles harian falta para lograr
esie efecto de manera eficaz, y si se te ocusre alguna buena idea diselo enseguida a la NASA, que tiene una
beca instantanea de un milidn de= délares para quien proponga algo viable en este sentido.

Pero, ;v el billete de vuelta? jAh, amiga! Aqui se complica la cosa. Siguiendo las ecuaciones de Einstein y sus
coleguitas, para invertir el sentido det reloj tan sélo tendrias que... viajar mas rapido que la luz. Hay un
problema, clara: para los objetos con masa, la velocidad de la luz en ef vacio -que los fisicos llaman ‘¢ es una
barrera tan infranqusable como un universo de acera. Precisamente de las propios trabajos einstenianos se
deduce que conforme te vas acercando a ¢, hace falta cada vez mas energia para acslerar mas, y esta enargia
que aportas se va convirtiendo no en velocidad, sino mayormente en masa. Cuando te faltase muy poquito para
flegar a ¢ -al coste de galaxias enteras de energia-, la mayor parte de la misma se gastaria engordando tu
masa, y solo afadiria un poguito mas de velocidad. En el instante en que tocaras ¢, habrias consumido toda la
energia del Universa y tu masa serfa infinita. Como hipdtesis del fin del mundo, esta dieta de engorde no esta
mal, pero pese a la gamberrada de cargarte todo el Universo -4 te parecara bonito?- ne habrias logrado suparar
la velocidad de la luz en el vacio. De momento, pues, parece que en la Estacién Central Tiempo sélo venden
billetes de ida.

Sin embargo, en un rincdn de la estacion, come sueie ocurrir en las estaciones, hay una cabina telefonica. Es
una cabina un poco axtrana, y tiens un canel encima en el que pone "llamadas desde destino”, Rasulia que,
aungue ningun objeta con masa puede superar ¢, algunos objetas sin masa -como los fotones- si pueden
hacerlo, al menos en determinadas circunstancias. A estas particulas hiperiuminicas de masa cero las llamamos
faquiones (del griego tachyos, velecidad), Sélo existen a velocidades superiores a la de la luz -se ha llegado a
teorizar que pueden viajar a velocidad infinita- y conforme se desplazan por las dimensiones espaciales, la
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dimensién flempo en fa que existan no sbio se contrae, sino gue relrocede: los taquicnes viajan hacia atras en el
tiempo, llegan antes de partir. No es muy dificil imaginar que "marcando” estos taquiones en el punto de partida
{por gjemplo: silo hago rotar a la derecha es un cero, y si lo hago rotar a la izquierda es un uno), se pueds
fransmitir informacién digital a base de unos y ceros, como voz, datos o video, a un recepior ubicado en el
pasado (tu teléfono movil, por sjemplo, es un transmisor de informacion digital -tu voz- en el presente).

Este aextraordinario efecto que se deriva de la Fisica Cuantica fue hipotetizado en 1872 por un sefior que se
llama Smarandache (por eso se llama Hipdtesis Smarandache, a veces somos noco imaginativos), y esta
relacionado con la llamada velocidad de grupo (seria largo de explicar). El primero an obsarvario en la practica
fue otro sefior que se ilama Sommerfield. Desde entonces se han hecho muches experimentos practicos que
confirman la teoria, al menos en parte. En 1992, Nimtz se permitio el lujazo de transmitir la 40? Sinfonia de
Mozart por radio FM {microondas, masa cero), a 4'7 veces la velocidad de la luz. En 2000, Lijun J. Wang y su
equipa de la universidad de Princeton lograron emitic un pulso de luz (compuesto de fotcnes, masa cere) a la
friolera de 310 veces ¢. En este ultimo caso, para el gue utilizaron dos rayas laser en frecuencias ligeramenie
distintas, se pudo observar parfectameante cémo el haz de luz salia del proyector 62 milmillonésimas de segundo
antes de que entrara. Ne esta claro hasta qué punte tedo esto servira para remiiir una verdadera sefial al
pasado puesto que esta relacionado con fenomenos de interferencia dentro del propio pulso de luz; pero nos da
motivas para pensar que aunque en la Estacion Central Tiempo solo se vendan billetes de ida, podria existir, en
efecto, un tzléfono mediante 2l que se puede hablar con sf futuro, v guienas hayan llegado alli, con 2! pasado.

