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FOREWARD

In these Proceedings of The Second International Conference On Smarandache
Type Notions In Mathematics And Quantum Physics (December 21-24, 2000,
University of Craiova, Romania; organizers: V. Seleacu and M. L. Perez) are
collected articles and notes:

- in MATHEMATICS: related to Smarandache Anti-geometry, Function,
f-Inferior Part Function, k-k Additive Relationships, 2-2 Subtractive Relationships,
Sequences, Coprime Functions, Double Factorial Function, Magic Squares,
Problems, Conjectures, Equations, Partitions, Paradoxes, Series, Algebraic
Structures, Pseudo-Smarandache Function, Erdds-Smarandache Moments
Numbers;

- and in PHYSICS: related to Smarandache Hypothesis that there is no speed
barrier in the Universe, SRM-Theory of the possibility of constructing arbitrary
speeds, and Quantum Smarandache Paradoxes.

A web site, with abstracts of this conference, is hosted by The York University, from

Toronto, Canada, at:
://at yorku. ca/cgi-bin/amca-calendar/public/di /conference info/fabi3l.

The Editors



A model for Smarandache’s Anti-Geometry

ROBERTO TORRETTI

Universidad de Chile
Casilla 20017 - Correo 20
Santiago, Chile
<cordua@rdc.cl>

David Hilbert's Foundations of Geometry (1899) contain nineteen statements,
labelled axioms, from which every theorem in Euclid’'s Elements can be derived by
deductive inference, according to the classical rules of logic. The axioms use three
property words —‘point’, ‘straight’ and ‘plane’— and three relation words
—‘incident’, ‘between’ and ‘congruent’— for which no definition is given. These
words have, of course, a so-called intuitive meaning in English (as the German
equivalents actually used by Hilbert have in his language). But Hilbert believed
they ought to be understood in whatever sense was compatible with the
constraints prescribed by the axioms themselves.! To show that some of his
axioms were not logical consequences of the others he unhesitatingly bestowed
unorthodox meanings on the undefined terms. This enabled him to produce
models that satisfied all the axioms but one, plus the negation of the excluded
axiom.

The mathematician-philosopher Gottlob Frege showed little understanding for
Hilbert’s procedure. Frege thought that the undefined terms stood for properties
and relations that Hilbert assumed to be well-known and that the axioms were
intended as true statements about them. Hilbert disabused him: “I do not wish to
presuppose anything as known; I see in my declaration in §1 the definition of the

1 Although these constraints are very restrictive, the nineteen axioms admit two non-
isomorphic models, viz., (i) the uncountable three-dimensional continuum that underlies
Cartesian geometry and Newtonian analysis, and (ii) the countable set of points
constructible with ruler and compasses from which Euclid built his figures. To suppress
this ambiguity, Hilbert added the Axiom of Completeness (V.2) in Laugel’s French
translation (1900b); it subsequently was included in all German editions, beginning with
the second (1903). With this addition, Hilbert’s axiom system only admits isomorphic
models.



concepts ‘points’, ‘straights’, ‘planes’, provided that one adds all the axioms in
axiom groups 1-V as expressing the defining characters” (Hilbert to Frege,
29.12.1899, in Frege 1967, p. 411). Frege had complained that Hilbert’s concepts
were equivocal, the predicate ‘between’ being applied to genuine geometrical
points in §1 and to real number pairs in §9. Hilbert replied:

Of course every theory is only a scaffolding or schema of concepts
together with their necessary mutual relations, and the basic elements can
be conceived in any way you wish. If I take for my points any system of
things, for example, the system love, law, chimney-sweep, ... and I just
assume all my axioms as relations between these things, my theorems
—for example, Pythagoras’s— also hold of these things. In other words:
every theory can always be applied to infinitely many systems of basic
elements. One needs only to apply an invertible one-one transformation
and to stipulate that the axioms for the transformed things are
respectively the same. [ ... ] This feature of theories can never be a

shortcoming and is in any case inevitable.
(Hilbert to Frege, 29.12.1899; in Frege 1967, pp. 412-13)

Hilbert's reply has continued to sound artificial to those unwilling or unable to
follow him in his leap to abstraction, because it is not possible to find a set of
familiar relations among chimney-sweeps, laws and states of being in love which,
when equated with Hilbert’s relations of incidence, betweenness and congruence,
would make his axioms to be true. But Hilbert’s point can now be made crystal-
clear thanks to Florian Smarandache’s Anti-Geometry.2

Anti-Geometry rests on a system of nineteen axioms, each one of which is the
negation of one of Hilbert’s nineteen axioms.3 Such wholesale negation brings

2 My knowledge of this system is based on Sandy P. Chimienti and Mihaly Bencze’s paper
“Smarandache Anti-Geometry”, as published in the Worldwide Web
(http://www.gallup.unm.edu/~smarandache/prd-geo4.txt). 1 reproduce Smarandache’s
axioms from this paper, with mild stylistic corrections.

3 In the paper mentioned in ref. 2, Chimienti and Bencze say that “al] Hilbert's 20 axioms of
the Euclidean Geometry are denied in this vanguardist geometry”. However, only the 19
axioms of 1899 are denied explicitly. Indeed, negation of Axiom V.2 is implicit, insofar as
Smarandache’s axioms of anti-geometry admit non-isomorphic models. For instance, if you
change the date of the model proposed below from 31 December 1999 to 31 December
1899 you obtain at once a second model which is not isomorphic with mine (the total
number of bank accounts in the United States was surely much less in 1899 than in 1999).



about a complete collapse of the constraints imposed by Hilbert’s axioms on its
conceivable models. The immediate consequence of this is that models of Anti-
Geometry can be readily found in all walks of life.4# On the other hand, and for the
same reason, the truths concerning these models that can be obtained from
Smarandache’s axioms by deductive inference are somewhat uninteresting, to say
the least.

I shall now state my interpretation of the undefined terms in Smarandache’s
(and Hilbert’s) axioms and show, thereupon, that Smarandache’s nineteen axioms
come out true under this interpretation. Following Chimienti and Bencze (ref. 2),
I say ‘line’ where Hilbert says ‘straight’ (gerade).5 Points lying on one and the same
line are said to be collinear, points or lines lying on one and the same plane are said
to be coplanar. Two lines are said to meet or intersect each other if they have a
point in common.

In my interpretation the geometrical terms employed in the axioms are made
to stand for ordinary, non-geometric objects and relations, with which I assume
the reader is familiar. As a matter of fact, Smarandache’s system, despite its
vaunted vanguardistic libertarianism, still imposes a few existential constraints on
admissible models; for example, his Axiom III presupposes the existence of
infinitely many of the objects called ‘lines’. This has forced me to introduce three
existence postulates which my model is required to comply with, at least one of
which is plainly unnatural (EP3).

L]

I list below the meaning I bestow on Hilbert’s property words:
() A point is the balance in a particular checking account, expressed in U.S.
currency. (Points will be denoted by capital letters).

You can also extend the domain of my model, in direct contradiction with Hilbert's Axiom
V.2, by adding all Swiss banks to the U.S. banks comprised in the extension of ‘plane’.

4 I lighted on the model I shall present below while recovering from a long, delicious and
calory-rich lunch with a poet, a psychiatrist and a philosopher, during which not a single
word was said about geometry and [ drank half a bottle of excellent Chilean merlot.

5 Was this deviant usage adopted because “some of our lines are curves”, as Chimienti and
Bencze note in their definition of ‘angle’ (following their Axiom IV.3)? That would
bespeak a deep misunderstanding of Hilbertian axiomatics. I hope that my interpretation
will make this clear. In it, lines are persons, and we might just as well have called them
straights.



NOTE. Two points A and B may be distinct, because they are balances from different
accounts, which may or may not belong to different persons, and yet be equal in amount,
in which case we shall say that A equals B (symbolized A = B). If A and B are the same
point, we say that A and B are identical. Of course, in current mathematical parlance
"equal”, signified by "=", means "identical”, but, like Humpty Dumpty and David Hilbert,
I feel free to use words any way I wish, provided that I explain their meaning clearly. I use
the standard symbol < to express that a given balance is smaller than another.

(ii) A line is a person, who can be a human being or an angel. (Lines are
denoted by lower case italics).

(iii) A plane is a U.S. bank, affiliated to the FDIC. (Planes are denoted by lower
case Greek letters).

Here are the meanings I bestow on the relation words. All relations are
supposed to hold at midnight E.S.T. of December 31, 1999.

1. Point A lies on line a if and only if person a owns the particular account that
shows balance A. (For brevity’s sake, I shall often say that 4 owns balance A when
he or she owns the said account.)

2. Line a lies on plane o if and only if the person a has a checking account with
bank a.

3. Point A lies on plane a if and only if the particular checking account that
shows balance A is held with bank .

4. Point B is between points A and C, if and only if balances A, B and C are the
balances in three different accounts belonging to the same person x, and A = B <
C.

Items 1-4 take care of betweenness and the three kinds of incidence we find in
Hilbert and Smarandache. Hilbert’s relation of congruence does not apply,
however, to points, lines or planes, but to two sorts of figures constructed from
points and lines, viz. segments and angles. I must therefore define these figures in
terms of my points and lines.

DEF. L. If two balances A and B belong to the same person x, the collection formed
by A, B and all balances Y belonging to x and such that A is less than Y and Y is
less than B is called the segment AB.



NOTE. By our definition of “betweenness”, the points belonging to segment AB but not
identical with A or B do not lie between A and B. However, the Smarandache axioms are
stated in such 2 way that none of them contradicts this surprising theorem.

DEF. IL. If a balance O is owned in common by persons h and k, the set formed by
h, k and O is called the angle (h,0,k) (symbolized £ hQk).

NOTE 1. k and k could be the same person, in which case the qualification “in common”
is trivial.

NOTE 2. If h and k are distinct persons, such that k besides O owns a balance P, not
shared with k, and k, besides O, owns a balance Q, not shared with h, £hOk may be
called “the angle POQ” and be symbolized by £POQ. In other words, the expression
“£POQ” has a referent if and only if there exist persons h and k who respectively own
balance P and balance Q separately from one another, and share the balance O; otherwise,
this expression has no referent.

DEF. IIL. Person a acquired balance A partly from person b if and only if a part of
balance A was electronically transferred from funds owned by b to the account
owned by a which shows balance A. Instead of “a acquired A partly from b” we
write ¥%{a,A,b)

I am now in a position to define Hilbert’s two sorts of congruence.

5. Segment AB is congruent with segment CD if and only if there is a person x
such that ¥%(h,A,x) and ¥(h,B,x) and ¥*(k,C,x) and %*(k,D,x), where h denotes the
owner of balances A and B, and k denotes the owner of balances C and D.

6. Angle (h,P k) is congruent with angle (f,Q,g) if there is a person x such that
¥2(h,P,x) and ¥ (k,Px) and *(f,Q,x) and *(g Q,x).

We shall also need the following definitions:

DEF. IV. Two distinct lines 2 and b are said to be parallel if and only if persons a
and b have accounts with the same bank o but do not own any balance in
common.

DEF. V. Let A be a balance belonging to a person h. Any other balances owned by
h can be divided into three classes: (i) those that are less than A, (ii) those that are
greater than A, and (iii) those that are equal to A. Balances of class (i) and (ii)
which are held by h in other accounts with the same bank where he has A will be
said to lie, respectively, on one and on the other side of A (on h).



As I said, the fairly weak but nevertheless inescapable constraints implicit in
some of Smarandache’s axioms force me to adopt three existence postulates. The
first of these is highly plausible; the second is, as far as I know, false in fact, but not
implausible; while the third is quite unnatural, though not more so than the
supposition, involved in Smarandache’s Axiom III, that there are infinitely many
distinct objects in any model of his system.

Existence postulates.

EP1. Mr. John Dee has four checking accounts, with balances of 5000, 5000, 5000
and 8000 dollars, respectively.

EP1 ensures the truth of Smarandache’s Axiom II.3.

EP2. There are some checking accounts for whose balance two different banks are
held responsible. I shall refer to such accounts as rwo-bank accounts.

EP2 is needed to ensure the truth of Smarandache’s Axiom [.4; it is also presupposed by
his Axiom L6. We could be more specific and stipulate that checks drawn against such
accounts will be cashed at the branches of either bank, that the banks share the
maintenance costs and monthly service charges, etc. But all such details are irrelevant for
the stated purpose..

EP3. There exist infinitely many supernatural persons who may secretly own bank
accounts, usually in common.

EP3 is needed to take care of the last of the four situations contemplated in
Smarandache’s Axiom III (the Axiom of Parallels), which involves a point that is
intersected by infinitely many lines. In our model, this amounts to a balance in current
account that is owned in common by infinitely many persons. EP3 is certainly weird, but
not more so than say, the postulation of points, lines and a plane at infinity in projective
geometry. As in the latter case, we may regard talk of supernatural persons as a fagon de
parler. EP3 will perhaps sound less unlikely if the banks of our model are Swiss instead of
American.

I shall now show that —with one partial exception (I.7)—all of the axioms of
Smarandache’s Anti-Geometry hold in our model. As we shall see, the said
exception is due to an inconsistency in Smarandache’s axiom system.

10



Axiom 11  Two distinct points A and B do not always completely determine
a line.

Balance A and balance B need not belong to the same person.
Axiom 1.2 There is at least one line % and at least two distinct points A and

B of h, such that A and B do not completely determine the line
h.

A and B are owned by 4 in common with a second person k.

Axiom 1.3  Three points A, B, C, not on the same line, do not always
completely determine a plane a.

Three balances belonging to different persons may pertain to accounts they have
with different banks.

Axiom 1.4  There is at least one plane a and at least three points A, B, C,
which lie on a but not on the same line, such that A, B, C do
not completely determine the plane a.

Three points A, B and C on plane o completely determine a if and only if any
fourth point D, coplanar with A, B and C, also lies on a.. However, according to
EP2, the balances A, B and C may pertain to three two-bank accounts held, say,
with bank o and bank B. In that case, D could belong to B and not to .

Axiom 1.5  Let two points A, B of a line & lie on a plane a. This does not
entail that every point of 4 lies on a.

Obviously, a person h may hold accounts with other banks, besides a.

Axiom 1.6 Let two planes a and B have a point A in common. This does
not entail that o and B have another point B in common.

Balance A could be the balance in the one and only two-bank account for which
banks o and P are jointly responsible (see EP2).

11



Axiom 1.7 There exist lines on each one of which there lies only one point,
or planes on each one of which there lie only two points, or a
space which contains only three points.

Nothing in our model precludes the joint fulfilment of the first two disjuncts in
this axiom, viz., “There exist lines on each one of which there lies only one point”
(i.e. persons who own a single bank account) and “There exist planes on each one
of which there lie only two points” (i.e. banks in which, at closing time on the last
day of the twentieth century, only two checking accounts remained open). The
third condition, however, cannot be fulfilled, for EP1 demands the existence of at
least four points. However, EP1 was solely introduced to secure the truth of
Axiom I1.3, which actually requires the existence of four distinct points. Therefore
Axiom II.3 cannot be satisfied in a model that satisfies the last disjunct of Axiom
L.7. Thus, the Smarandache axioms of anti-geometry are inconsistent as stated. I
propose to delete the last disjunct of 1.7. By the way, ‘space’ is not a term used in
Hilbert’s axioms. Indeed, since ‘space’ stands for the entire domain of application
of Smarandache’s system it ought not to occur in it either.

Axiom II.1 Let A, B, and C be three collinear points, such that B lies
between A and C. This does not entail that B lies also between
C and A.

Obviously, if A = B < C, C # B. Thus, in fact, our model satisfies also the stronger
axiom: “If B lies between A and C then B does not lie between C and A”.

Axiom II.2 Let A and C be two collinear points. Then, there does not
always exist a point B lying between A and C, nor a point D
such that C lies between A and D.

Obviously, if a given person owns A and C there is no reason why she or he should
own a third checking account, let alone one with a balance that is either equal to A
and less than C, or greater than both C and A.

Axiom II.3  There exist at least three collinear points such that one point lies

between the other two, and another point lies also between the
other two.

12



This is so, of course, if the line is Mr. John Dee (by EP1).

Axiom I1.4  Four collinear points A, B, C, D cannot always be ordered so
that (i) B lies between A and C and also between A and D, and
(ii) C lies between A and D and also between B and D.

In fact, under our definition of betweenness four collinear points can never be
ordered in this way. Condition (i) means than B equals A and is less than C and D;
condition (ii) means that C equals A and B and is less than D. These two
conditions are plainly incompatible. '

Axiom II.5 Let A, B, and C be three non-collinear points, and 4 a line which
lies on the same plane as points A,B, and C but does not pass
through any of these points. Then, the line 4~ may well pass
through a point of egment AB, and yet not pass through a point
of segment AC, nor through a point of segment BC

Suppose that h does not pass through A, B or C but passes nevertheless through a
point of segment AB. This entails that person 4 owns in common with the owner
of both A and B a checking account whose balance X is greater than A and less
than B. Obviously, & need not own any balances in common with the owner of
both B and C, nor with the owner of both A and C, let alone one that meets the
requirements imposed by our definition of segment, viz., that the balance in
question be greater than B and less than C, or greater than A and less than C.

III. ANTI-AXIOM OF PARALLELS
Let h be a line on a plane o and A a point on o but not on 2. On
plane a there can be drawn through point A either (i) no line, or
(ii) only one line, or (iii) a finite number of lines, or (iv} an
infinite number of lines which do(es) not intersect the line h.
The line(s) is (are) called the parallel(s) to h through the given
point A.6

6 Two remarks are on order here: (i) Chimienti and Bencze label this axiom with the Roman
number I1I, although the Hilbert axiom contradicted by it bears number IV. In Hilbert’s
book Axioms I1I (1-5) are the axioms of congruence. (ii} Chimienti and Bencze do not

13



Let A be the balance of a checking account with bank o and & a client of bank o
who does not own that account. The account in question may belong to a person
who shares another balance with h (case i), or to a person b, or to finitely many
persons cy, ... ,C, none of whom shares a checking account with h (cases ii and
iii). According to EP3, A may also be owned secretly by infinitely many
supernatural persons who do not share an account with k& (case iv). By DEF. IV,
the lines comprised in cases (ii), (iii) and (iv) all meet the requirements for being
parallel with h.

NOTE. InChimienti and Bencze’s article (ref. 2), Axiom III includes the following
supplementary condition, enclosed in parentheses: “(At least two of these situations
should occur)”, where ‘these situations’ are cases (i) through (iv). Since I do not
understand what this condition means, I did not consider it in the preceding discussion.
Anyway, the following is clear: No matter how you interpret the terms “point” and “line”
and the predicates “coplanar” and “intersect”, case (i) excludes cases (ii) and (iv).
However, (i) implies (iii) and therefore can occur together with it, if by “finite number”
you mean “any natural number” in Peano’s sense, i.e. any integer equal to or greater than
zero. In contemporary mathematical jargon, this would the usual meaning of the term in
this context. By the same token, (ii) implies (iii), for “one” is a finite number. Finally, (iv)
certainly implies (iii), for any infinite set includes a finite subset. In the light of this, the
condition in parenthesis is obvious and trivial and few would think of mentioning it.
Therefore, the fact that it is mentioned suggests to me that it is being given some other
meaning, which eludes me.

Axiom IV.1 If A, B are two points on a line /, and A’ is a point on the same
line or on another line #’, then, on a given side of A’ on line ¥,
we cannot always find a unique B so that the segment AB is
congruent to the segment A'B'.

If balances A and B belong to person k, and A’ belongs to &’ (who may or may not
be the same person as /), there is no reason at all why there should exist a unique
balance B’ such that segments AB and A’B’ meet the condition of congruence, viz.,
that there exists a person x such that ¥ (h,A,x) and ¥¢(h,B,x) and %(h’,A’x) and
¥ (W', B’ x).

explicitly require line k to lie on plane o this is, however, a standard requirement of
parallelism which I take to be understood.

14



NOTE. For the expression ‘on a given side of A’, see DEF. V.

Axiom IV.2 If segment AB is congruent with segment A'B” and also with
segment A”B”, then segment A’B’is not always congruent with
segment A”B”.

Assume that (i) the owner of A and B got the monies in the respective accounts
partly from a person x and partly from a person y; (ii) the owner of A" and B’ got
these monies partly from x but not from y; (iii) the owner of A” and B” got these
monies partly from y but not from x. If these three conditions are met, Axiom
IV.2 is satisfied.

Axiom IV.3 If AB and BC are two segments of the same line & which have
no points in common besides the point B, and A’B’ and B’C’ are
two segments of & or of another line &’ which have no points in
common besides B’, and segment AB is congruent with segment
A’B’ and segment BC is congruent with B’C’, then it is not
always the case that segment AC is congruent with segment
AC.

Again, let B and B’ be acquired by h and #’, respectively, partly from x and partly
from y; A and A’ from x but not from y; C and C’ from y but not from x. Then
segment AB is congruent with segment A’B’; segment BC is congruent with
segment B’C’, but segment AC is not congruent with segment A’C’.

Axiom IV.4. Let £hOk be an angle on plan «, and let &’ be a line on plane .
Suppose that a definite side of h’ on plane B is assigned and that
a particular point O’ is distinguished on /’. Then there are on f
either one, or more than one, or even no half-line % issuing from
the point O’ such that (i) £hOk is congruent with Zh'O’k’, and
(i) the interior points of £h’O’F’ lie upon one or both sides of
K.

This axiom is not easy to apply, for it contains the terms ‘half-line’, ‘interior points
(of an angle)’ and ‘side (of a line on a plane)’ which have not been defined and are
not used anywhere else in the axioms. I shall take the half-line k issuing from a
point O to mean a person k who owns O and owns another bank balance less than

15



O in a different account with the same bank, but does not own a bank balance
greater than O in a different account with the same bank. As for the other two
expressions, since they are otherwise idle, we could simply ignore them. But if the
readers do not like this expedient, they may equally well use the following one:
Let £aPb be an angle, such that P is the balance held in common by a and b in
their checking account with a particular branch of bank «; the interior points of
£.aPb are the cashiers of that particular branch. We say that the cashiers who are
younger than a, lie on one side of a (on o), and that the cashiers who are older than
a, lie on the other side of a {on ). The condition on interior points in axiom IV.4
will obviously be met if the line (i.e. bank client) 4’ is so chosen that the branch of
bank B where &’ holds the balance O’ in common with k" has cashiers who are
both younger and older than /. Surely this requirement is not hard to meet, if B
ranges freely over all banks in the U.S.

If the axiom is understood in this way, its meaning is clear enough. It is so weak
that there is no difficulty in satisfying it. Take the arbitrarily assigned side of &’ to
be younger than. It should be easy to find a bank B and a client #’ who owns a
balance O’ in a branch of B, and is older than some cashiers of the branch and
younger than others. Under this condition, there may or may not be a person &’
such that (i) £ holds O’ in common with #’, (ii) &’ holds separately a balance less
than O’ in another account with bank B (with my definitions this need not even be
in the same branch of B), and (iii) there is a person x such that ¥¢(h,0,x) and
¥ (k,0,x) and %(#’,0’,x) and *(¥,0’,x). Indeed, there may be several persons k;,
ks, . .., k,, who simultaneously meet the conditions prescribed for &’.

Axiom IV.5 If £hOkis congruent with Z#’O’k’ and also with Zh”O”k”, then
LK O’k may not be congruent with Zh"O"k".

Let £hOk be congruent with Zh'O’k’ because the vertices O and O —i.e. the
shared balances— both stem partly from a donor x who contributes nothing to O”,
while £hOk is congruent with £Zh”O"k” because the vertices O and O” stem
partly from a debtor y who contributes nothing to O’.

Axiom IV.6 Let ABC and A'B’C’ be two triangles such that segment AB is
congruent with segment A’B’, segment AC is congruent with
segment A’C’, and £BAC is congruent with £B’A’C’. Then it is
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not always the case that ZABC is congruent with ZA'B’C’ and
that £ZACB is congruent with ZA’C'B’.

The triangle ABC is determined by three distinct balances A, B and C, such that A
and B jointly belong to a person ¢, B and C jointly belong to a person a who is
different from ¢, and C and A jointly belong to a person & who is different from
both a and c. It follows that 4 and b are joint owners of C, b and c are joint owners
of A, and c and a are joint owners of B. The axiom assumes:

(i) That segment AB is congruent with segment A'B’, i.e. that there is a person x
such that ¥(c,A,x) and ¥*(¢,B,x) and +(¢,A’,x) and *(¢,B’ x);

(i) Thatsegment AC is congruent with segment A’C’, i.e. that there is a person y
such that ¥%(b,A,y) and %(b,Cyy) and *(¥',A’,y) and % (¥',C’,y);

(iii) That ZBAC is congruent with £B’A’C/, i.e. that there is a person z such that
% (c,Az) and %(b,A,z) and %(c,A’,z) and % (', A’ z).

Obviously, conditions (i), (ii) and (iii) do not in any way imply that ZABC is
congruent with ZA’B’C’, i.e., that there is a person v such that %(c,B,v) and
¥(a,B,v) and ¥(c’,B’,v) and #(a’,B’,v), nor that ZACB is congruent with ZA’C’B’,
i.e. that there is a person w such that ¥ (b,C,w) and ¥{a,C,w) and *(¥’,C’,w) and
w(a',C"w).

ANTI-AXIOM OF CONTINUITY (ANTI-ARCHIMEDEAN AXIOM)
Let A, B be two points. Take the points A, A, Az, Ay, so that
A, lies between A and A,, A, lies between A and A;, Aj lies
between A, and A, ..., and the segments AA;, AjA;, A;A3,
AjA,, ... are congruent to one another. Then, among this series

of points, there does not always exist a certain point A, such
that B lies between A and A,

Let A and B be two checking account balances. Consider a series of n checking
account balances A, A,, ..., A,, such that all of them belong to the owner of A,

and all except A, amount to the same sum as A. Suppose that A, is greater than
A. Now, the condition denied in the apodosis, viz., that B lies between A and A,
can hold if and only if B belongs to the owner of both A and A,,, and B is equal to
A. Obviously this is not implied by the initial condition on B, viz., that B is a
point, i.e. a checking account balance.
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[

There is a simple moral to be drawn from this exercise. Because Smarandache
Anti-Geometry has removed the stringent constraints on points, lines and planes
prescribed by the Hilbert axioms, it is child’s play to find uninteresting
applications for it, like the one proposed above. When first confronted with this
model, Dr. Minh L. Perez wrote me that he had the impression that
Smarandache’s message was directed against axiomatization. Such an attack would
be justified only if we take an equalitarian view of axiom systems. To my mind,
equalitarianism in the matter of mathematical axiom systems—though favored by
some early twentieth century philosophers—is like placing all games of wit and
skill on an equal footing. The clever Indian who invented chess is said to have
demanded 254 corn grains minus 1 for his creation. Who would have the chutzpah
to charge even a trillionth of that for tic-tac-toe? But Smarandache’s Anti-
Euclidean geometry does not derogate Hilbert's axiom system for Euclidean
geometry. Indeed this system, as well as Hilbert's axiom system for the real
number field (1900a), deserve much more —not less— attention and praise in view
of the fact that one can also propose consistent yet vapid axiom systems.
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THE AVERAGE SMARANDACHE FUNCTION

Florian Luca
Mathematical Institute, Czech Academy of Sciences
Zitna 25, 115 67 Praha 1
Czech Republic

For every positive integer n let S(n) be the minimal positive integer m such
that n | m!. For any positive number z > 1 let

Az) = 3 5(m) O

n<z
be the average value of S on the interval [1, z]. In [6], the authors show that
Alz) < c1z + c2 (2)

where ¢; can be made rather small provided that z is enough large (for example,
one can take ¢; = .215 and ¢y = 45.15 provided that z > 1470). It is interesting
to mention that by using the method outlined in [6], one gets smaller and smaller
values of ¢; for which {2) holds provided that z is large, but at the cost of increasing
ca! In the same paper, the authors ask whether it can be shown that

2z
A(®) < oo 3)
and conjecture that, in fact, the stronger version
z
A < (@)

might hold (the authors of [6] claim that (4) has been tested by Ibstedt in the
range £ < 5105 in [4]. Although I have read [4] carefully, I found no trace of the
aforementioned computation!).

- z .. .
In this note, we show that onz = indeed the correct order of magnitude of

A(z).
For any positive real number z let w(z) be the number of prime numbers less
then or equal to z,

B(z) =zA(z)= ) S(n), ()
E(z) =25loglog(z)+ 6.2+ % (6)
We have the following result:
Theorem.
5(x(z) - 7(V7)) < A(z) < 7(z) + E(z) forallz > 3. )

Inequalities (7), combined with the prime number theorem, assert that
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.5 < liminf A(z) < limsup A—S:—)- <1,

o0 _T z—00
logz logz
which says that loZz is indeed the right order of magnitude of A(z). The natural
conjecture is that, in fact,
z z
Alz) = — .
(=) log z +0 (log2 z) ®)

Since

z 1 z 3
— _ - - >
logz(1+2log::) <7z < log:(1+2logz) for z 2 59,

it follows, by our theorem, that the upper bound on A(z) is indeed of the type (8).
Unfortunately, we have not succeeded in finding a lower bound of the type (8) for
A(z).

The Proof

We begin with the following observation:

Lemma.
Suppose that n = pf...pY* is the decomposition of n in prime factors (we
assume that the p;’s are distinct but not necessarily ordered). Then:
1.
S(n) < maxf_, (aip;). (9)

2. Assume that ay;py = maxt_,(cip;). If a1 < p1, then S(n) = a1p1.
3.
S(n) > oi(pi — 1) foralli=1, .., k. (10)

Proof.

For every prime number p and positive integer k let e,(k) be the exponent at
which p appears in k!l

1. Let m > max}.,(eipi)- Then

ep,(m) = Z [mJ > lﬂj >a; fori=1, .., k

vy ]
a>1 pi Pi

This obviously implies n | m!, hence m > S(n).

2. Assume that a; < p1. In this case, S{(n) > ayp1. By 1 above, it follows that
in fact S(n) = aipi1.

3. Let m = S(n). The asserted inequality follows from

oc

a; < ep,(m) =Z L%J <mz—1? = _m_

s>1 1 1 P pi—1
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The Proof of the Theorem.

In what follows p denotes a prime. We assume £ > 1. The idea behind the
proof is to find good bounds on the expression

B(z)-B(z)= )Y S(n). (11)

VT<n<z
Consider the following three subsets of the interval I = (v/z, z]:

Ci = {n€ 1] S(n)isnot a prime},
Cr={n€l|8(n)=p<Vz},
Cs={nel|S(n)=p>z}.
Certainly, the three subsets above are, in general, not disjoint but their union covers
I. Let

Dy(z) = Z S(n) fori=1, 2, 3.
necC;

Clearly,
max(Di(z) | i =1, 2, 3) < B(z) - B(Y3) < Di() + Da(z) + Ds(z).  (12)

We now bound each D; separately.

The bound for D;.

Assume that m € C;. By the Lemma, it follows that S(m) < ap for some
p® [l m and & > 1. First of all, notice that S(m) < a/m. Indeed, this follows from
the fact that

S(m)<ap<ap*?<aym fora>?2.

In particular, from the above inequality it follows that p < /m < /z. Write now
m = p®k. Since m < z, it follows that k < z/p®. These considerations show that

D1(2)<ZZGP'—:;=IZZ%=Z‘ZQL_—T1? (13)
P p ree®?— 1)

p<VT a2 p<VTa22

In the above formula (13), we used the fact that

Zaz“'lzi( ! )—1:( ! )2—1=M for |z} < 1

=h dz\1-z 1~z (1-2)?
with z = 1/p. Since
2p-1 5
< — for p > 3,
(p—-17 ~ 4 P=
it follows that
1 1
Dl(x)<r(3——5-+§ 3 -) =z(2375+125 =) (14)
8 4 P P
PE<VE VT
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From a formula from [5], we know that

Zl <loglogy+127 forally>1.
p<y

Hence, inequality (14) implies
Dy(z) < 2(2.375 + 1.25 (loglog vz + 1.27) ) < z(3.1+ 1.25loglog z).  (15)

The bound for D,
Assume that S(m) = p. Then m = py where p does not divide y. Since
m > /z, it follows that
vz

—<y<
P

Since p < 1/Z, it follows that at least one integer in the above interval is a multiple
of p; hence, cannot be an acceptable value for y. This shows that there are at most

|8

NP
p - p
possible values for y. Hence,
-1
D)< 3 o (35) < (e - vOR(VE). (16)
p
r<VE
Bounds for D3
Assume S(m) = p for some p > \/z. Then, m = py for some y < z/p. Hence,
z
Ds=)= 3 »|3]- (17)

VELpLs

Notice that, unlike in the previous cases, (17) is in fact an equality. Since z > |z] >
.5z for all real numbers z > 1, it follows, from formula (17), that

Ssz(x(z) - 7(v2)) < Ds(z) < z(x(z) - 7(/). (18)

Denote now by
F(z) =3.1+1.25loglog(z)

From inequalities (12), (15}, (16) and (17), it follows that
BSz(w(z) — 7(v/z)) < D3(z) < B(z) — B(v/z) < D1(z) + D2(z) + D3(z) <

2F(z) + (z — VE)7(V) + 2(n(2) - 7(v)) = z7(2) ~ VE(VE) + 2F(z). (19)

The left inequality (7) is now obvious since

B(z) > B(v/2) + 5z(x(z) - (VD) 2 1 + 5z(x(z) - 7(\/7).
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For the right inequality (7), let G(z) = z#(z). Formula (19) can be rewritten as
B(z) - B(vVz) < G(z) - G(Vz) + zF(z). (20
Applying inequality (20) with z replaced by /z, z!/4, ..., z1/?" until z}/?" < 2
and summing up all these inequalities one gets
3 . .
B(z) - B(1) < G(z) + Y _ ="/* F(z!/%). (21)
i=0
The function F(z) is obviously increasing. Hence,
L
B(z) < 1+G(z) + F(z) Yy _ z"/%. (22)
i=0

To finish the argument, we show that
z> Zzl'/zi. (23)
i=1

Proceed by induction on s. If s = 0, there is nothing to prove. If s = 1, this just
says that £ > /T which is obvious. Finally, if s > 2, it follows that £ > 4. In
particular, z > 2./7 or z — \/z > /z. Rewriting inequality (23) as

3

which is precisely inequality (23) for v/z. This completes the induction step. Via
inequality (23), inequality (22) implies
B(z) < 1+ z7(z) + 2cF(z) = 1 + zn(z) + 2z (3.1 +125loglogz)  (24)

or
A(z) < 7(z) + ;1:— +6.2+ 2.5loglogz = n(z) + E(z).

Applications

From the theorem, it follows easily that for every ¢ > 0 there exists zy such

that
z

Alz) < (1+¢)

gz’ (25)

In practice, finding a lower bound on x4 for a given ¢, one simply uses the theorem
and the estimate

z f 3
W(I)<m(l+m) for z > 1. (26)
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(see [5]). By (7) and (26), it now follows that (25) is satisfied provided that

T 1(3

logz ~ € + E(z)) )

2log? =

For example, when ¢ = 1, one gets

z
A(l‘) < 2@ for z Z 64, (27)
for € = .5, one gets
z
R e >
Alz) <1 slogz for z > 254 (28)
and for € = 0.1 one gets
T
d— > 32 .
Alz) <1 llogz for z > 3298109 (29)

Of course, inequalites {27)-(29) may hold even below the smallest values shown
above but this needs to be checked computationally.
In the same spirit, by using the theorem and the estimation

z 1
—_— —_— >
7(z) > logz (1 + 2log:r) for z > 59

(see [5]) one can compute, for any given ¢, an initial value z, such that
T
Az) > (.5—e)m for z > z,.
For example, when ¢ = 1/6 one gets
A@) > 1= for z > 59 (30)
3logz =7

Inequality (30) above is better than the inequality appearing on page 62 in [2] which
asserts that for every a > 0 there exists zy such that

A(z) > 2/ for z > zg (31)
because the right side of (31) is bounded and the right side of (30) isn’t!
A diophantine equation

In this section we present an application to a diophantine equation. The ap-
plication is not of the theorem per se, but rather of the counting method used to
prove the theorem.

Since S is defined in terms of factorials, it seems natural to ask how often the
product S(1)-5(2) - ...- S(n) happens to be a factorial.

Proposition.

The only solutions of

5(1)-S(2) - ... S(n) = m! (32)
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are givenbyn=me€ {1, 2, ..., 5}.
Proof.

We show that the given equation has no solutions for » > 50. Assume that this
is not so. Let P be the largest prime number smaller than n. By Tchebysheff’s
theorem, we know that P > n/2. Since S(P) = P, it follows that P | m!. In
particular, P < m. Hence, m > n/2.

We now compute an upper bound for the order of 2 in S(1) - S(2) - ... - S(n).
Fix some 8 > 1 and assume that k is such that 29 |j S(k). Since

S(k) = max(S(p®) | p* || &),

it follows that 2° || S(p®) for some p° || k.

We distinguish two situations:

Case 1.

p is odd. In this case, 2°p | S(p®). HB =1, then a = 2. If # = 2, then a = 4.
For 8 > 3, one can easily check that & > 28 — §+1 (indeed, if @ < 2% — 3, then one
can check that p* | (2°p — 1)! which contradicts the definition of S). In particular,
p?°~P+1 | k. Since 2571 > z + 1 for z > 3, it follows that a > 21 + 2. Since
k < n, the above arguments show that there are at most

I% forg=1, 2
and n
W forﬂ23

integers k in the interval [1, n] for which p | k, S(k) = S(p®), where « is such that
p® || k and 2° || S(k).

Case 2.

p=2 B =1,then k=2 If B =2, then k = 4. Assume now that 8 > 3.
By an argument similar to the one employed at Case 1, one gets in this case that
a > 2° — B. Since 2% || k, it follows that 92’8 | k. Since k < n, it follows that

there are at most n

277-7
such k’s.

From the above anaysis, it follows that the order at which 2 divides S(1)-5(2)-
... - S(n) is at most

1 2
62<3+"Z(;+;+Zﬁ)+"252—53 (38)
< p>3 >3

(the number 3 in the above formula counts the contributions of S(2) = 2 and
S(4) = 4). We now bound each one of the two sums above.
For fixed p, one has

1 2 J¢] 1 2 3 4 ¥ p?
— 4+ = —_— — et — =+ —+ ... —_—= . (39
77 +;, s g A e S § P (p?-1)? (3)

25



Hence,

1
Z (pz + = P + Z pzp-x.,.z) E 1)2 < 245 (40)

<
”::d g>3 P odd

We now bound the second sum:

B3 4 5 3 g
222»’—;3—2_5+2ﬁ+ﬁ+"‘<2_s+‘§322+4(p-2)—

p3s
(E 71:72) = 55 1(12 + 23215) <.099 (41)

From inequalities (38), (40) and (41), it follows that
ez < 3+ .344n. (42)

We now compute a lower bound for ez. Since ez = ez(m!), it follows, from Lemme
1in [1] and from the fact that m > n/2, that
logm+1) _ n log(n/2+1)

Sm_ BT ) B 08T
22Mm= g2 -2 log 2 (43)

From inequalities (42) and (43), it follows that

log(.5n + 1)

. > .bn—
3+ .344n > 5n Tog 2

b

which gives n < 50. One can now compute S(1) - S(2) - ... - S(n) for all n < 50
to conclude that the only instances when these products are factorials are n =

1,2, ..,5
We conclude suggesting the following problem:

Problem.
Find all positive integers n such that S(1), 5(2), ..., S(n?) can be arranged in
a latin square.

The above problem appeared as Problem 24 in SNJ 9, (1994) but the range
of solutions was restricted to {2, 3, 4, 5, 7, 8, 10}. The published solution was
based on the simple observation that the sum of all entries in an n x n latin square
has to be a multiple of n. By computing the sums B(z?) for z in the above range,
one concluded that B(z?) Z 0 (mod z) which meant that there is no solution for
such z’ses. It is unlikely that this argument can be extended to cover the general
case. One should notice that from our theorem, it follows that if a solution exists
for some n > 1, then the size of the common sums of all entries belonging to the
same row (or column) is 2 n(n?).

Addendum

After this paper was written, it was pointed out to us by an annonymous referee
that Finch [3] proved recently a much stronger statement, namely that

2
lim 1°g(’)  A(z) = T5 = 0.82246703... (44)

=0
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Finch’s result is better than our result which only shows that the limsup of the
expression log(z)A(z)/z when z goes to infinity is in the interval [0.5, 1].

References

(1] Y. Bugeaud & M. Laurent, “Minoration effective de la distance p-adique
entre puissances de nombres algébriques”, J. Number Theory 61 (1996),
pp. 311-342.

[2] C. Dumitrescu & V. Seleacu, “The Smarandache Function”, Erhus U.
Press, 1996.

[3] S.R. Finch, “Moments of the Smarandache Function”, SNJ 11, No. 1-2-3
(2000), p. 140-142.

[4] H. Ibsted, “Surfing on the ocean of numbers”, Erhus U. Press, 1997.

{5] J. B. Rosser & L. Schoenfeld, “Approximate formulas for some functions
of prime numbers”, Illinois J. of Math. 6 (1962), pp. 64-94.

[6] S. Tabirca & T. Tabirca, “ Two functions in number theory and
some upper bounds for the Smarandache’s function”, SNJ 9 No. 1-2,
(1998), pp. 82-91.

1991 AMS Subject Classification: 11A25, 11020, 11L26.

27



A PARALLEL LOOP SCHEDULING ALGORITHM BASED ON
THE SMARANDACHE f-INFERIOR PART FUNCTION

Tatiana Tabirca* Sabin Tabirca**
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Abstract. This article presents an application of the inferior Smarandache f-part
function to a particular parallel loop-scheduling problem. The product between
an upper diagonal matrix and a vector is analysed from parallel computation
point of view. An efficient solution for this problem is given by using the
inferior Smarandache f-part function. Finally, the efficiency of our solution is

proved experimentally by presenting some computational results.

Parallel programming has been intensely developed in order to solve difficult
problems that contain either a big number of computation or a large volume of data.
These often occur both in real word applications (e.g. Weather Prediction) or
theoretical problems (e.g. Differential Equations). Unfortunately, there is not a
standard for writing parallel programs; this depends on the parallel language used or
the parallel platform on which the computation is performed. A common fact of this
diversity is represented by easiness to parallelise loops. Loops represent an important
source of parallelism occurring in at most all the scientific applications. Many
algorithms dealing to the scheduling of loop iterations to processors have been

proposed so far.

1.Introduction
Consider that there are p processors denoted in the following by Py, P2, ..., Pp and a

single parallel loop (see Figure 1.).

DO PARALLEL I=1,N
CALL LOOP_BODY(I)
END DO
Figure 1. Single Parallel Loop
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We also assume that the work of the routine loop_body(i) can be evaluated and is

given by the function w: N — R, where w(i) =w, represents either the number of

routine’s operations or its running time (presume that w(0)=0). The total amount of

N
work for the parallel loop is zw(i). The efficient loop-scheduling algorithm

i=1

distributes equally this total amount of work on processors such that a processor

N ,
receives a quantity of work equal to 1 Z w(i).

i=1
Let [ and h; be the lower and upper loop iteration bounds, j=12...., p, such that
processor j executes all the iteration between !/ and #;. These bounds are found

distributing equally the work on processors by using

h;
N R T
3 w(i) =—- 3 w(i) (¥ =12,.... p). 1)
i=l; P =
Moreover, they satisfy the following conditions
I =1. (2.2)
h 1 N _
if we know I, then &, is given by ﬁw(i) ==Y w(i)=W . (2.b)
i=l; P =l
L,=h; +1. 2.0)

Suppose that Equation (2.b) is computed by a less approximation. This means that if
we have the value /;, then we find k; as follows:
h+l

h =h & zh:w(i)SW<2w(i) : 3)

i=l, =l

In the following, we present an optimal parallel solution for the product between an
upper diagonal matrix and a vector. This is an important problem that occurs in many
algorithms for solving linear systems. The Smarandache inferior part function is used

to distribute equally the work on processors.
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2. The Smarandache Inferior Part Function

The inferior part function (sometime is named the floor function) [,}: R — Z, defined
by [x]=k&k<x<k+1, is one of the most used elementary functions. The
Smarandache inferior part function represents a natural generalisation of the floor
function [Smaral]. Smarandache proposed and studied this generalisation especially
in connection to Number Theory functions [Smaral, Smara2]. In the following, we

present equation for some Smarandache inferior part functions.

Consider f:Z — R a function that is strict increasing and satisfies lim f(n)=—o°
and lim f(n) =o. The Smarandache f-inferior part function denoted by f;:R—Z

is defined by
fax)=ke fR)Sx< f(k+1). 4)

The function f;; is well defined because of the good properties of f When f(k)=k

the floor function [X] is obtained. In the following we study the Smarandache f-

k
inferior part function when f(k)= Z i,

i=1
Remark. Sometime, we will study only the positive inferior part by considering

function f: N — R, f(0)=0. In this case, we only consider f;;:[0,0)—>Z.

k
Theorem 1. If f(k)= Zi , then the Smarandache f-inferior part is given by

i=1

fy(®)= [L—— “2”8"} Vx>0, (5)

k+1

Proof The proof is obtained by starting from the double inequality 21 <x< 21

i=1

Observe that the equation wiﬂ=x>0 has only one positive root given by
k= _1+—;+8—£ >0 . The following equivalences prove Theorem 1

& k- (k+1) (k+1)-(k+2) N

21<x<z >
~1+/1+8-x [—1+\/1+8ex]
—

(] kS——2—<k+1@ k=
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-1+MJ
i)

Thus, the equation for the Smarandache finferior part is fy(®) =,:

¢

k
Theorem 2. If f(k)= Zi %, then the Smarandache S-inferior part is given by

=1
fomy=|—Laqix_ (3% 2+ 1 +313'x+ 3. 2+ L lvx20. (6)
0 2 |2 2 ) 1728 \/2 2 1728 | 7

Proof We use the Cardano equation for solving x* + px+¢g=0. A real root of this

equation is given by

AHTEATE o
2 2 3 2 2 3
k-(k+1)-(2-k+1)

6

k-(k+1)-(2-k+1)=x
6

The equation = x>0 is transformed as follows:

2k +3k+k-6x=0 &

& (apply the transfonnationkzy—%) ey’ —%-y—3-x:0.

Applying Equation (7), we find that
3.x |(3-x) 1 3.x [(3-x) | 1
y=3 - + +3 + + and
2 2 1728 2 2 1728
1, [3-x (3.} 1 3.x  (3-x) 1
k=——+2 - + +3 + + .
2 2 2 1728 2 2 1728

The Smarandache f-inferior part is given by:

k k+l N . . ) . .
Sitcrcyit o K EFD @ kD (D) (kD 2kt
i=l i=1 6 6
2 2
2 2 2 J 1728 2 2 1728
l— L 3x [(3:x) 1 3-x 3.x) 1 '
Sk=l-o+i—5 - + +3——+ + 3 ’
| 2§ 2 L 2 1728 2 2 1728 |
J
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3. An Efficient Algorithm for the Upper Diagonal Matrix-Vector Product

In this section, we present an efficient algorithm for the product y =a - x between an

upper diagonal matrix a=(a,;), . —€ M, (R) and a vector x€ R". This problem is

i j=ln
quite important occurring in several other important problems such us solving linear

systems or LUP matrix decomposition.

Because a is an upper diagonal matrix, the product y =a- x is given by

vi=Xa,, x, ¥Yi=12,.n. ®)

=1

The product can be computed in parallel by using a simple computation shown below.

DO PARALLEL i=1,n
y, =0
DO j=1,i
Yi=yita;;X;
END DO

END DO
Figure 2. Paralle] Computation for the Upper Matrix — Vector Product.

For this paralle! loop we have the following elements:
e The work of iteration [ is w()=i,i=12,.,n; the total work is
ii _n-(n+1)
2
¢ The quantity of work received by a processor should be approximately equal
W= n-(n+1)
2-p
The difficult problem for the efficient loop scheduling algorithm is how Equation (1)

to

is implemented. To find the upper bounds from this is quite expensive and can be

done in O(logn +£) [Jaja]. But, we want to find the upper bounds in at most O(p)
p

complexity and we show that this is possible for our problem. For that we use the

following theorem
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Theorem 3. The parallel computation for the upper matrix-vector product can
efficiently be scheduled on processors (with respect of Equation 1) by using the
Sfollowing upper bounds:

4+w+¢fiﬁiﬂ]
14 P
hy = J,]=l,2,...,p. ©

2

Proof The Smarandache f-inferior part function presented in Theorem 1 is used to

k — ,/ .
obtain the proof. We found that if f(k)= Zi then f,(x)= [_H_ZH_—_S_x:l Vx2>0.
i=1
Since each processor receives a quantity equal to W=% we find that the
P

first j-1 processors have received approximately (j—1)-W . Thus, the upper bound of
processor j is the biggest number & such that all the previous work done by processors
1,2,...j should be approximately equal to ]V_V Mathematically, this can be written
as follows

1+2+...+hjSjeW<1+2+...+hj+(hj +) o

= |-14y148 W
(:»hj=fn(]-W)=[ 5 } =3
4+$+¢fﬁﬁﬁﬂ
p .
S h = 5 ,J=12,..,p
A more rigorous and technical explanation can be found in [Tabi]. ]

According to this theorem, the efficient scheduling is obtained using the upper bound
from Equation (9). These bounds certainly give the better approximation of Equation
1. Thus, the part of parallel loop scheduled on processor j is presented in Figure 3.

This processor computes all the sums of Equation (8) between & j1tland k.
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_1+\/1+4(]_1)M _1+J;+4J§_(EQ
P
1

DO i= P |41,
2 2
y; =0
DO j=1,i
Yi=Yyita,;-Xx;
END DO
END DO

Figure 3. Computation of Processor j.

4. Computational Results and Final Conclusions

This section presents some computational results of scheduling the parallel loop from
Figure 3. In order to find that the proposed method is efficient from the practical point
of view, two other scheduling algorithms are used. The first scheduling algorithm
named uniform scheduling, divides the parallel loop into p chunks with the same size
‘:—'ﬂ Obviously, this represents the simplest scheduling strategy but is inefficient
because all the big sums are computed on processor p. The second scheduling
algorithm named interleaving, distributes the work on processors from p to p, such
that a processor does not compute two consecutive Works. This scheduling distributes
the large work equally on processors. All the algorithms have been executed on SGI
Power Challenge 2000 parallel machine with 16 processors for a upper diagonal

matrix of dimension 300. The running time are presented in Table 1.

P=1 P=2 P=3 P=6 =8
Balanced 1.878 1.377 0.974 0.760 0.472
Interleaving | 2.029 1.447 1.041 0.803 0.576
Uniform 2.028 2.122 1.660 1.335 0.970

Table 1. Computational Times for three Scheduling Algorithms.

The first important remark that can be outlined is that there is no way to develop
efficient methods in Computer Science without Mathematics and this article is a

prove for that. Using a special function named the Smarandache inferior part, it has
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been possible to find an efficient scheduling algorithm for the upper diagonal matrix-

vector product.

The second important remark is that the scheduling proposed in this article is efficient
in practice as well. Table 1 shows that the times for the line balanced are smallest. It
can be seen that the interleaving strategy also offers good times. Table 1 also shows

that the uniform strategy gives the largest times.
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On the Pseudo-Smarandache Function and Iteration Problems
Part 1. The Euler ¢ function

Henry Ibstedt

Abstract: This study originates from questions posed on alternating
iterations involving the pseudo-Smarandache function Z(n) and the Euler
fimction ¢(n). An important part of the study is a formal proof of the fact
that Z(n)<n for all n#2* (k>0). Interesting questions have been resolved
through the surprising involvement of Fermat numbers.

L. The behaviour of the pseudo-Smarandache function

Definition of the Smarandache pseudo function Z(n): Z(n) is the smallest positive
integer m such that 1+2+...+m is divisible by n.

Adding up the arithmetical series results in an alternative and more useful formulation:
For a given integer n , Z(n) equals the smallest positive integer m such that m(m+1)/2n
is an integer. Some properties and values of this function are given in [1], which also
contains an effective computer algorithm for calculation of Z(n). The following
properties are evident from the definition:

1. Z(1)=1

2. Z(2)=3

3. For any odd prime p, Z(p*)=p*-1 for k>1
4. For n=2* k=1, Z(2=2""'-1

We note that Z(n)=n for n=1 and that Z(n)>n for n=2" when k>1. Are there other
values of n for which Z(n)=>n? No, there are none, but to my knowledge no proof has
been given. Before presenting the proof it might be useful to see some elementary
results and calculations on Z(n). Explicit calculations of Z(3-2*) and Z(5-2) have been
carried out by Charles Ashbacher [2]. For k>0:

[2¥1.1 if k=1 (mod 2)
Z(3-2%=
[2“"  ifk=0 (mod 2)

(27  ifk=0 (mod 4)
Z(52%=325!  ifk=1 (mod 4)
| 221 ifk=2 (mod 4)
(2.1 ifk=3 (mod 4)

A specific remark is made in each case that Z(n)<n.

Before proceeding to the theorem a study of Z(a-2"). a odd and k>0, we will carry out
a specific calculation for n=7-2".
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m(m+1)

We look for the smallest integer m for which is integer. We distinguish two

7 . 2k+l
cases:
Case 1: Case 2:
m=7x m=2""y
m+1=2"y m+1=T7x
Eliminating m results in
2¥1y-1=7x 2Xy+1=7x
2*"1y=1 (mod 7) 2¥"'y=-1 (mod 7)
Since 2°=1 (mod 3) we have
If k=-1 (mod 3) then
y=1 (mod 7) ; m=2""'-1 y=8 mod 7); m=2""'.8=2*"

If k=0 (mod 3) then
2y=1 (mod 7), y=4; m=2*""-4-1=2""-1 y=3 (mod 7); m=3.2""'
If k=1 (mod 3) then
4y=1 (mod 7), y=2; m=2"".2-1=2""%-1 y=5 (mod 7); m=5-2""'

By choosing in each case the smallest m we find:

(21 ifk=-1 (mod 3)
Z(7-2%=43-2*"! ifk=0 (mod 3)
[2¥2.1 ifk=1 (mod 3)

Again we note that Z(n)<n.

In a study of alternating iterations [3] it is stated that apart from when n=2* (k>0) Z(n)
is at most n. If it ever happened that Z(n)=n for n>1 then the iterations of Z(n) would
arrive at an invariant, ie. Z(...Z(n)...)=n. This can not happen, therefore it is
important to prove the following theorem.

Theorem: Z(n)<n for all n#2", k>0.

Proof: Write n in the form n=a-2", where a is odd and k>0. Consider the following four
cases:

a2 m

a2 (m+1)

. almand 2*'| (m+1)
. 2| mand al (m+1)

DN

If a is composite we could list more cases but this is not important as we will achieve
our goal by finding m so that Z(n)<m<n (where we will have Z(n)=m in case a is
prime)

Cases 1 and 2:
Case 1 is excluded in favor of case 2 which would give m= a-2“"'-1>n. We will see that
also case 2 be excluded in favor of cases 3 and 4.
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Case 3 and 4. In case 3 we write m=ax. We then require 2*"'| (ax+1), which means that
we are looking for solutions to the congruence

ax=-1 (mod 2*") (1)

In case 4 we write mt+l=ax and require pa (ax-1). This corresponds to the
congruence

ax=1 (mod 2**") )

If x=x, is a solution to one of the congruencies in the interval 2° <x< 2“"! then 2*"'-x,
is a solution to the other congruence which lies in the interval 0 <x< 2*. So we have
m=ax or m=ax-1 with 0<x<2* , i.e. m<n exists so that m(m+1)/2 is divisible by n when
a>1 in n=a-2*. If a is a prime number then we also have Z(n)=m<n. If a=a,-a, then Z(n)
<m which is a fortiori less than n..

Let’s illustrate the last statement by a numerical example. Take n=70 =5-7-2. An
effective algorithm for calculation of Z(n) [1] gives Z(70)=20. Solving our two
congruencies results in: ‘

35x=-1 (mod 4) Solution x=1 for which m=35

35x=1 (mod 4) Solution x=3 for which m=104
From these solutions we chose m=35 which is less than n=70. However, here we arrive
at an even smaller solution Z(70)=20 because we do not need to require both a; and a,
to divide one or the other of m and m+1.

IL. Iterating the Pseudo-Smarandache Function

The theorem proved in the previous section assures that an iteration of the pseudo-
Smarandache function does not result in an invariant, ie. Z(n)#n is true for n#1. On
iteration the function will leap to a higher value only when n=2", It can only go into a
loop (or cycle) if after one or more iterations it returns to 2¥. Up to n=22* this does not
happen and a statistical view on the results displayed in diagram 1 makes it reasonable
to conjecture that it never happens. Each row in diagram 1 corresponds to a sequence
of iterations starting on n=2* finishing on the final value 2. The largest number of
iterations required for this was 24 and occurred for n=2"* which also had the largest
numbers of leaps form 2/ to 2*'-1. Leaps are represented by T in the diagram. For
n=2"" and 2'? the iterations are monotonously decreasing.

III. Iterating the Euler ¢ function

The function ¢(n) is defined for n>1 as the number of positive integers less than and
prime to n. The analytical expression is given by

1
¢m)=n[ [ -

38



j128127|26[25{24{23|22|2120(19{18{17}16|15|14{13}12|11j10/ 9|8} 7:6 [543

~
(W]

W]l J|lon]untesf W NN
-

_*
S 22 -

=
o

e
|

-3 ||| || =

’_l
[N
.—)

]
wiN
-

[
-3

—|
—>
—>

e D
< oo
-

[
oo}
~P|

[
Vel
—)

_)
- |-

DN
wlwlN+=lo
-

N
(9]
-5

NN
(s o} SRR | I )Y
)
-

7 HERE

R B I B B B Y B Y Y B I I Y

Diagram 1.

For n expressed in the form n=p{'p,?-.-p;" it is often useful to express ¢(n) in the
form

o(m) =pP ' (p, - Dpy ' (P, = V- (P, = D)

It is obvious from the definition that ¢(n)<n for all n>1. Applying the ¢ function to $(n)
we will have ¢(¢p(n))< ¢(n). After a number of such iterations the end result will of
course be 1. It is what this chain of iterations looks like which is interesting and which

will be studied here. For convenience we will write ¢,(n) for ¢(¢p(n)). ¢r(n) stands for
the k" iteration. To begin with we will look at the iteration of a few prime powers.

$(29=2"",  »(2H=2"%, ... (271

0(3=3%12, $:3%9=3°22, ....  $(3%)=3"*2 for k<a.
In particular $o(3%)=2.

Proceeding in the same way we will write down ¢w(p®), ¢o(p™) and first first
occurrence of an iteration result which consists purely of a power of 2.
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¢k(5¢)=50-k.2k+1 , kS(l ¢u(5(1)=2(1+1

P(T=T"32", k<au $a(7)=3-2%, dari(77)=2"
d(119=117552% k<o a(119)=5-2"*" das (119227
(139=13"532% k<o o(13%)=3-2 b1 (139277

W(1T=17"52 k<o $a(177)=277""
#(199=19"53"125 k< $a(19%)=3""12" b2ar1(19%)=2°
$(23%)=23"%11-52%* k<a a(23%)=11-5-2°"" Pa2(239)=2"%".

Table 1. Iteration of p°. A horizontal line marks where the rest of the iterated values consist of
descending powers of 2

# p=2 p=3 p=5 p=7 p=11 p=13 p=17 p=19 p=23

1 37 486 12500 100842 1610510 4455516 22717712 44569782 141599546
2 16 162 5000 28812 585640 1370928 10690688 14074668 61565020
3 8 54 2000 8232 212960 421824 5030912 4444632 21413920
4 4 18 800 2352 77440 129792 2367488 1403568 7448320
5 6 320 672 28160 39936 1114112 443232 2530720
6 — 2 128 192 10240 12288 524288 139968 901120
7 64 64 2096 2096 262144 46656 327680
8 32 32 2048 2048 131072 15552 131072
9 16 16 1024 1024 65536 5184 65536
10 8 8 512 512 32768 1728 32768
11 4 4 256 256 16384 576 16384
12 2 2 128 128 8192 192 8192
13 64 64 4096 64 4096
14 32 32 2048 32 2048
15 16 16 1024 16 1024
16 8 8 512 8 512
17 4 4 256 4 256
18 2 128 2 128
19 64 64
20 32 32
21 16 16
22 8
23 4 4
24 2

The characteristic tail of descending powers of 2 applies also to the iterations of
composite integers and plays an important role in the alternating Z-¢ iterations which
will be subject of the next section.
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IV. The alternating iteration of the Euler ¢ function followed by the
Smarandache Z function.

