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D - Form of SMARANDACHE GROUPOID
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Head Dept . of Mathematics
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Abstract :

The set of p different equivalence classesis Zp = { [0], [1], [2], ------ [k]----- (p-11}.

For convenience, we have omitted the brackets and written k in place of [ k ]. Thus
Zp={0,1,2, -k -——p-1}

The elements of Zp can be written uniquely as m - adic numbers. Ifr=(a_a_,-—-aa )_
and s = (b_b_, ------ b,b,)_ be any two elements of Zp, then rAs is defined as
(la_-b_lla_,-b_,I-——-la -b|la;-by))_ then(Zp,A)isa groupoid known as SMARANDACHE
GROUPOID . If we define a binary relationr=s & r A C(r) =s A C(s), where C(r) and C(s)

are the complements of r and s respectively, then we see that this relation is
equivalence relation and partitions Zp into some equivalence classes. The equivalence class

D,z = {re Zp . r A C(r) = Sup(Zp)} is defined as D - form. Properties of
SMARANDACHE GROUPOID and D - form are discussed here.

Key Words : SMARANDACHE GROUPOID, complement element and D - form.

1. Introduction :

Let m be a positive integer greater than one. Then every positive integer r can be written
uniquely in the formr=a_m*' +a_,m**+-—+am+a, wheren20, a isaninteger, 0 <a<m,
m is called the base of r, which is denoted by (a_,a_, —— a,a))_. The absolute difference of two
integersr = (a_,a_, ---—- aay) ands=(b_b_,---- b,b,)_ denoted by r A s and defined as

rAs =(a_ -b_lla,- L lal B bxl |2, - bOI)m

={c_c_, cc,)., where c=Ja-bj for 1=0,1,2----- n-1.

n-1

In this operation, r A s is not necessarily equal to |r - s} i.e. absolute difference of r and s.

If the equivalence classes of Zp are expressed as m - adic numbers, then Zp with binary
operation A is a groupoid, which contains some non-trivial groups. This groupoid is defined as
SMARANDACHE GROUPOID . Some properties of this groupoid are established here.

2. Preliminaries :
We recall the following definitions and properties to introduce SMARANDACHE GROUPOQID.



Definition 2.1 (2 )
Let p be a fixed integer greater than one. If a and b are integers such that a-b is divisible

by p, then a is congruent to b modulo p and indicate this by writting a =b (mod p). This congru-
ence relation is an equivalence relation on the set of all integers.
The set of p different equivalence classesis Zp={0,1,2,3,------ p-11}
Proposition 2.2 (1)
Ifas=b(modp) and c=d(modp)
Then 1) a+pc=b+pd
i) axpc=bxpd
Proposition 2.3 (2)
Let m be a positive integer greater than one. Then every integer r can be written uniquely

in the form
r=a m"'+a mv+----- +am+a,
n-1
=Za.‘m‘ for 1=0,1,2,----- ,m-1;
i=0
Where n20, aisaninteger O<a <m Here m iscalled the base of r, whichis
denoted by (a_ja ,... ... aay),. |
Proposition 2.4
If r=(_a,.. .. aa), ad s=(_b,.. .. bb), then
i) r=s ifandonlyif a=»b for 1=0,1,2,----- ,n-1.
i) r<s ifandonlyif (a_a,.. .. aa) <(b,_b,.- bb,)_
i) r>s ifandonlyif (a_a .. .. aa) >(®_b,.. ... bb).
3. Smarandache groupoid :
Definition 3.1
Let r=(a_a,.. a .. aa) and s=( b, .. b .. bb,)., then
the absolute difference denoted by A of r and s is defined as
rAs=(c_c,— ¢ - cc,),, where c=la- b| for 1=0,1,2----- n-1.

Here, r A s is not necessarily equal to |r - s|. For example
5=(101), and 6=(110), and 5A 6=(011),=3 but [5-6/=1
In this paper, we shall consider SA6=3, not5A6=1

Definition 3.2
Let (Zp, +p) be a commulative group of order p = m". If the elements of Zp are



expressed as m - adic numbers as shown below :

0 = (00
1 = (00
2 = (00

m-—1=(00 ..
m = (00

m+1=(00

m —-1=(00 ..
m* = (00 ..

m*—1=(m-1 m-1

The set Zp is closed under binary operation A. Thus (Zp, A ) is a groupoid. The elements

(00 00)_ and (m-1 m-1

00)_
o1),
02),

0m-1)_

10)_
11),

m-1 m-1)_
100)_

m-1m-1)_

m-1 m-1)_ are called infimum and supremum of Zp.

The set HI of the elements noted below :

0=(00
1=(00
m = (00
m+ 1=(00

00)_

o1)_
10)_
11),

10)_= o (say)
11), =D (say)
10)_ =7 (say)

11)_=23(say)

is a proper subset of Zp.



(H, A)isa group of order 2" and its group table is as follows :

0 1 m m+l o B Y )
0 0 1 m m+l a B Yy o
1 0 m+l m B o ) Y
m m m+l 0 1 y & o B
m+l| m+l m 1 0 d v B  «
(o4 o B Y ) 0 1 m m+l]
B B o & Y 1 0 m+l m
Y Y ) o B m m+l 0 1
) ) v B o m+l m 1 0
Table - 1
Similarly the proper sub-sets
H,={0,2,2m,2(m+1) .. .. 20,23,2y,23}
H={0,3,3m 3m+1) .. .. 3a3B37,35)}
H_ ={0,m-1, mm1),m-1 .. .. (ml)a, (m-1)B (m-1)y, (m-1)d}
are groups of order 2° under the operation absolute difference. So the groupoid
(Zp, A) contains mainly the groups (H,, A), (H, A),(H,,A) ... .. (H_,,A)andths

groupoid is defined as SMARANDACHE GROUPOID . Here we use S.Gd. in
place of SMARANDACHE GROUPOID.

Remarks 3.2
i) Let (Zp, +p) be a commutative group of order p, where m™' <p <,
then (Zp, A) is not groupoid.
For example (Z,, +5) is a commutative group of order 5, where 2’<p< 2
Here Z,={0, 1,2, 3,4} and

0=(000), 4=(100),
=(001), 5=(101),
2=(010), 6=(110),
3=(011), 7=(111),



A composition table of Z; is given below :

A0 1 2 3 4
0{o0o 1 2 3 4
111 0 3 2 5
212 3 0 1 6
3{3 21 0 7
414 5§ 6 7 O
Table - 2

Hence Z_ is not closed under the operation A.ie (Z,, A)isnota groupoid.
i) S. Gd. is not necessarily associative.
Let 1=(00 ... ... OI)
2=(00 .. .. 02)_ and
=(00 .. .. 03)_ be three elements of (Zp, A), then
(1A2)A3=2 and
1A(2A3)=0
e, (1A2)A3#1A(2453)
i) S. Gd. 1s commutative.
iv) S. Gd. has identity element 0=(00 .. .. 0)

m

v) Each element of S. Gd. is self inverse ie. Vpe Zp, pAp=0.

Proposition 3.3
If (H, A) and (K, A) be two groups of order 2" contained in S. Gd. (Zp, A), then His
isomorphic to K.

Proof is obvious.

4. Complement element in S. Gd. (Zp, A).
Definition 4.1
Let (Zp, A)bea S. Gd., then the complement of any element p € Zpis equal to

pASup(Zp)=pAm'-1 ie C(p)=m™-1A4p. This function is known as complement func-
tion and it satisfies the following properties.

N CO)=m"-1

11) C(m“ - 1) =0

i) C(Cpy=p VY peZp
iv)If p<q then C(p)2C(q)



Definition 4.2
Anelement p of a S. Gd. Zp 1s said to be self complement if p A sup(Zp) =pi.e. C(p) =p.

If m 1s an odd integer greater than one, thenM" =1 is the self complement of (Zp, A).
2

If m is an even integer, then there exists no self complement in (Zp, 4).

Remarks 4.3
1) The complement of an element belonging to a S. Gd. is unique.

ii) The S. Gd. is closed under complement operation.

5. A binary relation in S. Gd.
Definition 5.1
Let (Zp, A) be 2 S. Gd. An element p of Zp is said to be related to q € Zp
if pAC(p)=qAC(q) andwrttenas p=q& pAC(p)=q4AC(qg).

Proposition 5.2
For the elements p and q of S. Gd. (Zp, 4), p=q« C(p)=C(g).
Proof': By definition
p=q =pAC(p)=qAaC(q)
=CpP)Ap=CAagq
e C(p) A C(C(p)) = C(q) A C(C(9)
& C(p)=C(9)

Proposition 5.3
Let (Zp, A) be 2 S. Gd., then a binary relation p=q < p A C(p)=q A C(q) for
p, q € Zp, is an equivalence relation.
Proof': Let (Zp, A) be a S. Gd. and for any two elements p and q of Zp,
let us define a binary relation p=q < p A C(p) =q A C(q).
This relation 1s
i) reflexive for if p is an arbitrary element of Zp, we get pAC(p)=p & C(p) for
alpe Zp. Hencep=p e pAC(p) =pAC(p) V pe Zp
i) Symmetric, for if p and q are any elements of Zp such that
p=q, thenp=q pAC(p)=q4C(Q)
=qAC(@=paC(p)
& q=p

10



iii) transitive, for p, q, r are any three elements of Zp such that
p=q and q=r, then
p=qe=pAsC(p)=qAC(g and
q=re=qAC(q)=raC(n).
Thus pAC(p)=rAC(r)ep=r
Hence p=q and q=r implies p=r

6. D - Form of S. Gd.
Let (Zp, A)beaS. Gd. of order m". Then the equivalence relation referred in the propo-

sition 5.3 partitions Zp into mutually disjoint classes.

Definition 6.1
If r be any element of S. Gd. (Zp, A) such that r A C(r) = x, then the equivalence class
generated by x is denoted by Dx and defined by
Dx={re Zp:rAC(r)=x}
The equivalence class generated by sup(Zp) and defined by
o Zon = {re Zp rAC(r)=sup(Zp) } iscalledthe D - form of (Zp. A).
Example 6.2
Let(Z, +9) bea commutative group, then Z = {0,1,2,3,4,5,6,7,8 }. Ifthe elements
of Z, are written as 3-adic numbers, then
Z,={(00),, (01),, (02),, (10),, (11);, (12),, (20),, (21),, (22),} and
(£, A)isaS. Gd. of order 3°=9. Its composition table is as follows :

AlO 1 2|3 4 5|6 7 8
0i0 1 213 4 516 7 8
1|1 0 1{4 3 4|7 6 7
212 1 0|5 4 3{8 7 6
313 4 50 1 2{3 4 5
414 3 411 0 1{4 3 4
515 4 3{2 1 0|5 4 3
616 7 8{3 4 510 1 2
717 6 714 3 411 0 1
818 7 615 4 312 1 0
Table - 3

11



Here 0AC(0)=0A8=38
1AC(1)=1A7=6
2AC(2)=2A6=8
3AC3)=3A5=2
4ACMA)=4A4=0
SAC(5)=5A3=2
6AC(6)=6A2=8
TAC(T)=TA1=6
8AC(8)=8A0=38
Hence D, = { 0, 2, 6, 8 } = {(00),, (02),, (20),, (22), }
D,={1,7}
D,={3,5}
D,={4)
The self complement element of (Z_, A) is 4 and D- form of this S. Gd. 15 {0, 2, 6, 8}=D,
Here Z =D,UD,uD,UD,.

Proposition 6.3
Any two equivalence classes in a S. Gd. (Zp, A) are either disjoint or identical.
Proofis obvious.
Proposition 6.4
Every S. Gd. (Zp, A) is equal to the union of its equivalence classes.
Proof'is obvious.
Proposition 6.5
Every D- form of 2 S. Gd. (Zp, A) is a commutative group.
Proof': Let(Zp,A)beaS. Gd. of order P =m". The elements of D- form of this groupoid

are as follows.

0 =(00 .. .. 00)
m-1 =(00 .. .. Om-l1)
m-m=(00 .. ... m-10)
m*-1 =(00 .. .. m-lm-1)_
m*-m=0m-1 .. .. m-10)
m*-1=0m-1 ... ... mlml)_
m-m=(m-1m-1 .. .. m-10)_
m-1 =(m-1m-1 .. .. m-l1m-l)

12



“ Dppeo1 = {0, m-1, m>m, m*-1, - - - - - - - , m™'-m, m*'-1, m*m, m"-1 }

Here (Dppn.q, A ) 1s a commutative group and its table is given below :

A 0 m-1  m’m m*-1 1| .. | m*'-m m™i-1 m*-m m"-1
0 0 m-1 m*m m?-1 | ... | m*'-m m™i-1 m*-m m®-1
m-1 m-1 0 m>-1 m>m/|{ ... | m™'-1 m™-m  m*-] m*-m
m>-m m>-m m-1 0 m-1 { .. | m*m m"-1 m*'-m m~'-1
m?>-1 m*-1 m>-m m-1 0 | mr-1 m°-m m™!-1 m™'-m
m~-m| m"'-m m¥-1 m*m m-1]..10 m-1 m>-m m>-1
m--1| m'-1 m"'-m m*1 m*-m | ... | m-1 0 m>-1 m>-m
m*-m m*-m —m*1 mt'm m*-1| ... | m*m m*>-1 0 m-1
m"-1 m*-1 m*~-m m'-1 m*'m| ... | m*-1 m>-m m-1 0
Table - 4

Remarks 6.6

Let (Zp, A) be a S. Gd. of order m®.
The equivalence relation p = q < p A C(p) = q A C(q) partitions Zp into some equivalence classes.

1) If m is odd integer, then the number of elements belonging to the equivalence classes
are not equal. In the example 6.2, the number of elements belonging to the equivalence classes
D,, D,, D,, D, are not equal due to m = 3.

i) If m is even integer, then the number of elements belonging to the equivalence classes

are equal.

Forexample, Z ={0,1,2,------- , 15 } be a commutative group. If the elements
of Z  are expressed as 4- adic numbers, then (Z,, 4) is a S. Gd. The composition table of

(Z, A)is given below :

162

13



A0 1 2 314 5 6 7|8 9 10 11112 13 14 15
00 1 2 3 4 5 6 7 {8 9 10 1112 13 14 15
1411 01 2¢(5 4 5 6{9 8 9 10|13 12 13 14
212 1 0 116 5 4 51{10 9 8 9|14 13 12 13
313 2 1 07 6 5 4 (1110 9 8|15 14 13 12
414 5 6 710 1 2 314 5 6 7 10 11
515 4 5 61 01 215 4 5 6 g 9 10
616 54 512 1 0 110 5 6 7 9 10 11
717 6 5 443 2 1 0|7 6 5 4|11 10 9 8
818 910 114 5 6 710 1 2 34 5 6 7
919 8 9 1015 4 5 6/1 01 2|35 4 5 6
1010 9 8 916 5 4 512 1 0 1 6 5 4 5
1111 10 9 8 7 6 5 43 2 1 0|7 6 5 4
12112 13 14 15| 8 910 11} 4 5 6 710 1 2 3
13{13 12 13-141 9 8 9 1015 4 5 6 |1 0 1 2
14114 13 12 13|10 9 9{6 5 4 5 12 1 0 1
15115 14 13 12111 10 7 6 5 4 3 2 1 0
Table - 5

Here 0A C(0)=15=15AC(15)

1AC(1)=13=14 A C(14)

2AC(2)=13 =13 A C(13)

3AC(3)=15=12AC(12)

4AC@) =7 =11 AC(11)

5AC(S)= 5 =10A C(10)

6AC(6E)=5 = 9AC(O)

TAC(T)=7 = 8AC(8)
Hence D, ={0,3,12, 15}, D,={12,13,14}

D,={4,8711}, D,={5,6,9, 10}

The number of elements of the equivalence classes are equal due to m = 4, which is even integer.
Acknowledgement :

I wish to express my gratitude to Prof. Sashi Sarma, Nalbari and Sjt. Panchanan Sarma,

Bidyapur, Nalbari for their encouragement in preparing this paper.

14



References :

1.

(V%)

David M. Burton -

Mc Coy, N.H.-

Elementary number theory
2nd edition, University book stall
New Delhi (1994).

Introduction to Modern Algebra
Boston Allyu and Bacon INC (1963)

Talukdar, D & Das N.R.- Measuring associativity in a groupoid of natural numbers

Talukdar, D - -

Talukdar, D -

Hall, M -

The Mathematical Gazette
Vol. 80. No.- 488 (1996), 401 - 404

Some Aspects of inexact groupoids
J. Assam Science Society
37(2) (1996), 83 - 91

A Klein 2° - group, a generalization of Klein 4 group
GUMA Bulletin
Vol. 1 (1994), 69 - 79

The theory of groups
Macmillan Co. 1959.

15



The notions of the SMARANDACHE GROUP and the
SMARANDACHE BOOLEAN RING

D. Taluledar.
Deptt. of Mathematics
Nalbari College, Nalbari
Assam, India

The notions of the Snmarandache group and the Smarandache Boolean ring are intro-
duced here with the help of group action and ring action i.e. module respectively. The centre of
the Smarandache groupoid is determined. These are very important for the study of Algebraic

structures.
1. The centre of the Smarandache groupoid :

Definition 1.1

An element a of the smarandache groupoid (Zp, A) is said to be conjugate to b if there
exists r in Zp such that a=TAbATL

Definition 1.2

An element a of the smarandache groupoid (Zp, A ) is called a self conjugate element of
Zpif a=rAaAr foralre Zp.

Definition 1.3

The set Zp* of all self conjugate elements of (Zp, A ) is called the centre of Zp i.e.
Zp*={ae Zp a=rAaArVre Zp}.

Definition 1.4

Let (Z, +,) be a commutative group, then Z7{0,1,2,3,4,5, 6, 7, 8 }. If the elements

9 9
of Z, are written as 3-adic numbers, then

Z, = { (00),, (01),, (02),, (10),, (11),, (12),, (20),, (21);, (22); }
and (Z,, A ) is a smarandache groupoid of order 9. Conjugacy relations among the elements of

Z,are determined as follows :

16



0AQA0=0
1A0AI=0
2A0A2=0
3A0A3=0
4A0A4=0
SA0AS5=0
6A0A6=0
7TAQ0AT7=0
8A0AB=0

0A1AO0=1
1ATALl=1
2A1A2=1
3A1A3=1
4A1A4=1
SA1TAS=1
6A1A6=1
TATAT=1
8A1A8=1

0A2A0=2
1A2A1=0
2A2A2=2
3A2A3=2
4A2A4=0
5A2A5=2
6A2A6=2
TA2AT=0
8A2A8=2

0A4A0=4
1A4A1=4
2A4A2=4
3A4A3=4
4A4A4=4
5A4A5=4
6A4A6=4
TA4A7=4
8A4A8=4

0ASAO0=5
1ASA1=3
2A5A2=5
3A5A3=5
4A5A4=3
SASAS=5
6A5A6=5
TASAT=3
8ASA8=5

0A6A0=6
1A6A1=6
2A6A2=6
3A6A3=0
4A6A4=0
SA6A5=0
6A6A6=6
TA6AT=6
8A6A8=6

0A7TA0=7
1ATA1=T7
2ATA2=1T
3ATA3=1
4A7TA4=1
SATAS=1
6ATA6=T
TATAT=T
8ATAB=T

3SA8A3=2
4A8A4=0
S5A8A5=2
6A8A6=28
TABAT=6
8ABA8=8

Here Z * ={ 0, 1, 3, 4 }, the set of all self conjugate elements of Z_ is called the centre

Ao 1 3 4
0{0 1 3 4
1{1 0 4 3
313 4 0 1
414 3 1 0
Table - 2

From table (2) and table (3); it is clear that (Z,*, A) and (D, A) are isomorphic to each other.

Definition 1.3
The groups (Zp*, A)and (D, A) of the Smarandache groupoid (Zp, A) are isomor-

phic to each other.

Proof is obvious.

of (Z,, A). Again (Z.*, A) is an abelian group.
D-form of the Smarandache groupoid (Z,, A) is given by D, = { 0, 2, 6, 8 }. Again
(D,, A) is an abelian group. The group table (2) and group table (3) are given below.

17

Al0O 2 6 8
0{0 2 6 8
212 0 8 6
616 8 0 2
818 6 2 0
Table - 3

Table - 1




2. The Smarandache group :

To introduce the Smarandache group, we have to explain group action on a set. Let A be
a group and B a set. An action of A on B is a map, B x A — B written (b, p) = b A P such that
1) forevery p, g€ A and b € B, we have
((b,p),9=(bAp)Aq=(bAp)Ag=bA(pAQ)
and 1) for every b € B, we have (b,0)=bA0=b
where O denotes the identity element of the group A.
If a group A has an action on B, we say that B 1s a A-set or A-space. Here in this paper
we shall use B(A) in place of “Bisa A - space”. -

Note :

If B is a proper subgroup of A, then we get a map A x B — A defined by
(a,b) >aAbe A Thisisa group action of B on A. Then we say that AisaB - set or B - space
i.e. A(B) is a B - space. In this paper, by proper subgroup, we mean a group contained in A,
different from the trivial groups.

Definition 2.1
The smarandache group is defined to be a group A such that A(B) is a B - space, where
B is a proper subgroup of A

Examples 2.2
i) The D - form of (Zp, A) defined by
D, ze = {re Zp:rAC(r)=Sup(Zp)} = Ais a Smarandache group. [f Bis a

proper subgroup of A, then the action of B on A is the map, A x B — A defined
by(a,q)=aAqforallae Aand qe B. ThisactionisaB - actionie A(B)isa
B - space.

i) The centre of (Zp, A) defined by
Zp*={ae Zp:a=rAaAr Vre Zp}=AisaSmarandache group. If B be
a proper subgroup of A, then the action of B on A is the map, A * B — A defined
by(a,p)=aApforallae Aandforallpe B. ThisactionisaB - spacei.e. A(B)

1s a B - space.

ii1) The Addition modulo m of two integers r = (& ,a_, =----=-=-=-=----=- aa) and
s=(b_b,_,---- bb,)_ denoted by /+ \and defined as

ri+\s=(@_a, .. .. aa) FNb b, .. . bb,).
=(a /+\b_a /+ Vo, .. .. a/t\ba/+ b)
=(C_,C, - cc,),, Wwhere c= a/+ \b fori=0,1,2, . n-l.

18



The group (Zp, /+_\) is a Smarandache group. The group (Zp, /+) contains a proper
subgroup (H={0,1,2,3, ... .. .. p-1}L,/+ Y

Then the action of H on Zp is the map Zp x H — Zp defined by (a, r) =a/+ \r forall
a< Zp and for all r € H. This action is a H - space i.e. Zp(H) is a H - space.

iv) ThesetZ = {0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15 } can be written as
Z., = {(00), (01, (02),, (03), (10),, (11),, (12),, (13),, (20),, (21),, (22),,

(23),, (30),, (31),, (32),, (33), }
is a smarandache group under the operation /+,\ and its group table is as follows:

/+\ 0 1 2 34 5 6 7|18 9 10 11} 12 13 14 15
olo0 1 2 3|4 5 6 718 9 101112 13 14 15
1 1 2 3 0{5 6 7 419 10 11 8| 13 14 15 12
212 3 0 16 7 4 5|1011 8 9| 14 15 12 15
3 30 1 217 4 5 6]11 8 9 1015 12 13 14
414 5 6 718 9 1011112131415 0 1 2 3
515 6 7 4910 11 8{13 141512 1 2 3 O
6 |6 7 4 5|10 11 9114151213 2 3 0O 1
717 4 5 6|11 8 9 1015121314} 3 O 1 12
gl 8 910 111121314150 1 2 3| 4 5 6 7
9191011 8f13141512, 1 2 3 of 5 6 7 4
10/1011 8 9141512132 3 0 1} 6 7 4 5
11111 8 9 10{1512 13 14{3 0 1 2} 7 4 56
1212 1314150 1 2 3|4 5 6 7 {8 9 10 11
1311314151211 2 3 0fs5s 6 7 419 10 11 8
14114 1512 1312 3 o 1|6 7 4 5 j10 11 8 9
151151213143 0 1 2|7 4 5 6 |1 8 9 10
Table - 4

From above group table, it is clear that (H= {0, 1, 2, 3, 89,10, 11 },/+\)1sa
subgroup of (Z,, /+,\). Then the action of H on Z is the map Z  x H — Z, defined by
(a,r)=a+\r forallac Z andforallre H. This action is a H - space 1.e. Z, (H) is 2 H - space.

Here (K={0, 1,2,3 },/+,\) be a subgroup of (H, /+,\). Then the action of K on H 1s the
map, H x K — H defined by (b, p)=b/+\pforallbe Hand forallpe K. This actionisa K -
space i.e. H(K) is a K - space. Hence H is a Smarandache group contained in the Smarandache

group Z . So it is called the Smarandache sub-group.
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3. The Smarandache sub-group :

Definition 3.1
The smarandache sub-group is defined to be a smarandache group B which is a proper
subset of smarandache group A (with respect to the same induced operation).

4. Smarandache quotient group :
Let (H, A) be smarandache subgroup of the Smarandache group (B, A), then the quotient
group B/ = V is defined as smarandache quotient group such that V(K) is a K - space, where K
is a proper subgroup of V i.e. the group action of K on Visamap V x K — V, defined by
(HAa), HAp)=(HAa)A(HAp) foral HAae V and HApe K

5. Smarandache Boolean ring :

Definition 5.1

The intersection of two integersr=(a_a , ... .. aa)_ and
s=(_b, .. ... bb)_ denotedbyrsand defined as
rns =(_nb a,nb, .. .. anbanb),
= (Cn-lcn-l CICO)m
wherec =a Nb, = min(a,b) for i=0,1,2, .. .. ,n-l

If the equivalence classes of are expressed as m - adic numbers, then with binary opera-
tion M is a groupoid, which contains some non trivial groups. This groupoid is smarandache

groupoid. Here (Zp*, A, M) and (Z_

o Zey A, N) are Boolean ring.

Definition 5.2

The smarandache Boolean ring is defined to be a Boolean ring A such that the Abelian
group (A, A) has both left and right B - module, where B is a non trivial sub-ring of A.

From above, we mean an Abelian group (A, A) together with a map, B x A — A, written
(b, p)=b " pe Asuchthatforeveryb,ce Bandp, qe A, we have

i) bn(pag=0bnpalbng

i) (bAc)np=(bnp)A{cnp) i) (bncynp=bn(cnp)

Again from the map, A x B — A, written (p, b) = p M b € A such that for every
p,q€ Aandb, ce B, we get

Y (pAgQNb=(pNb)A(gNDb)

1) pn(Ac)y=(pnb)A(pnc) i) pnbdne)=(pEnb)nc
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Definition 5.3
The smarandache Boolean sub-ring is defined to be a smrandache Boolean ring B which
is a proper subset of a Smarandache Boolean ring A. (with respect to the same induced operation).

Definition 5.4

The smarandache Boolean ideal is defined to be an ideal B of Smarandache Boolean ring
A such that the Abelian group (C, A) has both left and right B - module, where C 1s a proper
subset of B. From above we mean an Abelian group (C, A) together with a map, C x B —» C
written (¢, p) = C NP e C such that this mapping satisfies all the postulates of both left and right
B - module.

Examples 5.5

Let (Z,,,, +.,) be an Abelian group, thenZ, ={0,1,2, .. .. .. 255} If the
elements Z,  of are written as 4 - adic numbers, then
Z,.. = { (0000),, (0001),, (0002), (0003),, (0010),, ... .. .. .. ,(3333),}and

(Z..., A)is a smarandache groupoid of order 256. The centre of (Z,,, A) is
Z'256 ={0,1,4,5,16,17, 20,21, 64, 65, 68, 69, 80, 81, 84, 85 }. Here (27, A, M) is

a Smarandache Boolean ring and its composition tables are given below :

256°

Al 0 1 4 516 17 20 21[64 65 68 69| 80 81 B84 85
0] 0 1 4 5|16 17 20 21 |64 65 68 69| 80 81 84 85
111 0 5 417 16 21 20 |65 64 69 68| 81 80 B85 B84
414 5 0 12021 16 17|68 69 64 65| 84 85 80 8l
515 4 1 021 20 17 16 {69 68 65 64| 8 84 81 80
16/16 1720211 0 1 4 518081 84 85,64 65 68 69
17117 16 21 20 0 5 4]81 808584165 64 69 68
20{20 21 16 17{ 4 5 O 1|84 85 808168 69 64 65
21|21 20 17 16 4 1 0]858 8180|69 68 65 64

64|64 65 68 69|80 81 84 850 1 4 5|16 17 20 21
65165 64 69 68|81 80 8584 |1 0 5 4 |17 16 21 20
6868 69 64 65|84 8580 81 |4 5 O 1 |20 21 16 17
6969 68 65 64|85 84 81 8015 4 1 0 |21 20 17 16
80/ 80 81 84 83{64 65 68 69| 16 17 20 21
81{81 80 85 84{65 64 69 68 | 17 16 21 20
84|84 85 80 81]68 69 64 65|20 21 16 17
85/85 84 81 80|69 68 65 64 |21 20 17 16

— O W b
O ~ bW

1
0
5
4

wnm == O

Table - 5
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Nl 0 1 4 5(16 17 20 21 {64 65 68 69|80 81 84 85
0/ 0 0000 000{0 00 0 0 0 0
1lo101/0 1 01{0 1 01 1 0 1
410 0 4 4 0 440 0 4 4 0 4
5101 45 1 45(0 1 45 1 5
16/0 0 0 01616 1616/ 0 0 0 0|16 16 16 16
1770 1 0 1{1617 16170 1 0 1|16 17 16 17
2000 0 4 4|16 16 2020/ 0 0 4 4|16 16 20 20
2110 1 4 5{1617 2021{0 1 4 5|16 17 20 21
64/ 0 0 0 0 0 0 0|64 64 64 64| 64 64 64 64
650 1 0 1 1 0 1[646564 65 64 65 64 65
68/ 0 0 4 4 0 4 4|64 64 68 68| 64 64 68 68
69]0 1 4 5 1 4 5|64 6568 69| 64 65 68 69
800 0 0 0116 16 16 16 |64 64 64 64| 80 80 80 80
8110 1 0 1[16 1716 17|64 65 64 65| 80 81 80 8l
840 0 4 4116 16 20 20 | 64 64 68 68| 80 80 84 84
85/ 0 1 4 5{16 17 20 21 |64 65 68 69| 80 81 84 85
Table - 6

Some smarandache Boolean sub-rings of (Z~

Here smarandache Boolean subrings H,, H, H, H , H, are ideals of (Z*

H = {0,1,4,5,16,17,20,21}
H,={0,1,4,5,64,6568 69 )
H,={0,1,4,5,80, 81, 84, 85}
H,={0,5,16,21,64,69,80,85}
H,= {0,1, 16, 17, 64, 65, 80, 81 }
H={01,45}
H7={O, 1, 16,17}
H8={O, 1,64,65}

H ={0,1,80,8! } etc.
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FROM BOLYAI'S GEOMETRY TO
SMARANDACHE ANTI-GEOMETRY

Angela Vasiu and Nicolaie Oprea*

Mathematics Department, "Babes-Bolyai” University Cluj, Romania
“Mathematics Department, "Nord University” Baia Mare, Romania

ABSTRACT

It is considered the notion of absolute Geometry in its evolution, from the
first Non-euclidean Geometry of Lobacewski, Bolyai and Gauss till that of
Smarandache Anti-Geometry.