Coma podras suponer facilmente, algunas personas que entienden mucho de todo esto (y tambign algin que
oiro chalado) estan empezanda a pensar en si los cuerpos con masa se podrian trucar de alguna manera para
“colarlos” mas alla de la velocidad de la luz... pero esto, si es que s posible, no sabemos todavia cémo hacerio
(De hecho, no tenemos ni idea).

Dejo a tu imaginacion el evaluar qué efectos podria tener esto sobre las paradojas de la causalidad (ya sabes,
lo de viajar al pasado y matar a tu abuelo, o al menos transmiiir la orden de gue lo maten, de forma que tu no
puedas nacer para dar esa orden, por tanto naces y la das, luego no puedes y no la das, etc...). Los filésofos y
cientificos de altos vuelos tampoco s2 han puesto todavia de acuerdo al respecto, o sea que tu opinién sera tan

buena como la de cualquier otro.
(La comunicacion temporal se trata con mas detalle y complejidad en nuesiro otre articule HE Walls T

=slscam

http://webs.ono.com/se2x
© 2003 Sociedad Espafiola de Exobiologia

(Todos los derechos resarvades. Se permite 1a reproduccian citando ta fuente. 9/1 2/2003)
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The Schrodinger Cat Thought Experiment Land (The SCTE Land)

J. Harm T. Tiamen
Healing Earth
PO Box 5066, Chatswood,
West NSW 1515, Australia
E-mail: harri@healmgearth.com.au

Abstract: Following a short review of ten well-known objections to Schrédinger Cat Thought Experiment, fourteen new
objecticas are presented that show the central thought experiment of quantum mechanics violates the second law of
thermodynamics. These objections are shown to be equivalent to Smarandache Sorites Paradox that is how <A> and
<Non-A> are connected.

Keywords: Schridinger Cat Thought Experiment, Second law of thermodynamics, Smarandache Sorites Paradox

The Schrédinger Cat Thought Experiment Land (The SCTE Land)

Because of purity
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is independent
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ie no properties. No
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The cut can
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“happens”. the first event. _
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Ceneral on principle objections to the cat in the box thought experiment about absolute measurement. These are well known objections.

L. The wavsfunction of the cat Weat and the Wobs of the observer must be pure, no interaction is allowed between them until the opening.
This is enly physically achievable when infinitely far away from each other. So how so they meet?

2. Before the openting no quantum states occupied so no propetties. Nothing is (literally) in this region because prior io the event, no
states. S0 where do (the} properties come from? Or can/do states exist without properties?

3. It’s one (sort of) event; we disallow any other event tainting the thought experiment. So how does anything else happen?

4. It’s the only event, we have isolated “one” quantum system this isn’t possible, quantun mechanics is (w)holistic, no such independent
subsystem allowed. The SCTE cannot have parts, no (moving) parts. So how does the SCTE proceed?

5. It’s the first event, before this no events, ie superposition, causes are not allowed, so the SCTE is the first event. What is there, to cause
the first event, all we have is after the first. The SCTE is uncaused. So what causes the SCTE?

6. How do we trap the cat perfectly, only an infinitely deep (potential) well can achieve this? The cat cannot penetrate such a barrier. So
how does the cat get out of the box?

7. If the cat 13 perfectly trapped, it must be m an infinite deep potential well. How does the observer quantum tunnel to the cat, i open
such a box? So, it’s impossible for the observer to open the box. So how does the observer open it?

8. To construct the box we need material that is barrier-proof; perfectly rigid, such material isn’t possible. So, how do we (physically)
construct the box of the SCTE?

9. Splits the world into two realms. We have indeterminacy (ie superposition) of states that in turn passes to a world of indeterminism where
things (only) might happen, only probabilities. Uncertainty rules. So how can we be sure of anything? Even if anything did/does happen?
0. One observer only. Wigner’s Friend Paradox resolved by one (absolute) observer. But supposedly there are many equal (ie
ontological/epistemological) observers! So, one observer can only do the SCTE. So how do we get many equal observers to perform the
SCTE?