Charles Ashbacher [3] found that the alternating iteration Z(...(¢(Z(¢(n)))...) ends in
2-cycles of which he found the following four':

2-cycle First Instance

2 - 3 3=2°-1

§ - 15 15=2%-1
128 - 255 255=28-1

32768 - 65535 65535=2%¢-1

The following questions were posed:

1) Does the Z-¢ sequence always reduce to a 2-cycle of the form 2%~ <> 2% -1 for
r=1?

2) Does any additional patterns always appear first for n = 2% -1?

Theorem: The alternating iteration Z(...(¢(Z(¢(n)))...) ultimately leads to one of the
following five 2-cycles: 2 -3, 8 - 15, 128 - 255, 32768 - 65535, 2147483648 -
4294967295.

Proof:

Since ¢(n)<n for all n>1 and Z(n)<n for all n#2" (k>0) any cycle must have a number
of the form 2* at the lower end and Z(2*)=2*"'-1 at the upper end of the cycle. In order
to have a 2-cycle we must find a solution to the equation

OF1)=0

If 2*'-1 were a prime ¢(2*"'-1) would be 2'-2 which solves the equation only when
k=1. A necessary condition is therefore that 2'-1 is composite, 2“"'-1=f;-f;-...-f-...-f
and that the factors are such that ¢(f)=2" for 1<i<r. But this means that each factor f;
must be a prime number of the form 2% + 1. This leads us to consider

q()= 2-DE+DRHDH+DR%H1) ... (2% +1)
or

q@= (2" -1
Numbers of the form F=2% +lare known as Fermat numbers. The first five of these
are prime numbers

Fo=3, F1=5, F2=17, F3=257, F4=65537

! 1t should be noted that 2, 8, 128 and 32768 can be obtained as iteration results only through
iterations of the type ¢(...(Z(¢(n)))...) whereas the “complete” iterations Z(...((Z(¢(n)))...) lead to
the invariants 3, 15, 255, 65535. Consequently we note that for example Z(¢(8))=7 not 15, i.e. 8 does
not belong to its own cycle.
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while Fs=641-6700417 as well as Fs , F7, Fz , Fy , Fio and F;; are all known to be
composite.

From this we see that

2" ~1)= Q)= 0F0) §F1)-...- §(Fea)=22%...- 27 = 2T 2 (3

for r=1, 2, 3, 4 5 but breaks down for r=6 (because Fs is composite) and consequently
also for r>6.

Evaluating (3) for r=1,2,3,4,5 gives the complete table of expressions for the five 2-
cycles.

Cycle # 2-cycle Equivalent expression
1 2 o 3 2 o 2°-1
2 8 & 15 2} o 241
3 128 & 255 2" o 281
4 32768 ¢« 65535 2P o 211
S 2147483648 ¢» 4294967295 23 & 2321

The answers to the two questions are implicit in the above theorem.
1) The Z-¢ sequence always reduces to a 2-cycle of the form 2% ™' « 2% —1 for r21.

2) Only five patterns exist and they always appear first for n=2% -1, r=1,2,3,4,5.

A statistical survey of the frequency of the different 2-cycles, displayed in table 2,
indicates that the lower cycles are favored when the initiating numbers grow larger.
Cycle #4 could have appeared in the third interval but as can be seen it is generally
scarcely represented. Prohibitive computer execution times made it impossible to
systematically examine an mterval were cycle #5 members can be assumed to exist.
However, apart from the “founding member” 2147483648 ¢« 4294967295 a few
individual members were calculated by solving the equation:

Z(p(m)=2"-1
The result is shown in table 3.

Table 2. The distribution of cycles for a few intervals of length 1000.

Interval Cycle #1 Cycle #2 Cycle #3 Cycle #4
3<n £1002 572 358 70 -
10001 €< n < 11000 651 159 190 -
100001 € n < 101000 759 100 141 0
1000001 € n < 1001000 822 75 86 17
10000001 € n £ 100001000 831 42 64 63
100000001 < n <1000001000 812 52 43 93
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Table 3. A few members of the cycle #5 family.

n $(n) Z2{¢(n)) $(Z($(n)))
38655885321 25770196992 4284967295 2147483648
107377459225 85900656640 4294967295 2147483648
966397133025 515403939840 4294967285 2147483648
1241283428641 1168248930304 4294967295 2147483648

11171550857769 7009493581824 4294967295 2147483648
31032085716025 23364978606080 4294967295 2147483648
279288771444225 140189871636480 4294567295 2147483648
283686552174081 282578800082944 4294967285 2147483648
2553182569566729 1695472800497664 4294967295 2147483648
7082173804352025 $651576001658880 4294967295 2147483648
63829564239168225 33905456009953280 42954967295 2147483648
81985529178309409 76861433622560768 429496729% 2147483648
2048638229457735225 1537228672451215360 4294967295 2147483648

References
1. H. Ibstedt, Surfing on the Ocean of Numbers, Erhus University Press, 1997,
2. Charles Ashbacher, Pluckings From the Tree of Smarandache Sequences and Functions,

American Research Press, 1998.
3. Charles Ashbacher, On Iterations That Alternate the Pseudo-Smarandache and Classic Functions

of Number Theory, Smarandache Notions Journal, Vol. 11, No 1-2-3.

7, Rue du Sergent Blandan
92130 Issy les Moulineaux, France

43



On the Pseudo-Smarandache Function and Iteration Problems

Part II: The Sum of Divisors Function

Henry Ibstedt

Abstract: This study is an extension of work done by Charles Ashbacher.
Iteration results have been re-defined in terms of invariants and loops. Further
empirical studies and analysis of results have helped throw light on a few
intriguing questions. :

1. Summary of a study by Charles Ashbacher [1]

The following definition forms the basis of Ashbacher’s study: For n>1, the Z-sigma
sequence is the alternating iteration of the sigma, sum of divisors, function followed by
the Pseudo-Smarandache function.

The Z-sigma sequence originated by n creates a cycle. Ashbacher identified four 2
cycles and one 12 cycle. These are listed in table 1.

Table 1. Iteration cycles C, - Cs.

n Cx Cycle
2 C1 36>2
3<n<15 Cz 246> 15
n=16 Ci| 3132632104 >64—>127>126—>312—> 143> 168 —> 48 —> 124
17<n<19 | C2 24> 15
n=20 Cs 426320
n=21 Ci| 3153263104 64—>127>126—>312—> 143> 168 —> 48 ~> 124
22<n<24 | C2 244> 15
n=25 Ci| 319325631042 64—>127>126—» 312> 143> 168 —>48—> 124
n=26 C3 426> 20
n=381 | Cs 10234> 1536

The search for new cycles was continued up to n=552,000. No new ones were found.
This lead Ashbacher to pose the following questions

1) Is there another cycle generated by the Zo sequence?

2) Is there an infinite number of numbers n that generate the two cycle 42 <> 20?
3) Are there any other numbers n that generate the two cycle 2 <> 3?

4) Is there a pattern to the first appearance of a new cycle?

Ashbacher concludes his article by stating that these problems have only been touched
upon and encourages others to further explore these problems.
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IL. An extended study of the Zo iteration

It is amazing that hundred thousands of integers subject to a fairly simple iteration
process all end up with final results that can be described by a few small integers. This
merits a closer analysis. In an earlier study of iterations [2] the author classified
iteration results in terms of invariants, loops and divergents. Applying the iteration to a
member of a loop produces another member of the same loop. The cycles described in
the previous section are not loops. The members of a cycle are not generated by the
same process, half of them are generated by Z(c(Z(...c(n)...))) while the other half is
generated by (o(Z(...o(n)...)), ie. we are considering two different operators. This
leads to a situation were the iteration process applied to a member of a cycle may
generate a member of another cycle as described in table 2.

Table 2. A Zo iteration applied to an element belonging to one cycle may generate an element

belonging to another cycle .
G o5 Ca Cs Cs
n 2 3115 24120 42§31 32 63 104 64 127 126 312 143 168 48 12411023 1536
6(n) 4 124 6042 9632 63 104 210 127 128 312 84C 168 480 124 224}1536 4092
Z{o{n)) 7|15 15)20 63|63 27 64 20 126 255 143 224 48 255 31 63 |1023 485
clzZ{a(n)}) 8 40 - 504 936
Z{o{Z(oin}}}) 15 15 15 63 15 143

Generates C: Cal C2 Cal C3 C4fCy C; Cq Cs C4 C; Cy C4 Cs Cz Cy C, Cs

*=shift to * * * * * *
other cycle

Cs

*

This situation makes it impossible to establish a one-to-one correspondence between a
number n to which the sequence of iterations is applied and the cycle that it will
generate. Henceforth the iteration function will be Z(o(n)) which will be denoted Zo(n)
while results included in the above cycles originating from o(Z(...c(n)...)) will be
considered as intermediate elements. This leads to an unambiguous situation which is
shown in table 3.

Table3. The Zo iteration process described in terms of invariants, loops and

intermediate elements.
I I2 I3 Lecop Is
n 2 15 20 31 63 64 126 143 48 {1023
Z{o(n)) 2 15 20 63 64 126 143 48 31 11023

Intermediate| 3 24 42 32 104 127 312 168 124 {1536
element

We have four invariants I;, I, I; and L4 and one loop L with six elements. No other
invariants or loops exist for n<10°. Each number n<10° corresponds to one of the
invariants or the loop. The distribution of results of the Zs iteration has been examined
by intervals of size 50000 as shown in table 4. The stability of this distribution is
amazing. It deserves a closer look and will help bringing us closer to answers to the
four questions posed by Ashbacher.
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Question number 3: Are there any other numbers n that generate the two cycle 2> 3?
In the framework set for this study this question will reformulated to: Are there any
other numbers than n=2 that belongs to the invariant 2?

Theorem: n=2 is the only element for which Z(c(n))=2.
Proof:

Z(x)=2 has only one solution which is x=3. Z(o(n))=2 can therefore only occur when
o(n)=3 which has the unique solution n=2.

O
Table 4. Zo iteration iteration results.

Interval Iz I3 Loop Ia

3-50000 18824 236 29757 1181
50001-100000 18255 57 30219 1469
100001-150000 17985 49 30307 1659
150001-200000 18129 27 30090 1754
200001-150000 18109 38 30102 1751
250001-300000 18319 33 29730 1918
300001-350000 18207 24 295834 1935
350001-400000 18378 18- 29622 1982
400001-450000 18279 21 29645 2055
450001-550000 18182 24 29716 2078
500001-550000 18583 18 29227 2162
550001-600000 18159 19 29651 2171
600001-650000 18586 25 29216 2163
650001-700000 18424 26 29396 2154
700001-750000 18401 20 29409 2170
750001-800000 18391 31 29423 2155
800001-850000 18348 22 29419 2211
850001-900000 18326 15 29338 2321
900001-950000 18271 24 29444 2261
950001-1000000 18517 31 29257 2195

Average 18335 38 29640 1987

Question number 2: Is there an infinite number of numbers n that generate the two
cycle 42 ¢ 20?

Conjecture: There are infinitely many numbers n which generate the invariant 20 (I5).

Support:

Although the statistics shown in table 4 only skims the surface of the “ocean of
numbers” the number of numbers generating this invariant is as stable as for the other
invariants and the loop. To this is added the fact that any number >10° will either
generate a new invariant or loop (highly unlikely) or “catch on to” one of the already
existing end results where I, will get its share as the iteration “filters through” from 10°
until it gets locked onto one of the established invariants or the loop.

O

Question number 1: Is there another cycle generated by the Zc sequence?

Discussion:
The search up to n=10° revealed no new invariants or loops. If another invariant or
loop exists it must be initiated by n>10°.
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Let N be the value of n up to which the search has been completed. For n=N+1 there
are three possibilities:

Possibility 1.
Z(o(n))<N. In this case continued iteration repeats iterations which have already been

done in the complete search up to n=N. No new loops or invariants will be found.

Possibility 2.
Z(o(n))=n. If this happens then n=N+1 is a new invariant. A necessary condition for an

invariant is therefore that

+1
112(2'(n)) = q, where q is positive integer. ¢))
If in addition no m<n exists so that
+1
%%n(—n)-l =q,, q integer, then n is invariant. 2

There are 111 potential invariant candidates for n up to 3-10° satisfying the necessary
condition (1). Only four of them n = 2, 15, 20 and 1023 satisfied condition (2). It
seems that for a given solution to (1) there is always, for n>N>1023, a solution to (2)
with m<n. This is plausible since we know [4] that o(n)=O(n'*®) for every positive &
which means that o(n) is small compared to n(n+1)~n’ for large n.

Example: The largest n<3-10° for which (1) is satisfied is n=292,409,999 with
6(292,409,999)=341145000 and 292409999 -292410000/(2-341145000)=125318571.
But m=61370000<n exists for which 61370000-61370001/(2-341145000)=5520053,
an integer, which means that n is not invariant.

Possibility 3.
Z(c(n))>N. This could lead to a new loop or invariant. Let’s suppose that a new loop

of length k>2 is created. All elements of this loop must be greater than N otherwise the
iteration sequence will fall below N and end up on a previously known invariant or
loop. A necessary condition for a loop is therefore that

Z(c(n))>n and Z(o(Z(c(m))))2n. (3)
Denoting the k™ iteration (Zo)i(n) we must finally have
(Zo)(n)= (Zo)j(n) for some k#j, interpreting (Zo)o(n)=n 4)

There isn’t much hope for all this to happen since, for large n, already Z(o(n))>n is
a scarce event and becomes scarcer as we increase n. A study of the number of
incidents where (Zo);(n)>n for n<800,000 was made. There are only 86 of them, of
these 65 occurred for n<100,000. From n=510,322 to n=800,000 there was not a
single incident.

Question number 4: No particular patterns were found.
Epilog:

In empirical studies of numbers the search for patterns and general behaviors is an
interesting and important part. In this iteration study it is amazing that all these
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numbers, where not even the sky is the limit!, after a few iterations filter down to end
up on one of three invariants or a single loop. The other amazing thing is the relative
stability of distribution between the three invariants and the loop with increasing n (see
table 4) . When (Zo)(n) drops below n it catches on to an integer which has already
been iterated and which has therefore already been classified to belong to one of the
four terminal events. This in my mind explains the relative stability. In general the end
result is obtained after only a few iterations. It is interesting to see that o(n) often
assumes the same value for values of n which are fairly close together. Here is an
example: o(n)=3024 for n=1020, 1056, 1120, 1230, 1284, 1326, 1420, 1430, 1484,
1504, 1506, 1564, 1670, 1724, 1826, 1846, 1886, 2067, 2091, 2255, 2431, 2515,
2761, 2839, 2911, 3023. I may not have brought this subject much further but I hope
to have contributed some light reading in the area of recreational mathematics.
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ERDOS-SMARANDACHE MOMENTS NUMBERS

Sabin Tabirca

Transilvania University of Brasov, Computer Science Department

The starting point of this article is represented by a recent work of Finch [2000]. Based on two
asymptotic results concerning the Erdos function, he proposed some interesting equation
concerning the moments of the Smarandache function. The aim of this note is give a bit modified
proof and to show some computation results for one of the Finch equation. We will call the
numbers obtained from computation ‘Erdos-Smarandache Moments Number’. The Erdos-

Smarandache moment number of order 1 is obtained to be the Golomb-Dickman constant.

1. INTRODUCTION

We briefly present the results used in this article. These concern the relationship between the
Smarandache and the Erdos functions and some asymptotic equations concerning them. These
are important functions in Number Theory defined as follows:

e The Smarandache function [Smarandache, 1980]is S:N* > N,

S(n) = min{k e N|k!Xn} (Vn e N *). 1)
e The Erdos functionis P: N* > N,
P(n)=min{peNlan/\pisprim}(VneN*\{l}), P()=0. )

Their main properties are:
(Va,b € N*) (a,b) = 1=8(a-b) = max{S(a),S(b)}, P(a-b) = max{P(a),P(h)}. (3)
(Va eN *) P(a) < S(a) < a and the equalities occur iif a is prim. @
An important equation between these functions was found by Erdos [1991]

o Ji=tniPo <s0)

noy® n

which was extended by Ford [1999] to

=0, ©)

'{1 =1,n| P(i) <S(z)] P e S LR NN lima, =0. (6)

n—w
Equations (5-6) are very important because create a similarity between these functions especially

for asymptotic properties. Moreover, these equations allow us to translate convergence properties
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on the Smarandache function to convergence properties on the Erdos function and vice versa. The

main important equations that have been obtained by this translation are presented in the

following.

THE AVERAGE VALUES

- ZS(:) 0(——) [Luca, 1999] 1 > P@)= O(—=—) [Tabirca, 1999] and their
n = ni-2 logn

generalizations

“ g(a+) n° n’
§P )= e ln(n)+0(ln2(n)) [Knuth and Pardo 1976]

liS"(i)=§("+1)- n +0[ n }[Finch,ZOOO]
n =

a+l In(n) In%(n)

THE HARMONIC SERIES

n 1 L 1
lim = lim = [Tabirca, 1999]
=2 8°(1) H‘”; P
THE LOG-AVERAGE YALUES
im L5 8P0) _ 5 Kastanas, 1994] um—zlns(’) = A [Finch, 1999] and their
ae g = ln] Lanaadl < Breey Ini
generalizations

In P(i) .
Iim — =A_[Shepp, 1964 lim
m,,,_zz( o ) o [Shepp, 1964]

n—o p =2

_1_2(_1111:_(1)) = A, [Finch, 2000].
i

2. THE ERDOS-SMARANDACHE MOMENT NUMBERS
From a combinatorial study of random permutation Sheep and Lloyd [1964] found the following

integral equation

z(lnP(l)) Ix"' ,exp(_x_ IP_XP_;"_V)@J@:A,,. ™

"-m nis o a

Finch [2000] started from Equation (7) and translated it from the Samrandache function.
Theorem [Finch, 2000] If a is a positive number then

hm—Z(lnS(l)J =4, (8)

noo p = Ini

Proof
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Many terms of the difference —I-Z(M) 1 Z( In P(ln are equal, therefore there will
nis\ hni n 1=2k Ini

be reduced. This difference is transformed as follows:

1 &S _1&(RPOY|_1 11| (S@Y _(IP@)Y | _
nzz:( ]ni) nZ( Ini) n 22:[( lni) (m”}’
Loy (lﬁ(_))_(w) 1y [nesO-meP@)
N |isG)>PG) Ini Ini n ;S(i>Pa) In“i
Y In“ S(i) - In* P(i) 1
OO Y0) In®i n

n the following we will present a proof for the result The Erdos harmonic series can be defined

Sgby ZL) . This is one of the important series with the Erdos function and its convergence
n22 n

is studied starting from the convergence of the Smarandache harmonic series ZZ; o Some
results concerning series with the function § are reviewed briefly in the following:
o If (x,,)n>o is an increasing sequence such that ’lll_xgx = oo, then the series ;3‘;](;—)& is
divergent. [Cojocaru, 1997]. @)
o The series Z 21 > is divergent. [Tabirca, 1998] ®)
n22
o The series Zz al = is divergent for all @>0. [Luca, 1999] ®
n>

These above results are translated to the similar properties on the Erdos function.

Theorem 1. If (x, )n>0 is an increasing sequence such that limx =0, then the series

n—rw

ZMA is divergent.
= P(x,)
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Proof The proof is obvious based on the equation P(x,)<S(x,). Therefore, the equation

Tnir "% 5 Za1 “¥a ang the divergence of the series ZL—x—"- give that the series
P(x,) S(x,) w1 S(x,)
Fei1 "% g divergent. .
n>1 P (xn)
A direct consequence of Theorem 1 is the divergence of the series Z———l— , where a,5>0

n>1 P(a n+b)

are positive numbers. This gives that is divergent and moreover that is
& ,,ZZ; P(n) é Pe(n)

divergent for all a<l1.

Theorem 2. The series Z is divergent for all a>1.

n22

Proof The proof studies two cases.

Casel.azl.
2

In this case, the proof is made by using the divergence of Z ~
n22 S (n)

Denote A={=27|S()=PG)} and B=§=27S0)>P@)} a partition of the set
{i = 1_,; } We start from the following simple transformation

_ 1 1] &t S°@i) - P°(i)
ZP"(z) ZS"(z) Z[P"(z‘) S“(i)] 250 & FOS0 a0

=2 ieB i=2 ieB

An i € Bsatisfies S°(/)— P°(i) 21 and P(i) < S(i) < n thus, (10) becomes

n 1 n 1 l n 1 1
2T g e Bl

i=2 i=2 iea M i=2
€3]
The series z ~ is divergent because the series 2 ——is divergent and
n22 P (n) n22S ( )
B I n- e—( V2+a yVmninha 1
lim l— = lim = lim =0
oo n2-a e n2‘a n—® n2-a-l .e(ﬁﬂz, )Vinnininn
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Case2.%>a>l.

The first case gives that the series Z ,1 is divergent.
n22 Pi (n)
3 a T S T N :

Based on P2?(n) > P°(n), the inequality Z — >Z : is found. Thus, the series

=2 P (1) i=2 E -

P2(i)
|

Z —— is divergent. .
nZZS (n)

The technique that has been applied to the proof of Theorem 2 can be used in the both ways.
Theorem 2 started from a property of the Smarandache function and found a property of the

Z. InS(@i)
Erdos function. Opposite, Finch [1999] found the property hmi—-h—l—l—- = A based on the
n—»o n
z":lnp(i)
Ini

similar property lim=2——— =1, where 1=0.6243299 is the Golomb-Dickman constant.

n—»w n

Obviously, many other properties can be proved using this technique. Moreover, Equations (5-6)
gives a very interesting fact - "the Smarandache and Erdos function may have the same

behavior especially on the convergence problems."”
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The starting point of this article is represented by a recent work of Finch [2000]. Based on two
asymptotic results concerning the Erdos function, he proposed some interesting equations
concerning the moments of the- Smarandache function. The aim of this note is give a bit modified
proof and to show some computation results for one of the Finch equation. We will call the
numbers obtained from computation ‘the Erdos-Smarandache Numbers’. The Erdos-

Smarandache number of order 1 is obtained to be the Golomb-Dickman constant.

1. INTRODUCTION

We briefly present the results used in this article. These concern the relationship between the
Smarandache and the Erdos functions and some asymptotic equations concerning them. The
Smarandache and Erdos functions are important functions in Number Theory defined as follows:

¢ The Smarandache function [Smarandache, 1980} is S:N* > N,

S(n) = min{k € Nk!Xn} (VneN*). (1)
e The Erdos functionis P: N*—> N,
P(n)=min{pe N|nXp A pis prim}(vn e N*\{1}), P(1) =0. @)

Their main properties are:
(Va,b eN *) (a,b) =1=>S8(a-b) = max{S(a),S(b)}, P(a-b) = max{P(a),P(b)}. (3)
(Va eN *) P(a) < S(a) < a and the equalities occur iif a is prim. “@

An important equation between these functions was found by Erdos [1991]

lim]{:=1,_n|1>(i><S(z‘)] o

&)
n—x n
which was extended by Ford [1999] to
[¥ =071 PG) < () = n-e V2= }T 087 here lima, = 0. ©)
n—wo

54



Equations (5-6) are very important because create a similarity between these functions especially
for asymptotic properties. Moreover, these equations allow us to translate convergence properties
of the Smarandache function to convergence properties on the Erdos function and vice versa. The

main important equations that have been obtained using this translation are presented in the

following.
The average values
—}:S() 0(——) [Luca, 1999], ——ZP() 0(—) [Tabirca, 1999a]

n = n =2
and their generalizations

a S(a+1) n° n®
Pe()= . +0 uth and Pardo 1976

,gz: D=0 Ty T\ iy | ot and Pando 1976]
1& o,n Cla+l) n° n’ ]
=) 8()= . +0 2000
ngz: @ a+l In(n) (lnz(n)J [Finch, 2000]
The log-average values
. 1 &I PG) . 1 & InSG)
Im—) ——==41 F 1999 lim =1 1999
mn; = A [see Finch, 1999) Mn; =4 [Finch, 1999]

and their generalizations

i L Z(lnP(z)) _ 4, [Shepp, 1964]  lim .l.z(l_nﬁ("_)) = 2, [Finch, 2000
n-® o n i=2 ]-n i
The Harmonic Series

lim Z ! =oo [Luca, 1999], [Tabirca, 1998]
- = S @ =2 P

2. THE ERDOS-SMARANDACHE NUMBERS
From a combinatorial study of random permutation Sheep and Lloyd [1964] found the following
integral equation

hmli(ln P(i))a =°j.x;* -exp(-—x— “]—e_x;ﬁ—_y)ddex =1, %)

= gy = Ini o

-X

Finch [2000] started from Equation (7) and transiated it from the Smarandache function.
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Theorem [Finch, 2000] If a is a positive integer number then

In SG) 1&(P@EY
"hﬂngz( ) »lgnwnzz( Ini ) ' ®
Proof

Many terms of the difference —Z(ln]:(l)) 1 Z(Eliﬁ)-) are equal, therefore there will
=2 1 ni=2 1

be reduced. This difference is transformed as follows:

1&(S@HY _1&(lnP@)Y
ey

n =2 n =2

_1

ey )

n
5 (msa)]“ _(lnP(i))“ Aoy In® S(i) - In® P(3)
ssippay| \ i Ini T n séerm In%i )

The general term of the last sum is superiorly bounded by
In® S(i) —In® P(i)
‘ <hlh®n
In®i
In® S(i) - n® P()| =In" S(i) ~In® P() <In" nand In®i>1 (3).

1
n

because

Therefore, the chain of inequalities is continued as follows:

1o (SOY _1¢(mPOY] 1
s(r) 5

n ;= n =2 n

In® n-)i=1,n:S@)> P() =

a
l. ]na n-n .e-(~/5+a_)\/lnn-lnlnn - ln n
n e(ﬁ+a,,)~llnn-lnlnn :

2a
= (0. We substitute

. . X
In order to prove that last right member tends to 0, we start from lim

x->© e‘

In
x=+Inn-lnlnn — o and the limit becomes hm(—rilkl,_ﬁ%_ﬂ— 0. Now, the last right
n—yawx e jo n

member is calculated as follows:

fim In“n (nn-Inlnn)® 1 1 _
prareey (Ji+a )\/lnnlnlnn nswo Jlnnlnlnn (lnlnn)“ e(JE—lm,)./lnn-lnlnn -

Therefore, the equation im — Z ( In S(l)) = lim —I-Z []n—P—(Q) holds. &
rsop 3\ Ini oo p i\ Ini
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The essence of this proof and the proof from [Finch, 2000] is given by Equation (6). But the
above proof is a bit general giving even more

. 1& lnS(i))“ 1 (InP(i))a

im(lnlmn)*-{—) | ———| ——) | ——=| |=0.

H“’( ) [ Zz:( Ini n,-; i
Definition. The Erdos-Smarandache number of order @ € N is defined by

om0 a1 5(a0)

n—+o p i=2 n—>® pn

© g-1 @ _
Equation (7) gives a formula for this number 4, = j’f—'—'-exp(—x - ISX—I,—(—y)dy]dx For
: @& ¥y

-X

a=1, we obtain that the Erdos-Smarandache number A, = lim 1 Zl—nﬂl—)— =lim 1 Z—IF—{)-(I—)

. . 9
o p = Ini o p = Ini

is in fact the Golomb-Dickman constant. Using a simple Maple computation the values of the first

20 Erdos-Smarandache numbers have been calculated with 15 exact decimals. They are presented

below.

a=] = 4,;=0.624329988543551 a=11 = A,;=0.0909016222187764
a=2 = A;=0.426695764659643 a=12 = 4,,=0.083330176072027
a=3 = X;=0.313630673224523 a=13 = 1,3=0.0769217248993612
a=4 = 1=0.243876608021201 a=14 = 1,,~0.0714279859927442
a=5 = 1s=0.197922893443075 a=15 = 1,5=0.0666664107138031
a=6 = As=0.16591855680276 a=16 = 1,,=0.0624998871487541
a=7 = A~0.142575542115497 a=17 = 1;7=0.0588234792828849
a=8 = A5=0.124890340441877 a=18 = 4,5=0.0555555331402286
a=9 = As=0.111067241922065 a=19 = 4,5=0.0526315688647356
a=10 = 1,=0.0999820620134543 a=20 = 1=0.049999954405103
3. Final Remarks

The numbers provided by Equation (7) could have many other names such as the Golomb-
Dickman generalized constants or .... Because they are implied in Equation (8), we believe that a
proper name for them is the Erdos-Smarandache numbers. We should also say that it is the Finch
major contribution in rediscovering a quite old equation and connecting it with the Smarandache

function.
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On the Pseudo-Smarandache Function

J. Sandor
Babes-Bolyai University, 3400 Cluj-Napoca, Romania

Kashihara[2] defined the Pseudo-Smarandache function Z by

m(mr+1)
Z(m)=min{ m>1:n |
2

}

Properties of this function have been studied in [1], [2] etc.

1. By answering a question by C. Ashbacher, Maohua Le proved that S(Z(n)) — Z(S(n))
changes signs infinitely often. Put

A sz () =| S(Z(m) - Z(S(s)) |

We will prove first that
liminf Asz(m) < 1 (D
n— oo
and
limsup Ag ,z(n) =+ o0 2)
n— oo
p(ptl)

Indeed, let n= , where p is an odd prime. Then it is not difficult to see that

S(n) = p and Z(n) = p. Therefore,
| Szm)-zS@) | = | S®-S@) | = | p-@-D | =1

implying (1) . We note that if the equation S(Z(n)) = Z(S(n)) has infinitely many
solutions, then clearly the lim inf in (1) is 0, otherwise is 1, since

| s@m)-zsw) | 21,
S(Z(n)) — Z(S(n)) being an integer.

p-i
Now let n = p be an odd prime. Then, since Z(p) = p-1, S(p) =p and S(p-1) < —
2
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(see [4]) we get
p-1

A= s@D-@D | =p1-S@-D2 —~ — o aspow

proving (2). Functions of type At have been studied recently by the author [5] (see also

BD.
(2n-1)2n
2. Since n | — clearly Z(n) < 2n-1 for all n.

This inequality is best possible for even n, since Z(2¥) = 2*"! — 1. We note that for odd n,
we have Z(n) <n - 1, and this is best possible for odd n, since Z(p) = p-1 for prime p. By

Z(n) 1 zak) 1
< 2 - — and =2-—
n n 2k Zk
Z(n)
we get lim sup =2. 3)
n— o o
p(pt1) p
Since Z( y=p,and — ~  —0 (p— ), it follows
2 pp+1)2
Z(n)
lim inf =0 G
oo n

For Z(Z(n)), the following can be proved. By

p(pt1)
Z(Z(__z_ )) =p-1, clearly

Z(Z(n))
lim inf =0 5)

n—o n

On the other hand, by Z(Z(n)) < 2Z(n) — 1 and (3), we have

Z(Z(n))
lim sup <4 6)

0—»0 n
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3. We now prove

liminf | Z2n)-Z(@) | =0 )
and

limsup | Z(2n)-Z(m) | =+ ®
n—aoo

Indeed, in [1] it was proved that Z(2p) = p-1 for a prime p= 1(mod4). Since Z(p) = p-1,
this proves relation (7).

On the other hand, let n = 2. Since Z(2¥) =2~ 1 and Z(2**"")=2%?_ 1, clearly
72N -z02Y=2" > wask — .
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Smarandache k-k additive relationships
Henry Ibstedt

Abstract: An empirical study of Smarandache k-k additive
relationships and related data is tabulated and analyzed. It
leads to the conclusion that the number of Smarandache 2-2
additive relations is infinite. It is also shown that Smarandache
k-k relations exist for large values of k.

We recall the definition of the Smarandache function S(n):
Definition: S(n) is the smallest integer such that S(n)! is divisible by n.
The sequence of function values starts:

1 2 3 4 5 6 1 8 9 10
Sm: 0 2 3 4 5 3 1 4 6

A table of values of S(n) up to n=4800 is found in Vol. 2-3 of the Smarandache
Function Journal [1].

Definition: 4 sequence of function values S(n), S(n+1)+ ... +S(n+2k-1) satisfies a k-k
additive relationship if
S(n)+Sn+1)+ ...+S(n+k-1)=S(n+k)+S(n+k+1)+ ... +S(n+2k-1)

or
2k-1

k-1
ZOS(n+j) = ZkS(n+j)

A general definition of Smarandache p-q relationships is given by M. Bencze in Vol.
11 of the Smarandache Notions Journal [2]. Bencze gives the following examples of
Smarandache 2-2 additive relationships: S(n)+S(n+1)=S(n+2)+S(n+3)
S(6)+S(7)=S(8)+S(9), 3+7=4+6;

S(7)+S(8)=S(9)+S(10), 7+4=6+5;

S(28)+S(29)=S(30)+S(31), 7+29=5+31.

He asks for others and questions whether there is a finite or infinite number of them.
Actually the fourth one is quite far off:

S(114)+S(115)=S(116)+S(117), 19+23=29+13;

The fifth one is even further away:

S(1720)+S(1721)=S(1722)+S(1723), 43+1721=41+1723.

It is interesting to note that this solution is composed to two pairs of prime twins
(1721,1723) and (43,41), - one ascending and one descending pair. This is also the
case with the third solution found by Bencze.

One example of a Smarandache 3-3 additive relationship is given in the above
mentioned article:

S(5)+S(6)+S(7)=S(8)+S(9)+S(10), 5+3+7=4+6+5.

Also in this case the next solution is far away:

S(5182)+S(5183)+S(5184)= S(5185)+S(5186)+5(5187), 2591 +73+9=614+2593+19.
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To throw some light on these types of relationships an online program for calculation
of S(n) [3] was used to tabulate Smarandache k-k additive relationships. Initially the
following search limits were set: n<10; 2<k<26. For k=2 the search was extended to
n<10°. The number of solutions m found in each case is given in table 1 and is
displayed graphically in diagram 1 for 3<k<26. The numerical results for k<6 are
presented in tables 4 -8.

Table 1. The number m of Smarandache k-k additive solutions for n<10’.

k 2 3 4 5 € 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2¢
m 158 43 20 8 81 5 8 66 5 2 5 7 2 4 8 1 3 4 1 4 € 2 3 2

40 |
35 H

25
20 H:
15 4
10 __;‘_1 -

0 L U.‘ ‘EL‘:J;D; ”,‘:"DYD¢='%D:'1:U,[LD~. K
2 & 8 &

(32 w0 ~ (]

1 [
13 [

15
17

Diagram 1. The number m of Smarandache k-k additive relationships for n<10’ for 3<k<26.

The first surprising observation - at least to the author of these lines - is that the
number of solutions does not drop off radically as we increase k. In fact there are as
many 23-23 additive relationships as there are have 10-10 additive relationships and
more than the number of 8-8 relations in the search area n<10’. The explanation
obviously lies in the distribution of the Smarandache function values, which up
n=32000 is displayed in numerical form on page 56 of the Smarandache Function
Journal, vol. 2-3 [1]. This study has been extended to n<10’. The result is shown in
table 2 and graphically displayed in diagram 2 where the number of values z of S(n) in
the intervals 500000y+1<S(n)<500000(y+1) is represented for each interval
500000x+1<n<500000(x+1) for y=0,1,2,...,19 and x=0,1,2,...,19.The fact that S(p)=p
for p prime manifests itself in the line of isolated bars sticking up along the diagonal of
the base of the diagram. The next line, which has a gradient = 0.5 ,corresponds to the
fact that S(2p)=p. Of course, also the blank squares in the base of the diagram would
be filled for n sufficiently large. For the most part, however, the values of S(n) are
small compared to n. This corresponds to the large wall running at the back of the
diagram. A certain value of S(n) may be repeated a great many times in a given
interval. For n<10’ 82% of all values of n correspond to values of S(n) which are
smaller than 500000. It is the occurrence of a great number of values of S(n) which
are small compared to n that facilitates the occurrence of equal sums of function
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values when sequences of consecutive values of n are considered. If this argument is as
important as I think it is then chances are good that it might be possible to find, say, a
Smarandache 50-50 additive relationship. I tried it - there are five of them, see table 9.
Of the 158 solutions to the 2-2 additive relationships 22 are composed of pairs of
prime twins. These are marked by * in table 3. Of course there must be one ascending
and one descending pair, as in

9369317+199=9369319+197
A closer look at the 2-2 additive relationships reveals that only the first two contain
composite numbers.

Question 1: For a given prime twin pair (p,p+2) what are the chances that p+1 has a
prime factor q # 2 such that q+2 is a factor of p-1 or g-2 a factor of p+3?

Question 2: What percentage of such prime twin pairs satisfy the Smarandache 2-2
additive relationship?

Question 3: Are all the Smarandache 2-2 additive relationships for n>7 entirely
composed of primes?

To elucidate these questions a bit further this empirical study was extended in the
following directions.

1. All Smarandache 2-2 additive relations up to 10° were calculated. There are 481 of
which 65 are formed by pairs of prime twins.

2. All Smarandache function values involved in these 2-2 additive relationships for
7<n<10® were prime tested. They are all primes.

3. An analysis of how many of the Smarandache function values for n<10°® are primes,
even composite numbers or odd composite numbers respectively was carried out.

The results of this extended search are summarized by intervals in table 3 from which
we can make the following observations. The number of composite values of S(n),
even as well as odd, are relatively few and decreasing. In the last interval (table 3)
there are only 1996 odd composite values. Even so we know that there are infinitely
many composite values of S(n), examples S(p>)=2p, S(p°)=3p for infinitely may primes
p- Nevertheless the scarcity of composite values of S(n) explains why all the 2-2
additive relations examined for n>7 are composite.

The number of 2-2 additive relations is of the order of 0.1 % of the number of prime
twins. The 2-2 additive relations formed by pairs of prime twins is about 13.5% of the
prime twins in the respective intervals.

Although one has to remember that we are still only “surfing on the ocean of numbers”
the following conjecture seems safe to make:

Conjecture: The number of Smarandache 2-2 additive relationships is infinite.

What about k>2? Do k-k additive relations exist for all k? If not - which is the largest
possible value of k? When they exist, is the number of them infinite or not?
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y/x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ie 19 20
20 31001
19 31089

18 31370

17 31342

16 31516

15 31613

14 31891

13 31908

12 32049

11 32287

10 32565 16271 16294
9 32802 16437 16365

8 32996 16567 16429

7 33334 16761 16573 11153 11150
[ 33744 16921 16823 11328 11250 11166

5 34139 17148 16991 11470 11350 11319 8588 8560 8497 8494
4 34778 17453 17325 11641 11604 11533 8730 8723 8683 15614 7014 6931 12788 12714
k] 35657 17971 17686 12033 11852 20793 8950 16060 16066 13102 13119 18125 11059 15515 15488 13592 13483
2 36960 18700 30791 21798 28891 22955 28086 23553 27681 23970 27206 24323 26992 24500 26864 24601 26650 24762 26716
1 499999 463040 445643 434431 426092 419679 414225 409741 405704 402172 399158 396323 393706 391352 369193 387190 385253 383470 381848 380148

Sum
31001
31089
31370
31342
31516
31613
31891
31908
32049
32287
65130,
65604
65992
88971

101232

136556

185531

270551

495999

8208367

Table 2. The number of values z of S(n) in the intervals 500000y+1<S(n)<500000(y+1) is represented for each interval 500000x+1<n<500000(x+1) for y=0,1,2,...,19

and x=0,1,2,...,19.
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Distribution of S{n)
1
1
(it
14]/’/ L4
z 1 /// //’/ +1
1 LA A1
500000 ! /ﬂ’/m’//
450000 LU A
AT LUAT T
400000 //’ //’ A
1 /,/ ///’//
350000 AT L /// §*
300000 AT
1 y // //
250000 /,/
d 2
200000
A 5
150000 8
100000 11 y
50000 14
0 17
- - =
Mo g T 20
- -~ 9 P
X -—
Diagram 2. The distribution of S(n) for n<10".
Table 3. Comparison between 2-2 additive relations and other relevant data.

Interval # of § of 2-2 # formed # of S. # of S. # of S.
prime additive by pairs function function odd
twins relations of twins primes even composite

values values

n<107 58980 158 22 9932747 53037 8215

107 <n<2-107 48427 59 9 9957779 38023 4198
2107 <n<3-107 45485 37 4 9963674 32922 3404
3.107 <n<4-107 43861 42 4 9967080 29960 2960
4107 <n<5107 42348 40 S 9969366 27962 28672
5.107 <n<é-107 41547 30 2 9971043 26473 2484
6-107 <ng7-107 40908 28 4 9972374 25303 2323
710 <n<8.107 39984 41 7 9973482 24327 2191
8.107 <n< 9107 39640 20 4 9974414 23521 2065
9.107 <n<108 39222 26 4 9975179 22825 1396
Total 440402 481 65 99657140 310355 999399999
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Tabie 4. Smarandache function: 2-2 additive quadruplets for n<10’

# S(n) S(n+l) S (n+2) 8(n+3)
1 6 3 7 4 6
2 7 7 4 6 5

3 28 7 29 H 31
4 114 19 23 29 13
5 1720 43 1721 41 1723
6 3538 61 3539 59 3541
7 4313 227 719 863 83
8 8474 223 113 163 173
9 10300 103 10301 101 10303
10 13052 251 229 107 373
11 15417 571 583 907 257
12 15688 53 541 523 71
13 19902 107 1531 311 1327
14 22194 137 183 179 151
15 22503 5717 97 643 31
16 24822 197 241 107 331
17 26413 433 281 587 127
1 56349 2087 23 1523 587
19 70964 157 83 137 103
20 75601 173 367 79 461
21 78610 1123 6047 6551 619
22 86505 79 167 157 89
23 104309 104309 61 104311 59
24 107083 6299 1409 539 7649
25 108016 157 1187 353 991
26 108845 1979 6047 1223 6803
27 125411 877 1493 1511 859
28 130254 1277 239 1163 353
29 133455 41 439 421 59
30 147963 43 521 293 271
31 171794 1753 881 1481 1153
32 187369 71 457 191 337
33 1895865 1223 317 59 1481
34 191289 9109 47 8317 839
35 198202 877 131 199 809
36 232086 823 151 433 541
37 247337 247337 151 247339 149
38 269124 547 2153 941 1759
39 286080 149 547 457 239
40 323405 911 113 983 41
41 330011 1579 103 631 1051
42 342149 79 2281 109 2251
43 403622 6959 151 3881 3229
44 407164 743 673 859 557
45 421474 2533 733 103 3169
46 427159 25127 181 20341 4967
47 479026 193 479027 191 479029
48 497809 257 743 227 773
49 526879 12253 89 10331 2011
50 539561 271 4733 1867 3137
51 564029 179 2089 1009 1259
52 598517 449 811 109 1151
53 603597 1163 3391 4051 503
54 604148 2069 2213 281 4001
55 604901 433 557 79 911
56 618029 618028 109 618031 107
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Table 4. ctd

# n S(n) S(n+l) 8 (n+2) S (n+3)
57 662383 4219 41399 44159 1459
58 665574 53 337 307 83
59 675550 229 675551 227 675553
60 681088 313 681089 311 681091
61 722750 59 2339 491 1907
62 753505 4073 397 2887 1583
63 766172 1583 181 151 1613
64 771457 2137 283 151 2269
65 867894 1831 181 691 1321
66 922129 797 101 41 857
67 942669 1151 881 1553 479
68 954087 10258 499 157 10601
69 993299 2663 43 2273 433
70 996091 2269 277 163 2383
71 1008988 103 1008989 101 1008991
72 1114271 1114271 73 1114273 71
73 1184610 5641 4099 109 9631
74 1198734 823 5101 139 5791
75 1316412 239 1039 1129 149
76 1343493 2927 3517 5717 727
77 1353260 953 4957 4481 1429
78 1362471 53 2333 1289 1097
79 1382345 14551 53 14251 353
80 1397236 2143 2447 3947 643
81 1457061 1049 331 1321 59
82 1457181 359 233 239 353
83 1570143 2347 353 109 2591
84 1625615 7561 71 439 7193
85 1811933 24821 2341 19073 8089
86 1850825 733 827 1489 71
87 1885822 1471 479 1637 313
88 1920649 2837 359 1283 1913
89 2134118 113 54721 53353 1481
90 2147188 23339 127 3767 19699
91 2223285 269 367 563 73
92 2300608 349 2300609 347 2300611
93 2316257 191 593 137 647
94 2507609 2879 11941 14009 811
95 2575700 599 541 311 829
96 2683547 4421 463 4603 281
97 2721286 1373 2131 1597 1507
98 2774925 4111 487 151 4447
9% 2882422 1321 307 1447 181
100 2965675 379 15131 223 15287
101 3053808 7069 3803 9851 1021
102 3058648 2551 971 2351 1171
103 3063696 769 257 887 139
104 3112450 5659 1913 179 7393
105 3192189 1063 317 1217 163
106 3369359 15527 139 14843 823
107 3523174 3001 2659 5437 223
108 3532407 197 293 401 89
109 3575518 193 3575519 191 3575521
110 3669327 3673 59 3559 173
111 3682461 643 7109 7321 431
112 3847270 61 3847271 59 3847273
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Table 4. ctd

# n 8(n) S (n+l) S (n+2) S (n+3)
113 3946899 131 1361 311 1181
114 3996604 13687 2087 223 15551
115 3986924 1327 149 617 859
116 4003753 2351 271 2243 379
117 4083279 421 1187 199 1409
118 4089287 4089287 241 4089289 238
119 4176254 1087 2003 79 3011
120 4231135 22871 1453 13683 10631
121 4319374 4243 6911 107 11047
122 4330089 3228 761 3313 677
123 4407890 241 3701 3761 181
124 4460749 1021 2549 211 3359
125 4466394 773 2063 1223 1613
126 4497910 2017 359 349 2027
127 4527424 108 631 241 499
128 4964380 619 4964381 617 4964383
129 5041464 2659 641 239 3061
130 5223823 1387 2003 109 3881
131 5225875 431 1321 433 1318
132 5567370 1229 3739 3877 1081
133 5808409 439 20029 13171 7297
134 6086323 11549 6703 11593 6659
135 61439140 2347 8747 4951 6143
136 6278729 1373 13 967 479
137 6598417 277 2389 1747 919
138 6611721 24763 2333 859 26237
139 6662125 239 45631 8017 37853
140 7019712 1741 25903 7297 20347
141 7083088 9419 12671 11243 10847
142 7208864 43 797 661 179
143 7450168 2731 7450169 2729 7450171
144 7535995 14633 6301 13291 7643
145 7699506 179 3121 1867 1433
146 7717006 151 7717007 149 7717009
147 7951133 274177 1249 26953 248473
148 8161388 10253 443 9833 863
149 8246970 2131 3929 5273 787
150 8406659 227207 140111 365507 1811
151 8822215 1663 2069 2903 829
152 8840170 349 8840171 347 8840173
153 9050492 3881 6719 137 10463
154 9369317 9369317 199 9369319 197
155 9558822 61 6203 5717 547
156 9616088 2027 4201 107 6121
157 9739368 103 4877 4253 733
158 9944053 2917 17569 20089 397
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Table 5. Smarandache function: 3-3 additive sextets for n<10’

E n S(n) S(n+l) S(n+2) S(n+3) S(n+4) S{n+5)
1 5 5 3 7 4 6 5

2 5182 2591 73 9 61 2593 19

3 9855 73 i1 9857 53 9859 23

4 10428 79 10429 149 61 163 10433
5 28373 1669 4729 227 3547 1051 2027
6 32589 71 3259 109 97 2963 379
7 83323 859 563 101 683 809 31

8 106488 29 1283 463 461 337 977
9 113409 12601 1031 127 727 4931 8101
10 146572 36643 20939 479 41 9161 48859
11 257474 347 3433 1091 263 3301 1307
12 294742 569 1223 12281 233 8669 5171
i3 448137 101 224069 448139 97 448141 224071
14 453250 37 14621 353 1613 13331 67
15 465447 1373 797 6947 107 59 8951
16 831096 97 4643 21871 617 8311 17683
17 1164960 809 1021 1669 673 1283 1543
18 1279039 | 1279039 571 691 347 1279043 911
19 1348296 56179 2447 499 49937 139 9049
20 1428620 1171 2393 2389 1607 3307 1039
21 1544770 863 1877 193 1021 1433 479
22 1680357 71 840179 | 1680359 67 1680361 | 840181
23 1917568 211 1917569 1559 1917571 1049 719
24 2466880 593 2466881 4153 2466883 4637 107
25 2475373 6173 3041 41 1181 6857 1217
26 3199719 15919 479 2297 13007 5087 601
27 3618482 1973 2333 419 311 593 3821
28 4217047 557 277 499 193 317 823
29 4239054 1391 11941 863 4993 3359 4643
30 5022920 17939 1483 613 1229 18199 607
31 5154719 131 10739 113 3109 4813 3061
32 5488091 2221 971 1307 1987 2423 89
33 6093975 421 108821 271 92333 7351 9829
34 6597860 7019 9439 11657 23819 53 4243
35 6667100 29 1091 11149 659 1877 9733
36 6964515 2243 1999 1597 181 4549 1109
37 7092334 82469 45757 1063 3061 1801 124427
38 7394240 3301 2087 883 509 139 5623
39 7912020 809 35801 15761 16381 7219 28771
40 8741057 1321 653 9967 547 6607 4787
41 8823577 | 180073 259517 23159 441179 257 21313
42 9171411 2179 19599 479 1277 5717 2803
43 9975698 947 173 14251 3677 523 11171
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Table 6. Smarandache function: 4-4 additive octets for n<10’

# n S(n) S(n+l) | S(n+2) | S(n+3) ]| S(n+4) | S(n+5) | S(n+6) { S(n+7)
1 23 23 4 10 13 9 7 29 5

2 643 643 23 43 19 647 S 59 13

3 10469 1487 347 359 137 89 127 2083 31

4 44418 673 1033 2221 67 167 1433 617 1777

5 163329 | 54443 | 16333 | 23333 349 701 81667 | 10889 1201

6 279577 | 2795771 10753 2273 1997 3539 2741 | 279583 8737

7 323294 1483 3079 10103 1913 5987 10429 61 101

8 368680 709 2903 1429 1699 1511 2731 2221 277

9 857434 8089 769 71453 353 11587 2887 233 65957
10 1545493]|1545493| 1669 359 3167 389 4519 ]1545498] 281
11 2458284 204857 | 28921 | 53441 | 21011 467 2338 81943 | 223481
12 3546232 19273 |3546233| 3863 151 1609 16649 5023 |3546239
13 3883322] 8707 3709 12289 } 155333 2287 32633 1291 143827
14 4945200f 317 3299 9851 139 673 5717 6197 1019
15 5219814 1259 2411 5483 4339 2003 241 617 10631
16 6055151} 128833 1249 | 465781 | 432511 | 14951 1559 2671 1009183
17 6572015} 3137 461 31147 523. 6277 157 24251 4583
18 7096751}7096751| 223 457 506911 ] 473117 § 30071 }7096757| 4397
13 7217695} 4021 4799 2131 }360884S 191 491 10267 [3608851
20 7530545} 5953 383 175129 | 6947 547 150611 | 34703 2551

Table 7. Smarandache function: 5-5 additive relationships for n<10’

[ n S(n+l) | S(n+l1) S(n) S (n+l) | S(n+2) | S(n+3) | S(n+4d) | S(n+5) | S(n+6) | S(n+7)
1 13 13 7 5 [ 17 6 18 5 7 11

2 570 19 571 13 191 41 23 8 577 34 193
3 1230 41 1231 11 137 617 19 103 1237 619 59

4 | 392152 | 439019 | 392153 ] 9337 733 73 43573 | 15083 | 382159 43 463
5 11984525 487 992263 | 2371 47 1091 797 701 53 2441 992267
6 [4730276] 5303 54371 | 17783 { 36109 | 39419 3011 2819 6653 5351 135151
7 ]5798373) 8087 499 2339 2677 2417 8839 138 587 2927 3527
8 [5838665] 7253 7103 227 132697 107 4457 9463 17377 | 37189 | 78901

Table 8. Smarandache function: 6-6 additive relationships for n<10’

# n S(n) S(n+l) |8(n+2) | S(n+3) | S(n+4) |S(n+5) ] S (n+6) {S(n+7) | S(n+8) [S(n+9) | S(n+10) |S(n+ll)
1 14 7 5 6 17 6 19 S 7 11 23 4 10

2 158 79 53 8 23 9 163 41 11 83 167 7 26

3] 20873 | 20873 71 167 307 6959 73 20873 29 157 197 6961 227
4 | 21633 7211 373 4327 601 281 349 7213 541 67 3667 941 773
5 103515 103 3697 | 1697 71 7963 647 3137 271 643 8627 101 1399
6 ‘ 132899 10223 443 383 863 | 14767 449 1399 { 1303 | 4583 223 6329 13291
7 | 368177 661 61363} 353 449 3719 | 9689 § 1301 46 73637 34 107 1108
8 |5559373]5559373] 1447 583 | 15107} 3253 643 3323 | 1183 (10837} 293 |5559383] 5387
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Table 9. Smarandache function 50-50 additive relations

n=1876 n=16539 n=58631 n=109606 n=2385965

S(n) /5(n+51) 67 107 149 313 58631 101 7829 1523 1087 7823
S(n+1) /S (n+52) 1877 47 827 79 349 61 2549 2069 36151 431
S(n+2) /S (n+53) 313 241 139 353 3449 631 4567 54829 | 140351 1091
S(n+3) /S (n+54) 1879 643 919 61 1543 863 |109609 3323 11471 70177
S(n+4) /S (n+55) 47 193 233 5531 1303 97 113 5483 795323 1093
S(n+5) /S (n+56) 19 1931 47 8297 137 9781 641 109661 601 23
S(n+6) /S (n+57) 941 23 1103 3319 307 58687 409 373 1213 216911
S(n+7) /S (n+58) 269 1933 8273 461 337 131 2237 109663 347 1193011
S (n+8) /S (n+59) 157 967 16547 2371 8377 6521 | 18269 149 8431 1151
S (n+9) /S (n+60) 29 43 197 193 733 5869 1993 2437 51869 2953
S(n+10) /S (n+61) 41 22 67 503 1777 3089 31 54833 1097 95441
S{n+11) /S (n+62) 37 149 331 83 269 73 599 6451 298247 1867
S({n+12) /S(n+63) 59 19 613 1277 347 58693 | 2383 37 6997 7927
S(n+13)/S(n+64) | 1889 277 2069 2767 181 29347 | 109619 15667 56809 596507
S(n+14) /S (n+65) 9 97 16553 16603 317 43 29 997 2385979 795343
5(n+15) /S (n+66) 61 647 89 593 71 29 109621 263 119299 887
S(n+16) /S (n+67) 43 971 43 41 173 743 929 13709 20393 2386031
S(n+17/S (n+68) 631 67 4139 38 7331 1087 | 36541 109673 1697 4519
S (n+18) /S (n+69) 947 12 5519 16607 263 58699 193 677 2385983 6329
S(n+19) /S (n+70) 379 389 487 173 23 587 877 107 43 1301
S(n+20) /S (n+71) 79 139 571 977 659 1151 151 3917 68171 3119
S (n+21) /S (n+72) 271 59 23 151 43 599 15661 36559 2657 14549
$(n+22) /S(n+73) 73 487 16561 113 21 1249 | 27407 61 795329 30203
S{n+23) /S {n+74) 211 1949 26 4153 | 29327 1223 937 1637 257 397673
S(n+24) /S {n+75) 19 13 5521 449 11731 199 577 457 2385989 4051
S(n+25) /S (n+76) | 1901 1951 101 71 47 197 2963 59 8837 59651
S(n+26) /S (n+77) 317 61 3313 3323 | 58657 593 571 317 2385991 113621
S(n+27) /S (n+78) 173 31 251 67 211 1129 6449 1741 311 1193021
S(n+28)/S(n+79) 17 977 16567 191 19553 8387 191 1613 7433 9431
S(n+29) /S (n+80) 127 23 109 1187 419 103 7309 21937 563 22093
S(n+30) /S (n+81) 953 163 263 16619 | 58661 58711 | 27409 181 113 477209
S{n+31)/5(n+82) | 1907 103 1657 277 3259 179 9967 251 198833 91771
S(n+32) /S (n+83) 53 89 227 1511 5333 19571 | 6091 13711 457 795349
S(n+33)/5(n+84) 83 653 1381 8311 7333 947 1109639 36563 2693 2663
S{n+34) /S (n+85) 191 14 16573 1847 3911 11743 | 2741 1567 313 50767
S (n+35) /S (n+86) 14 53 8287 1039 | 29333 233 227 479 1193 15907
S{n+36) /5 (n+87) 239 109 17 19 34 827 4217 277 89 2386051
S(n+37)/5(n+88) | 1913 151 37 163 4889 157 1321 2551 8461 35089
S{n+38) /S(n+89) 29 491 137 1279 4513 46 9137 4219 | 2386003 265117
S(n+39) /5 (n+90) 383 131 307 4157 5867 367 21929 103 307 108457
S (n+40) /S (n+91) 479 983 281 241 53 4517 751 857 2179 9739
S(n+41) /S(n+92) 71 281 829 1663 193 9787 131 15671 251 2687
S(n+42) /S (n+93) 137 41 5527 16631 | 2551 8389 89 389 3463 2386057
S (n+43) /S (n+94) 101 179 8291 11 127 277 199 673 1069 62791
S{n+44)/S(n+95) 8 197 103 16633 | 2347 29 43 1097 | 2386009 317

S (n+45) /S (n+96) 113 73 691 8317 | 14669 29363 | 2333 239 199 2251
S{n+46) /S (n+97) 62 29 107 1109 | 19559 58727 347 54851 | 795337 2386061
5(n+47) /S (n+98) 641 1973 8293 4159 | 29339 2447 | 36551 9973 596503 653
S(n+48) /S (n+99) 37 47 97 131 58679 281 503 653 340859 2386063
S(n+49) /S (n+100) 11 79 29 59 163 839 241 593 727 757

Sum 50307 20307 | 154521 154521 | 457399 457399 | 705120 705120 f 18703984 18703984
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Appendix to article on
Smarandache k-k additive relationships

Henry Ibstedt

The numerical material which was produced in relation to the above study was considered too much to
include in the article because the author did not want to distract readers from the essential parts of the
study. At the request of ARP the material not included in the article has been edited in the tables
below so that the material of this study is complete.