Key words: Euclidean Geometry, Non-euclidean Geometry, Hilbert’s axioms and in-
cidence structures deduced from them, Smarandache Geometries, Hjelmslev-Barbilian
structures

Any theory or deductive system has two distinguishable parts:

1. the specifical part

2. the logical part.

When we formalize one, or both of parts of a theory, we obtain next classification for
axiomatical theories:

1. nonformalized,

2. semiformalized, or

3. formalized axiomatical theory.

When J. Bolyai in [3] in 1831, and N. Lobacewski in {12], in 1826 began the studies
about non-euclidean Geometries the formalization in mathematics was not yet introduced.
Their contributions should be considered as more important as at that moment the for-
malized system of axioms of Geometry of D. Hilbert was not given.

The way we can establish the metamathematical analyse of a theory are two:

1. sintactical (that is directly)

2. semantical. by the interpretations and models.

J. Bolyai and N. Lobacevski worked only sintactically and not semantically in the
study of the metamathematical analyse of their theory.

On the first way, non-contradiction of their Geometry given in [3] ard [12] could
not be proved, because in a such a way they could not convince that the set »f correct

24



affirmations of their theory were exhausted and that has excluded the possibility to meet
a proposition p correct constructed such that p and —p to be verified in their Geometry.
Later were given semantically the proofs that their non-euclidean Geometry is consistent,
and so is non-contradictory, by the models of Berltrami in 1868, after that of Cayley-Klein
in 1871 and of H. Poincaré in 1882.

In Bolyai-Lobacewski’s absolute Geometry from a point A to a line a, A is not incident
with a, there exists a parallel. In this absolute Geometry we have only two possibilities:

1. the Euclidean Geometry

2. the Hyperbolical Geometry.

The elliptical Geometry with none parallel through a point to a line, are excluded
from this absolute Geometry. Also this absolute Geometry contained only continuous
Geometry.

In 1903 in [6], D. Hilbert proved that the hyperbolical plane geometry can be intro-
duced without to use the tridimensional space, and that is possible to renounce to the
axioms of continuity. This is an important moment for research in Geometry because
from that moment the notion of absolute Geometry changes its meaning and begins to be
different considered to different moments and to different authors. The absolute plane of
Bolyai becomes a particular case of the absolute plane in recently researches of Geometry.

From 1389, when D. Hilbert in [5] gave a formalized system of axioms for absolute Ge-
ometry, appeared more directions of investigation in Geometry. The incidence structures
are largely used and so are introduced a great variety of affine and projective planes and
affine and projective spaces.

The great importance of geometrical transformations for geometrical problems was
put by F. Klein in "The programme from Erlangen” in 1872, when he began to consider
the Geometry as the study of invariant properties to a group of transformations. From
that moment the system of axioms of many Geometries are based on the notions of
theory of groups. This group is given as an abstract group, and geometrical structure is
a consequence of structure of group. This fact was possible, after'that it was proved that
the geometry can be transposed in the group of its automorphisms generated by axial
symmetries. A such a system of axioms is more simple than a classical one, it is easily
adopted to the special qualities of non-euclidean Geometries. Compared with a such a
svstem of axioms, the system of axioms of D. Hilbert is more complicated.

As it is the calcullus in a field for Analytical Geometry a method of work, as the
calcullus in the group generated by the axial symmetries becomes a method for proofs in
Geometry, after J. Hjelmslev in [7] introduced it. In [16] Thompsen proved that this can
become an efficient method of demonstration for the theorems of Euclidean Geometry.
This is an attrative method because the hypothesis and conclusions of a theorem can be
written simply as relations of group.

The first system of axioms of absolute plane geometry formulated in theory of groups
was given by A. Schmidt in [13], and after that F. Bachman in [1]. From that date this
method is largely used in Geometry as in [9], {10}, {11], [17] and many others works.

In 1954 after E. Sperner gives a group proof of theorem of Desargues for a large classes
of Geometries, in absolute geometry are included new-types of geometry, as geometry with
centre, with perpendicular nuclei’ [10], and many others.
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The classical Geometries are extended, because are not made hypothesis of order, of
continuity or mobility [1], [9], [11], [17].

In 1967 H. Wolf in [21], includes near Euclidean, elliptical, and hyperbolical Geometry,
also Minkowski’s Geometry.

The geometries constructed over a field of characteristic 2 are included later, by a
more general system of axioms of R. Lingenberg in {11].

Another generalization of incidence structures was that in which it were considered
geometrical structures to which the line incident with two different points is not unique.
A such a theory is consistent and as a model for it we have the Geometry over a ring. Such
structures were introduced by J. Hjelmslev in [8] and D. Barbilian in [2]. A new direction
of study in Geometry begins from this moment, in which we have also some results.

The researches of absolute Geometry have a natural continuity, the notion of absolute
Geometry is a notion in evolution in the modern literature of speciality. This help us to
understand better the life, the transformations in the life. and finally this could bring us
more wisdom and increasing degree of understanding of human condition, and such to
answer to the deep desire of their creatores: that the mathematics to become aiso a force
of life.

Such Florentin Smarandache even in 1969 said that it is natural to consider a new
Geometry denying not only one axiom from the axioms of D.H. Hilbhert from [5] but more
or even all of them, what he did in 1935 in {14] and in 1997 in [15].

So he introduced so called "Smarandache Anti-Geometry”. It seems strange but it
1s natural. We shonld remember that when J. Bolyai the genial discoverer of first non-
euclidean Geometry was deeply implied in his great work even the great Gauss said
that the people are not prepared to receive a new Geometry, a such a new theory. And
that was the truth. J. Bolyai suffered very much at that time seing that he can not be
understood, but he was convinced that not only in Mathematics, but in the whole history
of thinking his conception represents a crucial point. Besides the value of his discoveries in
Mathematics, J. Bolyai must be discovered and then, inevitable loved, as a great thinker
preoccupied of the problems of harmonious integration in the life. As we showed in [18],
(19] J. Bolyai always was thirsty of harmony and with a stoical wisdom he supported his
ideas until the end of his life, a life full of misunderstanding. In spite of all what he met
as nonunderstanding he continued to believe in what he created and he felt them to be
true.

As J. Bolyai, N. Lobacevski was not understood during his life and his work was not
recognized at that time. Their contributions today have to be appreciate even more as at
their time the formalized theories has not been introduced.

Beyond the mathematical contribution their works represent an opening meditation
of human condition which have not been enough exploited. Feeling the potential of this
opening in the understanding of the human complexity we suggested it as a direction
of research and to try to imply, we all scientists, to get an amelioration of the human
condition as in [18], [19], [20] we did. This research can be done by the utilisation of
mathematical ideas and theories to the construction of a model of self-knowledge. Have
we ever put the question which are the axioms which stay at the base of the existence?
As any theory the human existence should have some axioms, propositions, theorems,
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conjectures. false affirmations etc. The consequences of false affirmations in our behaviour
can be clearly observed: the pollution of the mind, of the nature, ecological perturbations
etc.

We all can realize that the elimination or diminuation of false affirmations about
the existence and man, could bring harmony and peace. Taking in consideration the
profoundness and credibility of scientists we can hope more and more from us paing
attention to this noble work. The incredible technical progress and discoveries of the
science have a correspondent in the science of selfknowledge.

The Anti-Geometry introduced by Florentin Smarandache in [14], [15] would corre-
spond to the understanding of the degradation of human condition. Even this "Anti-
Geometry” could be a model for this kind of "inner Geometry”, in the sense that the
degree of degradation represents the different levels of negation of our inner possibilities,
of our natural qualities.
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Smarandache’s new geometries
a provocation for an ammelioration
of human condition

Angela Vasiu

Mathematics Department, "Babes-Bolyai” University Cluj, Romania

ABSTRACT

Are remarked the new Geometries of Smarandache and it is given a relation-
ship and an application of Smarandache Paradoxist Geometry to the amme-
lioration of human condition by a better understanding of ourselves and of
others.

Key words: Non-euclidean Geometry, Bolyai/Lobacewski/Gauss and Riemann Geo-
metry, Smarandache Paradoxist Geometry

In [2]. [3]. Florentin Smarandache introduced a new type of Geometry. In this Smaran-
dacheian space it is proposed to be considered the theory deduced from the Absolute
Geometry of Bolvai and Lobacewski in which the axiom of parallel it is accepted for some
pairs of points and lines and it is denied for others. This new Geometry generalizes and
unites in the same time: Euclid, Bolyai/Lobacewski/Gauss and Riemann Geometries.

If the first Non-euclidean Geometry introduced by Lobacewski, Bolyai and Gauss
surprised the world. such that Gauss said that the people were not prepared to receive
a new theory, now we know and accept many kinds of new Geometries. Even in 1969
Florentin Smarandache had put the problem to study a new Geometry in which the
parallel from a point to a line to be unique only for some pairs of points and lines and for
others: none or more. even infinitely many parallels could be drawn through some points
to a line.

Are nowadays people surprise for such new ideas and new Geometries? Certainly
not! After then the formalized theories were introduced in Mathematics, a lot of new
Geometries counld be accepted and semantically to be proved to be non-contradictory by
the models created for them as in [1].

In (4] we introduced a new notion for understanding the great diversity of human
condition, that of "inner Geometry”. Conformly with this notion we differ so much after
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the degree of manifestation of our inner possibilities, and from here, after our own blockade
of them. To be able to understand and to improve our interhuman relationships these new
tvpes of Geometries could help in at least two directions. For a hand, we are in different
type of "inner Geometry” from a moment to another moment, and for the other hand:
from a person to other one, this "inner Geometry” could be different. In this acceptation
we can treat each other with more wisdom, we can find an explanation of so exposed
human condition, to be more conscious about the greatness of self knowledge and to
imply more in the ammelioration of the existence as a theory in which we want to be
with more concilliation. Smarandache’s Geomeiries could be considered in this way, as an
important reflection about human condition and his Paradoxist Geometry to find a new
model in the theory of existence. '
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THE AVERAGE OF THE ERDOS FUNCTION

Sabin Tabirca* Tatiana Tabirca*
**Transilvania University of Brasov, Computer Science Department

The aim of this article is to establish the complexity order of the Erdos function average. This will
be studied based on some recent results about the Smarandache function.

1. INTRODUCTION

The main results used in this paper are reviewed in the following. These deal with the main
properties of the Smarandache and Erdos functions.

The Smarandache function {Smarandache, 1980] is S:N* — N defined by
S(n) = min{k e N|k'= pn}(VneN¥). n
The function P : N* — N defined by
P(n)=min{pe N |n=Mp~ pisprim}(¥ne N*\{1}), P(1) =0 (2)
is named classically the Erdos function. Both functions satisfy the same main properties:
(Va,b e N*) (a,b) = 1=8(a-b) = max{S(a),S(d)}, P(a-b) = max{P(a),P(d)}. (3)
(Va eN *) P(a) < S(a) < a and the equalities occur iif a is prim. 4)
Erdos [1991] found that these two functions have the same values for all most of the natural

numbers lim M - I;; [P0 < S(i)}

n—yax n

= 0. This important result was extended by Ford [1999] to

1{1 =1Ln|P@) < S(i)} =n.e Ve NEmEEr  here fim a,=0. (3)
Obviously, both functions are neither increasing nor decreasing functions. In this situation, many
researchers have tried to study properties concerming their average. Many results that have been
published so far deal with complexity orders of the average.

1 n
Let us denote E(f(n)) =—- Z f(n) the average of function f : N* —> R . The average £(S(n))
n

i=l
was intensively studied by Tabirca {1997, 1998] and Luca [1999]. Tabirca {1998] proved that
(V n> CP)E(S(n)) <a,-n+b,, where lma, = E_Ipmbp = (. This means that the order O(n)

p—®
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is not properly chosen for E(S(n)). Tabirca [1998] conjectured that the average E(S(n)) satisfies
. n . .
the equation E(S(n)) < e Finally and the most important, Luca [1999] proposed the equation
n

~;__Lr(n)_”(\/;)]<E(S(r,))<7r(n)-+-§-lnlnn-*-l+% ™)

n

where 71x) denotes the number of prim numbers less than or equal to x. Thus, the complexity order

for the average E(S(n)) is indeed O( 1 )
logn

2. THE COMPLEXITY ORDER FOR THE ERDOS FUNCTION
Some of the above results are used to find the complexity order of E(P(n)). Based on the well-

n
known formula lim ) =1, Equation (7) gives
n—w® n

Inn
L ¢ liming ZOO) i gp EEO) ®)
2 n—swo l— e L
Inn Inn
Theorem 1.
tim inf =) _ i ing ZEOD oy qup OO _ iy p L) ©)

Inn Inn Inn Inn

Proof Let us denote A ={i = I,_n | S(7) > P(i)} the set of the numbers that do not satisfy the

equation S(7)=P(i). The cardinal of this setis | A }=n- e_(ﬁ""")“""'l"l"" , where lima, =0.

nowo

The proof is started from the following equation

iS(i) _ _Z"jp(i)

E(S(n)) - E(P(m))| = %

_1 [Z (SG) —P(i))} < Z&. (10)

n |ica icd
Because we have (\7’ I= 1,_n)S (i) € n, Equation (10) gives

|E(S(n))-E(P(n))| <| A}= n. o Wira WEmmEn

,E (S(m) _ E(P(m)

<Inp-e WEePrinn (11)
n n
Inn Inn
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Because lim a, = 0, the equation iim Inn- e"(ﬂ""'n Wonikn =0
R

n—ao

is found true, thus

lim inf——bM = lim inf@, lim su .

n—o© n n—wo p E(S;l(n)) =1

im supi(%(—nL holds.

n—wo

Inn Inn Inn Inn
Theorem 2 is obtained as a direct consequence of Theoreml.

Theorem 2

EP(n) = 0({—”)

) P .
Proof The equation Y < liminf ﬂ?@ < lim sup-&;(nl <1 is found true applying
Inn Inn

Theorem 1. From that, there is a natural number N; such that that

(VnzN,)(l—eJ-LSE(P(n))s(l+£)-L. (12)
2 Inn Inn
Therefore, the equation E(P(n)) = O(-li-) holds. .

nn

The right question that comes from (12) is the following "Is the equation E(P(n)) < l—n-—
nn

true?"'. This has been investigated for all the natural numbers less than 1000000 and it has been
found true. Equation (7) can be adapt to the average £(P(n)) but obviously the inequality that is

found is not an answer to the question. Therefore, we may conjecture the following: The equation

E(P(n)) < —— holds for all n>1.
Inn
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ON THE CONVERGENCE OF THE ERDOS HARMONIC SERIES

Tatiana Tabirca* Sabin Tabirca*

*Transilvania University of Brasov, Computer Science Department

The purpose of this article is to study the convergence of a few series with the Erdos function. The

work is based on results concerning the convergence of some series with the Smarandache function.

1. INTRODUCTION

The results used in this article are presented briefly in the following. These concern the relationship

between the Smarandache and the Erdos functions and the convergence of some series. These two

functions are important function in Number Theory. They are defined as follows:

* The Smarandache function [Smarandache, 1980} is S:N* — N defined by
S(n) = min{k e N|k! =Mn} (Vhe N %

¢ The Erdos functionis P: N* > N defined by
P(n)=min{peN|n=Mp A pisprim}(vrne N*\(1}), P(1)=0.

The main properties of them are:

(‘v’a,b € N*) (a,0) =1=5(a-b) = max{S5(a),S(8)}, P(a-b) = max{P(a),P(b)}.

(Va eN *) P(a) < §(a) < a and the equalities occur 7if a is prim.

Erdos [1991] found the relationship between these two functions that is given by

[t =Ln1P0) <50)]
ol

n—pwo n

This important result was extended by Ford [1999] to

¥ =171 PO <SOf=n-e NI phere lima, = 0.

n-—sx

(D

(2

€)
C)

(6)

Equations (5-6) are very important because allow us to translate convergence properties on the

Smarandache function to convergence properties on the Erdos function. This translation represents

the main technique that is used to obtain the convergence of some series with the function P.

2. THE ERDOS HARMONIC SERIES
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The Erdos harmonic series can be defined by Z ! . This is one of the important series with

w2 P (n)

the Erdos function and its convergence is studied starting from the convergence of the

Smarandache harmonic series Z -
n22 n

. Some results conceming series with the function S are

reviewed briefly in the following:

o If (x,,)")o is an increasing sequence such that lim x, = o, then the series Z% is
n—o 1 xn
divergent. [Cojocaru, 1997].
@)
1
e  The series ZT is divergent. [Tabirca, 1998}
n22 n

(3)

e The series Z - is divergent for all a>0. [Luca, 1999] 9

n22
These above results are translated to the similar properties on the Erdos function.

Theorem 1. If (xn)

n>0

is an increasing sequence such that lim x, = oo, then the series

n—»w0

X ., —X
D ~ml—n s divergent.
n>l1 P(xn)

Proof The proof is obvious based on the equation P(x,)<.S(x,). Therefore, the equation

-x X .—X . . X ,—X . .
Xt “ % 5 Xnt "% 454 the divergence of the series Z—'ﬂ‘l————" give that the series
P(xn) S(xn) n>| S(xn)
X, —X
Z—l"—" is divergent.
- P(x,)
.
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1
A direct consequence of Theorem 1 is the divergence of the series Z—-— where a,5>0

w1 Pla-n+b)

. . 1
are positive numbers. This gives that Z

1s divergent and moreover that Z

is

n22 P(n) n22 Pa (n)

divergent for all a<l.

Theorem 2. The series Z

n22

is divergent for all a>1.

Proof The proof studies two cases.

Casel.azl.
2

In this case, the proof is made by using the divergence of Z S"( )
n22 n

Denote A= { = 2,_n 1 SG) = P(i)} and B= { =2.n | S@G) > P(i)} a partition of the set

{’ = l,_n } We start from the following simple transformation

z 1 1] & S°(i) - P° (i)
Z1"“(1) z:S"() g[l"’(i) S"(i)}_zS"(ifZP"(i)-S"(i)'

i=2 i=2 i€B

An i € Bsatisfies S°(i) - P°(i) 21 and P(i) < S(i) < n thus, (10) becomes

= 1 <
3 R T T Syt B

i=2 =2 g N (I) n- °
. 1 . . . . .
The series Z is divergent because the series Z Is divergent
P*(n) §%(n)
n22 n22
l B l n.e—(ﬁi»a,)-vlnn'hlnn 1
lim = lim = lim =0
N nZAa no® n2~a n—s® n2-a-l . e( 2+a,)vinninlnn

Case2.%>a>l.

The first case gives that the series Z
n22 Pz(n)

1s divergent.
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! n n

Based on P2(n)> P%(n), the inequality ! > ! is found. Thus, the series
ay- 1
=0 = e

n22

1
Z 1s divergent. .
S%(n)

The technique that has been applied to the proof of Theorem 2 can be used in the both ways.
Theorem 2 started from a property of the Smarandache function and found a property of the Erdos

i In S@)
function. Opposite, Finch [1999] found the property lim = i A based on the similar
n—>0 n
Z": In P(i)
property lim = i A, where A=0.6243299 is the Golomb-Dickman constant. Obviously,

n—»o

many other properties can be proved using this technique. Moreover, Equations (5-6) gives a very
interesting fact - ""the Smarandache and Erdos function may have the same behavior on the

convergence problems."
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An experimental evidence on the validity of third Smarandache conjecture on
primes

Felice Russo
Micron Techmology laly
Avezzano (g lialy

Abstract

In this note we report the results regarding the check ot the third Smarandache conjecture on
primes [11.[2] for p <2% and 2<k<10. In the range analvsed the conjecture 1s true.
n

Moreover. according to experimental data obtained. it seems likelv that the conjecture is true for
all primes and for all positive values of k..

Introduction

In [1] and [2] the following function has been detined:
1 1
C(n,k)=p_ .,k —p,k

where p,, is the n-th prime and k is a positive integer. Moreover in the above mentioned papers
the following conjecture has been formulated bv F. Smarandache:

C(n,k) <% for k>2

This conjecture is the generalization of the Andrica conjecture (k=2) [3] that has not vet been
proven This third Smarandache conjecture has been tested for p <2%°  2<k <10 and in this
n

note the result of this search i1s reported. The computer code has been written utilizing the Ubasic
software package.
Experimental Results

In the following ¢raph the Smarandache tuncuon for k=4 and n<1000 is reported. As we can see
the value of C(k.n) is modulated by the prime’s gap indicated by d, = p,., - D,
We call this graph the Smarandache “comet™.
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!
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In the following table, instead. we report:

e the largest value Max_C(n.k) of Smarandache function for 2<k<10and p < 2%
n

e the difference A(k)between 2/k and Max_C(n.k)

e the value of p, that maximize C(n.k)

o the value of 2/k

k 2 3 4 5 6 7 8 9 10
Max C( n.k) 0.67087 0.31105 0.19458 0.13962 0.10821 0.08857 0.07564 0.06598 0.05850
A 0.32913 0.35562 0.30542 0.26038 0.22512 0.19715 0.17436 0.15624 0.14150
7 7 7 7 7 3 3 3 3
Pn
2/k 1 0.666.. 0.5 04 0.333.. 0.2857.. 0.25 0.222.. 0.20

According to previous data the third Smarandache conjecture is verified in the range of k and p,

analvsed due to the fact that A is always positive.
Moreover since the Smarandache C(n.k) function falls asvmptotically as # increases it is likely

that the estimated maximum is valid also for p > 225
n
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We can also analyse the behaviour of difference A(k) versus the k parameter that in the
following graph is showed with white dots. We have estimated an interpolating function:

1
A(k) = 0.88'kT7—8— for k=2

with a veryv good R?value (see the continuous curve). This result reinforces the validity of the
third Smarandache conjecture since:

Ak) >0 fork—

A(k) vs & | y =0.8829x° 7

R® = 0.9904

0.40000
]

4
0.35000 3

(@]

0.30000
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[&]

0.20000 —

l 0.15000 _ i

J

0.10000

0.05000

' 0.00000 T - v T T

New Question

According to previous experimental data can we reformulate the third Smarandache conjecture
with a tighter limit as showed below?

2
C(n,k) < —
K o

where k>2 and aq, is the Smarandache constant [4].[1].
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Some results about four Smarandache U-product sequences

Felice Russo
Micron Technology Italy
Avezzano (Aq) — Italy

Abstract

In this paper four Smarandache product sequences have been studied: Smarandache Square
product sequence, Smarandache Cubic product sequence, Smarandache Factonal product
sequence and Smarandache Palprime product sequence. In particular the number of primes, the
convergence value for Smarandache Series, Smarandache Continued Fractions, Smarandache
Infinite product of the mentioned sequences has been calculated utilizing the Ubasic software
package. Moreover for the first time the notion of Smarandache Continued Radicals has been
introduced. One conjecture about the number of primes contained in these sequences and new
questions are posed too.

Introduction

In [1] Iacobescu describes the so called Smarandache U-product sequence.
Let u, n=>1, be a positive integer sequence. Then a U-sequence is defined as follows:

Up =1-l—u1 Uy .. Up

In this paper differently from [1], we will call this sequence a U-sequence of the first kind
because we will introduce for the first time a U-sequence of the second kind defined as follows:

Uy = l-u1 U, el

In this paper we will discuss about the “Square product”, “Cubic product”, “Factorial product”
and “Primorial product” sequences. In particular we will analyze the question posed by
Jacobescu in [1] on the number of primes contained in those sequences. We will also analyze the
convergence values of the Smarandache Series [2], Infinite product [3], Simple Continued
Fractions [4] of the four sequences. Moreover for the first time we will introduce the notion of
Smarandache Continued Radicals and we will analyse the convergence of sequences reported

above.
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Sequences details

o Smarandache square product sequence of the first and second kind.

In this case the sequence U 1s given by:

1,4.9, 16, 25, 36, 49, 64, 81, 100, 121, 144

that is the square of n. The first 20 terms of the sequence U, (1< n <20) both the first and

second kind are reported in the table below:

Smarandache Square product sequence (first kind)

Smarandache Square product sequence (second kind)

2 0

5] 3

37 35

577 373

14401 14399

518401 518399

25401601 25401599
1625702401 1625702399
131681894401 131681894399
13168189440001 13168189439999
1593350922240001 1593350922239999
229442532802560001 229442532802559999

38775788043632640001

38775788043632639999

7600054456551997440001

7600054456551997439999

1710012252724199424000001

1710012252724199423999999

437763136697395052544000001

437763136697395052543999999

126513546505547170185216000001

126513546305547170185215999999

40990389067797283 140009934000001

40990389067797283140009983999999

14797530453474819213543604224000001

147975304353474819213543604223999999

5919012181389927685417441689600000001

5919012181389927685417441689599999999

0 Smarandache cubic product sequence of the first and second kind.

In this case the sequence U, 1s given by:

1,8,27, 64, 125,216, 343,512,729, 1000, 1331, 1728......

that is the cube of n. Here the first 17 terms for the sequence U, of the first and second kind.
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Smarandache Cubic product sequence (first kind)

Smarandache Cubic product sequence (second kind)

B

9 7

217 215

13825 13823

1728001 1727999

373248001 373247999
128024064001 1280240632999
65548320768001 65548320767999
47784725839872001 47784725839871999

47784725839872000001

47784725839871999999

63601470092869632000001

63601470092869631999999

109903340320478724096000001

109903340320478724095999999

241457638684091756838912000001

241457638684091756838911999999

662359760549147780765974528000001

662559760549147780765974527999999

2236139191853373760085164032000000001

2236139191853373760085164031999999999

0139226129831418921308831875072000000001

9159226129831418921308831875071999999999

44999277975861761160390291002228736000000001

44999277975861761160390291002228735999999999

o Smarandache factorial product sequence of the first and second kind.

In this case the sequence U, 1s given by:

1,2,6, 24. 120, 720. 5040, 40320, 362880.....

that is the factorial of n. The first 13 terms of the U, sequence of the first and second kind

follow.

Smarandache Factorial product sequence (first kind)

Smarandache Factonal product sequence (second kind)

2

0

3 1

13 11

289 287

34561 345359

24883201 24883199
125411328001 125411327999
5056584744960001 5056584744959999

1834933472251 084800001

1834933472251084799999

6658606584104736522240000001

6638606584104736522239999999

2637902672963919468 10949632000000001

26579026729639 194681094963 1999999999

127313963299399416749559771247411200000000001

127313963299399416749559771247411199999999999

79278669759579679560737708640087 1 288532960000000000G0 1

792786697595796795607377086400871388532959999999999999
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o Smarandache primorial product sequence of the first and second kind.

In this case the sequence U, is given by:

2,3, 5, 7,11,101, 121,131, 151, 181, 191, 313, 353, 353, 373......

that is the sequence of palindromic primes. Below the first 17 terms of the U, sequence of the

first and second kind.

Smarandache Palprime product sequence (first kind)

Smarandache Palprime product sequence (second kind)

3 1

7 3

31 29

211 209

2311 2309

233311 233309

28230511 28230509
3698196811 3698196809
558427718311 558427718309
101075417014111 101075417014109
19305404649695011 19305404649695009
60423591655354538131 6042591655354538129

2133034854340151959891

2133034854340151959889

795622000668876681038971

795622000668876681038969

304723226256179768837925511

304723226256179768837925509

221533785488242691945171845771

221533785488242691945171845769

167701075614599717802493087247891

167701075614599717802495087247889

Results

For all above sequences the following gestions have been studied:

How many terms are prime?
Is the Smarandache Series convergent?

RSN

Is the Smarandache Infinite product convergent?
Is the Smarandache Simple Continued Fractions convergent?
Is the Smarandache Continued Radicals convergent?

For this purpose the software package Ubasic Rev. 9 has been utilized. In particular for the item
n. 1, a strong pseudoprime test code has been written [5]. Moreover, as already mentioned
above, the item 35 has been introduced for the first time; a Smarandache Continued Radicals 1s
defined as follows:
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where a(n) is the nth term of a Smarandache sequence. Here below a summary table of the

obtained results:

# Primes SS cv SIP cv SSCF _cv SCR cv
Square 1* kind 12:456=0.026 | 0.7288315379..... 0 2.1989247812.... 2.3666079803....
Square 2™ kind 1/463=0.0021 ] o0 0.3301888340.... 1.8143775546....
Cubic 1* kind @ 0.6137923201..... 0 2.11105342477.... 2.6904214681.. ..
Cubic 2" kind @ o) 0 0.1427622842.... 2.2446613806. ...
Factorial 1% kind 3/70=0.071 0.91374335924 ... 0 2.3250021620.... 2.2332152218....
Factorial 2" kind 2/66=0.033 0 o 0.9166908363.... 1.6117607295. ...
Palprime 1* kind 10/363=0.027 | 0.5136249121.. 0 3.1422019345. .. 2.593206087S....
Palprime 2™ kind 9:363=0.024 1.2397048573.. 0 1.1986303614.. .. 2.1032632883....
Legend:

# primes (Number of primes/number of sequence terms checked)

SS cv (Smarandache Senes convergence value)

SIP cv  (Smarandache Infinite Product convergence value)

SSCF_cv (Smarandache Simple Continued Fractions convergence value)

SCR cv (Smarandache Continued Radicals convergence value)

@ (This sequence contain only one prime as proved by M. Le and K. Wu [6] )

About the items 2.3,4 and 5 according to these results the answer is: yes, all the analyzed
sequences converge except the Smarandache Series and the Smarandache Infinite product for the
square product (2" kind). cubic product (2™ kind) and factorial product (2" kind). In particular
notice the nice result obtained with the convergence of Smarandache Simple Continued Fractions
of Smarandache palprime product sequence of the first kind.

The value of convergence is roughly T with the first two decimal digits correct.