Objections to Schridinger’s Cat Thought Experiment
Thermodynamic Objections
1. There are no spontaneous accessible microstates. The Schrédinger’s Cat Thought Experiment SCTE land
is at absolute zero. No work can be introduced to open a perfect two-state box system, recall purity of states,
2. The “observer” must have maximum available macrostates to open a perfectly rigid box. For one
hour=At, the world outside the box has no definable entropy at all.
3. Even if we could open the box, it is at zero entropy with no definable temporal direction
for the arrow of time, since no definable irreversible processes.
\ 4. Notice how the box itself, goes through a Poincaré cycle of entropy return. The
] 3 distribution of parts for the box at point A to point B is the return of all entropy
! from all the time before the box closed to all the time after it was opened. That
' is for one hour; the box; its contents; and the cat cycles (=superpositions)
through all Wingers’ friends, ie all observers and the total outside

. \\
------ Sl |
~ | A
~ O -
universe, as one whole.

5. The cat itself must have minimum available microstates and none
l 50 %> spontaneously available. There is no environment avatlable at all to the cat
At before the box closes the first time because the cat isn’t in a bound state

] 50 %> with the “observer™ until the box opens the second time, you see time, cannot
_ work twice, (There is no “negative” entropy to pay for a perfectly rigid box, to
have time working in both directions at once. Where does this work, the second
time come from?}
6. The cat and the box A until it eaptures the cat, form their own private time system, these hidden variables to the “chserver”, are never
revealed. The “observer” before the box opens the second time, must be independent strictly, even by times’ workings because the SCTE
land is a perfect two-state system. There are no mixed states between the box and the observer before the 50%50% event. Recall, perfect
preparation of states.
7. The 2™ law of thermodynamics thermal states is represented as a stationary principle of a complex deterministic equation.
Sehrédinger’s equation is this deterministic equation, it is a stationary state, entropy cannot both be a max and a min at the same time, it
needs to be @ max the second time, and a min the first time, time worked, if you understand the confusions. The spontaneous accessible
microstates of the Schrédinger cat energy operators, are obtained by “perturbations” of the stationary complex plane states, these
represent the ensemble of the cat as an explanation for probability itself that is entropy recurrent time is accessible spontaneous, to the cat.
8. We have for one hour, 1) a spontaneous accessible Poincaré cycle, hidden to the observer
ii) time working forward and backward at once, max and min at once
iit} a frozen temporally directionless land, that is an event perfectly frozen
9. We have made the wavefunction, the carrier of ultimate information; it is entropy itself. We have made the “measurement” of the SCTE so
perfect; it is in really absolutely perfect land. What is entropy itself in normal gm it must be the wave function, the entity that all information of the
system resides, and how does this thing-in-itself transfer itself to temporal agents? Entropy the temporal process explains each and every counting
event within time, & ¥ explains everything in time and of time by a timeless mathematical transformation C—R for temporal part distributions.
10. Instead of one hour let At equal Poincaré Cycle time, we can by inspection see that between Box A + Box B > Poincaré time, strictly
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cycle time of the cat and the box against and the independent cycle time of the “observer” during point A and the first closing of the box?
We have assumed perfect states without environment. Perfect stotes barren of real-valued eigenvalues only reside in the Complex plane
tsetf, The initial conditions are that the cat and the box are states with complex eigenvahues, where the observer must be real valued.

11. Instead of one hour let At equal zero cycle time, we can see by inspection that this must be a two-state system that has zero entropy for its
parts distribution. That is by looking at the role of thermodynamics in the SCTE Land we are lead to the conclusion that the event 15 a very
very very special case it is the zero entropy state. From which we have temporal max-ing and min-ing of the wavefunction of the projected
atemporal state that of eigenvalue 1. Gold’s universe comes to mind the universe begins and ends at the commeon zero entropy state: - that of
a perfect two-state system. In the normal gm interpretation the system has complex and real values that are in a mixed states we have imbued
the box with complexity and reality and naturality (=oumbers complex, real and natural) by virtue that we humans = Winger’s friends can do
a perfect two-state experiment. Complex Real and Natural valued operators are in mixed states in the normal gm interpretation of the SCTE,
12. The Box at Point A to the cut has a normalization constant of zero exactly; from the cut to point B the Box has a normalization constant
of one exactly. Yes exactly zero chance of a temporal event before the 2™ opening of the box. The Box has two normalization constants that
of zero and one at different ‘times’ throughout all paths of all histories of the cat, or the box. We have made time itself work twice if the
SCTE is a “measurement” that humans can achieve in reality. We are barred by the 3% Law of thermodynamics from reaching a region of
{(quantum) event space that 1s at zero absolute temperature and we are excluded by qm itself from regions where states only have complex
eigenvalues. Also by the figure above the 2™ Law is identified formally as the mechanism of the 2™ opening of the box if the box is
identified with irreversible events that is events that are not reversible within the Poincaré cycle time of all observers everywhere.