Table 1. Smarandache function 7-7 additive relations

#1 #2 #3 #4 45 #6 #7 #8 #9 #10 #11
n 13 | 210 {47760|48594[60943| 103305 | 163823 | 252061 | 349033 | 3280590 | 5364719
S(n) 13 7 189 | 89 |60943 97 281 173 8513 36451 | 5364719
S(n+1) 7 211 | 6823 | 9719 | 293 157 3413 126031 233 3280591 | 7451
S (n+2) 5 53 | 167 {12149] 239 | 103307 6553 4001 23269 1723 114143
S(n+3) 6 71 61 | 167 | 983 8609 6301 7877 1229 ] 1093531 | 243851
S{n+4) 17 | 107 |11941{ 94 | 1033 103 167 4583 26849 30949 457
S (n+5) 6 43 | 233 |2113]1693| 10331 5851 977 19391 | 656119 | 78893
S(n+6) 19 9 419 | 12 | 8707 883 419 569 349039 857 214589
Sum 73 | 501 [19843|24343|73891| 123487 | 22985 | 144211 | 428523 | 5100221 | 6024103
S(n+7) 5 31 ] 1291 | 131 | 53 587 127 53 4363 172663 | 47059
S(n+8) 109 | 853 | 1279 1847 14759 947 1151 1511 | 1640299 | 5689
S{n+9) 11 73 ]15923] 953 | 401 257 20479 277 2861 173 4441
S{n+10) | 23 11 § 281 |- 419 {60953| 20663 563 3037 349043 349 596081
S(n+11) 4 17 67 | 9721 |10159{ 1123 677 389 59 5827 443
S(n+12) | 10 37 | 1327|8101 167 | 34439 151 13267 69809 307 5364731
S{n+13) | 13 | 223 | 101 | 3739| 311 | 51659 41 126037 877 3280603 | 5659
Sum 73 | 501 |19843[24343]73891| 123487 | 22985 | 144211 | 428523 | 5100221 | 6024103
Table 2. Smarandache 8-8 additive relations = Table 3. Smarandache 9-9 additive relations
#1 | #2 | 3 #4 #5 #1 | #2 | #3 #4 #5 #6 #7 #8
n 628 | 1490 {80175[1569560|6285978 n 111 | 156 | 411 {41650 | 60179 | 79317 | 633483 |7310358
S{n) | 157 | 149 | 1069 | 39238 | 1973 S (n! 37 | 13 | 137 | 17 | 8597 | 1259 | 1193 397
S(n+l) { 37 | 71 |s011] 2411 313 S(a+l) | 7 | 157 ) 103 {41651 59 | 39659158371 21313
S(n+2) | 7 | 373 [80177{ 19141 |314299{]s(n+2) {113 ]| 79 | 59 89 | 5471 | 79319 67 1021
S(n+3) | 631 {1493| 83 2441 1811 S(n+3) { 19 | 53 | 23 | 1811 {30091 661 | 15083 [2436787
S(n+4) | 79 | 83 | 197 | 14533 | 108379 ]| s(n+4; | 23 8 83 | 353 | 743 | 7211 | 633487 59921
S(n+5) | 211 | 23 | 211 | 6679 |571453 || stn+5y | 29 | 23 | 13 | 2777 | 7523 | 2333 137 48413
S(n+6j § 317 | 17 | 151 229 65479 || S(n+6) | 13 9 | 139 | 127 {12037] 193 9181 | 32063
S(n+7) | 127 | 499 { 853 | 18041 | 17707 || S(n+7) | 59 | 163 | 19 | 541 | 1433 | 2833 443 5689
Sum | 15662708 |87752] 102714 |1081414) [ s(n+8) | 17 | 41 | 419 ] 131 | 433 167 | 15451 311
S(n+8) | 53 | 107 | 443 21 448999 Sum | 317 | 546 | 995 | 47497 | 66387 | 133635 833413 [2605915
Sin+9) | 14 |1499 257 | 1423 6781 S(n+9) | 5 11 7 | 41659 | 367 113 | 17597 | 3547
S(n+103f 29 | 15 | 79 463 953 S(n+10)| 22 | 83 | 421 | 2083 | 20063 | 3449 | 90499 | 17573
S(n+1l)| 71 | 79 [40093| 82609 | 103049 | |s(n+11)| 61 | 167 | 211 { 1543 | 463 67 4339 | 664579
S(n+12)] 8 | 751 |26729]| 4967 |209533||s(n+12)} 41 7 47 | 563 | 2617 | 853 269 3637
s(n+13)| 641 | 167 |20047| 2389 | 12497 ||s(n+13)]| 31 | 26 | 53 | 683 19 7933 | 79187 | 82139
S(n+14)| 107 | 47 89 1873 269 S(n+14y| 15 | 17 | 17 31 | 8599 | 1619 | 633497 {1827593
S(n+15)| 643 | 43 15 8969 |299333]|s(n+15)] 7 19 | 71 | 641 |30097| 601 5557 4903
Sum | 1566)2708 |87752| 102714 {1081414]) |s(n+16)| 127 | 43 | 61 | 251 | 4013 | 79333 ] 2287 1693
S(n+17)f 8 | 173|107 | 43 149 | 39667 | 181 251
Sum | 317 | 546 | 995 | 47497 | 66387 | 133635 833413 (2605915
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Table 4. Smarandache 10-10 additive relations

Table 5. Smarandache 11-11 additive relations

74

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5
n 23564 | 44237 | 45202 | 245301 | 282215 | 545002 n 1402 | 25102 | 55919 | 84274 |2335403
5(n) 137 1427 233 11681 | 56443 719 s(n) 701 163 281 1453 127
S{n+l) { 1571 101 2659 122651 | 1069 32059 S(n+l1) 61 1931 233 3371 10243
S{n+2) | 11783 83 3767 193 1277 15139 S(n+2) 13 523 55921 2341 }467081
S(n+3) | 23567 79 9041 3407 1933 | 1090011} S(n+3) 281 5021 27961 1187 |1167703
S(n+4) 491 14747 3229 691 151 3539 S {n+4} 37 12553 2663 42139 | 778469
S(n+5) 37 2011 5023 ]122653 137 181669 S {n+5) 67 8369 41 2161 | 145963
S(n+6) | 2357 293 5651 81769 | 282221 | 1481 S(n+6) 11 6277 2237 43 8081
5(n+7) 97 1229 853 8761 15673 1423 S(n+7) | 1409 211 239 311 337
S (n+8) 83 8849 137 12911 769 491 S (n+8) 47 31 55927 1277 1063
S{(n+9) { 2143 22123 1559 37 569 17581 S (n+9) 83 25111 6991 947 583853
Sum 22266 ] 50942 | 32152 | 364754 | 360248 | 363102 ] |S(n+10)| 353 73 181 1109 4349
S{n+10)| 3929 43 127 769 71 223 Sum 3063 60263 [ 152675 | 56339 |3167269
S(n+ll) 41 5531 2153 3833 106l 211 S(n+1l){ 157 761 47 1873 (1167707
S(n+12)} 421 44249 47 281 25657 | 272507 | {S{n+12)| 101 433 55931 67 467083
S{n+13){ 271 59 9043 709 811 5737 S(n+13)| 283 5023 79 12041 73
S{n+14)| 11789 137 157 163 282229} 22709 | [S(n+14) 59 23 55933 439 333631
S{n+15) 73 37 439 20443 167 49547 S{n+15)| 109 25117 | 27967 2719 |1167709%
S{n+l6)| 131 149 983 245317 | 10453 3733 S(n+16)| 709 661 113 8429 1291
S{n+17)} 23581 109 15073 5333 35279 1307 S(n+17) 43 2791 23 28097 5077
S{n+18)| 907 167 19 81773 1753 229 S(n+18) 71 157 131 1621 19301
S{n+19)| 1123 461 4111 6133 2767 6899 S(n+l9) 29 25121 9323 97 377%
Sum 42266 | 50942 | 32152 | 364754 | 360248 } 363102 | |s(n+20) 79 79 331 223 1217
S(n+21)] 1423 97 2797 733 401
Sum 3063 60263 | 152675 | 56339 |3167269




Table 6. Smarandache 12-12 additive Table 7. Smarandache 13-13 additive relations
relations

#1 #2 #1 #2 #3 #4 #5
n 19971 218296 n 1578 3314 29672 230926 623110
S(n) 317 2098 S (n) 263 1657 3709 i03 62311
Si{n+l) 49963 12841 S(n+l1) 1579 17 157 7963 3163
S{n+2) 19973 36383 S(n+2) 79 829 401 283 3709
S{n+3) 3328 521 S (n+3) 31 107 1187 230929 337
S(n+4) 47 59 S (n+4) 113 79 2473 3299 311557
S(n+5) 227 72767 5i{n+5) 1583 3319 503 2851 227
S(n+6) 6659 503 S{n+6) 11 83 71 4441 521
S{n+7) 1427 1097 S{n+7) 317 41 761 230933 1531
S{n+8} 185979 379 S(n+8) 61 151 53 3499 149
S{n+9} 37 43661 S({n+9) 46 3323 443 46187 89017
S(n+10) 53 9923 S (n+10) 397 277 87 28867 7789
S(n+ll) 103 1373 S{n+l11) 227 19 29683 1571 3919
Sum 57144 181606 S (n+12} 53 1663 181 115469 311561
S(n+12) 6661 54577 Sum 4760 11565 39719 676395 795791
S (n+13) 1249 2399 S(n+13) 43 1109 1979 230939 21487
S(n+14) 571 383 S{n+14) 199 13 14843 1283 911
S (n+15) 3331 5077 S{n+15) 59 3329 4241 230941 997
S(n+l6) 79 941 S(n+16) 797 37 1237 115471 947
5(n+l17) 263 191 S(n+l7) 29 3331 2699 3347 207709
S{n+18) 2221 6421 S(n+18) 19 17 2969 1031 97
S(n+19) 1989 929 S(n+19) 1587 101 3299 19 47933
S$(n+20) 19391 113 S (n+20}) 47 1667 571 631 20771
S(n+21) 17 223 Sum 41 29 1291 1471 20101
S(n+22) 19993 109159 S{n+21) i0 139 101 57737 155783
S(n+23) 769 1193 S{n+22) 1601 71 5939 383 157
Sum 57144 181606 S(n+23} 89 1669 29 149 311567
S{n+24) 229 53 521 32983 7331
Sum 4760 11565 39718 676395 795791
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Table 8. Smarandache 14-14 additive relations Table 9. Smarandache 15-15 additiv

relations
T 12 3 #4 #5 46 7 #1 #2
a 154 1282 2413 13322 | 1454678 | 2435152 | 4727685 a 5978 115686
S(n) 11 641 127 6661 38281 | 152197 | 315179 S(n) 61 6427
S(n+1) 31 1283 71 4441 17959 49697 76253 s(n+1) | 1993 809
S (n+2) 13 107 23 3331 887 521 4727687 S(n+2) 23 14461
S{n+3) 157 257 151 41 63247 13163 263 S{n+3) 5981 787
S(n+4) 79 643 2417 2221 242447 | 608789 | 4727689 S(n+4) 997 503
S(n+5} 53 13 31 13327 1454683 90191 42979 S{n+5) 193 €089
S(n+6) 8 23 59 17 4723 1559 525299 S(n+6) 17 311
S (n+7) 23 1289 22 1481 96979 641 1181923 S(n+7) 19 115693
S(n+8) 9 43 269 43 727343 223 10211 S(n+8) 73 57847
S{n+9) 163 1291 173 13331 751 2435161 367 S(n+9) | 5987 857
S(n+10) 41 19 2423 101 5051 3613 135077 S(n+10)| 499 1033
S{n+11) 11 431 101 199 1454689 | 4079 443 S{n+11)} 113 911
S{(n+12) 83 647 97 113 199 12953 503 S(n+12)| 599 1753
S{n+13) 167 37 1213 127 1307 28649 4027 S(n+13)| 1997 59
Sum 849 6724 7177 25434 | 4108546 | 3401436 |11747900} |S(n+14)| 107 89
S(n+14) 7 9 809 1667 9829 2293 64763 Sum 18659 | 207629
S{n+15) 26 1297 607 13337 1759 1051 103 S(n+15)| 461 38567
S(n+16) 17 59 347 19 242449 | 76099 | 429791 $({n+16) 37 83
S (n+17) 19 433 12 13339 26449 677 2659 s(n+17)] 109 16529
S (n+18) 43 13 17 29 181837 | 243517 1613 Sin+18)| 1499 1607
S(n+19) 173 1301 19 4447 181 443 590963 S(n+19)| 1999 317
S (n+20) 29 31 811 953 3583 202931 4129 S(n+20)| 2999 57853
S{(n+21) 10 1303 1217 1213 | 1454699 | 9859 14867 S(n+21)| 857 38569
S(n+22) 11 163 487 139 373 181 4727707 | |8 (n+22) 15 28927
S (n+23) 59 29 29 157 1454701 137 1181927 | {S(n+23)} 353 157
S(n+24) 89 653 2437 6673 727351 7079 743 S(n+24)| 3001 29
S (n+25) 179 1307 53 1483 4801 16127 887 S{(n+25) 29 461
S (n+26) 6 109 271 71 67 405863 | 4727711 |s(n+26) 79 113
S (n+27) 181 17 61 1907 467 2435179 37 s(n+27)| 1201 43
Sum 849 5724 7177 25434 | 4108546 | 3401436 |11747900] |S(n+28) 13 1231
s(n+29)| 6007 23143
Sum 18659 | 207629
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Table 10. Smarandache 16-16 Table 11. Smarandache 17-17 additive relations Table 12.

additive relations Smarandache 18-18
additive relations
2] ¥3 ¥4 182 ] 83| W $5 ¥ (Y] ¥ *1
n 2243|2411(11069441| 1175971 n 696 | 711 [1832| 134098 | 335346 { 695426 | 1691289 4294264 n 5016704
S(n) |2243]|2411] 1069441] 859 Stn) 1 28] 79 ] 229] 67049 | 5081 751 | 187921 | 263 Stn) 509
S(n+1) | 17 | 67 | 48611 | 41999 || s(n+1) | 41 | 89 | 47 | 19157 | 335347 | 231809 | 169129 | 6269 Stn+l) | 334447
S{n+2) | 449 127 163 55231 S(n+2) | 343 | 31 | 131 149 6449 7553 83 271 S{n+2) 34361
Sin+3y 1123} 71 6521 587987 S(n+3) | 233 | 17 | 367 167 5323 99347 1433 11701 S({n+3} 5016707
sintay 1107 ] 23 | 16453 | 2767 stn+4y | 10 ] 131 17 ] 3529 353 7727 }1691293| 5741 Sin+d} | 46451
S{n+5; | 281} 151 25463 16333 S(n+5) [ 701 ]179 | 167 i 44701 757 331 1303 22721 S({n+5) 9629

S{n+6) | 173 12417| 1453 106907 S{n+6) | 13 | 239} 919} 16763 157 86929 2399 429427 S{n+6) 172938
S(n+7) | 18 | 31 3613 587989 S(n+7) | 37 | 359613} 26821 683 39238 3109 4583 S{n+7) 4049

S(n+8) |2251] 59 3461 1931 S{n+8) 11 | 719 23 103 167677 | 347717 | 1691297 211 S{n+8) 627089
S{n+%) | 563 ] 22 293 4523 S{n+3} | 47 6 | 263 2273 283 823 433 39397 S{n+9) 385901
S{n+10) | 751 | 269 | 1069451 | 1175981} | S(n+10j } 353 | 103 | 307 2579 59 487 11351 |2147137] | S{n+10) 36353
S{n+11)) 23 | 173 487 195997 S(n+11) 1101 ] 38 97 4967 709 8803 1301 1847 S(n+ll} 1721
S{n+12) 41 2423 43 3389 S{n+12) | 59 | 241 } 461 | 13411 601 18301 2833 1489 S({n+12}| 1254179
S(n+13)] 47 | 101 347 1097 S(n+13) | 709 f 181 | 41 | 3271 19727 599 1481 330329 S{n+13; 32789
5(n+14) | 61 | 97 8359 281 S(n+l4) | 71 { 29 | 7% 127 131 8693 11691303 3911 S{n+1l4) 103
S(n+15) |1129{1213] 66841 4421 S(n+l5) 79 | 22 }1847 23 8599 695441 3709 390389 S(n+15) 3307
Sum 9274]9655] 23135061 2737982 | S(n+16}] 89 | 727 ] 11 67057 2297 257 191 107357 S{n+16) 20503
S{n+16) | 251 j 809 3779 191. Sum ]2932|3072f5611] 272147 | 554233 [ 1519503 | 5460589|3503043] | Stn+17){ 5016721
S{n+17) § 113 | 607 | 13711 151 S{n+l7) | 31 { 13 | 86 8941 2083 99349 | 845653 | 33289 Sum 12842518

S{n+18){ 19 1347 |106945911175989] {S(n+18)] 17 { 15 | 37 33528 27947 ¢ 173881 1693 271798 S(n+18) | 132019

S{n+19)§ 29 | 1z 7639 5113 S(n+l%) | 13 | 73 } €17 3119 67073 653 422827 | 613469 S{n+19) 7177
S(n+201§ 73 | 17 359 3469 Sin+20) ] 179} 43 | 463 7451 167683 3907 58321 15559 S{n+20) 29167
S(n+21) (283} 19 18439 8647 S({n+21) | 239 61 } 109 1889 12421 | 695447 | 56377 2659 S(n+21} 263
S{n+22) | 151 811 | 1069463 | 12923 ${n+22) | 359733 { 103 479 103 743 271 4373 S{n+22) 1949
S{n+23) ] 103 |1217f 4051 827 {n+23) | 719 | 367 | 53 181 929 23981 15101 4919 S(n+23) | 5016727
Sin+24) |2267] 487 1999 235199 Si{n+24) € 14 | 29 67061 1597 1987 2551 863 S(n+24) | 627091
S{n+25)] 9 2% 3847 293999 S{n+25) | 103 ] 23 | 619 137 2221 10079 | 845657 | 28439 S(n+25) | 1672243
S(n+26) |2263{2437 401 391999 S(n+26)] 38 | 67 {929 11177 83843 127 338263 26 S{n+26) 16183

S(n+27) (227 | 33 1601 587999 S(n+27) 1 2411 41 | 26 37 111791 3719 4271 148079 S(n+27) | 5016731
S(n+28) | 757 1 271 { 34499 9719 Sin+28) | 181} 739} 31 337 12899 3739 6581 1073573 { S(n+28} 59723

S(n+29)| 71 { 61 233 15 ${n+28; 1 29 | 37 11861} 2129 2683 139091 | 845659 | 20161 S(n+29) | 106739
5(n+30) |2273|2441] 82267 10789 S{n+32) 1 22 | 19 | 19 101 137 211 1873 58031 S{n+30) } 147551
S{n+31) {379 | 37 1759 953 S(n+32) [ 727} 53 | 23 | 134129 | 47911 83 42283 | 858859 S(n+31) 4129
Sum 927419655| 2313506 2737982 {S(n+32) | 13 | 743233 263 2749 347729 | 1691321 94 S{n+32) 743

S(n+32)} 15 | 31 }373 1i87 10163 14737 | 281887 | 613471 S$(n+33) 251

Sum }2932]|3072}5611} 272147 | 554233 ]1519503} 5460589 3503043 | S(n+34) 1931

S{n+35) 1901

Sum 12842518
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Table 13. Smarandache Function

19-19 additive relationships

Table 14. Smarandache Function
20-20 additive relationships

#1 2 #2

n 1759 11709 |1205949

S(n) 1759 1301 21157
S{n+1) 11 1171 271
S{n+2) 587 239 1205951
S(n+3) 881 61 571
S({n+4) 43 53 172279
S(n+5) 14 5857 602977
S(n+6) 353 71 8933
S(n+7) 883 101 301489
S(n+8) 31 11717 1487
S(n+9) 17 31 15461
S(n+10) 61 11719 52433
S(n+1l) 59 293 73
S(n+12) 23 3907 401987
S(n+13) 443 5861 367
S(n+14) 197 617 64493
S(n+15) 887 877 241
S{n+16) 71 67 8317
S(n+17) 37 41 602983
S(n+18) 1777 1303 57427

Sum 8134 45387 |3460853
S(n+19) 127 733 3967
S(n+20) 593 317 1205969
S{n+21} 89 23 659
S(n+22) 137 11731 92767
S(n+23) i1 419 3014893
S(n+24) 1783 3911 2851
S (n+25) 223 5867 191
S(n+26) 17 2347 48239
S(n+27) 47 163 461
S (n+28) 1787 97 1205977
S(n+29) 149 5869 379
S(n+30) 1789 43 401993
S{n+31) 178 587 3547
S({n+32) 199 199 172283
S(n+33) 10 103 971
S(n+34) 163 11743 6971
S (n+35) 23 367 223
S (n+36) 359 29 7308
S{n+37) 449 839 4603

Sum 8134 45387 | 3460853

n 2 ¥2 13 Y3
n 97573 | 280200 | 456829 | 569793 | 861971
S(n) 263 167 7489 631 3407
S{n+l) | 48787 | 7573 4153 | 284897 | 659
S(n+2) | 1301 829 263 1373 6481
s(n+3) | 12197 | 1213 83 461 | 430987
S(n+4) | 97577 | 70051 | 35141 | 569797 | 1277
s(n+5) | 139 | seo0a1 149 | 284899 | 107747
s(n+6) | 97579 | 5189 | 91367 | 63311 | 861977
s+7) | 41 280207 | 6011 37 257
S(n+8) | 2957 211 89 9341 | 861979
S(n+9) | 503 131 | 228419 | 4129 131
s(n+10)] 97583 | 4003 | 12347 827 | 287327
S(n+11l)] 107 311 47 853 39181
S(n+12)| 673 1229 349 37987 | 4513
s(n+13)| 827 3547 | 228421 | 16759 73
S(n+14) | 1549 271 773 81401 | 10141
s(n+15)] 787 479 631 1319 | 13903
s(n+16)] 4243 | 35027 | 91369 | 569809 | 41047
S(n+17)] 3253 | 40031 | 5857 2999 | 215497
s(n+18) | 7507 | 46703 | 14737 557 23297
s(n+19) | 1109 | 280219 | 4079 | 142453 | 487
Sum | 378982 | 833732 | 731774 | 2073840 |2510368
S(n+20) | 32531 | 14011 | 2207 | 569813 | 1087
s{n+21)| 6971 | 93407 | 9137 | 13567 107
s(n+22)| 149 | 140111 | 991 | 113963 | 8707
s(n+23)] 2711 | 280223 | 3461 5479 2677
S{n+24)| 5741 139 1117 | 63313 | 172399
s(n+25) | 48799 | 1019 | 228427 | 6949 2477
S(n+26) | 32533 839 229 | 569819 | 861997
sm+27) | 81 3221 | 57107 | 9497 | 430999
S(n+28) | 191 317 5783 401 | 287333
S(n+29) | 16267 | 280229 | 1493 439 431
S(n+30) | 467 9341 311 11173 | 123143
S(n+31)| 1877 43 431 17807 313
S{n+32)| 241 1523 | 152287 | 991 2311
S(n+33)| 1319 107 32633 | 31657 137
s{n+34) | 97607 | 2297 1013 7213 | 57467
s(n+35)| 83 1367 4759 433 1471
S(n+36) | 97609 193 91373 769 8369
s(n+37) | 227 3947 7877 | 56983 733
S{n+38) | 32537 541 16921 | 569831 | 862009
S(n+39)| 1061 857 | 114217 | 23743 | 86201
Sem | 378982 | 833732 | 731774 |2073840]2910368
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Table 16. Smarandache Function 22-22 additive

Table 15. Smarandache
Function 21-21 additive
relationships
i1
n 1477852
S(n) 6971
S(n+l1) 1439
S{n+2) 317
S(n+3) 295571
Sin+4) 46183
S(n+5) 492619
S (n+6) 38891
S(n+7) 2459
S(n+8) 24631
S (n+9} 1129
S(n+10) 971
S(n+11) 5297
S(n+12) 184733
S(n+13) 181
S(n+14) 18947
S(n+15) 34369
S(n+186) 1123
S(n+17) 16987
S(n+18) 147787
S(n+19) | 1477871
S (n+20) 311
Sum 2798787
S(n+21) 4259
S(n+22) 738937
S(n+23) 563
S(n+24) 369469
S(n+25) 77783
S{n+26) 14489
S{n+27) 113683
S(n+28) 36947
S{n+29) 164209
S{n+30) 105563
S(n+31) 134353
S(n+32) 1151
S (n+33) 4049
S{n+34) 269
S(n+35) 492629
S(n+36) 251
S(n+37) 30161
S(n+38) 16421
S(n+39) 677
S(n+40) 293
S(n+41) 492631
Sum 2798787

relationships
#1 #2 #3 #4
a 976 61156 2554732 | 4279047
S(n) 61 15289 127 1831
S{n+1) 977 2659 2554733 2131
S (n+2) 163 10193 4679 13759
S{n+3) 89 8737 853 257
S{n+4) 14 139 159671 611293
S (n+5) 109 37 1693 1303
S (n+6) 491 577 1277369 83903
S{n+7) 983 1973 6277 5309
S (n+8) 41 1699 83 77801
S{n+9) 197 941 193 373
S (n+10) 29 257 11719 4279057
S (n+11) 47 20389 50093 137
S(n+12) 19 3823 319343 11057
$(n+13) 43 61169 5741 213953
S(n+14) 11 2039 425791 80737
S (n+15} 391 83 196519 713177
S (n+16) 31 373 3967 4279063
S(n+17) 331 971 283861 534883
S (n+18) 71 419 929 491
S (n+19) 199 2447 62311 353
S (n+20) 83 2549 6653 3259
S(n+21) 997 467 2554753 281
Sum 5977 137230 | 7927358 | 10914408
S (n+22) 499 181 8573 4275069
S (n+23) 37 20393 839 25171
S(n+24) 15 23 638689 3557
S (n+25) 13 317 2554757 2729
S (n+26) 167 103 141931 2441
S{n+27) 59 61 59 1249
S (n+28) 251 239 51 171163
S (n+29) 67 4079 77417 6563
S (n+30) 503 30593 199 43223
S (n+31) 53 8741 2554763 | 2139539
S (n+32) 7 5099 212897 611297
S (n+33) 1009 1423 773 211
S (n+34) 101 211 7649 8089
S(n+35) 337 523 94621 2139541
S (n+36) 23 7649 159673 1426361
$(n+37) 1013 5563 2417 9467
S (n+38) 26 47 85159 1453
$(n+39) 29 12239 4c1 33961
S(n+40) 127 15299 1873 6803
S{n+41) 113 20399 5039 593
S (n+42) 509 827 1277387 349
S(n+43) 1019 3221 102191 1579
Sum 5977 13723C | 7927358 | 10914408
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Table 17. Smarandache Function 23- Table 18. Smarandache Function

23 additive relationships 24-24 additive relationships
1 32 #3 $4 #5 #6 #1 #2
a 587 993 43637 | 58186 |2471860| 9908628 n 6350 56317
S(n) 587 331 3967 619 123593 | 7717 S (n) 127 283
S (n+1) 14 71 1039 1877 | 353123 | 9908629 S(n+1) 73 971
S(n+2) 31 199 151 373 21683 643 5 (n+2) 397 18773
S(n+3) 59 83 1091 58189 ]|2471863] 9743 S (n+3) 6353 12
S (n+4) 197 997 373 46 5237 1531 S (n+4) 353 3313
S (n+5) 37 499 21821 163 211 367 S(n+5) 41 149
S (n+6) 593 37 2297 3637 {1235933} 857 S (n+6) 227 373
S(n+7) 11 15 3637 58193 | 46639 701 S (n+7) 163 14081
S (n+8) 17 13 43 61 577 | 2477159 S (n+8) 34 751
S (n+9) 149 167 157 113 [2471869 89 s(n+9) | 6359 28163
s(n+10)| 199 59 14549 | 14549 1637 3253 S(n+10) 53 79
S (n+11) 23 251 31 1021 373 58631 S(n+ll)| 6361 2347
s(n+12)}| 599 67 43649 4157 2971 983 s(n+l2)| 3181 619
S(n+13) 10 503 97 58199 | 85237 31657 s(n+13)| 101 131
S (n+14) 601 53 43651 97 4079 | 4954321 S(n+l4) 43 569
S(n+15) 43 7 1559 37 113 6619 S (n+15) 67 14083
S(n+16) 67 1009 14551 | 29101 | 56179 (2477161 S(n+l6) | 1061 56333
s(n+17)| 151 101 73 223 30517 18181 S(n+17)| 6367 229
S (n+18) 22 337 §731 14551 | 39869 | 150131 S(n+18) | 199 593
s(n+19) | 101 23 107 1663 | 107473 | 14593 S(n+19)| 193 503
S{n+20) | 607 1013 293 109 20599 1667 S{n+20) 14 211
S(n+21) 19 26 263 58207 | 130099 821 s(n+21) | 277 1657
S (n+22) 29 29 14 107 461 198173 S (n+22) 59 1063
Sum 4166 5830 | 162144 | 305292 | 7210335 20323627 S(n+23)| 6373 313
S (n+23) 61 127 59 19403 | 823961 | 9908651 Sum 38476 | 145599
S (n+24) 47 113 43661 5821 | 617971 | 3343 S(n+24) | 3187 547
S (n+25) 17 509 383 58211 2237 | 430811 S (n+25) 17 197
S(n+26) 613 1019 929 14 1543 79 s(n+26) | 797 2683
s(n+27)| 307 17 2729 2531 | 224717 9049 s(n+27)| 911 7043
S (n+28) 41 1021 71 2239 | 154493 | 1471 s(n+28) | 1063 191
S{n+29) 11 73 3119 3881 | 117709 | 14767 s(n+29) | 6379 9391
S(n+30)| 617 31 3359 383 6029 919 S (n+30) 29 67
S(n+31)| 103 12 1213 58217 | 18043 6143 s(n+31)] 709 14087
s(n+32)| 619 41 43669 313 205991 | 495433 s(n+32)| 3191 2087
S (n+33) 31 19 397 8317 4519 | 471841 S(n+33)| 491 23
S(n+34) 23 79 14557 71 1235947 137 S (n+34) 19 1523
S(n+35)| 311 257 103 6469 337 21401 S(n+35)] 1277 587
S(n+36) 89 21 367 677 1193 2281 S (n+36) 103 109
S(n+37) 13 103 251 79 233 152441 s(n+37) | 2128 1483
S (n+38) 20 1031 1747 1213 67 4954333 S(n+38) | 1597 34
s(n+39)| 313 43 179 137 |2471899] 8669 S{n+39){ 6389 193
S(n+40) 19 1033 211 4159 1301 607 S (n+40} 71 97
S(n+41) | 157 47 21839 1493 | 823967 | 22571 S (n+41) 82 101
S (n+42) 37 23 1409 14557 109 330289 $(n+42) 47 56359
S(n+43) 7 37 13 58229 827 30677 S(n+43) | 2131 1409
s{(n+44)| 631 61 38 647 2861 154823 S(n+44)| 139 18787
S (n+45) 79 173 21841 | 58231 | 494381 | 3302891 S{n+45) | 1279 28181
Sum 4166 5890 | 162144 | 305292 |7210335]20323627 S (n+46) 11 359
S(n+47)| 6397 61
Sum 38476 | 145599
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Table 19. Smarandache Function 25- Table 20. Smarandache Function 26-26

25 additive relationships additive relationships
#1 #2 ¥3 #1 #2
n 27403 36682 339846 a 89 8850
S(n) 409 18341 4357 S(n) 89 59
S(n+1) 31 36683 19991 S{n+1) 6 167
S(n+2) 29 1019 1847 S{n+2) 13 2213
S{n+3) 193 29 307 S (n+3) 23 227
S(n+4) 27407 83 971 S(n+4) 31 233
S(n+5) 571 1747 11719 S{n+5) 47 23
S(n+6) 27409 2293 223 S{n+6) 19 41
S(a+7) 2741 1931 577 S{n+7) 8 521
S (n+8) 9137 1223 677 S(n+8) 97 103
S(n+9) 89 36691 163 S (n+9) 14 2953
S{n+10) 347 9173 1931 S{n+10) 11 443
S{n+11) 1523 151 1033 S(n+11) 10 8861
S{n+12) 5483 2621 239 S (n+12) 101 211
S(n+13) 149 179 2011 S{n+13) 17 8863
S(n+14) 37 139 16993 S{n+14) 103 277
S{n+15) 13709 36697 113287 S {n+15) 13 197
S(n+16) 3917 311 1559 S(n+16) 7 31
S(n+17) 457 941 339863 S5 (n+17) 53 8867
S(n+18) 1613 367 34 S(n+18) 107 739
S(n+19) 13711 107 673 S(n+19) 9 181
S (n+20) 277 2039 169933 S (n+20) 109 887
S (n+21) 857 127 3433 S(n+21) 1 2957
S {n+22) 1097 37 84967 S(n+22) 37 1109
S(n+23) 653 2447 2281 S (n+23) 7 467
S (n+24) 27427 18353 11329 S(n+24) 113 29
Sum 139273 173729 790398 S (n+25) 19 71
S{n+25) 6857 71 2111 Sum 1074 40730
S{n+26) 223 23 43 S(n+26) 23 317
S{n+27) 211 36709 587 S(n+27) 29 269
S(n+28) 27431 3671 169937 S (n+28) 13 193
${n+29) 127 4078 2719 S (n+29) 59 683
S(n+30) 3919 353 1049 S {n+30) 17 37
S(n+31) 43 36713 4787 S (n+31) 5 107
S (n+32) 59 211 2207 S (n+32) 22 4441
S (n+33) 57 1049 409 S (n+33) 61 47
S (n+34) 27437 137 293 S{n+34) 41 2221
${n+35) 269 12239 19993 S (n+35) 31 1777
S{n+36) 1193 1669 1531 S (n+36) 15 1481
S (n+37) 21 503 1201 S (n+37) 7 . 8887
S(n+38) 3049 17 2741 S{n+38) 127 101
${n+39) 13721 36721 83 S (n+39) 8 2963
S{n+40) 2111 61 169943 S (n+40) 43 127
S{n+41) 2287 12241 339887 S{n+41) 13 523
S(n+42) 499 9181 97 S (n+42) 131 19
S (n+43) 13723 113 106 S(n+43) 11 8893
S(n+44) 1307 6121 829 S (n+44) 19 4447
S (n+45) 73 1933 89 S (n+45) 67 593
S(n+46) 27449 4591 199 S (n+46) 9 139
S(n+47) 61 53 757 S{n+47) 17 41
S{n+48) 283 3673 821 S(n+48) 137 1483
S (n+49) 6863 1597 67979 S (n+49) 23 809
Sum 139273 173729 790398 S (n+50) 139 89
S (n+51) 7 43
Sum 1074 40730
7, Rue du Sergent Blandan

92130 Issy les Moulineaux, France
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REMARKS ON SOME OF THE SMARANDACHE’S PROBLEMS. Part 1
Krassimir T. Atanassov
CLBME - Bulgarian Academy of Sciences
v Bulgaria, Sofia-1113, P.O.Box 12
e-mail: krat@bgcict.acad.bg

In 1996 the author of this remarks wrote reviews for “Zentralblatt fir Mathematik” for
books [1] and [2] and this was his first contact with the Smarandache’s problems. He solved
some of them and he published his solutions in [3]. The present paper contains some of the
results from [3].

In [1] Florentin Smarandache formulated 105 unsolved problems, while in [2] C. Dumitres-
cu and V. Seleacu formulated 140 unsolved problems of his. The second book contains almost
all the problems from [1}, but now each problem has unique number and by this reason the
author will use the numeration of the problems from [2]. Also, in [2] there are some problems,
which are not included in [1].

When the text of [3] was ready, the author received Charles Ashbacher’s book [4] and he
corrected a part of the prepared results having in mind [4].

We shall use the usual notations: [z] and [z] for the integer part of the real number z
and for the least integer > z, respectively.

The 4-th problem from [2] (see also 18-th problem from [1]) is the following:

Smarandache’s deconstructive sequence:

L, 23, 456, 7891, 23436, 789123, 4567891, 23456789, 123456789,

Let the n-th term of the above sequence be a,. Then we can see that the first digits of
the first nine members are, respectively: 1, 2,4, 7, 2, 7, 4, 2, 1. Let us define the function

w as follows:
r (01 23 45 6789

w(r){1 1 247274 21
Here we shall use the arithmetic function 1, discussed shortly in the Appendix and

detailed in the author’s paper [5] .
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In [3] it is proved that the form of the n—th member of the above sequence is

an, = byb;...by,
where
b = w(n ~[3])
n
by = Y(w(n—[5)+1)
b =p(w(n—[g])+n—-1)
To the above sequence {a,} we can juxtapose the sequence {v(a,)} for which
n=1 n=1

we can prove (as above) that its basis is [1,5,6,7,2,3,4,8,9].
The problem can be generalized, e.g., to the following form:

Study the sequence {a,}3,, with its s—th member of the form

as = byby...bs s,
where byby...b,x € {1,2,...,9} and
b = w'(s - [g])

and here
r |1 2 3 4 5 6
wir) |1 $(k+1) ¥(Bk+1) p(6k+1) $(10k+1) ¥(15k+1)
r 7 8 9
w(r) [ Y21k +1) ¥(28k+1) ¥(36k +1)

To the last sequence {a,}>, we can juxtapose again the sequence {1(a,)}32, for which

we can prove (as above) that its basis is {3,9,3,6,3,6,9,8,9].
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The 16-th problem from [2] (see also 21-st problem from [1]) is the following:

Digital sum:

0,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,10,2,3,4,5,6,7,8,9, 10, 11,

3,4,5,6,7,8,9,10,11,12,4,5,6,7,8,9,10,11,12,13,5,6,7,8,9,10,11,12,13, 14, ...

(ds(n) is the sum of digits.) Study this sequence.

The form of the general term a, of the sequence is:

an=n-9 % |

k=1

n

107

It is not always true that equality d,(m) + dy(n) = d;(m + n) is valid. For example,
ds(2) +d,(3) =2+3=5=d,(5),

but
d,(52) + d,(53) = 7+ 8 = 15 # 6 = d,(105).

The following assertion is true

dy(m) + dy(n), if ds(m) + dy(n) < 9.max([Ze{) [deln))y
ds(m+n) =

ds;(m) + ds(n) — 9.max([dﬁs(j—n—-], [%71-]), otherwise

The sum of the first n members of the sequence is

n n

ﬁ]'([lo

S.=5] ]+8)+(n—10.[%]).(n;1 — 4™y,

The 37-th and 38-th problems from [2] (see also 39-th problem from [1]) are the following:
(Inferior) prime part:

2,3,3,5,5,7,7,7,7,11,11,13,13,13,13,17,17,19,19, 19, 19, 23, 23, 23, 23, 23, 23, 29, 29, 31,

31,31,31,31,31,37,37,37,37,41, 41,43, 43,43, 43, 47, 47, 47, 47,47, 47, 53, 53, 53, 53, 53, ...
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(For any positive real number n one defines p,(n) as the largest prime number less than or
equal to n.)
(Superior) prime part:

2,2,2,3,5.5,7,7,11,11,11,11,13,13,17,17, 17, 17,19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29,

31,31,37,37,37,37,37,37,41, 41,41, 41,43, 43,47, 47, 47,47, 53, 53, 53, 53, 53, 53,59, 59, ...

(For any positive real number n one defines P,(n) as the smallest prime number greater than

or equal to n.)

Study these sequences.

First, we should note that in the first sequence n > 2, while in the second one n > 0. It
would be better, if the first two members of the second sequence are omitted. Let everywhere
below n > 2.

Second, let us denote by

{p17p27p37 } = {273a5a }7

the set of all prime numbers. Let ps = 1, and let #(n) be the number of the prime numbers

less or equal to n.

Then the n—th member of the first sequence is
Pp(n) = Pr(n)-1

and of the second sequence is
Pp(n) = Pr(n)+8(n)>

where
0, 1if nis a prime number

B(n)=
1, otherwise
(see [T7]).
The checks of these equalities are straightforward, or by induction.

Therefore, the values of the n-th partial sums of the two sequences are, respectively,

n x(n)
Xo=3% polk)= & (pr — Pi-1)-Pe-1 + (7 = Pa(n) + 1)-Pr(n)
k=1 k=2
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n #(n)
Yo= X PB(k)= £ (pr—pr-1)-Pk + (7 — Pa(n))-Pr(n)+8(n)-
k=1 k=1

The 39-th and 40-th problems from [2] (see also 40-th problem from [1]) are the following:
(Inferior) square part:

0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25,

25,25, 25,25, 25, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 49, 49, ...

(the largest square less than or equal to n.)

(Superior) square part:
0,1,4,4,4,9,9,9,9,9,16,16, 16, 16, 16, 16, 16, 25, 25, 25, 25. 25, 25,

25,25, 25,36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,49, 49, ..

(the smallest square greater than or equal to n.) Study these sequences.
The 41-st and 42-nd problems from [1] (see also 41-st problem from [1]) are the following:
(Inferior) cube part:

01,1,11,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27, 27, 27,27, 27, 27, 27,27, 27, ...

(the largest cube less than or equal to n.)
(Superior) cube part:

0,1,8,8,8,8,8,8,8,27,27,27,27, 27, 27,27, 27,27, 27,27, 27,27, 27,27,27,27,27,27,64, ...

(the smallest cube greater than or equal to n.) Study these sequences.

The n-th term of each of the above sequences is, respectively
an = [\/azv b, = I—\/azy Cn = [e/ﬂaa dy, = [—\3/7?|3

The values of the n-th partial sums of these sequences are:

g = A2 U/R =0 VOVR PSR D) ey gy,
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o= WAL DOVT LAY | e

[¢/n = 1((¥/n — 1]+ DG/r = 1]* + 16[¢/n — 1]°
10

C, =

+14[\3/7—7'_ 1]2 ':0[%- 1] - 1) + (n _ [\:s/as_*_ 1).[\:77‘7]3,

YA+ DR Y MR = A+ D, ) P

D, =

The 43-rd and 44-th problems from [2] (see also 42-nd problem from [1]) are the following:
(Inferior) factorial part:

1,2,2,2,2,6,6.6,6,6,6,6,6.,6,6,6,6,6,6,6,6,6,6,24,24,24, 24, 24, 24,24, 24,24, 24, ...

(F5(n) s the largest factorial less than or equal to n.)

(Superior) factorial part:

1,2,6,6,6,6,24,24, 24,24, 24, 24, 24, 24, 24, 24,24, 24, 24,24, 24, 24, 24, 24,120, ...

(f5(n) is the smallest factorial greater than or equal to n.) Study these sequences.

It must be noted immediately that p is not an index in F, and f,.

First, we shall extend the definition of the function “factorial” (possibly, it is already
defined, but the author does not know this). It is defined only for natural numbers and for

a given such number n it has the form:
n!l=1.2. .. .n
Let the new form of the function “factorial” be the following for the real positive number

Y=y (y—1)(y —2)...(y = [y] + 1),

where [y] denotes the integer part of y.
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Therefore, for the real number y > 0:
(y+ D =yl(y+1).

This new factorial has I'—representation

he TEEY
T -[i+1

and representation by the Pochhammer symbol
y! = (¥)y]

(see, e.g., [8])-
Obviously, if y is a natural number, y! is the standard function “factorial”.

Tt can be easily seen that the extended function has the properties similar to these of the

standard function.
Second, we shall define a new function (possibly, it is already defined, too, but the author
does not know this). It is an inverse function of the function “factorial” and for the arbitraty

positive real numbers z and y it has the form:
7=y iff yl==.
Let us show only one of its integer properties.
For every positive real number z:

[£?7]+ 1, if there exists a natural number n such

that nl=2+1
(z+1)7]=

[z, otherwise

From the above discussion it is clear that we can ignore the new factorial, using the

definition

2=y iff (y)y ==

Practically, everywhere below y is a natural number, but at some places z will be a
positive real number (but not an integer).

Then the n—th member of the first sequence 1s
Fp(n) = [n7]!
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and of the second sequence it is
fo(n) = [n7]L.
The checks of these equalities is direct, or by the method of induction.
Therefore, the values of the n-th partial sums of the two above Smarandache’s sequences

are, respectively,

n n?
Xo= 5 F(B)=5 (K—(k-1.(k=1)!+(n—[n?+1).n7!
k=1 k=1
n n7)
Yo= T f(F)= 5 (K —(k=D)E+ (n—[n?] +1).[n7]!

The 100-th problem from [2] (see also 80-th problem from [1]) is the following:

Square roots:
0,1,1,1,2,2,2,2,2.3.3.3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5, ..

(sq(n) is the superior integer part of square root of n.)
Remark: this sequence is the natural sequence, where each number is repeated 2n + 1 times,

because between n? (included) and (n+1)? (ezcluded) there are (n+1)?—n? different numbers.

Study this sequence.
The 101-st problem from [2] (see also 81-st problem from [1]) is the following:

Cubical roots:

0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3, ...

(cq(n) is the superior integer part of cubical root of n.)

Remark: this sequence is the natural sequence, where each number is repeated 3n? + 3n + 1
q q 74

times, because between n® (included) and (n+1)® (excluded) there are (n+1)3 —n3 different

numbers.
Study this sequence.
The 102-nd problem from 2] (see also 82-nd problem from [1]) is the following:

m— power roots:
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(mq(n) is the superior integer part of m—power root of n.)

Remark: this sequence is the natural sequence, where each number is repeated (n +1)™ —n™

times.

Study this sequence.

The n-th term of each of the above sequences is, respectively,
xn:[\/aa yn‘_"[\s/EL Zn:[w
and the values of the n-th partial sums are, respectively,

n

X,= % zi= ([\/m—l)[\/?(‘l[\/M'*l) +n_[\/ﬁ]2+1)[\/ﬁ]’

k=1

n

([%—1)[\3/?2(3[%+1) +(n_[\3/r'ﬂ3+1)[€/a,

Y.=Z% Yr =
k=1
Zo=% z= % ((VE+1)" = [VE™)[VE-1"+ (n=[¥a]™ +1).[¥n].
k=1 k=1

The 118-th Smarandache’s problem (see {2]) is:

“Smarandache’s criterion for coprimes”:

If a,b are strictly positive integers, then: a and b are coprimes if and only if

a1 4 P+t =g 4 b(mod ab),

where @ is Euler’s totient.

For the natural number

n= T p{,

=1
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where p;, ps, ..., pi are different prime numbers and oy, @y, ..., > 1 are natural numbers,

the Euler’s totient is defined by:

k
p(n)= I p* .(pi —1).
i=1
Below we shall introduce a solution of one direction of this problem and we shall introduce

a counterexample to the other direction of the problem.

Let a, b are strictly positive integers for which («,b) = 1. Hence, from one of the Euler’s

theorems:

If m and n are natural numbers and (m,n) =1, then
m?™ = 1(mod n)

(see, e.g., [6]) it follows that
a*® = 1(mod b)

and
5*®) = 1(mod a).
Therefore,
a®®*+! = g(mod ab)
and

b*®+! = p(mod ab)
from where it follows that really
a?®+t 4 p#+ = 4 4 p(mod ab).

It can be easily seen that the other direction of the Smarandache’s problem is not valid.

For example, if a = 6 and b = 10, and, therefore, (a,b) = 2, then:
6e(10+1 1 10641 = 65 4 10° = 7776 + 1000 = 8776 = 16(mod 60).

Therefore, the “Smarandache’s criterion for coprimes” is valid only in the form:

If a, b are strictly positive coprime integers, then
a1 L 2@+ = ¢ & h(mod ab).
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The 125-th Smarandache’s problem (see [2]) is the following:
To prove that
k-1
n—1

nl > ER —1 (*)

1=0

for any non-null positive integers n and k.

Below we shall introduce a solution to the problem.

First, let us define for every negative integer m : m! = 0.

Let everywhere k be a fixed natural number. Obviously, if for some n: k > n, then the
inequality (*) is obvious, because its right side is equal to 0. Also, it can be easily seen that

(*) is valid for n = 1. Let us assume that (*) is valid for some natural number n. Then,

k-1 _
(n+1)! = k2 ] [———”';‘“}!
1=0
(by the induction assumption)
k-1 ) k-1 g
> (n+1)'kn-k+l I [I”___z_]!__kn—k+2 o [n—-;'*‘ ]'
i=0 =0
o E+1 +1
= kR [_k—’]!.((n 1)'[2_1;_"]! B —1) >0,
=0
because
n—k+1, . n+l,
(n+1).] : =k : L
—-k+1 -k+1
=(n+ 1),,["_—k—]! - k.[?—k—+ 1!
—k

Thus the problem is solved.

Finally, we shall formulate two new problems:
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1. Let y > 0 be a real number and let k£ be a natural number. Will the inequality

k-1 )
y!l > Ey—k+1 I [l_lz_z]i

=0

be valid again?
2. For the same y and k will the inequality

k-1 )

yl > kv L4
k
1=0

be valid?
The paper and the book [3] are based on the author’s papes [9-16].

APPENDIX

Here we shall describe two arithmetic functions which were used below, following [5].

For

m
n= % a.10"7" =aazan,

=1

where a; is a natural number and 0 < a; < 9 (1 < < m) let (see [5]):

e ,ifn=0
pln)=¢ =
5" a; , otherwise
=1
and for the sequence of functions o, 1, P2, ..., where (! is a natural number)
990(77‘) =",

w1 = plpi(n)),
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let the function v be defined by
P(n) = pi(n),

in which

pir1{n) = @i(n).

This function has the following (and other) properties (see [5]):
P(m+n) = Pp((m) +$(n)),
p(m.n) = P((m).(n)) = P(m.p(n)) = b($(m).n),
P(m™) = p((m)"),
P(n+9) = ¥(n),
P(9n) = 9.
Let the sequence aj, az, ... with members - natural numbers, be given and let
g =v(a) (1=1,2,..).

Hence, we deduce the sequence cy, ¢z, ... from the former sequence. If k and [ exist, so that
>0,

Citl = Ckyitl = Coktitl = ---
for 1 < i < k, then we shall say that
[c141, Cla2, oo Ciri]

is a base of the sequence cy, ¢z, ... with a length of k and with respect to function .

For example, the Fibonacci sequence { F;}%2,, for which
Fo=0F=1,Fy=Fu+F.(n>0)
has a base with a length of 24 with respect to the function ¢ and it is the following:
n,1,2,3,5,8,4,3,7,1,8,9,8,8,7,6,4, 1,5,6,2,8,1,9];
the Lucas sequence {L;}2,, for which
Ly=2,Ly=1,Lnys=Loy1+ Ln (n>0)
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also has a base with a length of 24 with respect to the function ¢ and it is the following:
[2,1,3,4,7,2,9,2,2,4,6,1,7,8,6,5,2,7,9,7,7,5,3,8];
even the Lucas-Lehmer sequence {l;}32,, for which
=40 =02—2(n>0)

has a base with a length of 1 with respect to the function % and 1t is [5].
The k — th triangular number ¢, is defined by the foermula

_ k(kE+1)
T T

and it has a base with a length of 9 with the form
[1,3,6,1,5,3,1,9,9].

It is directly checked that the bases of the sequences {n*}$2, for n = 1,2,...,9 are the

ones introduced in the following table.

a base of a sequence {n*}%2, | a length of the base
1 1
2,4,8,75,1 6
9 1
4,7,1 3
5,7,8,4,2,1 6
1
3
2
1

W NN = |3

9
74,1
8,1

9

© 00 3 O »

On the other hand, the sequence {n"}22, has a base (with a length of 9) with the form
(1,4,9,1,2,9,7,1,9],
and the sequence {k™}%° | has a base with a length of 9 with the form

[1] , if & # 3m for some natural number m

[9] , if k£ = 3m for some natural number m
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We must note that in [5] there are some misprints, corrected here.
An obvious, but unpublished up to now result is that the sequence {¥(n!)}32, has a base
with a length of 1 with respect to the function v and it is {9]. The first members of this

sequence are

1,2,6,6,3,9,9,9,...

We shall finish with two new results related to the concept “factorial” which occur in

some places in this book.
The concepts of n!! is already introduced and there are some problems in [1,2] related to

it. Let us define the new factorial n!!! only for numbers with the forms 3k + 1 and 3k + 2:
nlll =1.245.7.8.10.11...n

We shall prove that the sequence {1(n!!!)}%2, has a base with a length of 12 with respect

to the function 3 and it is
[1,2,8,4,1,8,8,7,1,5,8,1].

Really, the validity of the assertion for the first 12 natural numbers with the above

mentioned forms, i.e., the numbers
1,2,4,5,7,8,10,11,13, 14, 16,17,
is directly checked. Let us assume that the assertion is valid for the numbers
(18k + 1)1, (18k + 2)11, (18k + 4)N1, (18K + 5)!M1, (18k + 7)!1, (18K + 8)!I1,
(18k + 10)1M1, (18% + 11)M1, (18% + 13)!1, (18k + 14)!!!, (18 + 16)!!,
(18k + 17)M.

Then
P((18k + 19)!M1) = H((18%k + I7)!!.(18% + 19))

= (p(18k + 17)11L.4p(18% + 19))
= ’¢’(1.1) = 1;
B((18k + 20)111) = w((18k + 19)!!1.(18k + 20))

= P (Y(18k + 19)11L.4(18% + 20))

96



=p(1.2) =2
H((18% + 22)11) = ((18k + 20)!11.(18k + 22))
= (1(18k + 20)1.p(18k + 22))
= (2.4) = 8,

etc., with which the assertion is proved.
Having in mind that every natural number has exactly one of the forms 3k + 3, 3k + 1
and 3k + 2, for the natural number n = 3k + m, where m € {1,2,3} and k£ > 1 is a natural

number, we can define:

( 14...(3k+1), ifn=3k+1landm=1

nlnm =14 25..(3k+2), ifn=3k+2andm=2

[ 36...(3k+3), ifn=3k+3andm=3

As above, we can prove that:
o for the natural number n with the form 3k + 1, the sequence {1(n!;)}32, has a base with

a length of 3 with respect to the function ¢ and it is
[1¥(3k +1),1];

e for the natural number n with the form 3k + 2, the sequence {1 (n!;)}22, has a base with

a length of 6 with respect to the function ¢ and it is
(2,9(6k +4),8,7,9(3k + 5), 1];

e for the natural number n with the form 3% + 3, the sequence {y(n!1)}2, has a base with
a length of 1 with respect to the function ¥ and it is [9] and only its first member is 3.

Now we can see that

Bk+1)1.3k-1);, ifn=3k+landk>1
nill =

(3k+ 1h.(3k+2)y, ifn=3k+2andk>1
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A brief account on Smarandache 2-2 subtractive relationships

Henry Ibstedt

Abstract: An analysis of the number of relations of the type S(n)-
S(n+1)=S(n+2)-S(n+3) for n<10® where S(n) is the Smarandache function
leads to the plausible conclusion that there are infinitely many of those.

This brief note on Smarandache 2-2 subtractive relationships should be seen in relation
to the article on Smarandache k-k additive relationships in this issue of SNJ [1]. A
Smarandache 2-2 subtractive relationship is defined by

S(n)-S(n+1)=S(n+2)-S(n+3)
where S(n) denotes the Smarandache function. In an article by Bencze [2] three 2-2
subtractive relationships are given

S(1)-S(2)=S(3)-S(4), 1-2=3-4

S(2)-S(3)=S(4)-5(5), 2-3=4-5

S(49)-S(50)=S(51)-S(52), 14-10=17-13
The first of these solutions must be rejected since S(1)=0 not 1. The question raised in
the article is “How many quadruplets verify a Smarandache 2-2 subtractive
relationship?”

As in the case of Smarandache 2-2 additive relationships a search was carried for
n<10%, In all 442 solutions were found. The first 50 of these are shown in table 1.

Table 1. The 50 first 2-2 subtractive relations.

# n S(n) S{n+1) S{n+3) S{n+4)
1 2 2 3 4 5
2 40 5 41 7 43
3 49 14 10 17 13
4 107 107 9 109 11
5 2315 463 193 331 61
6 3913 43 103 29 89
7 4157 4157 11 4159 13
8 4170 139 97 149 107
9 11344 709 2269 61 1621
10 11604 967 211 829 73
11 11968 17 11969 19 11971
12 13244 43 883 173 1019
13 15048 19 149 43 173
14 19180 137 19181 139 19183
15 19682 547 419 229 101
16 26219 167 23 2017 1873
17 29352 1223 197 1129 103
18 29415 53 3677 1279 4903
19 43015 1229 283 1103 157
20 44358 7393 6337 1109 53
21 59498 419 601 17 199
22 140943 4271 383 4027 139
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Table 1. continued.

# n S(n) S(n+1) S(n+3) S(n+3)
23 147599 1433 41 2203 811
24 153386 283 23 1237 977
25 169533 23 79 827 883
26 181577 971 571 1697 1257
27 186056 1789 2297 2269 2777
28 201965 1303 821 1453 971
29 204189 2347 2917 139 709
30 210219 887 457 659 229
31 217591 151 461 8059 8369
32 246974 59 89 227 257
33 253672 857 167 829 139
34 257543 1801 73 2711 983
35 262905 1031 211 929 109
36 273815 2381 3803 3299 4721
37 321010 683 821 241 379
38 363653 163 227 283 347
39 407836 31 661 673 1303
40 431575 283 739 607 1063
a1 451230 89 127 239 277
42 530452 202 166 419 383
43 549542 2309 2207 941 839
44 573073 2909 2837 283 211
45 589985 631 443 1291 1109
46 590569 353 809 317 773
47 608333 1907 1913 191 197
48 646333 15031 24859 271 10099
49 649702 577 1447 107 977
50 666647 666647 197 666649 199

As in the case of 2-2 additive relations there is a great number of solutions formed by
pairs of prime twins.

Table 2. All 51 subtractive relations formed by pairs of prime twins for n<10°.

# n S(n) S{n+1) S({n+3) S(n+4)
1 40 5 41 7 43
2 4157 4157 11 4159 13
3 11968 17 11969 19 11971
4 19180 137 19181 139 19183
5 666647 666647 197 666649 199
6 895157 895157 137 895159 139
7 1695789 347 101 349 103
8 1995526 71 1995527 73 1995528
9 2007880 101 2007881 103 2007883
10 2272547 2272547 149 2272549 151
11 3198730 1787 3198731 1789 3198733
12 3483088 227 3483089 229 3483091
13 3546268 431 3546268 433 3546271
14 4194917 4194917 197 4194919 199
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Table 2. Continued.

# n S(n) S(n+l1) S{n+3) S{n+4)
15 4503640 179 4503641 181 4503643
16 5152420 149 5152421 151 5152423
17 6634078 269 6634079 271 6634081
18 6729658 107 6729659 109 6729661
19 7455628 2729 7455629 2731 7455631
20 7831738 641 7831739 643 7831741
21 7924877 7924877 71 7924879 73

22 11001647 11001647 239 11001649 241
23 11053978 281 11053979 283 11053981
24 12466680 809 12466691 811 12466693
25 13530988 311 13530989 313 13530991
26 17293120 4157 17293121 4159 17293123
27 17424707 17424707 311 17424709 313
28 18173650 191 18173651 193 18173653
29 19222600 431 18222601 433 19222603
30 19227910 419 19227911 421 19227913
31 22208567 22208567 431 22208569 433
32 26037491 26037491 347 26037493 349
33 30468670 311 30468671 313 30468673
34 31815238 5639 31815239 5641 31815241
35 36683147 36683147 641 36683149 643
36 40881257 40881257 191 40881259 183
37 42782236 227 42782237 229 42782239
38 46238236 311 46238237 313 46238239
39 53009681 53009681 1061 53009683 1063
40 53679671 53679671 521 53679673 523
41 53906597 53906597 227 53906599 229
42 54747418 269 54747419 271 54747421
43 57935326 659 57935327 661 57935329
44 63694847 63694847 1481 63694849 1483
45 68203229 68203229 1721 68203231 1723
46 73763380 2381 73763381 2383 73763383
47 84344411 84344411 269 84344413 271
48 86250580 1667 86250581 1669 86250583
49 92596529 92596529 1019 92596531 1021
50 94788077 94788077 1031 94788079 1033
51 95489237 95489237 101 95489239 103

In the case of 2-2 additive relations only 2 solutions contained composite numbers and
these were the first two. This was explained in terms of the distribution Smarandache
functions values. For the same reason 2-2 subtractive relations containing composite
numbsers are also scarce, but there are 6 of them for n<10®. These are shown in table 3.

It is interesting to note that solutions #3, #5 and #6 have in common with the solutions
formed by pairs of prime twins that they are formed by pairs of numbers whose
difference is 2. Finally table 4 shows a tabular comparison between the solutions to the
2-2 additive and 2-2 subtractive solutions for n<10°. The great similarity between these
results leads the conclusion: If the conjecture that there are infinitely many 2-2 additive
relations is valid then we also have the following conjecture:
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Table 3. All 2-2 subtractive relations <10* containing composite numbers.

¥ S(n) S(n+1) S (n+3) S(n+4)
1 2 2 3 4 5
2 49 14 10 17 13
3 107 107 9 109 11
4 530452 202 166 419 383
5 41839378 111 41839379 113 41839381
6 48506848 57 48506849 59 48506851
Table 4. Comparison between 2-2 additive and 2-2 subtractive relations.
Number of 2-2 Number of 2-2
additive solutions subtractive sol
Total number of solutions 481 442
Number formed by pairs of prime twins 65 51
Number containing composite numbers 2 6

Conjecture: There are infinitely many Smarandache 2-2 subtractive relationships.
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On a Smarandache Partial Perfect Additive Sequence
Henry Ibstedt

Abstract: The sequence defined through a,,.1=a35.1-1, an =2y +1 for k>1 with
a,=a,=1 is studied in detail. It is proved that the sequence is neither convergent
nor periodic - questions which have recently been posed. It is shown that the
sequence has an amusing oscillating behavior and that there are terms that

approach + co for a certain type of large indices.

Definition of Smarandache perfect f, sequence: If f; is a p-ary relation on{a;, a,, as,

“--} and fp(ab 8i+1, ai+2, al+p-1)= ﬁ)(ap a:i*l, aj+2, aj+p-l) for an a;, aj and an p>1’ then
{a,} is called a Smarandache perfect £, sequence.

If the defining relation is not satisfied for all a;,a; or all p then {a,} may qualify as a
Smarandache partial perfect £, sequence.

The purpose of this note is to answer some questions posed in an article in the
Smarandache Notions Journal, vol. 11 [1] on a particular Smarandache partial perfect
sequence defined in the following way:

a;=a,;=1
an+1=a+1-1, k=1 1)
an+=a+1+1, k=1 )

Adding both sides of the defining equations results in a2 +azx.1=2a,.; which gives
2n n
Sa =2 3
i=l i

Let n be of the form n=k-2". The summation formula now takes the form

k27 k
S8, =2"%a, @
i=] i
4 8 2=
From this we note the special cases Zai = 4,Zai =8, ....Zai =27,
i=1

i=) i=1

The author of the article under reference poses the questions: “Can you, readers, find a
general expression of a, (as a function of n)? Is the sequence periodical, or convergent
or bounded?”