T=3+

7+

31+

211+

2311
* 1

233311+ ——m———
28230511 +---

Analogously for the cubic product sequence of the second kind the simple continued fraction
converge roughly to 7-3, while for the factorial product sequence of the second kind the
continued radical converge roughly (two first decimal digits correct) to the golden ratio @, that

182
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t=3+|0+
7+

215+

13823 +

1727999 +

373247999 +---

¢=\/0+\/1+\/11+\/£7+ 34559 +---

About the item 1, the following table reports the values of n in the sequence that generate a
strong pseudoprime number and its digit’s number.

n d
Square 1* kind 1/2/3/4/5/9/10/11/1324/65/76 171/2/3/5/12/14/16/20/48/182:223
Square 2™ kind 2 1
Cubic 1™ kind ] 1
Cubic 2™ kind 2 1
Factorial 1* kind 1/2/3/7/14 1/1/2/125/65
Factroial 2™ kind 317 2/12..
Palprime 1* kind 1/2/3/4/5/7/10/19/57:234 1/1:2/3/4/8/15/39/198/1208
Palprime 2™ kind 2/3/4/53/7/10/19/57/234 1/2/3/4/8/15/39/198/1208

Please note that the primes in the sequence of palprime of the first and second kind generate
pairs of twin primes. The first ones follow:

(3.3)(5.7)(29.31) (209,211) (2309,2311) (28230509,28230511) (101075417014109,101075417014111) ........

Due to the fact that the percentage of primes found is very small and that according to Prime
Number Theorem, the probability that a randomly chosen number of size n is prime decreases as
1/d (where d is the number of digits of n) we are enough confident to pose the following
conjecture:

e The number of primes contained in the Smarandache Square product sequence (1 * and

2" kind), Smarandache Factorial product sequence ( ¥ and 2" kind) and Smarandache
Palprime product sequence (1" and 2" Y kind) is finite.
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New Questions

Is there any Smarandache sequence whose SS, SIP, SSCF and SCR converge to some
known mathematical constants?

Are all the estimated convergence values irrational or trascendental?

[s there for each prime inside the Smarandache Palprime product sequence of the second kind
the correspondent twin prime in the Smarandache Palprime product sequence of the first
kind?

Are there any two Smarandache sequences a(n) and b(n) whose Smarandache Infinite
Product ratio converge to some value k different from zero?

1
ImT—

n a(n) N

lim k

n— w© 1

n b(n)

Is there any Smarandache sequence a(n) such that:

1

a(n) -
n—x0

For the four sequences of first kind a(n), study:
a(n)
lim 2
' RG@()

where R(a(n)) is the reverse of a(n). (For example if a(n)=17 then R(a(n))=71 and so on).

48



References

[1] F. lacobescu, Smarandache partition type and other sequences, Bull. Pure Appl. Sci. Sec. E
16(1997), No. 2, 237-240.

[2] C. Ashbacher, Smarandache Series convergence, to appear

[3] See http://www.gallup.unm.edw/~smarandache/product .txt

[4] C. Zhong, On Smarandache Continued fractions, Smarandache Notions J ournal, Vol. 9, No.
1-2, 1998, 40-42

[5] D.M. Bressoud, Factorization and primality testing, Springer Verlag, 1989, p. 77

[6] M. Le and K. Wu , The primes in the Smarandache Power product Sequence, Smarandache
Notions Journal, Vol. 9, No. 1-2, 1998, 97-97 :

49



On an unsolved question about the Smarandache Square-Partial-Digital
Subsequence

Felice Russo
Micron Technology ltalv
Avezzano (Aq) — ltalv

Abstract

In this note we report the solution of an unsolved question on Smarandache Square-Partial-Digital Subsequence.
We have found it by extesive computer search.
Some new questions about palindromic numbers and prime numbers in SSPDS are posed too.

Introduction

The Smarandache Square-Partial-Digital Subsequence (SSPDS) is the sequence of square integers which admits a
partition for which each segment 1s a square ateger [11.[21.[3].

The first terms of the sequence follow:

49, 144, 169. 361, 441, 1225, 1369. 1444, 1681, 1936, 3249, 4225, 4900, 11449, 12544, 14641, 15625, 16900 ...
or

7.12,13.19,21,35,37,38, 41.44, 57, 65,70, 107. 112,121, 125, 130, 190. 191, 204, 205, 209. 212, 223, 233 ...

A3

reporting the value of n”2 that can be partitioned into two or more numbers that are also squares (A0486353) [3].
Differently from the sequences reported in {1], [2] and [3] the proposed ones don't contain terms that admit 0 as
partition. In fact as reported in [4] we don’t consider the number zero a perfect square.

So, for example, the term 256036 and the term 506 respectively, are not reported in the above sequences because the
partion 256/0/36 contains the numoer zero.

L. Widmer explored some properties of S SPDS’s and posed the following question [2]:

[s there a sequence of three or more consecutive integers whose squares are tn SPDS?

This note gives an answer to this question.

Results
A computer code has been written in Ubasic Rev. 9.

After about three week of work only a solution for three consecutive integers has been found. Those consecutive
integers are: 122235, 12226,12227.
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. n - n"2 Partition
12225 149450625 1.4,9.4.50625
12226 149475076 1.4.9,4,75076
12227 149499529 1.4,9.4.9.9,529

No other three consecutive integers or more have been found for terms in SSPDS up to about 3.3E+9. Below a graph
of distance dn between the terms of sequence A048653 versus n is given; in particular dn=a(n~1)-a(n) where n is
the n-th term of the sequence.

dn=a(n+1)-a(n)vs n

“Jr LA

1 32 63 94 125156 187 218 249 280 311 342 373 404 435

n

According to the previous results we are enough confident to offer the following conjecture:

o There are no four consecutive integers whose squares are in SSPDS.

New Questions
Starting with the sequence (A048646). reported above, the following sequence can be created [5] (A048633):
7,13, 19, 37. 41, 107, 191, 223. 379, 487, 1093, 1201, 1301, 1907, 3019, 3371. 5081, 9041, 9721, 9907......

y Lo

that we can call * Smarandache Prime-Square-Partial-Digital-Subsequence ” because all the squares of these primes
can be partitioned into two or more numbers that are also squares.

By looking this sequence the following questions can be posed:

1. Are there other palindromic primes in this sequence beyond the palprime I 91?

2. Isthere at least one plandromic prime in this sequence which square is a palindromic square?

3. Are there in this sequence other two or more consecutive primes beyond 37 and 41?
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If we look now at the terms of the sequence A048633 we discover that two of them are very interesting:
121 and 212

Both numbers are palindromes and their squares are in SSPDS and palindromes too. In fact 1217°2=14641 can be
partitioned as: 1,4.64,4 and 21272=44944 can be partitioned in five squares that are also palindromes: 4.4, 9, 4. 4.
These are the only terms found by our computer search. So the following question arises:

1. How many other SSPDS palindromes do exist ?

References

{11 Sylvester Smith, "A Set of Conjectures on Smarandache Sequences”, Bulletin of Pure and Applied Sciences.
(Bombay, India), Vol. 15 E (No. 1). 1996, pp. 101-107.

{2] L.Widmer, Construction of Elements of the Smarandache Square-Partial-Digital Sequence. Smarandache

Notions Journal, Vol. 8, No. 1-2-3, 1997, 145-146.

[3] C. Dumitrescu and V. Seleacu, Some notions and questions in Number Theory, Erhus University Press,
Glendale. Arizona, 1994

4] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press 1999, p. 1708

5} N. Sloane. On-line Encyclopedia of Integer Sequences. http://www research.att.com/~njas/sequences

(
[

52



On A Conjecture By Russo

Charles Ashbacher
Charles Ashbacher Technologies
Hiawatha, lowa USA
e-mail 71603.522@compuserve.com

The Smarandache Square-Partial-Digital Subsequence(SSPDS) is the sequence of square integers which
can be partitioned so that each element of the partition is a perfect square[1][2][3]. For example, 3249 is in
SSPDS since 3249 can be partitioned into 324 = 187 and 9 = 3%
The first terms of the sequence are:
49, 144, 169, 361, 441, 1225, 1369, 1444, 1681, 1936, 3249, 4225, 4900, 11449, 12544, 14641, ...
where the square roots are
7,12, 13,19, 21, 35, 37, 38, 41, 44, 57, 65, 70, 107, 112, 121, ...
this sequence is assigned the identification code A048653[4].
L. Widmer examined this sequence and posed the following question[2]:

Is there a sequence of three or more consecutive integers whose squares are in SPDS?
For the purposes of this examination, we will assume that 0 is not a perfect square. For example, the
number 90 will not be considered as a number that can be partitioned into two perfect squares.
Furthermore, elements of the partition are not allowed to have leading zeros. For example, 101 cannot be

partitioned into perfect squares.

Russo[5] considered this question and concluded that the only additional solution to the Widmer question
up to 3.3E+9 was

2

n n Partition
12225 149450625 1,4,9,4,50625
12226 149475076 1,4,9,4,75076
12227 149499529 1,4,9,4,9,9,529

and made the following conjecture:
There are no four consecutive integers whose squares are in SSPDS.

The purpose of this short paper is to present several additional solutions to the Widmer question as well as a
counterexample to the Russo conjecture.

A computer program was written in the language Delphi Ver. 4 and run for all numbers n, where
n < 100,000,000 and the following ten additional solutions were found

2

n n Partition
376779 141962414841 1,4,1,9,6241,4, 841
376780 141963168400 1, 4, 196, 3168400
376781 141963921961 1,4, 196392196,1
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n
974379
974380
974381

n

999055
999056
999057

n
999056
999057
999058

n

2000341
2000342
2000343

n

2063955
2063956
2063957

n

2083941
2083942
2083943

n
4700204
4700205
4700206

n

5500374
5500375
5500376

n

80001024
80001025
80001026

nZ

949414435641
949416384400
949418333161
n?
998110893025
998112891136
998114889249

By

n
998112891136
998114889249
998116887364

n2

4001364116281
4001368116964
4001372117649

1'12

4259910242025
4259914369936
4259918497849

n2

4342810091481
4342814259364
4342818427249

nZ

22091917641616
22091927042025
22091936442436

n2

30254114139876
30254125140625
30254136141376

n
6400163841048576
6400164001050625
6400164161052676

54

Partition
9.4,9,4,1,4,4356,4, 1
9,4,9,4,16,384400
9,4,9 4, 1833316, 1

Partition
9,9, 81, 1089, 3025
9,9,81,1,289,1,1,36
9.9, 81,1, 4, 889249

> 7

Partition
9,9,81,1,289,1,1,36
9,9, 81, 1, 4, 889249
9,9, 81,16, 887364

s 7

Partition
400, 1, 36, 4, 116281
400, 1, 36, 81, 16,9, 64
400,1,3721, 17649

Partition
4,25,9,9, 1024, 2025
4,25,9,9,1,4,36,9,9,36
4,25,9,9,1849,784,9

> LI I ]

Partition
43428100, 9, 1,4, 81
434281, 4, 25,9, 36,4
434281, 842724, 9

Partition
2209,1,9, 1764, 16, 16
2209, 1, 9, 2704, 2025
2209, 1, 9, 36, 4, 42436

Partition
3025, 4, 1,1, 4, 139876
3025, 4, 1, 25, 140625
3025, 4, 1,36, 141376
Partition

6400, 16384, 1048576
6400, 1, 6400, 1050625
6400, 1, 64, 16, 1052676



n n’ Partition

92000649 8464119416421201 8464,1,1,9,4,16,421201
92000650 8464119600422500 8464, 1, 19600, 4, 22500
92000651 8464119784423801 8464, 1,1, 9, 784, 423801

Pay particular attention to the four consecutive numbers 999055, 999056, 999057 and 999058. These four
numbers are a counterexample to the conjecture by Russo.

Given the frequency of three consecutive integers whose squares are in SSPDS, the following conjecture is
made:

There are an infinite number of three consecutive integer sequences whose squares are in SSPDS.
In terms of larger sequences, the following conjecture also appears to be a safe one:

There is an upper limit to the length of consecutive integer sequences whose squares are in SSPDS.
We close with an unsolved question:

What is the length of the largest sequence of consecutive integers whose squares are in SSPDS?
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A functional recurrence to obtain the prime numbers using the
Smarandache prime function.
Sebastian Martin Ruiz. Avda de Regla, 43. Chipiona 11550Cadiz Spain.

Theorem: We are considering the function:

Forn =22, integer:

ot L A e J
=t Yo =LY )

one has: pin =F(px) forall k>1 where {p:},,, are the prime numbers and E(x)
1s the greatest integer less than or equal to x.

Observe that the knowledge of pi.1 only depends on knowledge of p« and the
knowledge of the fore primes is unnecessary.

Observe that this is a functional recurrence strictly closed too.
Proof:
Suppose that we have found a function G(i) with the following property:

~ _ | 1 if iis compound
G(I)_{ 0 if iisprime
This function is called Smarandache Prime Function (Reference)

Consider the following product:

I1 G

=p, pt+1

If pr<m<pen HIG(i)=1 since i:px+1<i<mare all compounds.

=pit
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If m>pien H G()=0 since the G(pw:)=0 factor is in the product.

r—p k+

Here is the sum:

2pg m m Pi-1-1
2 Il Gm= S G(i) + 31 Giy= X 1=
m=pi+1 =py+1 m=petl =pp+l M=pi.y =pptl m=p;+1

=Pl — 1 =@+ 1)+ 1 =ppe1 —pr—1

The second sum 1is zero since all products have the factor
G(plﬁ»l) =0.

Therefore we have the following relation of recurrence:

2p; m

pm=pe+1+ X I1 GO

mp i+l =py+l

Let’s now see that we can find G(j) with the asked property.
Considerer:

O (e 1sijli o
ONEORECO R B VRS E RV
We shall deduce this later.

We deduce of this relation:
d(i) =§<EG) —E(’f‘—)) where d(i) is the number of divisors of i.

If iis prime d(i) = 2 therefore:

A2 ]
T d(i-1

If iis compound d(i)> 2 therefore:

&iy2 d(iy2
O<d(:>—1 <l= EJl: d(r)—l]
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Therefore we have obtained the function G() which 1s:

Sl )) |
Gli)=-F -=

PICOECHY J

122 integer

To finish the demonstration of the theorem it is necessary to prove (1)

If j=1 jli E()-E(2)=i-¢-1=1

If j>1

i=jE(;)+r 0<r<j
i-1=jE(5H)+s 0<s<)

If jli=r=0=jEQG)=jE(-)+s+1= Js-ﬁli }:j=s+l
= JEG) =JE(5) +j = E() = E(5H) +1
If jri=r>0=20=jEG)~-EE)) +¢-)+1=j|r-s+1
Therefore r~s+1=0 or r—-s+1=j

If s#0=r-s<j-1=r-s+1=0=E(})=E("")

If s=0=/ | i_I:E(jL)=E(‘j—1+§)=—;L=E(i?L)

With this, the theorem 1s already proved.
Reference:

[1] E. Burton, “Smarandache Prime and Coprime Functions”,
http://www.gallup.unm.edw~smarandache/primfnct. txt
[2] F. Smarandache, “Collected Papers”, Vol. IT, 200 p., p. 137,
Kishinev University Press, Kishinev, 1997.
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The general term of the prime number sequence and the
Smarandache prime function.
Sebastian Martin Ruiz. Avda de Regla, 43 Chipiona 11550 Cadiz Spain.

Let 's consider the function 4(?) = number of divisors of the positive integer
number i. We have found the following expression for this function:

N_S LY _pf=L
d() _ElE(k) E(54)
We proved this expression in the article “A functional recurrence to obtain the

prime numbers using the Smarandache Prime Function™.

We deduce that the folowing function:

Gy =-E -7 ]
This function is called the Smarandache Prime Function (Reference)
It takes the next values:

0if i is prime
1 if i is compound

co-|

Let is consider now n(r) =number of prime numbers smaller or equal than n.
It is simple to prove that:

() = 21 - G()
Let 1s have too:

Ifl<k<p.-1 = E("‘n"’) =0
If Cozk2p, = E("‘,,’“):l
We will see what conditions have to carry Ca.

Therefore we have te following expression for p, n-th pnme number:
Cn 7£(k) \
pn=1+2.(1 -E(—n )
k=1

If we obtain C, that only depends on n, this expression will be the general term
of the prime numbers sequence, since = is in function with G and G does with
d(i) that is expressed in function with i too. Therefore the expression only
depends on n.

E[x]=The highest integer equal or less than n
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Let 1s consider C, = 2(E(nlogn)+1)
Since p, ~ nlogn from of a certain n, it will be true that

(1) pr<2(E(nlogn)+1)
If no it 1s not too big, we can prove that the inequality is true for smaller or equal

values than no.

It is necessary to that:
E[ (UE(nlogny+1)) ] -1
If we check the mmequality:

(2) n(2(E(nlogn)+1)) <2n
We will obtain that:

M) <2=>Ef@]sl ; Ca 2pn:>E[ﬁSL)]=l

We can experimentaly check this last inequality saying that it checks for a lot of
values and the difference tends to increase, wich makes to think that it is true for
all n

Therefore if we prove that the next inequalities are true:

(1) pn<2(E(nlogn)+1;
(2) n(2(E(nlogn)+1)) <2n

which seems to be very probable; we will have that the general term of the prime
numbers sequence 1s:

- - : -
4
[ D ) -EG- 12
wgo=t

J

Y el

2E(nlogn)+1) ]
pn=1+ 2 |1-E 7

k=1
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If now we consider the general term defined in the same way but for all real
number ereater than zero the following grafic is obtained:

25¢
20t
15¢

10¢

2 4 6 8 10
Let is observe that it 0<x<1 P(x)=1 si x=1 P(x)=2 and for n-1<x<n P(xX)=p=

Reference:
[1] E. Burton, “Smarandache Prime and Coprime Functions”
Http://www.gallup.unm.eduw/~Smarandache/pnmfnct. txt

[2] F. Smarandache, “Collected Papers”, Vol. II, 200 p.,p.137, Kishmev
University Press.
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Expressions of the Smarandache Coprime Function

Sebastian Martin Ruiz, Avda de Regla, 43 Chipiona, 11550 Cadiz, Spain

Smarandache Coprime Function is defined this way:

0 if ny,na, ---,n are coprime numbers
1 otherwise

Ck(nl,ng,~--,nk) = {

We see two expressions of the Smarandache Coprime Function for k=2.
EXPRESSION 1:

Cz(nl,nz =-F [—

nina — lem(ny, na)
nin»

E(z) = the biggest integer number smaller or equal than z.
If ny,ny are coprime numbers:

lem(ny,na) =niny = Ca(ny,na) = —F [ 0 ] =0

If ny,ny aren’t coprime numbers:

nyna — lem(ny, ny)

lem(n;,n2) <nna =20< <1=Ca(n,ny) =1

nin2
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EXPRESSION 2:

C 1 I 1d-a1
diny & |na
d>1 d>1

IHIlE+a)

d!nl dlﬂ}

Co(ny,na)=1-F

If ny,ny are coprime numbers then d #d’ Vd,d' # 1

I I td-a|
din; d|ns

d>1 d>1
=>0< <l:>C2(n1,n2):O

I+

d|n, din,

If ny,ny aren’t coprime numbers 3dd=d' d>1,d >1= Ca(ny,ny) =1
Smarandache coprime function for £ > 2.

1
-1
E[GCD(M,M,'“,TU:) ]

Ck(nlynzy"‘ynk) = =
If ny,na,---,ng are coprime numbers:
GCD(nl,ng,~--,nk) =1= Ck(nl,n2,~~,nk) =0

If ny,ny,---,ng aren’t coprime numbers: GCD(ny, ny, - - -, ng) > 1

1 1
0<WD‘<1=>—E[G—E—1J =1=Ck(n1,n2,~-,nk)

References:
1. E. Burton, "Smarandache Prime and Coprime Functions”

2. F. Smarandache, ”"Collected Papers”, Vol. 1II, 200 p..p. 137, Kishinev
University Press.
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NOTE ON THE DIOPHANTINE EQUATION 2z* -3y* =p

Mladen V. Vassilev - Missana and Krassimir T. Atanassov

The solving of the Diophantine equation

202 -3y =5 (1)

ie.,
227 -3y -5=0

was put as an open Problem 78 by F. Smarandache in [1]. Below this problem is solved
completely. Also, we consider here the Diophantive equation

?—6m? = -5, (2)
le.,
P—-6m?+5=0

and the Pellian equation
u? - 6v? = 1, (3)

1.e.,
W —6vi—1=0.

Here we use variables z and y only for equation (1) and [, m for equation (2).
We will need the following denotations and definitions:

N ={1,2,3,..};
if
Ft.w) =0

is an Diophantive equation, then:
(a;) we use the denotation < t,w > if and only if (or briefly: iff) t and w are integers which
satisfy this equation.
(a;) we use the denotation < t,w >€ N?iff t and w are positive integers;
K (t,w) denotes the set of all < ¢,w >;
K°(t,w) denotes the set of all < t,w > V7
K'(t,w) = K°(t,w) — {< 2,1 >}.

LEMMA 1: f <t,w > N? and < z,y >#< 2,1 >, then there exists < {,m >, such that
< I,m >€ N? and the equalities

z=!+3mandy=1[01+2m (4)

hold.
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LEMMA 2: Let < I,m >€ N2 If £ and y are given by (1), then z and y satisfy (4)
and < r,y >€ N2
We shall note that lemmas 1 and 2 show that the map ¢ : A°(I,m) — K'(z,y) given by
(4) i1s a bijection.

Proof of Lemma 1: Let < z,y >€ N? be chosen arbitrarily, but < z,y >#< 2,1 >.
Then y > 2 and z > y. Therefore,
I=y+m (3)

and m is a positive integer. Subtracting (3) into (1), we obtain
y:—dmy +5—-2m? = 0. (6)

Hence

y=yi2=2m+ V6m? - 5. -

For m =1 (7) yields only
y=1uy =3

indeed
l=y=y<2

contradicts to y 2> 2.
Let m > 1. Then

2m - vV6m?2 — 5 < 0.

Therefore y = y, is impossible again. Thus we always have
y=1uy =2m+ V6m? - 5. (8)

Hence

y—2m = V6m? - 3. 9

The left-hand side of (9) is a positive integer. Therefore, there exists a positive integer !

such that
6m? — 5 = 1%

Hence [ and m satisfy (2) and < I,m > N2
The equalities (4) hold because of (3) and (8). ¢

Proof of Lemma 2: Let < ,m >€ A% Then we check the equality
2(1 4+ 3m)? = 3(1 +2m)? =5,

under the assumption of validity of (2) and the lemma is proved. ¢
Theorem 108 a, Theorem 109 and Theorem 110 from [2] imply the following

THEOREM 1: There exist sets A;(l,m) snch that

K{l,m)C K({l,m) (¢:=1,2),
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Ki(l,m)n Ky(l,m) =90,

and K(I,m) admits the representation
K(l,m) = K{{l,m)U I3(l,m).

The fundamental solution of K;(l,m) is < —1,1 > and the fundamental solution of
Ka(l,m)is < 1,1 >.

Moreover, if < u,v > runs K'(u,v), then:
(by) < I,m > runs K;(I,m) iff the equality

I+mv6=(=1+ V6)(u+vV6) (10)

holds;
(by) < I,m > runs Ny(l,m) iff the equality

I+m\/€=(l+\/6)(u+v\/6) (11)

holds.
We must note that the fundamental solution of (3) is < 3,2 >. Let u, and v, be given
by
un +vaV6 = (5+2VB)" (n € N. (12)
Then u, and v, satisfy (11) and < u,,v, >€ A% Moreover, if n runs N, then < un, v, >
runs K°(u,v). '
Let the sets K?(I,m) (i = 1,2) are introduced by

Ke(l,m) = Ki(l,m) N A (13)
As a corollary from the above remark and Theorem 1 we obtain

THEOREM 2: The set K°(l,m) may be represented as

Ke(l,m) = K7 (I,m)U K3(l,m), (14)
where
K(l,m)Nn K3(I,m) = 0. (15)
Moreover:
(c1) If n runs A and the integers I, and m, are defined by
I, + maV6 = (=1 + VB)(5 +2V6)", (16)

then I, and m, satisfy (2) and < I, m, > runs K{(l,m);
(c2) If n runs A U {0} and the integers [, and m, are defined by

L + maV6 = (1 + VB)(5+2V6)*, (17)

then [, and m, satisfy (2) and < [,,m, > runs K3(l/,m).
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Let ¢ be the above mentioned bijection. The sets N°(z,y) (1 = 1,2) are introduced by
Ke*(z,y) = o(K7(1,m)). (18)

From Theorem 2, and especially from (14), (15), and (18) we obtain

THEOREM 3: The set A°(z,y) may have the representation
KN®(z,y) = K?(z,y) U K3(x,y), (19)

where
K3(z,y) 0 K3(z,y) = 0. (20)

Moreover:
(d;) If n runs NV and the integers 7, and y, are defined by

Tn =l +3m, and y,, = [, + 2m,,, (21)

where [, and m, are introduced by (16), then z, and 3, satisfy (1) and < z,,y, > runs

K3 (z,y);
(d;) If n runs M U {0} and the integers z, and y, are defined again by (21), but I, and m,
now are introduced by (17), then z, and y, satisfy (1) and < z,,y. > runs K3(z,y).
Theorem 3 completely solves F. Smarandache’s Problem 78 from [1}, because [, and m,
could be expressed in explicit form using (16) or (17) as well.

*
* *

Below we shall introduce a generalization of Smarandache’s problem 87 from [1].
If we have to consider the Diophantine equation

222 - 3y = p, (22

where p # 2 is a prime number, then using {2, Ch. VII, exercize 2] and the same method as
in the case of (1), we obtain the following result.
THEOREM 4: (1) The necessary and sufficient condition for the solvability of (22) is

p = 5(mod24) or p = 23(mod24) (23);

(2) If (23) is valid, then there exists exactly one solution < z,y >€ N?
of (22) such that the inequalities z < \/%.p;y < ,/%.p hold. Every
other solution < z,y >€ A2 of (22) has the form:

z=101+3m

y=1+2m,

where < [,m >€ A? is a solution of the Diophantine equation

P —6m?®=—p.
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The question how to solve the Diophantine equation, a special case of which is the above
one, is considered in Theorem 110 from [2].
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REMARK ON THE 62-th SMARANDACHE’S PROBLEM
Hristo Aladjov and Krassimir Atanassov

In [1] Florian Smarandache formulated 105 unsolved problems.

The 62-th problem is the following:
Let 1 £ ay < a; < ... be an infinite sequence of integers such that any three members do not
constitute an arithmetic progression. Is it truc that always

—_<2?
1 Gy

WV 1

n

In [2-4] some counterexamples are given.
Easily it can be seen that the set of numbers {1.2.4.3, 10} does not contain three numbers

which are members of an arithmetic progression. Ou the other hand
I 1 1 1 1 1
Tttt —==2—2>2
1727175707

Therefore, Smarandache’s problem is not true in the present form, because the sum of
the members of every one sequence with the above property and with first members 1, 2, 4,
5, 10 will be bigger than 2.

Some modifications of the above problem are discussed in [3,4].

We can construct the sequence which contains the minimal possible members, satisfying
the Smarandache’s property. The first 100 members of this sequence are:

1,2,4,5,10,11,13, 14, 28,29, 31, 32,37. 38, 40. 41, 82, 83, 85,86, 91,92, 94,95,109, 110,112,

113,118,119,121, 122,244, 245, 247, 243, 253. 254, 2536, 257,271, 272,274, 275, 280, 281, 283,
284, 325, 326, 328, 329, 334, 335, 337, 338, 352, 353, 335, 356, 361, 362, 364, 363, 730, 731, 733,
734,739,740,742,743,757,758, 760,761, 766. 767,769, 770,811, 812, 814, 815, 820, 821, 823,
824,838,839,841, 842,847, 848, 850, 851,973,974, 976,977
In another paper the properties of this sequence will be discussed in details. Some of
them are given in {3,4].

We must note that it was checked by a computer that the sum of the first 18567 mem-
bers of the sequence (the 18567-th member is 4962316) is 3.00000013901583..., i.e. for this

sequence
1

T —>13
n>1 Qn
It can be easily seen that if the first member of the sequence satisfying the Smarandache’s
property is not 1, or if its second member is not 2. then

1
L —<3
n>1 iy

69



On the other hand, there are an infinite number of sequences for which

< L>2,

712 1 (Lh

because, for example, all sequences (their number is, obviously, infinite) generated by the
above one without only one of its members will satisfy the last inequality.

This number will be discussed in the next paper of ours, too.

Now we shall cite the following unsolved problem from [2]:
Given a sequence of integers «; < ay < ... < a, < ... where no three form an arithmetic
progression, is there any bound on the sum

v ! 2

n>1 iy,

From the above remark it follows that 3 is a bound of all sequences with the above
property without the first sequence shown above. Some properties of this bound also will be
discussed in the next paper of ours.
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The Integral Values of log _ S(n“)
k

Maohua Le

Abstract: Let k, n be distinct positive integers. In this paper, we prove that log , S(n") is never a positive
integer. k

Key words: Smarandache function, logarithm, integral value.

For any positive integer a, let S(a) denote the Smarandache function of a. In [2, Problem 22], Muller posed
the following problem:

Problem: Is it possible to find two distinct positive integers k and n such that log S(n") is a positive
integer? k

In this paper, we completely solve the above problem as follows:
Theorem: For any distinct positive integers k and n, log | S(n®) is never a positive integer.

k
Proof: If log | S(n*) is a positive integer, then we have k> 1,n> 1 and

k
(1) log S(n*) =m,
where n‘: is a positive integer. By (1), we get
(2) S(m*)=k".
By (1), we have
(3) S(n*) = S(@*'*n) < S(*") + S(m) <. .. kS(n).
Therefore, by (2) and (3), we get
C) K™ <kS(n) < kn.
Ifk > n> 1, then from (4) we obtain
® K <K <K™ <kn<k(k-1) <K
a contradiction. If n > k > 1, then we have
(6) "<k <k"™ <kn<(n-Dn.

It is impossible, since n > 3. Thus, the theorem is proved.
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On the Functional Equation S(n)*+ S(n) = kn
Rongi Chen and Maohua Le
Abstract
For any positive integer a, let S(a) denote the Smarandache function of a. In this paper, we prove that the
equation S(n)’+ S(n) = kn has infinitely many positive integer solutions for every positive integer k.
Moreover, the size of the number of solutions does not depend on the parity of k.
Key Words: Smarandache function, functional equation, number of solutions.

1. Introduction

Let N be the set of positive integers. For any positive integer a, let
() S(@=min {rireN,a|r }.

Then S(a) is called the Smarandache function of a. Let k be a fixed positive integer. In this paper we deal
with the equation

(2) S()*+S(m)=kn,neN.

For any positive integer x, let N(k,x) denote the number of solutions n with n < x, and let N(k) denote the
number of all solutions n of (2). A computer search showed that N(1, 10%) =23, N(2, 10%) = 33,

N(3, 10%) = 20, N(4,10*) = 24, N(5,10*) = 11 and N(6, 10*) = 26. In [1] Ashbacher posed the following
questions:

Question 1: IsN(k)=x fork=1,2,3,4,5or6?

Question 2: Is there a positive integer k for which N(k) = 0?