13. That is by potnit 12 empty boxes must superposition that is the fundamental postulate of gm is undermined. It is impossible by normal qm
to interpret a normalization constant of zero. The ‘meeting’ of the cat and the box have exactly zero chance of being a temporal event done
by temporal observers bound by the laws of thermodynamics as it applies to us humans and not what ‘happened’ at time=zero exactly. We
have a perfect two state-system that of quantum states being complex or real-valued, being in a superposition state or a deterministic state of
the Schridinger equation, in a R temporal environment projected from, the € atemporal plane, with N temporal discrete objects.

14. What event do we have a name for that acts like this it is the state that has zero entropy it is the state that all temporal states (real
valued states) are both a max and min that is it acts as the  quantum mechanically stationary state for all real-valued states. It is the limit
point for all events temporal, and it is the creation of temporal processing itself for natural numbered eigenstates. The only consistent
interpretation for all these objections 1s that the timeless explanation for the STCE Land is the big bang/crunch eigenvalue system. C—R

What these objections mean:

Penrose calls thermodyramics a useful physics theory, and quantum mechanics superb but the cat in the box experiment directly
contradicts the 2 law of thermodynamics, which will rule, the 2°¢ law of a useful theory or the central thought experiment of what a
“measurement” is, the SCTE experiment is a perfect two-state quantum system, its just that it’s too pecfect, think of it this way it is in
perfect land, it is at “infinity” to real-life cats and real-tife people it is at “zero entropy land”. Real-life boxes leak; there are no perfectly
rigid boxes, only at “infinity” in some sense. Recall at absolute zero, we still have zero point motion due to the uncertainty relationship
itself but a land at zero entropy stills even this last residue of temporality. We’ve made it too perfect, no human can do the “first” or
“last” of a perfect two-state system. The SCTE land is the “measurement” of measurements, it 1s what measurements after the box opens
the second time limit to, it is the limit point of B, and the box closing the 1% time is the limit point for the box A. How does a zero
entropy “observer”, interact with real-life observers barred by the 3™ law —~ a system cannot be cooled to absolute zero in a finite number
steps? The land is truly beyond the reach of man or anything in time and of time, that 13 temporal operators bound by real-life laws of
physics.

Objections to the “measurement”, what the cbjections are directed at is not quantum mechanics itself, but what we made the thought
experiment attempt to do, this “measurement” is at zero entropy, the arrow of time is indefinable, and there is only one wavefunction

| 50%>+ | 50%> superpositioning in its own absolute time frame of the Complex plane. The SCTE is a valid qm “event”, but its in
perfect land, the “measurement” can only be achieved, by the wavefunction itself, acting in its role as absolute carrier of information,
recall in gm real eigenvalues are obtained by “atemporal” projections from the Complex plane. The wavefunction is entropy itself, the
wavefunction contains all true information, and the SCTE is a perfect two-state system, where the wavefunction is a complex stationary
state. What is the “measurement”, that changes the total wavefunction of the complex plane, into a real-eigenvalued world of temporal
directedness, the “measurement” is the creation of time itself. The bang of time is a perfect two-state system, of things in time and things
out of time. Things out of time are the complex plane and its operators, things in time are the real plane and it operators. The “observer”
of this “measurement” is the two-state operation of the complex plane that gives i as the only sigenvalue.