The first 25 terms of this sequence are':

k

1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ax 1

2 3 4 6 7 8 9
102-1113-29 ¢ 2 0 2 2 4 -3-1-~-11-11 1 3 -1

! The sequence as quoted in the article under reference is erroneous as from the thirteenth term.
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It may not be possible to find a general expression for a, in terms of n. For
computational purposes, however, it is helpful to unify the two defining equations by
introducing the 8-function defined as follows:

5 {-1 if n=0 (mod 2) -
n = B

1 if n=1 (mod 2)
The definition of the sequence now takes the form:

a=a,=1

8 =2 s, ~500) ©)

2
A translation of this algorithm to computer language was used to calculated the first
3000 terms of this sequence. A feeling for how this sequence behaves may be best
conveyed by table 1 of the first 136 terms, where the switching between positive,
negative and zero terms have been made explicit.
Before looking at some parts of this calculation let us make a few observations.
Although we do not have a general formula for a, we may extract very interesting
information in particular cases. Successive application of (2) to a case where the index

is a power of 2 results in:
Bgm =Byar +1=8)02 +2=.=2+m-1=m @)
This simple consideration immediately gives the answer to the main question:

The sequence is neither periodic nor convergent.

We will now consider the difference a,-a,; which is calculated using (1) and (2). It is
necessary to distinguish between n even and n odd.

1. =2k, k>2.
az-ax-1=2 (exception: a;-a,=0) 8
2. =k-2"+1 where k is odd.
[ 1-2m ifk=1
B gmy " 8ygn =8y ety — =8 e — =8, — 8, —2m= y ®
| 2-2m ifk>1

In particular
an+1-ax= 0 if k>3 is odd.
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Table 1. The first 136 terms of the sequence

n @ &am . etc
1 1 1
3 0
4 2
5 -1
6 1 1 3
9 -2
10 0 0
12 2
13 0
14 2 2 4
17 -3 -1 -1
20 1
21 -1
22 1 1 3
25 -1
26 1 1 3 1 3 3 5
33 -4 -2 =2
36 0
37 -2
38 0 0
40 2
41 -2
42 0 0
44 2
45 0
46 2 2 4
49 -2
50 0 0
52 2
53 0
54 2 2 4
57 0
58 2 2 4 2 4 4 6
65 -5 -3 -3 -1 -3 -1 -1
72 1
73 -3 -1 -1
76 1
77 -1
78 1 1 3
81 -3 -1 -1
84 1
85 -1
86 1 1 3
89 -1
90 1 1 3 1 3 3 5
97 -3 -1 -1
100 1
101 -1
102 1 1 3
105 -1
106 1 1 3 1 3 3 5
113 -1
114 1 1 3 1 3 3 5 1 3 3
129 -6 -4 -4 -2 -4 -2 -2
136 0
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The big drop. The sequence shows an interesting behaviour around the index 2", We
have seen that a,. =m. The next term in the sequence calculated from (9) is

mr+1-2-m=-m+1. This makes for the spectacular behaviour shown in diagrams 1 and 2.
The sequence gradually struggles to get to a peak for n=2" where it drops to a low and
starts working its way up again. There is a great similarity between the oscillating
behaviour shown in the two diagrams. In diagram 3 this behaviour is illustrated as it
occurs between two successive peaks.

8

-8

Diagram 1. a, as a function of n around n=2" illustrating the “big drop”

Diagram 2. a, as a function of n around n=2'"° illustrating the “'big drop”
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-6
Diagram 3. The oscillating behaviour of the sequence between the peaks for n=27 and n=2%,

When using the defining equations (1) and (2) to calculate elements of the sequence it
is necessary to have in memory the values of the elements as far back as half the
current index. We are now in a position to generate preceding and proceeding
elements to a given element by using formulas based on (8) and (9).

The forward formulas:

(ag1+2 when n=2k, k>1
8= {au+1-2m  when n=2"+1 (10)
lant2-2m  when n=k-2™+1, k>1

Since we know that a,, =m it will also prove useful to calculate a, from a+;.
The reverse formulas:
2qe1-2 when n=2k-1, k>1
2= {2w1-142m  when n=2" (11)
lagi-242m  when n=k-2™, k>1

Finally let’s use these formulas to calculate some terms forwards and backwards from
one known value say ase=12 (4096=2"%). It is seen that a, starts from 0 at n=4001,
makes its big drop to -11 for 1=4096 and remains negative until n=4001. For an even
power of 2 the mounting sequence only has even values and the descending sequence
only odd values. For odd powers of 2 it is the other way round.

Table 2. Values of a, around n=2"2.

4095 4094 4093 4092 4091 4090 4089 4088 4087 4086 4085 4084 4083 4082 4081 4080 4079 4078 ...
10 10 8 10 8 8 6 10 8 8 6 8 6 6 4 10 8 8 ..

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 ..
12 -11 -9 -9 -7 -9 -7 -7 ~5 -9 -7 -7 -5 =7 -5 -5 -3 -9 .

4001

4160
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ON THE 107-th, 108-th AND 109-th SMARANDACHE’S PROBLEMS
Nikolai Nikolov and Krassimir Atanassov
CLBME - Bulgarian Academy of Sciences,
Bl. 105, Acad. G. Bonchev Str., Sofia-1113, Bulgaria
e-mails: {shte, krat}@bgcict.acad.bg

Here we shall discuss three definitions regarded by Smarandache as paradoxical.

The analysis of the three definitions is of course a trivial task. Our only motivation for
producing it was the desire of making clear the rather imprecise treatment of these paradoxes
in [1].

Definition 1. n is called a paradoxist Smarandache number iff » does not belong to any
of the Smarandache number sequences.

Let us denote the sequence of paradoxist Smarandache numbers by SP.

Definition 2. 7 is called non-Smarandache number iff n is neither a Smarandache para-
doxist number nor a member of any of the Smarandache defined number sequences.

Let us denote the sequence of non-Smarandache numbers by NS.

We propose two accounts of Definition 1; in both, the apparent paradoxicality is elimi-
nated.

Account 1. If the scope of the definition includes itself, i. e., if a number is called
paradoxist iff it does not belong to any Smarandache sequence including SP, then SP is
empty.

Proof: Assume SP is not empty and let p € SP. Then, by the definition, p does not belong
to any Smarandache sequence (including SP) and therefore p & SP, which is a contradiction
with the assumption that p € SP. Therefore, the contrary holds — that SP is empty.

In other words, SP is not paradoxical by nature, but just an empty sequence.

In this case, NS is equal to



where S; ... S, are all the rest of Smarandache sequences. This is proved by a simple check
of Definition 2.

Account 2. If the scope of the definition excludes itself, i. e., if a number is called
paradoxist iff it does not belong to any Smarandache sequence except SP, then SP is equal
to

N-Us;
i
where S;...S, are all the rest of Smarandache sequences.

Let us assume that SP is not empty and let p € SP. As the definition of SP excludes the
SP itself, p does not belong to any Smarandache sequence except SP, and therefore there
is no contradiction with the assumption that p € SP. From the definition it follows that p
belongs to the set

N -Us;
J
where S ... S, are all of the Smarandache sequences except SP. On the other hand, if SP
is empty, then every natural number belongs to some Smarandache sequence other than SP.
Since there are no members of SP, and the apparent paradox stemmed from the assumption
that some number belongs to SP, no paradox arises in this case either.
Again, there is no paradoxicality here. We cannot, however, make statements about the

members of SP in the latter case — it may be empty or not.

In this case, NS is empty. Proof: By definition 2, NS equals
N-|JS;-SP
J
and by the above, SP is
N-US;

j

where S; are as above. Therefore NS is empty.

Finally, let us consider " the paradox of Smarandache numbers”: Any number is a Smaran-

dache number, the non-Smarandache number too.
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On both accounts this is true. Therefore it is a mere play of words - it is a matter of

choice of the name 'non-Smarandache number’ that causes the apparent paradox.
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ON THE 20-th AND THE 21-st SMARANDACHE’S PROBLEMS

Krassimir T. Atanassov
CLBME - Bulg. Academy of Sci., and MRL, P.O.Box 12, Sofia-1113, Bulgaria
e-mail: krat@bgcict.acad.bg

The 20-rd problem from [1] is the following (see also Problem 25 from [2]):

Smarandache divisor products:
1,2,3,8,5,36,7,64,27,100,11,1728, 13,196,225, 1024, 17, 5832, 19, 8000, 441, 484, 23,
331776,125,676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444,
1521,2560000,41, ...
(Pi(n) is the product of all positive divisors of n.)
The 21-st problem from [1] is the following (see also Problem 26 from [2]):
Smarandache proper divisor products:
1,1,1,2,1,6,1,8,3,10,1,144,1,14,15,64,1,324,1,400,21,22,1,13824, 5, 26, 27,
784,1,27000,1,1024, 33, 34, 35,279936, 1, 38, 39, 64000, 1, ...

(pi(n) is the product of all positive divisors of n but n.)

These problems their solutions are well-known and by this reason we shall give more
unstandard solutions (see, e.g. [3]).

Let

ai

n= P,

SIS

2

where p; < py < ... < pi are different prime numbers and k,ay, as,...,ar > 1 are natural
numbers. Then

Pin)y= 1 4.

d/n

Therefore, every divisor of n will be a natural number with the form

k
d= T pf,
=1

1=

where by, by, ..., b are natural numbers and for every 7 (1 << k): 0 < b; < ay, e,



where ¢;, ¢y, ..., ¢; are natural numbers and below we shall discuss their form.
First, we shall note that for fixed where &, a1, ay, ..., ax, p1,pP2,-..,px the number of the

different divisors of n will be
k

(n)= II (a;+1).

i=

k
THEOREM: For every natural number n = II pj*:
i=1

Py(n) = H pUt L it i it Lt (1)

i=1

where ¢, = q.(q.+ 1 is the ¢—th triangular number.
Proof: When n is a prime number, i.e., & = a; = 1, the validity of (1) is obvious. Let us
k
assume that (1) is valid for some natural number m = L a;. We shall prove (8) for m + 1,
i=1

i.e., for the natural number n’ = n.p, where p is a prime number. There are two cases for p.

Case 1: p & {p1,p2,...,px}. Then
Pa(n') = Py(n.p) = (Pa(n)).(Pa(n).pler+1)- = (ax+1))

(because the first term contains all multipliers of n multiplied by 1 and in the second term -
multiplied by p)

(Pd( )) (a1+1). ... .(ax+1) — (Pd(II))ak+’+l.p(al+l)' .(ak-{»-l).tak\‘1

k+1
_ ay+1 a;-1+1  ta;  aipi+1 ag+1+1
= H1 S i A L 90
i

Case 2: p=p, € {p1,P2,..-,Px}. Then n = m.p? and

Pi(n') = Py(n.p) = P(m.p®*") = (Py(m).1).(Pa(m) p(“l“) (as-141)-(@sp1H1). oo ‘(“"+1))
(Py(m).p? 2.(a1+1). ... (as1+1){asp1+1)e .o A(a,_.+1))
- (Pa(m) plast o e ot ) nepr4D). e (artD))
— (Pd(m))a,+l.pga1+l). e {@em1 1) (a1 ) (g 1) (1424 (a5 F1))

= (Pd(nl))urFI I)(’IX+1) ((‘5‘1+1)-ta5+1

k+1
a1+l aj—1+1 “. 'l.+1+1 app1+1
I p eee Dicy Py Pigr s Prga -

i=1
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Therefore, (1) is valid, i.e., Problem 20 is solved. Using it we can see easily, that

u +1 FRRR-EL L R 41
- a ai—1 2 i+1 o
Py(n) = H1 2SR e Piy1 - - Px
=
koo (a141) (ar+1)
_ 3-8y o e Bk Q1. eo Bk
= .H P -P;
=1
= I n5"™y=n,
=1

ie.,

Py(n) =n.

which is the standard form of the representation of Fy(n).
From (2), having in mind that

k
pd(n) = nr(n)’
i=1
or in the form of (1):
k +1 3 +1 +1
( 1 ay— ai
pa(n) = _Hl pit i T T i L T
1=
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ON PRIMALITY OF THE SMARANDACHE SYMMETRIC SEQUENCES
Sabin TABIRCA, Tatiana TABIRCA

"Transilvania" University of Brasov
Faculty of Science, Computer Science Department
Str. Iuliu Maniu, or. 50, Brasov, 2200
Romania

The study of primality for the Smarandache sequences represents a recent research direction on the
Smarandache type notions. A few articles that were published recently deal with the primality of the
direct and reverse Smarandache sequences. The primality of Smarandache symmetric sequences has not
been studied yet. This article proposes some results concerning the non-primality of these symmetric
sequences and presents some interesting conclusions on a large computational test on these.

Key Words: Smarandache Symmetric Sequences, Prime Numbers, Testing Primality

Smarandache type notions represents one of the important and recent directions on
which the research on Elementary Number Theory has been carried out on the last years.
Many theoretical and practical studies concerning the Smarandache functions, numbers or
sequences have been developed so far. The practical studies have proved that many
conjectures and open problems on this kind of notions are true. This article follows this line
by developing a large computation on the Smarandache symmetric sequence and after that by
proving some non-primality results. But, the most important fact is the article proposes two
special numbers of the sequences that are primes.

1. INTRODUCTION

In the following, the main notions that are used in this article are summarized and some
recent results concerning them are reviewed. All of them concern the Smarandache
sequences. There are three types of the Smarandache sequences presented below [4]:

- The direct Smarandache sequence: 1, 12, 123, 1234, ...
- The reverse Smarandache sequence: 1, 21, 321, 4321, ...
- The symmetric Smarandache sequence: 1,121, 1221, 12321, 123321, 1234321, 12344321,...

Let these sequences be denoted by:
Sd(n)=123..n(¥n>0) (1.a)
Sr(n) = n..321(vn > 0) (1.b.)
In order to simplify the study of the symmetric Smarandache sequence, we note

114



8,(n) =123...(n-Dn(n-1)..321(vn > 0) (2a)
S,(n) =123...(n-D)nn(n-1)...321 (vn > 0) 2.b)
and called them the symmetric Smarandache sequences of the first and second order,

respectively. These sequences have been intensely studied and some interesting results have
been proposed so far.

The direct and reverse Smarandache were the subject to an intense computational
study. Stephan [5] developed the first large computational study on these sequences. He
analyzed the factorization of the first one hundred terms of these sequences finding no prime
numbers within. In order to find prime numbers in these sequences, Fleuren [3] extended the
study up to two hundred finding no prime numbers too. In [3], a list of people who study these
computationally these sequences was presented. No prime numbers in these sequences have
been found so far. Unfortunately, a computational study has not been done for the symmetric
sequences yet.

The only result concerning the symmetric sequences was proposed by Le [2]. This
result states that the terms S,(n) =123...(n—-Dnn(n-1)..321 of the second Smarandache

symmetric sequence are not prime if g # 1 (mod3). No computational results were furnished

in this article for sustaining the theorem. Smarandache [4] proposed several proprieties on
these three sequences, majority of them being open problems.

2. COMPUTATIONAL RESULTS

Testing primality has always represented a difficult problem. For deciding the
primality of large numbers, special and complicated methods have been developed. The last
generation ones use elliptic curve and are very efficient in finding prime factors large. For
example, Fleuren used Elliptic Curve Primality Proving or Adleman-Promerance-Rumely
tests obtaining all prime factors up to 20 digits. More information about these special tests
could be found in [1].

The computation that we have done uses MAPLE 5, which is software oriented to
mathematical computations. This software contains several functions for dealing with primes
and factorization such us isprime, ifactor, ifactors, ithfactor,etc. The function ifactor that is
based on the elliptic curves can find prime factors depending on the method used. The easy
version discovers prime factor up to 10 digits. The "Lenstra” method can find prime factors
up to 20 digits. We used the simple version of ifactor for testing the terms of the Smarandache
symmetric sequences. The computation was done for all the numbers between 2 and 100. The
results are presented in Tables 1,2 of Appendix. Table 1 gives the factorization of the terms of
the first Smarandache symmetric sequence. Table 2 provides the factorization of the second
Smarandache symmetric sequence.

Several simple observations can be made by analyzing Tables 1, 2. The most
important of them is that two prime numbers are found within. The term
S,(10) =12345678910987654321 of the first Smarandache symmetric sequence is a prime

number with 20 digits. Similarly, the term S,(10) = 1234567891010987654321 of the second
Smarandache symmetric sequence is a prime number with 22 digits. No other prime numbers
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can be found in these two tables. The second remark is that the terms from the tables present
similarities. For example, all the terms §,(3-k),k>1 and S,(3:-k-1),5,(3:k),k>1 are
divisible by 3. This will follow us to some theoretical results. The third remark is that some
prime factors satisfy a very strange periodicity. The factor (333667) appear 29 times in the
factorization of the second Smarandache symmetric sequence. A supposition that can be made
is the following there are no prime numbers in the Smarandache symmetric sequences others

that S,(10),S,(10).

In the following, the prime numbers S,(10)=12345678910987654321 and
S,(10) =1234567891010987654321 are named the Smarandache gold numbers. Perhaps,
they are the largest and simplest prime numbers known so far.

3. PRIMALITY OF THE SMARANDACHE SYMMETRIC SEQUENCES

In this section, some theoretical results concerning the primality of the Smarandache
symmetric sequences are presented. The remarks drawn from Tables 1,2 are proved to be true
in general.

Let ds(n), n e N* be the digits sum of number 5. It is know that a natural number » is
divisible by 3 if and only if 3|ds(n). A few simple results on this function are given in the

following.

Proposition 1. (Vn>1) ds(3n) is M3.

Proof

The proof is obvious by using the simple remarks 3n is M3. Thus, ds(3n) is M3. &
Proposition 2. (Vn>1) ds(3n-1) + ds(3n-2) is M3.

Proof

Let us suppose that the forms of the numbers 3n-1,3n-2 are

3.-n-2 = aa,a;..4a, 3.)
3-n-1=bbb;..b,. “4.)

Both of them have the same number of digits because 3n#-2 cannot be 999...9. The equation

ds3-n-2)+ds(3-n-))=a +a,+...+a,+b +b, +..+b, = ds(alaz...apb,bz..bp)
gives ds(3-n~2)+ds(3-n—1) = ds((3-n-2)-10° +3-n-1).
The number (3-n-2)-10° +3-n-1 is divisible by 3 as follows
(3-n-2)-107 +3-n-1=107 =1 =(9+1)” =1 = 0 (mod3).
Thus, ds(3n-2) + ds(3n-1) = ds((3n-2)10” + 3n-1) is M3. &

In order to prove that the number S,(3-%), k£ >1 and S,(3-k-1),S,(3-£), £ > 1 are divisible
by 3, Equations (5-6) are used.
ds(S,(3-k))=ds(S,(3-k—3))+2-ds(3-k—2)+2-ds(3-k—1)+ds(3-k) (5.
ds(S,(3-k)) = ds(S,(3-k-3))+2-ds(3-k-2)+2-ds(3-k-1)+2-ds(3-k) (6.2)
ds(S,(3-k-1))=ds(S,(3- k= 4))+2-ds(3-k=3)+2-ds(3-k-2)+2-ds(3-k-1) (6.
Based on Propositions 1,2, Equations (5-6) give
ds(S,(3-k)) = ds(S,(3- k - 3)) (mod 3) (7.)
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ds(S,(3-k)) = ds(S,(3- k —3)) (mod3) and ds(S,(3-k ~1) = ds(S,(3-k—4)) (mod3). (8.

The starting point is given by S;(3) = 3%37% is M3, S5(2) = 3-11:37 is M3, and S,(3) =
3-11-37-101 is M3. All the above facts provide an induction mechanism that proves obviously
the following theorem.

Theorem 3. The numbers S,(3-k), k=1 and S,(3-k—1),S,(3-k), k 21 are divisible by 3,
thus are not prime.

Proof

This proof is given by the below implications.

$1(3) =3%37%is M3, ds(S,(3-k)) = ds(S,(3- k ~3)) (mod3) = S,(3k) is M3,k > 1.

Sy(2) = 3-11-37 is M3, ds(S,(3-k)) = ds(S,(3- k —3)) (mod3) = S,(3k) is M3,k > 1.

S2(2) =3-11-37-101 is M3, ds(S,(3- k ~ 1)) = ds(S,(3- k- 4)) (mod3) = S$,(3k-1) is M3,k > 1.

4. FINAL REMARKS

This article has provided both a theoretical and computational study on the
Smarandache symmetric sequences. This present study can be further developed on two ways.
Firstly, the factorization can be refined by using a more powerful primality testing technique.
Certainly, the function ifactor used by Lenstra's method may give factors up to 20 digits.
Secondly, the computation can be extended up to 150 in order to check divisibility property.
Perhaps, the most interested fact to be followed is if the factor (333667) appears periodically
in the factorization of the second Smarandache sequence.

The important remark that can be outlined is two important prime numbers were
found. These are 12345678910987654321 and 1234567891010987654321. We have named
them the Smarandache gold numbers and represent large numbers that can be memorized
easier. Moreover, they seem to be the only prime numbers within the Smarandache symmetric
sequences.
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APPENDIX - The results of the computation.

n Digits | Factorisation

2 3] a1

3 5| (3)(37¢

4 7 | (AD*(101)

5 9 | @’@eny

6 11 | Gy AD(3Y37)

7 13 | (239)*(4649)

8 15 | (1DX(73)’(101)°(137)

9 17 | 3)*(37)°(333667)

10 20 | PRIME

11 24 | (7)(17636684157301569664903)

12 28 | (3)A(7Y(2799473675762179389994681)

13 32 | (1109)(4729)(2354041513534224607850261)

14 36 [ (7)(571X3167)(10723)(439781)2068140300159522133)

15 40 | (3)A(7X3167)(10723)(75401)X(439781)(687437) c27

16 44 | (71)(18428) 37

17 48 | (T’(31) 44

18 52 | (3)°(7)(8087)(89744777939149063905891825989378400337330283)

19 56 | (251X281)(5519X96601) c42

20 60 | (7)(17636684157301733059308816884574168816593059017301569664903)

21 64 | (3)°(7)_c62

22 68 | (70607) c63

23 72 | (7)(15913) c67

24 76 | (3 (7X659)(56383)_c66

25 80 | NO Answer, Yet

26 84 | (7)(3209)(17627) c75

27 88 | (3)*(7X(223)(28807) 78

28 92 | (149)(8285690543698800766118236120269880692902860892458137746524
9745095179303029618262489850029)

29 96 [ (7) 95

30 100 | (3)*(7X167X(761) 93

31 104 | (827) c101

32 108 | (7X(31X42583813) c98

33 112 | (3)%(7)* (281) c106

34 116 | (197)(509) cl11

35 120 | (7)(10243) c115

36 124 | (3)%(7)(2399) c117

37 128 | NO Answer, Yet

38 132 | (D*(313) c127

39 136 | (3)* (IX733)(2777)_cl27

40 140 | (17047)(28219) 131

41 144 | (7)(5153)(7687)(79549) c130

42 148 | (3)2 (7X(9473) c142

43 152 | (191)(4567) c?

44 156 | (7)(223)(251) ¢150

45 160 | (3)° (7X643303) 150

46 164 | (967)(33289) c156

47 168 | (7)(31X199)(281) c161

48 172 | (3) 2 (7X557)(38995472881) c156

49 176 | (139121) ¢170

50 180 { (1)(179)

51 184 | (3)2 (IX(71)(55697) c175

52 188 | (109)(181) c183
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53 192 | (7X(14771) c187

54 196 | 3)*(7)° (191)(3877) c185
55 200 | (5333) c196

56 204 | (7X73589) c198

57 208 | (3)*(7)(3389)(56591) c198
58 212 | NO Answer, Yet

59 216 | () 214

60 220 | (3)%(7)(14769967) c2i1
61 224 | (281)(286813) c216

62 228 | (D31 c?

63 232 | (3)%(7) <228

64 236 | NO Answer, Yet

65 240 | (7) c239

66 244 | (3)%(7) 242

67 248 | NO Answer, Yet

68 252 | (7)(1861)(12577X19163) ¢?
69 256 | 3)X(M(251)(1861) c248
70 260 | NO Answer, Yet

71 264 | (7) 263

72 268 | (3)°(7)(563X3323) 258
73 272 | (2477)(3323)X3943) 265
74 276 | (7(47279) 270

75 280 | (3) 472 (281X7681) 271
76 284 | NO Answer, Yet

77 288 | (7)(31)_c285

78 292 | (3)%(7)_c290

79 296 | (313)(6529)(63311) c284
80 300 | (7)7(130241) c292

81 304 | (3)*%(7) c301

82 308 | NO Answer, Yet

83 312 | (7X(197) 308

84 316 | (3)%(7X1931X110323) c305
85 320 | (953)(1427)(103573)_c308
86 324 | (7)(71)(181) c319

87 328 | (3)%(7)491) c?

88 332 | NO Answer, Yet

89 336 | (7X(281)(50581) c328

90 340 | (3)°(7)(67121) ¢332

91 344 | (19501) ¢339

92 348 | (TY(31X571)(811) c340
93 352 | (3)%(7) <350

94 356 | (251)(79427) c348

95 360 | (7)_c359

96 364 | 3)*(D* c361

97 368 | (7559) c364

98 372 | (I(1129)(4703)(63367)
99 376 | (3)°(7) 372

100 381 | NO Answer, Yet

Table 1. Smarandache Symmetric Sequence of the first order.
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n Digits | Factorisation

2 4| 313D

3 6 | (3)11)X37X101)

4 8 | (11)(41)(101)}271)

5 10 | GUDA 133741271

6 12 | BGUT(II3X37X239)4649)

7 14 | (11X(73)X(137X239)(4649)

8 16 | ()Y (13T 73X101X137)(333667)

9 18 | (3)’(1D(37)41)271X333667)X9091)

10 22 | PRIME

11 26 | (3X(43)(97X548687)(1798162193492119)

12 30 | 3)11X31)X37X61)(92869187X575752909227253)

13 34 | (109)X(3391)(3631)(919886914249704430301189)

14 38 | (3X41)(271)X9091)(290971)(140016497889621568497917)

15 42 | (3)(37)(661)(1682637405802185215073413380233484451)

16 46 | No Answer Yet

17 50 | (3)%(1371742101123468126835130190683490346790109739369)

18 54 | (3)%(37X1301)%333667)6038161) c36

19 58 | (41)}271)X9091) c50

20 62 | (3X11)X97) c58

21 66 | (3X(37X983) c61

22 70 | (67X(773)238374986196699050320745268328883825784439732224037792
5143576831)

23 74 | (3X11)X7691) c68

24 78 | (3)37X41)(43)(271)(9091)(165857) c61

25 82 | (227)(2287)(33871) c71

26 86 | (3)°(163)(5711) c78

27 90 | (3Y’(31X37)(333667) c80

28 94 | (146273)(608521) c83

29 98 | (3)@1X271)(9091)(40740740407441077407747474744141750841417542087
508417508414141414141077441077407407407407)

30 102 [ BX37X5167) 96

31 106 | (11)°(4673) c99

32 110 | (3X43X1021) ¢?

33 114 | (3N37X881) c109

34 118 | (11)(41)271)(9091) c109

35 122 | (3)%(3209) c117

36 126 | (3)%(37X333667)(68697367) c110

37 130 | No Answer Yet

38 134 | (3)(1913)(12007X58417)(597269) c115

39 138 | (3)(37)(41)(271X347)(9091)(23473) ¢121

40 142 | No Answer Yet

4] 146 | (3)(156841) c140

42 150 | (3)A13B1(37)61) c143

43 154 | (71)(5087) c?

44 158 | (3)%(41X271X9091) c149

45 162 | (3)%(11X37)43)(333667) cl51

46 166 | No Answer Yet

47 170 [ (3) c169

48 174 | (3)(37)(173X60373) c165

49 178 | (41)(271)(929)(34613)(9091) c162

50 182 | (3)(167)(1789X(9923)(159652607) c163

51 186 | (3)(37)(1847) C180

52 190 | No Answer Yet

53 194 | (3)°(11X43X26539) c185
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54 198 | (3Y(37X41)(151)(271)X347)463)(9091X(333667) c174
55 202 | (67) c200

56 206 | (3) <205

57 210 | (3X37) c208

58 214 | (59X109) 210

59 218 | GYI 1) (41X59)271X9091) 205

60 222 | (3X37X8837) 216

61 226 | (112 (17X(197X631) c217

62 230 | (3)*(19X72617) c222

63 234 | (3)%(37X333667) c226

64 238 | (41)(89)(271X9091)(63857)(6813559) c216
65 242 | (3)(2665891) ¢235

66 246 | (3)(37) c244

67 250 | (1307) c246

68 254 | (3X(43)(107)(8147)3373)(37313) 237
69 258 | ()1 7)(3TH41)X271X1637)(9091)(4802689) c236
70 262 | (11)(109)(21647107)

71 266 | (3)°(19) c263

72 270 | (3)’(11)X37)(333667)(1099081) c254
73 274 | No Answer Yet

74 278 | (3)(41)(271)(1481)X9091) 266

75 282 | (3)X37X17827X26713) 271

76 286 | No Answer Yet

77 290 | (3X17)(337X8087)(341659) 275
78 294 | (3)(37) 292

79 298 | (41)(271)9091)10651)98887) c281
80 302 | (3)°(19) c299

81 306 | (3)°(11)37X333667) c295

82 310 | No Answer Yet

83 314 [ (3)(11)(41543X(48473)(69991) 298
84 318 | (3)37)(A1)271X9091) c308

85 322 | (17)(2203)19433) ¢313

86 326 | (3)(89)(193) ¢321

87 330 | (3)(37X(59) ¢326

88 334 | (59)(67) ¢330

89 338 | (3°(19X41X43)(271X9091) ¢325

90 342 | (3)°(37X(333667) c334

91 346 | No Answer Yet

92 350 | (3X(11)(18859) c344

93 354 | (3)(17)(37)(1109)(1307) c344

94 358 | (11)(41X271X9091) c349

95 362 | (3) c361

96 366 | (3)37)(373)X(169649)(24201949) c348
97 370 | (113X163)(457)(7411) c359

98 374 | (3)°(19X572597)_c366

99 378 | (3)’(37T)N41)X271)(499)(593)(333667X9091) c?
100 384 | (89) c382

Table 2. Smarandache Symmetric Sequence of the second order.

121




ON FOUR PRIME AND COPRIME FUNCTIONS
Krassimir T. Atanassov
CLBME - Bulg. Academy of Sci., and MRL, P.O.Box 12, Sofia-1113, Bulgaria
e-mail: krat@bgcict.acad.bg

Devoted to Prof. Vladimir Shkodrov
for his 70-th birthday

In [1) F. Smarandache discussed the following particular cases of the well-know charac-
teristic functions (see, e.g., [2] or [3]).
1) Prime function: P: N — {0,1}, with

P(n) = { 0, if n is prime

1, otherwise
More generally: P; : N¥ — {0,1}, where k£ > 2 is an integer, and

0, if ny,ng,...,n; are all prime numbers

P;,(nl, N2y ny nk) = {

1, otherwise

2) Coprime function is defined similarly: Cj : N* — {0,1}, where k > 2 is an integer,

and
0, if ny,ng, ..., ng are coprime numbers
Ci(n1,na, iy k) = .
1, otherwise
Here we shall formulate and prove four assertions related to these functions.

THEOREM 1: For each k,ny,na,...,n; natural numbers:

k
Pk(nl,...,nk) =1- I (1 - P(n,))

i=1
Proof: Let the given natural numbers ny, ny, ..., ni be prime. Then, by definition

Pk(nl, ...,le) =0.
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In this case, for each i (1 <7 < k):

P(n;) =0,
i.e.,
1-P(n;)=1.
Therefore
k
II (1 _P(n!)) = 17
=1
1e.,
k
1— I (1-P(n))=0= Pe(ny,...,nx).
=1

If at least one of the natural numbers n,,n,, ..., n; is not prime, then, by definition

Pk(nl, .,.,nk) = 1.

In this case, there exists at least one 7 (1 <7 < k) for which:

P(n,) = 1,
le.,
1- P(n,—) =0.
Therefore
k
II (1-P(n:)) =0,
i=1
ie.,
k
1- 11 (1 - P(n,-)) =1= Pk(nl,,..,nk).
=1

The validity of the theorem follows from (1) and (2).
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Similarly it can be proved

THEOREM 2: For each k,n;,ng, ..., n; natural numbers:

k-1 k
Ck(nl,...,nk) =1- T1I I (1 - Cg(n,-,nj)).
=1 J=i+l

Let p1,p2, P, ... be the sequence of the prime numbers (p; = 2,p; =3,.p3 = 5,...).
Let m(n) be the number of the primes less or equal to n.

THEOREM 3: For each natural number n: .
Cr(n)4+P(n)(P1, P2y -y Pr(n)+ P(n)-1,1) = P(n).
Proof: Let n be a prime number. Then
P(n)=0

and

Dx(n) = M.
Therefore
Cr(n)+P(n) (P17P2, +eoy Px(n)+P(n)-1s n) = Cr(n)(plap'.’a "'7Pﬂ'(n)—1ap1r(n)) =0,

because the primes py, p2, ..., Pr(n)-1, Pr(n) are also coprimes.

Let n be not a prime number. Then
P(n)=1

and

DPr(n) < 1.

Therefore
Cvr('n.)+P(n) (Pl,Pz, «+sy Pr(n)+P(n)~-1s n) = Cr(n)+1 (Pl,P2, «<+3 Pr(n)-15 n) = 17

because, if n is a composite number, then it is divited by at least one of the prime numbers

P1, P25 --+s Pr(n)-1-
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With this the theorem is proved.
Analogically, it is proved the following
THEOREM 4: For each natural number n:

x(n)+P(n)-1
Pr)=1- T (1-Capi,n))-

=1
COROLLARY: For each natural numbers k, nq, na, ..., ng:

k w(n;)+P(n;)~1
Pk(nl,...,nk) =1—- T1II II (1 - Cg(pj,n;)).

=1 Jj=1

These theorems show the connections between the prime and coprime functions. Clearly,

it is the C, function basing on which all the rest of functions above can be represented.
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INVESTIGATING CONNECTIONS BETWEEN
SOME SMARANDACHE SEQUENCES,
PRIME NUMBERS AND MAGIC SQUARES

Y.V. CHEBRAKOYV, V.V. SHMAGIN
Department of Mathematics, Technical University,
Nevsky 3-11, 191186, St-Petersburg, Russia
E-mail: chebra@phdeg.hop.stu.neva.ru

In this paper we investigate some properties of Smarandache sequences of the
2nd kind and demonstrate that these numbers are near prime numbers. In
particular, we establish that prime numbers and Smarandache numbers of the
2nd kind (a) may be computed from the similar analytical expressions, (b) may
be used for constructing Magic squares 3x3 or Magic squares 9x9, consisted of
9 Magic squares 3x3. )

Key words: prime numbers, Smarandache numbers of the 2nd kind, density
of numerical sequences, Magic squares 3x3 and 9x9.

1 Introduction

We remind [2, 3], that in the general case Magic squares represent by themselves
numerical or analytical square tables, whose elements satisfy a set of definite
basic and additional relations. The basic relations therewith assign some
constant property for the elements located in the rows, columns and two main
diagonals of a square table, and additional relations, assign additional
characteristics for some other sets of its elements.

Let it be required to construct Magic squares 7 in size from a given set of
numbers. Judging by the mentioned general definition of Magic squares, there is
no difficulty in understanding that the foregoing problem consists of the four
interrelated problems

1. Elaborate the practical methods for generating the given set of numbers;

2. Look for a concrete family of n? elements, which would satisfy both the
basic and all the additional characteristics of the Magic squares;

3. Determine how many Magic squares can be constructed from the chosen
family of n? elements;

4. Elaborate the practical methods for constructing these Magic squares.
For instance, as we demonstrated in [5],
a) every (n+1)-th term a,,, of Smarandache sequences of 1st kind may be

formed by subjoining several natural numbers to previous terms a, and also
may be computed from the analytical expression
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Bgm= 6(a,107" +Ef@(n)}), M

where ¢(n), W(a,) and E{p(n)} are some functions; ¢ is an operator. In other
words, for generating Smarandache sequences of 1st kind, the set of analytical
formulae may be used (see the problem 1);

22232425262728 15161718192021 20212223242526
17181920212223 19202122232425 21222324252627
18192021222324 23242526272829 16171819202122
)
171819191817 101112121110 151617171615
121314141312 141516161514 161718181716
131415151413 181920201918 111213131211
@
17181920191817 10111213121110 15161718171615
12131415141312 14151617161514 16171819181716
13141516151413 18192021201918 11121314131211
3

Figure 1. Magic squares 3x3 from k-truncated
Smarandache numbers of Ist kind.

b) it is impossible to construct Magic squares 3x3 from Smarandache
numbers of 1st kind without previous truncating these numbers. Consequently,
if the given set of numbers consists only of Smarandache numbers of Ist kind,
then one releases from care on solving problems, mentioned above in items 2 —
4

¢) there is a set of analytical formulae available for constructing Magic
squares 3x3 in size from k-truncated Smarandache numbers of 1st kind
(examples of Magic squares 3x3, obtained by these formulae, are shown in
figure 1). In this case the foregoing set of analytical formulae is also the desired
practical method for conmstructing Magic squares 3x3 from k-truncated
Smarandache numbers of 1st kind (see the problem 4).

The main goal of this paper is to investigate some properties of Smarandache
sequences of the 2nd kind [6, 9] and to demonstrate that these numbers are near
prime numbers. In particular, we establish in the paper, that prime numbers and
Smarandache numbers of the 2nd kind
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a) may be computed from the similar analytical expressions (see Section 2
and 3);

b) may be used for constructing Magic squares 3x3 or Magic squares 9x9,
consisted of 9 Magic squares 3x3 (see Section 5 and 6).

2 Prime Nuambers

We remind that in number theory {2, 10, 11] any positive integer (any natural
number), simultaneously dividing positive integers a, b, ..., m, is called their
common divisor. The largest of common divisors is called greatest common
divisor and denoted by the symbol GCD(q, b, ..., m). The existence of GCD
appears from the finiteness of the number of common divisors. The numbers a
and b for which GCD(a, b) = 1 are called relatively prime numbers. The
analytical formula available for counting the value of GCD({g, ) has form [6]

GCD(a, b) = b{1 —sign(r)} + ksign(r), r=a-bla/b], 2
k= MgX{i(l—d)} , d=sign{a-ia/i]} +sign{b-ib/i},

where the function MAX(a;, ay, ..., a,) gives the greatest from numbers a, aa,
..y @3 sign(x) =| x|/x if x#0 and sign(0) = 0.

It is easy to prove, that any natural number larger than a unit, has no less
than two divisors: the unit and itself. Any natural number p > 1, having exactly
two divisors, is called prime. If the number of divisors is more than 2, then the
number is called composite (for example, the number 11, having divisors 1 and
11, is the prime number, whereas the number 10, having the divisors 1, 2, 5 and
10, is the composite number). In this paper we shall consider the number 1 as
the least prime number. The analytical formula, generating n-th prime number
P, has form [6]

(124 m Vi) . o
p,= X sgn-1-%x) x,= Il{sg(i- i/ D}, 3)
m=0 =3 J=2

wherep, =2,p3=3,ps=5,...;sg(x)=1 if x>0 and sg(x)=0 if x<0.

It is proved in the number theory [2, 10, 11], that any natural number larger
than a unit can be represented as a product of prime numbers and this
representation is unique (we assume that products, differing only by the order
of cofactors, are identical). For solving the problem on decomposing the natural
number ¢ in simple cofactors, it is necessary to know all the prime numbers
p,<+a.

Let m = [\/;z- ], where the notation [b] means integer part from b. Then, for
finding all the prime number p, one may use the following procedure
(Eratosthenes sieve) |2, 10, 11]:

1. Write out all the successive numbers from 2 tom and put p = 2;

128



2. In the series of the numbers 2, 3, 4, ..., m, cross out all the numbers having
the formp + kp, where k=1, 2, ._;

3. If, in the series of the numbers 2, 3, 4, ..., m, all the numbers larger than p
have been crossed out, then pass to step 4. If there still remain the
numbers larger than p, which have not been crossed out, then the first of
these ones we denote by p;. If pl >m, then pass to step 4. Otherwise,
put p = p; and pass to step 2;

4. The end of the procedure: primes are all the numbers of the series 1, 2, 3,
4, ..., m, which have not been deleted.

If an arithmetical progression from » prime numbers is found then it should
be known that[2, 10]

The difference of any arithmetical progression, containing n prime numbers
larger than n, is divisible by all the prime numbers < n (Cantor theorem).

From the series of the consecutive prime numbers one may reveal
subsequences of numbers, possessed the different interesting properties. For
instance

a) two prime numbers are called reversed, if each is obtained from other by
reversing of its digits. If p < 1 000 then such numbers are

1,2,3,5,7,11,13, 17,31, 37, 71, 73, 79, 97, 101, 107, 113, 131, 149, )]
151, 157, 167,179, 181, 191, 199, 311, 313, 337, 347, 353, 359, 373,

383, 389, 701, 709, 727, 733, 739, 743, 751, 757, 761, 769, 787, 797,

907, 919, 929, 937, 941, 953, 967, 971, 983, 991.

b) among the numbers of (4) one may reveal the symmetric prime numbers:
1,2,3,5,7,11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, )
787,797, 919, 929;

¢) two prime numbers are called mirror-reversed, if each is obtained from
other by reflecting in the mirror, located above the number. If p < 3000 then
such numbers are:

1,2,3,5, 11, 13, 23, 31, 53, 83, 101, 131, 181, 227, 251, 311, 313, ©)
331, 383, 521, 557, 811, 823, 853, 881, 883, 1013, 1021, 1031, 1033,

1051, 1103, 1123, 1153, 1181, 1223, 1231, 1283, 1301, 1303, 1381,

1531, 1553, 1583, 1811, 1831, 2003, 2011, 2053, 2081, 2113, 2203,

2251, 2281, 2333, 2381, 2531, 2851.
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3 Smarandache Numbers of the 2nd Kind

In this section we consider 4 different Smarandache sequences of the 2nd kind
[6, 9] and demonstrate that the value of n-th numbers a, in these sequences may
be computed by the universal analytical formula {compare with formula (3)}

a,= z‘]):'sg(n+2—b—f‘.x.-), D
=0 =

where y; are the characteristic numbers for the described below Smarandache
sequences of the 2nd type and U, = 10 + (1)

3.1 Pseudo-Prime Numbers

a) Smarandache P;-series

1,2,3,5,7,11, 13, 14, 16, 17, 19, 20, 23, 29, 30, 31, 32, 34, ... 8)
contains the only such natural numbers, which are or prime numbers itself or
prime numbers can be obtained from P;-series numbers by a permutation of
digits (for instance, the number 115 is the pseudo-prime of P;-series because the
number 151 is the prime).

It is clear from the description of Pj-series numbers that they may be
generated by the following algorithm

1. Write out all the successive prime numbers from 1 to 13: 1, 2, 3, 5, 7, 11,
13 and put n=8; a, = 13;

2. Assumep =a, +1.

3. Examine the number p. If p is a prime or a prime number can be obtained
from a, by a permutation of digits, then increase n by 1, put @, = p and go
to step 2. Else increase p by 1 and go to the beginning of this step.

To convert the foregoing algorithm into a computer-oriented method (see
problem 1 in Section 1), we are evidently to translate this description into one of
special computer-oriented languages. There is a set of methods to realise such
translation [6]. The most simplest among ones is to write program code directly
from the verbal description of the algorithm without any preliminary
construction. For instance, Pascal program identical with the verbal description
of the algorithm under consideration are shown in Table 1. In this program the
procedure Pd, the functions PrimeList and PseudoPrime are used for generating
respectively permutations, primes numbers and pseudo-prime numbers; the
meaning of the logical function Belong ToPrimes is clear from its name.

In the case, when verbal descriptions are complex, babelized or incomplete,
the translation of these descriptions into computer languages may be performed
sometimes in two stages [7]: firstly, verbal descriptions of computational
algorithms are translated into analytical ones and then analytical descriptions
are translated into computer languages. To demonstrate how this scheme is
realised in practice, let us apply it to the algorithm, generating P)-series
numbers.
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Table 1. Pascal program 1 for generating Smarandache P,-series

Type Ten=Armray{1..10]Of Integer;
Procedure Pd(Var m4,n1,n:integer;Var
nb3,nb4,nb5:Ten);
Label A28,A29,A30; Var ntk,m:integer;
Begin
if Md=1 Then
Begin
m4:=0;n:=nt;
Fork:=2tondo
Begin Nb4[k]:=0; Nb5[k]:=1; End;
Exit;

End;
k:=0; n:=n1;
A28: m:=Nb4[n]+Nb5[n];Nb4[n]:=m;
i m=n Then
Begin Nb5[n]:=-1;Goto A2S; End;
If Abs{m)>0 Then Goto A30;
Nb5[n]:=1;inc{k);
A29: If n>2 Then
Begin Dec(n);Goto A28, End,
Inc{m);m4:=1;
A30: m=m+k; nt:=nb3[m};
nb3[m]:=nb3[m+1]; nb3[m+1]:=nt
End;

Const Mn=10000; MaxN:Integer=Mn;
Type int=Amay[1..Mn]Of Integer; pint="int;
Var pl:pint;

Function PrimeList(Var MaxN:Integer):pint;
Var ijk:Integer; p:pint;Ok:Boolean;
Begin
GetMem(p,MaxN); p*[1]:=2;i:=3;k:=1,;
While i<MaxN do
Begin {Is i prime or not ?}
j:=3;0k:=True;
While Ok And (j<=Round{Sqrt(i))) do
If i mod j=0 Then Ok:=Faise
Else Inc(j,2);
If Ok Then Begin Inc(k);p*k]:=i;End;
Inc(i,2);
End;
MaxN:=k;Primelist:=p;
End {PrimeList} ;

Function
BelongToPrimes(num:Integer):Boolean;
Var i,r.j:Integer;
Begin
BelongToPrimes:=True; I:=1;r-=MaxN;
Repeat
j=(l+nshr 1; If num<PI*[j] Then r=j

Else If num>PIAf]] Then I:=j+1

Else Exit;

Untit I=r;BelongToPrimes:=False;
End;

Function
PseudoPrime(Num:integer):Boolean;
Var g,nb3,nb4,nb5:Ten;
nd,m,r,mn,m4,n1,mm,i,j,d k,n:integer;
Begin
PseudoPrime:=True;
{Decomposition number num on digits}
d:=Num;k:=0;
Repeat
Inc{k); gfkl:=d mod 10;
r=d; d:=d div 10;
Until r div 10=0;
{Examination whether numbers,
composed from digits are prime}
m4:=1; m:=0; n1:=k;
For i:=1 to n1 do Nb3[i}:=g[i};
Repeat
Pd(m4,n1,n,nb3,nb4,nb5); Inc(m);
If m4=1 Then Break; mm:=1,d:=0;
Fori:=1ton1do
Begin
d:=d+nb3[i}*'mm; mm:=mm*10;
End;
if BelongToPrimes(d) Then Exit;
Untit False; PseudoPrime:=False,
End;
Var Ind,Num,i:Integer; List:pint;
Begin pl:=PrimeList(MaxN);
{Generating list of primes up to MaxNj}
Ind:=0;Getmem(List,4*(MaxN shi 1));
For Num:=10 to MN do
If PseudoPrime(Num) Then
{if number is pseudoprime then add it to list}
Begin Inc(Ind);List*[ind]:=Num; End;
{Output generated numbers to * Sp1’ file,
10 values per row}
Assign{Output,'Sp1");Rewrite(Output),
WriteLn(Ind);
Fori:=1 to Ind do
Begin
Write(ListAfi}:7);
If i mod 10=0 Then WiritelLn;
End;
Close(output)
End.
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Table 2. Pascal program 2 for generating Smarandache P,-series

Const MaxG=5;
Var ¢,d,r-Array{1. MaxG]Of integer;
g:integer;

Function Sg(x:Integer):integer;
Begin {function returns unit if argument is
greater than zero}
If x>0 Then Sg:=1 Eise Sg:=0;
End;

Function Fact{x:Integer):Longint;
Var i:Integer;f:Longint;
Begin {function caiculates factorial of
argument}

f:=1; Fori:=1to x do f=fi; Fact=f
End;

Function Lg(x:Extended):Extended;

Begin {function returns decimal logarithm of
argument}

Lg:=Ln{x)/L.n{10);

End;

Function _
Power(x:Extended;Deg:Integer):Extended;
Var p:Extended;i:integer;
Begin {function returns argument in 'deg’
power}
p:=1;Fori:=1 to Deg do p:=p*x;
Power=p;
Endg;

Function Mu(p,g:Integer):integer;
Var m,q:integer;
{this is an auxiliary function}
Begin m:=1;
For q:=1to p do m:=m*(g-q+1); Mu:=m;
End;

Function GetPos(k,p:Integer).integer;
Var i,f-integer;
Begin
{function retums location of element ‘p’
in ‘K'th permutation of 'g’ objects}
clp):=(k div Mu(p,g)) mod 2;
f:=(k div Mu(p-1,g))mod (g-p+1);
dipl:=p-1+(1-clp])*f+clp]*(g-p-1);
ripl:=d[p];
For i:=p-1 downto 1 do
rip]:=r{p}-Byte(d[i]>=rip]); GetPos:=r[p];
End;

Function MXi(i:Integer):Integer;
Var k,q,p,s,Pro:integer;
Sum,c:Extended;
Begin
{function retums unit if examined value T}
{belongs to set of Smarandache numbers}
8:=0;g:=Trunc{Lg(i))+1;
For k:=0 to Fact(g)-1 do
Begin
{Construction number ‘¢’ from permutated
digits of number '’}
sum:=0; For p:=1togdo
sum:=sum-+(int(i/Power(10,g-p))-
10*Int(i/Power(10,g-p+1)))/
Power{10,GetPos(k,p));
c:=Power(10,g-1)*sum;
Pro:=1; {if °’c’ is prime number}
For q:=2 to Trunc(sqrt(c)) do
Pro:=Pro*Sg(Round(c) mod q);
s:=s+Pro;
End; Mxi:=Sg(s);
End;

Var xi,n,M:Integer;

Function BuildAn(n:integer):integer;
Var i, xi,a:integer;
m,Un,SumXi:Longint;
Begin
{function retumns 'n'th element of
Smarandache sequence}
a:=0;Un:=Sqr(Longint(n));
For m:=0 to Un do
Begin
{SumXi' is quantity of Smarandache
numbers which are less than number 'm’}
SumXi:=0; Fori:=1tomdo
SumXi:=SumXi+MXi(i);
a:=a+sg{n-SumXi);
End; BuildAn:=a;
End;

Begin {Output of the first ‘M’ Smarandache
numbers}
M:=30;
For n:=1 to M do Write(BuildAn(n):5),
Writeln;
End.
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The analytical formula available for determining n-th number in the P;-
series is obtained from (7) when [6]

g1 |i/_'i1
b=2, y;i=sg{ X [Ilsg(c—glc/ql)}, ©)
k=0 g=2
and g, ¢ andr, are calculated by the formulae
g=lg1+1, c=10¢E{[i/10=71-10{i 1105713107 ), 10
i)

=2, d,=p-1+f(1-¢)+c,(e-p-Nc,=l(-D?-11/2,
f= 4= @-p D /E-p+ D) 4=[k/Tl(g-g+D}

= - sg(l+d, — 23), = z3—sg(l+d, —z3), ...,
Z,,= 2,,-sg(1+d, ,—-z,,), z,, =d,—sg(l+ d, - d).

Pascal program identical with the analytical description (9} — (10) of the
algorithm, generating P;-series numbers, takes the form, shown in Table 2.

It should be noted that most part of Pascal text of program 2 consists of
formulae (9) - (10). In other words, translating analytical descriptions of
computative algorithms into computer languages requires noticeably less efforts
than the translation of verbal descriptions. Therefore, our conclusion is that

if it is possible, one should provide the verbal descriptions of computational
algorithms with the analytical ones, constructed, for instanse, by using logical
JSunctions [5-7].

b) Smarandache P;-series

14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76,91, 92, 95, 98, ... (1)
contains the only such natural numbers, which are the composite numbers itself,
but the prime numbers can be obtained from P;-series numbers by a
permutation of digits. The analytical formula available for determining n-th
number in the P;-series has the same form as for P;-series numbers, but in this
case the value of x; from (9) is computed by the formula

- Vel
%= (1= wojsg(S we), wi= Tsg (e =dle/q)). (12)

3.2 Some Modifications of Eratosthenes Sieve

a) Smarandache Ti-series

7,13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, ... (13)
is obtained from the series of natural numbers by deleting all even numbers and
all such odd numbers f; that the numbers #+2 are primes. The analytical
formula for the determination of n-th number in the T;-series has the form (7)
with
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b=2, x,=0G-2[i/2) {1- kI=]2 sg(i+2—-k(i+2)/kD}, (14)

b) Smarandache T;-series

1,3,5,9,11,13,17,21,25,27, 29, 33, 35, 37,43, 49, ... (15)
This series may be obtained from the series of natural numbers by the following
step-procedure:

On k-th step each 2*-th numbers are deleted from the series of numbers
constructed on (k—1)-th step.

The analytical formula for the determination of n-th number in the T5-series
has the form (7) with

flogi}+l y
X = sg( i}l {x. _2k[xk /2k]} hx1 =10, X, =x, ~[x, 1241, (16)

where log a is the logarithm of the number a to the base 2.

4 Algorithms for Solving Problems on Constructing Magic Squares 3x3 from
Given Class of Numbers

Proposition 1. A set of nine numbers is available for constructing Magic
squares 3x3 only in the case if one succeeds to represent these nine numbers in the
form of such three arithmetic progressions from 3 numbers whose differences are
identical and the first terms of all three progressions are also forming an arithmetic
progression.

Proof. The general algebraic formula of Magic squares 3x3 is shown in figure
1(3) 2, 4]. The table 1(4) is obtained from table 1(3) by arranging its symbols. It is
noteworthy that arithmetic progressions with the difference b are placed in the rows
of the table 1(4), whereas ones, having the difference c, are located in its columns.
Thus, the proof of Proposition 1 follows directly from the construction of tables 1(3)
and/or 1(4).

1{213 at+b+2c a at2b+c

41516 a+2b a+b+c a+2c

71819 a+tc a+2b+2c atbh
1) 3

124 a a+b a+2b

31517 atc atb+c a+2b+c

61819 a+2c atb+2c a+2b+2c
@ “)

Figure 1. To proofs of correctness of Proposition 1 and Algorithm 1:

(3) — the general algebraic formula of Magic squares 3x3; (4) — additional table of
Magic squares 3x3; (1) (¢ > 2b) and (2) (b < ¢ < 2b) — two possible arrangements of the
nine increasing numbers in cells of the additional table (4).
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By Proposition 1 and two possible arrangements of the nine increasing
numbers in cells of the additional table 1(4), which are shown in figures 1(1) and
1(2), we may elaborate algorithm 1 available for constructing Magic squares 3x3
from an arbitrarily given set of nine increasing numbers [2]:

1. Take two square tables 3x3 and arrange 9 testing numbers in them so as it

is shown in figures 1(1) and 1(2).

2. Check whether three arithmetic progressions of Proposition 1 are in one of

these square tables 3x3.

It should be noted, if the problem on constructing the Magic square 3x3
from the given set of nine increasing numbers has the solution, then this
solution is always unique with regard for rotations and mappings.

For finding all Magic squares 3x3 from a given class of numbers with the
number f in its central cell, one may use the following algorithm 2 [2, 4]
a) write out the possible decompositions of the number 2f in the two
summands of the following form:

o = xi() + xA s 17
where j is the number of a decomposition and x;{ j), x2(j) are the two
numbers such that x;{ j) < x2(j) and both these numbers belong to the
given class of numbers;

b) in the complete set of various decompositions (17), fix one, having, for
instance, the number & and, for this decomposition, determine the
number d(k): d(k) =f-xi(j);

¢) find all possible arithmetic progressions from 3 numbers with differences
equal d(k) among a set of numbers {x,( j)} without x;(k). If there are m
such arithmetic progressions then there are m Magic squares 3x3 with the
numbers x;{ k) and x( k) in its cells;

d) repeat items (b) and (c) for other values of k.

5 Magic Squares 3>3 and 9x9 from Prime Numbers

Propesition 2. A Magic square 3x3 can be constructed from prime numbers only
in the case if the parameters b and c¢ of the general algebraic formula 1(3) and/or
additional table 1(4) are the numbers multiple of 6.

Proof. The truth of Proposition 2 follows from Proposition 1 and Cantor
theorem of Section 2

Corollaries from Proposition 2 [2]:

1. By using prime numbers one cannot construct a Magic square 3x3 with
one of the cells containing numbers 2 or 3.
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2. All nine prime numbers of a Magic square 3x3 are either numbers of the
form 6k — 1 or have the form 6k + 1.

Propesition 3 [2]. With regard for rotations and mappings, the last digits of
the prime numbers may be arranged in the cells of the additional table of a Magic
square 3x3 only in such variants, which are shown in figure 2.

Proof. To prove the truth of Proposition 3, we need the two more easily verified
properties of the additional table 1(4).

1. In this table the sums of the symbols of the central row, central column
and both diagonals are identical and coincide with the Magic constant of the
general algebraic formula 1(3).

2. An arithmetic progression, consisting of three numbers, occurs not only in
the rows and columns but also in each diagonal of the additional table.

Now let us place a prime number, for instance, ending by 1, into the central
cell of the additional table 1(4). It is clear, that in this case the last digits of all
other prime numbers of the additional table of a Magic square 3x3 must be such
that their sums in the central column, central row and both diagonals would
terminate by 3. Thus, only certain arrangements of the last digits of prime
numbers are possible in the remaining cells of the additional table and all such
variants are shown m figure 2.

1111 31313 71717 91{919
111 3 71717 91919
1111 31313 71717 91919
(1 @ (N (19
31119 713149 11713 11917
31119 7{31]9 11713 11917
31149 71319 11713 11917
2 (%) ®) (1D
51311 51913 S5{1¢7 51719
3119 91317 1713 71911
1191(7 31711 7{319 91143
3 © ® (12)

Figure 2. All possible arrangements of the last digits of
the prime numbers in cells of the additional table 1(4).

Corollaries from Proposition 3 [2]:

1. Since 5 is a prime number having the form 6k — 1, only the prime numbers
of the form 6k — 1 can be placed in cells of the additional table 1(4) with
arrangements 2(3), 2(6), 2(9) and 2(12).
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2. The arithmetic progression from three prime numbers a,—30m, a;, a,+30m
may be found among nine prime numbers of any Magic square 3x3, where the
number q; is located in the central cell of the Magic square and m is some
integer number. Hence it appears that

no Magic square 3x3 may be constructed from prime numbers if a; < 30.

Let us consider some results of [2], obtained for prime numbers by
computer.

1. Magic squares 3x3, shown in figure 3, are the least ones, constructed only
from prime numbers.

67 ] 1 | 43 101 5 |71 101 [ 29 | 83 109 7 | 79

13137 ] 6l 29 | 59 | 89 53] 71 [ 89 43 | 73 | 103

3| B] 7 47 [ 113} 17 59 |13 ] 41 67 | 139 ] 37
) @ &) @)

Figure 3. The least Magic squares 3x3, constructed only from prime numbers.

2. Let it be required to construct a Magic square 3x3 only from prime
numbers with the number g; in its central cell. This problem cannot be solved
only for the following prime numbers g, >30:

a) having the form 6k - 1: 41, 101; 53, 83, 113, 233; 47, 107, 197, 317; 569,

b) having the form 6k + 1: 31, 61, 181, 331; 43, 163, 223, 313, 433; 67, 97,

277,457, 79, 199, 229, 439, 859.

3. The results of the item 2 make it possible to assume that, for any g; larger
than some prime number Pmax, One can always construct a Magic square 3x3
with Magic sum S = 3a, and the prime numbers, ending by the same digit as the
number a;. Pmax equals the following prime numbers:

a) having the form 6k - 1: 5081 (281); 3323 (683); 6257 (557); 3779 (359);

b) having the form 6k+1: 3931 (601); 3253 (523); 4297 (307); 7489 (769),
where in brackets we indicate the least prime numbers a;, for which one can
construct a Magic square 3x3 with S = 3g; and the prime numbers, ending by
the same digit as a;.

4. Let it be required from prime numbers to construct a Magic square 93,
which contains the number g, in its central cell and consists of 9 Magic squares
3x3.

The example of the least Magic square 9x9, constructed only from prime
numbers and consisted of 9 Magic squares 3x3, is shown in figure 4.

If a, > 1019, then the problem on constructing Magic squares 99, discussed
in this item, cannot be solved only for following prime numbers a;:

1021, 1031, 1033, 1039, 1049, 1051, 1061, 1069, 1087, 1091, 1093, (18)
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1097, 1109, 1117, 1123, 1129, 1153, 1171, 1181, 1193, 1201, 1213,
1217, 1229, 1231, 1237, 1249, 1259, 1279, 1283, 1303, 1307, 1321,
1327, 1439, 1453, 1481, 1483, 1489, 1511, 1531, 1543, 1567, 1783.

Figure 4. The example of the least Magic square 9x9, constructed only from
prime numbers and consisted of 9 Magic squares 3x3.