Question 3: s there a largest positive integer for which N(k) > 0?
Question 4: s there more solutions n when k is even than when k is odd?

In this paper, we completely solve the above-mentioned questions. In fact, we prove a general result as
follows:

Theorem: The positive integer n is a solution of (2) if and only one of the following conditions is satisfied.
(1) n=1fork=2.
(ii) n=4 fork=5.
(iii) n = p(p+1) for k = 1, where p is a prime with p > 3.
(iv) n =p(p+1)/k for k > 1, where p is a prime with p = -1(mod k).

Corollary 1: As x = x, we have

oV
Nk,x)~* 09 /(w(k)log(kx)) -
Corollary 2: For any positive integers k, and k,, we have

Nk)  oks)
S V (ks
N(ks) o(ky)
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By our results, we observe that (2) has infinitely many solutions n for every positive integer k. Moreover,
the size of N(k,x) does not depend on the parity of k.

2. Preliminaries
Lemma 1: For any positive integers u and v, we have S(u) < S(uv).

Proof: Let a = S(u) and b = S(uv). By (1), a and b are least positive integers satisfying u | a! and uv | b!
respectively. So we have a < b. The lemma is proved.

Lemma 2: For any positive integer u with u > 1, there exists a prime factor d such that d | S(u).

Proof: Let u=p,"p,° ... pi* be the prime factorization of u. Then, by [2], we have
S(w) = max ( S(p:"), S(p2), - . S(B:*) )

and pll S(pi“) for i= 1, 2,3, ...k This proves the lemma.
Lemma 3: For any positive integer u, we have

=y, ifu=1, 4 or p, where p is a prime.
S(u)

< w?2, otherwise.
Proof: See [4].
Lemma 4: For any coprime positive integers, u and v, we have S(uv) = max (S(u), S(v) ).
Proof: Let a = S(u), b = S(v) and ¢ = S(uv). By (1), a, b and c are least positive integers satisfying u | a!,
v | b! and uv | c! respectively. This implies that ¢ > max(a,b).
Ifa 2 b, then we have u| a! and v | a!. Since ged(u,v) = 1, we get uv | a!. So we have a = c. This implies that
¢ = a = max(a,b). By the same method, we can prove that if a < b, then ¢ = b = max (a,b). The lemma is

proved.

Lemma S: For any positive number x, let [1(x) denote the number of primes p with p < x. As x — =, we
have II(x) ~ x/logx.

Proof: See [3].
Lemma 6: Let 2,b be integers satisfying a > land gcd(a,b) = 1. For any positive number x, let I1(x;a,b)
denote the number of primes p such that p < x and p = b(mod a). As x — =, we have
I1(x;a,b) ~ x/p(a)logx, where @(a) is the Euler function of a.
Proof: See [5].
3. Proofs

Proof of Theorem: Clearly, if n satisfy (i) or (ii), then it is a solution of (2). If nn satisfy (iii), then
n = p(p+1), where p is a prime with p > 3. Since gcd(p,p+1) = 1, by Lemma 4, we get

&) S(n) = S(p(p+1)) = max(S(p),S(p~1)).
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Further, since p+1 2 6 is not a prime, by Lemma 3, we get S(p+1) < (p+1)/2 < p. Hence, we see from (5)
that S(n) = S(p) = p. It implies that S(n)’+ S(n) = p’ +p=nandn is a solution of (2) for k= 1. By the
same method, we can prove that if n satisfy the condition (iv), then it is a solution of (2) for k > 1. Thus, the
sufficient condition of our theorem is proved.

We now prove the necessary condition. Let n be a solution of (2), and let t = S(n). We get from (2) that

6) t(t+1) = kn.

Ifn=1o0r4,thent=1or4, and n is a solution of (2) for k =2 or 5. From below, we may assume that
n = | or4. Since ged(t,t+1) = 1, by Lemma 4, we get from (6) that

N S(kn) = S(t(t+1)) = max(S(1),S(t+1)).

If S(1) < S(t+1), then from (7) we get

(8) S(kn) = S(t+1).

By Lemma 1, we have S(kn) > S(n) = t. Hence, by (8) we obtain
©) S(t+1) 2 t.

Since n = 1 or 4, by Lemma 3, we see from (9) that either t =3 or t = p-1, where p is a prime. Whent =3,
we get n =3 or 6. Then n satisfies the condition (iv). When t = p-1, we have S(n) = p-1 and

(10) S(kn) = p,

by (8). Since p is a prime, by Lemma 2, we see from (10) that p | kn. If p | k, then k/p is a positive integer
andt=p -1 =kn/p by (6). However, by Lemmas | and 3, it implies that

p-1>S(p-1)=Skn/p)2S(n)=t=p- 1, a contradiction.
If S(t) > S(t+1), then from (17) we get
(11) S(kn) = S(t).

Since S(kn) = S(n) =t, by Lemmas | and 3, we see from (11) that S(t) =t. Since n = 1 or 4, by Lemma 4,
we get t = p, where p is a prime. Hence, by (6), we obtain

(12) p(p+1) =kn.
Further, since S(n) = p, by Lemma 2, we have p | n and n/p is a positive integer. Then, by (12) we get

= -1(mod k). Furthermore, since n # 4, we get from (12) that p > 3, for k = 1. This implies that n satisfies
the condition (iii) of (iv). Thus, the theorem is proved.

Proof of Corollaries 1 and 2. Let I1(x) and I[1(x;a,b) be defined as in Lemmas 5 and 6 respectively. By
Theorem, we have
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(v (x+%) -%)-2, ifk=1,

n(vex+ ) - %), ifk=2,
N(k,x) =
I(V(5x + ) - % 5,-1) + 1, ifk=5,

(Voo + ) - ¥ k1), otherwise.
Therefore, by Lemmas 5 and 6, we get the corollaries immediately.
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On The Functional Equation Z(n) + ¢(n) = d(n)
Zhong Li and Maohua Le
Abstract: For any positive integer n, let d(n), ¢(n) and Z(n) denote the divisor function, the Euler function
and the pseudo-Smarandache function of n respectively. In this paper, we prove that the functional equation
Z(n) + @(n) = d(n) has no solution n.
Key words: divisor function, Euler function, pseudo-Smarandache function.
Let N be the set of all positive integers. For any positive integer n, let

M dm= 21,
din

@ om= 2 1,
1<m<n
ged(m,n)=1

a

3) Z(n)= min { ajaeN,n| 2 j }.
=1

Then d(n), ¢(n) and Z(n) are called the divisor function, the Euler function and the Pseudo-Smarandache
function of n respectively. In {1], Ashbacher posed the following unsolved question:

Question: How many solutions n are there to the functional equation
4) Zm)+op(n)=d(n), ne N?
In this paper, we completely solve the above-mentioned question as follows:
Theorem: The equation Z(n) + ¢(n) = d(n), n € N has no solution.

Proof: Let n be a solution of (4). A computer search showed that (4) has no solution with n < 10000 (see
[1])- So we have n > 10000. Let

(5) n=p"p%. .. p*

be the prime factorization of n. By {2, theorems 62 and 273), we see from (1), (2) and (5) that

©) dm)= @+ 1+ 1) .. e+ 1)
k
%) om =n 11 (1-1/p)

i=1

On the other hand, it is a well-known fact that
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(8) n| %2 Z(m)}Z(n)+ 1)
(see {1]). From (8) we get
Zmy 2V @n+Y%-4),

Therefore, by (4), (5), (6), (7) and (9), we obtain

(10) 1> f(n)+g(n)
where
k
(1) f(n) = H (1 - Upy) (p/(r+1)),
=1 ) )
(12) g(n) = \/ 2 IT o “at1yy -2 1T v+ 1)

i=1 i=1
Clearly, we see from (12) that g(n) > 0 for any positive integer n with n > 1. Hence, we get from (10) that
(13) flm) <1l
Ifk=1,thenn=p," and Z(n) > p," - 1 by (3). Hence, by (1) and (2), n is not a solution of (4). This
implies that k > 2.

[fk = 3, then py> 5 and f(n) 2 1, by (11). This contradicts with (13). So we have k =2. Then (11) can be
written as

(14) f(n) = (1 - Upy) (1 - Up)((p1" p2 Y/ ((r:+ 1)(r2+1))) -

If p, > 3, then from (14) we get f(n) > 1, a contradiction. Hence, we deduce that p, =2 and p, = 3. Then, by
(13) and (14), we obtain

(15) fln) = 2"3%YGr+ 1)+ 1) < 1.

From (15), we can calculate that (r;,r;) = (1,1) or (2,1). This implies that n < 12, a contradiction. Thus, (4)
has no solution n. The theorem is proved.
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SMARANDACHE RELATIONSHIPS AND SUBSEQUENCES*

M. Bencze
2212 Sacele, Grasov, Romania

ABSTRACT
Some Smarandache relationships between the terms of a given sequence
are studied in the first paragraph. In the second paragraph, are studied
Smarandache subsequences (whose terms have the same property as the
initial sequence). In the third paragraph are studied the Smarandache
magic squares and cubes of order n and some conjectures in number
theory.

Key Words: Smarandache p-q relationships, Smarandache p-q-<>-subsequence,
Smarandache type subsequences, Smarandache type partition, Smarandache
type definitions, Smarandache type conjectures in number theory.

1) Smarandache Relationships

Let { a,}, n > | be a sequence of numbers and p, q integers > 1. Then we say that the terms

Qa1 53k42 5o o5 Biap K8 kapri B kape2 5e - - Akipig
verify a Smarandache p-q relationship if

ak,l<>a,ﬁ2<>,,,<>ak4,p=ak4,wl <>akﬂ,‘2 <>,__<>ak+p+q

where "<>" may be any arithmetic or algebraic or analytic operation (generally a binary law on
{al’aZaa3)"'})'

If this relationship is verified for any k > 1 (i.e. by all terms of the
sequence), then

{ a, }, n21is called a Smarandache p-q-<> sequence

where "<" is replaced by "additive" if < = +, "multiplicative” if < = *, etc. [according to the operation
(<) used].

As a particular case, we can easily see that Fibonacci/Lucas sequence

(8 +ap1 =ag ),forn21

is a Smarandache 2-1 additive sequence.

A Tribonacci sequence (2, + 241 + @8- =ap.3 ), D21 is a Smarandache 3-1 additive sequence. Etc.
Now, if we consider the sequence of Smarandache numbers,

1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17, ...,
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i.e. for each n the smallest number S(n) such that S(n)! is divisible by n [See(1)] (the values of the
Smarandache Function), it raises the questions:

(a) How many quadruplets verify a Smarandache 2-2 additive relationship i.e.
S(n+1) + S(n+2) = S(n+3) + S(n+4)?
I found: S(6) +S(7)=S(8)+S(9),3+7=4+6;
S(7)+ S(8)=S(9) + S(10),7+4=6+35;
S(28) + 5(29) = S(30) + S(31),7+29 =5 +31.
But, what about others? I am not able to tell you if there exist a finite or infinite number (?)
(b) How many quadruplets verify a Smarandache 2-2-subtractive relationship, 1.e.
S(n+1) - S(n+2) = S(n+3) - S(n+4)?
Ifound: S(1)-S(2)=8(3)-S(4), 1-2=3-4
S(2)-S(3)=S(4)-5(5), 2-3=4-5;
S(49) - S(50) = S(51) - §(52), 14-10=17 - 13.
(c) How many sextuplets verify a Smarandache 3-3 additive relationship, i.e.
S(n+1) + S(n+2) + S(n+3) = S(n+4) + S(n+5) + S(n+6)?
I found: S(5) + S(6) +~ S(7) =S(8) + S(9) + S(10), 5+3 +T=4+6 +35.

I read that Charles Ashbacher has a computer program that calculates the Smarandache
Function's values, therefore he may be able to add more solutions to mine.

More generally:
If f, is a p-ary relation and g, is a g-ary relation, both of them defined on
{a;,a,a,...},then
Bip LAz 5 ---.Bip 5 &1 H82 5.8
verify a Smarandache f, - g, - relationship if
f, (@i J22 5---53ip) = 8 (@1 32 5 - -2 )-

If this relationship is verified by all terms of the sequence, then {a, },n 2 1 is called a
Smarandache f, -g, -sequence.

Study some Smarandache f, -g, - relationships for well-known sequences (perfect numbers, Ulam numbers,
abundant numbers, Catalan numbers, Cullen numbers, etc.).

For example: a Smarandache 2-2-additive, or subtractive, or multiplicative relationship, etc.

If f, is a p-ary relation on {a,3,,3;,...}and
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fp(ail a2 v""aip )=fp ajlr(ajZ ""yajp)

forall ay ,ay ,wherek=1,2,...,p,and forallp 21, then {a, },n21,is called a Smarandache perfect f

sequence.

If not all p-plets (a;; , a; ,...,a; )and (g .32 , .- -, ap ) verify the f; relation, or not for all p > 1, the

relation f, is verified, then {a, }, n2 1 is called a Smarandache partial perfect J-sequence.
An example: a Smarandache partial perfect additive sequence:
1,1,0,2,-1,1,1,3,-2,0,0,2,1,1,3,5,-4,-2,-1,1,-1,1,1,3,0,2, ...

This sequence has the property that

p 2p
Z a = Z aj,
i=1 j=p+1

forallp>1.
It is constructed in the following way:
a; =a, =1
pe1 Tap -1
Apry T3 t1
forallp>1.
(2) Can you, readers, find a general expression of a, (as function of n)?
[t is periodical, or convergent or bounded?
(b) Please design (invent) yourselves other Smarandache perfect (or partial perfect) sequences.
Think about a multiplicative sequence of this type.
2) Smarandache Subsequences
Let {a, }, n 2 | be a sequence defined by a property (or a relationship involving its terms) P.

Now, we screen this sequence, selecting only its terms those digits hold the property (or relationship
involving the digits) P.

The new sequence obtained is called:
(1) Smarandache P-digital subsequences.

For example:
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(a) Smarandache square-digital subsequence:
0,1,4,9,49, 100, 144, 400, 441, . ..

Le. from0, 1, 4,9, 16, 25, 36, ..., 0%, ... we choose only the terms whose digits are all perfect squares
(therefore only 0, 1, 4, and 9).

Disregarding the square numbers of the form NO . . . 0, where N is also a perfect
2k zeros

square, how many other numbers belong to this sequence?

(b) Smarandache cube-digital subsequence:

0, 1, 8, 1000, 8000, ...

ie. from0, 1, 8,27, 64, 125,216,...,1n°, ... we choose only the terms whose digits are all perfect cubes
(therefore only 0, 1 and 8).

Similar question, disregarding the cube numbers of the form M0 . . .0
3k zeros
where M is a perfect cube.
(¢c) Smarandache prime digital subsequence:
2,3,5,7,23,37,53,73, ...
i.e. the prime numbers whose digits are all primes.

Conjecture: this sequence is infinite.

In the same general conditions of a given sequence, we screen it selecting only its terms whose groups of
digits hold the property (or relationship involving the groups of digits) P.

[ A group of digits may contain one or more digits, but not the whole term.]
The new sequence obtained is called:

(2) Smarandache P-partial digital subsequence.

Similar examples:

(2) Smarandache square-partial-digital subsequence:

49, 100, 144, 169, 361, 400, 441, . ..

i.e. the square members that is to be partitioned into groups of digits which
are also perfect squares. (169 can be partitioned as 16 = 4% and 9 = 32, etc.)

Disregarding the square numbers of the form
NO . . . 0, where N is also a perfect square,

2k zeros
how many other numbers belong to this sequence?
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(b) Smarandache cube-partial digital subsequence:
1000, 8000, 10648, 27000, . . .
1.e. the cube numbers that can be partitioned into groups of digits which are also perfect cubes.
(10648 can be partitioned as 1 =1°,0=0°, 64 =4° and 8 =2°).
Same question: disregarding the cube numbers of the form:
MO . . . 0 whereMisalsoa perfect cube, how many other numbers belong
3k zeros
to this sequence?
(¢) Smarandache prime-partial digital subsequence:
23,37,53,73,113, 137,173, 193, 197, ...
i.e. prime numbers, that can be partitioned into groups of digits which are also prime,
(113 can be partitioned as 11 and 3, both primes).
Conjecture: this sequence is infinite.
(d) Smarandache Lucas-partial digital sunsequence

123, ...

i.e. the sum of the two first groups of digits is equal to the last group of digits, and the whole number
belongs to Lucas numbers:

2,1,3,4,7,11, 18,29,47,76,123, 199, . ..
(beginning at 2 and L(n+2) = L(n+1) + L(n), n 2 1) ( 123 is partitioned as 1,2 and 3,then3=2 + 1).
Is 123 the only Lucas number that verifies a Smarandache type partition?
Study some Smarandache P - (partial) - digital subsequences associated to:
- Fibonacci numbers (we were not able to find any Fibonacci number verifying a Smarandache type
partition, but we could not investigate large numbers; can you? Do you think none of them would

belong to a Smarandache F - partial-digital subsequence?

- Smith numbers, Eulerian numbers, Bernoulli numbers, Mock theta numbers, Smarandache type
sequences etc.

Remark: Some sequences may not be smarandachely partitioned (i.e. their associated Smarandache type
subsequences are empty).

If a sequence {a, }, n > 1 is defined by a, = f(n) ( a function of n), then a Smarandache f-digital

subsequence is obtained by screening the sequence and selecting only its terms that can be partitioned in
two groups of digits g, and g, such that g> = f{g; ).
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(3) Study similar questions for this case, which is more compiex.
An interesting law may be

la;,a;,...,a, )=@a, +a,-a; +~ a4 -as +~ ...
Smarandache prime conjecture:

Any odd number can be expressed as the sum of two primes minus a third prime (not including the trivial
solution p = p + q - q when the odd number is the prime itself).

For example:
1=3+5-7=5+7-11=7+11-17=11+13-24= ..
3=5+11-13=7+19-23=17+23-37=._.
5=3+13-11=...

T7=11+13-17=...

9=5+7-3=...

I=7+17-13=...

(a) Is this conjecture equivalent to Goldbach's conjecture (any odd number > 9 can be expressed as a sum
of three primes - finally solved by Vinogradov in 1937 for any odd number greater than ;3 '* )?

(b) The number of times each odd number can be expressed as a sum of two primes minus a third prime are
called Smarandache prime conjecture numbers. None of them are known!

(c) Write a computer program to check this conjecture for as many positive odd numbers as possible.

(2) There are infinitely many numbers that cannot be expressed as the difference between a cube and a
square (in absolute value).

They are called Smarandache bad numbers(!)

For example: 5, 6, 7, 10, 13, 14, . . . are probably such bad numbers (F. Smarandache has conjectured,
see[1]), while

1,2,3,4,8,9,11, 12, 15, ... are not, because

1=12% -37]
2=13 - 5%
3=11 -2
4=15 -11%)
8=1{1° -3%|
9=16" - 15%
11=]3 - 4%
12=113%-47%
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15=14> - 7%}, etc.

(a) Write a computer program to get as many non Smarandache bad numbers (it's easier this way!) as
possible,

1.e. find an ordered array of a's such that

a=|x’ -y*|, for x and y integers > 1.
REFERENCES

1. Smarandache, F. (1975). "Properties of Numbers", University of Craiova Archives, (see also Arizona
State Universitym Special Collections, Tempe, AZ, U. S. A.)

2. Sloane, N. J. A. and Simon, Plouffe, (1995). The Encyclopedia of Integer Sequences, Academic Press,
San Diego, New York, Boston, London, Sydney, Tokyo, (M0453).

* This paper first appeared in Bulletin of Pure and Applied Sciences, Vol. 17E(No.1) 1998; p. 55-62.
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A SET OF CONJECTURES ON SMARANDACHE SEQUENCES*

Sylvester Smith
Department of Mathematics, Yuma Community College

ABSTRACT

Searching through the Archives of the Arizona State

University, I found interesting sequences of numbers and

problems related to them. I display some of them, and

the readers are welcome to contribute with solutions or ideas.
Key words: Smarandache P-digital subsequences, Smarandache

P-partial subsequences, Smarandache type

partition, Smarandache S-sequences, Smarandache

uniform sequences, Smarandache operation sequences.

Let { a, }, n > 1 be a sequence defined by a property (or a relationship involving its terms P.)

Now, we screen this sequence, selecting only its terms whose digits hold the property (or relationship
involving the digits) P.

The new sequence obtained is called:

(1) Smarandache P-digital subsequences.

For example:

(a) Smarandache square-digital subsequence:
0,1,4,9,49, 100, 144, 400, 441, . ..

ie from0, 1, 4,9, 16,25, 36, ..., n%, ... we choose only the terms whose digits are all perfeét squares
(therefore only 0, 1, 4, and 9).

Disregarding the square numbers of the form NO . . . 0, where N is also a perfect
2k zeros

square, how many other numbers belong to this sequence?

(b) Smarandache cube-digital subsequence:

0, 1, 8, 1000, 8000, . ..

ie from0, 1, 8,27, 64, 125,216, ..., n°,. .. we choose only the terms whose digits are all perfect cubes
(therefore only 0, 1 and 8).

Similar question, disregarding the cube numbers of the form M0 . . .0
3k zeros
where M is a perfect cube.

(c) Smarandache prime digital subsequence:

2,3,5,7,23,37,53,73, . ..
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i.e. the prime numbers whose digits are all primes.
Conjecture: this sequence is infinite.

In the same general conditions of a given sequence, we screen it selecting only its terms whose groups of
digits hold the property (or relationship involving the groups of digits) P.

[ A group of digits may contain one or more digits, but not the whole term.]
The new sequence obtained is called:

(2) Smarandache P-partial digital subsequence.

Similar examples:

(2) Smarandache square-partial-digital subsequence:

49, 100, 144, 169, 361, 400, 441, . . .

i.e. the square members that is to be partitioned into groups of digits which
are also perfect squares. (169 can be partitioned as 16 = 4%and 9 =33 etc.)

Disregarding the square numbers of the form
NO . . . 0, where N is also a perfect square,
2k zeros
how many other numbers belong to this sequence?
(b) Smarandache cube-partial digital subsequence:
1000, 8000, 10648, 27000, . . .
i.e. the cube numbers that can be partitioned into groups of digits which are also perfect cubes.
(10648 can be partitioned as 1=1%,0 =0, 64 = 4°,and 8 =2°).
Same question: disregarding the cube numbers of the form:
MO . . . O where M is also a perfect cube, how many other numbers belong
3k zeros
to this sequence.
(c) Smarandache prime-partial digital subsequence:

23,37,53,73,113, 137,173,193, 197, ...

i.e. prime numbers, that can be partitioned into groups of digits which are
also prime,

(113 can be partitioned as 11 and 3, both primes).

Conjecture: this sequence is infinite.
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(d) Smarandache Lucas-partial digital sunsequence

123, ...
i.e. the sum of the two first groups of digits is equal to the last group of digits, and the whole number

belongs to Lucas numbers:
2,1,3,4,7,11, 18,29,47,76, 123, 199, . ..

(beginning at 2 and L(n+2) = L(n+1) + L(n), n> 1) ( 123 is partitioned as 1,2 and 3,then3=2+1).Is
123 the only Lucas number that verifies a Smarandache type partition?

Study some Smarandache P - (partial) - digital subsequences associated to:

- Fibonacci numbers (we were not able to find any Fibonacci number verifying a Smarandache type
partition, but we could not investigate large numbers; can you? Do you think none of them would

belong to a Smarandache F - partial-digital subsequence?
- Smith numbers, Eulerian numbers, Bernoulli numbers, Mock theta numbers, Smarandache type

sequences etc.
Remark: Some sequences may not be smarandachely partitioned (i.e. their associated Smarandache type

subsequences are empty).

If a sequence {a, }, n > 1 is defined by a, = f(n) (a function of n), then

Smarandache f-digital subsequence is obtained by screening the sequence and selecting only its terms
that can be partitioned in two groups of digits g, and g , such that g, = f(g, ).

For example:
(a) Ifa, =2n,n 21, then
Smarandache even-digital subsequence is:

12,24, 36, 48,510, 612, 714, 816, 918, 1020, 1122, 1224, . ..
(i.e. 714 can be partitioned as g , = 7, g ; = 14, such that 14 = 2*%7, etc.)
(b) Smarandache lucky-digital subsequence

37,49, ...

(i.e. 37 can be partitioned as 3 and 7, and L; = 7; the lucky numbers are

1,3,7,9, 13, 15,21, 25, 31, 33, 37,43, 49, 51, 63, . ..
How many other numbers belong to this subsequence? Study the Smarandache f-digital subsequence

associated to other well-known sequences.

(3) Smarandache odd sequence:

1,3, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, ...
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How many of them are prime?

(4) Smarandache even sequence:
2,24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, . . .
Conjecture: None of them is a perfect power!

(5) Smarandache prime sequence:

2,23,235,2357,235711, 23571113, 2357111317, 235711131719,
23571113171923, . ..

How many of them are prime?

(Conjecture: a finite number).
(6) Smarandache S-sequence:
General definition:

LetS,,S;.S;5,...,Sn ... bean infinite integer sequence (noted by S). Then

$1,5:9:,8:5S8;,-..,8:18:8;...5,, ...
is called the Smarandache S-sequence.
Question:
(a) How many of the Smarandache S-sequence belong to the initial S sequence?
(b) Or, how many of the Smarandache S-sequence verify the relation of other given sequences?
For example:

If S is the sequence of odd numbers 1,3,5,7,9, . . . then the Smarandache S-sequence is 1, 13, 135, 1357,
... [(i.e.1)] and all the other terms are odd;

Same if S is the sequence of even numbers [(i.e. 2)]

The question (a) is trivial in this case.

But,when S is the sequence of primes [i.e. 3], the question becomes much harder.
Study the case when S (replaced by F) is the Fibonacci sequence (for one example):
1,1,2,3,5,8,13,21,....

Then the Smarandache F - sequence

1,11, 112, 1123, 11235, 112358, . ..

How many primes does it contain?
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(7) Smarandache uniform sequences:
General definition:
Let n be an integer not equal to zero and d, , d;, . . ., d, digits in a base B (of course r <B).

Then: multiples of n, written with digits d, , d,, . . . ,d, only (but all r of them), in base B, increasingly
ordered, are called the Smarandache uniform sequence.

As a particular case it's important to study the multiples written with one digit only (whenr = 1).
Some examples (in base 10):
(a) Multiples of 7 written with digit 1 only:
111111, 111110, 111111, I111RL, 11T L, BLL0LL, 111111,11i111,111111,111111,
(b) Multiples of 7 written with digit 2 only:

222222 222222222222 222222222222222222, 222222222222222222222222, ...

(c) Multiples of 79365 written with digit 5 only:
555555, 555555555555, 555555555555555555, 555555555555555555555555, ...
For some cases, the Smarandache uniform sequence may be empty (impossible):
(d) Multiples of 79365 written with digit 6 only (because any muitiple of 79365 will end in 0 or 5.

Remark: If there exists at least a multiple m of n, written with digits d; ,d,, .. ., d; only, in base B, then
there exists an infinite number of muitiples of n (they have the form:

m, mm, mmm, mmmm, . .. ).

With a computer program it's easy to select all multiples (written with certain digits) of a given number -
up to some limit.

Exercise: Find the general term expression for multiples of 7 written with digits 1, 3, 5 only in base 10.
(8) Smarandache operation sequences:
General definition:
Let E be an ordered set of elements, E = { e; ,e,, ... } and O a set of binary
operations well-defined for these elements. Then:
a, is an elementof { e, ,e;,... }.
3, = min{e 0,e6,...6,8 }>a, ,forn>1.

where all 6; are operations belonging to 8, is called the Smarandache operation sequence.
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Some examples:

(a) When E is the natural number set, and 6 is formed by the four arithmetic
operations: +, -, *,/.

Then: a; =1

An-y min{16,26,...8,(nt1)}>a,, forn>1,

(therefore, all 6; may be chosen among addition, subtraction, multiplication or division in a convenient
way).

Questions: Find this Smarandache arithmetics operation infinite sequence. [s it possible to get a general
expression formula for this sequence (which starts with 1,2, 3, 5, 4,7

(b) A finite sequence
a =1
a, =min{16,26;...05399}>2,
for n > 1, where all 6; are elements of { +,-,*,/ }.
Same questions for this Smarandache arithmetics operation finite sequence.
(c) Similarly for Smarandache algebraic operation infinite sequence
a, =1
3 =min {16,26;...6,(n+1)}>a, forn>1,
where all 8, are elements of { +, -, *,/, **, W3
( X**Y means X" and ¥y x means the yth root of x).
The same questions become harder but more exciting.
(d) Similarly for Smarandache algebraic operation finite sequence:
a, =1
2,y =min{l 9,29_; ...60399}>a,forn>1,
where all 8; are elements of { +, -, *,/, **, W}
( X**Y means XY and YVx means the yth root of x).

Same questions.

More generally: one replaces "binary operations” by "K; -ary operations” where all K; are integers > 2).
Therefore,

a, € {e,e,...},
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2, = min{191 (Kl)el (Kl) el (KI)KI

6,%/isK, -ary
6,%) K.+ 136, %) . .. 6,%) (K, +K;-1). ..
6% is K;-ary

m+2-K)8%). . . 6% )m+1)}>a, forn> 1.

Of course K| + (K- 1)+... (K, - 1)=n+l.

Remark: The questions are much easier when 6 = { +,-}; study the Smarandache operation type sequences
in this case.

(9) Smarandache operation sequences at random:
Same definitions and questions as for the previous sequences, except that
8 ={€;0,€0,...0,€, }>a,, forn>1,
(i.e. it's no "min" any more, therefore a,.,; will be chosen at random, but greater than a, , for anyn> 1).
Study these sequences with a computer program for random variables (under weak conditions).
REFERENCES

1. Smarandache, F. (1975) "Properties of the Numbers", University of Craiova Archives, [see also Arizona
State University, Special Collections, Tempe, Arizona, USA].

* Originally appeared in Bulletin of Pure and Applied Sciences, Vol. 15 E(No. 1) 1996; p. 101-107

92



SMARANDACHE PARTITION TYPE AND OTHER SEQUENCES*

Eng. Dr. Fanel IACOBESCU
Electrotechnic Faculty of Craiova, Romania

ABSTRACT

Thanks to C. Dumitrescu and Dr. V. Seleacu of the
University of Craiova, Department of Mathematics,

I became familiar with some of the Smarandache
Sequences. I list some of them, as well as questions
related to them. Now I'm working in a few conjectures
involving these sequences.

Examples of Smarandache Partition type sequences:
A1,1,1,2,2,2,2,3,4,4, ...

(How many times is n written as a sum of non-nuil squares, disregarding
the order of the terms:
for example:

9=12+ PP+ 1P+ 1P+ 12+ 12+ 12+ 1%+ 12
=12+12+12+12+12+22
=12+22+22

=32’

therefore ns(9) =4.)