Eddington expresses it best (as quoted in The World within the World by John Barrow Chapter 3 Unseen worlds, §13 Thermodynamics)

“The law that entropy increases -~ the Second Law of thermodynamics — holds, I think, the supreme position among the
laws of Nature. If somebody points out to you that your pet theory of the universe is in disagreement with Maxwell’s
equation - then so much the worse for Maxwell’s equations. 1f it is found to be contradicted by observation — weil, these
experimentalists do bungle things sometimes. But if your theory is found to be against the Second Law of thermodynamics
I can give you no hope; there is nothing for it but to collapse in deepest humiliation.”
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That is the task of this generation is to save the Schriodinger Cat Thought Experiment SCTE Land from observational contradiction with
the 2* Law of Thermodynamics. For I am truly sorry for these objections this paper has been hard to write, because of the shame of it.

CONCLUSION

There are four paradoxes known as the Quanium Smearandache Paradoxes; the first paradox is:
Smarandache Sorites Paradox:
Crar visible world is composed of a totality of invisible particles.

a} An invisible particle does not form a visible object, nor do two invisible particles, three invisible particles, etc.

However, at some point, the collection of invisible particles becomes large enough to form a visible object, bat there is apparently no
definite point where this occurs. ,
b) A similar paradox is developed in an opposite direction. It is always possible to remove a particle from an object in such a way that
what 1s left is still a visible object. However, repeating and repeating this process, at somée point, the visible object is decomposed so that
the left part becomes invisible, but there is no definite point where this occurs.

Generally, between <A> and <Non-A> there is no clear distinction, no exact frontier. Where does <A> really end and <Non-A> begin?
How the SCTE land resolves the above paradox is:
Our visible world is made possible by invisible particles (literally the complex state that has eigenvalue i)

The imaginary component of 2 general complex number is called i, it is the invisible particle (number) that all visible “measurable”
properties of objects are timelessly obtained via a quantum (Schrodinger) equation. The imaginary i is the entity that all measurements
rely on, yet cannot be measured by definition since only real number eigenvalued states are observable. Recall the ‘Heisenberg’ law
[A,B}=iC shows how quantum variables are connected mathematically. The SCTE land shows that the region before the cut behaves as
the Complex number system where we have tried to make real-life objects act literally as Complex numbers and the box the imaginary i
since we have perfect preparation of the two states. If in the SCTE we insist that the cat cannot escape the box (i.c. perfect containment)
for At we are forced by the 14 thermodynamic objections above to conclude that the invisible (non-measurable) i leads to all visible
objects (measurements). The frontier between <A>=measurement and <Non-A>=Non-measurement is represented exactly by the cut
where we have tired to make time work twice (objection 8ii). The quantum cut is literally the frontier between <A> and <Nomn-A>
mathematically it is the timeless transformation that changes pure complex numbers into pure real numbers denoted C-—R. Loosely
speaking Smarandache Sorites Paradox (associated with Eubulides of Miletus (fourth century B.C.)) is the linguistic equivalent of the
*Heisenberg’ law, how invisible particles create a visible world.

From §10 “THE PRINCIPLES OF QUANTUM MECHANICS” by P.A.M. Dirac Fourth Ed Oxford Univ. Press 1958, reprinted 1978
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“When we make an observation we measure some dynamical variable. It is obvious physically that
the result of such 3 measurement must always be a real number, so we shoold expect that any
dynamical variable that we can measure must be a real dynamical variable. One might think one
could measure a complex dynamical varjable by measuring separately its real and pure imaginary
parts. But this would involve two measurements or two observations, which would be all right in
classical mechanics, but would not do in quantum mechanics, where two observations in general
interfere with one another—it is not in general permissible to consider that two observations can be
made exactly simultaneously, and if they are made in quick succession the first will usually disturb
the state to the system and introduce an indeterminacy that will affect the second. We therefore have
to restrict the dynamical variables that we can measure to be real, ...”

We cannot make time work twice (equivalent to Dirac’s measuring separately a complex number’s real and pure imaginary parts) clearly
<A> and <Non-A> are separated by quantum interference (that is the cut is literally this interference). This affect is dramatically
demonstrated in the SCTE land where this interference literally is drawn and is identified as the timeless transformation C—R or
<Non-A>—<A>.
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