6 Magic Squares 3x3 and 9x9 from Smarandache Numbers of the 2nd Kind

6.1 Magic Squares 3x3 and 9x9 from P;-Series Numbers

Let the notation ch (N) means the quantity of all C-series numbers, whose values

are less than ¥, and the notation Py-series means the prime numbers series.
Proposition 4. For any natural number N the following inequality
Ay (N)2 4, (N) (19)

is fulfilled

Proof. The truth of Proposition 4 follows from the description of P;-series
numbers (see Section 3.1). Namely, Pp-series numbers is subset of Pj-series
numbers at any N and agree with a set of P;-series numbers only if N < 13.

Propeosition 5. P;-series numbers are available for constructing Magic squares
3x3.

Proof. The truth of Proposition 5 follows from Proposition 4 and that the prime
numbers are available for constructing Magic squares 3x3 (see Section 5).

Solving the problems on constructing Magic squares 33 from P;-series
numbers by computer, we find that
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1. Magic squares 3x3, shown in figure 5, are the least ones, constructed from
P;-series numbers.

471 5 |35 50 {11}35 5311141 50 17 [ 38

17129 [ 4 17132147 23]35] 47 23 | 35 | 47

23]s53]1 29]53]14 2915917 3253120
M) @ &) @

Figure 5. The least Magic squares 3x3, constructed from P;-series numbers.

2. Let it be required from P;-series numbers to construct a Magic square 3x3
with the number g, in its central cell.

If a,> 35, then this problem cannot be solved only for the following P;-
series numbers: 38, 43, 47, 50 and 61.

3. Let it be required from Pj-series numbers to comstruct a Magic square
9x9, which contains the number g, in its central cell and consists of 9 Magic
squares 3x3.

Magic square 9x9, shown in figure 6, is the least such one, constructed from
Pi-series numbers.

We note, that

a) in the Magic square 9x9, shown in figure 6, the numbers 215, 35, 143, 59,
203, 119, 227 and 47 may be replaced respectively by 203, 47, 143, 71, 191, 119,
215 and 59;

Figure 6. The least Magic square 9x9, constructed from
P,-series numbers and consisted of 9 Magic squares 3x3.

b) if q,> 194, then the problem on constructing Magic squares 9x9,
discussed in this point, cannot be solved only for following 10 P;-series numbers
a;: 196, 197, 199, 211, 214, 217, 223, 229, 232 and 300.
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6.2 Magic Squares 3x3 and 9x9 from P,-Series Numbers

Proposition 6. For any natural number N the following inequality
Ap(N)< A4, (N) (20)

is fulfilled

Proof. The truth of Proposition 6 follows from the description of Prseries
numbers (see Section 3.2). Namely, P,-series numbers may be obtained by
deleting all prime numbers from P;-series numbers.

It follows from Proposition 6 that, although we know about the availability of
P,- and P,-series numbers for constructing Magic squares 3x3, we cannot state
that P;-series numbers are also available for constructing Magic squares 3x3. To
clear up this situation, let us consider our results, obtained for Ps-series
numbers by computer.

1. Magic squares 3x3, shown in figure 7, are the least ones, constructed from
P,-series numbers.

152 14 [ 110 164 | 50 | 143 203 [ 20 [ 134 215 ] 20 | 140

50 | 92 | 134 98 | 119 | 140 50 | 119 | 188 50 | 125 | 200

74 [ 170 | 32 95 [ 188 | 74 104 | 218 | 35 110 | 230 | 35
M @ (€) @

Figure 7. The least Magic squares 3x3, constructed from Ps-series numbers.

2. Let it be required from P»-series numbers to construct a Magic square 3x3
with the number g, in its central cell.

If a, = 92, 125, 441, 448, 652, 766 or 928, then this problem has a single
solution.

If a,> 125, then this problem cannot be solved only for the foilowing P-
series numbers:

130, 142, 143, 145, 152, 160, 166, 169, 172, 175, 176, 190, 196, 232, @2n
238, 289, 292, 298, 300, 301, 304, 319, 325, 382, 385, 391, 478, 517.

3. Let it be required from P,-series numbers to construct a Magic square
9x9, which contains the number g in its central cell and consists of 9 Magic
squares 3x3.

If a, = 473, then there are 609 the least Magic squares 9x9 with mentioned
properties (the example of such Magic square is shown in figure 8).

If @, > 473, then the problem on constructing Magic squares 9x9, discussed
in this item, cannot be solved only for two P;-series numbers a;: 478 and 517.
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1007 | 140
146 | 575
572 | 1010
785 32

38 410

407 | 788
740 92
164 | 434
398 1 776

Figure 8. The example of the least Magic square 9x9, constructed from
Py-series numbers and consisted of 9 Magic squares 3x3.

6.3 Magic Squares 3x3 and 9x9 from T;-Series Numbers

Proposition 7. There exists such natural number Ny that for any natural N > Ny
the following inequality

A (N)> 4, (N) (22)
is fulfilled

Proof. As it follows from the description of Ti-series numbers (see Section
3.2), this series numbers may be obtained from series odd natural numbers by

deleting all such odd numbers, which are prime numbers decreased by 2. Thus,
we have the following relation

AR (N)=(N-1)/2 - A4, (N) or Ap(N)/ Ap(N) = {(N-1)/2}/ 4, (N)-1 _ (23)

where the term (N-1)/2 is the quantity of all odd natural numbers, whose \;alues
are less than V. Since [8]

A4, (N)= N{In(N)+1} £ N/In*(N), (24)
we obtain from (23) and (24) that
Ap(N)/ Ap (N) = In(N)/2 - 1>2 forany N> 500. (25)

Thus, Proposition 7 is true, if Np, for instance, equals 500.

Proposition 8. Ty-series numbers are available for constructing Magic squares
3x3.

Proof. The truth of Proposition 8 follows from Proposition 7 and that the prime
numbers are available for constructing Magic squares 3x3.

Let us consider our results, obtained for 7i-series numbers by computer.
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1. Magic square 3x3, shown in figure 9(1), is the least one, constructed from
T-series numbers.

4917137 83113} 63 117 | 19 | 89 185 | 31 | 141

1913143 3353173 47 1 75 ] 103 75 | 119 ] 163

25]55]13 43193123 61 | 131] 33 97 | 207 | 53
0 @ 3 )

Figure 9. Examples of Magic squares 3x3, constructed from T}-series numbers.

2. Let it be required from T;-series numbers to construct a Magic square 3x3
with the number q, in its central cell.

If a, = 53, 75 or 119, then this problem has a single solution {see figure 9(2 -
4)}.

If a, > 31, then this problem cannot be solved only for two 7j-series
numbers: 33 and 47.

3. Let it be required from T)-series numbers to construct a Magic square
9x9, which contains the number g, in its central cell and consists of 9 Magic
squares 3x3.

If g, = 181, then there are 118 the least Magic squares 9x9 with mentioned
properties (the example of such Magic square is shown in figure 10).

If a, > 181, then the problem on constructing Magic squares 9x9, discussed
in this item, can be solved for all Ti-series numbers ;.

Figure 10. The example of the least Magic square 9x9, constructed from
T;-series numbers and consisted of 9 Magic squares 3x3.

If a;, = 181, then there are 118 the least Magic squares 9x9 with mentioned
properties (the example of such Magic square is shown in figure 10).

If a, > 181, then the problem on constructing Magic squares 99, discussed
in this item, can be solved for all T}-series numbers g,
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6.4 Magic Squares 3x3 and 9x9 from T>-Series Numbers
Proposition 9. There exists such natural number Ny that for any natural N > Ny
the following inequality

Ap (N)> Ap (N) (26)
is fulfilled

Proof. As it follows from the description of T»-series numbers (see Section
3.2), this series numbers may be obtained from series natural numbers by

deleting all 2°-th numbers on each k-th step of step-procedure (sicve). Thus, we
have the following relation

An(N)=N _ N 112% = N(-2/{log ) (log(M)+1)}) = 27
- k=

= N(1-2.9/{In(N) (1.44 In(N) + 1)}).
We obtain from (24) and (27) that
Ar(N)/ Ap (N) = In(N) >2 forany N>20. (28)
Thus, Proposition 9 is true, if Ny, for instance, equals 20.

Proposition 10. Ty-series numbers are available for constructing Magic
squares 3x3.

Proof. The truth of Proposition 10 follows from Proposition 9 and that the prime
numbers are available for constructing Magic squares 3x3.

Our computations give the following results:

1. Magic squares 3x3, shown in figure 11, are the least ones, constructed
from Tr-series numbers.

2911 121 3315125 St 1129 4311 |33 4315133

9 117125 1312129 512749 17 127} 37 17 | 27 | 37

13{33¢ 5 17137 9 25{53¢1 3 21 153111 2114911
I (2 3 @ &)

Figure 11. The least Magic squares 3x3, constructed from 7,-series numbers.

2. Let it be required from T»-series numbers to construct a Magic square 3x3
with the number g, in its central cell.

If g, > 27, then this problem cannot be solved omly for two 7:-series
numbers: 37 and 49.

3. Let it be required from 73-series numbers to construct a Magic square
9%9, which contains the number g, in its central cell and consists of 9 Magic
squares 3x3.
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395 1 11 [ 29941265} 17 | 1S3 43731 5 | 237
139 1 235 1 331 ] 33 | 145 | 257 1 69 | 205 | 341
171 | 459 | 75 || 137 { 273 | 25 }} 173 } 405 | 37

Figure 12. The example of the least Magic square 9x9, constructed from
T>-series numbers and consisted of 9 Magic squares 3x3.

If g, = 195, then there are 6 the least Magic squares 99 with mentioned
properties (the example of such Magic square is shown in figure 12).

If 4, > 195, then the problem on constructing Magic squares 99, discussed
in this point, cannot be solved only for the following P,-series numbers a;:

197, 201, 205, 213, 213, 217, 221, 225, 229, 237, (29)
245, 249, 257, 261, 269.

7 Concluding Remarks

As it is demonstrated in this paper, preliminary theoretical analysis of number-
theoretic and combinatorial problems is always useful. In particular, the results
of this analysis are able sometimes to provide investigators with valuable
information, facilitating considerably the solution of all such of practical tasks,
which are enumerated in Section 1. We hope, that the technique of theoretical
analysis, elaborated in the paper, will become useful tool of investigators,
occupied in the considered problems.
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On Smarandache sequences and subsequences

Tiang Zhengping Xu Kanghua
(Hangzhou Teacher's College, Fuyang No2 Middle School, Zhejiang, P. R. China)

Abstract A Smarandache sequence partial perfect additive

sequence is studied completely in the first paragraph. In the second
paragraph both Smarandache square-digital subsequence and  square-
partial-digital subsequence are studied.

Key words Smarandache partial perfect additive sequence,

Smarandache square-digital subsequence , Smarandache square-partial-digital
subsequence.

§1 Smarandache partial perfect additive sequence

The Smarandache partial perfect additive sequence is defined to
be a sequence:l, 11 03 27 _17 19 1, 3: _29 07 Os 2’ 0’ 2 27 41
—3)_1’ —ls 19 —11 ]-9 L 3, —1, 13

This sequence has the property that:

p 2p
J.a=Ya, for all p>1.
=

J=p+l

It is constructed in the following way:

@ =a, =1,
a2p+l = ap+1 —1’
and Qpy =4, +1 for all p>1.

In [1] M. Bencze raised the following two questions:

(@) Can you, readers, find a general expression of a

n

(as

function of =#)?
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Is it periodical or convergent or bounded?

(b) Please design (invent) yourselves other Smarandache perfect
(or partial perfect) f-sequences.

In this paper we solved the question (a) completely.

Supposc the bmary notation of #(n=22) as n=(g,6, " &),
among which £, =1,6=0 or 1 (i=0L---,k-1). Define f(n) are the
numbers of & =Wi=0L--,k), g(n) is the minimum of  that
makes & =1.

Thus we may prove the expression of a(m)( ie. a, ) as the

following:
a(n):f k, if E,=€ = =6, =0,
|-k +2f(n)+ 2g(m)~ 3 otherwise

We may use mathematical induction to prove it
a(D)=1a(3)=0=-1+2x2+2x0-3=-1+27(3)+2g(3)-3.

So the conclusion is wvalid for n=23

Suppose that the conclusion is also valid for

23,--.,n—1(n>3).Let’s consider the cases of n.
1 When ¢g,=¢g=-=¢£_,=0.
a(n) = a((£,€,_, " £,6,),) = a((&,&,_, &) +1
=k-1+1=k%.
2 When not all the ¢g,¢, £, arc zeroes, two kinds of

cases should be discussed.
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DI £=0.
Then f(n)= f((6.6:y  &85)2) = F(EErs " 6)1) = f(;)y

g(n)=g((6,8, 65,),) = g((€L64y +6),)+ 1= g(g) +1
According to inductive hypothesis, we have
a(n)= a(§)+ 1=—(k-1)+ 2f(§)+ 2g(-;’-)- 3+1

=—k+2f(n)+2g(n)-1)-1
=—k+2f(n)+2g(n)-3.
(2 ¥ ¢g,=1, threc subcases exist
(i) If g=0.
Then f(n)=f((£8c - 8150)2) = f(£28p-y +£21),)
=f ([g}'- 1), the notation [x] denotes the greatest integer not
more than x.
()= g(rtr6:50):) = 8(Ex5r -+ 6:8,1),) = g@} D=0.
so, it's easily known from inductive hypothesis

a(n)=a(‘i—;-}+1)—l=—(k-—l)+ 2f({—2’£]+1)+2g([§}+1)—3—1

=-k+2f(n)+2g(n)-3.

(i)Hfg =¢6,==¢=Le,=01<i<k-2.

n
n=(E,8, " EEp)ys [E-l+1= (£r84y 8140618 8:8)), + (1),
i
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= (581" £:42100:--0), .

So, f([g}l):f(n)—i, g(B} D=i=i+g(n).
Then, According to inductive hypothesis, we have
a(n) = a([:—g:l+ D-1=—(k-1+ 2‘f(B]+ D+ 2g(B]+ D-3-1

=—k+2(f(n)-i)+2(i + g(n)) -3
=—k+2f(n)+2g(")*3'

(i) g=¢g,==¢_,=¢6,=1, then

f(m=k+1, g(n)=0. I:g'-l+1=(€k£k-l"'£2£1)z +(1),

=(100---0),, so from 1

k times

a({ﬂﬂ)zk.

Then a(n)=a([—2’£]+l)—-1=k—l

= —k+2k+1)+2x0-3=-k+2f(n)+2g(n)-3.
From the above, the conclusion is true for all the

natural numbers m(n=2).
Having proved above fact, the remaining problem in

question (4) can be solved easily For if »=2*, we have

a(n)=k, so sequence ja(n)} is unbounded, therefore cannot be

periodical and convergent.
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§2 Smaranche square-digital subsequence and

Smaranche square-partial-digital subsequence
The Smaranche square-digital subsequence is defined to be a
subsequence:
0, 1, 4 9, 49, 100, 144, 400, 441,

ie. from 0, L 4, 9, 16, 25 36, -, n*’, --- we choose only the

terms those digits are all perfect squares (Therefore only 0, 1 4
and 9)

In {1] MBencze questioned: Disrega.rding the square numbers of
the form NQ---0, where N is also a perfect square, how many

2k times

other numbers belong to this sequence ?
We find that 1444, 11449, 491401, also belong to the

sequence by calculating.
In fact, we may find infinitely many numbers that belong to
the sequence.

(2:10* +1)* =4-10* +4.10* +1,

(10* +2)? =10% + 4-10% + 4 for all k>1.

Smarandache square-partial-digital subsequence is defined to be a
sequence:
49, 100, 144, 169, 400, 441,

ie. the square numbers that can be partitioned into groups of
digits which are also perfect squares (169 can be partitioned as
16=4> and 9=3% etc)).

In the same way it is questioned: Disregarding the square
numbers of the form NOQ---0, where N is also a perfect square,

2k times

how many other numbers belong to this sequence ?
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We may find 22 numbers in the form a0’ (there neither a
or b is zero).
10404, 11025, 11449, 11664, 40401, 41616, 42025, 43681,

93025, 93636, 161604, 164025, 166464, 251001, 254016, 259081,
363609, 491401, 641601, 646416, 813604, 819025.

We may construct infinitely many numbers by adding zero
the middle of there numbers like 102%, 105%, 1072, 108%, 2017, 204,

2052, 209%, 305%, 306%, 402%, 405%, 408%, SO12, 5042, 5092, 603?,

7012, 801%, 804%, 902°, 905° as well . we may find some other
numbers as the following:
3243601, 10246401, 2566404, 1036324, 4064256, 36144144, 49196196,

81324324, 64256256, 121484484, 169676676, 196784784, 484434121,

576576144, 676676169, 784784196 900900225, 1442401, 3243601, 4004001,

4844401, 10246401 20259001, 24019801, 25010001, 49014001, 64016001.

§3 Smaranche cube-partial-digital subsequence

1000, 8000, 10648, 27000,

ie. the cube numbers that can be partitioned into groups of
digits which are also perfect cubes (10648 can be partitioned as

1=1°0=0°,64=4°, and 8=2%)

Same question: disregarding the <cube numbers of the form:
MO0.--0 , where M is also a perfect cube, how many other

3k times

numbers belong to this sequence?
As the above said, we may find infinitely many numbers that
belong to the sequence as well

151



(3-10%*2 +3),(6-10*** +1)%,(6-10*" + 6)*,(10** + 6)° for all k20
for example 27818127 = 303°, 216648648216 = 6006 ,

216108018001 = 6001°, 1018108216 = 1006” .

REFERENCES
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152



On three problems concerning the Smarandache LCM sequence

Felice Russo

Via A. Infante 7
67051 Avezzano (Aq) Italy
felice.russo@katamail.com

Abstract

In this paper three problems posed in [l1] and concerning the
Smarandache LCM sequence have been analysed.

Introduction

In [1] the Smarandache LCM sequence is defined as the least common multiple (LCM) of
(1,23, ... ,n):

1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720 .......
In the same paper the following three problems are reported:

1. If a(n) is the n-th term of the Smarandache LCM sequence, how many terms in the new
sequence obtained taking a(n)+1 are prime numbers?

2. Evaluate  lim a_(r’z_ where a(n) is the n-th term of the Smarandache LCM sequence
n!
s b
3. Evaluate lim L where a(n) is the n-th term of the Smarandache LCM sequence
n—ow a(n)

n

In this paper we analyse those three questions.



Results

Problem 1.

Thanks to a computer programs written with Ubasic software package the first 50 terms of

sequence a(n)+1, where a(n) is the n-th term of Smarandache LCM sequence, have been

checked. Only 10 primes have been found excluding the repeating terms.

In the following the sequence of values of 7 <50 such that a(n)+1 is prime is reported:
2,3,4,5,7,9,19,25,32,47

According to those experimental data the percentage of primes is:

10 a17%
24

We considered 24 instead of 50 because we have excluded all the repeating terms in the
sequence a(n) as already mentioned before. Based on that result the following conjecture can be
formulated: '

Conjecture: The number of primes generated by terms of Smarandache LCM sequence plus 1 is
infinite.

Problem 2.

By using a Ubasic program we have found:

<«

fm ) 22 E : 1 =4.195953...
n—>c n! 32-n° +20-n-11

n n=1
Problem 3.

Always thanks to a Ubasic program the convergence value has been evaluated:

lim Z ! ~In 27773 _ 1.7873...
n—w a(n) 27281

n
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where 27773 and 27281 are both prime numbers.
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On a problem concerning the Smarandache Unary sequence

Felice Russo

Via A. Infante 7
67051 Avezzano (Aq) Italy
Jelice.russo@katamail.com

Abstract

In this paper a problem posed in [1] and concerning the number of
primes in the Smarandache Unary sequence is analysed.

Introduction

In [1] the Smarandache Unary sequence is defined as the sequence obtained concatenating p,,
digits of 1, where p,, is the p-th prime number:

11, 111, 11111, 111111, 11100000000, 1111202201114, 111101010000000111, ..........

In the same paper the following open question is reported:

How many terms in the Smarandache Unary sequence are prime numbers?

In this paper we analyse that question and a conjecture on the number of primes belonging to the
Smarandache Unary sequence is formulated.

Results

A computer program with Ubasic software package has been written to check the first 311 terms

of the Unary sequence; we have found only five prime numbers. If we indicate the n-th term of
the unary sequence as:

10P» -1
9

u(n) = where p, is the n-th prime.
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those five primes have been found for p, equal to 2, 19, 23, 317 and 1031.

This means a percentage of 3—%~1.6% prime numbers. According to this experimental

evidence the following conjecture can be formulated:
Conjecture: The number of primes in the Smarandache Unary sequence is upper limited.

Unsolved question: Find that upper limit,

References.
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An introduction to the Smarandache Double factorial function

Felice Russo
Via A. Infante 7
67051 Avezzano (Aq) Italy

In [1], [2] and [3] the Smarandache Double factorial function is defined as:

Sdf{(n) is the smallest number such that Sdf{n)!! is divisible by n,
where the double factorial is given by [4]:

m!! = Ix3x5x...m, if m is odd;
m!! = 2x4x6x...m, if m is even.

In this paper we will study this function and several examples, theorems,
conjectures and problems will be presented. The behaviour of this function is
similar to the other Smarandache functions introduced in the chapter L.

In the table below the first 100 values of fucntion Sdf(n) are given:

n  Sdf(n) n Sdf(n) n  Sdfiln) n Sdf(n) n Sdf(n)
1 1 21 7 41 41 61 61 81 15
2 2 22 22 42 14 62 62 82 82
3 3 23 23 43 43 83 9 83 83
4 4 24 6 44 22 64 8 84 14
5 5 25 15 45 9 65 13 85 17
6 6 25 26 46 46 66 22 86 86
77 27 9 47 47 67 67 87 29
8 4 28 14 48 6 68 34 88 22
9 9 28 29 49 21 69 23 89 89
10 10 30 10 50 20 70 14 S0 12
11 i 31 31 51 17 71 71 91 13
12 6 32 8 52 26 72 12 92 45
13 13 33 11 53 53 73 73 93 31
14 14 34 34 54 18 74 74 94 94
18 & 35 7 55 11 75 15 a5 19
16 6 36 12 56 14 76 38 36 8
17 17 37 37 57 19 77 11 97 g7
18 12 38 38 58 58 78 26 98 23
19 18 39 13 59 59 79 79 99 11
20 10 40 10 g0 10 80 10 100 20
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According to the experimental data the following two conjectures can be
formulated:

b

[+ o}
Conjecture 4.1 The series ZSdf (n) is asymptotically equal to a-n” where a

n=1

and b are close to 0.8834.. and 1.759.. respectively.

1
Sdf (n)

and b are closeto 0.9411.. and 0.49.. respectively.

fe o}
Conjecture 4.2  The series Z is asymptotically equal to a-n® where a
n=]

Let's start now with the proof of some theorems.
Theorem 4.1. Sdf(p)=p where p is any prime number.

Proof. For p=2, of course Sdf(2)=2. For p odd instead observes that only for m=p
the factorial of  first m odd integers is a multiple of p, that is
1:3-5- 7KK p=(p-2)ltp.

Theorem 4.2. For any squarefree even number n,
Sdf (n) = 2- max{p, py, p3. K K pi}
where pj, po, p3, KK p; are the prime factors of n.

Proof  Without loss of generality let's suppose that »n= p;,p;,p; Wwhere
p3>py>p and py=2. Given that the factorial of even integers must be a
multiple of n of course the smallest integer m such that 2-4.6K -m is divisible by

nis 2-p-. Infactfor m=2- we have :
23 7

2:4.6K2- ;7K -2.p35=2-p2-p3)-(4-6K2K -2)=k-(2-py - p3) where ke N

Theorem 4.3. For any squarefree composite odd number n,
Sdf (n) = max{py, py,K py} where py,py,K p; are the prime factors of n.
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Proof. Without loss of generality let suppose that n= p, - p, where p; and p, are
two distinct primes and p, > p; . Of course the factorial of odd integers up to p,
is a multiple of n because being p; < p, the factorial will contain the product
Py - py and thereforen: 1:3-5K - piK - py

<«
Theorem 4.4. Z ! diverges.
: Sdf (n)
n=

. . . . 1
Proof. This theorem is a direct consequence of the divergence of sum E —
P

p
where p is any prime number.

s o] «©
In fact ——1—> 1 according to the theorem 4.1 and this proves the
Zk 4 Sa (k) Z P
= p:

theorem.

Theorem 4.5 The Sdf(n) function is not additive that is
Sdf (n+m) = Sdf (n)+ Sdf (m) for (n,m)=1.

Proof. In fact for example Sdf(2+13) = Sdf(2) + Sdf(15).

Theorem 4.6 The Sdfin) function is not multiplicative, that is
Sdf (n-m) # 8df (n)-Sdf (m) for (n,m)=1.

Proof. In fact for example Sdf (3-4) # Sdf (3)- Sdf (4).

Theorem 4.7 Sdf(n)<n

Proof. If n is a squarefree number then based on theorems 4.1, 4.2 and 4.3
Sdf (n) < n. Let's now consider the case when n is not a squarefree number. Of

course the maximum value of the Sdf{n) function cannot be larger than n because
when we arrive in the factorial to n for shure it is a multiple of n.
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Theorem 4.8 Zw diverges.
n

n=1

Proof. In fact E §—@E@> E Saf(p) where p is any prime number and of
p
k=1 p=2

course Zﬁfﬂp_) diverges because the number of primes is infinite [5] and

p
4

Sdf(p)=p.

Theorem 4.9 Sdf(n)=1 for n>1

Proof This theorem is a direct consequence of the Sdf(n) function definition. In
fact for n=1, the smallest m such that 1 divide Sdf(1) is trivially 1. For n=1, m
must be greater than 1 becuase the factorial of 1 cannot be a multiple of n.

< Sdf(m

n

Theorem 4.10 0 <t for n>1

Poof. The theorem is a direct consequence of theorem 4.7 and 4.9.

Theorem 4. 11  Sdf (py#)=2-p, where p;# is the product of first k primes
(primorial) [4].

Proof. The theorem is a direct consequence of theorem 4.2.

Theorem 4.12 The equation Sdfm) _ 1 has an infinite number of solutions.
n
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Proof The theorem is a direct consequence of theorem 4.1 and the well-known
fact that there is an infinite number of prime numbers [5].

Theorem 4.13 The even (odd respectively) numbers are invariant under the
application of Sdf function, namely Sdf{even)=even and Sdf{ odd)=odd

Proof. Of course this theorem is a direct consequence of the Sdf(n) function
definition.

Theorem 4.14 The diophantine equation Sdf(n) = Sdf(n+1) doesn't admit
solutions.

Proof. In fact according to the previous theorem if n is even (odd respectively)
then Sdf(n) also is even (odd respectively). Therefore the equation Sdf(n)=Sdf(n+1)
can not be satisfied because Sdf{n) that is even should be equal to Sdf(n+1) that
instead is odd.

Conjecture 4.3 The function Sdf(n) is not distributed uniformly in the interval
n
10,11.
Conjecture 4.4 For any arbitrary real number ¢ > 0, there is some number » > 1
such that Sdf (n) <¢g
n

Let's now start with some problems related to the Sdf{n) function.
Problem 1. Use the notation FSdf(n)=m to denote, as already done for the Zi(n)
and Zw(n) functions, that m is the number of different integers k such that Zw(k)=n.

Example FSdf(1)=1 since Sdf(1)=1 and there are no other numbers n such that
Sdf(n)=1

Study the function Fsdf{(n).
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Z’": FSdf (k)

k=t
m—w m

Evaluate

Problem 2. Is the difference |Sdf{n+1)-Sdf(n)| bounded or unbounded?

Sdf(n+1) i Sdf (n)
Sdf (n) Sdf (n+1)
where k is any positive integer and n>1 for the first equation.

Problem 3. Find the solutions of the equations:

Conjecture 4.5 The previous equations don't admits solutions.

Problem 4. Analyze the iteration of Sdftn) for all values of n. For iteration we
intend the repeated application of Sdf(n). For example the k-th iteration of Sdf(n) is:

Sdf*(n) = Sdf (Sdf (K K (Sdf (n))K)  where Sdf is repeated k times.

For all values of n, will each iteration of Sdf(n) produces always a fixed point or a
cycle?

Problem 5. Find the smallest k such that between Sdf(n) and Sdf(k+n), for n>1,
there is at least a prime.

Problem 6. Is the number 0.1232567491011.... where the sequence of digits is
Sdf(n) for n=1 an irrational or trascendental number? (We call this number the
Pseudo-Smarandache-Double Factorial constant).

Problem 7. Is the Smarandache Euler-Mascheroni sum (see chapter II for
definition) convergent for Sdf(n) numbers? If yes evaluate the convergence value.
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Problem 8. Evaluate Z(—l)k-Sdf(k)"
k=1

1
Sdf (n)

Problem 9. Evaluate l l
n=|

Problem 10. Evaluate lim Sdf (k)

ks 6(

where 9_(k) = Zln(Sdf (n)

n<k

Problem 11. Are there m, n k non-null positive integers for which
Sdf (n-m) =m* -Sdf (n) ?

Problem 12. Are there integers k>1 and n>1 such that (Sdf (n))k =k-Sdf(n-k) ?

Problem 13. Solve the problems from I up to 6 already formulated for the Zw(n)
function also for the Sdf{n) function.

Problem 14. Find all the solution of the equation Sdf(n)!=Sdf(n!)

Problem 15. Find all the solutions of the equation  Sdf (nk)zk-Sa'f (n) for
k>land n>1.

Problem 16. Find all the solutions of the equation Sdf (nk) =n-Sdf (k) for k>1.
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Problem 17. Find all the solutions of the equation Sdf (nk Y= n"-Sdf (m) where
k>1andn, m>0.

Problem 18. For the first values of the Sdf(n) function the following inequality is

true:

k Sl-n+2 for 1<n <1000
Sdf(n) 8

Is this still true for n>1000 ?

Problem 19. For the first values of the Sdf(n) function the following inequality is

true:

Sdf(n) . 1
n 07

for 1<n <1000

Is this still true for all values of n>1000 ?

Problem 20. For the first values of the Sdf(n) function the following inequality
hold:

l-}- ! <n 4 for 2<n<1000
n Sdf(n)

Is this still true for n>1000 ?

Problem 21. For the first values of the Sdffn) function the following inequality
holds:
5

L n 4 for 1<n<1000

—_—<
n-Sdf (n)
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Is this inequality still true for n>1000 ?

Problem 22. Study the convergence of the Smarandache Double Jactorial
harmonic series:

©

Z ! where a>0 and a€R
1 Sdf®(n)

Problem 23. Study the convergence of the series:

o]

Xn+l = Xn
Sdf (xn)
n=1
where x, Is any increasing sequence such that lim x, =
n—co
Problem 24. Evaluate
n
Zlnﬁdzf(_@l
In(k)
lim =2
n—x n

Is this limit convergent to some known mathematical constant?

Problem 25. Solve the functional equation:
Sdf (n) +Sdf(n) ™ +A A Sdf(n)=n

where r is an integer 22 .
Wath about the functional equation:

Sdf (n) +Sdf(n) L +A A Sdf(m)=k-n
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where r and k are two integers 2.

m m
Problem 26. Is there any relationship between Sd, I l m, | and ZSdf (m)?
k=1 k=1
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GEOMETRIA INTERIOARA

Adrian Vasiu Angela Vasiu

Universitatea Babes-Bolyai
3400 Cluj-Napoca, Romania

TRANSGRESAREA FRONTIERELOR DINTRE DISCIPLINE

in ultimii 30 de ani se rispindeste tot mai mult in lume cuvéntul
transdisciplinaritate. Fiind adesea confundat cu pluridisciplinaritatea si
interdisciplinaritatea, se impun citeva precizari.

Cu totii intelegem nevoia stringenti de a construi punfi de legatura
intre diferite discipline, acum cdnd explozia informationald ne duce la
adéncirea unor studii disciplinare care face tot mai greoaie comunicarea intre
specialisti, chiar si din domenii apropiate. Aceastd imperioasd nevoie a
condus la aparifia pluridisciplinaritifii si interdisciplinarititii, catre mijlocul
secolului XX. |

Pluridisciplinaritatea realizeaza un acelasi studiu din punctul de
vedere al mai multor discipline. Interdisciplinaritatea are ca scop transferul
metodelor unei discipline, altor discipline. Aceste cercetiri au fost
impulsionate de tentativele de apropiere dintre artd §i stiinta. Initiativele
multi si inter-disciplinare au avut marele merit de a releva c& dialogul dintre

stiintd i artd este posibil §1 necesar.
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Prima Geometrie ne-euclidiand se nistea din cea euclidiand: prin
negarea axiomei unicititii paralelei printr-un punct la o dreaptd. Astizi,

clasa Geometriilor ne-euclidiene este mult mai vasti, iar Geometria absoluti
- ca fundament comun al diferitelor tipuri de Geometrii - este o notiune care
se modifici mereu, e o notiune in evolutie.

S-a ajuns la negarea tuturor axiomelor lui D. Hilbert, puse la baza
Geometriei euclidiene, prin introducerea Anti-Geometriei si Geometriei
paradoxiste, de citre Florentin Smarandache in [9].

Aceasti paletd largi a tipurilor de Geometrii ne-euclidiene nu ne mai
socheazd, nu ne surprinde. Ele sunt studiate, iar prin modele proprii se
dovedesc a fi consistente si ne-contradictorii. Tot asa, a aparut o imensa
varietate in paleta: bio-psiho-sociali a conditiei umane.

Studiul diferitelor clase de Geometrii ne conduce in mod natural la
notiunea de "Geometrie interioard" pe care o considerdm ca fiind starea la
un moment dat a gradului de manifestare sau blocare a insusirilor inndscute
ale omului, ale corpului sdu subtil. Multiplele combinatii si permutéri ale
calititilor inndscute ale unei fiinte; existente in stare latentd sau in diferite
grade de adormire reprezinti o infinitd varietate pe care in [11] am numit-o
"Geometrie interioard". Ea poate fi diferitd de la un moment la altul si noi,
fiecare, stim cit ne poate costa aceasta! Putem numi si altfel Geometria
interioard. N-are importanti denumirea pe care diferiti specialisti i-o pot da.

Important3 este doar, semnificatia denumirii.

De la prima Geometrie ne-euclidiani, care neagi o proprietate a

Geometriei euclidiene, putem ajunge la alte tipuri de Geometrii in care
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negim chiar toate axiomele Geometriei euclidiene, ajungind la o Anti-
Geometrie sau Geometrie Paradoxistd de tip Smarandache, introdusa in [9].

Dupa gradul de blocare a diferitelor insusiri ale fiintei noastre
interioare, avem si noi diferite "Geometrii interioare". Prin diferitele tipuri de
Geometrii ne-euclidiene putem intelege marea diversitate bio-psiho-sociald,
de la angelic si sublim, pand la: degradare, depersonalizare sau
dezumanizare. Aceasta ne ajuti in citeva directii.

1. Acceptim alituri de noi, chiar cu intelepciune si bundvointa si pe
cei care gandesc sau se comporta altfel, stiind ci suntem diferiti - dupa sansa
proprie a stirii fiintei interioare §i exterioare.

2. Propriile probleme sau ale celorlalti le intelegem nu ca o pedeapsd
a lui Dumnezeu, ci ca o consecintd a propriilor blocaje, a ignorantei sau
sfidarii Legilor naturale universale §i ale cunoagterii de sine. Atunci, in loc
sd-i judecam pe altii, sau si-i criticim, or s ne plangem 1n vreun fel, stim ca
e mai bine s&-i ajutam, altfel contribuim la sporirea propriilor perturbéri si a
negativititii din jur. Atunci intelegem primul principiu din cartea [1]: "nu
critica, nu condamna, nu te pldnge". Altfel, ne creem blocaje subtile.

3. Devenim congtienti de nevoia supravegherii vietii noastre, de
nevoia: de clipe de liniste pentru a deveni. noi ingine, pentru a ne da sansa

manifestirii plenare a fiintei interioare.

Gratie eforturilor din multiplele directii mentionate si a multor altora,
putem avea incredere cd avem sansa redresdrii acestei lumi bulversate de
atta violentd si confuzie. Asistim la o renagtere care ne umple sufletele de
un optimism, bine fundamentat, de atitia cdutitori ai adevarului, din cele mai

diferite domenii.
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On some Smarandache conjectures and unsolved problems

Felice Russo
Via A. Infante 7
67051 Avezzano (Aq) Italy

In this paper some Smarandache conjectures and open questions will be analysed.
The first three conjectures are related to prime numbers and formulated by F.
Smarandache in [1].

1) First Smarandache conjecture on primes

The equation:
By(x)=pps1—Pn =1,

where p,, is the n-th prime, has a unique solution between 0.5 and 1;
e the maximum solution occurs forn =1, i.e.
3F -2 =1 when x=1;
¢ the minimum solution occurs for n =31, i.e.
1277 -113" =1 when x=0.567148K = qy,

First of all observe that the function B,(x) which graph is reported in the fig. 5.1 for

some values of n, is an increasing function for x>0 and then it admits a unique
solution for 0.5 < x<1.
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Smarandache function Bn(x) vs x

y/
— 06 /// /
5 o /-

0.2 0.4

06

0.8 1
X

!—‘—n=1 —a—n=3 —n=6 ——n=8

Fig. 5.1
In fact the derivate of B,(x) function is given by:
—=B,(x) = Pyt I(pps1) — P - In(pp)

and then since p,;; > p, Wwe have:

(pps1) > I0(p,) and ppy>pp forx>0
.. . d
This implies that E;B"(x) >0 for x>0 and n>0 .

Being the B,(x) an increasing fucntion, the Smarandache conjecture is equivalent
to:

0
By =p2, - p? <1
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that is, the intersection of B,(x) function with x =aq line is always lower or equal
to 1. Then an Ubasic program has been written to test the new version of

Smarandache conjecture for all primes lower than 227 | In this range the
conjecture is true. Moreover we have created an histogram for the intersection
values of B,(x) with x=ay :

Counts  Interval

7600437  [0,0.1]
2640 10.1,02]

318 102, 03]
% 103, 0.4]
36 104, 0.5]
9 10.5, 0.6]
10 10.6,0.7]
2 10.7,0.8]
3 10.8, 0.9]
1 109, 1]

This means for example that the function B,(x) intersects the axis x=ap, 318

times in the interval ]0.2, 0.3] for all n such that p, < 227,

In the fig. 5.2 the graph of normalized histrogram is reported ( black dots).
According to the experimental data an interpolating function has been estimated
(continous curve):

1

B =8.10% ——
n n6.2419

witha good R? value (97%).
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1

0.1 \
001 \ y= 8E-08x 524
' N\ R?=0.9475

0.001 T
0.0001 >
0.00001 e
0.000001 \\
0.0000001 -

0.00000001 , :

Frequency

Fig. 5.2

Assuming this function as empirical probability density function we can evaluate
the probability that B,(,’ >1 and then that the Smarandache co njecture is false.
By definition of probability we have:

@

B,(,) dn

PBY>p=1 ~6.99-10717

BY dn

o
[

where c=3.44E-4 is the lower limit of B,? found with our computer search. Based

on those experimental data there is a strong evidence that the Smarandache
conjecture on primes is true.
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2) Second Smarandache éonjecture on primes.
By(¥) = Pps1 = Pn <1

where x <ay. Here p, is the n-th prime number.

This conjecture is a direct consequence of conjecture number 1 analysed before. In
fact being B,(x) an increasing function if:

0
B, =P:0+1'P:0 <1

is verified then for x < gy we have no intersections of the B,(x) function with the
line B,(x)=1, and then B,(x) is always lower than 1.

3) Third Smarandache conjecture on primes.

1 1
C,(k)=pk, - pk <% for k>2 and p, the n—th prime number

This conjecture has been verified for prime numbers up to 22> and 2 <k <10 by the
author [2]. Moreover a heuristic that highlight the validity of conjecture out of range
analysed was given too.

At the end of the paper the author reformulated the Smarandache conjecture in the
following one:

Smarandache-Russo conjecture
CR<—— for k22
n - k2-ao -

where ay is the Smarandache constant gy = 0.567148... (see [1]).

So in this case for example the Andrica conjecture (namely the Smarandache
conjecture for k=2) becomes:
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: 1/p,,“ -y Pn <091111....

Thanks to a program written with Ubasic software the conjecture has been verified

to be true for all primes p, <2¥and 2<k<15.
In the following table the results of the computer search are reported.

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max_C(nk) 0.6708 0.3110 0.1945 0.1396 0.1082 0.0885 0.0756 0.0659 0.0584 0.0525 0.0476 0.0436 0.0401 0.0372
2/kN2a0) 0.4150 0.1654 0.0861 0.0519 0.0343 0.0242 0.0178 0.0136 0.0107 0.0086 0.0071 0.0060 0.0050 0.0043

delta 02402 02641 0.2204 0.1326 0.1538 0.1314 0.1134 0.0994 0.0883 0.0792 0.0717 0.0654 0.0600 0.0554

Max_C(n,k) is the largest value of the Smarandache function C,(k)for 2<k <15
and Max_C(n.k).

and p, <2% and delta is the difference between o
. k M o

Let’s now analyse the behaviour of the delta function versus the k parameter. As
highlighted in the following graph (fig. 5.3),

029 ]

Delta(k)

[\) T T T T T ™ T T —T T
9" 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

Fig. 5.3
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an interpolating function with good R?(0.999) has been estimated:

at+b-k

Delta(k) = ————
l+c-k+d-k

where: a=0.1525...,, 5=0.17771.., ¢ =-0.5344...., d =0.2271...

Since the Smarandache function decrease asymptotically as n increases it is likely

that the estimated maximum is valid also for p, >22°. If this is the case then the
interpolating function found reinforce the Smarandache-Russo conjecture being:

Delta(k) >0 for k > =

Let's now analyse some Smarandache conjectures that are a generalization of
Goldbach conjecture.

4) Smarandache generalization of Goldbach conjectures

C. Goldbach (1690-1764) was a German mathematician who became professor of
mathematics in 1725 in St. Petersburg, Russia. In a letter to Euler on June 7, 1742,
He speculated that every even number is the sum of three primes.

Goldbach in his letter was assuming that 1 was a prime number. Since we now
exclude it as a prime, the modern statements of Goldbach's conjectures are [5]:
Every even number equal or greater than 4 can be expressed as the sum of two
primes, and every odd number equal or greater than 9 can be expressed as the sum
of three primes.

The first part of this claim is called the Strong Goldbach Conjecture, and the second
part is the Weak Goldbach Conjecture.

After all these years, the strong Goldbach conjecture is still not proven, even though
virtually all mathematicians believe it is true.

Goldbach's weak conjecture has been proven, almost!

In 1937, LM. Vonogradov proved that there exist some number N such that all odd
numbers that are larger than N can be written as the sum of three primes. This
reduce the problem to finding this number N, and then testing all odd numbers up to
N to verify that they, too, can be written as the sum of three primes.
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How big is N? One of the first estimates of its size was approximately [6]:

106846168

But this is a rather large number; to test all odd numbers up to this limit would take
more time and computer power than we have. Recent work has improved the
estimate of N. In 1989 J.R. Chen and T. Wang computed N to be approximately [7]:

1043000

This new value for N is much smaller than the previous one, and suggests that some
day soon we will be able to test all odd numbers up to this limit to see if they can be
written as the sum of three primes.

Anyway assuming the truth of the generalized Riemann hypothesis [5], the number
N has been reduced to 102° by Zinoviev [9], Saouter [10] and Deshouillers.
Effinger, te Riele and Zinoviev{11] have now successfully reduced N to 5.
Therefore the weak Goldbach conjecture is true, subject to the truth of the
generalized Riemann hypothesis.

Let's now analyse the generalizations of Goldbach conjectures reported in [3] and
[4); six different conjectures for odd numbers and four conjectures for even
numbers have been formulated. We will consider only the conjectures 1, 4 and 5 for
the odd numbers and the conjectures 1, 2 and 3 for the even ones.

4.1 First Smarandache Goldbach conjecture on even numbers.

Every even integer n can be written as the difference of two odd primes, that is
n=p—q withp and q two primes.

This conjecture is equivalent to:

For each even integer n, we can find a prime q such that the sum of n and q is itself
a prime p.

A program in Ubasic language to check this conjecture has been written.
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The result of this check has been that the first Smarandache Goldbach conjecture is

true for all even integers equal or smaller than 2%° .
The list of Ubasic program follows.

3 2k 3 ok o sk e ok ok 36 ok ke o 3k o ok 3 e ok e e sk 3 sk ok o ok o ok ok o 3k ok sk ok Sk 3k o sk ok ok ok 3k sk ok ok ok ok ok ok

l )
2" Smarandache Goldbach conjecture
3 L}

on even numbers: n=p-q with p and q two primes
! by Felice Russo Oct. 1999
¥k ot ok o ok ok ok ok o sk sk ok o Sk ke o ok 3k S o sk sk ok sk ok ok sk sk ok o o 3k ok ok 3 sk ok e ke ok ok ok ok ok skok sk ok ok
cls
for N=2 to 2/28 step 2
w=3
locate 10,10:print N
for Q=W to 109
gosub *Pspr(Q)
if Pass=0 then goto 70
cancel for:goto 80
next
print N,"The Smarandache conjecture is not true up to 10"9 for ¢=";Q
Sum=N+Q
gosub *Pspr(Sum)
if Pass=1 then goto 120
W=Q+1:goto 30
next
print "The Smarandache conjecture has been verified up to:";N-2
end

1000 Poakkdkckokokkkkkkkkkkkkkkkokkkkkkkkkkkkkkkkkk

1010 ' Strong Pseudoprime Test Subroutine

1020 ' by Felice Russo 25/5/99

1030 Vs e ok sk sk sk e e Sk ok e sk sk sk sk dkosk sk ok sk ok sk ke ks sk sk sk sk ok ki ok sk ko ok
1040 '

1050 ' The sub return the value of variable PASS.
1060 'If pass is equal to 1 then N is a prime.

1080 '

1090 *Pspr(N)
1100 local LJ,W,T,A,Test
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1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

For each even integer n the program check if it is possible to find a prime q,
generated by a subroutine (rows from 1000 to 1290) that tests the primality of an
integer, such that the sum of n and q, sum=n+q (see rows 80 and 90) is again a
prime.

If yes the program jumps to the next even integer. Of course we have checked only

W=3:if N=2 then Pass=1:goto 1290

if even(N)=1 or N=1 then Pass=0:goto 1290
if prmdiv(N)=N then Pass=1:goto 1290

if prmdiv(N)>0 and prmdiv(N)<N then Pass=0:goto 1290
=W

if gcd(I,N)=1 then goto 1180

W=I+1:goto 1150

T=N-1:A=A+1

while even(T)=1

T=T\2:A=A+1

wend

Test=modpow(I,T,N)

if Test=1 or Test=N-1 then Pass=1:goto 1290
for J=1 to A-1 ’
Test=(Test*Test)@N

if Test=N-1 then Pass=1:cancel for:goto 1290
next

Pass=0

return

a little quantity of integers out of infinite number of them.

Anyway we can get some further information from experimental data about the

validity of this conjeture.

In fact we can calculate the ratio g/n for the first 3000 values, for example, and then

graphs this ratio versus n (see fig. 5.4).
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Smarandache Goldbach conjecture

g/Nvs N

for N even and =<3000
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1
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0 500 1000 1500 2000 2500 3000
N
Fig. 5.4

As we can see this ratio is a decreasing function of n; this means that for each n is
very easy to find a prime q such that n+q is a prime. This heuristic well support the
Smarandache-Goldbach conjecture.

4.2 Second Smarandache-Goldbach conjecture on even numbers.

Every even integer n can be expressed as a combination of four primes as follows:
n=p+q-+r-t where p, q, r, tare primes.

For example: 2=3+3+3-7, 4=3+3+5-7, 6=3+5+5-7, 8=11+5+5-13 .......
Regarding this conjecture we can notice that since n is even and t is an odd prime

their sum is an odd integer.
So the conjecture is equivalent to the weak Goldbach conjecture because we can

always choose a prime t such that n+¢>9.
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4.3 Third Smarandache-Goldbach conjecture on even numbers.

Every even integer n can be expressed as a combination of four primes as follows:
n=p-+q-r-t where p, q, r, tare primes.
For example: 2=11+11-3-17, 4=11+13-3-17, 6=13+13-3-17, 8=11+17-7-13 ....

As before this conjecture is equivalent to the strong Goldbach conjecture because
the sum of an even integer plus two odd primes is an even integer. But according to
the Goldbach conjecture every even integer >4 can be expressed as the sum of two
primes.

4.4 First Smarandache Goldbach conjecture on odd numbers.

Every odd integer n, can be written as the sum of two primes minus another prime:
n=p+q-r where p, q, r are prime numbers.
For example: 1=3+5-7, 3=5+5-7, 5=3+13-11, 7=11+13-17 9=5+7-3 ....

Since the sum of an odd integer plus an odd prime is an even integer this conjecture
is equivalent to the strong Goldbach conjecture that states that every even integer
> 4 can be written as the sum of two prime numbers.

A little variant of this conjecture can be formulated requiring that all the three
primes must be different.

For this purpose an Ubasic program has been written. The conjecture has been

verified to be true for odd integers up to 2%,

The algorithm is very simple. In fact for each odd integer n, we put r=3, p=3 and q
equal to the largest primes smaller than n+r.

Then we check the sum of p and q. If it is greater than n+r then we decrease the
variable q to the largest prime smaller than the previous one. On the contrary if the
sum is smaller than n+r we increase the variable p to the next prime. This loop
continues untill p is lower than q. If this is not the case then we increase the variable
r to the next prime and we restart again the check on p and q. If the sumof nand r
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coincide with that of p and q the last check is on the three primes r, p and q that
must be of course different. If this is not the case then we reject this solution and

start again the check.

1 13k 3 2k o sk ok 3k 3 ok ok o 3k ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk 3k ok ok ok sk ok ok ok
2 First Smarandache-Goldbach conjecture

3" on odd integers

4" by Felice Russo Oct. 99

5 I 2222222222222 2222222 2222222222222 ]

10 cls:Lim=2"29

20 for N=1 to Lim step 2

30 S=3:w=3

40 locate 10,10:print N

50 =S

60 gosub *Pspr(r)

70 if Pass=0 then goto 260

80 Suml=N+r:L=0:H=Suml-1

90 p=W

100 gosub *Pspr(p)

110 if Pass=1 and L=0 then goto 140

120 if Pass=1 and L=1 then goto 190

130 W=p+1:goto 90

140 g=H

150 gosub *Pspr(q)

160 if Pass=1 then goto 190

170 H=g-1:goto 140

190 Sum2=p+q

200 if p>=q then goto 260

210 if Sum2>Suml then H=g-1:goto 140

220 if Sum2<Suml then W=p+1:L=1:goto 90
230 if r=p or r=q and p<q then W=p+1:goto 90
240 if r=p or r=q and p>=q then goto 260

250 goto 270

260 S=r+1:if r>2"25 goto 290 else goto 50
270 next

280 cls:print "Conjecture verified up to";Lim:goto 300
290 cls:print "Conjecture not verified up to 225 for";N
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300 end

310 todeskokokokdeoRokokokkokkk kR kkkkkkkkkkkkkkkkkkkE

320 ' Strong Pseudoprime Test Subroutine

330 ' by Felice Russo 25/5/99

340 ¥ 33 o e ok e e ok ok ok ok ok ok ke ke ek sk ck kR Rk kkkkkkkkkkkkkkk
350

360 ' The sub return the value of variable PASS.
370 'If pass is equal to 1 then N is a prime.

380 '

390 '

400 *Pspr(N)

410 local LJ,W,T,A,Test

420 W=3:if N=2 then Pass=1:goto 600

430 if even(N)=1 or N=1 then Pass=0:goto 600
440 if prmdiv(N)=N then Pass=1:goto 600

450 if prmdiv(N)>0 and prmdiv(N)<N then Pass=0:goto 600
460 =W »

470 if gcd(I,N)=1 then goto 490

480 W=I+1:goto 460

490 T=N-1:A=A+1

500 while even(T)=1

510 T=T\2:A=A+1

520 wend

530 Test=modpow(L,T,N)

540 if Test=1 or Test=N-1 then Pass=1:goto 600
550 for J=1 to A-1

560 Test=(Test*Test)@N

570 if Test=N-1 then Pass=1:cancel for:goto 600
580 next

590 Pass=0

600 return

4.5 Fourth Smarandache Goldbach conjecture on odd numbers.
Every odd integer n can be expressed as a combination of five primes as follows:

n=p+q+r-t-u where p, q, r, t, u are all prime numbers.
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For example: 1=3+7+17-13-13, 3=5+7+17-13-13, 5=7+7+17-13-13,
7=5+11+17-13-13

Also in this case the conjecture is equivalent to the weak Goldbach conjecture. In
fact the sum of two odd primes plus an odd integer is alway an odd integer and
according to the weak Goldbach conjecture it can be expressed as the sum of three
primes.

Now we will analyse a conjecture about the wrong numbers introduced in Number
Theory by F. Smarandache and reported for instance in [8] and then we will analyse
a problem proposed by Castillo in [12].

5) Smarandache Wrong numbers

A number n=alaZa3..ak of at least two digits, is said a Smarandache Wrong
number if the sequence:

ay,a3,a3,KK ,ap,bg41 0542, KK

(where by,; is the product of the previous k terms, for any i>0) contains n as its
term [8].

Smarandache conjectured that there are no Smarandache Wrong numbers.

In order to check the validity of this conjecture up to some value N;, an Ubasic
program has been written.

Ny has been choose equal to 228 For all integers n< N, the conjecture has been

proven to be true. Moreover utilizing the experimental data obtained with the
computer program a heuristic that reinforce the validity of conjecture can be given.
First of all let's define what we will call the Smarandache Wrongness of an integer n
with at least two digits. For any integer n, by definition of Smarandache Wrong
number we must create the sequence:

a,ap,a3,KK sak,bk+l,bk+2=K K
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as reported above. Of course this sequence is stopped once a term by,; equal or

greater than n is obtained. -
Then for each integer n we can define two distance:

dy=|bryi—n  and  dy =|bgii1 -1

The Smarandache Wrongness of n is defined as min{d,,d,} that is the minimum

value between d1 and d2 and indicate with W(n). Based on definition of W(n), if the
Smarandache conjecture is false then for some n we should have W(n)=0.

Of course by definition of wrong number, W(n)=n if n contains any digit equal to
zero and W(n)=n-1 if n is repunit (that is all the digits are 1). In the following
analysis we will exclude this two species of integers. With the Ubasic program
utilized to test the smarandache conjecture we have calculated the W(n) function for
12 < n<3000. The graph of W(n) versus n follows.

Wrongness ofnvs n

T

0 500 1000 1500 2000 2500 3000

n

Fig. 5.5
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As we can see W(n) in average increases linearly with n even though at a more
close view (see fig. 5.6) a nice triangular pattern emerges with points scattered in
the region between the x-axis and the triangles.

Anyway the average behaviour of W(n) function seems to support the validity of
Smarandache conjecture.

Wrongnessofnvsn

W(n)

=

Let's now divides the integers n in two family: those which W(n) function is smaller
than 5 and those which W(n) function is greater than 5.

The integers with W(n) smaller than 5 will be called the Smarandache Weak Wrong
numbers.

Up to 228 the sequence of weak wrong numbers is given by the following integers
n:
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n Wi(n) interv. C_Ww(n)

12 4 102 5
13 4 10° 2
14 2 104 4
23 5 10° 2
31 4 108 1
143 1 107 1
431 1 108 0
1292 4 228 0
1761 3 229 0
2911 5
6148 4
11663 1
23326 2
314933 5
5242881 1

Here W(n) is the Wrongness of n and C_Ww(n) is the number of the weak wrong

numbers between 10 and 102, 10> and 10° and so on.
Once again the experimental data well support the Smarandache conjecture because
the density of the weak wrong numbers seems goes rapidly to zero.

6) About a problem on continued fraction of Smarandache consecutive and
reverse sequences.

In [12] J. Castillo introduced the notion of Smarandache simple continued fraction
and Smarandache general continued fraction. As example he considered the
application of this new concept to the two well-know Smarandache sequences:
Smarandache consecutive sequence
1, 12, 123, 1234, 12345, 123456, 1234567 ......

Smarandache reverse sequence

1, 21, 321, 4321, 54321, 654321, 7654321 .......
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At the end of its article the following problem has been formulated:

Is the simple continued fraction of consecutive sequence convergent? If yes
calculate the limit.

1+
12+

123 + I

1234 + ———
12345 +A

Is the general continued fraction of consecutive and reverse sequences convergent?
Ifyes calculate the limit.

1
21
321
4321

+_____
12345+ A

1+

12+

123+

1234

Using the Ubasic software a program to calculate numerically the above continued
fractions has been written. Here below the result of computation.

1+ ~1.0833....
12+

123+

1

1234+ ————
12345+A
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1+ ! ~1.0822...~ K,

21
12+ 1

4321
12345 +A

123+

1234+

where K, is the Keane's constant (see [13])

Moreover for both the sequences the continued radical (see chapter II) and the
Smarandache series [14] have been evaluated too.

J1+yi2+ 123+ V1238 KK z2.442.....z%-sin(1£8-)

1
\/l+\/21+ﬁ21+J4321+KK ~2.716...~ lim(1+x)s =e
X—>»0

@O

1 1.0924...~B

a(n)
n=l

where a(n) is the Smarandache consecutive sequence and B the Brun's constant
[15].

®

1 1051

b(n)

n=1

where b(n) is the Smarandache reverse sequence.
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A recurrence formula for prime numbers using the Smarandache
or Totient functions

Felice Russo
Via A. Infante 67051
Avezzano (Aq) Italy
felice.russo@katamail.com

Abstract
In this paper we report a recurrence formula to obtain the n-th prime in

terms of (n-1)th prime and as a function of Smarandache or Totient
Sfunction.

In [1] the Smarandache Prime Function is defined as follows:
P: N>,
0 if n is prime
where: P(n)=

1 if n is composite

This function can be used to determine the number of primes 7(N) less or equal to some integer
N and to determine a recurrence formula to obtain the n-th prime starting from the (n-1)th one.

In fact:

and

2pn J
Dn+1 =1+ py+ Z | |P(i)

J=pn +1 i=p, +l

where p,, is the n-th prime.
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The first equation is obvious because (1- P(i)) is equal to 1 every time i is a prime. Let’s prove
the second one.
Since p,4) <2p, [2] where p,,; and p, are the (n+1)th and n-th prime respectively, the

following equality holds [3]:

Pns1-1 J Dua1 =1 j
S o3 [Ty [[ro-S T
J=pp+l i=p,+1 Jj=pp+l i=p,+1 J=Dns1  i=p,+l J=pp+l i=p,+l

2p,
because Z I I P(i)) =0 being P(pn.1)=0 by definition.
J=DPns1 i=p,+l

As:
17'14»1"1 J pn+l—1
PO= ) 1=t ~D=(pn +D+1= pyst ~ py -]
j=p,,+l i=p,,+l j:p"+1
we get:

2pn J
P+t =1+ pp+ Z I IP(i) q.ed

J=pp+l i=p,+1

According to this result we can obtain p,,; once we know p, and P(i).

We report now two expressions for P(i) using the Smarandache function S(n) [4] and the well
known Totient function @(n)[5].
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) P(i)=l—§—(_’2 for i >4

L1

. P(i)=1—?—(?— for i>1
l-—

where |_n_] is the floor function [6]. Let’s prove now the first equality.

By definition of Smarandache function S(i)=i for ie PU {1, 4} where P isthe set of prime

numbers [6]. Then i_ngJ is equal to 1 if i is a prime number and equal to zero for all
H

composite > 4 being S(i) <i [4].

About the second equality we can notice that by  definition @(n)<n for n>1 and
@n=n-1 if and only if n is a prime number [5]. So @(n)<n-1 for n>1 and this

implies that {&?J isequalto 1 if i is a prime number and equal to zero otherwise..
I —

Then:
2Pn J S
Pni1 =1+ pp+ Z I I (l‘[ﬂJ) Jor n>2
i
Jj=ps+l i=p,+l
and
2pn J

Pny1 =1+ pp+ Z H [l*l%%J) fornz1

Jj=pptl i=p,+l

According to the result obtained in [7] for the Smarandache function:
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Ly —(isin(kTy)?
S@)=i+1- Zi i
k=1

and in [3] for the following function:
1 if kdividei
0 if k doesn’t divide i

the previous recurrence formulas can be further semplified as follows:

i

—(i-sin(k )2
. i+1- E i !
2P, J

Dnil =1+ Dp+ 2 I I 1- k=1 _ for n>2
i

Jj=pa+l i=p, +1

and

20, _J Z I- é - I_;‘l
Pni1 =1+ pp+ Z H 1- "zl( ([J [ JB for n>1

J=DPn +1 i=pp +1
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On two problems concerning two Smarandache P-partial digital subsequences

Felice Russo
Via A. Infante 67051
Avezzano (Aq) Italy
Selice.russo@katamail.com

Abstract
In this paper the solution of two problems posed in [1] and concerning

the Smarandache Lucas-partial subsequence and the Smarandache
Fibonacci-partial subsequence is reported.