B

’

LL
4’5’

s

b > ’272’2’2’2’2’2’2’3’3’3’3)3)3’3’3)4,4’
6

LL,LL1
5,5,5,5,6,6, ...

(How many times is n written as a sum of non-null cubes, disregarding the
order of the terms:

for example:

9=+ P+ P+ P+ P+ P+ P+ P+
=13+23’

therefore, nc(9) =2.)
C. General-partition type sequence:

Let f be an arithmetic function and R a relation among numbers.
(How many times can n be written under the form:

n= R(f(nl )7 f(nl )9 ey f(ﬂk ))
for some k and n , ny, ..., Iy such that

n+nm +...+m =n?}
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Examples of other sequences:
(1) Smarandache Anti-symmetric sequence:
11,1212, 123123, 12341234, 1234512345, 123456123456,
12345671234567, 1234567812345678, 123456789, 123456789,
1234567891012345678910, 1234567891011, 1234567891011, ...

(2) Smarandache Triangular base:
1,2,10, 11, 12, 100, 101, 102, 110, 1000, 1001, 1002, 1010, 1011,
10000, 10001, 10002, 10010, 10011, 10012, 100000, 100001, 100002,

100010, 100011, 100012, 100100, 1000000, 1000001, 1000002, 1000010,
1000011, 1000012, 1000100, ...

(Numbers written in the triangular base, defined as follows:
t(n) = (n(n+1))/2, forn2>1.)
(3) Smarandache Double factorial base:
1, 10, 100, 101, 110, 200, 201, 1000, 1001, 1010, 1100, 1101, 1110,
1200, 10000, 10001, 10010, 10100, 10101, 10110, 10200, 10201, 11000,
11001, 11010, 11100, 11101, 11110, 11200, 11201, 12000, ...
(Numbers written in the double factorial base, defined as follows:
df(n) = n!!)
(4) Smarandache Non-multiplicative sequence:

General definition: Let m;, m,, ..., my be the first k terms of the
sequence, where k 2 2;

then my;, for i >=k+1, is the smallest number not equal to the product of k previous distinct terms.
(5) Smarandache Non-arithmetic progression:

1,2,4,5,10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41, 64, ...

General definition: if m, , m; , are the first two terms of the sequence,

then m , for k > 3, is the smallest number such that no 3-term arithmetic

progression is in the sequence.

In our case the first two terms are 1, respectively 2.

Generalization: same initial conditions, but no i-term arithmetic progression
in the sequence (for a giveni 2 3).
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(6) Smarandache Prime product sequence:

2,7,31,211,2311, 30031, 510511, 9699691, 223092871, 6469693231,
200560490131, 7420738134811, 304250263527211, ...

P, =1+p;ps:...px, where p, is the k-th prime.

Question: How many of them are prime?
(7) Smarandache Square product sequence:

2,5,37,577, 14401, 518401, 25401601, 1625702401, 131681894401,
13168189440001, 1593350922240001, ...

Sy =1+s5s;8,...5;, where s, is the k-th square number.

Question: How many of them are prime?
(8) Smarandache Cubic product sequence:
2,9,217, 13825, 1728001, 373248001, 128024064001, 65548320768001, ...
C, =1+¢cy...cy , where ¢; is the k-th cubic number.
Question: How many of them are prime?
(9) Smarandache Factorial product sequence:
2,3, 13,289, 34561, 24883201, 125411328001, 5056584744960001, ...
F, =1+ f; f;..fi, where f is the k-th factorial number.
Question: How many of them are prime?
(10) Smarandache U-product sequence {generalization}:
Letu,,n > 1, be a positive integer sequence. Then we define a U-sequence as follows:
Un =1+uu...U,.
(11) Smarandache Non-geometric progression.
1,2,3,5,6,7, 8,10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24,
26,27, 29, 30, 31, 33, 34, 35,37, 38, 39, 40, 41, 42, 43, 45, 47,
48,50, 51,53, ...
General definition: if m, ,m, , are the first two terms of the sequence, then my , for k > 3, is the smallest

number such that no 3-term geometric progression is in the sequence. In our case the first two terms
are 1, respectively 2.
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(12) Smarandache Unary sequence:
11, 111, 1HE1, 1111110, 000801t 10113000 g, 1P EE12 02000 LT,
IT1PEIT LTI L, PR bR I TT111,
TULITITI I T eI a1 ey, Tt It i eI, L
u(n) = 11...1, p, digits of "1", where p, is the n-th prime.
The old question: are there are infinite number of primes belonging to the sequence?

(13) Smarandache No-prime-digit sequence:

1,4,6,8,9,10.11,1,1,14,1,16.1,18,19,0,1,4,6,8,9,
0,1,4,6,8,9,40,41, 42, 4,44, 4,46, 48,49, 0, ..

(Take out all prime digits of n.)

(14) Smarandache No-square-digit-sequence.

2,3,5,6,7,8,2,3,5,6,7,8,2,2,22,23,2, 25,26, 27,28
2,3,3,32,33,3,35,36,37,38,3,2,3,5,6,7,8, 5, 5,52, 53
5,55,56,57,58,5,6,6,62,.

(Take out all square digits of n.)

* This paper first appeared in Bulletin of Pure and Applied Sciences, Vol. 16 E(No. 2) 1997; P. 23
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SMARANDACHE CONCATENATE TYPE SEQUENCES*

Helen Marimutha
Northland Pioneer College (USA)

ABSTRACT
Professor Anthony Begay of Navajo Community College influenced me in writing this
paper. [ enjoyed the Smarandache concatenation. The sequences shown here have been
extracted from the Arizona State University(Tempe) Archives. They are defined as
follows:
(1) Smarandache Concatenated natural sequence:
1,22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 10101010101010101010,
ITITITETEE1 1101110, 121212121212121212121212, 13131313131313131313131313,
1414141414141414141414141414, 151515151515151515151515151515, . ..
(2) Smarandache Concatenated prime sequence:
2,23,235,2357,235711, 23571113, 2357111317, 235711131719, 23571113171923, ...
Conjecture: there are infinitely many primes among these numbers!
(3) Smarandache Concatenated odd sequence:
1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, ...
Conjecture: there are infinitely many primes among these numbers!
(4) Smarandache Concatenated even sequence:
2,124,246, 2468, 246810, 24681012, 2468101214, 246810121416, ...
Conjecture: none of them is a perfect power!

(5) Smarandache Concatenated S-sequence { generalization}:

Letsy, sz, 83, 84, - - - » Sp, - . - De an infinite integer sequence (noted by S). Then:

Si, 5182, 815283, 51525384, ..., $15253...5, .-

is called the Concatenated S-sequence.
Questions: (a) How many terms of the Concatenated S-sequence belong to the initial S-sequence?

(b) Or, how many terms of the Concatenated S-sequence verify the relation of other given
sequences?

The first three cases are particular.

Look now at some other examples, when S is a sequence of squares, cubes, Fibonacci
respectively (and one can go so on).
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(6) Smarandache Concatenated Square sequence:
1, 14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, ...
How many of them are perfect squares?

(7) Smarandache Concatenated Cubic sequence:
1,18, 1827, 182764, 182764125, 182764125216, 182764125216343, ...
How many of them are perfect cubes?

(8) Smarandache Concatenated Fibonacci sequence:
I, 11,112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, ...

Does any of these numbers is a Fibonacci number?

REFERENCES
1. Smarandache, F. (1997). Collected Papers Vol. II, University of Kishinev.
2. Smarandache, F. (1975). "Properties of the Numbers", University of Craiova Archives.
[See also Arizona State University Special Collections, Tempe, Arizona, USA].

* This paper originally appeared in Bulletin of Pure and Applied Sciences, Vol. 16 E(No. 2) 1997;
p. 225-226
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SMARANDACHE RECURRENCE TYPE SEQUENCES*

Mihaly Beneze
Brasov, Romania

ABSTRACT
Eight particular, Smarandache Recurrence Sequences and a
Smarandache General-Recurrence Sequence are defined below
and exemplified (found in State Archives, Rm, Valcea, Romania).

A.1,2,5,26,29, 677,680,701, 842, 845, 866, 1517, 458330, 458333, 458354, ...

(ss2(n) is the smallest number, strictly greater than the previous one, which is the squares sum of two
previous distinct terms of the sequence; in our particular case the first two terms are 1 and 2.)

Recurrence definition:

(1) The numbers a < b belong to SS2;

(2) If b, ¢ belong to SS2, then b? + ¢? belongs to SS2 too;

(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number of times, belong to SS2.
The sequence (set) SS2 is increasingly ordered.

[ Rule (1) may be changed by: the given numbers a,, ay, 2;, ..., a, where k 2 2, belongs to S52.]

B.1,1,2,4,5,6,16,17, 18,20, 21, 22, 25, 26,27, 29, 30, 31, 36, 37, 38, 40, 41, 42,43, 45, 46, ...

(SS1(n) is the smallest number, strictly greater than the previous one, (for n 2 3), which is the squares sum
of one or more previous distinct terms of the sequence; in our particular case the first term is 1.)

Recurrence definition:

(1) The number a belongs to SS1;

(2) If by, by, ..., by belong to SS1, where k > 1, then b+ b2 +. .. +b’ belongs to SSI too;

(3) Only numbers, obtained by rules [(1) and/or (2)] applied 2 finite number of times, belong to SS1.
The sequence (set) SS1 is increasingly ordered.

[ Rule (1) may be changed by: the given numbers a,, ay, ..., &, wherek > 1, belong to SS1.]

C.1,2,3,4,6,7,8,9,11, 12,14, 15,16, 18, 19, 21, ...

(NSS2(n) is the smallest number, strictly greater than the previous one, which is NOT the squares sum of
two previous distinct terms of the sequence; in our particular case the first two terms are 1 and 2.)

Recurrence definition:
(1) The numbers a < b belong to NSS2;

(2) Ifb, c belong to NSS2, then b’ + ¢ DOES NOT belong to NSS2; any other numbers belong to

NSS2;
(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number of times, belong to NSS2.
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The sequence (set) NSS2 is increasingly ordered.

[Rule (1) may be changed by; the given numbers a,, a,, ..., a;, where k > 2, belong to NSS2.]

2

’

D. 1,2,3,6,7,8,11,12, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,28, 29, 30, 31, 32, 33, 34, 35
38,3

3,6 EEN
9,42,43, 44,47, ..

(NSS1(n) is the smallest number, strictly greater than the previous one, which is NOT the squares sum of
one or more of the previous distinct terms of the sequence; in our particular case the first term is 1.)

Recurrence definition:

(1) The number a belongs to NSS1;

(2) Ifby, by, ..., by belong to NSS1, where k > 1, then b,® +b,* + ...+b,? DOES NOT belong to
NSS1; any other numbers belong to NSS1;

(3) Only numbers, obtained by rules {(1) and/or (2)] applied a finite number of times, belong to NSS1.

[ Rule (1) may be changed by: the given numbers a,, a,, ..., a;, where k > 1, belong to NSS1.]

E. 1,2,9,730, 737, 389017001, 389017008,389017729, ...

(CS2(n) is the smallest number, strictly greater than the previous one, which is the cubes sum of two
previous distinct terms of the sequence; in our particular case the first two terms are 1 and 2.)

Recurrence definition:

(1) The numbers a < b belong to CS2;

(2) If c,d belong to CS2, then ¢* + d° belongs to CS2 too;

(3) Only numbers, obtained by rules (1) and/or (2)] applied a finite number of times, belong to CS2.
The sequence (set) CS2 is increasingly ordered.

[ Rule (1) may be changed by: the given numbers a, a,, ..., a;, where k > 2, belong to CS2.]

F.1,1,2,8,9,10,512, 513, 514, 520, 521, 522, 729, 730, 731, 737, 738, 739, 1241, ...

(CS1(n) is the smallest number, strictly greater than the previous one (for n > 3), which is the cubes sum
of one or more previous distinct terms of the sequence; in our particular case the first term is 1;

Recurrence definition:

(1) The number a belongs to CS1;
(2) If by, b, ..., by belong to CS1, where k > 1, then b,® +b,’ + ... + b, belongs to CS2 too;

(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number of times, belong to CS1.
The sequence (set) CS1 is increasingly ordered.
[ Rule (1) may be changed by: the given numbers a,, a, ..., 3, where k > 2, belong to CS1.]

8,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32

3

(NCS2(n) is the smallest number, strictly greater than the previous one, which is NOT the cubes sum of
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two previous distinct terms of the sequence; in our particular case the first two terms are 1 and 2.)
Recurrence definition:

(1) The numbers a < b belong to NCS2.

(2) Ifc,d belong to NCS2, then ¢’ + d® DOES NOT belong to NCS2; any other numbers do belong to
3 gjl?ysrzlixmbers, obtained by rules [(1) and/or (2)] applied a finite number of times, belong to NCS2.
The sequence (set) NCS2 is increasingly ordered.

{ Rule (1) may be changed by: the given numbers a;, a;, ..., 3, where k > 2, belong to NCS2.]

H.1,2,3,4,56,7,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34,
8,3

'1 b b
37,38, 39, ..

(NCS1(n) is the smallest number, strictly greater than the previous one, which is NOT the cubes sum of
one or more previous distinct terms of the sequence; in our particular case the first term is 1.)

Recurrence definition:
(1) The number a belongs to NCS1.
(2) Ifby, by, ..., by belong to NCS1, where k > 1, then b,? + b,? + ... + b, DOES NOT belong to
3) O}jlfysrlulxmbers, obtained by rules [(1) and/or (2)] applied a finite number of times, belong to NCS1.
The sequence (set) NCS1 is increasingly ordered.
[ Rule (1) may be changed by: the given numbers a,, a,, ..., &, where k =2, belong to NCS1.]
I. General recurrence type sequence:

General recurrence definition:

Let k > j be natural numbers, and a,, a,, ..., 3 be given elements, and R a j-relationship (relation among
j elements).

Then:

(1) The elements a,, a,, ..., 3 belong to SGR.

(2) If m,, my, ..., m; belong to SGR, then R(m,, m,, ..., m;) belongs to SGR too.

(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number of times, belong to SGR.
The sequence (set) SGR is increasingly ordered.

Method of construction of the general recurrence sequence:

-level 1: the given elements a,, a,, ..., 2 belong to SGR;

-level 2: apply the relationship R for all combinations of j elements among a,, ay, ..., &; the results
belong to SGR too;

order all elements of levels 1 and 2 together,
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-level i+1:

if by, by, ..., by, are all elements of levels 1, 2, ..., i-1 and ¢, ¢, ..., C, are all elements of level i, then
apply the relationship R for all combinations of j elements among b,, by, ..., by, €1, €3, ..., ¢, such that
at least an element is from the level i;

the results belong to SGR too;

order all elements of levels i and i+1 together;

andsoon...

* Originally appeared in Bulletin of Pure and Applied Sciences, Vol. 16 E(No. 2) 1997; P. 231-236.
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About Smarandache-Multiplicative Functions
Sabin Tabirca

Bucks University College, Computing Department, England.

The main objective of this note is to introduce the notion of the S-multiplicative function and to give some
simple properties concerning it. The name of S-multiplicative is short for Smarandache- multiplicative and
reflects the main equation of the Smarandache function.

Definition 1. A function £ N* — N* is called S-multiplicative if :

() (a,b)=1=> f{a*b)=max { f(a), f(b) }

The following functions are obviously S-multiplicative:

1. The constant function f: N* = N*, f(n) = 1.
2. The Erdos function f: N* — N* f(n) =max { p | p is prime and n:p }. [1].

3. The Smarandache function S: N* - N, S(n) =max { p | p! 'n}. [3]

Certainly, many properties of multiplicative functions[2] can be translated for S-multiplicative functions.
The main important property of this function is presented in the following.

Definition 2. If fN* — N is a function, then f: N* — N is defined by
) = min { fd)] n:d).

Theorem 1. If fis S-multiplicative function, then fis S-multiplicative.

Proof. This proof is made using the following simple remark:

(). (dla*b A (a,b)=1)=> ((3d ;]a)3d . b)}d ,d; )=1Ad=(d; *d>)

Ifd, and d; satisfy (2), then f{d | * d, ) = max{f{d; ),f(d 2)}.

Let a,b be two natural numbers, such that (a,b) = 1. Therefore, we have

3) f_(a *b)=min f(d)= min f{d, *d;)=min min max { f{d,), f(dz) }.
dla*b difa,dzja dija dzja

Applying the distributing property of the max and min functions, equation (3) is transformed as follows:

fa*b) = max { min f(d,), min f{d,) } = max { f(a), f(b) }. Therefore,
d,la dja

the function f is S-multiplicative.

We believe that many other properties can be deduced for S-multiplicative functions. Therefore, it will be
in our attention to further investigate these functions.
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Abstract.

In this short paper I compare the Smarandache’s Non-Euclidean
Geometries [2] with my Orientation Table For Any Science [1].

ON SMARANDACHE MIXED NON-EUCLIDEAN GECOMETRIES

Professor Emeritus Anghel N. Rugina
Northeastern University, Boston, MA 02130, USA

Introduction:

Here it is An_Orientation Table For Any Science (Natural or Social)

Building blocks:

S =
Models: S
Ml = 100% s
M2 = 95% g
M3 = 65% s
M4 = 50% s
M5 = 35¢ S +
M6 = 5% S +

stable (equilibrium) elements, forces, values, behavior

unstable (disequilibrium) elements, forces, values,behavior

-+

+

5% U

35% ©

50% U

65% O

95% U

U

Description

A system of general stable equilibrium
at its limit of perfection

The methodological habitat for truths
in the abstract or the pure classical
model in science, in the sense of

Newton (physics) or Walras (economics)

A system of stable equilibrium but
vith minor deviations . This is the
methodological habitat for truths in
the concrete. It is the case for

special relativity. (Einstein and
Nevton)

A mixed system of simple anomalies or
relativity of the first order. The
equilibrium elements still prevail.
Habitat for truths in the concrete.

A mixed system of unstable equilibrium.
In economics it represents the Keynes-
ian model of “equilibrium with un-
employment but adding the prefix of
"unstable". It is the usual model in
modern science guided by unstable
equilibrium or "stable disequilibrium".
A mixed model of compound anomalies

or relativity of the second order
wvhere disequilibrium elements prevail.
A weak major disequilibrium.

A borderline mixed gystem wvhere dis-
equilibrium elements dominate to a
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very large degree. A strong major
disequilibrium.

100% U A system of total disequilibrium
dominated completely by pure contra-
dictions, real chaos.

M7

My non-understandings are:

l. “Mixed Non-Euclidean Geometries” cannot mean the same thing
with “Anti-Geometry”. Tis would involve that all Non-
Euclidean Geometries deny each other.

2. The"Euclidean Geometry" is just one model, specifically Model Ml
on my Orietation Table. Indeed, a similar Orientation Table can be
constructed for Geometry. See: enclosure:p.5

3. Independent of Model M1 (Euclidean), there is an unlimited number
of possible mixed, Noneuclidean, concentrated just for study
purposes in 6 other models. Only Model M7 which represents the
Geometry of total disequilibrium or chaos negates model M1 and
therefore may be called the Anti-Euclidean or Anti-Classical system
of Geometry. Actually this is the only case when we can talk about
M7 Anti-Geometry with specification.

4. The Non-Euclidean M2,M3,M4, M5 and M6 which represent a minor dis-
equilibrium, a neutral disequilibrium (M4) or unstable equilibrium
-and major disequilibria (M5,M6) systems of Geometry do not "run
counter to the classical ones" (Ml with truth in the abstract and
M2 with truth in the concrete) but they are just different in various
degrees. There is no contradiction here or,if there is one then
it/s partial or imperfect but not complete.

5. To "transform the apparently unscientific ideas into scientific
ones" is a treacherous operation. To me something "unscientific"
means being "untrue®” and I do not see how you can transform logi-
cally something which is not true into something which is true!
Unless, one is willing to use a "Hocus-Pocus" logic (just a joke)
or incomplete logic" which closer to "Fuzzy Logic" (a more recent
term). I do not know how Bertrand Russell would react to the
"Fuzzy-Logic" name!

6. The term "Anti-Geometry" is not quite correct, at least not complete
Anti-Classical or -Euclidean Geometry is O.k. but with the under-
standing that it refers to Model M7
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SMARANDACHE NUMBER RELATED TRIANGLES

K. R. S. Sastry
Jeevan Sandhya, Doddakalsandra Post, Raghuvana Halli
Bangalore 560 062, INDIA

ABSTRACT

Given a triangle in Euclidean geometry it is well known that
there exist an infinity of triangles each of which is similar to
the given one. In Section I we make certain observations on
Smarandache numbers. This enables us to impose a constraint on the
lenghts of the corresponding sides of similar triangles. In
Section II we do this to see that infinite class of similar
triangles reduces to a finite one. In Section III we disregard the
similarity requirement. Finally, in Section IV we pose a set of
open problens.

I SMARANDACHE NUMBERS: SOME OBSERVATIONS

Suppose a natural number n is given. The Smarandache number
of n is the least number denoted by S(n) whith the following
property: n divides S(n)! but not (S(n)-1)!. Below is a short
table containing n and S(n) for 1 < n < 12.

“ n |1 2 3 4 5 6 7 8 9 10 | 11 12“
“S(n) 1 2 3 4 5 3 7 4 6 5 11

o

A look at the above table shows that S(3)
S(4) = S(8) = S(12) = 4, ... .

Let a natural number k be given. Then the equation S(x) = k
cannot have an infinity of solutions x. This is because the
largest solution is x=k!. This observation enables us to impose a
restriction on the lengths of the corresponding sides of similar
triangles. In the next section we shall see how to do this.
Throughout this paper the triangles are assumed to have natural
number side lengths. Also, the triangles are non degenerate.

s(6) = 3,

II SMARANDACHE SIMILAR TRIANGLES

Let us denote by T(a,b,c) the triangle ABC with side lengths
a, b, c. Then the two similar triangles T(a,b,c) and T'(a',b',c')
are said to be Smarandache Similar if S(a) = S(a'), S(b) = S(b'),
S(c) = S(c'). Trivially, a given triangle is Smarandache similar
to itself. Non trivially the two Pytagorean triangles (right
triangles with natural number side lengths) T(3,4,5) and T'(6,8,10)

107



are Smarandache similar because

S(3) = S(6) = 3, S(4) = S(8) = 4, S(5) = S(10) = 5.

However, the Similar triangles (3,4,5) and (9,12,15) are not
Smarandache Similar because S(3) = 3 # S(9) which is 6. In fact
the class of Smarandache Similar triangles generated by T(3,4,5)
contains just two: T(3,4,5) and T'(6,8,10) in view of the fact that
the solution set of the equation S(x) = 3 consists of just two
members x = 3, 6.

For another illustration let us determine the class of
Smarandache Similar Triangles generated by the 60° triangle
T(a,b,c) = (5,7,8). The algorithm to do this is as follows: First
we calculate S(5) = 5, S(7) = 7, S(8) = 4. Next we solve the
equations S(a') = 5, S(b') = 7, S(c') = 4. Let us solve the last
equation first. '

S(c') = 4 - c' =4, 8, 12, 24.
Here the largest value c' = 24 = 3c. Hence we need not to solve
the other two equations beyond the solutions a' = 3a, b' = 3b.
This observation therefore gives us

S(a') =5 = a' =5, 10, 15 and

S(b') = 7 = b' = 7, 14, 21.
It is now clear that the class of Smarandache similar triangles
contains just two members: (5,7,8) and (15,21,24).

IIT SMARANDACHE RELATED TRIANGLES

In this section we do not insist on the similarirty
requirement that we had in Section II. Hence the definition: Given
a triangle T(a,b,c) we say that a triangle T'(a',b',c') is
Smarandache related to T if S(a') = S(a), S(b') = S(b), S(c') =
S(c). Note that the triangles T and T' may or may not be similar.
As an illustration let us determine all the triangles that are
Smarandache related to T(3,4,5). To do this we follow the same
algorithm that we mentioned in Section II but we have to find all
the solutions of the equations S(a') = 3, S(b') = 4, S(c') = 5.
Therefore

S(a') =3 = a' =3, 6;
S(b') = 4 - Db' = 4, 8, 12, 24;
S(c') = 5 = ¢t =5, 10, 15, 20, 30, 40, 60, 120.

This gives us the complete solution (a',b',c') = (3,4,5); (3,8,10);
(3,12,10); (6,4,5); (6,8,5); (6,8,10); (6,12,10); (6,12,15);
(6,24,20).

IV CONCLUSION

In the present discussion I have used small natural numbers k
so that the solution of the equations S(x) = k can be easily
determined. I do not know if this interesting converse problem of
determining all natural numbers x for given k of the Smarandache
equation S(x)=k has been disscused by someone already. In case if
this has not been already considered, I invite the reader to devise
efficient methods to solve the preceding equation. We conclude
this section by posing the following open problems to the reader.

(A) Are there two distinct dissimilar Phytagorean triangles
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that are Smarandache related? i.e. both T(a,b,c) and T'(a',6b',c')
are Pythagorean such that S(a') = S(a), S(b') = S(b), S(c') = 5(c)
but T and T' are not similar.

(B) Are there two distinct and dissimilar 60° triangles (120°
triangles) that are Smarandache related?

(c) Given a triangle T(a,b,c). Is it possible to give either
an exact formula or an uper bound for the total number of triangles
(without actually determining all of them) that are Smarandache
related to T?

(D) Consider other ways of relating two triangles in the

Smarandache number sense. For example, are there two triplets of
natural numbers («,B,y) and (a',B',vy') such that a + B + v = a' +
B' + y* = 180 and S(a) = S(x'), S(B) = S(B'), S(y) = S(v').
If such distinct triplets exist the two triangles would be
Smarandache related via their angles. Of course in this
relationship the side lengths of the triangles may not be natural
numbers.
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Solutions To Some Sastry Problems On Smarandache
Number Related Triangles

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, 1A 52233 USA
e-mail 71603.522@compuserve.com

In his recent paper[1], Sastry defines two triangles T(a,b,c) and T(a',b',c") to be
Smarandache related if S(a) = S('), S(b) = S(b') and S(c) = S(c). The function S is known

as the Smarandache function and is defined in the following way.

For n any integer greater than zero, the value of the Smarandache function S(n) is the
smallest integer m such that n divides m!.

He closes the paper by asking the following questions:

A) Are there two distinct dissimilar Pythagorean triangles that are Smarandache related?
A triangle T(x,y,z) is Pythagorean if x*x + y*y = z*z.

B)Are there two distinct and dissimilar 60(120) degrees triangles that are Smarandache
related? A 60(120) degrees triangle is one containing an angle of 60(120) degrees.

C) Given a triangle T(a,b,c), is it possible to give either an exact formula or an upper
bound for the total number of triangles (without actually determining them), which are
Smarandache related to T?

D) Consider other ways of relating two triangles in the Smarandache number sense. For
example, are there two triplets of natural numbers (a,b,c) and (a',b',c') such that

a+b+c=a +b +c' =180and S(a) = S(a"), S(b) = S(b") and S(c) = S(c")? If this were
true, then the angles, in degrees, of the triangles would be Smarandache related.

In this paper, we will consider and answer questions (A), (B) and (D). Furthermore, we
will also explore these questions using the Pseudo Smarandache function Z(n).

Given any integer n >0, the value of the Pseudo Smarandache function is the smallest
integer m such that n evenly divides

k=1

A) The following theorem is easy to prove.
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Theorem: There are an infinite family of pairs of dissimilar Pythagorean triangles that
are Smarandache related.

Proof:
Start with the two Pythagorean triangles

T(3,4,5) and T(5,12,13)

Clearly, these two triangles are not similar. Now, let p be an odd prime greater than 13
and form the triples

T(3p,4p.5p) T(5p,12p,13p)

Obviously, these triples are also Pythagorean. It is well-known that if n = kp, where k <p
and p is a prime, then S(kp) = p. Therefore,

S(3p) = S(4p) = S(5p) = S(12p) = S(13p) = p

and the triples form triangles that are not similar since the originals were not. Therefore,
we have the desired infinite family of solutions.

Definition: Given two triangles T(a,b,c) and T(a',b',c"), we say that they are Pseudo
Smarandache related if Z(2) = Z(a'), Z(b) = Z(b") and Z(c) = Z(c).

A computer program was written to search for dissimilar pairs of Pythagorean triples
T(x,y,z) and T(u,v,w) that are also Pseudo Smarandache related. Several were found and
a few are given below.

x=49, y=168,z=175
Z(x) =48, Z(y)=48,Z(z) =49
u=147,v=196, w=245
Z(u) =48, Z(v)=48, Z(w) = 49

x=96,y=128,z =160

Z(x) = 63, Z(y) = 255, Z(z) = 64
u=128,v=>504, w= 520

Z(u) =255, Z(v) =63, Z(w) = 64

x =185,y =444, z=481
Z(x)=74,Z(y) =111, Z(z) = 221
u=296,v=>555 w=629
Z(w) =111, Z(v) = 74, Z(w) = 221
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x=238,y=2816,z=850
Z(x) =84, Z(y) = 255, Z(z) = 424
u=510,v=680, w= 850
Z(u) = 84, Z(v) =255, Z(w) = 424

While these numbers do not readily display the pattern of an infinite family of solutions,
there is no real reason to think that there is only a finite number of solutions.

Conjecture: There are an infinite number of pairs of Pythagorean triples T(x,y,z) and
T(u,v,w) that are Pseudo Smarandache related.

C) A computer program was written to search for two dissimilar 60 degrees triangles
T(a,b,c) and T(al,bl,cl) that are Smarandache related and several solutions were found.

a=10,b=14,c=16, S(a)=5,S(b)=7,S(c)=6
al =30,bl1 =70,cl =80, S(al)=5,S(bl)=7,S(cl)=6

a=10,b=14,c=16,S(a)=5, S(b) =7, S(c) = 6
al =45,bl =105, cl = 120, S(al) =6, S(b1) = 7, S(c1) = 5

Note that the triangles T(30,70,80) and T(45, 105,120) are similar.

a=16,b=19,c=21,S(a)=6, S(b) = 19, S(c) = 7
al =80, bl =304, c1 =336, S(al) =6, S(b1) = 19, S(c1) =7

a=20,b=28,c=32,S(a)=5,8(b)=7,S(c)=8
al =60, bl =140, c1 =160, S(al)=35,S(b1)=7,S(c1) =8

a=20,b=28,c=32,S()=5,S(b)=7, S(c) =8
al =120, b1 =280, cl =320, S(al)= 5, S(bl) = 7, S(c1) = 8

Note again that the triangles T(60,140,160) and T(120, 280, 320) are similar. Given the
number of solutions found in this limited search, the following conjecture seems safe.

Conjecture: There are an infinite number of dissimilar 60 degrees triangles that are
Smarandache related.