Introduction

In [1] the Smarandache P-digital subsequence is defined as the sequence obtained screening a
starting sequence {an }, n>1 defined by a property P, selecting only the terms whose digits

satisfy the property P.
In the same way, The Smarandache P-partial digital subsequence is the sequence obtained
screening a given sequence {an }, n>1 defined by a property P, selecting only the terms whose

groups of digits satisfy the property P.
Two examples of Smarandache P-partial subsequence reported in [1] are:
1. The Smarandache Lucas-partial digital subsequence

2. The Smarandache Fibonacci-partial digital subsequence

Results

1. Smarandache Lucas-partial digital subsequence
The Smarandache Lucas-partial digital subsequence is the sequence of Lucas numbers [2] whose

sum of the first two groups of digits is equal to the last group of digits.
For example 123 is a Lucas number that can be partitioned as 1, 2 and 3 where 1+2=3.
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In {1] M. Bencze formulated the following problem:
Is 123 the only Lucas number that verifies a Smarandache type partition?
In order to analyse this problem a computer program with Ubasic software package has been
written.
We have checked the first 3000 terms of Lucas sequence finding one more number beside 123
that verifies a Smarandache type partition, i.e. the number 20633239 that can be partitioned as
206, 33, 239 where 206+33=239.

2. Smarandache Fibonacci-partial digital subsequence
The Smarandache Fibonacci-partial digital subsequence is the sequence of the Fibonacci
numbers [2] whose sum of the first two groups of digits is equal to the last group of digits.
Always in [1] the following problem has been posed:
No Fibonacci number verifying a Smarandache type partition has been found for the first terms
of the Fibonacci sequence. Can you investigate larger Fibonacci numbers and determine if
someone belongs to the Smaradache Fibonacci-partial digital subsequence?
Modifing slightly the computer program written for the problem on Lucas numbers we
have found, among the first 3000 terms of the Fibonacci sequence, a number that verify a

Smarandache type partition : 832040 that can be partitioned as 8, 32, 040 where
8+32=40.

New questions
According to the previous results the following two conjectures can be formulated:
e The Smarandache Lucas-partial digital subsequence is upper limited
Unsolved question: find that upper limit
e The Smarandache Fibonacci-partial digital subsequence is upper limited

Unsolved question: find that upper limit
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Open Questions For The Smarandache Function

Mihaly Bencze
Brasov, Romania

Let S(n) be the Smarandache function. I propose the following open questions:
1) Solve the following equation in integers:

1/ S¥a) = 1/Sb) + 1/8%c).
2) Solve the following equation in integers:

S’(d(a)) = S*d(b)) + S*(H(c)).

3) Solve the following equation in integers:

S(d(n) + o(n) ) = d(S(n)) + o(S(n)).

4) Solve the following equation in integers:

S(a*d(n) + b*o(n) + c*¢(n) + d*y(n)) = a*d(S(n)) + b*c(S(n)) + c*¢(S(m)) + d*y(S(n)).

5) Solve the following equation in integers:

n n
S( 2 n*) = IIs*om)
k=1 k=1

6) Solve the following equation in integers:

+ (1) + S(2)% ...+ S(n)=¢ ((n(n+1))2).

7) Solve the following equation in integers:

S(+12+£2%+ . . +nt)=+SY1)+ S 2)+...+S¥n).

8) Solve the following equation in integers:
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S(xu(D)2u@)x. .. +um)=Sk(n(nt+1))2).

9) Solve the following equation in integers:
S(xd(1)+d(2)£...+d(n) )= S(d({(n(n+1))/2).
10) Solve the following equation in integers:
So(l)to2)+...to(n))=S(c((n(n+1))2).
11) Solve the following equation in integers:
1 1 1 n

— S — + L. S — = —_— .
S(1) S(2) S(n) S((n(n+1))/2)

12) Solve the following equation in integers:

S(1*2) + §(2*3) +. . . + S(n{n+1)) = S((n(n+1)(n+2))/3).

13. Let oy(n) be the first k digits of n and By(n) the last p digits of n. Determine all
integer 5-tuples (n,m,r,k,p) for which:

S*(a(n)) = S*(ax(m)) + S*(eu(D))

and

S*(Bp(n)) = S(By(m)) + S*(By(r)).

14) Determine all integer S-tuples (n,m,r,k,p) for which:

o’ (S(m) = ou’(S(m) + e*(S(r)

and

B(S(m) = B(S(m)) + Bi(S(K)).

15) Determine all integer pairs (n,k) for which:

Crna(SM)) = oii(S(n)) + w(S(n)).
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16) Determine all integer pairs (n,p) for which:

Blona(S(m) = B2pri(S(m)) + B,(S(n))

17) Find all integer pairs (n,k) such that

S(aw(m)) + S(o(n*2)) =2 * S(o(n+1))

18) Find all integer pairs (n,p) such that

S(Bp(n)) + S(Bp(n+2)) = 2*S(By(n+1))

19) Let p, be the n-th prime number. Determine all integer triples (n,k,p) for which

S(e(Pa)) + S(Bp(Pa)) =2 * S(0tgepz(Pa)

and

S(o(Pa)) + S(Bp(Pn)) =2 * S(Berpyal Po)-

20) Find all integer pairs (a,b) such that

a*S(b) + b*S(a) a’ +b’
atb =8} ——
a+b

21) Solve the following in integers:

+S(6(1) £ S(c(2)) = .. xS(o(n)) = +o(£S(1)=SQ2) £ ... +£S(n)).
22) Solve the following in integers:

ag(n)=S(n) and By(n)=S(n).

23) Solve the following in integers:

ag(n!) =S(m) and B,(n!)=S(m).
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ON SMARANDACHE ALGEBRAIC STRUCTURES]I :THE
COMMUTATIVE MULTIPLICATIVE SEMIGROUP A(an)

Maohua Le

Abstract . In this paper , under the Smarandache
algorithm , we  construct a class of  commutative
multiplicative semigroups .

Key words . Smarandache  algorithm , commutative
multiplicative semigroup .

In this serial papers we consider some algebraic
structures under = the Smarandache algorithm (see [2]). Let
n be a positive integer with »>1,and let
D =p peplt
be the factorization of #, where p,p,..., p, are prime with
p<p<<p, and ry,r,,.,r, are positive integers . Further ,
let
@ m=pp; = Py .

Then , for any fixed nonzero integer a , there exist
unique integers b,c,m, ’m’ such that

3) a=bc, n=lm, n’=l'm’,
4) P=ged (L") , m*=ged (m,n’),
6) P=gcd (an’),gcd (c,n)=1,
and every prime divisor of b divides [ .Let
0, if r=l,
©6) e={ the least positive integer
which make [/ | o , if I>1.

Since ged (am)=1,by the Fermat—Euler theorem (see [I,
Theorem 72]),there exists a positive integer ¢ such that
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€)) @ =1(modm).
Let f be the ‘least positive inetger ¢ satisfying (7). For
any fixed @ and n,let the set
{l,a, @'} (modnm), if I=l1,
@) A(a,n)={
{a,d® a7} (modn), if I>1.
In this paper we prove the following result.

Theorem . Under the Smarandache algorithm , Afan) is
a commutative multiplicative semigroup.

Proof . Since the commutativity and the associativity
of A(an) are clear , it suffices to prove that A(an) 1is
closed .

Let dand o belong to Af@m) .If i+ < e+f1, then
from (8) we see that a’a’=a' belongs to A(an) . If
itj>etf-1 , then i+j = etf. Let wu=it+fe . Then there exists
unique integers ¢,w such that

9) u=fv+w,u =20, f>w = 0.
Sincea’ = 1 (modm),we get ﬁ'om (9) that
(10)a™*-a” = a“a* = o™ _g" = g"-qa” = O(mod m).

III Il

Further, since gecd(/m)=1 and a°
see from (10) that

(11) a™ = a*™ (mod m).

Notice that ¢ < e + w <e+f]. We find from (1)
that a ™  belongs to A(an). Thus the theorem is
proved.

Omod /) by (6), we
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ON SMARANDACHE ALGEBRAIC STRUCURES.
II:THE SMARANDACHE SEMIGROUP

Maohua Le

Abstract . In this paper we prove that Afgn) is a
Smarandache semigroup.
Key words . Smarandache  algorithm , Smarandache

semigroup .

Let G be a semigroup . If G contains a proper
subset which is a group under the same operation, then
G is called a Smarandache semigroup (see [2]) . For
example , G={18,18%18%,18%18°} (mod 60) is a commutative
multiplicative semigoup . Since the subset = {18%18°18¢18%}
(mod60) is a group,G is a Smarandache semigroup.

Let an be integers such that a¥* 0 and n»n>1 .
Further , let A(an) be defined as in [1] . In this paper
we prove the following result.

Theorem . A(an) is a Smarandache semigroup.

Proof . Under the definitions and notations of [1] , let
A'lan)={a",a", e} (mod n) . Then A’'(ma) is a proper
subset of A(an).

If e=0,then a*=1 € A’(an).Clear,1 is the umt of
A’(an) . Moreover , for any a' € A(an) withi>0,d” is the
inverse element of a' in A’(an).

If e0,then af € A’an).Since a’ = 1 (modm),a’ is
the unit of A’(@n) and a”’ is the inverse element of
a’in A'(aqn) , where t is the integer satisfying e<ft-i
< e+f-1.Thus,under the Smarandache algorithm, A’(an) is
a group . It 1implies that A(en) 1is a Smarandache
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semigroup. The theorem is proved.
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ON SMARANDACHE ALGEBRAIC STRUCTURES.
Il : THE COMMUTATIVE RING B(an)

Maohua Le

Abstract In this paper we construat a class of
commutaive rings under the Smarandache algorithm .
Key words . Smarandache algorithm , commutative ring.

Let an be integers such that a # 0 and n>1 .
Under the definitions and notitions in [1], let
{0,1,a,--,a”™} (modn),if =1,
() B(an) ={
{0,a.d,**a*’'} (mod n) if I'>1.
In this paper we prove the following result.

Theorem . If m i1s a prime and @ is a pnmitive
root modulo m , then B(an) is a commutative 1ing
under the Smarandache additive and multiplicative.

Proof . Since B(an)=A(an) U {0} by (1), Blan) is a
commutative multiplicative semigroup under the
Smarandache algorithm (see [2]).

Notice that m is a prime and a4 is a prmitive
root0 modulo m.Then we have fe=m-1.If [F=], then
Ban={0,12, > m-1} (mod m) .Therefore , B{an) 1s a
commutative additive group . It implies that B(an) 1is a
commutative ring under additive and multiplicative . If
P>l , since I | o , then from (1) we see that
Btan)={0,121,--+ (m-1)I} (mod n) . Therefore, B(an) 1s also a
commutative ring.The theorem 1s proved.
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ON SMARANDACHE ALGEBRAIC STRUCTURES,
IV : THE COMMUTATIVE RING C(an)

Maohua Le

Abstract . In this paper we construct a new class of
commutative rings under the Smarandache algorithm .
Key words. Smarandache algorithm , commutative ring.

Let an be integers such that a # 0 and »n>1 Let
d=gcd (an) ,b=a/d and t=n/d. Further, let
(D Clan) = {0.a.2a,....(t-1)a} (mod n).
In this paper we prove the following result.

Theorem . Can) is a commutative ring under the
Smarandache additive and multiplicative .

Proof . Let u, v be two elements of C(an). By (1),
we have
) u=ia, v=ja,0 < ij< 1.
Let r be the least nonnegative residue of i+j modulo
t. Since d=ged(an) and n=dt,we get from (2) that
3) ute = (it)a = ra(modn),0 <r <t1.
It implhes that w+ov belongs to C(an) . Therefore , it is
a commutative additive group under the Smarandache
algonthm (see[1]).

On the other hand , let 7 be the least nonnegative
residue of ija modulo ¢.By(2),we get
Q) v = jja¢ = rafmod n),0< r’ < t-1 .
Hence , by (4) , Can) is a commutative multiplicative
semigroup .Thus , Clan) is a commutative ring . The
theorem is proved.
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ON SMARANDACHE ALGEBRAIC STRUCTURES.
V :TWO CLASSES OF SMARANDACHE RINGS

Machua Le

Abstract . In this paper we construct two classes of

Smarndache rings .
Key words. Smarandache algornthm , Smarandache ring.

Let R be a rng . If R contains a proper subset ,
which 1s a field under the same operations , then R 1is
called a Smarandache nng (see [4]) . For example , by the
result of [3], R=C(6,60)={0,6,12,18,24,30,36,42,48,56} (mod 60)
1s a ring . Since the proper subset {0,12,24,36,48}(mod
60)of C(6,60) 1s a field , C6,60) 1s a Smarandache
ring .

Under the definitions and notitions of [1] ,[2] and
[3] ,we now construct two classes of Smarandache rings
as follows.

Theorem 1 . If m is a prame and a is a
primitive root modulo m , then B(an) is a Smarandache
ring .

Theorem 2. If ¢ has a prime divisor p with p4d,
then C(an) is a Smarandache ring.

Proof of Theorem 1 . Since B(an) has a proper
subset {0,a%2a’,..(m-1)a’} (modn),which is a field. Thus,
it 1s a Smarandache ring .

Proof of Theorem 2 . Since C(an) has a proper
subset {0,at/p,2at/p,...,(p-1)at/p} (mod n), which is a field .
Thus,it is a Smarandache ring.
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A NOTE ON THE SMARANDACHE BAD NUMBERS
Maohua Le

Abstract . In this paper we show that 7 and 13
are not Smarandache bad numbers . Moreover , we give a
coterion for the Smarandache bad numbers .

Key words . Smarandache bad number , criterion

program .

Let a be a positive integer . If a cannot be
expressed as the absolute value of difference between a
cube and a square , then a¢ is called a Smarandache
bad number . Smarandache [2] conmjectured that the
numbers 5,6,7,10,13,14,..are probably such bad numbers .
However , since
) 7= | 2>12 | , 13= | 17%-70* | ,
we find that 7 and 13 are not Smarandache bad
numbers .

On the other hand , by a result of Bakera [1] ,we
give the following criterion for the Smarandache bad
numbers 1mmediately .

Theorem . For any fixed positive integer a, if

@ a# |xy|
for every positive integer pairs (x,)) with
3) log max (x)) < 10'0q 1000

then a is a Smarandache bad number.
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A LOWER BOUND FOR S§(27'(2*-1)
Maohua Le

Abstract. Let p be a prime, and let »#=27'(27 -1).In this
paper we prove that S(n)=2p+l.

Key words . Smarandache function, function value, lower
bound.

For any positive integer a, let S(a) be the Smarandache
function . In[2],Sandor showed that if
(1) n=271(27-1)
1s an even perfect number ,then S@m)=2"-1 It is a well
known fact that if n is an even perfect number ,then
p must be a prime But ,its inverse proposition is false
(see [1,Thecerms 18 and 276]). In this paper we give a
lower bound for S in the general cases . We prove
the following result.

Theorem,If p is aprime and n can be expressed as
(1), then Sm)= 2p+l.

Proof . Let
) ?-1=¢," q,° ...q"
be the factorization of 2°-1.where g¢..q,,....q, are primes
with ¢,<¢,<..<q, and r,r,..,r, are positive integers . By
() and (2),we get
€) S(n)=max (S(2").5(q,").S(g,” )....5(q,").

It 1s a well known fact that ¢, = I(mod 2p) for
i=1,2,.,t. So we have
4) 2pt]l <q,<¢,<...<q,.
Since ¢,=S(q)<S(q") for i=12,. .t we get from (4) that
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®) 2p+1< max(S(g,” ).S(q.” )....Sa" ).
On the other hand ,if m 1is the largest integer such
that (2p+1)! is a multiple of 27 then

o (2p+] 2p+1
(6) m= L [ JB[——J= p.
=1« 2% 2

It mmplies that 27 I 2p+1!.So we have

(D SFh <82 < 2ptl.
Thus,by (3),(5) and (7) ,we obtain S)= 2p+1 .The theorem
1s proved.
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THE SQUARES IN THE SMARANDACHE
HIGHER POWER PRODUCT SEQUENCES

Maohua Le

Abstract . In this paperr we = prove that the
Smarandache higeher power product sequences of the
first kind and the second kind do not contain squares.

Key words. Smarandache product sequence, higher power,

square.

Let r be a positive integer with 7r>3,and let AMn)
be the n-th powew of degree r. Further, let

n
ey pm= 11 A)+]
k=1
and
n
) Qm)= II A®)-1.
k=1

Then the sequences P= {P(n)}‘”,,:, and Q={Q(n)}°°,,=, are
called the Smarandache higher power product sequences
of the first kind and the second kind respectively . In
this paper we consider the squares im P and Q . We

prove the following result.
Theoerm . For any positive integer r with 7>3the
sepuences P and @ do not contain squares.
Proof . By (1),1f P(n)is a square,then we have
3) () +1=a,
where a is a positive integer . It 1implies that the

equation
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4 "+157, m>3

has a poitive integer solution (x,y,m)=(n!,ar). However, by
the result of [1],the equation (4) has no positive integer
solution (xym) . Thus, the sequence P does mnot contain

squares .
Simularly,by(2),if Q(n) is a square,then we have

) nN-1=4,

where a is a positive integer . It implies that the

equation

(6) x"-1=2,m>3.

has a positive integer solution (x,y,m)=(n/,a,r) . However, by
the result of [2],it is impossible. Thus, the sequence O
does not contain squares.The theorem is proved.
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THE POWERS IN THE SMARANDACHE
SQUARE PRODUCT SEQUENCES

Maochua Le

Abstract . In this paper we prove that the
Smarandache square product sequences of the first kind
and the second kind do not contain powers.

Key words . Smarandache square product sequence,
power.

For any positive 1nteger n , let A@m) be the n-th
square. Further, let

n
(D Pm)= 11 Ak)+1
k=1
and
n
@) Q)= T1A(K)-1.
k=1

Then the sequences P={P(n)} 4 and Q={Q(n)} “e are
called the Smarandache square product sequences of t he
first kind and the second kind respectively (see [3]).In
this paper we consider the powers m P and Q. We
prove the following result.

Theorem . The sequences P and (@ do not contain
powers .

Proof .If P(n) 1s a power,then from (1) we get
€) (n!)*+1=d,
where a and r are positive integers satisfying ¢>1 and
r>1.1t 1mplies that the equation.
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4) XH+1=Y"m>1,

has a positive integer solution (X,¥m)=(nlqr). However, by
the result of [2],the equation (4)has no positive integre
solution (X,Ym). Thus, the sequence P does not contain

powers.
Similarly, by(2),if Q) is a power,the we have
® (n))’-1=a,

where a and r are positive integres satisfying &>1 and
r>1,1t implies that the equation

6) X-1="X>1,m>1,

has a positive integer solution (X, ¥m)=(n/ar). By the
result of (1], (5) has only the solution (X,¥m)=(3,2,3).
Notice that 1!=1,2!=2 and n! =26 for n=3. Therefore, (4)
1s 1mpossible. The theoerm is proved.
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THE POWERS IN THE SMARANDACHE
CUBIC PRODUCT SEQUENCES

Maohua Le

Abstract. Let P and Q denote the Smarandache cubic
product sequences of the first kind and the second
kind respectively. In  this paper we prove that P
contains only one power 9 and @ does not contain
any power.

Key words. Smarandache cubic product sequence,
power.

For any positive integer n, Let C(n) be the n-th cubic.
Further, let

n
D Pm)= 11 Ck)+1
k=1
and
n
2) Om)= II Ck)-1.
k=1

Then the sequences P={P(n)} ., and Q={Q(n)} ®_, are
called the Smarandache cubic product sequence of the
first kind and the second kind respectively (see [5]). In
this paper we consider the powers m P and QO .We
prove the following result.
Theorem. The sequence P contains only one power
P(2)=3*>. The sequence Q does mnot contain any power.
Proof. If P(m) is a power,then from (1)we get
€) (nly’+1=a’,
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G) (n)y+1=a’,
where a and r are positive integers satisfying @>1 and
r>1,By(3),if 2 | r,then the equation
4) X3+1=r?
has a positive integer solution (X,})=(n!/, a™). Usinga well
known result of Euler (see [3,p.302]), (4) has only one
positive integer solution (X, Y)=(2,3). It implies that P
contain only one power P(2)=3? with 2 |r If 2{r, then
the equation
©) X3+1=Y"m>1 2 '{’ m
has a positive integer solution (X,Y,m)=(n/,ar). However, by
[4] , it 1s 1mpossible. Thus, P contains only one power
P(2)=3%

Smmilarly, by(2),if Q@) 1is a power, then we have
©) (nly’-1=a’,
where @ and r are positive integers satifying a>1 and
r>1, It implies that the equation.
Q) X3-1=Y"m>1,
has a positive integer solution (x,f,m)=(nlar). However, by
the results of [2] and [4], it is impossible. Thus, the
suquence () does not contain any power . The theorem
is proved.
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ON THE SMARANDACHE UNIFORM SEQUENCES
Maohua Le

Abstract. Let ¢ be a positive integer with 1. In
this paper we give a necessary and sufficient condition
for ¢t to have the Smarandache uniform sequence.

Key words. Smarandache uniform sequence, decimal
notation.

Let ¢ be a positive integer with 1. If a sequence
contains all multiples of ¢ written with same digit in
base 10, then it is called the Smarandache uniform
sequence of £ In [2], Smith showed that such sequence
may be empty for some ¢

In this paper we give a mnecessary and sufficient
nditon for ¢ to have the Smarandache uniform
sequence . Clearly, the positive integer ¢ can be expressed
as
(D =2%5%,
where @b are nonnegative integers, ¢ is a positive
integer  satisfying ged (10,c)=1. We prove the following
result.

Theoren. ¢ has the Smarandache uniform sequence if
and only if
) (4,6)=(0,0),(1,0).(2,0),(3,0),(0,1).

Proof. Clrarly, t has the Smarandache uniform
sequence if and only if there exists a multipe m of
t such that
3) m=dd.d,1 <d <9.
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By (l)and (3),we get

107-1
4) ts=2°5%cs=m=d ,
10-1
where r s are positive integers. From (4), we obtain
o) 295%9¢s=d(107-1).

Since gcd(25%,10°-1)=1, we see from (5) that d is a
multiple of 2°5°. Therefore, since 1 <d < 9, we obtain the
condition (2).

On the other hand, since gcd (10,9¢)=1,by Fermat-Euler
theorem (see [1,Theorem 72]), There exists a positive integer
r such that 10°-1 is a multipe of 9c. Thus, if (2)
holds, then ¢ has Smarandache uniform sequnce. The
theorem is proved.
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THE PRIMES IN THE SMARANDACHE POWER
PRODUCT SEQUENCES OF THE SECOND KIND

Maohua Le

Abstract. In this paper we completely determine the
primes in the Smarandache power product sequences of
the second kind.

Key words . Smarandache power product sequencem |,

second kind, prime.

For any positive integers nr with r>1, let P(nr) be
the n-th power of degree r.Further, let

(D Uln,r)= I’}I Pk,r)-1.
k=1

Then the sequence U(r)={U(n,r)}"°,,=l is called the
Smarandache r-power product sequence of the  second
kind. In [2], Russo proposed the following question.
Questionn. How many terms in U(2) and U(3) are
primes?
In this paper we completely solve the mentioned
question. We prove a more strong result as follows.
Theorem. If r and 2’-1 are both prnmes, then U(r)
contains only one prime U(2,r)=2"-1. Otherwise, U(r) does
not contain any prime.
Proof. Since U(l,/)=0,we may assume that #>1By(l),
we get
) Un,r)=(n!)-1=(n!-1)((#!) Hap!) " 2+=--+1).
Since n!>2 if n>2 , we see from (2) that Ummr) 1s not
a prime if »#n>2. When n=2, we get from (2) that
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3) UQ@2,r)=2"-1.

Therefore, by [1,Theorem 18], we find from (3) that Ufr)
contains a prime if and only if r and 2’-1 are both
primes. The theorem is proved.
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THE PRIMES IN THE SMARANDACHE POWER
PRODUCT SEQUENCES OF THE FIRST KIND

Maohua Le

Abstract. In this paper we prove‘ that if r>1 and r
is not a power of 2, then the Smarandache r-power

product sequence of the first kind contains only one
prime 2.

Key words . Smarandache power product sequence, first
kind, prime.

For any positive integers n , r with r>1, let P(nr) be
the n-th power of degree r. Further, let

M Vinr=TI  Plr)+l.
k=1

Then the  sequence V(r)={V(n,r)}°°,,=l is called the
Smarandache r-power product sequence of the first kind.
In[2], Russo proposed the following question.

Question . How many terms i V(2) and V(3) are
primes?

In fact, Le and Wu [1] showed that if r 1s odd,
then V(r) contains only one prime 2. It implies that
V(3) contains only one prime 2. In this paper we
prove a general result as follows.

Theorem . If r 1s not a power of 2, then V()
contains only one prnme 2.

Proof. Since 7r>1,if r is not a power of 2, then r
has an odd prnme divisor p.By (1), we get

Vin,r)=(n~+1=(@) P+ 1)) EVP-(nt) @I+ -(n!)?+1),
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Where r/p is a positive integer. Notice that if n>1, then
m)?+1>1 and (n!)Y®Y?-..+1>1. Therefore, we see from (2)
that if »n>1, then Vmr) is not a prime. Thus, the
sequence V(r) cotains only one prime V(lr)=2. The
theorem 1s proved.
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ON THE EQUATION S(mn)=m'S(n)
Maochua Le

Abstract. In this paper we prove that the equation
S(mn)=m*S(n) has only the positive integer solution
(m,n,k)=(2,2,1) with m>1 and n> 1.

Key words Smarandache function, equation, positve
integer solution .

For any positive integer a,let S(a) be the Smarandache
function.Muller [2,Problem 21] proposed a problem
concerning the integer solutions (m,n,k) of the equation
(D S(mn)=m*Sm), m >Iln >I.

In this paper we determine all solutions of (1) as follows.

Theorem. The equation (1) has only the solution (m,n,k)=(2,2,1).

Proof. By [1,Theorem],we have

2 S(mn) < S(m)+S(n).
Hence,if (m,n,k) is a solution of (1),then from (2)we obtain
3 m'Sm) < S(m)+S(n).
By (3).we get
y g Sm )
@ +1 .
Stn)
Since S(m) < m,we see from (4)that
m
®) mt< +1
Stn)
Ifn>2,then S(n)= 3 and
©) m<mk < +;" 1,

by(5). However,we get from (6) that m < 1/2,a
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contradiction.So we have n=2.Then,we get S(n)=2 and

m

¢)) mt < ? +1
by (5).

If m>2,then m/2>1,and

m m
3) m<mtf<— +— =m
. 2 2

by (7).This 1s a contradiction. Therefore,we get m=2 and
®) 2 <1+1=2,

by (7). Thus,we see from (9) that (I) has only the solution
(m,n,k)=(2,2,1). The theorem is proved.
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ON AN INEQUALITY CONCERNING
THE SMARANDCHE FUNCTION

Maohua Le

~ Abstract. Let an be positive integers . In this paper
we prove that S@S@)... S@)<n!S@))".
Key words Smarandache function,inequaity.

For any positive integer a, let S(@@ be the Smarandache
function. In[1],Bencze proposed the following problem.
Problem. For any positive integers a and n, prove the Inequality.

(1 ﬁS(a’?Qn!(S(a))”.
k=1

In this paper we completely solve this problem. We

prove the following result.

Theorem. For any positive integers a and n, the
inepuality (1) holds.

Proof By [2,Theorem],we have

S(ab)<S(a)+S(b),

for any positive integers a and b. 1t implies that

(2) S@)<kS(),
for any positive integers a and k. Therefore, by (2),
we get

n n
3) [18@) <1l kS@)=n'(S@)".
k=1 k=1

Thus,the inequality (1)is proved.
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THE SQUARES IN THE SMARANDACHE FACTORIAL
PRODUCT SEQUENCE OF THE SECOND KIND

Maohua Le

Abstract . In this paper we prove that the
Smarandache factorial product sequence contains only one

square 1.
Key words . Smarandache product sequence, factonal,

square.
For any positive integer n, let

n
¢)) Fm)= II kl-1.
=1 o :
Then the  sequence @ F= {F (n)}n=l 1S called  the
Smarandache factorial product sequence of the second
kind (see [2]). In this paper we completely determine
squares in F.We prove the following result.
Theorem . The Smarandache factorial product sequence
of the second kind contains only one square F(Q2)=1.
Proof. Smce F(1)=0 by (1), we may assume that »>l.
If Fn) 1s a square,then from (1) we get
n
) a= TI &,
k=1
where a i1s a positive 1nteger. By [1,Theorem 82], if p is a
prime divisor of &*+1, then either p=2 or p=1(mod4).
Therefore, we see from (2) that #<3. Smnce F(2)=1 1is a
square, the theorem 1is proved.
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ON THE THIRD SMARANDACHE
CONJECTURE ABOUT PRIMES

Maohua Le
Abstract . In this paper we basically venfy the third
Smarandache conjecture on prime.

Key words . Smarandache third conjecture, prime, gap.

For any positive integre »n , let P) be the n-th
prime. Let k& be a positive integer with A>1,and let

(D e(nk)=(P(n+1)"*-(Pm))'* .
Smarandache [3] has been conjectured that
2
(2) Cink)< —
k

In [2], Russo verified this conjecture for Pm)<2® and 2
< k<10 . In this paper we prove a general result as
follows .

Theorem . If #>2 and n>C, where C is an effectively
computable  absolute  constant, then the inequality (2)
holds.

Proof . Since £>2,we get from (1) that
P(n+1)-P(n)

Cmk)=
(Pt 1) EV* P+ )M P ) . AP )
3) P(n+1)-P(n) 2 [ (P(n+1)-P(n)]
< < )
k( P(n))(k-l)/k k 2(P (n)m

By the result of [1],we have
(4) P(r+1)-Pm))<C(@)(P(n))"*"™
for any positive number a, where C(a) 1s an effectively
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computable constant depending on a. Put @=1/20 . Since
k>3 and (k-1/k>2/3,we see from (3) and (4) that

2~ C1/20)
) C(n,k_;<——[—-—J .

k 2( P(n))l/IS
Since (C(1/20) is an  effectively computable absolute
constant, if #>C, then 2(Pm))"">C(1/20). Thus, by (5), the
inequality (2) holds. The theorem is proved.
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ON RUSSO’S CONJECTURE ABOUT PRIMES
Maohua Le

Abstract . Let n, k£ be positive integres with £>2, and
let b be a positive number with b>1. In this paper
we prove that 1if »>C(k), where C(k) 1s an effectively
computable constant depending on %, then we have Cink)
<2/K.

Key words . Russo’s conjecture, prime, gap, Smarandache
constant.

For anv positive integer n, let Pnj be the n-th
prime. Let & be a positive integer with A>l,and let

(D Cn k)=(Pn+1))"E-(P(n)*.
In [2],Russo has been conjectured that
2
2) Clnk<
K,

where ¢=0.567148130202017746468468755... 1s the Smarandache
constant. In this paper we prove a general result as
follows.

Theorem. For any positive number b with b>1, if
k>2 and m>C(k), where C(k) 1is an effectively computable

constant depending on k.then we have
2
A3) Cink)< — .
K
Proof . Since k>2, we get from (1) that
2 [ (P(n+1)-P(n) Y&* ‘]

4) C(nk)<
K 2(P(n)*)
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Bv the result of [1],we have
) P(rt1)-Pm)<C((Pm)) ">,
for any positive number ¢, where C’(f) is an effectively
computable constant depending on ¢.Put £=1/20. Since k=
3 and (k-1)Yk =2/3,we see from (4)and (35)that

2  C(1/20) K7
(6) Cl, k) < J

V' 2 (P(I’l) ) 1/15
Notice  that C’(1/20) is an  effectively  computable
absolute constant and P)>n for any positive integer n.
Therefore. if »n>C(k), then 2(Pm)">C’(1/200%*" . Thus , by  (6),
the inequaliy (3)holds. The theorem is proved.
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A CONJECTURE CONCERNING THE
RECIPROCAL PARTITION THEORY

Maohua Le

Abstract . In this paper we prove that there exist
infinitelv. manv disjoint sets of positive integers which
the sum of whose reciprocals is equal to umity.

Key words . disjoint set of positive integers, sum of
reiprocals, unity,

In [1] and [2] ., Murthy proposed the  following
conjecture. |

Conjecture . There are infinitely many disjoint sets of
positive integers which the sum of whose reciprocals 1s
equal to unity.

In this paper we completely verify the mentioned
conjecture. For any positive integer »n with n=3, let
Am)={an,1) , a(@2),.a(nn); be a disjoint set of positive
integers having # elements, where a(nk) (k=1,2....n) satisfy

(DO a3, 1)=2, a(3.2)=3, a(3,3)=6,
and

2, if =1,
2) arn,k)=

{ 2a(n-1,k-1), if &2~1.

for n>3. We prove the following result.
Theorem . For anv positive integer n with n= 3, 4A(n)
is a disjoint set of positive integers satisfving
) 1 . 1 N 1
ain,1) an2) a(n.n).
Proof. We see from (1) and (2) that a(n,1)<a(n,2)<--

=].
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<a(ny). 1t implies that A@®m) is a disjoint set of
positive integers. Bv (1), we get
1 ] 1 1 1 1
@) + = +—+ — =1,
a3,1) a(3.2) a(3.3) 2 3 6.
Hence, A(n) satisfies (3) for #»=3. Further, by (2) and
(4),we obtain that if n>3,then

1 1 1 1 1
+ oot =— + { +
a(n,1) a(n,2) a(n,n) 2 2a(n-1,1)
&) 1 1 | 1
———+---+——]':—+—=1_
2a(n-1,2) 2a(n-1.n-1) 2 2

Therefore.bv (5), 4Am) satisfies (3) for »>3. Thus , the
theorem 1s proved.
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A SUM CONCERNING SEQUENCES
Machua Le

Abstract . Let A={a(n)}~,., be a sequence of positive
integers. In this paper we prove that if the trailing
digit of am) 1s not zero for any », then sum of
am)/Rev (am)) is divergent.

Key words. decimal number, reverse, sequence of
positive  integeers.

Let a=a, ..a,a, be a decimal number . Then the
deaimal number ga,.aqa, 1is called the reverse of a
and denote by Rev(a) . For example , if =123, then
Rev(a)=321 . Let S= {s(n)} “n=1 be a certain Smarandache
sequence such that s(®@>0 for any positive imteger n.In

[1], Russo that proposed to study the himit
lim N s(n)
€)) L(s)= r — .
N— n=1 Rev(s(n))
In this paper we prove a general result as follows.
Theorem . Let A={a(n)}°"’n=1 be a sequence of positive
integers If the trailng digit of am) i1s not =zero for
any n,then the sum of am)/Rev(am)) 1s divergent.
Proof . Let am)= a,*°a,a,, where a;, 0. Then we

have
) Rev(an))y=a,a,"--a,, .
We see from (2) that
a(n) 1
(3) —_ > .

Rev(a(n)) 10
Thus, by (3), the sum of am)/Rev(a(n)) is divergent . The
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theorem 1is proved.
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A Note On S(n?)

J. Sandor
Babes-Bolyai University, Cluj-Napoca, Romania

In the paper[1], it is shown that

S(n?) <n for n> 4 and even. )}
In this note, we will prove that (1) holds for all n > 4, n # prime.
Let p be a prime. Then:
Lemma: For n# p, 2p, 8 or 9, we have

n’| (n-1)! )

Proof: If n# p, 2p, pz, 8, or 16, then n can be written as n=xy (X #y; X, y=> 3). [fn # 16,
then n=xy with x> 3,y > 5. Let n=xy withy > x; x> 3. NowXx, y, 2x, 2y, 3x <n-1; X,
y, 2y are different and one of 2x, 3x is different from x, y, 2y. Therefore, (n-1)! contains
X, ¥, 2y and 2x or X, y, 2y and 3x. In any case one has (n-1)! | &y =n’
If n = p?, then n— 1> 4p, thus (n-1)! contains the factors p, 2p, 3p, 4p, so
(n-1)! | p* = n%. For n=2p, clearly p* does not divide (n-1)!. Forn= 8 or 9, n® does not
divide (n-1)!, but for n = 16, this holds true by a simple verification.
As a corollary of (2), we can write

Sm*)<n-1forn#p,2p, 8or9 3)

Since 2p and 8 are even and S(9%) =9, on the basis of (3), (1) holds true forn# p, n> 4.
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On A New Smarandache Type Function

J. Sandor
Babes-Bolyai University, 3400 Cluj-Napoca, Romania

k n
Let C = denote a binomial coefficient, ie.
n k
k n(n-1)...(n—-k+1) n!
c = = for1<k<n
n 1%2*...% k!(n-k)!

1 n-1 1
Clearly, n I C and n | C = C .Let us define the following arithmetic function:
n n n

C(n)=max{k:15k<n—l,n|Ck } (1)

Clearly, this function is well-defined and C(n) > 1. We have supposed k <n-1,
otherwise on the basis of

n-1 1

C = C = n, clearly we would have C(n) =n-1.

n

k
By a well-known result on primes, p | C forall primespand 1 <k <p-1.
p

Thus we get:
C(p) = p-2 for primes p > 3. 2

Obviously, C(2) = 1 and C(1) = 1. We note that the above result on primes is usually used
in the inductive proof of Fermat’s “little” theorem.

This result can be extended as follows:

k
Lemma: For (k,n) =1, one has n l C .
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Proof: Let us remark that

x n (@-1). .. (@k+1) n k-1
C = — * = — *(C
n k (k-1 kool

thus, the following identity is valid:

k k-1
k*C =n*C

n-1

k
This gives n | k*C , and as (n,k) = 1, the result follows.

€))

€))

Theorem: C(n) is the greatest totient of n which is less than or equal to n— 2.

Proof: A totient of n is a number k such that (k,n) = 1. From the lemma and the definition

of C(n), the result follows.

Remarks 1) Since (n-2,n) = (2,n) = 1 for odd n, the theorem implies that C(n) = n-2 for
n > 3 and odd. Thus the real difficulty in calculating C(n) is for n an even number.
2) The above lemma and Newton’s binomial theorem give an extension of Fermat’s

divisibility theorem p I (@ — a) for primes p.
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About The S(n) = S(n — S(n)) Equation
Mihaly Bencze

Str. Harmanului 6, 2212 Sacele 3
Jud. Brasov, Romania

Theorem 1: (M. Bencze, 1997) There exists infinitely many n € N such that
S(n ) = S(n — S(n)), where S is the Smarandache function.

Proof: Let r be a positive integer and p > r a prime number. Then
S(pr) = S(p) = S( (r-1)p) = S(pr — p) = S(pr — S(pr))-
Remark 1.1 There exists infinitely many n € N such that

S(m) =S(n—-S(n)) =S(n—-S(n—-Sm))=...

Theorem 2: There exists infinitely many n € N such that
S(n) = S(n + S(n)).
Proof:

S(pr) = S(p) =S((r+1)p) = S(pr+p) = S(pr + S(pr))-

Remark 2.1 There exists infinitely many n € N such that

S(n) =S(n+ S(n)) =S(n+ S(n+S@m)) =...

Theorem 3 There exists infinitely many ne N such that
S(n) = S(n £ kS(n)).

Proof: See theorems 1 and 2.
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A NOTE ON SMARANDACHE REVERSE SEQUENCE

Sam Alexander,
10888 Barbados Way,
San Diego, CA 92126.

Let SR(n) be the Smarandache reverse sequence at n. To wit, the first n positive integers in reverse
order, i.e.

SR(1)=1,SR(2)=21,...,SR(12)=121110987654321, ... .
Then, I have found that forn € N,

i-1

2( 1+L1°Bloj-l)

n 1
SRm)=1+X i* 10
=2

where | x | denotes the greatest integer not exceeding x.

“Reality is for people with
no imagination”
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SMARANDACHE PASCAL DERIVED SEQUENCES

(Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd.,
Sabarmati, Ahmedabad,-380005 INDIA. )

Given a sequence say Sy . We call it the base sequence. We define a
Smarandache Pascal derived sequence Sy as follows:
n
Ta1 = X Ck .tus , where t; is the k™ term of the base sequence.
k=0
Let the terms of the the base sequence S, be
b,b2, b3, by, ..
Then the Smarandache Pascal derived Sequence Sy
d;,d2,ds,ds, ... is defined as follows:
d1 = b|
h=b+b
d;=b; +2b, + bs
ds=b;+3b, +3b3 + b,

n
dpt1 = ZCy byn
k=0

These derived sequences exhibit interesting properties for some base sequences.
Examples:

{1} Sy > 1,2, 3, 4, . . . ( natural numbers)

Sq¢— 1, 3, 8, 20, 48, 112, 256, . . . ( Smarandache Pascal derived natural number

sequence)
The same can be rewritten as

2x271, 3x2°, 4x2!, 5x22, 6x2°, . ..

It can be verified and then proved easily that Ty = 4( Ty - Tp.2 ) for n>2.
And also that T, = (n+1) .2*?

{2} Sy > 1,3, 5,7, . .. (odd numbers)
Sa—>1,4,12,32,80,...
The first difference 1, 3, 8, 20, 48 , . . . is the same as the Sy for natural numbers.

The sequence S4 can be rewritten as
1.2°,2.2,32%, 4.2, 5.2, . ..

Again we have T, =4( Ty, - Ta ) for n>2.Also T, = n.2".

{3} Smarandache Pascal Derived Bell Sequence:

Consider the Smarandache Factor Partitions (SFP) sequence for the square free
numbers:

( The same as the Bell number sequence.)

- Se—>1,1,2,5,15, 52,203, 877, 4140, . . .

We get the derived sequence as follows

Sa—>1,2,5,15,52,203, 877,4140, . ..

The Smarandache Pascal Derived Bell Sequence comes out to be the same. We
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call it Pascal Self Derived Sequence. This has been established in ref. [1]
In what follows, we shall see that this Transformation applied to Fibonacci
Numbers gives beautiful results.
**{4} Smarandache Pascal derived Fibonacci Sequence:
Consider the Fibonacci Sequence as the Base Sequence:
Ss—1,1,2,3,5, 8, 13, 21, 34, 55, 89, 114, 233,...
We get the following derived sequence
Sa—>1,2,5,13, 34, 89,233,... (A)
It can be noticed that the above sequence is made of the alternate (even numbered
terms of the sequence ) Fibonacci numbers.
This gives us the following result on the Fibonacci numbers.
n
Fan= X °Cy.Fy,where Fy is the k™ term of the base Fibonacci sequence.
k=0
Some more interesting properties are given below.
If we take (A) as the base sequence we get the following derived sequence Sg4
Sai — 1, 3, 10, 35, 125, 450, 1625, 5875, 21250, . . .
An interesting observation is ,the first two terms are divisible by 5% the next two
terms by 5' , the next two by 52, the next two by 5° and so on.
Tzo = T2p1 =0 (mod 5*)
On carrying out this division we get the following sequence i.e.
1,3,2,7,5,18,13,47,34, 123,89, ... 1))
The sequence formed by the odd numbered terms is
1,2,5,13,34,89,...
which is again nothing but Sq4 ( the base sequence itself.).
Another interesting observation is every even numbered term of (B) is the sum of
the two adjacent odd numbered terms. (3 =1+2, 7=2+5, 18 =5 + 13 etc.)
CONJECTURE: Thus we have the possibility of another beautiful result on the
Fibonacci numbers which of-course is yet to be established.

2m+1 r
Fouwr1 = (1/57) Z { ™I!C,(Z"CxFy) }
r=0 k=0

Note: It can be verified that all the above properties hold good for the Lucas
sequence (1,3,4,7,11,...)as well.

Pascalisation of Fibonacci sequence with index in arithmetic progression:
Consider the following sequence formed by the Fibonacci numbers whose indexes
arein A.P.

F1, Fa+1 , Fags1 , Fag41 , . . . on pascalisation gives the following sequence

1,dF,, dF,,dFs,d* Fs,...,d"Fa,...
ford=2andd=3.

For d = 5 we get the following
Base sequence : Fy, F¢ , Fi1, Fis, . - .
1, 13, 233, 4181, 46368, . ..
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Derived sequence: 1, 14, 260, 4920, 93200, . . .in which we notice that
260=20.(14- 1), 4920 = 20.(260 - 14) , 93200 = 4920 - 260 ) etc . which suggests
the possibility of
Conjecture: The terms of the pascal derived sequence for d =5 are given by
Ta=20.(Ts1-Tez)(n>2)
For d =8 we get
Base sequence : Fy Fo, Fy7, Fps , ...
Sy — 1, 34, 1597, 75025, . ..
Sq¢—> 1, 35, 1666, 79919, . ..
=1,35,(35-1). 7, (1666 - 35). 72, . . . etc. which suggests the possibility of
Conjecture: The terms of the pascal derived sequence for d = 8 are given by
Tl= 49'( Tl—l = Tn-Z) ’ (ll > 2)
Similarly we have Conjectures:
Ford=10, Ta=90.(Ty;- Taz),(a>2)
Ford=12, Ta=18%(Ta1-Taz), (0 >2)
Note: There seems to be a direct relation between d and the coefficient of ( T, -
Ta2 ) (or the common factor) of each term which is to be explored.
{5} Smarandache Pascal derived square sequence:
Sy—>1,4,9,16,25,...
Sa— 1,5, 18,56, 160,432, ...
Or 1, 5x1, 6x 3, 7x 8, 8x20, 9x48 , ..., ( Ta = (n+3)t,; ) , where t,is the r* term
of Pascal derived natural number sequence.
Also one can derive T,=2"%2. (n+3)(n)/ 2.
{6} Smarandache Pascal derived cube sequence:
Se—> 1, 8,27, 64, 125
Sa—1,9,44, 170, 576, 1792, . ..
We have T, =0 ( mod (n+1)).
Similarly we have derived sequences for higher powers which can be analyzed tor
patterns.
{7} Smarandache Pascal derived Triangular number sequence:
Sy—1,3,6,10,15,21,...
Sa—1,4,13,38,104,272, ...
{8} Smarandache Pascal derived Factorial sequence:
Sy — 1, 2, 6, 24, 120, 720, 5040, . ..
Sa—1,3,11,49,261,1631,...
We can verify that T,=n. T, +Z T2+ 1.
Problem: Are there infinitely many primes in the above sequence?
Smarandache Pascal derived sequence of the k™ order.
Consider the natural number sequence again:
Sp—1,2,3,4,5, ... The corresponding derived sequence is
Se— 2x27 | 3x2°, 4x2!, 5x2?, 6x23, . . . With this as the base sequence we get the
derived sequence denoted by Sq as
Saor S — 1,4, 15, 54, 189, 648, . . . which can be rewritten as
1,4x3°, 5x3', 6x32, 7x3°...
similarly we get Sg as 1, 5x4% 6x4', 7x4% , 8x4° , . . . which suggests the
possibility of the terms of S , the k™ order Smarandache Pascal derived natural
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number sequence being given by

1, (k+2) .(k+1)°, (k+3).(k+1)', (k+4).(k+1), . . ., (k+1).(k+1)"2 etc. This can be
proved by induction.

We can take an arithmetic progression with the first term 'a' and the
common difference 'b' as the base sequence and get the derived k™ order
sequences to generalize the above results.

Reference:[1] Amarnath Murthy, ' Generalization of Partition Function,.
Introducing Smarandache Factor Partitions' SNJ, Vol. 11, No. 1-2-3,2000.
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DEPASCALISATION OF SMARANDACHE PASCAL DERIVED SEQUENCES
AND BACKWARD EXTENDED FIBONACCI SEQUENCE

Amarnath Murthy, S.E.(E&T) , WLS, Oil and Natural Gas Corporation Ltd., Sabarmati,
Ahmedabad,- 380005 INDIA.

Given a sequence Sy, ( called the base sequence).
bi, b2, b3, b, ..

Then the Smarandache Pascal derived Sequence Sq4
d;,d2,d3,ds, ... is defined as follows: Ref[1]
di=b

d=b+b,

d3=b;+2b, +b;

ds=b;+3by+3b3+ by

n
dpt1 = Z "Cx b
k=0

Now Given Sy the task ahead is to find out the base sequence S, . We call the process of
extracting the base sequence from the Pascal derived sequence as Depascalisation. The
interesting observation is that this again involves the Pascal's triangle though with a difference.

We see that

by =d,

by=-d, +d;
bs=d;-2d;+d;

by =-d; +3d,-3d; +d,

which suggests the possibility of
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n
b1 = Z (-1)™*. "Cy .din
k=0

This can be established by induction.

We shall see that the depascalised sequences also exhibit interesting patterns.

To begin with we define The Backward Extended Fibonacci Sequence (BEFS) as Follows:
The Fibonacci sequence is

1,1,2,3,5, 8,13, 21, 34, 55, 89, 144, 233, ...

InwhichT)=1,T:=1, andTs = Ty-Tox , n> 2 A

Now If we allow n to take values 0,-1,-2, ... also, we get

To=T2-T1=0,T,;=T-To=1,T2=To-T..= -1, etc. and we get the Fibonacci sequence
extended backwards as follows { T; is the r™ term }

.o .Tg Ts, Ty, T, Ta, T, To, Ti, Ta, T3, Ts, Ts,Te, T2, Tz, To,. . .
...-8 5 -3, 2,-1, 1-0, 1, 1, 2,3, 5 8, 13,21, 34,...
1. Depascalisation of the Fibonacci sequence: '
The Fibonacci sequence is
1,1,2,3,5, 8,13, 21, 34, 55, 89, 144, 233, . ..
The corresponding depascalised sequence Sa.;) comes out to be
Sy — 1,0,1,-1,2,-3,5,-8,...

It can be noticed that , The resulting sequence is nothing but the BEFS rotated by 180°
about T;.and then the terms to the left of T, omitted. { This has been generalised in the
Proposition 2 below.}

It is not over here. If we further depascalise the above sequence we get the following sequence
Sd(.z) as

1, -1,2,-5,13, -34, 89,-233
This can be obtained alternately from the Fibonacci Sequence by:
(a) Removing even numbered terms.
(b) Multiplying alternate terms with (-1) in the thus obtained sequence.

Propositions:
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Following two propositions are conjectured on Pascalisation and Depascalisation of Fibonacci
Sequence.

(1) If the first r terms of the Fibonacci Sequence are removed and the remaining sequence is
Pascalised , the resulting Derived Sequence is Farezs Farras Farees Fargy . - - where F, is the ™
term of the Fibonacci Sequence. :

(2) Inthe FEBS If we take T; as the first term and Depascalise the Right side of it then we
get the resulting sequence as the left side of it ( looking rightwards) with T, as the first term.

Asanexample let r=7,T;=13
e T T Ty T3, T2, T4, To T, To, T, To, Ts, Ts, Tq, Ts, To,.
..."8.5 -3 2,-1, 1 0 1 1 2,3 5 8 13, 21, 34, 55,89, . . .
S>> >H>H>>
depascalisation
The Depascalised sequence is
13,8 5,3,2,1,1,0, 1, -1,2,-3,5, -8 ...

which is obtained by rotating the FEBS around 13 (T;) by 180° and then removing the terms
on the left side of 13.

One can explore for more fascinating results.

References:

(1] "Amarnath Murthy" , 'Smarandache Pascal derived Sequences’, SNJ , 2000,
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PROOF OF THE DEPASCALISATION THEOREM
Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd.,
Sabarmati, Ahmedabad,-380005 INDIA.

In [1] we have defined Pascalisation as follows:

Let by, b, . . . be a base sequence. Then the Smarandache Pascal derived
sequence

d1 ,dz,. .. is defined as

d1 = b]

h=b+b

di=b +2b+bs

ds=b; +3by +3bs + by

n
dn+1 =2 "Cx e
k=0
Now Given Sqthe task ahead is to find out the base sequence S, . We call the
process of extracting the base sequence from the Pascal derived sequence as
Depascalsation. The interesting observation is that this again involves the
Pascal's triangle , but with a difference.
On expressing by ‘s in terms of di's We get

b1=d1
by=-d; +d;
b3=d;-2d2+d3

by =-d; +3d2-3d; +d,
which suggests the possibility of

n
bet1 = 2 (-1, "Cy .dist
k=0
This I call as Depascalisation Theorem.
PROOF: We shall prove it by induction. v
Let the proposition be true for all the numbers 1 < k+1. Then we have
besr = Co (-1)¥*? dy + ¥C; (D) da +. . . +5Ci (-1)?
Also we have
disr = 1Co b + ¥ 'C by +. . .+ ¥1C, by + . . . + 51 Cyy1 sz, which gives
bz =1 ¥'Coby - ¥'Ci by - - ¥'Cr bt - - - - + iz
substituting the values of by, by, . . .etc. in terms of d,, da, . . . , we get the
coefficient of d, as

(-1) *'Co + (FMIC)-'C)) HHCH(PC) + .+ (D) FICH(Co) + L (D)

k+1 +1Ck k

SR, + 910, 10, - K10, 3Gy +. L (1) MG, TCo +. .+ ()R G, Gy
similarly the coefficient of d; is

k”C;. lCl + kd-lc2 . 2C1 +. .+ (-l)rﬂ. kHC,. rCl + .+ (_1) k+1 . k+le. I:CI

on similar lines we get the coefficient of di+; as
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k+1Cm. mcm + k+]cm+l . l’n"'lCm -+ (_l)rl—m. k+lCr+m. l""m(:m + .+ ('l) k+m. k+le.
k
Cm
k-m
h=0

(k+1)-m
2 (_I)h‘H k+lcm+h . I!l'HlCm -- (_1) kﬂn. k+]Ck+] . k+lcm (1)
h=0

Applying theorem {4.2} of reference [2], in (1) we get

=HIC 1+ (D)4 )R e,
= ( l)k'Hn k+l1 Cm
which shows that the proposition is true for (k+2) as well. The proposition has
already been verified for k+1 =3, hence by induction the proof is complete.
In matrix notation if we write
[bi,bz,. bn]m*[P;,;]m [di,dz2,..dn Jin
where [pij ]'un = the transpose of [pij Juxa and
[Pij Joxn Is given by pij="'Cjy if i<j else pi=0
Then we get the following result
If [qij]axn is the transpose of the inverse of [pij Juxa Then
qi; = (' )}H . Cj—l
We also have
[b, b2, ba]* [QiTma=[d1, dz,.. dn]
where [q;; J'axa = The Transpose of [qi Juxn
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On Certain Arithmetic Functions

Jozsef Sandor

Babes-Bolyai University, 3400 Cluj-Napoca, Romania

In the recent book [1] there appear certain arithmetic functions which are similar to
the Smarandache function. In a recent paper [2] we have considered certain generalization
or duals of the Smarandache function S(n). In this note we wish to point out that the
arithmetic functions introduced in [1] all are particular cases of our function F t, defined
in the following manner (see [2] or [3]).

Let f:N* — N be an arithmetical function which satisfies the following property:

(Py) For each n € N* there exists at least a k € N* such that n| f(k).

Let Fy : N* — Nx defined by

Fy(n) = min{k € N" : n|f(k)} (1)

In Problem 6 of [1] it is defined the "ceil function of t-th order” by Si(n) = min{k :

nlk'}. Clearly here one can select f(m) = m! (m = 1,2,...), where t > 1 is fixed.

Property (P) is satisfied with k& = n. For f(m) = w

<

Smarandache” function of Problem 7. The Smarandache "double-factorial” function

, one obtains the "Pseudo-

SDF(n) = min{k : n]k!!}
where

2-2:6...k ifkiseven

{ 1-3-5...k ifkis odd
A=
of Problem 9 [1] is the particular case f(m) = m!!. The "power function” of Definition 24,
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i.e. SP(n) = min{k : n|k*} is the case of f(k) = k*. We note that the Definitions 39 and
40 give the particular case of Sifort=2and t =3.

In our paper we have introduced also the following "dual” of Fy. Let g : N* — N« be
a given arithmetical function, which satisfies the following assumption:

(Ps) For each n > 1 there exists & > 1 such that g(k)|n.

Let G, : N* — N* defined by

Gy(n) = max{k € N" : g(k)|n}. (2)

k(k +1)
2

so we can define the following duals of the above considered functions:

Since k'|n, k!l|n, k¥|n, [n all are verified for k = 1, property (Ps) is satisfied,

S:(n) = max{k : ktln};
SDF*(n) = max{k : k!l|n};

SP™(n) = max{k: k"']n};
Z7(n) = max {k : ‘k(k)—_*_l)ln} .

4

These functions are particular cases of (2), and they could deserve a further study, as

well.
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SMARANDACHE STAR (STIRLING) DERIVED SEQUENCES
Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd.,
Sabarmati, Ahmedabad,-380005 INDIA.

Let by, by, bs, . . . be a sequence say S, the base sequence. Then the Smarandache
star derived sequence S, using the following star triangle {ref. [1}} is defined

1

1

1 3 1

1 6 1

1 15 25 10 1
as follows

d1=b1

d=b+b

d3=b; +3by+ b

ds=by + T, + 6b3 + by

n
o1 = Zagmy) b
k=0

where a(m ) is given by
r

amn= (Ut (1) C, ™, Ref. [1]
=0

e.g. (1) If the base sequence Spis 1, 1, 1, . . . then the derived sequence Sy is
1,2,5,15,52,..., ie.the sequence of Bell numbers. T, =B,

) Sy—1,2,3,4,...then

Sq¢— 1,3, 10,37, ..., we have T, = By -B, . Ref [1]

The Significance of the above transformation will be clear when we consider the

inverse transformation. It is evident that the star triangle is nothing but the

Stirling Numbers of the Second kind ( Ref. [2] ). Consider the inverse

Transformation : Given the Smarandache Star Derived Sequence Sy, to retrieve

{)he o(xiiginal base sequence Sp. We get by for k =1, 2, 3, 4 etc. as follows ;
1=d;

by=-d+d;

bs=2d;-3d,+d;

by = °6d1 + 11d; - 6d; +d,

bs = 24d, - 50d, + 35d; - 10d4 + ds

..................

we notice that the triangle of coefficients is
1
-1 1
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2 3001
6 11 -6 1

24 50 35 -10 1

Which are nothing but the Stirling numbers of the first kind.

Some of the properties are

(1) The first column numbers are (-1) "L.(r-1)! , where r is the row number.

Sum of the numbers of each row is zero.

Sum of the absolute values of the terms in the r * row=1r! .

More properties can be found in Ref. [2]. _

This provides us with a relationship between the Stirling numbers of the first kind
and that of the second kind, which can be better expressed in the form of a matrix.
Let [b1,u]1za be the row matrix of the base sequence.

[d1,]1xe be the row matrix of the derived sequence.

[S;.idaxa be a square matrix of order n in which s;y is the k™ number in the j®* row
of the star triangle ( array of the Stirling numbers of the second kind , Ref. [21).
Then we have

[T;idaxa be a square matrix of order n in which t; is the k™ number in the i row
of the array of the Stirling numbers of the first kind , Ref [2] ). Then we have
[bl,k]ln * [Sj,k] axn = [dl.klln

191 1xa * [Tjd axa = [D1d 1xa

Which suggests that [T;,] ax, is the transpose of the inverse of the transpose
of the Matrix [S;,] uxa -

The proof of the above proposition is inherent in theorem 10.1 of ref. [3].

Readers can try proofs by a combinatorial approach or otherwise.

W
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SMARANDACHE FRIENDLY NUMBERS AND A FEW MORE SEQUENCES

(Amarnath Murthy, S.E.(E&T) , WLS, Oil and Natural Gas Corporation Ltd., Sabarmati,
Ahmedabad,- 380005 INDIA. )

If the sum of any set of consecutive terms of a sequence = the product of the first and the last
number of the set then this pair is called a Smarndache Friendly Pair with respect to the
sequence.

{1} SMARANDACHE FRIENDLY NATURAL NUMBER PAIRS:
e.g. Consider the natural number sequence

1,2,3,4,5,6,7,...

then the Smarandache friendly pairs are

(1,1), (3,6) , (15,35), (85, 204), . . .etc.

as3+4+5+6=18=3x6 7
15+16+17+...+33+34+35=525=15x35etc.

There exist infinitely many such pairs. This is evident from the fact that if ( m, n) is a friendly
pair then so is the pair 2n+m, Sn +2m-1). Ref [1].

{2} SMARANDACHE FRIENDLY PRIME PAIRS:

Consider the prime number sequence

2,3,5,7,11,13,17,23, 29, . ..

we have 2 +3 +5=10=2x 5, Hence ( 2, 5) is a friendly prime pair.
3+5+7+11+13=39=3x13,(3,13)is a friendly prime pair.
S+7+11+...+23+29+31=155=5x31, (5, 31)is a friendly prime pair.