Another computer program was written to search for dissimilar 60 degree triangles
T(a,b,c) and T(al,bl,cl) that are Pseudo Smarandache related. Only four pairs were found
in a limited search and they are given below.

a=24,b=56,c=64,Z(a) =15, Z(b) = 48, Z(c) = 127
al =40, bl = 56, c1 = 64, Z(al) = 15, Z(b1) = 48, Z(c1) = 64
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a=49,b=91,c =105, Z(a) = 48, Z(b) = 13, Z(c) = 14
=56,b1 =91,cl =105, Z(al) = 48, Z(bl) = 13, Z(cl) = 14

a=42,b=98, c=112, Z(a) = 20, Z(b) = 48, Z(c) = 63
=70,b1 =98, cl =112, Z(al) = 20, Z(b1) = 48, Z(c1) = 63

a=42,b=98,¢c=112,Z(a) =20, Z(b) =48, Z(c) = 63
=210, bl =294, c1 =336, Z(al) =20, Z(bl) = 48, Z(c1) = 63

Question: Are there an infinite number of dissimilar 60 degrees triangles that are Pseudo
Smarandache related?

Solutions to the corresponding problem for dissimilar 120 degrees triangles T(a,b,c) and
T(al,bl,cl) that are Smarandache related were also searched for using another computer

program. Several were found, although they appear to be sparser than the corresponding
60 degrees triangles. The solutions that were found are as follows.

=32,b=98,c=78, S(a) = 8, S(b) = 14, S(c) = 13
=196, bl =364, cl =224, S(al) = 14, S(b1) = 13, S(c1) = 8

2, b=098,c=78, S(a)=8, S(b) = 14, S(c) = 13
=392, bl =728, cl =448, S(al) = 14, S(b1) = 13, S(c1) = 8

a=51,b=119,c=17,S(a)=17,S(b) =17, S(c) = 17
al =119,bl =221,¢c1 =136, S(al)=17, S(b1) =17, S(cl) =17

a=51,b=119,c=17,S(a)= 17, S(b) = 17, S(c) = 17
=238, bl =442, c1 =272, S(al) = 17, S(b1) = 17, S(c1) = 17

a=51,b=119,c=17,S() = 17, S(b) = 17, S(c) = 17
=357, bl =663, c1 =408, S(al) = 17, S(b1) = 17, S(c1) = 17

51,b=119,c =17, S(a) =17, S(b) = 17, S(c) = 17
=272, bl =833, cl =663, S(al) = 17, S(b1) = 17, S(c1) = 17

a=51,b=119,c=17,S()=17,Sb) =17, S(c) = 17
=476, bl =884, c1 = 544, S(al) = 17, S(b1) = 17, S(c1) = 17

Note the cases where the second triangles of pairs are similar.

Question: Is there an infinite family of dissimilar 120 degrees triangles that are
Smarandache related?

Finding dissimilar 120 degrees triangles that are Pseudo Smarandache related proved to
be more difficult. Ina search forall b <337,a < 1000,c < 1000,al < 1000,
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bl < 1000 andcl < 1000, only one solution,

a=168,b=312,c =192, Z(a) = 48, Z(b) = 143, Z(c) = 128
al =192, b1 =588, cl =468, Z(a) = 128, Z(b1) = 48, Z(c1) = 143

was found.

Question: [s there an infinite number of dissimilar 120 degrees triangles that are Pseudo
Smarandache related?

D) A computer program was written to check for triplets of natural numbers (a,b,c) and
(a,b',c) suchthata+b+c=a' +b' +c' =180 and S(a) = S(a"), S(b) = S(b") and

S(c) = S(c') and many such pairs of triplets were found. While it is obvious that the
number is finite, the following list is not exhaustive.

a=1,b=11,c=168, S(a)=0,S(b)=11,S(c)="7
a'=1,b'=14,¢'=165,8(a) =0, S(b) = 7, S(c') = 11

a=2,b=7,¢=171,S(@)=2,S(b)=7, S(c) =19
a b

'=2,b'=38,¢' =140, S@@) =2, S(b)) = 19, S(¢') = 7
a=3,b=7,¢=170,S(a) =3, S(b) =7, S(c) = 17
2'=6,b'=21,¢'=153,8(a)=3,S®) =7, S(c') = 17

The last being an example of a pair of triples where there is no number in common.

An exhaustive computer search revealed that all possible angle measures 1 through 178
can be an angle in such a pair of triangles except 83,97, 107, 113, 121, 127, 137, 139,
149, 151, 163, 166, 167, 169, 172, 173, 174, 175, 176, 177, and 178.

The corresponding problem using the Pseudo Smarandache function is as follows.

Are there two triplets of natural numbers (a,b,c) and (a',b',c") such that
atb+c=a+b'+c =180 and Z(a) = Z(a"), Z(b) = Z(b') and Z(c) = Z(c')?

Another computer program was written that used Z(n) rather than S(n) in the search for
such triples. Many solutions exist and some are given below.

=2,b=24,c=154,2(2)=3, Z(24) = 15, Z(154) = 55
=6,b'=20,c =154, Z(6) = 3, Z(20) = 15, Z(154) = 55

a=4,b=8 c=168,Z(4)=7,2(8) = 15, Z(168) = 48
a'=4,b'=56,c =120, Z(4) = 7, Z(56) = 48, Z(120) = 15
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a=4,b=16,c=160,Z(4) =7, Z(16) = 31, Z(160) = 64
a'=14,b' =62, ¢' =104, Z(14) = 7, Z(62) = 31, Z(104) = 64

The last solution shows us that there are solutions where there are no numbers common to
the triples.

There are many solutions to this expression. An exhaustive computer search was

performed for all possible values I < a < 178 and the following numbers did not
appear in any triple.

1, 15, 23, 35, 41, 45, 51, 59, 65, 67, 71, 73, 77, 79, 82, 83, 86, 87, 89, 90, 91, 97, 101,
102, 105, 107,109, 113, 115, 116, 118, 121, 123, 125, 126, 127, 131, 134, 135, 137, 139,
141, 142, 143, 148, 149, 151, 152, 153, 157, 158, 159, 161, 163, 164, 166, 167, 169, 170,
171,172,173, 174, 175, 176, 177, 178.

Reference

1. K. R. S. Sastry, 'Smarandache Number Related Triangles'. Appeared on the world
wide web at http://www.gallup.unm.edw/~smarandache.
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On the Difference S(Z(n)) - Z(S(n)
Maohua Le

Abstract: In this paper, we prove that there exist infinitely many positive integers

n satisfying S(Z(n))> Z(S(n)) or S(Z(n)) < Z(S(n)).

Key words: Smarandache function, Pseudo-Smarandache function, composite function, difference.

For any positive integer n, let S(n), Z(n) denote the Smarandache function and the Pseudo-Smarandache
function of n respectively. In this paper, we prove the following results:

Theorem 1: There exist infinitely many n satisfying S(Z(n)) > Z(S(n)).

Theorem 2: There exist infinitely many n satisfying S(Z(n)) < Z(S(n)).

The above mentioned results solve Problem 21 of [1].

Proof of Theorem 1.
Let p be an odd prime. If n = (1/2)p(p+1), then we have

(1) S(Z(n)) = S(Z((1/2)p(p+1))) = S(p) = p
and
(2) Z(S(n)) = Z(S((1/2)p(p+1))) = Z(p) = p-1.

We see from (1) and (2) that S(Z(n)) > Z(S(n)) for any odd prime p. It is a well-known fact that
there exist infinitely many odd primes p. Thus, the theorem is proved.

Proof of Theorem 2.
If n = p, where p is an odd prime, then we have

(3) S(Z(n) = S(Z(p)) = S(p-1) <p-1

and

(4) Z(S(n)) = Z(S(p)) = Z(p) = p-1.

By (3) and (4), we get S(Z(n)) < Z(S(n)) for any p. Thus, the theorem is proved.
Reference

f1] C. Ashbacher, Problems, Smarandache Notions Journal, 9(1998), 144-151.

Maohua Le

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. China
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SMARANDACHE CEIL FUNCTIONS*

Anthony Begay
Navajo Community College, Arizona (USA)

ABSTRACT

In this paper some definitions, examples and conjectures are exposed related to the Smarandache type
functions, found in the Archives of the Arizona State University, Tempe, USA Special Collections.

(1) Smarandache Ceil Function of Second Order:

4,6,10,12,5,9,14,8,6,20,22,15,12,7, 10,26, 18, 28, 30, 21, 8, 34, 12, 15, 38, 20, 9, 42,

2,4,3,6,
44,30, 46, 24, 14, 33, 10, 52, 18, 28, 58, 39, 60, 11, 62, 25, 42, 16, 66, 45, 68,70, 12, 21, 74, 30, 76, 51,
78, 40, 18, 82, 84, 13, 57, 86, ...

(S (n) = m, where m is the smallest positive integer for which n divides m"2.)
2

Reference:

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30.

(2) Smarandache Ceil Function of Third Order:
2,2,3,6,4,6,10,6,5,3, 14, 4,6, 10,22, 15,12, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 38, 20,9, 42,22,
30, 46, 12, 14, 33, 10, 26, 6, 28, 58, 39, 30, 11, 62, 5, 42, 8, 66, 15, 34, 70, 12, 21, 74, 30, 38, 51, 78, 20,
18, 82, 42, 13,57, 86, ...

(S (n) = m, where m is the smallest positive integer for which n divides m"3.)
3

Reference:
(a) Surfing on the Ocean of Numbers — a few Smarandache Notions and Similar
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30.
(3) Smarandache Ceil Function of Fourth Order:
2,2,3,6,2,6,10,6,5,3, 14,4, 6, 10,22, 15,6, 7, 10, 26, 6, 14, 30, 21, 4,34, 6, 15, 38, 10, 3, 42, 22,
30, 46, 12, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 34,70, 6, 21, 74, 30, 38, 51, 78, 20,
6, 82,42, 13, 57, 86, ...

(S (n) = m, where m is the smallest positive integer for which n divides m™4.)
4

Reference:

(2) Surfing on the Ocean of Numbers — a few Smarandache Notions and Similar
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30.
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(4) Smarandache Ceil Function of Fifth Order:

2,2,3,6,2,6,10,6,5,3,14,2,6, 10,22, 15,6, 7, 10, 26, 6, 14, 30,21, 4
30,46, 6, 14, 33, 10, 26, 6, 14, 58, 39,30, 11, 62, 5, 42, 4, 66, 15, 70,

6,82,42,13,57, 86, ...

, 34,6, 15,38, 10, 3,42, 22,

0, 34,
3 6,21, 74, 30, 38, 51, 78, 10,

2
4,

(S (n) =m, where m is the smallest positive integer for which n divides m"5.)

5
Reference:
(2) Surfing on the Ocean of Numbers -- a few Smarandache Notions and Similar
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30.

(5) Smarandache Ceil Function of Sixth Order:

2,2,3,6,2,6,10,6,5,3, 14,2, 6, 10,22, 15, 6, 7, 10, 26, 6, 14, 30, 21, 2, 34, 6, 15, 38, 10, 3, 42, 22,

30,46, 6, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 34, 70, 6, 21, 74, 30, 38, 51, 78, 10, 6,

82,42, 13,57, 86, ...

(S (n) = m, where m is the smailest positive integer for which n divides m"6.)
6

Reference:
(a) Surfing on the Ocean of Numbers -~ a few Smarandache Notions and Similar
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30.
(6) Smarandache - Fibonacci triplets:
11, 121, 4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648, 4573053, 7783364,

79269727, 136193976, 321022289, 445810543, 559199345, 670994143, 836250239, 893950202
937203749, 1041478032, 1148788154, ...

’

(An integer n such that S(n) = S(n-1) + S(n-2) where S(k) is the Smarandache
function: the smallest number k such that S(k)! is divisible by k.)

Remarks:

It is not known if this sequence has infinitely or finitely many terms.

H. Ibstedt and C. Ashbacher independently conjectured that there are infinitely many.
H. L. found the biggest known number: 19 448 047 080 036.

References:

(a) Surfing on the Ocean of Numbers — a few Smarandache Notions and Similar
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 19-23.

(b) C. Ashbacher and M. Mudge, <Personal Computer World>, London, October
1995; p. 302.
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(7) Smarandache-Radu duplets
224,2057, 265225, 843637, 6530355, 24652435, 35558770, 40201975, 45388758,
46297822, 67697937, 138852445, 157906534, 171531580, 299441785, 551787925,
1223918824, 1276553470, 1655870629, 1853717287, 1994004499, 2256222280, ...

(An integer n such that between S(n) and S(n+1) there is no prime [S(n) and
S(n + 1) included].

where S(k) is the Smarandache function: the smallest number k such that S(k)!
is divisible by k.)

Remarks:
It is not known if this sequence has infinitely or finitely many terms.
H. Ibstedt conjectured that there are infinitely many.
H. L. found the biggest known number:

270 329 975 921 205 253 634 707 051 822 848 570 391 313!
References:

(a) Surfing on the Ocean of Numbers — a few Smarandache Notions and Similar
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 19-23.

(b) I. M. Radu, <Mathematical Spectrum>, Sheffield University, UK, Vol. 27, (No.
2), 1994/5; p. 43.

* Originally appeared in Bulletin of Pure and Applied Sciences, Vol. 16E(No. 2), 1997; p. 227-229.
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Some Problems Concerning The Smarandache Deconstructive Sequence*

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, IA 52233
e-mail 71603.522@compuserve.com

The Smarandache Deconstructive Sequence (SDS(n)) of integers is constructed by
sequentially repeating the digits 1-9 in the following way:

1,23, 456, 7891, 23456, 789123, 4567891, 23456789, 123456789, 1234567891, ...

and first appeared in the collection by Smarandache[1]. In a later collection by
Kashihara[2], the question was asked:

How many primes are there in this sequence?

In this article, we will briefly explore that question and raise a few others concerning this
sequence.

The values of the first thirty elements of this sequence appear in Table 1. From the list, it
seems clear that the trailing digits repeat the pattern,

1,3,6,1,6,3,1,9,9,1,3,6,1,6,3,1,9,9, 1, . ..

and it is simple to prove that this is indeed the case. Given the rules used in the
construction of this sequence, the remaining columns also have similar patterns.

It is also simple to prove that every third element in the sequence is evenly divisible by 3.
More specifically, 3 | SDS(n) if and only if 3 | n.

The list contains the eight primes

23,4567891, 23456789, 1234567891, 23456789123456789, 23456789123456789123,
4567891234567891234567891, 1234567891234567891234567891.

If we do not consider the first element in the list, the percentage of primes is 5% = 0.276.
Given this, admittedly slim, numeric evidence and the regular nature of the digits, the
author is confident enough to offer the following conjecture.

Conjecture 1: The Smarandache Deconstructive Sequence contains an infinite number of
primes.

Two out of every nine numbers end in 6. In examining the factorizations of these
numbers, we see that 456 is divisible by 23, 23456 by 2°, and all others by 27. This

prompts the question:
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Table 1.

1 1
2 23
3 456
4 7891
5 23456
6 789123
7 4567891
8 23456789
9 123456789
10 1234567891
11 23456789123
12 456789123456
13 7891234567891
14 23456789123456
15 789123456789123
16 4567891234567891
17 23456789123456789
18 123456789123456789
19 1234567891234567891
20 23456789123456789123
21 456789123456789123456
22 7891234567891234567891
23 23456789123456789123456
24 789123456789123456789123
25 4567891234567891234567891
26 23456789123456789123456789
27 123456789123456789123456789
28 1234567891234567891234567891
29 | 23456789123456789123456789123
30 | 456789123456789123456789123456

Question 1: Does every even element of the Smarandache Deconstructive Sequence
contain at least three instances of the prime 2 as a factor?

Even more specifically,
Question 2: If we form a sequence from the elements of SDS(n) that end in a 6,
do the powers of 2 that divide them form a monotonically increasing

sequence?

The following is prompted by examining the divisors of the elements of the sequence.
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Question 3: Let k be the largest integer such that 3% | n and j the largest integer such
that 37 | SDS(n). Is it true that k is always equal to j?

And we close with the question
Question 4: Are there any other patterns of divisibility in this sequence?

* This paper originally appeared in Journal of Recreational Mathematics, Vol. 29,
No. 2.

References

1. F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House, Phoenix,
Arizona, 1993.

2. K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus
 University Press, Vail, Arizona, 1996.
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S-PRIMALITY DEGREE OF A NUMBER AND S-PRIME NUMBERS

by Emil Burton
Department of Mathematics
Babes-Bolyai University
3400 Cluj-Napoca, Romania

Abstract.
In this paper we define the S-Primality Degree of a Number, the S-
Prime Numbers, and make some considerations on themn.

The depths involved by the Smarandache function are far from
being exhausted or completely explored.
If one takes S(1) = 1 then

{ n(x)+1, if 1sx<4;
Y lstn)/nl-= m(x)+2, if x24;
1<n<x

where S(n) is the Smarandache function, m(x) the number of primes
less than or equal to x, and | a | the greatest integer less than or
equal to a (integer part).

The ratio S(n)/n measures the 8-Primality Degree (S stands for
Smarandache) of the number n.

Whereas n is called 8~Prime if S(n)/n = 1.
Therefore, the set of S-Prime numbers is P U {1, 4}, with P = {2,
3, 5, 7, 11, 13, 17, ...} the set of traditional prime numbers.

Traversing the natural number set N' = {1, 2, 3, 4, 5, 6, ...}
we meet "the most composite" numbers (= the most "broken up"), 1i.
e. those of the form n = k! for which S(k!)/k! = k/k! = 1/(k-1)!

The philosophy of this clasification of the natural numbers is that
number 4, for example, appears as a prime (S-Prime) and in the same
time composite (broken up).

It is not surprising that in the approachment of Fermat Last
THeorem's proof, X'+y'=z" doesn't have nonzero integer solutions for
n 2 3, it had had to treat besides the cases n € {3, 5, 7, 11, 13,
17, ...} the spec1al case n—4 as well because, for example, x&+y =z°
is reduceable to (x%) +(y) =(z%)*

Also, it is not surprising that Elnstein (intuitevily) chosed the
R space to treat the relativity theory.

It is not surprising that the multiplication of trlplets
(a,b,c) (m,n,p) does not really work when we want to sink R’ into R,
whlle the multiplication of quadruplets (a,b,c,d)(m,n,p,q) led to
the quaternions theory.
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Some Elementary Algebraic
Considerations Inspired by
Smarandache Type Functions (II)

E. Radescu

University of Craiova, Department of Mathematics,
1100 Craiova, Romania

Abstract

The paper presents new properties for some functions constructed sim-
ilarly to the functiog n 7 N™ — N*, the Smarandache function, defined by
Vn € N*, n(n) = min {k|k! is divisible by n} — “Smarandache’s type func-
tion”. .

The Smarandache 7 function and its principal properties are al-
ready known in the literature of speciality. Other functions were built
analogously, among which the following ones.

The function 7y. Starting from a sequence of positive integers
o : N* — N* satisfying the condition

Vn € N*,2m, € N*,Ym > m, = n/a(m) (1)
an associated function was built 7; : N* — N*, defined by
m(n) = min {my|m, is given by (1) }, Vn € N~. (2)

Such sequences - possibly satisfying an extra condition - considered
by G. Christol to generalise the p-adic numbers were called also mul-
tiplicative convergent to zero (m.c.z.). An example is ¢ : N* — N*
with o(n) = n!. For n = 6, there is m§ = 4 such that Ym > 4 = 6/m!
(6/4! for m = 4; 6/5! for m = 5) but there is and m{ = 7 such that
Vm > 7 = 6/m!; because the smallest of them is mg = 3 such that
Ym >3 = 6/3!, it results 7 (6) = 3.
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We note that for o(n) = n! the associated function 7, is just the
n function - from where the ideea of building the 7; functions (by
generalization of the sequence).

The function 7,. A sequence of positive integers o : N* — N™ is
called “of divisibility sequence (d.s.)” if:

m/n = o(m)/o(n), (3)
and “of strong divisibility sequence (s.d.s.)” if
o ((m,m)) = (o(m), o(n)) , ¥m,n € N*, ()

(m,n) being the greatest common factor.

(Strong divisibility sequences are studied for instance by N. Jensen
in [5]. It is known that the Fibonacci sequence is a s.d.s.).

Starting from a sequence ¢ : N* — N~ satisfying the condition

Vn € N*,3m, € N*,V¥m € N*, m,/m = n/o(m) (5)
an associated function was built that is 7, : N* — IN* defined by
n2(n) = min {mn|m, is given by (3) },, Vn € N~. (6)

If the sequence ¢ is d.s. or s.d.s., the function 7, has new properties
with interesting algebraic interpretations.

We observe that in (1) appeared both the natural order (m > my,)
and the divisibility as relation of order on N* (n/o(m)) and in (5),
only the divisibility as relation of order on N*. From the alternation
of the two relations of order on N* can be defined analogously two
more functions 73 and 74 . (see [1])

Starting from a sequence o : N* — N* satisfying the condition

Yn € N, 3m, € N",Vm € N",m,/m = n < o(m) (7)
an associated function was built that is 73 : N* — N* | defined by
n3(n) = min {my|m, is given by (7) },V¥n € N™. (8)
Also, starting from a sequence ¢ : N* — N™ satisfying the condition
Vo e N",3m, e N",¥Ym € N*",m, < m = n < o(m) (9)
an associated function was built that is 54 : N® — N* |, defined by
n4(n) = min {my|m, is given by (9) },Vn € N™. (10)

The principal properties of the functions above are divided in three
groups:
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I The arithmetical properties of the proper function.

II The properties of sumatory function associated to each of the nu-
merical functions above. (see [3])

IIT The algebraical properties of the proper function. Thanks to the
arithmetical properties, every function can be viewed as mor-
phism (endomorphism) between certain universal algebras (we
can be obtain several situations considering various operations
of N*). (see [2], [4]) '

This paper presents a construction from group III which guides
to a prolongation sy of the function 74 for more complexe universal
algebras.

If the initial sequence is s.d.s., the associated function 74 has a
series of important properties from which we retain:

74 (max{a,b}) = max {ny(a), na(b)} ; (11)
74 (min{a, b}) = min {n4(a), 74(b)} Va,b € N*. (12)

We may stand out, from other possible structures on N*, the uni-
versal algebra (’\I" §2) where the set of operations is 2 = {V A, o}
with V,A : (N*)> — N* defined by a V b-= sup{a,b},a A b =
inf{a, b} Va,b € N* (N~ is a lattice with the natural order) and
o : (N*)® — N* - a null operation that fixes 1 the unique particular

element with the role of neutral element for “v7: 1 = ey .
Therefore, the universal algebra (N*,Q)is of type T = ( ; /2\ %0
=(2,2,0).

With the properties (11) and (12) the function 74 is endomorphism
for the universal algebra above. It can be stated

Teorema 1 If ny : N* — N* is the function defined by (10), endo-
morphism for the unwersal algebra (N*,Q) and I is a set, then there is
a unique sq : (N* ) (N ') , endomorphism for the universal algebra

<(N")I,Q) so that p; o s4 = 14 0 pi, Vi € I, where p; : (N*)] — N~
with Ya = {a:}ie; € (N9), pj(a) = aj,Vj € I, are the canonical
projections, morphisms between ((N‘)I ,Q) and (N*,Q).

The proof can be done directly: it is shown that the correspon-
dence 74 is a function, endomorphism and complies with the required
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conditions. The operations of § for the universal algebra ((N‘)I , Q)

are made “on components”.

The algebraic properties of s4 - the prolongation to more ampler
universal algebra of the function 74 - for its restriction to N*, could
bring new properties for the function 74 that we considered above.

The paper contents, in completion, a formula of calcul for the
sumatory function F7, of function 7;.

If the initial sequence is s.d.s., this formula is:

k k

Fr(n)=m(1)+ Y [m2(pn), mp] + > [ma(pa)s m(pe), malpy)] +
o i

+---+m(n), ¥Yrn =p; -p2-- Pk, Pi, 1 = 1,k - prime numbers
and my(p*) = F, (p*) = Fp (p*7) -
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ON THE FUNCTIONAL EQUATION
(S(n))*+ (S(n))* '+ -++S(n)=n

Rongji  Chen

Abstract For any positive integer n, let S(n) be the Smaran-
dache function of n. Let » be a fixed positive integer with »==3. In this
paper we give a necessary and sufficient condition for the functional e-
quation (S(n))"+ (S(n)) "'+ --+ S(n) = n to have positive integer

solutions 7 .

Key words Smarandache function, functional equation, solvabili-
ty.

1 Introduction

Let N be the set of all positive integers. For any n €N, let the
arithmetic function
(1) S(n)=minlala €N, nla!l
Then S(n) is called the Smarandache function of n For a fixed » €N
with =23, we discuss the solvability of the functional equation
(2)  (S(n))"+(S(n)) " '+--+S(n)=n,2EN
There are many unsolved questions concerned this equation(see [1]). A
computer search showed that if » =3, then (2) has no solution n with »

<.10000. In this paper we prove a general result as follows.
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Theorem For any fixed » €. with »=3, a positive integer n is a
solution of (2) if andonly if n=p(p "1+ p" 72+ -+ 1), where p is
an odd prime satisfying p" !+ p" "2+ -+ 1[(p—-1)! .

By our theorem, we find that if » =3, then (2) has exactly two so-

lutions 7 =305319 and n =499359 with » <1000000.

2 Preliminaries

Lemma 1 Forany u, vEN with gcd(u,v)=1, we have
S(uv)=max(S(u),S(v)).

Proof leta=S(u), 6=S(v)and ¢c=S(uv). By (1), a,b,¢
are least positive integers satisfying
(3) ula!, vlb!, uvlc!,
respectively. We see from (3) that
(4) c=max(a,b)

If a=b, then ula! and vla! by (3). Since ged (u,v) =1, we
get uv|a!. It implies that a==c. Therefore, by (4), we obtain c =a
=max(a,b). By the same method, we can prove that if a<{b, then ¢
=b=max(a,b). The lemma is proved.

Lemma2 If S(u)=wu, then u=1,4 or p, where p is a prime.

Proof See [3]. _

Lemma3 If « >1, where « €N, then « has a prime factor p
such that p|S(u).

Proof Let u = phip%2--- pi be the factorization of u. It is a well
known fact that S(u) =max(S(py), S(p2), -, S(pp)) and p;| S(pF)
for i=1,2,--*,k(see [21). The lemma follows immediately.
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3 Proof of Theorem

Let n=p(p" '+ p" "2+ - +1), where p is an odd prime satisfy-
ing p" "'+ p "7+ +1|(p—1)!. Then, by (1), we get S(n)=p.
Therefore, n is a solution of (2).

On the other hand, let n be a solution of (2). Then we have n >
1. Further, let 1= S(n). We get from (2) that
(5) (& '+ 4+ 1) =0
Since ged(z, £ '+ ¢ 72+ - +1)=1, by Lemma 1, we see from (5)
that
(6) : =S(n)=S(+" 1+ 2+--+1))

=max(S(z),S(¢ 1+ 72+ +1))

If S()S(e7 71+ ¢772+---+1), then from (6) we get
(7) =S 1+ 2+--41)

Since 27!+ 724+--41>1, by Lemma 3, " "'+ # 2+ --+1 has a
prime factor p such that p|S(z7 "'+ ¢ 72+ --+1 ). Hence, by (7),
we get p|z. However, since ged (2, ¢ "1+ ¢ "2+ --+1)=1, it is im-
possible. So we have

(8)  S()>S(r '+ 2+ 41)

and

(9) =52,

by (6)

On applying Lemma 2, we see from (9) that either =4 ort=p ,
where p is a prime. If 1 =4, then n =4, 8, 12 or 24. However, since
r=23, we get from (5) that £+ ¢ " + - + 1 =43+ 42+ 4>24>7, a
contradiction. If #=p, then from (8) and (9) we obtain
(10)  S(p ™+ p 2+ +1<S(2)=S(p)=p
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It implies that p” '+ p" "2+ ---+1|(p —1)! and p >2. Therefore, we
see from (5) that if 7 is a solution of (2), then n = p(p" 1+ p 72+ -+
+1), where p is an odd prime satisfying p" '+ p" 2+ -+ 1| (p -

1)!. Thus, the theorem is proved.
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SOLUTION OF TWO QUESTIONS CONCERNING
THE DIVISOR FUNCTION AND THE PSEUDO -
SMARANDACHE FUNCTION
Zhong Li

Abstract In this paper we completely solve two questions concerning
the divisor function and the pseudo — Smarandache function.

Key words divisor function, pseudo — Smarandache function, function-

al equation

1 Introduction

Let N be the set of all positive integers . For any n €N, let
(1) d(n)=§ 1,

(2) Z(n)=min|ala €N, 2| ;]
Then d (n)and Z (n ) are called the divisor function and the pseudo —
Smarandache function of 7, respectively, In''}, Ashbacher posed the follow-
ing unsolved questions.

Question 1 How many solutions n are there to the functional equa-
tion.
(3) Z(n)=d(n),n€N?

Question 2 How many solutions n are there to the functional equa-

tion.
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(4) Z(n)+d(n)=n,n€.17
In this paper we completely solve the above questions as follows.
Theorem 1 The equation (3) has only the solutions » =1,3 and 10.
Theorem 2 The equation (4) has only the solution 7 =56.

2 Proof of Theorem 1

A computer search showed that (3) has only the solutions » =
1,3 and 10 with n<{10000(see [11)
We now let n be a solution of (3) with n%1,3 or 10 . Then we
have n >10000. Let
(5) n=p1pr" s
be the factorization of n .By [2, Theorem 273], we get from (1)
and (5) that

(6) d(n)=(ri+1)(ry+1)=(r, +1).

On the other hand, since _zf\_,l j=a(a+1)/2 for any a €N, we see

from (2) that n|Z(n)(Z(n)+1) 2.1t implies that Z(n )(Z(n)
+1)/2=n.So we have

(7) Z())=[2n+3 -3
Hence,by (3),(5),(6) and (7),we get

r/2
(8) 1>z e 1 1

i=1r;t1 2iz1r;+1
If py>3,then from (8) we get p;==5 and

1>«/—2(§)k—2—i—1>1,
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a contradiction. Therefore,if (8) holds, then either p; =2 orp; =3 .By
the same method, then n must satisfy one of the following condi-
tions.

(i)p;=2 and r;<<4 .

(ii)py=3and r,=1.
However,by (8),we can calculate that » < 10000, a contradiction.

Thus, the theorem is proved.

3  Proof of Theorem 2

A computer search showed that (4) has only the solution 7 =56 with n
{10000 (see [11). We now let n be a solution of (4) with 75£56. Then we
have » >10000. We see from (4) that

(9) Z(n)=-d(n) (mod n)
It implies that. | :
(10) Z(n)+1=1-d(n) (mod n)

By the proof of Theorem 1,we have n|Z(n)(Z(n)+1)/2, by (2).1t can

be written as

(11) Z(n)(Z(n)+1)=0 (mod n).