Similarly ( 7, 53 ) is also a Smarandache friendly prime pair. In a friendly prime pair ( p, @) we
define q as the big brother of p.

Open Problems: (1) Are there infinitely many friendly prime pairs?
2. Are there big brothers for every prime?
{3} SMARANDACHE UNDER-FRIENDLY PAIR:

If the sum of any set of consecutive terms of a sequence is a divisor of the product of the first
and the last number of the set then this pair is called a Smarndache under- Friendly Pair with
respect to the sequence.
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{4} SMARANDACHE OVER-FRIENDLY PAIR:

If the sum of any set of consecutive terms of a sequence is a multiple of the product of the first
and the last number of the set then this pair is called a Smarndache Over- Friendly Pair with
respect to the sequence.

{5} SMARANDACHE SIGMA DIVISOR PRIME SEQUENCE:
The sequence of primes p;, , which satisfy the following congruence.
n-1
Zp,=0(modp,)
=1
2,5,71,...

. 5 divides 10, and 71 divides 568 =2+3+5+...+67
Problems: (1) Is the above sequence infinite?
Conjecture: Every prime divides at least one such cumulative sum.
{6} SMARANDACHE SMALLEST NUMBER WITH 'n' DIVISORS SEQUENCE:
1,2,4, 6,16, 12, 64, 24, 36, 48, 1024, . . .

d(1)=1,d(2)=2,d(4)=3,d(6)=4,d(16)=5, d(12) =6 etc. , d( T,) = n. , where T, is
smallest such number.

Itisevident T, =2*' | ifp is a prime.

The sequence T, +1 is

2,3,5,7,17, 13, 65, 25, 37, 49, 1025, . ...

Conjectures: (1) The above sequence contains infinitely many primes.
(2) The only Mersenne's prime it contains is 7.

(3) The above sequence contains infinitely many perfect squares.
{7} SMARANDACHE INTEGER PART k" SEQUENCE ( SIPS) :
**In this sequence k is a non integer. For example:

(i) SMARANDACHE INTEGER PART = " SEQUENCE:

'} %L [2°L 2%, ...

3,9,31,97,...
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(i) SMARANDACHE INTEGER PART e" SEQUENCE:
[e'], [e°], [€°], [e, ...

2,7,20,54, 148, 403, ...

Conjecture: Every SIPS contains infinitely many primes.
{8} Smarandache Summable Divisor Pairs (SSDP):

Pair of numbers (m,n ) which satisfy the following relation
dm)+dm=d(m+n)

€.g. we have d(2) + d(10) = d(12) , d(3) + d(5) = d(8), d(4) + d(256) = d(260),
d(8) +d(22) = d(30), etc.

hence (2, 10), (3,5) , (4, 256) , (8, 22) are SSPDs.
Conjecture: (1)There are infinitely many SSDPs?

(2) For every integer m there exists a number n such that (m,n) is an SSDP.

{9} SMARANDACHE REIMANN ZETA SEQUENCE
6, 90, 945, 93555, 638512875, ...
where Tn is given by the following relation of

®
2s)=Zn*=n?/T,
n=1
Conjecture: No' two terms of this sequence are relatively prime.
Consider the sequence obtained by incrementing each term by one
7,91, 946, 9451, 93556, 638512876, . . .
Problem: How many primes does the above sequence contain?
{10} SMARANDACHE PRODUCT OF DIGITS SEQUENCE:
The n ™ term of this sequence is defined as T, = product of the digits of n.
1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,2, 4,6, 8, 10, 12,...
{11} SMARANDACHE SIGMA PRODUCT OF DIGITS NATURAL SEQUENCE:
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The n™ term of this sequence is defined as the sum of the products of all the numbers from 1 to n.
1,3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90, 92, 96, . ..

Here we consider the terms of the sequence for some values of n.

For n=9 we have T, = 45 , The sum of all the single digit numbers = 45

For n=99 we have T,= 2070 = 45% + 45..

Similarly we have Tsgs= ( Ts)’ + ( Ts)2+ To= 45°. 452 + 45 = (45* - 1) / (45- 1) = (45*-1) /44

The above proposition can easily be proved.

This can be further generalized for a number system with base 'b' (b= 10, the decimal system
has already been considered.)

For a number system with base 'b' the (b" -1) * term in the Smarandache sigma product of
digits sequence is

2[{ b(b-1)/2}"" - 1] /{ b* - b-2}

Further Scope: The task ahead is to find the n™ term in the above sequence for an
arbitrary value of n.

{12} SMARANDACHE SIGMA PRODUCT OF DIGITS ODD SEQUENCE:
1,4,9, 16, 25,26, 29, 34, 41, 50, 52, 58, 68, 82,100, 103, 112, 127, 148,...

It can be proved that for n=10"-1, T, is the sum of the r terms of the Geometric
progression with the first term as 25 and the common ratio as 45.

{13} SMARANDACHE SIGMA PRODUCT OF DIGITS EVEN SEQUENCE:
2, 6, 12, 20, 20, 22, 26, 32, 40,40, 44,52, 62,78, 78, 84, 96, 114, 138,...

It can again be proved that for n =10"-1, T, is the sum of the r terms of the
Geometric progression with the first term as 20 and the common ratio as 45.

Open Problem: Are there infinitely many common members in {12} and {13} ?

Reference:

[1] Problem2/31, M&IQ ,3/99 Volume 9, Sept' 99, Bulgaria.
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SMARANDACHE GEOMETRICAL PARTITIONS AND SEQUENCES

Amarnath Murthy, S.E.(E&T) , WLS, Oil and Natural Gas Corporation Ltd., Sabarmati,
Ahmedabad,- 380005 INDIA.

{1} Smarandache Traceable Geometrical Partition

Consider a chain having identical links (sticks) which can be bent at the hinges to give it
different shapes.

Consider the following shapes (Annexure-I) obtained with chains having one , two , three or
more number of links.

(Annexure-I)
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We notice that the shapes of the figures drawn satisfy the following rules:
1. The links are either horizontal or vertical.

2. No figure could be obtained by the other by rotation without lifting it from the
horizontal plane.

3. As the links are connected , there are only two ends and one can travel from one
end to the other traversing all the links. There are at the most two ends ( there can
be zero ends in case of a closed figure) to each figure. These are the nodes which
are connected to only one link.

Number of such partitions we define as Smarandache Traceable Geometric Partition function
STGP denoted by Sgy(n). The sequence thus obtained is called Smarandache Traceable
Geometric Partition Sequence (STGPS).

1,2,6,15,...

Open Problem
(1): To Derive a reduction formula for the above sequence.
BEND:

We define a bend as a point at which the angle between the two terminating sticks is 90°

Given below is the chart of number of partitions with various bends for 1,2, 3, 4 etc.

sticks .
Noofbends» 0 1 2 3 4
No of sticks {
1 1 0 0 0 0
2 1 1 0 0 0
3 1 2 3 0 0
4 1 3 7 3 1

By extending this table for more number of sticks one can look for patterns.
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{2} Smarandache Comprehensive Geometric Partition:

Consider a set of identical sticks ( separate links of the chain in {1}) . If we also include the
figures in which

(a) There are more than two ends.

(b) One may not be able travel from one end covering all the sticks without traversing at
least one stick more than once.

in {1} then we get the.following partitions. Annexure -II.

We call it Smarandache Comprehensive Geometric Partition Function(SCGP) and the
sequence thus obtained SCGPS.

SCGPS —1,2,7,25...

In the above if we count number of partitions having two , three, four ends etc. separately we get
the following chart

No of sticks — 1 2 3 4
No of ends ¥

0 0 0 0 1
1 0 J 0 0
2 1 2 6 14
3 0 0 1 9
4 0 0 0 1

This table can be extended for more number of sticks and the task ahead is to find patterns if any
and their inter-relations.

Open Problem (2) To Derive a reduction formula for SCGPS.

Further Scope: This idea of Geometric partitions can be generalized for other angle of bends
e.g. for 60° placement of the sticks/chain links.
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SMARANDACHE ROUTE SEQUENCES

Amarnath Murthy, S.E.(E&T) , WLS, Oil and Natural Gas Corporation Ltd., Sabarmati,
Ahmedabad,- 380005 INDIA.

Consider a rectangular city with a mesh of tracks which are of equal length and which are either
horizontal or vertical and meeting at nodes. If one row contains m tracks and one column
contains n tracks then there are (m+1)(n+1) nodes. To begin with let the city be of a square shape
Le.m=n.

Consider the possible number of routes R which a person at one end of the city can take from a
source S ( starting point) to reach the diagonally opposite end D the destination.

S A=(j,k1) B= (j-1,k y C=(j,k)
//
5 s

mxm D.
( mrows and m columns )
Refer Figure -1
For m = 1 Number of routes R =1
Form=2,R=2
Form=3,R=12

We see that for the shortest routes one has to travel 2m units of track length. There are routes
with 2m +2 units up to the longest route being 4m + 4.

We define Smarandache Route Sequence (SRS) as the number of all possible routes for a 'm’
square city. This includes routes with path lengths ranging from 2mto 4m+4.

Open problem(1): To derive a reduction formula/ general formula for SRS.

Here we detive a reduction formula, thus a general formula for the number of shortest routes.
Reduction formula for number of shortest routes:

Refer figure -11

Let R;jx = number of routes to reach node ( j, k).
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Node (j , k ). Can be reached only either from node (j-1, k) or from the node (j , k-1) . * {As
only shortest routes are to be considered }.

It is clear that there is only one way of reaching node ( j, k) from node (j-1 , k). Similarly there is
only one way of reaching node (j, k) from node (j , k-1). Hence the number of shortest routes to
node (j, k ) is given by

Rix =1. Ri1,k + LR k1= Ry x +Rj i
This gives the reduction formula for R; .

Applying this reduction formula to fill the chart we observe that the total number of
shortest routes to the destination ( the other end of the diagonal ) is **C, . This can be
established by induction .

We can further categorize the routes by the number of turning points it is subjected to.

The chart for various number of turning points(TPs) for a city with 9 nodes is given

below.
No of TPs 1 2 3 4
No of routes 2 2 2 5
Further Scope:

(1) To explore for patterns among total number of routes , number of turning points and
develop formulae for square as well as rectangular meshes (cities).

(2) To study as to how many routes pass through a given number/set of nodes? How many of
them pass through all the nodes?
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Figure-I
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SMARANDACHE DETERMINANT SEQUENCES
Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd.,
Sabarmati, Ahmedabad,- 380005 INDIA.
In this note two types of Smarandache type determinant sequences are defined
and studied.
(1) Smarandache Cyclic Determinant Sequences:

(a )Smarandache Cyclic Determinant Natural Sequence:

‘1"12123 1 2 3 4

2 1 {,]2 3 1 2 3 4 1

1, 3, -18 , 160, . ..
This suggests the possibility of then™ term as

T. = (-0 {@2}.0™  —— ()

Where [ ] stands for integer part

We verify this for n=15, and the general case can be dealt with on similar
lines.

1 2 3 4 5
2 3 4 5 1
Ts=13 4 5 1 2
4 5 1 2 3
501 2 3 4

on carrying out following elementary operations
() R; = sum of all the rows, (b) taking 15 common from the first row
(c) Replacing Cy the k™ column by Cy -C; , we get
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1 0 0 0 O 1 2 3 -1
2 1 2 3 41 1 2 2 -1
Ts=153 1 2 -2 -1} =15 |1 -3 -2 -l
4 1 -3 -2 -1 4 -3 2 -1
5 4 -3 -2 -1
Ri-R2, R3-R;, Re-R;, gives
0 0 5 0
15 1 2 -2 -1| =1875,{the proposition (A) is verified to be true}
0 50 0
5 50 0

The proof for the general case though clumsy is based on similar lines.
Generalization:

This can be further generalized by considering an arithmetic progression with
the first term as a and the common difference as d and we can define
Smarandache Cyclic Arithmetic determinant sequence as

a a atd a atd at2d
atd a| , |atd at2d a
at2d a at+d ,
Conjecture-1:

Ta = (-DM S, 4. 0" = (- {a +(@-1)d}.{1/2} .{nd}""
Where S, is the sum of the first nterms of the AP

Open Problem: To develop a formula for the sum of n terms of the
sequence.
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(2) Smarandache Bisymmetric Determinant Sequences:

(a )Smarandache Bisymmetric Determinant Natural Sequence:

The determinants are symmetric along both the leading diagonals hence the

name.

l 1 | 1 2| |1 2 3 1 2 3 4
2 1 {,]2 3 2 2 3 4 3

3 2 14, |3 4 3 2

4 3 2 1| , ...

1 ’ -3 ’ -12 ’ 40 9 o o o
This suggests the possibility of then™ term as
T. = (-D"" {n(@+1)}.2" (B)

We verify this for n=5, and the general case can be dealt with on similar
lines.

T5=

W WN -
S WwWN
W hH L bW
N WA A
- N W W

on carrying out following elementary operations
(b) R; = sum of all the rows, (b) taking 15 common from the first row, we get

1 2 3 2
1511 21 0
1 0 -1 =2
] 23 -4
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R, =R; +Ry gives

0 00 -2

1511 2 1 0| = 120, whichconfirms with (B)
1 0 -1 -2
-l 23 4

The proof of the general case can be based on similar lines.

Generalization: We can generalize this also in the same fashion by considering
an arithmetic progression as follows:

a atd a a+td a+2d

atd al| , |atd at2d atd

at2d atd a s e e e

Conjecture-2: The general term of the above sequence is given by

Ta = D™ {a+@Dd}.2* 4"
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SMARANDACHE REVERSE AUTO CORRELATED SEQUENCES AND SOME
FIBONACCI DERIVED SMARANDACHE SEQUENCES

(Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd., Sabarmati,
Ahmedabad,-380005 INDIA. )

Let a;, a ,a ,... be a base sequence. We define a Smarandache Reverse Auto-
correlated Sequence (SRACS) b;, by ,b; ,... asfollow:

by =a?% , b, =2aa , by =a% + 2aja; , etc. by the following transformation
n

by = I ar api+
k=1

and such a transformation as Smarandache Reverse Auto Correlation Transformation
(SRACT)

We consider a few base sequences.
My, 2, 3, 4, 5,
ie. 'C1, %G, °Cy, Gy, °Cy, .
The SRACS comes out to be

1, 4, 10, 20, 35, ... whichcanbe rewrittenas
ie. °Cs, *Cs, °Cs;, °C;, Cs, ... wecancall it SRACS(1)
Taking this as the base sequence we get SRACS(2) as

1, 8, 36, 120, 330, .. .which can be rewritten as
ie. 'C;, *C;, °C;, 'C;, Cy, ... .Taking this as the base sequence we get
SRACS(3) as

1, 16, 136, 816, 3876,
ie. ®Cis, "Cis, "Cis, "Cis, Cis, ...,

This suggests the possibility of the following :
conjecture-I

The sequence obtained by 'n' times Smarandache Reverse Auto Correlation
Transformation (SRACT) of the set of natural numbers is given by the following:

SRACS(n)
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*Ch1, "Ca1y "Cua, M¥Chi,  *Chy, . . .where h=2")
(2) Triangular number as the base sequence:
1, 3, 6, 10, 15,
ie. ’Cy, ’°Cy, 'Ca, °Ch, OCy, . ..
The SRACS comes out to be

1, 6, 21, 56, 126, .. .whichcan berewrittenas
ie. °Cs, °Cs, 'Cs, ®Cs, °Cs, ... wecancallit SRACS(1)
Taking this as the base sequence we get SRACS(2) as

1, 12, 78, 364, 1365,

ie. "Cn, "Cy, ®Cn, ™Cu, "Cu, ... Taking this as the base sequence we get
SRACS(3) as

1, 24, 300, 2600, 17550,
ie. PCy, *Cu, ®Cu, Cy, Cy, ...,
This suggests the possibility of the following
conjecture-II

The sequence obtained by 'n' times Smarandache Reverse Auto Correlation
transformation (SRACT) of the set of Triangular numbers is given by

SRACS(n)

YICury "Cua, ™Cuy, "Cuy, ™Chi, . . .where h= 32%
This can be generalised to conjecture the following:
Conjecture-III :
Given the base sequence as "C,, ™'C,, ™2C,, "C,, ™C, ,...
The SRACS(n) is given by

..lCh.l, hC..l, lrHC]._], h+2C|._1, h".3(:._1, ...where h= (l’l+l).2..
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SOME FIBONACCI DERIVED SMARANDACHE SEQUENCES
1. Smarandache Fibonacci Binary Sequence (SFBS ):

In Fibonacci Rabbit problem we start with an immature pair ' I ' which matures after one season
to 'M' . This mature pair after one season stays alive and breeds a new immature pair and we get
the following sequence

I-» M - Ml-» M IM—» M IMM]-» MIMMIMIM - MIMMIMIMMIMMI
If we replace I by 0 and M by 1 we get the following binary sequence

0— 1- 10— 101—> 10110— 10110101—> 1011010110110

The decimal equivalent of the above sequences is

0> 152555225 181> 5814

we define the above sequence as the SFBS

We derive a reduction formula for the general term:

From the binary pattern we observe that

Ta = Tni1 Taz {the digits of the Ty, placed to the left of the digits of Ty.1.}

Also the number of digits in T is nothing but the r™ Fibonacci number by definition . Hence we
have

Ta=Ta1. 2"+ T,,
Problem: 1. How many of the above sequence are primes?
2. How many of them are Fibonacci numbers?
(2)Smarandache Fibonacci product Sequence:
The Fibonacci sequence is 1, 1,2,3, 5,8, ...
Take T; =2, and T> = 3 and then T, = Ty . Taz We get the following sequence
2,3, 6,18, 108, 1944, 209952 ——(A)

In the above sequence which is just obtained by the first two terms , the whole Fibonacci
sequence is inherent. This will be clear if we rewrite the above sequence as below:

2',31,2'3',213%,223% | 273° 2°3% ..
we have T, =21, 3"
The above idea can be extended by choosing r terms instead of two only and define

Ta=Ta1 To2 Tas. .. Tas forn>r.
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Conjecture : (1) The following sequence obtained by incrementing the sequence (A) by 1
3,4,7, 19, 1945, 209953 . . . contains infinitely many primes .

(2) It does not contain any Fibonacci number.
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SMARANDACHE STRICTLY STAIR CASE SEQUENCE
Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd.,
Sabarmati, Ahmedabad,-380005 INDIA.

Given a number system with base 'b". We define a sequence with the following
postulates:
1. Numbers are listed in increasing order.
2. Inanumber the k™ digit is less than the (k+1)™ digit.
Before we proceed with the general case, let us consider the case with b= 6. We get
the following sequence.
1,2,3,4,5,12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 123, 124, 125, 134,135,145, 234,
235,245, 345, 1234, 1235, 1245, 1345, 2345, 12345.
For convenience we write the terms row wise with the ™ row containing numbers
with r digits.
(1) 1,2,3,4,5, {°Cy =5 numbers }
(2) 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, { °C, = 10 numbers }
(3) 123, 124, 125, 134,135,145, 234, 235,245, 345, { °C3 = 10 numbers }
(4) 1234, 1235, 1245, 1345, 2345, { °C4 = S numbsers }
(5) 12345, {°Cs =1 number }
Following properties can be noticed which are quite evident and can be proved easily.
** We take (nothing ) space as a number with zero number of digits.
(1) There are ®'C, ( °C; in this case ) numbers having exactly r digits.
(2) There are 2™ (2° =32, in this case) numbers in the finite sequence including the
space which is considered as the lone number with zero digits.
3. The sum of the product of the digits of the numbers having exactly r digits is the
absolute value of the r™ term in the b™ row of the array of the Stirling numbers of the
First kind .
4. The sum of all the sums considered in (3) =b! - 1 (6! - 1 =719 in this case) .
Open Problems:
1. To derive an expression for the sum of all the r digit numbers and thus for
the sum of the whole sequence.
2. We define the n™® number in the sequence to have index n. Given a number in
the sequence to find it's index.
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About a new Smarandache-type sequence
Csaba Bird, University of Szeged

In this paper we will discuss about a problem that I asked about 8 years ago,
when 1 was interested mainly in computer science. The computers can operate with
256 characters and all of them has an ASCII code which is an integer from 0 to 255. If
you press ALT key and you type a number, the character of the number will appear.
But if you type a number that is greater than 255, the computer will calculate the
remainder after division by 256, and the corresponding character will appear. "Can
you show each character by pressing the same number key &-times?" - asked 1.

It is quite simple to solve this problem, and the answer is no. Before proving
this we generalize the problem to ¢-size ASCII code-tables, the codes are from 0 to -
1.

We shall use the following notations: N is the set of the positive integers,
No=Nuw{0}, Z is the set of the integers and Z={0,1,...,z-1}.

Now let us see the generalized problem. Define £N—N as
f=|H]

where
k
H = {x eZ,:aZlOi =x (mod t) forsome k eN,anda € {O,l,...,9}}
i=0

Our first question was f{256), and the generalized problem is to calculate £t)
in generality.

It is clear that f{r)=t if <10, and =10 if £~10. Now let us examine some
special cases.

Let t=27'55, r,seNg but at least one of them is not zero. Denote by w the
maximum of 7 and s. If k2w, then t,'lOk, because 10k=245k So

w-1

k
ay 10'=a) 10' (mod 1),
i=0

i=0

thus
k
H, =‘{x €Z:ay 10'=x (modt) keZ, anda e{O,l,...,9}}
i=0

So {H;<10w, moreover |H/<9w+1, because if a=0, then the value of % is

insignificant.
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We got a sufficient condition for {r)<z, that is £>9w-+1. It is satisfied if 7>6 or
522 or r=2,3,4,5 and s=1. If ~=0,1 and s<2, or r=2,3 and s=0 then <10 so we have
only 2 cases to examine: =16 and r=32. In the former, f{16)=16, because 10= 666,
12=44, 13=77, 14=222, 15=111 (mod 16), but in the latter £32)<32; for example

anybody can verify that 16¢H3% (by the way f{32)=26). Specially we got the answer

for our first question: {256)=A2

of these results are computed by a Pascal program.)

)<256, because 256>9-8+1. In fact 256)=60. (Some

In the next case let =107+1, r>1. Take a number d=a(1+10+100+...+10%).
Now it is easy to see, that the remainder of d may be 0, @, 10a, 10a+a, 100q,

100a+10a, 100a+10a+a, .

Thus 107¢ H;, so we got j(t)<t.

L1or -1g+10m2+.. +a, so the remainder is less than 107

Now we will show a simple algrithm to calculate f{r). Fix a and let R; be the
remainder of 10/a and S; the sum of the first i elements of the sequence {R,} (mod ¢).
It is obvious that both {R,} and {S,} are periodic, so let / be the end of the first
period of {S;;}. (S/=S;’ for some /’<l.)

Then

H, ={x eZ,:ailOi =x (modf) keZ anda e{O,l,...,9}}
i=0

so it is easy to calculate |H,|. The time complexity of this algorithm is at most 0(n2).

Finally let us see a table of the values of the function £, computed by a

computer.
t 1..10 |11 {12 |13 |14 |15 |16 |17 |18 |19 |20 256
AH 1110110 |12 |13 |14 |15 |16 |17 |18 [19 |15 | .. 60

10=666 (mod 12)

10=88 (mod 13)
12=77 (mod 13)

10=66 (mod 14)
12=222 (mod 14)
13=55 (mod 14)

10=55 (mod 15)
12=222 (mod 15)
13=88 (mod 15)
14=44 (mod 15)

10=666 (mod 16)
12=44 (mod 16)
13=77 (mod 16)
14=222 (mod 16)
15=111 (mod 16)

10=44 (mod 17)
12=777 (mod 17)
13=999 (mod 17)
14=99 (mod 17)
15=66 (mod 17)
16=33 (mod 17)

10=22222 (mod 18)
12=66 (mod 18)
13=1111 (mod 18)
14=8888 (mod 18)
15=33 (mod 18)
16=88 (mod 18)
17=77777 (mod 18)
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10=333 (mod 19)
12=88 (mod 19)
13=222 (mod 19)
14=33 (mod 19)
15=8888 (mod 19)
16=111 (mod 19)
17=55 (mod 19)
18=2222 (mod 19)




Now we still have the question: for which numbers f{#)=t? Are there finite or
infinite many ¢ with the property above? Is there a better (faster) algorithm to
calculate f{#)? Is there an explicit formuia? Can anyone answer?
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Abstract

The Smarandache Paradox is a very interesting paradox of logic because it has a background common
sense. However, at the same time, it gets in a contradiction with itself. Although it may appear well
cohesive, a careful look on the science definition and some logic can break down this paradox
showing that it exist only when we are trying to mix two different universes, where in one we have two
possibilities and in the other we have only one. When we try to understand the second possibility in
the universe which has only one possibility, we end in the Smarandache Paradox.

1. On the Smarandache Paradox

The Smarandache paradox can be enunciated as follows. Let A be some attribute (e.g., possible, present,
perfect, etc.). If everything is 4, than the opposite of 4 must be also 4! For example, “All is possible, the
impossible too” and “Nothing is perfect, not even the perfect” [1]. This paradox is very interesting because
it has its logic but it makes no sense at the same time.

It’s very easy to break down this paradox by simply taking a careful look on the definition of science. If we

have two possible states, but the whole universe is immerse on only one of the states, then there’s no sense
talking about another state. It does not exist at all. The same logic can be applied on the Smarandache

paradox.
Let P be a Boolean property (i.e., it assume only “true” or “false”, “0” or “17, etc., as value). Now, suppose

we have a group of particles that have this property, where half particles are P = true and the other half =
false. Restrictively in this group, say G, its possible to have both properties. However, if we define

another group, GZ’ where all particles are P = true, then it makes no sense talking about P = false in that

group because that property does not exist at all. In other words, if all is possible, then it makes no sense
saying that even the impossible is, because in this group we do not have any impossibility. It’s a mistake
trying to say that even the P = false is P = true n G, because in that universe P does not assume any value

different from “true”.

Moreover, if we have a group where nothing is perfect, then the perfection does not exist in that group. The
paradox simply tries to get the perfection, which is possible in other groups, to this particular group where
it is not. Thus, a truth for a particular group may be not true for another one.
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Another way to get to this conclusion is by the principle of science stating that if we cannot deny it, then it
does not exist. For instance, let me take the great example of the dragon in the garage of Carl Sagan [2]. If
you fell me that you have a dragon on your garage, then I would ask you to take me there to prove it.
However, when we get there and you shown me it, there’s nothing there for me. You say that the dragon is
invisible. Therefore, I ask you to throw some flour on the ground, so we could see the steps of the dragon.
Now you say that the dragon is always flying. So I ask to use some infra-red detector to “see” the dragon
fire. Now you say that the fire of the dragon is heatless. Patiently, I suggest throwing paint all over the
garage so we could see him. Nevertheless, you say that the dragon is actually not made of matter. Now I
ask you what is the sense in talking about a dragon like this? Why don’t we just say that the dragon does
not exist at all? Accordingly, if even the impossible is possible, then impossibility does not exist and
therefore we can exclude it and have only the possibility. Consequently, is impossible to talk about
impossibility in a restrict universe where only possibility is allowed.

2. CONCLUSION

The example of the groups of particles with the property P showed here, lead us to the fact that the
Smarandache Paradox exist only when we are trying to understand the meaning of P = false in a universe
where only P = true is allowed. Yet, the definition of science make clear that there is no sense in P being
false in a universe where all Ps are true.
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New Prime Numbers

Sebastiin Martin Ruiz

I have found some new prime numbers using the PROTH program of Yves Gallot.
This program in based on the following theorem: '

Proth Theorem (1878):

Let N=k-2" +1 where k <2". If there is an integer number a so that
N-1
a ? =-1(mod N) therefore N is prime.

The Proth progam is a test for primality of greater numbers defined as

k-b" +1 or k-b" —1. The program is made to look for numbers of less
than 5.000000 digits and it is optimized for numbers of more than 1000 digits..

Using this Program, I have found the following prime numbers:

3239.2183% 41 with 3720 digits  a=3, a=7
7551-2'3% 41 with 3721 digits a=5, a=

7595-2'2% 41 with 3721 digits ~ a=3, a=11
9363.2'5% 41 with 3713 digits a=5, a=7

Since the exponents of the first three numbers are Smarandache number
Sm(5)=12345 we can call this type of prime numbers, prime numbers
of Smarandache .

Helped by the MATHEMATICA progam, I have also found new prime numbers which
are a variant of prime numbers of Fermat. They are the following:

2% 3% —27 3% forn=1,4,5,7.
It is important to mention that for n=7 the number which is obtained has 100 digits.

Chris Nash has verified the values n=8 to n=20, this last one being a number 0f 815.951
digits, obtaining that they are all composite. All of them have a tiny factor except n=13.
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A NOTE ON THE VALUES OF ZETA

TAEKYUN KM

Carlitz considered the numbers 7, (g) which are determined by

1 fk=1

nolg) = 0, (qn(q)+1>*—nk(q)={0 ol

These numbers 7;(g) induce Carlitz’s kth g-Bernoulli numbers B;(q) = f; as

1 ifk=1

— k__ =
po=1 a@+1t-p={, 17

where we use the usual convention about replacing 8 by 8; (i > 0).
Now, we modify the above number 7,,(g), that is,

1 ifk=1

Bolg) = 1=, (qB(q)+1)k—Bk<q)={ 0 wios

log g

where we use the usual convention about replacing B*{q) by B;(q) (i > 0).

In [1], I have constructed a complex g-series which is a g-analogue of Hurwitz’s (-function.
In this a short note, I will compute the values of zeta by using the g-series.

Let F,(t) be the generating function of B;(q) :
Fy(t) = ZB,,(q)H for g € C with Jg| < 1.
k=0
This is the unique solution of the following g-difference equation:
Fy(t) = €' Fy(qt) — t.

It is easy to see that

o0
-1
Fy(t)=-ty_ qrelt + ‘foﬂeﬁt.

n=0

1991 Mathematics Subject Classification. 10A40.

291



Thus we have:

____kzqn[n]k 1+ ( l)k 1

d

Hence, we can define a g-analogue of the {-function as follows:
For s € C, define (seef1])

1 1-9)°
Gals) = Z['n]’—s—l logg °

Note that, {,(s) is analytic continuation in C with only one simple pole at s =1 and

-0 =20

where k is any positive integer.

Now, we define g-Bernoulli polynomial By (z;q) as

n

Ba(z;q) = (¢°Blg) +[e)" = (:) 7 Bi(9)lz]"*

k=0

Let Ty(z,t) be generating function of g-Bernoulli polynomials.

Note that
Ty(z, 1) = Fo(got)e™"
Thus
dk+1
Bii(3:0) = 2z To(3:)
t=0
k41
— vk n+zx 9= 1 1
(40 3l + B+ S (L)

n=0

So, we can also define a g-analogue of the Hurwitz {-function as follows:
For s € C,(see [1])

grte (-9 1

Gols,) = Z:([n]q’+ logg s-1
-Z il (o L
n+z]* logg s—1’ =7

Note that, (,(s,z} has an analytic continuation in C with only one simple pole at s = 1.

Remark. {,(s,z) is called g-analogue of Hurwitz {-function.
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For u € C with u # 0,1, let Hi(u : ¢) be g-Euler numbers (See [4]). It is known in [4]
that Hy(u: 1) = H{(u) is the ordinary Euler number which is defined by

1_ [= <]
n _1; = ZHk(u)%
k=0

In the case u = —1, Hi(—1) = E; is the classical Euler number is defined by

2 2tk
et +1 =ZE"E'A
n=0

Note that Ep = 0 (k > 1). In [4], £,(s, u) is defined by £,(s,u) = Yo, ﬁ; and £,(—k,u) =
g He(u:q) for k> 1.
Theorem 1. For s € C, f € N\{1}, we have
1) T2, G = =G s) + g Gals)-
(2) G(8) = g 1oy € (5, 2), where G(s) = Tty
It is easy to see that

§2i+1[n] 2]+1 1 (1-q)2-2 g2+l

(=1)"q
:L_:; [n]2k+1 Z (25 + 1)! logq Z 2k — 2) —-1(2j+1)!

1 E-1 0 p2i41 (1- q2)2k—2_7 1
B logg & = (21 +1)! 2k—25—1 [2]*k-2%

1)7g2+1 . ‘ 9
B Z ((21 +1)! ("C"(% = %) + a2k - 2J)WF27)
q 92k+1 . oo 02j+1 (__1)_7' q_1 _
TTegmernic )Y z G T gt (e '9)-

=k+1

If ¢ > 1, then we have

= (-1 8 (1 2
> (2k-+)-1 sin(né) = Z (2( +)1)| 6+ (22k—2j - 1)

n=1

(271.)21:—2]' 1 92k+1

D ko P T R I

L

Let k =2 and 8 = 5. Then we have

=u* _ a5 1 By 7
z(2n+1)5_ 35 2.3 T 1a0t)
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It is easy to see that

e - 1
§(2n+1 2:(4 Z(2n)5_2;{5——

n=1
= 5505, 7) ~ o ¢(8) -

Thus we have

1

1 1 1 By
¢(5) — 24 2% = C (572) - 1= -257° (26 = T . al + —B4> .

Therefore we obtain the following:

Proposition 2. {(5) — mlg_—l)((S, 3) — 1 is irrational.
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Ten conjectures on prime numbers

Felice Russo

Via A. Infante
67051 Avezzano (Aq) Italy
Selice.russo@katamail.com

Abstract

In this paper ten conjectures on prime numbers are reported. With p,
we indicate the n-th prime number. All the conjectures have been

verified for all primes < 107.

_m.]_ng
o) o

ln(pn+1)—1n(pn)<1n( 519

_cos(,,.l).cos(,,.li)
Pn+l — Pn <n 55 54
Pn+1 1 Pp

9
1 —_—
Ipn '(n+1)_n’pn+l|<_2"(n+l)50
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3

6. In(/mCpn))- iz, J<§1}I
; 1 nln Pp+t 3011”/15:]-

< <
zlnﬁ (n+1)ln Py 311nJil—3

. V3-1In(3) \/ ~In(pns1) _ VI1-mn(11)
J2-1n(2) J_ n(py) N7 -In(7)

(n360)7_(ippy))VPr _(in(3))?
(0327 ((p Vot ()

1. VPn = 10(pni1) V3 ~In(5)
Pnsi ~I0(2y) V5= In(3)
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On some implications of

formalized theories in our life

Adrian Vasiu Angela Vasiu
Department of Mathematics, Department of Mathematics,
University of Utah, Babes-Bolyai University,
Salt Lake City, Utah, USA  Cluj-Napoca, Romania

Abstract

The formalized theories in which are considered different
types of logics give us an easier way of understanding of our
own interpretations of the concepts and of the events of life.

In the paper "Paradoxist mathematics" [1] Smarandache
proved that contradiction is not a catastrophe even in
mathematics and he taught us how to handle it. Even more, this
can encourage us in our life, for the infinite dimensional
capacity of human condition. Through this paper we meditate
on the great diversity of human condition seen through the
axiomatization of a formalized theory. Thus the science gives
some explanations for the life and the life inspires the science.

We denote S:=(N,R 4) an axiomatical system of a formalized theory;
N and R are fundamental notions and relations and A is a list of hypothesis
propozitions (axioms in the modern meaning).
T(S):=<S,consecS>
T(S) is the theory deduced from § and its consequences based on a
logic L.
If the great Gauss said that the mathematicians were not prepared to

accept the new Geometry of N. Lobacewski and J. Bolyai, today we can see
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that the evolution of absolute Geometry [3] brings us a great number of non-
euclidean Geometries.

This development and the great varieties of Geometries and
Mathematics structures help us in some directions for the self-understanding.

Accordingly to the great illuminated ones we have a sublime inner
structure, which could bring us more respect of each other end, also, the
self-respect.

Well, then why are we so different? Certainly this depends of the
degree in which these innate qualities are left to be manifested or are
blocked. We can see different kinds of people who can distinguish each
other after the degree of manifestation of their own qualities. This depends
of the degree of the ignorance, or of the negligence or even of the denial of
one or more of pure aspécts of our inside, shortly this is correlated with our
"Inner Geometry", a notion introduced by us in [2].

Our "Inner Geometry" can be different from a moment to an other,
from a personne to an other, and it depends of the self-knowledge, which is
a subject which adresses to a seaker of truth with a scientifical attitude and
is a search since immemorial times. It is the knowledge of all civilizations
and of the evolution and so we should treate it with much respect for our
benefit.

Each one of us can see that sometimes we feel some of our qualities,
but sometimes we substitute them in something opposite. In this way, we
can see that our "Inner Geometry" represent an immense variety. Why?

There is an alive complete "instrument” put in our inside. This alive
"hipercomputer" works by the manifestation of its powers, by the
parasympathetic nervous system and by the right, left and central

sympathetic nervous system. All we are doing in our evolution is expressed
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by our nervous system. This is an alive, spontaneous and natural process.
Our contribution is to leave it to manifest in its natural manner. Usually we
disturb it by our: too much worries and irritations. When our pure energy is
left to manifest, it connects us, our subtle being, to the Allpervaiding power
of God's Love, of the primordial power who creates and does all alive work.
The anterior state can be compared with that of a seed before to be put in
the earth.

The Foundation of Geometry could help us to explain the great
diversity of human beings. How? Thinking to the some aspects of our "Inner
Geometry".

1. Have we, ever, put the questions about our "Inner Geometry"? If
we had, we can ask ourselves about of the system S=(V,R,4) which we
accept in our existence. We can ask about the order of values in our life.

2. Even the consciousness of the importance of a foundation of our
existence is differently understood or accepted, or is denied.

3. The way in which we develop T(S), the degree of the knowledge of
T(S) at a given moment, and the logic L we use for T(S) are arguments to a
deeper understanding of the diversity of human condition.

4. If we make a choice of the system S, what kind of interpretations
give we to the fundamental notions N and relations R? What significance
attribute we to the elements of N, R and 4 of S? From here the great human
variety.

5. Is it our existence one ful of wisdom, or is it one ful of
contradictions and confusions?

Our problems could be naturally solved when in our "inner computer",
our competent energy is working in our life. Then we live after natural laws.

To imply to these aspects we would dare to stimulate, as a provocation, all
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the scientists. We all are invited to pay attention for a better self-
understanding and for a more harmonious integration in the life, by using our
inner possibilities.

The Foundation of Mathematics invites us to a profound meditation
about self-knowledge, to a consciousness of our inner riches and such to
avoid to waste our own energies, which could affect our healthiness.

6. The acceptance of our inner pbssibilities do not suppose an
inactivity state, but the actions with much respect and love for our
neighbours and for self-respect. Such we assume the responsability for our
facts and this help us not to block some subtle centers of our inner being, of
our subtle body and to pay attention to our own Logic L.

7. Is this possible in a would ful of selfinesh? We are even optimist
and encourage our readers for a reflection of what Foundation of a theory
provoke us in a correlation with the self-knowledge and the awakening of
our inner possibilities, about all illuminaries assure us, even if for the
moment, our poor logic is vexed.

When we deny or we use not, one or some of our inner possibilities,
our "Inner Geometry" is perturbated from its natural state.

The degradation of the life to which all assist is an explanation of the
ignoring of our inner capacities.

In "Paradoxist Mathematics" in [1] the author says about its Anti-
Geometries: "everything is considered not in a nihilistic way, but in a
positive one". And we agree this. A possible positive way is that of
understanding of the actual state of human condition. The new concepts in
Mathematics given in [1] were written at a time when the author

experienced a political totalitarism system: "I wanted to be free in life -
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hence I got the same feelings in science. It is a revolt against all petrified
knowledge" [1].

To these we would add that we could, also, "revolt" in front of this
decadence and degradation by considering our greatness about we were
created and using it in a more and more wisdom life. How? Through some
silent minutes: to be what we are, and so to permite to our subtle body to
work after its own laws.

More we experience our nature, closer we are to be free and health.
What is a plant without watter, or without the light of sun?

When we begin to live our life as an expression of our universality, of
our divinity, then we begin to give a correct answer to the question: "who
really I am"? Realize I that my essence is a spiritual one? Let we realize this
and let we identify with our own essence. This is our right, and this time has
come. It is like the time to bloom flowers. We all pottentially have so many
availabilities of love, of serenity, of peace, of creativity. They are available.
Let all consider them and identify with them. Then we enjoy of our inner
innate qualities and the divine power, who is in all beings as consciousness
as intelligence, as the power of reflection, of modesty, of peace, of
compassion, of satisfaction and others, can work naturally. When we
experience the power of the Self, we can see that the ego is not, who really I
am. The ego is our self-immage, it is our social mask, it is the role we are
playing in society. But I am my pure essence. So, ego, is not my true
identification.

Our true nature is complete free of fear, because it recognizes in every
one else, the same pure nature and even in his errors can do the difference

between what the essence is and what is not.

301



How to get our correct identification? A deep and pure desire that
what is divine in us to manifest; all days not to forget to spend a time in the
nature, and to have a short time at least, to simply Be, to realize that it is a
responsability to contribute to our own evolution with sincerity, making
important steps to understand the laws of nature, based not on a blind faith,
but on a real one, what can be verified.

Through all we mentioned in this paper we would like to do the
Mathematics a force of life for our better understanding and a force which
invite us to use more and more our inner life, which were not enough

explored.
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DECOMPOSITION OF THE DIVISORS OF A NATURAL NUMBER INTO PAIRWISE
CO-PRIME SETS

(Amarnath Murthy, S.E. (E&T),Well Logging Services, Oil and Natural Gas corporatioh
Ltd.,Sabarmati, Ahmedabad, 380 005 , INDIA.)

Given n a natural number . Let d, d;, d3, d4, ds, . . . be the divisors of N. A querry coms to my
mind, as to, in how many ways , we could choose a divisor pair which are co-prime to each
other? Similarly in how many ways one could choose a triplet, or a set of four divisors etc. such
that, in each chosen set, the divisors are pairwise co-prime.?

We start with an example Let N= 48 = 2*x 3 . The ten divisors are

1,2,3,4,6,8,12, 16,24, 48

We denote set of co-prime pairs by D (48) , co-prime triplets by D; (48) etc.

We get D, (48) = { (1,2),(1,3),(1,4),(1,6),(1,8), >(1, 12),(1,16),(1,24),(1,48),
(2,3),(4,3),(8,3),(16,3) }

Order of D, (48) = 13.

D;(48)={(1,2,3),(1,3,4),(1,3,8),(1,3,16) }, Order of D3 (48) = 4.
Ds(48)={}=Ds(48)=....=Dq (48) =Dy (48).

Another example N = 30 = 2x3xS5 ( a square free number). The 8 divisors are
1,2,3,5,6,10,15,30

D30 ={(1,2),(1,3),(1,5),(1,6),(1, 10), (1, 15),(1,30),(2,3),(2,5),(2, 15),
(3,5),(3,10),(5,6) }.

Order of D, (30) = 13. = O[D;( p1pzp3)] (A)
D;(30)={(1.2,3),(1,2,5),(1,3,5),(2,3,5),(1,3,10),(1,5,6),( 1,2, 15) }
Order of D;(30) = 7.

D4 (30)={(1,2,3,5)}, Order of D,(30) = 1.

OPEN PROBLEM: To determine the order of D, (N).
In this note we consider the simple case of n being a square-free number for r =2 , 3 etc.

(Ayr=2
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We rather derive a reduction formula for r = 2. And finally a direct formula.
Let N =pip2ps. . .pn Where px is a prime fork=1ton
We denote D; (N) = D, ( 1#n) for convnience. We shall derive a reductio formula for
Dy( 1 # (nt1)).
Let q be a prime such that (q, N) =1, ( HCF =1)
Then D,(Nq) = Dy( 1#(n+1)) .

1. We have by definition D,( 1#n) c D,( 1#(n+1))

This provides us with O [D,( 1#n) ] elements of D2( 1#(n+1)).

(2) Consider an arbitrarily chosen element ( dx, ds) of D2( 1#n). This element when
combined with q yields exactly two elements of Dy( 1#(n+1)). i.e. ( qdi, ds) and ( dx, qds

).
Hence the set Dy( 1#n). contributes two times the order of itself.

2. The element ( 1, q) has ot been considered in the above mentioned cases hence the the
total number of elements of D,( 1#(n+1)) are 3 times the order of D,( 1#n) + 1.

O[D,( 1#(n+1))] =3 x O] D,( 1#m)] + 1. (B)

Applying Reduction Formula (B) for evaluating O[D,( 1#4)]

From (A) we have O[D2( pip2p3)] = O[D2( 1#3)] = 13 hence

O[Dy( 1#4)] =3x13+1=40.

This can be verified by considering N = 2x3x5x7 = 210. The divisors are
1,2,3,5,6,7,10, 14, 15, 21, 30, 35, 42, 70, 105, 210,
Dy(210)={(1,2),(1,3),(1,5),(1,6),(1,7),(1,10), (1, 14) ,(1,15), (1,21),(1, 30),
(1,35),(1,42),(1,70),(1,105),(1,210),(2,3),(2,5,(2,7,(2,15),(2,21),
(2,35),(2,105),(3,5),(3,7),(3,10),(3,14),(3,35),(3,70),(5,6), (57,
(5,14),(5,21),(5,42),(7,6),(7,10),(7,15),(7,30),(6,35),(10,21),(14,15) }
O [D2(210)] = 40.

The reduction formula (B) can be reduced to a direct formula by applying simple induction and
we get

O[ D(1#m)] =(3"-1) /2 ©
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B)r=3.
For r = 3 we derive a reduction formula.

(1) We have D;(1#n) < D; ( 1#(n+1)) hence this contributes O[Ds(1#n)] elements to D; (
1#(n+1)).

(2) Let us Choose an arbitrary element of D( 1#n) say (a, b, ¢ ). The additional prime q yields
(qa b b 2 c ) ?

(a,gb,c),(a,b,qc)ie. three elements. In this way we get 3 x O[Ds(1#n)] elements.

3. Let the product of the n primes =N . Let (di,dz,ds,. .. dyny) be all the divisors of N .
Consider D, (1#n) which contains d(N) - 1 elements in which one member is unity = d,.

i.e.,(l,dz),(l,dg),...,(l,ddm)).

If q is placed as the third element with these as the third element we get d(N) - 1 elements of Ds (
1#(n+1)). The remaining eleents of D, (1#n) yield elements repetitive elements already covered
under (2).

Considering the exhaustive contributions from all the three above we get
OID; ( 1#(n+1))] = 4 * O[Ds(1#n)] + d(N) - 1

O[D; (1#(n+1))] = 4 * O[D3(1#n)] +2"- 1 )
O[D5(210)]=4*0[D; (30)]8 -1

O[D;(210)]=4*7+8-1=35

To verify the elements are listed below.

D3(210)={(1,2,3),(1,2,5),(1,3,9),,(1,2,7),(1,3,7), (1 257)(1,2,15),(1,2,21
)!

(1,2,35).(1,2,105),(1,3,10),(1,3,14),(1,3,35),(1,3,70),(1,5,6), (1, 5,14) , (
1,5,21),

(1,5,42),(1,7,6),(1,7,10), (1, 7, 15) 1,7,30),(2,3,5),(2,3,7),(2,5,7),(2, 3,
35),(2,5,21),

(2,7.15),(3,5,7.(3,5,14),(3,7,10),(5,7,6),(1,6,35), (1,10, 21), (1, 14, 15) }

Open Problem : To obtain a direct formula from the reduction formula (D).
Regarding the general case i.e. O [D, ( 1#n) ] we derive an inequality.
Let(d; dy, ds,...d;)beanelement of O [D; ( 1#n) ].
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Introducing a new prime q other than the prime factors of N we see that this element in

conjunction with q gives r elements of D, ( 1#(nt+1)) i.e. (qdy,dz, d3,...dc),(di,qd2, ds,. ..

d), ...

(di dy, ds,...qd,) .also D ( 1#n) c D, ( 1#(n+1)). Hence we get
O[D; ( 1#(n+1))] > (r+1). O[D, ( 1#n)]

To find an accurate formula is a tough task ahead for the readers.

Considering the general case is a further challenging job.
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SOME NOTIONS ON LEAST COMMON MULTIPLES

(Amarnath Murthy, S.E. (E&T),Well Logging Services, Oil and Natural Gas
corporation Ltd.,Sabarmati, Ahmedabad, 380 005 , INDIA.)

In [1] Smarandache LCM Sequence has been defined as T,=LCM (1ton) =
LCM of all the natural numbers up to n.
The SLS is

1,2, 6, 60, 60, 420, 840, 2520, 2520, ...

We denote the LCM of a set of numbers a, b, c, d, etc. as LCM(a,b,c,d)
We have the well known result that n! divides the product of any set of n
consecutive numbers. Using this idea we define Smarandache LCM Ratio
Sequence of the r™ kind as SLRS(r)

The n™term ,T, =LCM (n, n+1, 042, . . .ntr-1 ) LCM (1,2, 3,4, .. .1)

As per our definition we get SLRS(1) as

1,2,3,4,5,....T,(=n)

we get SLRS(2) as

1,3,6,10,...,Ty = n(n+1)/2 ( triangular numbers).

we get SLRS(3) as

LCM (1,2,3)/LCM (1, 2,3), LCM (2,3,4)/LCM (1, 2,3),LCM (3, 4, 5,)/
LCM(1,2,3)

LCM (4, 5,6)/ LCM (1,2,3) LCM (5, 6, 7/ LCM (1, 2, 3)

=1,2,10,10,35... similarly we have
SLRS(4)=—=1,5,5,35,70,42,210, ...

It can be noticed that for r > 2 the terms do not follow any visible patterns.
OPEN PROBLEM : To explore for patterns/ find reduction formullae for . T, .

Definition: Like "C,, the combination of r out of n given objects , We define a
new term "L,

As

l'L,=LCM(n,n-l,n-2,...n-r+1)/LCM(1,2,3,...r)

(Numeretor is the LCM ofn, n-1, n-2, . . .n-r+1 and the denominator is the LCM
of first natural numbers.)

we get 'Ly =1, 'L; =1,%Ly =1,%L; =2, L, =2 etc. define °Ly =1

we get the following triangle:

1

1,1

1,2, 1

1,3,3,1

1,4,6,2,1

1,5,10,,105,1
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N

1,6,15,10,5,1,1
1,7,21,35,35,7,7,1

1,8,28,28,70,14,14,2,1
1,9, 36, 84, 42, 42,42,6,3, 1
1, 10, 45, 60, 210, 42,42, 6,3,1, 1

Let this traingle be called Smarandache AMAR LCM Triangle

Note: As r! divides the product of r consecutive integers so does the LCM ( 1, 2,
3, ... 1) divide the LCM of any r consecutive numbers Hence we get only integers
as the members of the above triangle.

Following properties of Smarandache AMAR LCM Triangle are noticable.
The first column and the leading diagonal elements are all unity.

The k™ column is nothing but the SLRS(k).

The first four rows are the same as that of the Pascal's Triangle.

II™ column contains natural numbers.

III™ column elements are the triangular numbers.

If p is a prime then p divides all the terms of the p™ row except the first and the

last which are unity. In other words = p™ row =2 ( mod p)

Some keen observation opens up vistas of challenging problems:

In the 9 row 42 appears at three consecutive places.

OPEN PROBLEM:

(1) Can there be arbitrarily large lengths of equal values appear in a row.?
To find the sum of a row.

Explore for congruence properties for composite n.

SMARANDACHE LCM FUNCTION:

The Smarandache function S(n) is defined as S(n) = k where is the smallest
integer such that n divies k! . Here we define another function as follows:
Smarandache Lem Function denoted by S;(n) =k, where k is the smallest
integer such that n divide LCM (1,2,.,3...Kk).

Letn=p° pz p3 R

Let pn"™ be the largest divisor of n with only one prime factor, then

We have Sp(n) =pn""

If n =k! then S(n) =k and S;( n) > k

If n is a prime then we have Sy (n) =S(n) =n

Clearly Sy ( n) > S(n) the equality holding good for n a prime or n = 4, n=12.
Also Sy ( n)=n if n is a prime power. (n = p*)

OPEN PROBLEMS:
(1) Are there numbers n >12 for which Sy ( n) = S(n).
(2) Are there numbers n for which Sy(n) =S(n) #n

REFERENCE:
[1] Amarnath Murthy, Some new smarandache type sequences, partitions

and set, SNJ, VOL 1-2-3 y 2000.
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SMARANDACHE DUAL SYMMETRIC FUNCTIONS AND CORRESPONDING
NUMBERS OF THE TYPE OF STIRLING NUMBERS OF THE FIRST KIND

(Amarnath Murthy, S.E. (E&T),Well Logging Services, Oil and Natural Gas
corporation Ltd.,Sabarmati, Ahmedabad, 380 005, INDIA))

In the rising factorial (x+1) (x+2)(x+3). . . (x+n) , the coefficients of different powers of x are the
absolute values of the Stirling numbers of the first kind. REF [1].

Letxi,X2,X3, ... Xq be the roots of the equation

(x+1) (x+2)(x+3). .. (x+n) = 0.

Then the elementry symmetric functions are

XitX2tX3+,...,+X=Z Xy, ( sum of all the roots )

XiX2 + XiX3 +. .. Xp1Xa = X X1X2. ( sum of all the products of the roots taking two at a time )
X X1X2X3...X, = ( sum of all the products of the roots taking ratatime).

In the above we deal with sums of products. Now we define Smarandache Dual symmetric
functions as follows.

We take the product of the sums instead of the sum of the products. The duality is evident. As an
example we take only 4 variables say x; , X, , X3 , X4 Below is the chart of both types of functions

Elementry symmetic funcions Smarandache Dual Symmetric functions

(sum of the products) (Product of the sums)

Xi+tXo+x3+x X1X2X3X4

X1X2 + XiX3 + X1X4 +X0X3 + XoXg + X3X4 (x1+ %2 ) (X1 X3 )( X1+ X4 Y(Xa X3 W X2+ X4 ) Xs+Xs
X1X2 X3 + X1XoXq+ X1X3 Xs + XoX3Xy (x1+ X2 +x3)( X1+ X2 + Xe)( X) +X3 + Xg WX+ X3 +X4)
X1X2X3Xy X;+X2+X3+x4

We define for convenience the product of sums of taking none at a time as 1.

Now if we take x, = r in the above we get the absolute values of the Stirling numbers of the first
kind. For the firs column.

24, 50, 35,10 ,1.

The corresponding numbers for the second column are 10 » 3026, 12600, 24, 1.
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The Triangle of the absolute values of Stirling numbers of the first kind is

1

1 1

2 3 1

6 11 6 1

24 50 35 10 1

The corresponding Smarandache dual symmetric Triangle is

1

1 1

3 2 1

6 60 6 1

10 3026 12600 24 1

The next row (5) numbers are

15, 240240 , 2874009600, 4233600, 120 , 1.

Following propertiesof the above triangle are visible:

(1) The leading diagonal contains unity.

(2) The r™ row element of the second leading diagonal contains 1! .
(3) The First column entries are the corresponding triangular numbers.
Readers are invited to find relations between the two triangles.

Application: Smarandache Dual Symmetric functions give us another way of generalising the
Arithmetic Mean Geometric Mean Inequality. One can prove easily that

(x1XX3X)" < [{ (X1 + X2 ) (X X3 )( X1+ X JX2F X3 )( X2+ X ) X334 )} ] /2 <
[+ X +x3)( Xt X2 + X)Xy 433 + X )Xot X3 +x) }A] /3 < {xp+xp+ x5+ x4}/ 4

The above inequality is generally true can aiso be established easily.
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SOME MORE CONJECTURES ON PRIMES AND DIVISORS

(Amarnath Murthy, S.E. (E&T),Well Logging Services, Oil and Natural Gas corporation
Ltd.,Sabarmati, Ahmedabad, 380 005 , INDIA.)

There are an innumerable numbers of conjctures and unsolved problems in number theory
predominantly on primes which have been giving sleepless nights to the mathematicians allover
the world for centuries. Here are a few more to trouble them.

(1) Every even number can be expressed as the difference of two primes.

(2) Every even number can be expressed as the diference of two consecutive primes.

i.e. for every m there exists an n such that 2m = pg+, - p, ., where p, is the n® prime.

(3) Every number can be expressed as N / d(N) , where d(N) is the number of divisors of N.
If d(N) divides N we define N / d(N) = I as the index of beauty for N.

The conjecture can be stated in other words as follows. For every natural number M there exists
a number N such that M is the index of beauty for N. i.e. M = N/d(N) .

The conjecture is true for primes can be proved as follows:

We have 2 =12/d(12) =12/ 6, 2 is the index of beauty for 12.
3=9/d(9)=9/3, 3 is the index of beauty for 9.

For a prime p>3 we have N=12p ,dN)=12and N/d(N) =p.
(N=8p can also be taken) .

The conjectue is true for a large number of canonical forms can be established and further
explored.

The proof for the geneal case or giving a counter example is still a challengeing unsolved
problem..

(4) If p is a prime there exist infinitely many primes of the form
A 2p+1.(B)2.a" +1.

() It is a well known fact that one can have arbitrarily large numbers of consecutive composite
numbers.

Le. (rD)!+2, (e+)! 43, (e+1)! +4, .. (r+1)! + -1, (r+1)! + 1 give r cosecutive compsite
number where r is chosen arbitrarily.

But these are not necessarrily the smallest set of such numbers. Let us consider the smallest set
of r consecutive composite numbers as follows
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r Smallest set of compsite r / first compsite number

numbers

| 1 11

2 8.9 2/8

3 14, 15, 16 3/14
4 24,25, 26,27 4/24
5 24,25, 26, 27, 28 5/24
6 90, 91, 92, 93, 94, 95 6/90
7 90, 91, 92, 93, 94, 95, 96 7/90
8 114 ,115,. . up to. . 121 8/114

Similarly for 9, 10, 11, 12, 13 the fisrt of the composite nmbers is 114.

We conjecture that the sum of the ratios in the third column is finite and > e.

(6) Given a number N . Carryout the following step of operation to get a number N
N-pq = Ny ,where pn < N < py+1 ,pn isthe n™ prime .

Repeat the above step to get N>

Ni -p2 =Nay,  p2 <Ni <pou.

Go on repeating these steps till one gets Ny = 0 or 1.
The conjecture is (a) however large N be , k < log; log; N

(b) There exists a constant C such that k<C.

Open Problem: In case (b) is true, find the value of C.
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THE REDUCED SMARANDACHE SQUARE-DIGITAL
SUBSEQUENCE IS INFINITE

Machua Le

Abstract . In this paper we prove that the reduced
Smarandache square-digital subsequence is infinite.

Key words. reduced Smarandache square-digital subsequence,
mfinite.

Form all square integers 0,1,4,9,16,25,36,.., we choose
only the terms whose digits are all perfect squares
and disregarding the square numbers of the form N-10%
where N is also a square number and ¢ is a
positive integer. Such sequence is called the reduced
Smarandache  square-digital subsequence . Bencze [1] and
Smith [2] independently proposed the following question.

Question . How many terms in the  reduced
Smarandache square-digital subsequence?

In this paper we completely solve the mentioned
question . We prove the following result.

Theorem . The reduced  Smarandache  square-digital
subsequence has infinitely many terms.

By our theorem , we can give the following corollary
immediately .

Corollary . The reduced Smarandache square-partial-digital
subsequence has infinitely many terms.

Proof of Theorem.For any positive integer », let
49 AMm)=2.10"+1.

Then we have
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Q) Am)2 =4.102"+4.10"+1=40 -+ 0 4 0 = 0 1.

— —
(n-1)zeros (n-1)zeros
By (1) and (2), we see that (4(n))* belongs to the
reduced Smarandache square—digital sudsequence for any
n hus, the sequence has infinitely many terms The
theorem 1is proved.

References

[1] M. Bencze, Smarandache relationships and subsequences,
Smarandache Notions J. 11(2000), 79 — 85.

[2] S. Smith, A set of conjecture on Smarandache sequences,
Bull. pure Appl. Sci. 16 E(1997), 2:237-240

Department of Mathematics
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THE REDUCED SMARANDACHE CUBE-PARTIAL-
DIGITAL SUBSEQUENCE IS INFINITE

Maohua Le

Abstract . In this paper we prove that the reduced
Smarandache cube-partial-digital subsequence 1is infinite.
Key words . reduced Smarandache cube-partial-digital
subsequence , infinite.

From all cube integers 0,1,827,64,125,., we choose
only the terms can be partitioned into groups of digits
which are also perfect cubes and disregarding the cube
numbers of the form N.10* , where N is also a cube
number and ¢ is a positive integer . Such sequence is
called the reduced Smarandache cube-partial-digital
subsequence . Bencze [1] and Smith [2] independently
proposed the following question.

Question . How many terms in the  reduced
Smarandache cube-partial-digital subseuence?

In this paper we completely solve the mentioned
question . We prove the following result.

Theorem . The reduced Smarandache cube-partial-digital
subsequence has infinitely many terms.

Proof . For any positive integer n with n>1, let
€)) B(n) =3.10"+3.