Substituting (9) and (10) into (11),we get

(12) d(n)(d(n)—-1)=0 (mod n).

Notice that d(n)>1 if n>1.We see from (12)that

(13) (d(n))*>n

Let (5) be the factorization of n .By (5),(6) and (13), we obtain
(14) 1>i=1 ""( rip_;r;)z
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On the other hand, it is a well known fact that Z(p")=p" —1>(r+1)*
for any prime power p” with p” >32. We find from (14) that £ =2.

If py>3,then p/i/(r;+1)>>25/4>1 for i =1,2,*k, It implies that
if (14) holds, then either p, =2 or p; =3 . By the same method, then n
must satisfy one of the following conditions:

(i) p1=2,p,=3 and (r;,7,)=(1,1),(2,1),(3,1),(4,1),(5,1),
(6,1),(1,2),(2,2),(3,2),(4,2)or (5,2).

(ii) p1=2,92>3 and r,<5.

(iii) p;=3 and 7, =1.
However, by (14),we can calculate that » <10000,a contradiction. Thus,

the theorem is proved.
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ON A CONJECTURE OF SMARANDACHE ON PRIME NUMBERS

J. Sandor

Department of Mathematics
Babes-Bolyai University
Cluj-Napoca, Romania

Let p, denote the n-th prime number. One of Smarandache's
conjectures in [3] is the following inequality:

Pnsi/Pn £ 5/3, with equality for n = 2. (1)

Clearly, for n =1, 2, 3, 4 this is true, and for n = 2 there is
equality. Let n > 4. Then we prove that (1) holds true with
strict inequality. Indeed, by a result of Dressler, Pigno and
Young (see [1] or [2]) we have

pm»l2 < 2pn2' (2)

Thus p..1/P. < VZ < 5/3, since 3“2 <5 (i.e. 18 < 25).
This finishes the proof of (1).
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On the Smarandache Irrationality Conjecture
Florian Luca

The Smarandache Irratioality Conjecture (see [1]) claims:

Conjecture.

Let a(n) be the nth term of a Smarandache sequence. Then, the number
0.a(1)a(2)...a{n)...

is irrational.

Here is an immediate proof in the following cases:

1. a(n) =n

2. a(n) = d(n) =number of divisors of n:

3. a(n) = w(n) =number of distinct prime divisors of n:

4. a(n) = Q(n) =number of total prime divisors of n (that is. counted with repetitions);
5. a(n) = é(n) =the Euler function of n:

6. a(n) = o(n) =the sum of the divisors of n;

7. a(n) = p, =the nth prime:

8. a(n) = m(n) =the number of primes smaller than n:

9. a(n) = S(n) =the Smarandache function of n;

10. a{n) = n};

11. a(n) = a™. where a is any fixed positive integer coprime to 10 and larger than 1;

12. a{n) =any fixed non-constant polynomial in one of the above;

Here is the argument:
Assume that
0.a(1)a(2)...a(n)...

is rational. Write it under the form
0.a(1)a(2)...a(n)... = 0.ABBBB...,

where A is some block of digits and B is some other repeting block of digits. Asume that B
has length t. If there exist infinitely many a(n)’s such that the decimal representation of a(n)
contains at least 2t consecutive zeros. then, since B has lenght ¢, it follows that the block of these
9t consecutive zeros will contain a full period B. Hence. B = 0 and the number has. in fact. only
finitely many nonzero decimals. which is impossible because a(n) is never zero.

All it is left to do is to notice that if a(n) is any of the 12 sequences above, then a(n) has
the property that there exist arbitrarily many consecutive zero’s in the decimal representation of
a(n). This is clear for the sequences 1. 2, 3, 4, 8 and 9 because these functions are onto, hence
they have all the positive integers in their range. It is also obvious for the sequence 10 because n!
becomes divisible with arbitrarily large powers of 10 when n is large. For the sequence 7, fix any
¢t and choose infinitely many primes from the progression (10%72k + 1)k>0 whose first term is 1
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and whose difference is 10%*¥2. This is possible by Dirichlet’s theorem. Such a prime will end in
---00000001 with 2t + 1 consecutive zero’s. For the sequence 5, notice that the Euler function of
the primes constructed above is of the form 10272k, hence it ends in 2t + 2 zeros, while for the
sequence 6, notice that the divisor sum of the above primes is of the form 10%+2k + 2, hence it
ends in ...000002 with 2¢ 4+ 1 consecutive zeros. For the sequence 11, since a is coprime to 10, it
follows that for any ¢ there exist infinitely many n’s such that a® = 1 (mod 10%+2). To see why
this happens, simply choose n to be any multiple of the Euler function of 1072, What the above
congruence says, is that a™ is of the form .....0000001 with at least 2¢ + 1 consecutive zero’s (here
iIs why we don’t want a to be 1).

Now 12 should also be obvious. It is also clear that the argument can be extended to any
base.

It certainly seems much harder to conclude if any one of those series is transcendal or not.
Reference

(1] Smarandache Irrationality Conjectures, at http://www.gallup.unm.edu/ smarandache /

Mathematical Institute
Czech Academy of Sciences
Zitna 25, 115 67 Praha 1
CZECH REPUBLIC

e-mail: luca@matsrv.math.cas.cz

138



A NOTE ON S(n), WHERE n IS AN EVEN PERFECT NUMBER

J. Sandor
Department of Mathematics
Babes-Bolyai University, 3400 Cluj-Napoca, Romania

In a recent paper [1] the following result is proved:

If n = 2!(2*1), 21 = prime, is an even perfect number, then S(n)
= 2¥-1, where S(n) is the well-known Smarandache Function.

Since S(ab) = max {S(a), S(b)} for (a, b) =1, and S(a) < a
with equality for a = 1, 4, and a = prime (see [3]), we have the
folowwing one-line proof of this result:

S( 2¥!(2¥-1) ) = max { S(2¥'), s(2*-1) } = 2*-1,
since S(2') < 2¥! < 21 for k 2 2.
On the other hand, if 2*-1 is prime, then we have S(2*-1) = 1 (mod

k); an interesting table is considered in [2]. Indeed, k must be
a prime too, k = pi while Fermat's little theorem gives 2°~1 = 1
(mod p). From 2°°-1 = (2P-1)(2°+1) and (2F-1, 2°+1) = 1 we can

deduce S(2%-1) = max { S(2P-1), S(2°+1) } = 2°-1 since 2°+1 is being
composite, S(2P+1) < 2/3(2°+1) < 2°-1 for p 2 3. Thus, if 2*-1 is
a Mersenne prime, then S(2*-1) = s(2**-1) = 1 (mod k). If 2°P-1 and
2?’+1 are both primes, then

S(2'*-1) = max { S(2%-1), S(2%+1) } = 2%°+1 = 1 (mod 4p).
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MOMENTS OF THE SMARANDACHE FUNCTION

Steven R. Finch
MathSoft Inc.
101 Main Street
Cambnidge, MA, USA 02142
sfinch@mathsoft.com

Given a positive integer n, let P(n) denote the largest prime factor of 7 and Stn) denote the
smallest integer m such that »n divides m/

This paper extends earlier work [1] on the average value of the Smarandache function Sn)
and 1s based on a recent asymptotic result [2]:

(N

!{n SN:P(n)< S(n)}[ = oh (N)JJ for any positive integer |
n

due to Ford. We first prove:

1 Chk+ N[ NE )
Theorem 1.  E(S(N)¥) =F-Z;S(”)k =7 ;((jl )'m(k) +OLm(N)"')|

where {'(x) is the Riemann zeta function. In particular,

. In(V) 7t
lim —— E(S(N)) = — = 0.82246703...
vy ECI) =1 >
N 3
2)- ar —@=0.40068563...
Now bl
Sketch of Proof. On one hand,
In(n) . In(n) ) ln(N)
L= lim = ECP)) < im S B0 = fim T 5 5o

The above summation, on the other hand, breaks into two parts:

o D ) |
h e Nk+1

\
LZ Pt + 2.S(n)* J

(n)y=5(n) P(m)<S(m)
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The second part vanishes:

o ln(N ) [ (S(n)) ‘ ln(N) In(N) { )
< 1 = lim
v LP(n><S(n) J Voe N Lp(n);s(n) Now N In(N)

while the first part is bounded from above:

N

m(N) ( 5 P j ; ln(N) ZP( = lnf),E(P(n)k):L(k)

P(m=8(n)

A formula for L(k) was found by Knuth and Trabb Pardo [3] and the remaining second-
order details follow similarly.

Observe that the ratio {/Var(S(N)) / E(S(N)) - « as N — o, which indicates that the

traditional sample moments are unsuitable for estimating the probability distribution of
S(N). An alternative estimate involves the relative number of digits in the output of § per
digit in the input. A proof of the following is similar to [1]; the integral formulas were
discovered by Shepp and Lloyd [4].

Theorem 2.

(0.62432998 if

) [ . . 042669576 if
im £ JCWDL b x| S gy o= 1031363067 if
N In(N) k! y .

0 : 024387660 if
0.19792289 if

T
I
LU T S S B S B .

The mean output of § hence has asymptotically 62.43% of the number of digits of the
input, with a standard deviation of 19.21%. A web-based essay on the Golomb-Dickman
constant 0.62432998... appears in [5] and has further extensions and references.
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THE INTANGIBLE ABSOLUTE TRUTH

by Gheorghe Dinulescu-Campina,
"N. Grigorescu" College, Campina, Romania

In my own work "The Modelling of the Rationality" under the
basis of the MESER licence, I have enlightened a new spiritual
doctrine sustained by scientific and logical hypotheses.

The reception of the soundnes of the mentioned notion proceeds
from the Einstein's principle concerning "The internal perfection
and its external acknowlegment" but, 1like other responsible
"creators", I felt that it was necessary to consider the expression
of the feelings of the uncertainty, mine first.

Although I found many external recognitions in our great
forerunners' ideas and theories, we have not had a proven
substantiation yet (which is not by all means necessary with
philosophical hypotheses) of the hypotheses that I have forwarded.

I am willing to belive it was not accidentally that I got
knowledge of the ideas set forth by the mathematician and
philosopher Florentin Smarandache, the creator of the Neutrosophy,
as a branch of Philosophy, that studies the origin , the character,
the aim and the interactions of the neutralities from the spectrum
of ideality.

I have established that the Neutrosophy Theory, that belongs
to the mentioned thinker, sets up as the scientifically
demonstrated fundament for the great majority of the hypotheses I
have set forth in "The Modelling of Rationality".

Esentially, Professor Smarandache's Neutrosophy stimulates
that for any idea <A> there is also an idea <anti A> and another
<neut A>.

The fundamental thesis of the Neutrosophy is: if <A> is t%
true and f% false, as bivalent extremes, as a matter of course i%
is indeterminant, as a result, t+i+f=100 (or t%+i%+f%=1) which
gives a meaning, easily altered, to the usual notions as, for
example, the one of complementarity.

Consequently, the complement of t is not f, but i+f, and the
complement of f is not t, but t+i.

Florentin Smarandache's theory of Neutrosophy suggests also
the fact that any hypothesis has a nature of extreme (it allows an
anty-hypothesis and a neutro-hypothesis) which is not bad because
t+i+£f=100 must be considered dialectically, where both t and f tend
to be decreasing without annihilating each other in the advantage
of i. '

Far from the idea that any hypothesis should not have a nature
of extreme, just such a nature is desirable to generate polemics
which, in case of confrontation, draws nearer t and f aiming at the
neutral equilibrium of the t+f+i=100 relationship, that provides
the opportunity of accomplishment.

The theory of Neutrosophy makes obvious the relative nature of
the truth and the false, only the neutral nature tending to the
absolute owing to its force of accomplishment.
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Thanks to the specifications that are stimulated in
Smarandache's Neutrosophy, the hypothesis of the MESER concept as:
the complementarity between the sacred and the profane, between the
divine creation and the intra-specific evolution, the non-
contradiction between science and religion,
materialism(substantialism) and idealism, between gnosticism and
agnosticism, prove to be rational and therefore real and the
paradoxes become justified.

Related to the sense of knowledge the MESER concept identifies
two modalities: the scientific knowledge that specialises knowledge
"more and more from that <<less and less>>" and the philosophic,
encyclopaedic knowledge "less and less from that<<more and more>>".

If <the first modality is 1limited especially by the
posibilities of communication, the second one is also limited by
the insufficient power of comprehensibility of the human mind.

The equilibrium between the two directions which, in the last
analysis signifies the way to the truth, is ddetermined by the
divine laws of the dissociations, purification (the selection and
the dissolving of what is settled, established for good) and those
of monadic recomposition, laws that ascertain for the general
knowledge a social character, expressed by the syntagme "more and
more from <<more and more>>" rendered by the well-known paradox
"the more you learn, the less you know."

After all, the fundamental law of Neutrosophy is a succesful
attempt for resolving the paradox of the knowledge and confirms
that the absolute truth is intangible not in a derogatory way but
in an optimistic one, approved and significant by the will of God.

Being operative even in the case of the characteristic
interpretations, as the present one, Neutrosophy confirms its
viability even by the fact that it suggests methods, modalities of
evaluations, and new interpretative views.
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ADVANCE OF SMARANDACHE APPROACH TO
SOLVING SYSTEMS OF DIOPHANTINE EQUATIONS

Y. V. CHEBRAKOV
Department of Mathematics, Technical University,
Nevsky 3-11, 191186, St-Petersburg, Russia
E-mail: chebra®@phdeg.hop.stu.neva.ru

By developing F.Smarandache (algebraic) approach to solving systems of
Diophantine equations we elaborate a set of new computative algorithms and
analytical formulae, which may be used for finding numerical solutions of some
combinatorial and number-theoretic problems.

Key words: systems of Diophantine equations, algebraic approach, combina-
torics, number theory, Magic and Latin squares.

1 Introduction

Let it be required to solve some system of Diophantine equations. In this case !alge-
braic methods can be applied for

a) constructing the total algebraic solution of the system;

b) finding the transformations translating an algebraic solution of the system
from one form into another one;

c) elucidating the general legitimacies existing between the elements of the alge-
braic solution;

d) replacing the total algebraic solution containing L arbitrary selected parame-
ters by a set of algebraic solutions containing less than L parameters.

This paper is devoted to further advance of algebraic approach to solving
systems of Diophantine equations. In particular, in this investigation we

1) describe the simple way of obtaining a total solution of systems of
Diophantine linear equations in the integer numbers, and show (see Sect. 2) that this
way may be considered as some modification of F. Smarandache algorithm 3 from
his work 2;

2) demonstrate the effectiveness of the algebraic approach to the elaboration of
computative algorithms and analytical formulae, which may be used respectively for
obtaining the required numerical solutions of the discussed systems and for count-
ing of the total quantity of solutions from a given class of numbers (Sect. 3);

3) derive analytical formulae available for constructing classical Magic squares
of both odd and even orders (Sect. 4).

2 The way of obtaining the total solution of systems of Diophantine
linear equations in the integer numbers

Let it be required to solve some system of linear Diophantine equations in the
integer numbers. It seems to be evident, that there is no complication in solving this
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problem at present. For instance, one may find in the work ? as many as five
different algorithms to obtain a total solution of this problem, which correctness are
proved by mathematical methods and illustrated by concrete examples. In particular,
to illustrate the correctness of an algorithm 3, the system from three following
equations

3x, +4x, + 22x, — 8x,=25
6x, +  46x,—12x,=2 1)
4x, +3x; — x, + 9x, =26

are solved in the work %. The final solution, obtained for (1) by the mentioned algo-
rithm, has form

x, = —40k, - 92k, +27; x, =3k, +3k,+4; x,=-11k +8; 2)
x, =6k +12k, ~4; x,=3k -2,

where k| and k, are any integer numbers.

Let us clear up a question whether (2) is the total solution of system (1) in the
integer numbers. To make it we will solve (2) by the algebraic methods with testing
their correctness on every step of our computations.

1. As well-known ! =3, the total algebraic solution of the system (1) may be found
by standard algebraic methods (for instance, by Gauss method). In our case it has the
form

x, =—(23x, —6x,-1)/3
X, = (x, +2x,+24)/4 (3)
x;= (-1lx,+2)/3

that coincides with the solution found on the first step of the algorithm 3 of the
work %,

2. As well-known from the theory of comparison ™ *, the total solution in the inte-
ger numbers for the last equation of the system (3) has the form x3= {-11(3m+
mg)+2}/3, where m, is any integer number; the value of my is equal 0, 1 or 2 and
1s chosen from the condition that the number (—11my +2)/3 must be integer. Thus,
we find on second step of our computations that xs=3m;+ 1 and x3=-11m;-3.

We note that the solution xs=3k;—2 of (2) may be obtained from our solution
by change of the variable m; to k;-1. Thus, both values of x5 are identical
solutions.

3. Let us get to solving the second equation of the system (3) in the integer num-
bers. Replacing the value of xs by 3m;+1 in this equation we obtain that
X2=6 + (6m;+ x4+2)/4. Hence it appears (see point 2) that x4 = (-2+4l))m;-2+41,,
where /| and /; are any integer numbers.

4. Replacing the value of x4 by (-2+4/,)m;—2+4/, in the first equation of the sys-
tem (3) we obtain that x; = 2x5—{23(-2+41;)m; + 921, - 47}/3. Hence it appears (see
points 2 and 3) that /; = 3my+2 and /, = 3m3+1 and, consequently, the total solution
of the system (1) in the integer numbers has the form
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Xy = —4m1 (23M2 + 10) - 92M3 -13; X = 3m1 (m2 + 1) + 3M3 +7; 4)
x;=-1lm -3; x,=6mQ2m, +1)+2(6m, +1); x,=3m +1,

where m;, m; and m; are any integer numbers.

Comparing (4) with (2) we find that

a) the solution (4) contains greater by one parameter than solution (2);

b) if my=0, m,=k;~1 and m3= k; in the solution (4) then the solution (4) coin-
cides with the solution (2). ‘

Thus, the solution (4) contains all numerical solutions of the system (1), which
may be obtained from (2), but a part of numerical solutions, which may be obtained
by (4), can not obtain from (2) or, in other words, (2) is not the total solution of the
system (1) in the integer numbers.

We add that, in general, a partial loss of numerical solutions of systems of linear
Diophantine equations may have more serious consequences than in the discussed
case. For instance, as it has been proved in the work > by using the algebraic
approach to solving systems of Diophantine equations,

if Magic squares of 4th order contain in its cells 8 even and 8 odd numbers then
they can not have structure patterns another than 12 ones, adduced in works L3.5-7
for Magic squares, contained integer numbers from 1 to 16.

In reality, this statement is incorrect because yet several new structure patterns
may exist for Magic squares from 8 even and 8 odd numbers " 3,

3 Analysing a system from 8 linear Diophantine equations

To demonstrate the effectiveness of the algebraic approach to solving some combi-
natorial and number-theoretic problems, presented in the form of systems of Dio-
phantine equations, in this section we will analyse the following system from 8
linear Diophantine equations

l. ay+as+a3z = S, 4, ai+as+ar = S, 7. ay+as+ay = S, (5
2. as+as+ag = S, 5. aa+as+ag = S, 8. as+as+a; = S.
3. ar+ag+ag = S, 6. as+ag+as = S,

We note if symbols ay, a, ..., as are arranged as in the table 1, shown in figure,
and their values are replaced by ones, which are taken from some total algebraic
solution of the system (5), then table 1 will be transforred into the total algebraic
formula of Magic squares of 3rd order. In other words, the discussed problem on
solving the system (5) connects direct with the well-know ancient mathematical
problem on constructing numerical examples of Magic squares of 3rd order.

3.1 Requirements to a set of numbers, which is the solution of the system (5)
Proposition 1. A set of nine numbers is a solution of the system (5) only in the case

if one succeeds to represent these nine numbers in the form of such three arithmetic
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progressions from 3 numbers whose differences are identical and the first terms of
all three progressions are also forming an arithmetic progression.

Proof. Using standard algebraic methods (for instance, Gauss method) we find
that the total algebraic solution of the system (5) has the form

ay =2as—ay; ay=2a9+as—2as; as3=3as—as—as; as=2as-—das; (6)
a1 =ay +as—as, ag=4as~2a9-as,

where values of parameters as, as and ay are chosen arbitrarily. Arranging solutions
(4) in order, shown in the table 2 (see figure), we obtain the table 3. It is noteworthy
that arithmetic progressions with the difference 2as- as — a9 place in the rows of
the table 3, whereas ones, having the difference as—as, place in its columns. If one
introduces three new parameters a, b and c by the equalities as=a+b+c, ag=a+
2c and ag =a + b into the table 3, then this table will acquire more elegant form,
which it has in table 4, and so the fact of existing of the arithmetic progressions in it
will receive more visual impression. Thus, the proof of Proposition 1 follows
directly from the construction of tables 3 and/or 4 and it is appeared as a result of
using the algebraic methods, mentioned in the points (a) and (c) of Sect. 1.

a|ay|as 2a9 + ag — 2as ag 2as - as

as | as | as ag + ag — as as 3as—as —ay

ay | as | ag as 2as-ag 4as - 2a9 — ag
¢Y) 3)

a, | ag | a4 a a+b a+2b

ar | as | a3 a+c a+b+c a+2b+c

as | ai | ag a+2c a+b+2c a+2b+2c
(2) 4)

Figure. Elucidating the general legitimacies existing between the elements of

the solution (6).

3.2 Elaboration of a universal algorithm for finding all numerical solutions of the
system (5) from a given class of numbers

Let it be required to find all numerical solutions of the system (5), which belong to
the given class of numbers and has as=f. For elaboration of a universal algorithm,
solving this problem, we first write out all possible decompositions of the number 2f
in the two summands of the following form

2f = xi(j)+ x(j) @)

where j is the number of a decomposition; x;(j ) and x2(j) are two such numbers
that x;( j ) < x2(j ) and both ones belong to the given class of numbers. In a complete
set of various decompositions of the kind, we fix only one, having, for instance, the
number k. Determine for it the number d(k)

dik) = 2f- x(j)- ®)
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Proposition 2. The desirable numerical solution of the system (5), which con-
tains as = f and numbers x,(k) and xa(k) of (7), can be found only in the case, if one
succeeds to find, among the remaining numbers of the form x\(k), an arithmetic pro-
gression from three numbers with the difference d(k).

Proof. The truth of Proposition 2 follows from the construction of the tables 3
and/or 4, shown in figure.

It is evident also, to obtain a complete set of solutions of the system (5) from the
given class of numbers, one should repeat the foregoing actions for all the differ-
ences d(k).

3.3 Deriving an analytical formula for counting the quantity of various solutions of
the system (5) from natural numbers

Proposition 3. If A(m) is the total number of various solutions of the system (5)
from natural numbers and as= m then its value may be computed by the formula

A(m) = 9[m/6)* + {3 (mmod 6) — 8)[m/6] +2 — 2 [{(mmod 6) +5}/6]+  (9)
[(m mod 6)/5).

Proof. We first write out all possible decompositions of the number 2m in two
distinct terms.

2m = 1+2m-1) G=1, d(1) = m=1), (10)
2m = 2 +(2m-2) (j=2, d(2) = m-2),

-----------------------------------------

2m=m-2 +(m+2) (j=m-=2, dm-2) = 2),
2m=m-1 +(m+1) (j=m-1, dm-1) = 1).

The problem on counting total number of various solutions of the system (5) with
as=m is now reduced, in accordance with the universal algorithm of Sect. 3.2, to
counting a total number of various arithmetic progressions consisting of three num-
bers, which may be composed from the numbers 1, 2, ..., m —2, m — 1 and such that
the differences in these progressions are respectively equal to d(m — 1), d(m - 2), ...,
d(1).

To simplify this new problem we shall deduce a recurrence relation which will
link the total numbers of various solutions having as=m and as=m - 1. For this
aim we decompose all the solutions with as=m in two groups. The solutions, hav-
ing number 1, will be attributed to the first group. A total number of such solutions
will be denoted by A;(m). All the remaining solutions we shall attribute to the
second group. We decrease now each number by 1 in all solutions of the second
group. After this operation, a lot of the second group solutions will represent by
themselves a complete set of various solutions from natural numbers with as=m - 1.
Thus, the following relation

A(m) = A((m) + A(m=1) (11)
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is valid or, in other words, if we know a value of A(m - 1) then for finding the value
A(m) it will be sufficient to count the number of the solutions containing as=m and
the number 1. This new combinatorial problem can be reformulated as the following
one

to find a total number of various arithmetic progressions from three numbers
which can be composed from the sequence of numbers 1, 2, ..., m —2, m — 1 and
such that the first number of these progressions is number 1 and the differences of
the progressions are respectively equal tod(m - 1), dm -2), ..., d(1).

It seems to be evident, that a total number of the desired progressions coincides
with the maximal difference value of the progression Dma: for which one can still
find an arithmetic progression of the required form from the set of numbers 1, 2, ...,
m~—2, m— 1. The value of D, can be found from the correlation 1 + 2Dp, =m -1,
whence Dmax = [(m — 2)/2], where square brackets denote the integer part. But in
reality this value of Dy, is not always coinciding with the value of A;(m): to elimi-
nate this non-coincidence we must decrease the total number of arithmetic progres-
sions by one if numbers 1 + d(k) or 1 + 2d(k) coincide with the number x,(k) of
.

Let us determine at which values of d(k) this coincidence occurs:
1 +d(k1) =k = m—d(kl); 1+2d(k2) =k = m—d(kz), (12)

whence d(k;) = (m — 1)/2, and d(kz) = (m — 1)/3. If d(k;) = (m — 1)/2 the number 1 +
2d(k;) > m — 1. Consequently, this case is never fulfilled. The coincidence occurs in
the second case if m — 1 is multiple of 3.

If we decompose all m-numbers in six classes so that the numbers of the form 6k
will be attributed to the first class and those of the form 6k + 1 — to the second one
and so on, where k = 1, 2, ..., then for all six classes of the m-numbers one can write
out in the explicit form the values of Dmax and Aj(m):

m= 6k, Dpay = 3k-1, A(6k)=3k-1; (13)

m=6k+1, Dpar = 3k-1, A(6k+1)=3k-2;

m=6k+2, Do = 3k, Ay(6k +2)=3k;

m= 6k + 3, Dpax = 3k, A (6k + 3) = 3k;

m =6k + 4, Dpax = 3k+1, Ay(6k+4)=3k;

m=06k+35, Dmax = 3k+1, A(6k+5)=3k+1.

Further we shall need the value of the difference AA(k, i) of the following form
AA(k, i) = A(6(k+ 1) +1i) = A(6k + i), (14)

where i = 0, 1, ..., 5. Using (14), (13) and (11) we may find an explicit expressions
for AA(k, i). Let, for instance, i = 0. Then

AA(k, 0) = A(6(k + 1)) — A(6k) = A(6(k+ 1)) + Ay(6k +5) + (15)
+ A6k +4) + A1(6k +3)) + A(6k+ 2) + Ai(6k + 1) =
={3k+1)~1}+GBk+1)+3k+3k+3k+(3k=-2) = 18k+1.
Remaining values of AA(k, i) fori =0, 1, ..., 5 can be found analogously:
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AAk, D) = 18 + 1 + 3i. (16)

It is evident, since the AA(k, i) is a linear function from k, values A(6k + i) may
be obtained from the second degree polynomial

A6k +i) = by() ® + by(D) k + boli), a7

where b2(i) =9, bi(i) =3i-8, bo(i) = 2 - 2[(i + 5)/6] + [i/5]; square brackets mean
the integer part. Taking into account that i = (mmod 6), k=[m/6] and 6k+i =m
we may obtain (9) from (17).

It should be noted that using regression analysis methods one may appreciably
simplify 59 the expression (9):

A(m) = g{(3m® — 16m + 18.5)/12}, , (18)

where the notation g{a} means the nearest integer to a.

4 Algebraic approach to deriving analytical formulae available for
constructing classical Magic squares of the n-th order

We remind that in the general case-? Magic squares represent by themselves
numerical or analytical square tables, whose elements satisfy a set of definite basic
and additional relations. The basic relations therewith assign some constant property
for the elements located in the rows, columns and two main diagonals of a square
table, and additional relations, assign additional characteristics for some other sets of
its elements. In particular, when the constant property is a significance of sum of
various elements in rows, columns or main diagonals of the square, then this square
is an Additive one. If an Additive square is composed of successive natural numbers
from 1 to nz, then it is a Classical one.

It is evident!0-! that, from the point of view of mathematics, the analytical
solution of the problem on constructing Classical squares of the n-th order consists
of determining a form of fand g functions, which permit to compute the position for
any natural number N from 1 to n? in cells of these squares: x = fiN, n) and y = g(N,
n).

In this section we

1) adduce two types of analytical functions, by which one may construct Classi-
cal squares of odd orders;

2) reveal a connection between these analytical functions and Latin squares;

3) give an algebraic generalisation of the notion *“Latin square”;

4) derive analytical formulae available for constructing Classical squares of both
odd and even orders.

4.1 Classical approach to deriving analytical formulae available for constructing
Magic squares of odd order from natural numbers

For any linear algorithmic methods of constructing Classical squares of odd orders,
the functions f and g have the following forms > ' '!;
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AN, n)=a(N-1) + bj[(N=1)/n] + ¢, (mod n), (19)
&N, n) = ax(N-1) + b[(N-1)/n] + c3(mod n),

where square brackets mean the integer part; a sign “=” is the modulo n equality; N
is any natural number from 1 to n% ay, b,, ¢, and a,, bs, 3 are such integral coeffi-
cients, that the numbers ay, a3, by, bs; a\by — asb; az—ay, bo—by, ax+a;and by +
b, are mutually disjoint with n.
There is no difficulty in counting that in formula (19) the coefficients {ay, by, ci,
ay, by, 3} are equal3' 10,11

— {1, 1,~[n2]; 1, -1, [n/2] } for Terrace algorithmic method of constructing
Classical squares; :

— {1, -1, n/2}; 1,-2, n -1} for Siamese method;

—(1,-1, [n/2); 2,2,0} for Knight method;

—{@B=-ag+@+1)2,B-aqg+@-1)2,0; B-a)g+(a-1)2,3-a)
+(@a+1)2,0} (where g =[(n + 1)/6], a =n-6q) for the classical square of the n-
th order, which, if n is an odd number, non-divisible by three, can be formed also
from a pair of orthogonal Latin squares, constructed by the pair of comparisons x +
2y (mod n) and 2x + y (mod n); and so on.

It should be noted, that the above conditions for coefficients of functions f and g
become contradictory for even n. For example, by the conditions, the coefficients
ay, az, by and b, of the functions f and g of (19) should be mutually disjoint with n,
and consequently, if n is even, they must be odd. The same requirement must be the
true for the number d = a,b; — azb,. But if ay, a,, b, and b, are odd, the number d,
which is the difference of the two odd numbers, will be an even number.