Then we have
B(n)’=27.10" +81.10”+81.10"+ 27

(2) =270 -- 0810 -- 0810 - 0 27
———— ~———— ——
(n-2)zreos (n-2)zeros  (n-2)zeros
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By (1) and (2), we see that (B(n))> belongs to the
reduced Smarandache cube-partial-digital subsequence . Thus ,
this sequence in infinite. The theorem is proved.

References
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Smarandache Notions J. 11(2000), 79-85.

[2] S. Simth, A set conjectures on Smarandache
sequences , Smarandache Notions J. 11(2000),86-92.
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THE CONVERGENCE VALUE AND THE
SIMPLE CONTINUED FRACTIONS OF SOME
SMARANDACHE SEQUENCES

Maohua Le

Abstract . In this paper we consider the convergence
value and  the simple continued fraction @ of  some
Smarandache sequeces.

Key words . Smarandache sequence , convergence value,
simple continued fraction.

In [2] . Russo considered the convergence of the
Smarandache series , the Smarandache infinite product and
the Smarandache simple continued fractions for four
Smarandache U-product sequences . Let A={am)}"»1 be a
sequence of nonegative numbers . In this paper we prove
two general results as follows.

Theorem 1.If afm)<a(m+l) for any n,then
o 1] co if a(1)=0,

n — = { ’
=1 a(n) 0 , if a(l) #0.
Theorem 2 .If a(m)>0 for any n with »n>1,then the

simple continued fractions
1 1
all) — —
+ a) + a3 + -

1s convergent . Moreover , its value is an irational
number .

Proof of Theorem 1 . Under the assumption , the
theorem is clear.

Proof of Theorem 2 . By [1,Theorems 161 and 166] ,
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we obtain the theorem immediately .
Refernces

[1]1 G H Hardy and E.M. Wright, An Introduction to
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THE FIRST DIGIT AND THE TRAILING
DIGIT OF ELEMENTS OF THE SMARANDACHE
DECONSTRUCTIVE SEQUENCE

Maohua Le

Abstract . In this paper we completely determine the
first digit and the trailing digit of every term in the
Smarandache deconstructive sequence.

Key words . Smarandache deconstructive sequence , first
digit , trailing  digit.

The Smarandache deconstructive sequence is constructed
by sequentially repeating the digits 12,.,9 in the
following way :
¢)) 1,23,456,7891,...,
which first appeared in [1].For any positive integer n,
let SDS(m) be the n-th element of the Smarandache
deconstructive sequence . Further , let F() and T (n) denote
the first digit and the trailing digit of SDS(n)
respectively . In this paper we completely determine F (n)
and T(n) for any positive integer n . We prove the
following result .

Theorem . For any #n,we have

1, if n =01 (mod9),

2, if n = 258(mod9),
2) Fn) ={ 4, if n =37 (mod9),

7, if n =46 (mod9),
and

1, if n = 147 (mod9),
3) Im)=) 3, if n =26 (mod9d),

6, if n =35 (mod9),

9, if n =08 (mod9).
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Proof.By (1),we get
' n’n

4) Frn) = 112++n-1)+1 = +1  (mod9).

let a be a positive integer with 1< a <9 . we see
from (4) that Fm)=a if and only if n i1s a solution
of the congruence ,

n’n
6))

Notice that (5) has only solutions
0,1 (mod9), if a=l,
2,5,8 (mod9), if a=2,
3,7 (mod9), if a4,
46 (mod9), if a=7.
Therefore , we obtain (2) by (6) immediately.
On the other hand, since
Fntl), if Ftl)>1,
I(n)= {
9,

=g-1 (mod9) .

6) n

M

if Ftl)=1,
we see from (2) that (3) holds . Thus , the theorem is
proved .

Reference
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THE 2-DIVISIBILITY OF EVEN ELEMENTS OF THE
SMARANDACHE DECONSTRUCTIVE SEQUENCE

Maochua Le

Abstract . In this paper we prove that if #>5 and
SDS(n) is even,then SDS(n) is exactly divisible by 2.

Key words . Smarandache deconstructive sequence , 2-
dvisibility .

The Smarandache deconstructive sequence is constructed
by sequentially repeating the digits 1,2,--,9 in the
following way :

(D) 1,23,456,7891,-+-,

which first appeared in [3] . For any positive  integer
n , let SDSm) denote the nth element of the
Smarandache  deconstructive  sequence . In [1] , Ashbacher
considered the values of the first thirty elements of
this sequence . He showed that SDS(3) = 456 is divisible
by 2°, SDS(5=23456 by 2° and all others by 27 .
Therefore , Ashbacher proposed the following question.

Question . If we form a sequence from the elements
SDS(n) which the trailing digits are 6, do the powers
of 2 that divide them form a monotonically increasing
sequence ?

In this paper we completely solve the mentioned
question . We prove the following result.

Theorem . If »>5 and SDS() is even , them SDS(n)
is exactly divisible by 27.

Proof . By the result of [2], if SDSm) is even , then
the trailing digit of it must be 6 . Moreover , if n>5 ,
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then n =12 . Therefore , by (1) , if »»5 and SDS(n) 1is
even,then we have

) SDS(n)=89123456 + k. 10°,

where k is a positie integer . Notice that 2°® | 10° and
27 || 89123456 . We see from (2) that 27 | SDSm) .
Thus ,the theorem 1is proved.
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TWO SMARANDACHE SERIES
Maohua Le

Abstract . In this paper we consider the convergence
for two Smarandache series .
Key words. Smarandache reciprocal series , convergence .

Let 4A={a@} =, and B={bmw} . be two
Smarandache sequences. Then the series
< afn)
SAB= ¥ —
n=1b(n)
1s called the Smarandache series of 4 and B. Recently ,
Castillo [1] proposed the following two open problems .

Problem 1.Is the series
1 1 1 1
(1 S=—+—+ —+— + -
1 12 123 1234

convergent ?

Problem 2.Is the series
1 12 123 1234
@) S=—+—+ + + ees
1 21 321 4321

Convergent ?
In this paper we completely solve the mentioned

problems as follows .

Theorem . The series S, is convergent and the series
S, 1s divergent .

Proof . Let r(n)=1,/ 12-n for any positive integer 7 .
Since
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Im  rertl) 12+0m
= <1

2

3)
n—  rn 12+=-n(n+1)
by D’Alembert’s criterion , we see from (3) that §; is
convergent .
Let sm)=12+-(@m-Dn/ n@n-1) +--21 for any positive
integer n.If #n=10+1, where ¢ is a positive integer , then

we hare
12++- (10---01)

4 Sn)= >1.
(10--:01) ++-21

Therefore ,by (4),we get from (2) that

(5) S= X sm> ¥ s(10+D)> ¥ 1= o |
n=1 =1 =1
Thus, the series S, is divergent. The theorem 1is proved.
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THE 3-DIVISIBILITY OF ELEMENTS OF THE
SMARANDACHE DECONSTRUCTIVE SEQUENCE

Maohua Le

Abstract . For any positive integer n, let SDSm) be
the »n-th element of the Smarandache deconstructive
sequence . In this paper we prove that if 3 Y| »n , then
3%l SDSMm).

Key words . Smarandache deconstructive sequence , 3-
divisibility .

The Smarandache deconstructive sequence is constructed
by sequentially repeating the digits 1,2,-*,9 in the
following way :

(D 1,23,456,7891,-+-,

which first appeared in [3].For any positive integer »,
let SDS(n) denote the n-th element of this sequence . In
[1] , Ashbacher showed that 3| SDS@m) if and only if
3 | n .Simultaneously , he proposed the following question .

Question . Let %t be the largest integer such that 3%
|n.Is it true that
2) 3* |l SDSm)?

In this paper we completely solve the mentioned
question .We prove the following result.

Theorem . If 3* || n, then (2) bolds.

Proof. By [1, Tablel], the theorem holds for n<<30.
Therefore, we may assume that n>30. If 3* || n, then
3) n=3'm,
where m is a positive integer with 3 | m.

By the resut of [2], If k=1, then we have
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456789.10°+123456788889°+123456, if n=3(mod9),
(4)SDS(n)—{

789.10°+123456789°+123, if n=6 (mod9),
where a , b are positive integers . Since 10° =1 (mod9)
and 123456789= 0 (mod9),we find from (4) that
6 (mod9) ,if n = 3 (mod9),
5 SDS(n) E{
3 (mod9),if n = 6 (mod9).
Thus , by (5), we get 3 || SDS#) . The theorem holds
for k=1,

If &1, let.
©) n=9¢,
where t is a positive integer. By (3) and (6), we get
) 3#2 .

Then,by the result of [2],we have

SDS(1)=123456789(1+10%+++++10%-D)
10%-1 ]

8) =123456789 [
10°-1

Notice that 3% || 123456789 and 3*? | (10*-1)/(10°-1) by

(7). We see from (8) that (2) holds . Thus , the theorem

1s proved.
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TWO CONJECTURES CONCERNING EXTENTS OF
SMARANDACHE FACTOR PARTITIONS

Maohua Le

Abstract . In this paper we venify two conjectures
concerning extents of Smarandache factor partitions .
Key words . Smarandache factor partition , sum of

length .

Let p,, py...., p, be distinct primes , and let aya,....q,

be positive integers . Further, let
a @ a,
(D =p. P " P s
and let F(a,a,.<*-,a,) denote the number of ways in
which ¢ could be expressed as the product of its
divisors . Furthermore ,let
F(#n)=F(1,1, - 1)

(2) —

n ones
If d,d,...d are divisors of ¢ and
3) t=dd,.d, ,

then (3) is called a Smarandache factor partition
representation with length r . Further , let Extent (F(1#n))
denote the sum of lengths of all Smarandache factor
partition  representations of pp,.p, . In [2] , Murthy
proposed the following two conjectures .

Conjecture 1. ,
“) Extent(F(1#n))=F(1#(n+1))-F(1#n) .

Conjecture 2.
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n

) kEOExtent (F(1#n)) = F(#@m+])) .
In this paper we verify the mentioned conjectures as
follows .

Theorem . For any positive integer #,the identities (4)
and (5) are true.

Proof . Let Ym) be the n-th Bell number . By the
definitions of F(1#n) and Yn) (see[l]),we have
(6) F(l#n)=Ymn) .
Let L) be the npumber of Smarandache factor
partitions of pp,..p, with length r.Then we have
™ - Lm=Sm),
where S(nr) is the Stirling number of the second kind
with parameters n and 7. Since

n
®) Y= ¥ Shr),
r=1
by (6),(7) and(8),we get
n
® F(l#n)=Ym)= ¥ S(nr)
r=1
and
n
(10) ExtentF(1#n)= ¥ rShr).
r=1
It is a well known fact that
(1D rS(n,r)=Sm+1,r)-Sn,r-1),

for n = r= 1 (see [1]) . Notice that S(nn)=1. Therefore , by
(9),(10) and (11),we obtain
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n
Extent (F(1#n))= ¥ S(+1,r)—Sn,r-1))

r=1
(12) n n .
= Y. Sm+l,r) —X Sor-1)=Y(n+1))-Sirt+1ntl)
r=1 r=1

— Y (n)-S(n,n))=Y(n+1) —Y(n)=F(1#(n+1)) —F(14n).
It implies that (4) holds.
On the other hand,we get from (4) that

n n
Y Extent (F(1#k))=1+L Extent (F(1#r))
=0 r=1

(13) n
= Y. (F(#@+1)-F(14n) = F(1#(nt1)) .
r=1

Thus, (5) i1s also true.The theorem 1is proved.
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ON THE BALU NUMBERS
Maohua Le

Abstract . In this paper we prove that there are
only finitely many Balu numbers.

Key words . Smarandache factor partition , number of
divisors , Balu number, finiteness .

1.Introductio

For any positive integer n, let dn) and fin) be the
number of distinct divisors and the Smarandache factor
partitions of »n respectively. If »n is the least positive
integer satisfying
W d(n)=fin)=r
for some fixed positive integers r, then »n is called a
Balu number. For example , #=1,16 36 are Balu numbers.
In [4], Murthy proposed the following conjecture.

Conjecture. There are finitely many Balu numbers.

In this paper we completely solve the mentioned
question. We prove the following result.

Theoem . There are finitely many Balu numbers.

2.Preliminaries

For any positive integer n with #n>1, let
a a @
) n=p. P - P -
be the factorization of =n.
Lemma 1 ([1, Theorem 273)) . d(n)=(a,+1)(a,+1)...(a,+1) .
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, Lemma2.let a,p be positive integers with p>1, and
et
1 — 1
3 b=[-—~/l+8a—-—].
2 2
Then p* can be written as a product of b distinct
positive integers
@ p=pp..pmp .
Proof . We sece from (3) that a = 1+2+..Hb-1)+b . Thus,
the lemma is true.
Lemma 3 . For any positive integer m , let Y(m) be
the m-th Bell number.Then we have

) Jm) = Y(©),

where

©) c=b, +by by

and
1 1

0 b,:( — J148q, - —] , =12, k.
2 2

Proof . Since p,p,,.p, are distinct primes 1in the
factorization (2) of n, by Lemma 2, we see from (6)
and (7) that n can be wrtten as a product of ¢
distinct postitive integers

k . a-b(-1)2 bl §

®) n= Il [Pi I p, J
i=1 j=1

Therefore ,by (6) and (8),we get

) fin) = F(lkc),

where F(l#c) 1s the number of Smarandache factor
partitions of a product of ¢ distinct primes . Further , by
[2,Theorem], we have

(10) F(#c)=Y(c).

Thus , by (9) and (10) , we obtain (5) . The lemma 1is
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proved .
Lemma 4 ([3]).log Y(m) ~ mlogm.

3.Proof of Theorem

We now suppose that there exist infinitely many
Balu numbers . Let n be a Balu number , and let (2)
be the factorization of n.Further, let
(11 a=a, +ta, +...+a;

Clear , if n 1is enough large , then a tends to infinite .
Morever , since _ ’

(12) b=2Va =12, k,

by (7),we see from (6) that ¢ tends to infinite too .
Therefore ,by Lemmas 1,3 and 4,we get from (1), (2),
(6) and (12) that

k
Y log(ai+1)
log dn) =1
= — <
log fin) k _ k _
(): \/ai][log Z\/a,J
(13) i=1 i=1
X log (a+1)
i=1
< <1,
kK _
kT Vg
i=1

a contradiction . Thus , there are finitely many Balu
numbers . The theorem is provde.
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THE LIMIT OF THE SMARANDACHE
DIVISOR SEQUENCES

Maochua Le

Abstract . In this paper we prove that the limit T(n)
of the Smarandache divisor sequence exists if and only
if n is odd.

Key words . Smarandache divisor sequence , limit ,
existence .

For any positive integers n and x,let the set
e A=tz | de=n},
where d(x) is the number of distinct divisors of x .

Further, let
1

@ T'm)= —,

x
where the summation sign X denote the sum through
over all elements x of A@) . In [2], Murthy showed that
T(n) exists if n=1 or n is an odd prme , but 7(2)
does not exist . Simultaneous , Murthy asked that whether
T(n) exist for n=4,6 etc . In this paper we completely
solve the mentioned problem . We prove a general result

as follows .
Theorem . T(n) exists if and only if n is odd.
Proof .For any positive integer a with &>1, let

(3) a= plrl Pzrz pkrt
be the factorization of a.By][l, Theorem 27],we have
) d(@)=(r+1)(r;*1)...(rt1) .

If n is even,then from (1)and (4) we see that
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Am) contains all positive integers x with the form
® x=pg"*",
where p , g are distinct primes . Therefore , we get from
(2) and (5) that

1 1 1
©) T(ﬂPFZ*p—‘z;—[TQ) 2],
where the summation sigh X * denote the sum through
over all odd primes p . Since T7(2) does not exist , we
find from (6) that T(n) does not exist if nis even.

Let

Q) n=did, ***d,
be a multiplicative parition of #n , where d,d,...d, are
divisors of »n with 1<d, < d, <---<d,. Further, let

®)T(d,d, >~ d)={x | x= p,*'p, 2" - p®',pi.p»r ***.p are distinct

primes?}.
By (1),®,(7) and (8),we get
9) Tm)= ¥ ~Tdd,..d),

where the summation sign Y~ denote the sum through
over all distinct multiplicative partitions of »n . For any
positive integer m, let

o 1
(10) Rm)= ¥ —
=1k

be the Riemann function . If »n is odd , then from (7)
we see that d, = 3. Therefore, by (4),8),(9) and (10), we

obtain t , |
T(n)<2"(?l ( i E*—p:«-l_J]
(11) T “[,l;—llR(d DJ [I}_l /3(2)]

=" [R(z)] d

336



Since the number of multiplicative partitions of »n is
finite and RQ)= 7%6 , we see from (11) that T()
exists if n is odd Thus,the theorem is proved.
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A GENERALIZED NET FOR MACHINE LEARNING OF
THE PROCESS OF MATHEMATICAL PROBLEMS SOLVING
On an Example with a Smarandache Problem

Krassimir Atanassov and Hristo Aladjov
CLBME - Bulg. Academy of Sci., P.O.Box 12, Sofia-1113, Bulgaria
e-mails: {krat, aladjov}@bgcict.acad.bg

The authors of the present paper prepared a series of research related to the ways of
representation by Generalized nets (GNs, see [1] and the Appendix) the process of machine
learning of different objects, e.g., neural networks, genetic algorithms, GNs, expert systems,
systems (abstract, statical, dynamical, stohastical and others), etc. Working on their re-
search [2], where they gave a counterexample of the 62-nd Smarandache’s problem (see [3]),
they saw that the process of the machine learning of the process of the mathematical prob-
lems solving also can be described by a GN and by this reason the result form [2] was used
as an example of the present research. After this, they saw that the process of solving of a
lot of the Smarandache’s problems can be represented by GNs in a similar way and this will
be an object of next their research.

The GN (see [1] and the Appendix), which is described below have three types of tokens
a—, f— and y— tokens. They interprete respectively the object which will be studied, its
known property (properties) and the hypothesis, related to it, which must be checked. The
tokens’ initial characteristics correspond to these interpretations. The tokens enter the GN,
respectively, through places
e [; with the initial characteristic “description of the object” (if we use the example from
[2], this characteristic will be, e.g., “sequence of natural numbers”),

e [, with the initial characteristic “property (properties) of the object, described as an
initial characteristic of a—token corresponding to the present 3—token” (in the case of the
example mentioned above, it will be the following property “there are no three elements of
the sequence, which are members of an arithmetic progression”) and

e I; with the initial characteristic “description of an hypothesis about the object” (for the
discussed example this characteristic will be, e.g., “the sum of the reciprocal values of the
members of the sequence are smaller than 2”).

We shall would like for the places’ priorities to satisfy the following inequalities:

mp(ly) > () > mr(la),

7K'L(l7) > 7l’L(l4) > 7TL(15) > 7TL(l5),
The GN transitions (see [1] and the Appendix) have the following forms:
Zy = ({1, lg, 13, b1, bas, bos }, {Ua, U5, L }, 1, M, 01,

where
ly ls ls

ly | true false false

I | false true false
ry= I3 | false false true ,

Iy | true false false

ly3 | false true false

los | false false true
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Iy s ls
L1 00
L0 1 0
M1=l3001,
I{1 00
I|0 1 0
ls10 0 1

kv, = A(V(i1, la1), V(I2, la3), V{13, l2s))-

Z Z3 Zs 25

I 1y Iy l1s In
OO ~O—1O

iz Z3 f10 lie 22

O by ~O PO

i3 s I hr i23
Ot+O——1u  PO—O—10O

"O—' ha l1s P24

RO RO PO

ls ha 19 ;
U ~O—
14 120
~O O

%

The a—token obtains the characteristic “the initial status of the object, having in mind
the current y—characteristic” in place ly, the f—token obtains the characteristic “a next state
of the object, having in mind the current a— and y—characteristics” in place l5, and the
—token obtains the characteristics “restrictions over the object, having in mind its property
(properties) from the initial f—characteristic in place lg. For the discussed example with
the 62-nd Smarandache’s problem, the last three characteristics have the following forms,
respectively: “1, 2 (initial values of the sequence); “3” (next value of the sequence); e.g.,
“the members to be minimal possible”.

Z2 = ({151 17}‘) {l7) l8}1 T2, M21 V(l57 l7));

where

lyr 7.7 T78

where
rs7 = r77 = “the new state of the object does not satisfy the property of the object deter-

mined by the initial S—characteristic”
7‘5,8 =T78 = —17'5’7. and

I, s
M3= l5 1 1 .
;11 1
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The B—token obtains the characteristic “a next state of the object, having in mind the
current o— and y—characteristics” in place I; and it does not obtain any characteristic in
place lg. In the case of our example, on the first time, when the f—token enters place I7 will
obtain the characteristic “4”.

Zy= ({l4y16118}; {19,110,[11,112,113,114},7‘31 Ms, as,

where
lg ho I hay s l14
I ly| ra9 1410 false false false false
87 lg| false false 71651 7612 false false’
ls | false false false false Tg13 T84
where

Tag = T6,11 = 73,13 = the new state is not a final one”,

T4,00 = T6,12 = T8,14 = 7749,
l lo lig ln Ly Lz Iy
_ W1 1. 0 0 0 O
M, = k|0 0 1 1 0 0 °
g0 0 0 0 1 1

O3 = A(l41 le 18)

The a—token does not obtain any characteristic in place ly, and it obtains the charac-
teristic “the list of all states of the object” in place l;p; the f—token does not obtain any
characteristic in places [}, and l;5; the y—token does not obtain any characteristic in place
113, and it obtains the characteristic

“the hypothesis is valid by the present step”, if the last state of the object
satisfies the hypothesis

“the hypothesis is not valid by the present step”, if the last state of the object does
not satisfy the hypothesis

in place l;4. For the discussed example with the 62-nd Smarandache’s problem, the tokens
do not obtain any characteristics.

Z4 - <{191 lllv 113}7 {1157 1167 ll7y 118; 1191 l20}7 T4, M47 Oy,

where
l ls s liz lig L1 lao
= ly | 1015 7916 false false false false
*7 12| false false 1137 Taus false false’
li3 | false false false false Ti319 Ti320
where

T9,15 = T11,i7 = T13,19 = ”the hypothesis is valid”,
T9,16 = T11,18 = T13,20 = 779,15,

s bs hr hs ho I
11 1 0 0 0 O
1
0

M“zluool 0 0

;|0 0 O 1 1
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04 = A(lg, l11, l13)-

The a—token does not obtain any characteristic in place {5, and it obtains the charac-
teristic “the final state, which violate the hypothesis” in place l;5; the S—token does not
obtain any characteristic in places l;7 and l;5; the y—token does not obtain any characteristic
in place !4, and it obtains the characteristic “the hypothesis is not valid” in place log. For
the discussed example with the 62-nd Smarandache’s problem, the tokens do not obtain any
characteristics.

Z5 = ({115) 1177 119}7 {121) 1227 l23, 124) l257 126}) Tsy M57 D51

where .
| Iy Iy I3 L4 lys log
.= lis | 1521 Tis22 false false false false
5T g false false Ti723 71724 false false’
lig | false false false false Ti925 Ti926
where

Tis21 = T17,23 = T19,25 = " there is a possibility for a change of the restrictions over the object,
which evolve from the hypothesis”,
T15,22 = T17,24 = T19,26 = T15,21»

’ 121 l22 l23 l24 125 l26

L1 1T 0 0 0 O
M = 10 0 1. 1 0 0 °

lslO 0 0 0 1 1

O3 = A(l1s, l17, l9)-

The a—token obtains as its current characteristic its initial characteristic in place [,
and it does not obtain any characteristic in place lyy; the S—token obtains as its current
characteristic its initial characteristic in place lo3 and it does not obtain any characteristic in
place ly4; the y—token obtains the characteristic “new restrictions over the object” in place
los, and it does not obtain any characteristic in place log. For the discussed example with
the 62-nd Smarandache’s problem, the tokens do not obtain any characteristics in places
l91, 129, l23, 194 and lgg, and the y—tokem will obtain as a characteristic “1,3” lps. These two
numbers will be initial for the next search of a sequence, which satisfy the hypothesis. In
the next step they will be changed, e.g., by numbers 2 and 3, etc.

Using this scheme, it is possible to describe the process of solving of some of the other
Smarandache’s problems, too, e.g., problems ... from [3].

APPENDIX: Short remarks on Generalized Nets (GNs)

The concept of a Generalized Net (GN) is described in details in [1], see also
www.daimi.aau.dk/PetriNets/bibl [aboutpnbibl.html

They are essential extensions of the ordinary Petri nets. The GNs are defined in a way that
is principly different from the ways of defining the other types of Petri nets. When some of
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the GN-conponents of a given model are not necessary, they can be ommited and the new
nets are called reduced GNs. Here a reduced GN without temporal components is used.
Formally, every transition (or the used form of reduced GN) is described by a five-tuple:

Z=(L'L" r M, o),

where:

“O—1__ou

’"O_"—-O l;{

(a) L' and L" are finite, non-empty sets of places (the transition’s input and output
places, respectively); for the above transition these are

L'={l,h..., i}

and
L'"={,i5,....,00};

(b) r is the transition’s condition determining which tokens will pass (or transfer) from
the transition’s inputs to its outputs; it has the form of an Index Matrix (IM; see [1]):

o0
4
r= Tij .
- | (rij — predicate) ’
c1(1<i<m,1<j<n)
I

r;; is the predicate which corresponds to the i-th input and j-th output places. When its
truth value is “true”, a token from the i-th input place can be transferred to the j-th output
place; otherwise, this is not possible;

(c) M is an IM of the capacities of transition’s arcs:

. o
M= g

b

l; | (mi; > 0 — natural number )
(1£i<m,1<j<n)

I

(d) o is an object having a form similar to a Boolean expression. It may contain as
variables the symbols which serve as labels for transition’s input places, and is an expression
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built up from variables and the Boolean connectives A and V, with semantics defined as
follows:

Al by, -, 1) — every place by, Ly, . .., li, must contain at least one token,
l

Tu
V(liy,ligy- -, ki) — there must be at least one token in all placesl;,, li;, . . ., li,, Where

i

{liuliz; .. .,l,’u} cL.

When the value of a type (calculated as a Boolean expression) is “true”, the transition

can become active, otherwise it cannot.

The object
E=(An,K X,®)

is called a (reduced) GN, if

(a) A is a set of transitions;

(b) 7 is a function giving the priorities of the places, i.e., 7z : L = N, where L =
priAU pryA, and pri X is the i-th projection of the n-dimensional set, where n € N,n > 1
and 1 < k < n (obviously, L is the set of all GN-places);

(c) K is the set of the GN’s tokens;

(d) X is the set of all initial characteristics the tokens can receive when they enter the
net;

(€) ® is a characteristic function which assigns new characteristics to every token when
it makes the transfer from an input to an output place of a given transition.
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NEW SMARANDACHE ALGEBRAIC STRUCTURES

*G.L. WAGHMARE & S.V. MORE

ABSTRACT

Generally in R® any plane with equation x+y+2z=a, wherea is nonzero number, is not a linear space
underthe usua! vector addition and scalar multiplication. f we define new algebraic operations on the plane
X+y+z=a itwil become a linear space in  R*. The additive identity of this linear space has nonzero

components.

The plane x+y +2z =a touches the x-axis at
point A(a.0,0), y-axis at point B (0,2,0) and
z-axis at point C ( 0,0,a ). Take triangle ABC as
a fixed equilateral triangle known as * triangle of
reference.”

From any point P in its plane draw
perpendiculars PM, PN and PL to AC, AB and
BC respectively. Let J(PM)=p, LPN)=p,
and  _[(PL) =p, Thesep,, p, and p, are
called the trilinear coordinater of point P [ Loney

1, Smith 2, Sen 3 . -
/ L c\
The coordinate p, is positive if P and the

vertex B of the triangle are on the same side of

AC and p, is negative if P and B are on the opposite sides of AC. So for the other

coordinates p, and D,

Length of each side of the triangle is V2 lai= b{ say).
172.b.p,+12 b.p,+ 1/2.0 p, = 1/2b 3 /2.b

P+ P, +P= V3 /2.b=k (say)
The trilinear coordinates P, P, P,ofany point Pin the pilane whether itis within the
triangle or outside the triangle ABC satisfy the relation

pP,+p,+ P, = k (2.1)

Thus trilinear coordinates of points A, B and C are (0,0k), (k0.0)and (0,k,0)
respectively. Trilinear coordinetes of the centroid of triangle are (K/3, K/3, K/3).
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4.1

5.1

52

Now the plane x+y+z=a isa set T of all points p whose trilinear coordinates
P,: P, P, satisfy the relation P,+P,+ p; =k.
Letp=(p,.p, p,)and q=( g, q,q,) be inT

By usuel addition p+q =(p,+ Qs P+ QP +Gq;) £ T, (3.1)
since (p,+Q,)+ (P,+ Q)+ (P,+q,) = ( p,+p,+ p, )+ ( q,+G,+q;) =2k (3.2)
By usual scalar multiplication by «, ap=(ap,,ap,,ap,) g T, (3.3)
since ap,+ap,+ ap,=a(p,+p,+p,)= ak (3.4)

In viewof (3.1),(3.2),(3.3) and (3.4) theset T is not closqﬂ with respect to
the usual vector addition and scalar multiplication. Hence it can not become a

linear space.

Now we shall prove, by defining following new algebraic operations, T is a linear
space in which components of additive identity are nonzero.
Definition Let p=( p, Py Py) &G=(q,0q,9,)be inT.

We define :
a. Equality:
p=qif and onlyif p,= q,, P,=q,, P,=q,
b. Sum:

p+q=(-k/3+p,+q,,-k3+p,+q,,-kB +p,+q,)
¢. Muiltiplication by real numbers :
ap=((1-a )kB+ap,,(1-a )3+ ap,,(1-a ) k3 +ap,)
(o real)
d. Difference :
pP-g=p+(-1)q.
e. Zero vector ( centroid of the triangie ):
0= (K3, k3,Kk3).

To every pair of elements pand q in T there corresponds an element p+q, in
such a way that _
p+q = g+p and p+(q+r)=(p+q)+r.
p+0=p forevery p € T
Toeach p € T there exists a unique element - p such that p+(-p)=0
T is an abelien group with respect to vector addition.
Forevery o« ,B € R andp,q € T we have
Da (Bp) =( a B)p
ia(p+q)=ap+ aq,
i) (a +B)q = a q+Bq

iv)1p =p,
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Therefore T is a real linear space.

Remark .1. The real number k is related with the position of the plane x+y+z=a
in R3

2. There are infinite number of linear spaces of above kind in R3
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Lattices of Smarandache Groupoid
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Abstract :

Smarandache groupoid ( Zp, A ) is not partly ordered under Smarandache inclusion
relation but it contains some partly ordered sets, which are lattices under Smarandache union
and intersection. We propose to establish the complemented and distributive lattices of
Smarandache groupoid. Some properties of these lattices are discussed here.

1. Preliminaries :

The following definitions and properties are recalled to introduce complemented and
distributive lattices of Smarandache groupoid .

Definition 1.1

A set S is partly ordered with respect to a binary relation R if this relation on S is re-
flexive, antisymmetric and transitive.

Definition 1.2

Two partly ordered sets S, and S, are isomorphic if there exists a one - one corre-
spondence T between S, and S, such that forx e S,andye S,

T(x)cT(y)iffxcy

Definition 1.3

A lattice is a partly ordered set in which any two elements x and y have a greatest lower
bound or infimum denoted by x Ny and a least upper bound or supremum denoted by x W y.
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Definition 1.4

If every element of iattice has a complement , then itis called complemented lattice.

Definition 1.5

A lattice L is called distributive if identically

xn(yuz)=(xny)u(xnz), v x,y,zeb,

Definition 1.6

If a lattice L is distributive and complemented then it is called a Boolean lattice.

2. Lattices of Smarandache groupiod :

We introduce some definitions to establish the lattices of Smarandache groupoid.

Definition 2.1

i)

i)

iv)

b,b, )., are said to be equal

Twointegerr=(a_,a_,....... a,a ) ands=(b_

andwrittenasr=sifa =bfori=0,1,2, ..., n-1.

The integer: r=(a_ ,a, ,..... a,a,)  is contained in the integers = (b b ... b,b).
andwritten asrg sifa <b fori=0, 1, ..., n- 1. This relation is called Smarandache
inclusion relation.

The Smarandache union of two integers r and s is denoted by r U s and defined as
rus =(a ,a ,...aa)u(b b ,... bb,)
=(c,,C 5 CCy)
where ¢ =max{a , b }fori=0,1, .., n-1.

The Smarandache intersection of two integers r and s is denoted by r m s and defined as-

rns =(a ,a ,..aa)n(b, b ,..bb)
=(d, ,d, ,...d,d;)
Where d =min {a, b}fori=0,1,2, ... ,n-1.
The complement of the integer r=(a_,a ,..-... a,a, ), is redefined as -
C(r)y=(e, ;e ,.... e e ),

Wheree =1-a fori=0,1, ... ,n-1.
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Proposition 2.2

The Smarandache groupcid ( Zp, A ) with two operations Smarandache union and
intersection satisfies the following properties forx, y, z € Zp.

i) Idempotency: xux=x and xNx=x

i) Commutativity: xUuy=yux and xny=ynx

i) Associativity : (xuy)uz=xu(yuz) and xNny)nz=xn(ynz).
iv) Absorption : XUXNY)=x=xn((xuy) if xey .

But (Zp, A) is not partly ordered with respect to Smarandache inclusion relation and this
groupoid consists of some partly ordered sets . Any two elements x and y of any partly ordered set
of (Zp, A) have infimum x My and supremum x U y. So these partly ordered sets are lattices of
Smarandache groupoid (Zp, A). This can be verified with an example of Smarandache groupoid.

Example - 2. 3

The Smarandache groupoid (Z,,, A) is taken for verification.

27
Here Z,={0,1,2 ... , 26}. Forallx, ye Z,,, X is not contained and equal
to y under Smarandache inclusion relation. For example

1=(102), and 13=(111), ¢ Z

27

But 11 £ 13 under Smarandache inclusion relation. All the elements Z27 are not
related. so reflexive, antisymmetric and transitive laws are not satisfied . Z,, is not
treated as lattice under Smarandache inclusion relation.

Under this inclusion relation, some partly ordered sets are contained in Z,
About 87 partly crdered sets of seven elements are determined in the Smarandache

groupoid ( Z,,, A). A diagram of the above 87 partly ordered sets are given below :




Consider a partly ordered set L, givenby0c1<c2<c5<8< 17 < 26 of Smarandache
groupoid (Z,,. A). The Smarandache intersection and union tables of this partly ordered
set are given below :

N6 112158 {17 {26 viol1{215]8([17]26
0001010101030 0101112 1518117]26
101y ipifty 141 1111112158 i17]26
2301112121212} 2 2121212158 117]26
510711255 5|5 5515|5158 1|17]26
g81011{2|518]| 88 81888 (8|8117]26
17101412115 8(|17]| 17 17117117117117) 17117 | 26
2610111215{8117/26 26126126126(26/26]|26 | 26
Table -1 Table -2

The system (L, c, n, u ) in which any two elements a and b have an infimum
anband a supremum a u b is a lattice. Similarly, taking the other 86 partly ordered
sets, we can show that they are Iattices of the Smarandache groupoid (Z,,, A). If we
take the complement of every element of the lattice L, we get the following function.

L= 0{1]|2|5]|8]|17]|26
CLy={26{25|24121118] 9| 0

Here L # C(L). But the system (C(L), ¢, n, u) is a lattice. If L = C(L), then the
lattice (L, c. n. u) is called complemented. The complemented lattices of seven ele-
ments belonging to ( Z,,, A) are given below :

0c1c4c13c22c25<26
0c1cCc10c13c16c25<26
0€3c4c13c22c23<26
0c3cC12<c13c14c23<26
0c9c10c13c16<17<26
0c9c12c13c14<17<26

From table 1 and table 2, itis clearthat au(bnc)=(auvb)n(auvc)
andan(buc)=(anb)u(anc)Vabcel
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Hence the lattice (L, ¢, n, U) is a distributive lattice. Similarly we can show that
the other lattices of (Z,,, A) are distributive. The above six complemented lattices are
distributive and they are called Boolean lattices.

Remark - i) The ordinary intersection of two lattices is a lattice .
if) The ordinary union of two lattices is not a lattice .
Proposition 2.4
Every Smarandache groupoid has a lattice.
Proof :

Let (Zp, A) be a Smarandache groupoid. A partly ordered set L, of Zp is deter-
mined with respect to the Smarandache inciusicn relation.

LetL ={0= lmglnglug .......... _c_l1p= m"-1}
For I, Lel, weget

I, l” or |, 2 l”
casel: Ifl, c 11)., then

el '1; =l,el,andi;u I1j =l,e L,

Hence L, is a lattice of Zp .

Casell: Ifi 21, then
Lol =l,el,andl Ul =l €L,

Hence L, is a lattice of Zp .

Proposition 2.5
Every distributive lfattice is modular.

Proof : A moduiar lattice is defined as a lattice in which
Zoximpliesxuwu({ynz)=(xuy)nz

Let (L, <. n. v) be a distributive lattice, in which |, < 1,,,

then 1, u(,nl) =0,0l)N0, Ul
= (lh v 11;) n |1k

Hence (L,, <. n, V) is modular.
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3. Isomorphic lattices :

Let L, and L, be two lattices of a Smarandache groupoid (Zp, A). A one - one mapping
T from L, onto L, is said to be isomorphism if -

T{xwy)=T(x)uT(y)and
T(xny)=T(x)nT{Y)forx,yelL,.
Proposition . 3. 1

Two lattices having same number of elements of a smarandache groupoid (Zp, A) are
isomorphic to each other.

Proof: Let L ={l cl,clc cly}
and Li={lsch cl,c . chy}
where I,;=1,=0 and I =1, =m"-1 be two lattices of (Zp, A).

A one - one onto mapping T : L, — L, is defined such that T (1,) = 1,,
foralll, e L,
Fori,cl,el,

iyuly=1, and I ni =

1 1 1 1%

Forl, < Iz; e L,

<

Lol=1 and l,nl=1,.
Again T (lL;)=1, and T(l )=l

Now T(,)uT()=iul,=l and
TN TA) =Ll =1,

Here T(,ul)=T()=1,=T()uT(,) and
T(, A1) =T0,) =5, =T0,) A T(,)

Hence the lattices L, and L, are isomorphic to each other.

Proposition 3.2

Let L and C(L) be two lattices of Smarandache groupoid (Zp, 4). If T be the mapping
from L to C(L), defined by T(x)=C(x) V xe L, then

Txuy) =T(x)nT(y)and
Txny)=Tx)uT(y)Vxyel
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Proof: Forxcyel, xuy=y and xNny=X
Again C(y) c C(x) € C(L), C(x)uC(y)=C(x) and C(x) nC(y)=C(y)

Here T(x) =C(x) and T(y) = C(y)

Now TX)uT(y)=Cx)uCy)=C(x) and
T(x) N T(y) = C(x) " C(y) = C(y).

Again Txuy)=T(y)=C(y)=T(x)nT(y) and
Txny) =T =Cx) =T(x) v T(y)

Proposition - 3. 3

Let L be a complemented lattice of (Zp, A). If the mapping T from L to L, defined by
T)=C(x) V xel, then

Txuy)=TXx)nT(y) and

TxAY=TXuUTy) V xyel

Proof is similar to proposition 3.2
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ABSTRACT: In 1972 Smarandache proposed that there is not a limit speed on the
nature, based on the EPR-Bell (Einstein, Podolsky, Rosen, Bell) paradox. Although it
appears that this paradox was solved recently, there are many other evidences that guide
us to believe that Smarandache Hypothesis is right on quantum mechanics and even on
the new unification theories. If Smarandache Hypothesis turns to be right under any
circumstance, some concepts of medern physics would have to be "refit” to agres with
Smarandache Hvpothesis. Moreover, when the meaning of Smarandache Hypothesis
become completely understood, a revolution on technology, specially in communication,

will arise.

I. SUPERLUMINAL PHENOMENA EVIDENCES AND SMARANDACHE
HYPOTHESIS

It appears that was Sommerfeld who first noticed the possible existence of faster-than-
light parucles, iater on called tachyons by Feinberg [1]. However, tachvons have
imaginary mass. so they had never besn detected experimentally. By lmaginary mass we
understood as a mass prohibited by relativity. However, relativity does not directly forbid
the existence of mass less superluminal particles, such as the photon. but suggests that
superluminal phenomena would result in time travel. Hence, many physicists assumed
that superluminal phenomena does not exist in the universe, otherwise we would have to
explain all those "kill your grandfather” paradoxes {2]. A famous example of this sort of

paradox is the causahitv problem.

Nevertheless, quantum mechanics suggest that superluminal communication exist. In
fact. there are hypothesis on the obligatory existence of superfuminai phenomena on
nature {3, 4]. The EPR-Bell paradox is the most famous example. Pondering about this
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paradox, Smarandache also said in 1993, in a lecture on Brazil, that there is no such
thing as a limit speed on the universe, as postulated by Einstein [5]. It appears that
recently this paradox was completely solved by L. E. Szabé [6]. Even so, there are still
many more evidences of the infinite speed — or simply instantaneous communication —
in the universe, as we shall see briefly.

1.1. The Rodrigues-Maiorine Theory

Studying solutions of Maxwell and Dirac-Weyl equations, Waldyr Rodrigues Jr. and
José Maiorino were able to propose a full-unified theory for constructions of arbitrary
speeds in nature (for arbitrary they meant 0 < v < ®) in 1996 [7]. They also proposed
that there is no such thing as a limit speed in the universe, so that Smarandache
Hypothesis can be promoted to theory, as Smarandache-Rodrigues-Maiorino (SRM)
theory.

What is unique about Rodrigues-Maiorino theory is that special relativity principle
suffers a breakdown, however, even relativistic constructions of quantum mechanics,
such as Dirac equation, agree completely with superluminal phenomena. Also, according
to Rodrigues-Maiorino theory, even well positioned mirrors can accelerate an
electromagnetic wave to velocities greater of the light. This assumption was later on
confirmed by Saari and Reivelt (1997) [8], who produced a X-wave (named this way by
Ly, }. Y., a Rodrigues' contributor) using a xenon lamp intercepted with a set of lens and
orifices.

The SRM theory is a mathematical pure and strong solution of the relativistic quantum
wave equation, indicating that there is no speed limit in the universe, and therefore is the
most powerful theory today for construction of arbitrary speeds.

1.2. Superluminal Experiments

Many experiments, mainly evanescent modes, result in superluminal propagation. The
first successful evanescent mode result was obtained in 1992 by Nimtz [9]. Nimtz
produced a 4.34c signal. Later on he would produce a 4.7¢ FM signal with Mozart's 40”
symphony. This achievement of Nimtz would be passed over by other results even eight
times faster than the constant c.

In the case of Nimtz experiment is not clear if it violates the casual paradox. On the
other hand, L. J. Wang, A. Kuzmich and A. Dogariu recently published an outstanding
result of an anomalous dispersion experiment where a light pulse was accelerated to
310 £ 5 times the speed of light, not violating the casual paradox, thus resuiting in a time
travel! In practice, this means that a light pulse propagating through the atomic vapour
cell appears at the exit side so much earlier than if it had propagated the same distance in
a vacuum that the peak of the pulse appears to leave the cell before entering it [10].
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1.3. The Speed of Gravity Revisited

The general relativity of Einstein postulates that the speed of gravity force is the same
as the constant ¢ due to the restriction of the special theory of relativity. However, if the
speed of light is not a limit on the universe, isn't time to revisit this postulate? Van
Flandemn published some astrophysical results that indicate gravity is superluminal [11].
Observations of some galaxies rotations made by NASA suggest that some galaxies are
spinning with superluminal velocity [12].

Van Flandemn data was later on explained with a theory that does not need
superluminal phenomena by Ibison, Puthoff and S. R. Little [13]. Yet, observations of
superluminal signaling from galaxies remains unexplained from subluminal point of
view.

I.4. Tachyons

Some models to the superstring theory, our foremost candidate for the unified theory
of physics, include tachyons, the particles able to move faster than light. Even so,
physicists found a way of hacking the theory so that tachyons disappear; some others,
like Freedman, defend that the theory should not be hacked that way at all [1]. The
superstring theory is probably the best field for studying tachyons, for it will not make
you work with imaginary masses. Prof. Michio Kaku compared the idea of more
dimensions in physics to a matrix scheme in his book Hyperspace. Imagine a matrix of
4x4, that inside we can have the Theory of Relativity, and another were we have the
quantum mechanics. If we build a bigger matrix, say 8x8, we can therefore include both
relativity and quantum mechanics in a single matrix. That is the main idea of unification
through the addition of more dimensions. In the same way, working only with the 4x4
matrixes, we do not have enough space for working with tachyons. However, in a bigger
matrix we will have enough space for finding solid solutions of tachyonic models.

Tachyons were already, in an obscure manner, detected in air showers from cosmic
rays [2].

II. IMPLICATIONS AND APPLICATIONS

According to Rodrigues-Maiorino theory, the consequence of the existence of
superiuminal phenomena would be the breakdown of the special relativity principle. But
we will not need to modify anything in quantum mechanics itself. More precisely, it
appears that is quantum mechanics, which is banning the old pure relativity, according to
SRM theory. Nevertheless, the theory of relativity indeed accepts some sort cf
superluminal communication, resulting in time travel, as Wang et al showed it.

Perhaps we would be able, in a distant future, to send messages to the past or to the
future. Anyway, superluminal phenomena would have a meore stand-on-ground
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application with local communication. According to Rodrigues-Maiorino theory, the X-
wave is closed in a way that it does not loss energy as it travels. So, a superluminal X-
wave radio message would achieve its destination almost in the same condition as when it
were sent and no one, except the destination, could spy the content of the message. The
invention of such superluminal-signaling transmitter would be of great power associated
with MIT's pastille able to curve light in 90°, in the manufacturing of optic fibers.

1. CONCLUSION

The various experiments and solid theories that rise from quantum mechanics
involving superluminal phenomena are a high-level indication of the Smarandache
Hypothesis, that there is no such speed limit in nature. This implies in a breakdown of
Einstein postulate of relativity, but not in any field of quantum mechanics, even on the
relativistic wave equation. As in our evolution came a time that newtonian dynamics
were not enough to understand some aspects of nature, it is maybe getting a time when
Einstein's relativity must be left aside, for hence quantum mechanics will rule.
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Studying solutions of Maxwell and Dirac-Weyl equations, Waldyr Rodrigues
Jr. and José Maiorino were able to propose a full-unified theory for
constructing of arbitrary speeds in nature (for arbitrary they meant 0 <= v < inffnity) in
1996 [3]. So that Smarandache Hypothesis proposed in 1972 [6, 2], that there is no speed
barrier in the universe, can be promoted to theory, as Smarandache-Rodrigues-Maiorino
(SRM) theory [2, 1].

What is unique about Rodrigues-Maiorino theory is that special relativity
principle suffers a breakdown, however, even relativistic constructions of
quantum mechanics, such as Dirac equation, agree completely with
superluminal phenomena. Also, according to Rodrigues-Maiorino theory, even
well positioned mirrors can accelerate an electromagnetic wave to velocities
greater of the light. This assumption was later on confirmed by Saari and
Reivelt in 1997 [4], who produced a X-wave (named this way by J. Y. Lu, a
Rodrigues’ contributor [3]) using a xenon lamp intercepted with a set of
lens and orifices. '

The SRM theory is a mathematical pure and strang solution of the
relativistic quantum wave equation, indicating that there is no speed limit
in the universe, and therefore is the most powerful theory today for
construction of arbitrary speeds.
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Abstract. In this paper one presents four of the smarandacheian paradoxes in physics
found in various physics sites or printed material.

1) Sorites Paradox (associated with Eubulides of Miletus (fourth century B.C.):
Our visible world is composed of a totality of invisible particles.

a) An invisible particle does not form a visible object, nor do two invisible particles, three
invisible particles, etc.

However, at some point, the collection of invisible particles becomes large enough to form a
visible object, but there is apparently no definite point where this occurs.

b) A similar paradox is developed in an opposite direction. It is always possible to remove a
particle from an object in such a way that what is left is still a visible object. However, repeating
and repeating this process, at some point, the visible object is decomposed so that the left part
becomes invisible, but there is no definite point where this occurs.

Generally, between <A> and <Non-A> there is no clear distinction, no exact frontier. Where
does <A> really end and <Non-A> begin? One extends Zadeh's “fuzzy set” term to the
“neutrosophic set” concept.

2) Uncertainty Paradox: Large matter, which is under the 'determinist principle’, is
formed by a totality of elementary particles, which are under Heisenberg's 'indeterminacy
principle’.

3) Unstable Paradox: Stable matter is formed by unstable elemenatry particles.

4) Short Time Living Paradox: Long time living matter is formed by very short time
living elementary particles.

References:

[1] Marie-Helene Boyer, “Re: How are possible the Smarandache Uncertainty, Unstable. etc.
Paradoxes?”, MAD Scientist, Washington University School of Medicine, St. Louis, Missouri,
http://www.madsci.org/posts/archives/972501333.Ph.r.html.

[2] Chong Hu, “How are possible the Smarandache Uncertainty, Unstable, etc. Paradoxes?”,
MAD Scientist, Washington University School of Medicine, St. Louis, Missouri,
http://www.madsci. org/posts/archives/972501333.Ph.q html.

361



[3] Chong Hu, “How do you explain the Smarandache Sorites Paradox?”, MAD Scientist,
Washington University School of Medicine, St. Louis, Missouri,
http://www . madsci.org/posts/archives/970594003.Ph.q.htmi.

[4] Amber ller, “Re: How do you explain the Smarandache Sorites Paradox?”, MAD Scientist,
Washington University School of Medicine, St. Louis, Missouri,
http://www.madsci.org/posts/archives/970594003 Ph.r.htmi.

[5] Florentin Smarandache, "Invisible Paradox” in "Neutrosophy. / Neutrosophic Probability,
Set, and Logic", American Research Press, Rehoboth, 22-23, 1998.

[6] Florentin Smarandache, "Sorites Paradoxes", in "Definitions, Solved and Unsolved Problems,
Conjectures, and Theorems in Number Theory and Geometry", Xiquan Publishing House,
Phoenix, 69-70, 2000.

[7] Louisiana Smith and Rachael Clanton, advisor Keith G. Calkins, “Paradoxes” project,
Andrews University, http //www. andrews.edu/~calkins/math/biograph/topparad. htm.

362



CONTENTS

MATHEMATICS:
ROBERTO TORRETTI, A Model for Smarandache's Anti-Geometry .... 5
FLORIAN LUCA, The Average Smarandache Functionm ............... 19

TATIANA TABIRCA, SABIN TABIRCA, A Parallel Loop Scheduling
Algorithm Based on the Smarandache f-Inferior Part Function .. 28
HENRY IBSTEDT, On the Pseudo-Smarandache Function and Iteration

Problems. Part I: The Euler P Function ......................

36

HENRY IBSTEDT, On the Pseudo-~Smarandache Function and Iteration
Problems. Part II: The Sum of Divisors Faunection ............. 44
SABIN TABIRCA, Erdés-Smarandache Moments Numbers ............. 49
SABIN TABIRCA, TATIANA TABIRCA, Erdds-Smarandache Numbers .... 54
J. SjNDOR, On the Pseudo-Smarandache Functiom ................ 59
HENRY IBSTEDT, Smarandache k-k Additive Relationships ........ 62
KRASSIMIR T. ATANASSOV, Remarks on Some of the Smarandache's
Problems. Part 1 ...........ouiiiuiniiniinn 82
HENRY IBSTEDT, A Brief Account on Smarandache 2-2 Substractive
RelationsBips ..........euuiiiiieiii 99
HENRY IBSTEDT, On a Smarandache Partial Perfect Additive

Sequence ............. L 103
NIKOLAI NIKOLOV, KRASSIMIR ATANASSOV, On the 107-th, 108-th and
109-th Smarandache's Problems ........................o..... .. 108
KRASSIMIR T. ATANASSOV, On the 20-th and the 21-st Smarandache's
Prablems ...........o.iiii i 111
SABIN TABIRCA, TATIANA TABIRCA, On the Primality of the
Smarandache Symmetric Sequences ................. ... ... 114

KRASSIMIR T. ATANASSOV, On Four Prime and Coprime Functions . 122

Y. V. CHEBRAKOV, V. V. SHMAGIN, Investigating Connections Between
Some Smarandache Sequences, Prime Numbers and Magic Squares . 126

TIANG ZHENGPING, XU KANGHUA, On Smarandache Sequences and

Subsequences ................iieiii 146
FELICE RUSSO, On Three Problems Concerning the Smarandache LCM
Sequence ............ ... 153
FELICE RUSSO, On a Problem Concerning the Smarandache Unary
Sequence ............... ... 156



FELICE RUSSO, An Introduction to the Smarandache Double Factorial

FUnction .........cuciioeiocceeaocnanacososscsasnanoanoccoanes 158
ADRIAN VASIU, ANGELA VASIU, Geometrie Interiocari ............ 168
FELICE RUSSO, On Some Smarandache Conjectures and Umsolved
PrODl@mS .. .. .oceoonecensecneaescosceosecesacnssoseecsscascesscs 172
FELICE RUSSO, A Recurrence Formula for Prime Numbers Using the
Smarandache or Totient Functions ............eceeevevecocecens 183
FELICE RUSSO, On Two Problems Concerning Two Smarandache
P-Partial Digital SeqQUENCES .......ceooceceeceeacaccannconcscs 198

MIHALY BENCZE, Open Questions for the Smarandache Function .. 201
MAOHUA LE, On Smarandache Algebraic Structures. I: The

Commutative Multiplicative Semigroup A(a,n) ........ceeeou0ce- 204
MAOHUA LE, On Smarandache Algebraic Structures. II: The
Smarandache SemMiIigrOUP .......ceceeeocecccaaoncacseatoassoansanns 207
MAOHUA LE, On Smarandache Algebraic Structures. III: The
Commutative RIng B(a,D) .......eueceeececocassoscoancoonsenans 209
MAOHUA LE, On Smarandache Algebraic Structures. IV: Tkhe
Commutative RIiNG C(@,M) ... .. cuvuemueencinneceenenneansenanas 211
MAOHUA LE, On Smarandache Algebraic Structures. V: Two Classes
of Smarandache RiINGS .......c.c.oicceeecconcosossaoeccnacaasos 213
MACHUA LE, A Note on the Smarandache Bad Numbers ............ 215
MAOHUA 1E, A Lower bound for S(2(2P=1)) ......vcvvieienenn. 217
MAOHUA LE, The Squares in the Smarandache Higher Power Product
SOQUENCES ...t i ittt ittt e i e 219
MAQOHUA LE, The Powers in the Smarandache Square Product Sequences
............................................................. 221
MAOHUA LE, The Powers in the Smarandache Cubic Product Sequences
............................................................. 223
MAOHUA LE, On the Smarandache Uniform Sequences ............. 226
MAQOHUA LE, The Primes in the Smarandache Power Product Sequences
of the Second Kind ........ e e e e ceenccec o e e 228
MAOHUA LE, The Primes in the Smarandache Power Product Sequences
of the First Kind .. .. ... ...t ciceeecnesanneonaaananeean 230
MAOHUA LE, On the Equation S(mn)=m"S(B) ......ccvceeeeeeeann. 232
MAOHUA LE, On an Inequality Concerning the Smarandache Function

f e e e e e e ucseaccr e e et ce e ceeccennonenaseeneens 234
MACHUA LE, The Squares in the Smarandache Factorial Product
Sequence of the Second Kind .........iiioiicenncecannccncens 236
MAOHUA LE, On the Third Smarandache Conjecture about Primes . 238
MAOHUA LE, On Russo's Conjecture about Primes ............... 240

364



MAOHUA LE, A Conjecture Concerning the Reciprocal Partition

2T 242
MAOHUA LE, A Sum Concerning Sequences ...................o.... 244
J. SANDOR, A Note O S(D2) . eeeannnnnnnn.. 246
J. SANDOR, On A New Smarandache Type Function .............. 247
MIHALY BENCZE, About the S(n)=S(n-S(n)) Equation ........... 249
SAM ALEXANDFR, A Note on Smarandache Reverse Sequence ...... 250
AMARNATH MURTHY, Smarandache Pascal Derived Sequences ...... 251
AMARNATH MURTHY, Depascalisation of Smarandache Pascal Derived
Sequences and Backward Extended Fibonacci Sequence ......... 255
AMARNATH MURTHY, Proof of the Depascalisation Theorem ...... 258
JOZSEF SANDOR, On Certain Arithmetic Functions ............. 260
AMARNATH MURTHY, Smarandache Star (Stirling) Derived Sequences
.......................... e e e e e s ca e, 262
AMARNATH MURTHY, Smarandache Friendly Numbers and A Few More
SeqUERCES ... ... e e e e, 264
AMARNATH MURTHY, Smarandache Geocmetrical Partitions and Sequences
e e e e e e et e et e et e e e et o e e e e, 268
AMARNATH MURTHY, Smarandache Route Sequences ............... 272
AMARNATH MURTHY, Smarandache Determinant Sequences ......... 275
AMARNATH MURTHY, Smarandache Reverse Auto Correlated Sequences
and Some Fibonacci Derived Smarandache Sequences ........... 279
AMARNATH MURTHY, Smarandache Strictly Stair Case Sequences . 283
CSABA BIRO, About a New Smarandache-type Sequence .......... 284
LEONARDO MOTTA, On the Smarandache ParadoxX ................. 287
SEBASTIAN MARTIN RUIZ, New Prime Numbers ................... 289
TAEKYUN KIM, A Note on the Value of Zeta ........uwouuun... 291
FELICE RUSSO, Ten Conjectures on Prime Numbers ............. 295
ADRIAN VASIU, ANGELA VASIU, On Some Implications of Formalized
Theories in oUZ Life@ . .......iuiureuen e smsne . 297
AMARNATH MURTHY, Decomposition of the Divisors of A Natural
Number Into Pairwise Co-Prime Sets .............ue'euuuuno... 303
AMARNATH MURTHY, Some Notions on Least Common Multiples .... 307

AMARNATH MURTHY, Smarandache Dual Symmetric Functions and
Corresponding Numbers of the Type of Stirling Numbers of the
First Rind ... ... .ttt ettt e e e e 309

AMARNATH MURTHY, Some More Conjectures on Primes and Divisors 311

MAOHUA LE, The Reduced Smarandache Square-Digital Subsequence is
IRFINIE@ .ttt e e e e e e e 313

MACHUA LE, The Reduced Smarandache Cube-Partial-Digital

365



Subsequence is Infinite ...............c.ccceicititcaatiaccann 315
MAOHUA LE, The Convergence Value and the Simple Continued

Fractions of Some Smarandache Sequences .........cceoocoesonec 317
MAOHUA LE, The First Digit and the Trailing Digit of Elements of
the Smarandache Deconstructive Sequence .............c...... 319
MAOHUA LE, The 2-Divisibility of Even Elements of the Smarandache
Deconstructive SeqUence .............cceoncetcecccnnnccaacns 321
MAOHUA LE, Two Smarandache Series ..........:ccceeesouececaes 323
MAOHUA LE, The 3-Divisibility of Elements of the Smarandache

Deconstructive S@QUEeNCEe . ........c..ccecteeeencansosceseacnoss 325
MAOHUA LE, Two Conjectures Concerning Extents of Smarandache

Factor PartitionRl . .......cc.cccercnecaonannenacscnessnoenns 328
MAOHUA LE, On the Balu NUumbers ..........cccoocscoecccocaans 331
MAOHUA LE, The Limit of the Smarandache Divisor Sequences .. 335

KRASSIMIR ATANASSOV, HRISTO ALADJOV, A Generalized Net For
Machine Learning of the Process of Mathematical Problems Solving.

/ On An Example with A Smarandache Problem ................. 338

G. L. Waghmare, S. V. More, New Smarandache Algebraic Structures

............................................................. 344

DWIRAJ TALUKDAR, Lattice of Smarandache Groupoid ........... 347
PHYSICS:

LEONARDO F. D. DA MOTTA, Smarandache Hypothesis: Evidences,

Implications and Applications .............cccccceiiineconcs 354
LEONARDO F. D. DA MOTTA, Smarandache-Rodrigues-Maiorino (SRM)

TREOZY < e v evcvceciosensosoncananannsansnsancaascsoansscasnss 359
GHEORGHE NICULESCU, Quantum Smarandache Paradoxes .......... 361

366



“Smarandache Notions™, published as a book series, Vol. 1 - 12. 1990-
2001, is now available in microfilm format and can be ordered
(online too) from:

Bell and Howell Learning Information Co.
300 North Zeeb Road

P.O. Box 1346

Ann Arbor, Michigan 48106-1346, USA
Tel.:  1-800-521-0600 ext. 4806

URL: http://www.umi.com/bod/

$69.95