Thus, an essential fault of linear formulae of (19) is the impossibility of using
them for constructing Classical squares of even orders.

4.2 Revealing a connection between Latin squares and analytical formulae of (19)

Propeosition 4. If a Classical square of the n-th order is constructed by formulae
(19), then it may be constructed also by the formula

NGx,y) = npx,y) + r(x,y) + 1, (20)
where p(x,y) = oux+ Piy+ 6, and r(x,y) = tox+ P2y + Oa.

Proof. The equivalence of formulae (19) and (20) appears from their linearity
and the fact, that (20) are inverse formulae to (19). In particular, if values of
coefficients {ay, by, c1, @2, ba, 3} of formulae (19) are known then values of {o, Bi,
G1, O, B2, 62} of formulae (2) may be computed from following linear equations '

moy = —ay; mPi= ay; mOy=a@c —aicy; D
moy = by; mBzE —b;;mo2 = bicz — bacy;
m = a\b, — ab,

and, reciprocally, at the reverse task, the values of {ay, by, c1, a3, by, ¢2} may be
computed from equations:

151



Ha;= ~B1; pbi= By pei=pi02 — B2oy; (22)
Har = a;; Hby= —0; Hea =00 — 0402
K= (1152 - azﬁl.
For instance, values of {ay, B, 61, 0, B2, 02} of formulae (20) are equal
— {(n+1)/2, (n-1)/2, (n=1)/2; (n+1)12, (n+1)/2, 0 } for Terrace method;
— {1, n-1, (n-1)/2; 2, n-1, (n~1)/2\} for Siamese method;

— {[n2), a,n—a; (n+1)/2, a, a } for Knight method, where a = dc + (n—d) (1-
¢), d=[(n+1)/4], c = [(n mod 4)/2].

We remind > 12 that, a quadratic table nxn in size is Latin square of n-th order if
only n elements of this table are different and each of these n elements occurs only
one time in each row and column of the table. The two Latin squares P and R of the
same order n are called orthogonal if all the pairs, formed by their elements p;; and
rij (i 1s the number of a row; j is the number of a column) are different.

Proposition 5. If elements of a Latin square of the n-th order are numbers 0, 1,
..., n=1, then, for constructing such Latin square, one may use a linear comparison

Lix,y)= ax+ By+ ©, : (23)

where a and B are integer numbers, which are to be mutually disjoint with n; O is
any integer number.

Proof. Let the numbers L(x, y) of (23) are located in each cells of a quadratic
table nxn in size. We consider n numbers, which are located in row y, of this table.
Since the discussed numbers are obtained from the linear comparison (23) at x = 0,
1, ..., n =1, to show that all they are different, we should demonstrate that they
belong to different modulo n classes. Let x; > x; and ax;+ Byo+ 0 = ax
+ Byo + 6. Since P yo+ O is a constant, in accordance with the properties of com-
parisons >, we obtain the new equality ax; = o.x. Hence, since o is mutually dis-
joint with n, x; = x;. But this equality contradicts our assumption. Thus, each of
numbers 0, 1, ..., n = 1 occurs only one time in each row and column of the dis-
cussed table and so this table is Latin square of n-th order.

Proposition 6. Every Classical square of the odd order, decomposed on two
orthogonal Latin squares, may be constructed by the formulae (19) and otherwise.

Proof. The truth of Proposition 6 follows directly from Propositions 4 and 5 and
conditions for coefficients of functions f and g of (19).

4.3 Deriving analytical formulae available for constructing Classical squares of
both odd and even orders

The way 1. Let us give an algebraic generalisation of the notion “Latin square”:

a quadratic table nxn in size is the generalised Latin square of n-th order if only
n elements of this table are different and each of these n elements occurs only n
times in this table.
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Propeosition 7. Every Classical square of a order n may be decomposed on two
orthogonal generalised Latin squares P and R of the order n.

Proof. To prove Proposition 7, it is sufficient to note that
a) any integer number N from 1 to n® may be presented in the form

N=np+r+1, 24)

where p and r can take values only 0,1, ..., n -1;

b) each of values 0,1, ..., n -1 of parameters p and r occurs n times precisely
in the decomposition (24) of numbers N.

Thus, to construct two orthogonal generalised Latin squares P and R from a
Classical square of a order n, one should replace in the Classical square all numbers
N by respectively (N—1)modn and [(N-1)/n].

Proposition 8. Every Classical square of order n may be constructed by the
formula (20), in which functions p(x, y) and r(x, y) may belong, in general case, 10
both linear and non-linear classes of ones.

Proof. The truth of Proposition 8 follows directly from Propositions 7 and mate-
rials of Sect. 4.1.

We note, in particular, one may construct Classical squares of even-even orders n
(n = 4k; k= 1,2, ...) by the analytical formula (20), in which functions p(x, y) and
r(x, y) have the following forms >3

p(x,y)=cx+(1—c)(n—le) and rix,y)=(1-¢c)y+c(n-y-1), 25
where ¢ = {[ (x+1)/2 ] + [( y+1)/2]} mod 2; or
px,Y)=cd-x-1+(1-c)(n-d) and r(x,y)=by+(1-b)y(n-y-1), (26)

where c=(x+y+a)mod2; d=(1—-a)y +a(n-y-1); b= {[(x+3)/2] + [ y/2] +
a} mod 2; a=[2y/n]; and so on.

The way 2. It is evident, we may consider Classical squares not only as the sum
of two orthogonal generalised Latin squares (see the way 1) but, for instance, as
quadratic tables whose rows contain certain numerical sequences. Let us look into
the problem on finding universal analytical formulae for constructing Classical
squares from this new point of view.

Proposition 9. If a Classical square of the n-th order is constructed by formulae
(19), then it may be constructed also by the formula

Nx,y)= a + b - Ag, 27
where a, b and ¢ are any integer numbers; A is 0 or 1, the sign “=" is the modulo
n? equality. .

Proof. Let a Classical square of an odd order is constructed by formulae (19). It
follows from Proposition 4 that this square may be constructed also by formulae
(20). We deduct x-th element of first row from every x-th element of all y-th rows of
the Classical square. It is evident that the number
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{ nf(a;x+Py+6;)modn} — n{(0o; x +6,) mod n} + (28)
(t2x +By+06)modn — (0 x +G2)modn ) mod n’.

will be located in the cell (x, y) of the reformed Classical square (see (20)}. Using
the equality (dn) mod n® =n (d mod n) we present (28) as the sum of two summands

n{(B1y)} mod n + {(02 x +B, y +02) mod n — (02 x + G2) mod n}. (29)

The second summand of (29) may have only two values: (B2y) modn or n—(B2y)
mod n. Thus, we obtain that numbers of any y-th row of the reformed Classical
square may have only two values. By using the mentioned method of constructing
formula (27), we find that parameters of this formula a, b, ¢ and A are connected
with parameters of the formula (20) by correlations

a=n{(c;x+06;)modn} + (02 x+ G2) modn, (30)
b=n{(B1y)ymodn}+ (By)modn, c=n,
A=[1- sign{(oz2x +Bry+(64)modn— (czx+(64)modn } /2,

where sign(x) =!x ¥x if x#0 and sign(0) = 0.

It should be noted, if we get off the sign “=" in the formula (27) and translate
correlations (30) into language of numerical sequences {see the point (c) of Sect. 1},
we obtain that, for algorithmic methods which mentioned in Sect. 4.1 and 4.2, the
parameters of formula (23) are determined by correlations

a=-(=1)n(n-1)/4 + kn + D2 +{n(n-3) +2}/4, (31)
b=n-1~-y, c=n, A=[sign{(h-y)+2}/2],
h=[22]=-1+(n+1)(22-[22]),

6,Z)=y+z+2—-n{sign{ (y+z-n+1+2}12], ki =0)x)

where the numerical sequence {a,}, if its values are computed at k=0, 1, ..., n -1,
coincides with the numerical sequence, located in the first row of the Classical
square; 0,(?) is a permutation operator of numbers 0, 1, . . ., n—1 and for

— Terrace method k=k;, z=k; - 1;

— Siamese methodz= {n-2(k;- 1)} mod n, k= z+1;

— Knight method k> = 6,(k; = 1), 2= =(=1)"n/4 + ka/2 + (n+4)/4, k= z+1.

It is evident, using the formula (27) with parameters (31), one can have no diffi-
culty in discovering “genetic connections” between different Classical squares
and constructing methods and in generating a set of new methods. For instance, if n
is an odd number, non-divisible by three, the new algorithmic methods for
constructing Classical squares of odd orders appear when k; = 6,'(x) or k; = 0',7(x)
in (31), or the form of 6, and/or the numerical sequence {ax} is changed.

It remains for us to add that parameters of the formula (27) are determined by
correlations

a=nk, b=w, c=n=2w-1, A=I[((k+2)mod 4)/2], (32)
Ou)=1+{z-h(2(z+h)mod2)-1)} modn,

154



h=y+c[y[y/2]], ki=0.7)

for formulae (25) and (26), where 6,,(z) =1 + {z=h (2((z + h) mod 2) -1)} mod n; h
=y+c[y[y2]); ki =0.(z)and for
—the formula (26) z=x; w=y; k=k;

— the formula (25) A, = [((y+ 1) mod 4 )2); k= ki; Az = [((x+1+2X,) mod
$HR); z=@+n—-h(1-2(x,mod?2)) modn; x;=2Ax+1-2)(n-x-1);
w=hyHl=-A)(n-y-1).
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ANALYTICAL APPROACH TO DESCRIPTION OF SOME
COMBINATORIAL AND NUMBER-THEORETIC
COMPUTATIVE ALGORITHMS

Y. V. CHEBRAKOV and V.V.SHMAGIN
Department of Mathematics, Technical University,
Nevsky 3-11, 191186, St-Petersburg, Russia
E-mail: chebra@phdeg.hop.stu.neva.ru

We discuss the theme on translating different descriptions of computative algorithms
into high-level programming languages, enumerate some advantages of analytical
descriptions and demonstrate that logical functions may be used effectively to create
analytical formulae available for describing a set of combinatorial and number-theo-
retic computative algorithms. In particular, we adduce analytical formulae to
generate /-th prime numbers p, permutations of order m, k-th numbers of
Smarandache sequences of 1st and 2nd kinds and classical Magic squares of an
order n.

Key words: computative algorithms, analytical approach, logical functions,
combinatorics, number theory.

1 Introduction

As well-known ? verbal and diagram (graph-diagram) techniques available for
describing computative algorithms are the most wide-spread at present. For instance,
Euclidean algorithm, allowing to find the greatest common divisor (GCD) of the
positive integers a and b (a > b) has the following verbal description *

1. Assignm =a, n=b;

2.Find r =m mod n;

3. If r> 0, then pass to 4. Otherwise, pass to 5;

4. Assign m =n, n=r and pass to 2;

5. Answer: GCD(a, b) =n.

Since all computative algorithms are realised, as the rule, on computer at present,
the main fault of the verbal description of computative algorithms is the necessity of
translating this description into one of special computer-oriented languages.

The diagram form of the description of computative algorithms allows to
simplify slightly the process of such translation. In particular, the diagram form of
Euclidean algonthm is shown in figure 1, where squares with digits 1, 2, 4, 5 and
the thomb with the condition r > 0 mean respectively to points 1, 2, 4, 5 and 3 of
the verbal description.

ves

Figure 1. Diagram form of the description of Euclidean algorithm.
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The logical technique* available for describing computative algorithms is less
known than verbal and diagram descriptions, but just it gives easier way to obtain a
program code. In particular, we may present the logical description of Euclidean
algorithm in the form

AdPA0s T ART LA, (1)

where A, are elements of the vector operator A = {(m = a, n = b), {r = m mod n),
(D), {m=n,n=r),{n)}; o are elements of the vector conditional jump & = {{(),
(D), (r>0), (D), (D)}; (D) is the blank in A and o T,and I’ are arrows
indicating respectively points of departures and destinations; B is the unconditional
jump instruction.

We note that, generally speaking, an one-to-one correspondence exists between
three foregoing techniques for describing computative algorithms. In other words
these techniques are identical in substance.

One of modern techniques available for describing computative algorithms is
using the built-in predicates calculus, realised, for instance, in Prolog 3. In particular,
we may represent Prolog description of Euclidean algorithm by three statements

GCD(0,V, V). )
GCD(NS,VS,V):-NS1 is VS mod NS, GCD(NS1,NS,V).
7-GCD(b, a, V).

Where the second statement is the direct record of the recursive computative
procedure, allowing to find GCD(a, b); the first one determines the condition to
finish this procedure; the third one is constructed to introduce the concrete values of
numbers of Euclidean algorithm; NS, NS1, V and VS are internal variables of the
procedure and V = GCD(a, b) after calculations. The main obstacle of this technique
spreading is necessity of preliminary good knowledge of predicates calculus theory.

This paper is devoted to an advance of analytical approach to describing some
combinatorial and number-theoretic computative algorithms. Since at present any
analytical description of the computative algorithms allows to automate the process
of obtaining the program code, we suppose that the discussed theme appears to be
interesting.

2 Constructing analytical formulae by using logical functions
2.1 Formulae to generate n-th prime number p,

In our view, the most impressive application of logical functions in elementary
number theory is the formula > § to generate n-th prime number p,:

(n+1)?+1 m

po= 2 se(n+1- 2 (kDY - K{(k =D / kD), ®)
m=0 k=2

where po =2, p1 =3, ...; square brackets mean the integer part; sg is a logical

function: sg(x)=1 if x>0 and sg(x) =0 if x <0. Let us find another analytical
formula for p, without factorials.
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As well-known™ 7, any prime number has exactly two divisors: the unit and
itself. Thus, any integer number a is a prime one if it has not divisors among integer

numbers from 2 to [va ] or, in the language of analytical formulae, if
il
X.= 11{sgla—/li/j1)}, (4)
j=2

then a is a prime only when = 1. It appears directly from (4) and (3) that the
desirable formula for p, has form

(n+1)2+l m ‘
Po= Y, sgn-1- 2%, (%)
m=0 a=3

where p,=2,p3=3,ps=5, ....

2.2 The analytical description of the permutations generator

As well-known>?

a) the permutation of order m is called any arrangement of m various objects in a
series;

b) the verbal description of the simple algorithm available for constructing all the
permutations from m objects, if all the permutations from m — 1 objects have been
already constructed, has form

Enumerate m — 1 various objects by the numbers 1, 2, ..., m—1. For each
permutation of ay, a, ..., a containing the numbers 1, 2, ..., m — 1, form m other

m-1

permutations by putting the number m in all the possible places. As a result
obtain the permutations:

m, ai, @, .., a,_,; (6)
ai, m, az, ..., d

a, az, ..., a

It is evident that one can obtain all the permutations of order m by this algorithm
and none of the permutations of (6) may be obtained more than once. If this verbal
description we translate into one of special computer-oriented languages, for
instance, into Pascal, then we obtain the program code, shown in table 1. This
program works correctly at initial conditions m4 =1; nl =m and the array nb3
contains such numbers in the first m cells, which should be rearranged, and has
following advantages over the verbal description

a) the knowledge of all permutations from m — 1 objects is not required for
generating the permutations of order m;

b) permutations are realised with any set of numbers, contained in the first m
cells of the array nb3.
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Table 1. The representation of the permutations generator as Pascal program.

Procedure Perm(Var m4,n1,n:Integer; If m2=n Then
Var nb3,nb4,nb5:Ten); Begin
Labei A28,A29,A30; nb5[n]:=-1;Goto A29;
Var nt,k,m2:Integer; Endg;
Begin If Abs(m2)>0 Then Goto A30;
if m4=1 Then nb5[n):=1;Inc(k);
Begin A29:
m4:=0;n:=n1; If n>2 Then
For k:=2 to n do Begin
Begin Dec(n);Goto A28,;
nb4{k]:=0; End;
nbS[k}:=1; Inc(m2);m4:=1;
End; A30:
Exit; m2:=m2+k;
End; nt:=nb3[m2];
k:=0; n:=n1; nb3[m2]:=nb3[m2+1};
A28: nb3[m2+1]:=nt
m2:=nb4[n}+nb5[n];nb4[n]:=m2; End;

It should be noted that the main fault of both the verbal description and the
program code is the fact that the knowledge of the previous permutation of order m
is required for constructing the next permutation from m objects. To eliminate this
fault one may use a set of analytical formulae 6

n=pi—a+l, p=j-1+f(1-g)+¢m-j-j, M
f= i, — (m_j+1)[tj—l/(m—j+1)],

s=1k/[Tm-g+D1  g=lenY-1l2,
g=1
zi=sg(l+p,,—pi—22) *z2, z2=sg(l+p, ,—pi—z3) + 23, ...,
z;-y =sg(1+ p1-p)),

where k is a number of permutation, generated of (7); r; is a number, which j-th
element of the initial sequence nb3 has in k-th permutation; the all another
parameters in (7) are auxiliary.

2.3 The formula for counting the value of GCD(a, b)

We may present one of possible formulae available for counting the value of
GCD(a, b) {see Sect. 1} as

GCD(a, b) = b{1 —sign(r)} + ksign(r), r=a-bla/b], (8)

(b}
k= Miﬂ\zX i1-d)}, d=sign{a—i[a/i]} xsign{b—-i[b/il},
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where the function MAX(a,, a3, ..., a,) gives the greatest from numbers ay, ay, ...,
a,; sign(x) =l x |/x if x #0 and sign(0) =0.

2.4 Formulae for the calculation of n-th numbers in Smarandache sequences of
1st and 2nd kinds

As we found earlier’, the terms of six Smarandache sequences of 1st kind® may be
computed by means of one general recurrent expression

grn)=0(a,10¥@) +a, +1), ©)

where @(n) and y(a,) are some functions; G is an operator. For instance,
a) if o(n) = n+1, 6 =1 and y(a,) =[lg(n + 1)] + 1 then the following sequence
of the numbers, denoted as S-sequence, is generated by (9)

1, 12, 123, 1234, 12345, 123456, ... (10)
Let each number Y 4, determined as

(g(k+0,5)] .
v = -1+ Y (k+1-107), (11)
=0

correspond to each number a; of sequences (10), where the notation “[lg(y)]” means
integer part from decimal logarithm of y. Using (11) we may construct the following
analytical formula for the calculation of n-th number in the S)-sequence:

n
an=10%" Y (i/10%); (12)
i=1

b) if @(n) = n+1; ¢ =y is the operator of mirror-symmetric extending the number
aq(n+1)/2]°f Si-sequence from the right with 1-truncating the reflected number from

the left, if n is the odd number, and without truncating the reflected number, if 7 is
the even number; y(a,) = [ lg([(n+1)/2] + 1) ] + 1, then the following sequence of
the numbers, denoted as S>sequence, is generated by (9)

1, 11, 121, 1221, 12321, 123321, 1234321, ... (13)

The analytical formula for the calculation of n-th number in the S;-sequence has the
form

[n/2]  [(n+1)/2]
a,= y,i10%708 o %109, (14)
i=1 i=1

where d=1+ X[(n+1)/2] + X[n/Z] —Xis and so on.

We find recently that the terms of Smarandache sequences of 2nd kind ® may be
computed also by the universal analytical formula {compare with formulae (12) and

)
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Uhp

a,= ng(n+2—b—ixi), (15)

m=1 i=b
where y; are the characteristic numbers for Smarandache sequences of the 2nd
kind; U, is an up-estimation for the value a,; b is a constant. For instance, if

, g [Vel
U=n? b=2, x; =sg{Y, [Isgc-qlc/q])}, g=llgil+1, (16)
k=1 g¢g=1

4
c=108 Y {[i/1087P]-10[i /1087 P*1]} /1077,
p=l1
the following sequence of Smarandache numbers of 2nd kind is generated by (15)
1,2,3,5,7,11, 13, 14, 16, 17, 19, 20, 23, 29, 30, 31, 32, 34, ... (17)

We note that

a) in formula (16): k is a number of the permutation, which is generated from
digits of the number i; r; is a number, which j-th digit of the number 7 has in k-th
permutation {see (7)};

b) only such integer numbers belong to the sequence (17), which are prime
numbers or can be derived to prime numbers by a permutation of digits in the initial
natural numbers {the number 1 is related to prime numbers in this sequence}.

2.5 Formulae for analytical description of Magic squares constructing methods

As we discovered earlier™ !, logical functions may be used effectively to create
analytical formulae available for describing computative algorithms on constructing
Magic squares of any order n. For instance, let us consider a well-known “Method of
two squares”, whose verbal description has the form > '%:

1. Make a drawing of two square tables of any ordern =4k +2 (k=1, 2, ...).
Divide every table in four equal squares which we shall call A, B, C and D squares
respectively {see figure 2(1)};

2. Place a Magic square of order m = 2k + 1 in the A, B, C and D squares of the
first table. It is obvious {see figure 2(2)}, the first table will have the same sum of
numbers 1n its rows, columns and main diagonals;

3. Fill the cells of the second table: all cells of A square are to have zeros; cells
of D square — numbers u = m?; cells of B square — numbers 2u and cells of C
square — numbers 3u. The obtained table {see figure 2(3)} will have the same sum
of numbers only in its columns;

4. Perform such rearrangement of the numbers in the table 2(3) that the new table
will have the same sum of numbers in its rows, columns and main diagonals. It can
be achieved, for instance, by operations

a) underline in the square A of the second table

— k zeros, located in the extreme left positions of all rows, excepting the middle
row {see figure 2(3)};
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— the zero, located in the central cell of the middle row, and another k- 1 zeros,
located left of the central cell.

Exchange all marked zeros against the respective numbers of the square C {see
figure 2(4)} and otherwise;

b) mark k-1 numbers 2u in the extreme right positions of every row of
square B {see figure 2(3)}, and then exchange ones against corresponding numbers
of the square D (see figure 2(4)) and otherwise.

5. Add (cell-wise) two auxiliary tables {the Magic square of order 10, obtained
as a result of adding auxiliary squares 2(2) and 2(4) is shown in figure 2(5)}.

A B
c D
1)
15(14] 6 |22|3|l15]14] 6 |22]3 0/ofo]o|o}ls50]|50]50]50]50
21| 2 |18|10|9|f21|[2f18[10] 9 g/o|ojo]|o]lso]|50]50]50]}50
13| 5 241 |17)113]| 5 |24] 1 |17 0]o|ojofolfsol50]|50]|50]50
4 [16[12| 8 |20} 4 [16]12] 8 |20 olofojo|oflso|s50]|50]|50]}50
7]23{0f19)11f{7 |23] 0 [19]| 11 olo|ojo|oflso|s0]50]50]50
1501416 |22|3|[15|14]| 6 |22]3 757575 75| 75|{25 [25 |25 | 25| 25
21| 2 18|10 9ff21] 2 [18]10] 9 7575 75|75 | 75|[25 | 25 [ 25 25| 25
135 [24]1{17]]13] 5 24| 1|17 75|75 75| 75| 75|[25 [ 25 |25 25| 25
4 (16128 |20fJ4 [16]12] 8 |20 75|75 (75|75 | 75|/25 | 25| 25| 25] 25
7123] 0 19]11]j7 23| 0 |19]1 75|75 75| 75| 75|{25 |25 | 25| 25| 25
@) ©)

75|75/ 0] 0| o|ls0|50]|50]50}25 90 |89 | 6 22| 3||65]64|56|72]28
75|75|/ 0| 0| o|l50}50]|50]|50]25 96 77|18 10| 9 ||71|52 |68 |60 |34
0]75|75] 0| 0fl50|50]|50]|50]25 13|80]99] 1 { 17|63 |55 74|51 ] 42
75]75] 0] 0] 0}50]50|50]|50]25 79{91|12] 8 |20{|54 | 66| 625845
75|75 0] 0 O“sosososozs 82/98| 0 |19]11|ls7|73|50]|69]36
o | o|7s]7s|7s||25]25] 25|25 0 15|14 | 81|97 | 78|[40 39|31 4753
0] o0 |[75{75[75]|25]|25]25]|25]50 21| 2 |93 }85|84]l46 |27 [43]35]59
75/ 0] 0|75|75||25|25]|25| 25|50 88| 5 |24|76|92{|38|30|49 26|67
0|o]75|75|75)||25}25]|25]| 25|50 4 |16|87|83|95]|/29|41{37|33]|70
0| o|75|75]|75)|25|25]|25]| 25|50 7 |23|75]| 94863248 |25/ 44|61

C) (5)
Figure 2. Method of two squares.
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Table 2. The representation of computative algorithm “Method of two squares” as Pascal program.

Procedure BuildMS;
{ Build Magic square of order n=4k+2 }

{Modify the auxiliary square }

{ Modify A and C squares }

Var m,i,j.n2:Byte; Fori:=1 to n2 do
z.x,y,nn:integer; if i<>n2 Shr 1+1 Then
Begin Begin
z:=0;n2:=n; Forj:=1to mdo
n:=n2 Shr 1; Begin
m:=n Shr 1; Inc(mk{ind(i,j)],nn*3);
nn:=Sgqr(n); Dec{mk[ind(i+n2,j)],nn*3);
{ Build an auxiliary square of order n=4k+2) End;
{ Place a Magic square in A square } End;
Forz:=1tonn do i:=n2 Shr 1+1;
Begin For j:=i Downto i-m+1 do
x:=(fX(z)-1+n)Mod n+1; Begin
y:=(gY(z)}-1+n)Mod n+1; Inc(mk{Ind(i,j)],nn*3);
mk([{x-1)*'n2+y]:=z; Dec({mk[Ind(i+n2,j)],nn*3);
End; End;

n:=n2;n2:=n Shr 1;
Fori:=1 to n2 do For j:==1 to n2 do

{ Modify B and D squares }
For j:=n Downto n-m+2 do

Begin For i:=1 to n2 do
{ Place the Magic square in B, C and D squares } Begin
mk{Ind(i,j+n2)]:=mk{Ind(i,j)]+nn Shi 1; Dec(mk{Ind(i,j)],nn);
mk{Ind(i+n2 J)]:=mk{ind(i j)]+nn Shi 1+nn; Inc{mk{Ind(i+n2,j)],nn);
mk[Ind(i+n2,j+n2)]:=mk{ind(i,j)]+nn; End;
End; End;

If the foregoing verbal description we translate into Pascal, we obtain the
program code, shown in table 2. In this program code

a) the Magic square of order m = 2k + 1, located in the A, B, C and D squares of
the auxiliary square, may be built for instance, by the functions ' *

flz, my = (z—1) + [ (- 1Yym] - [m/2], (18)
gz, m) = z-1)- [(-1)/m] +[m/2],

where square brackets mean the integer part; a sign “=" is the modulo m equality; z
is any natural number from 1 to m?; functions fand g afford to compute the position
of any natural number z in cells of the Magic square: x = f{z, n) and y = g(z, n). In
particular, functions (18) may be presented as following two distinct Pascal-
procedures

Function fX(z:integer):Integer; Function gY(z:Integer):integer,
Begin Begin

fX:=14(z-1)+(z-1)div n - n shr 1; gY:=1+(z-1z-1)Divn + nshr 1;
End; End;

b) two procedures “Ind” and “Sign” are auxiliary and have the form

Function Ind(x,y:Integer):integer; Function Sign(n:Word):Shortint;
Begin Begin

Ind:=(x-1)"n+y; if Odd(n) Then Sign:= -1 Else Sign:=1;
End; End;
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The analytical description of “Method of two squares™ has the form*
=itcym-1; y=(Q-c3—cs—cs)(j+cam) + (c3+cs+cs) (1 + (19)
+{(j+(c2+1)m-1)modn}) - 1;
u=m4 z=1+{N-1)modu}; i=f(z, m) + 1
Jj=gm+1; a=[{([(N-1)/u]+1)mod4}/2];
[(N=-1)u]lmod2, c3=[(sign(ciym+i-3k-4)+2)2];
ca = asg(j—k-1); cs=c4[ (sign(k—i—cim)+2)12];
¢s=(1-ca)(1 —ci)[ {sign(i — 1)+ 1}/2 Ix[ (sign(k—i + 1) +2)/2 ],

where n = 4k + 2 is an order of the desirable Magic square, contained natural
numbers N from 1 to n%; m = 2k + 1; functions f(z, m) and g(z, m) are determined
by the expression (18); asg(x)=1 if x#0 and asg(0)=0 {asg(x)= |sign(x) |
= signl x|=sgx .

C2
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NUMERICAL FUNCTIONS AND
TRIPLETS

1. Balicenoiu, D. Bordea, V. Seleacu

We consider the functions: f,, fa, fp, F': N* — N, where
fo(k) = n, fa(k) = n, fo(k) = n, F(k) = n, n being, respectively, the least
natural number such that k/n! — 1, k/n! + 1 Jk/nlE1,k/nl ork/nl£1.
This functions have the next properties:

1. Obviouvsly, from definition of this function, it results:
F(k) = min{S(k), fo(k)} = min{S(k), fs(K), fa(k)}
where S is the Smarandache function (see [3]).
2. F(k) < S(k), F(k) < fo(k), F(k) < fa(k), F(k) < f5(k)

3. F(k)=S(k)if kis even, k > 4.
Proof. For any n € N, n > 2, nl!is even, n! £1 are odd. If & is even,
then k cannot divide n! £ 1. So F(k) = S(k) = n > 2 if k is even,
k>4.

4. If p > 3 is prime number, then F(p) < p— 2.
Proof. According to Wilson’s theorem (p — 1)! +1 = M, . Because
(p—2)'—1+(p—1)+1=(p—2)ipresults forp >3, (p—2)! -1 =M,
and so F(p) <p-—2.

5. F(ml) = F(m! £1)

S(ml) =
6. The equation F(k) = F(k + 1) has infinitly many solutions, because,
according to the property 5), there is the solutions k = m!, m € N*.
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7. If F(k) = S(k) and n is the least natural number such that k/n!, then
k not divide s'!t 1 fors < n.
Let k = pf* -p§? - - - p . According to S(k) = {g{ag‘cr{Sp‘. ()}, it results
that S(k) > py,, where pr = min{p;,ps,---,p-}-
If k not divide s!' £ 1 for s < py, then k not divide t! =1 for t > pj.
Consequently, if k not divide (n — 1)!, k/n! and k not divide s! =1 for
s <min{n,ps}, then F(k) = S(k) =n.
Obviously, the numbers k = 3¢, ¢t being odd, t # 1, have py = 3 and
they satisfy the condition 3t not divide s!+ 1 for s =1,2,3.
Therefore, for k = 3t, t odd, t # 1, F(3t) = S(3t) = n, n being the
least natural number such that 3t/n!.

8. The partition “bai” of the odd numbers.
Let A= {k € N|k odd and F(k) = S(k)}

B = {k € N|k odd and F(k) < S(k)}

(A, B) is the partition “bai” of the odd numbers.

Into A there are numbers k¥ = 3t, t odd, t # 1. Obviously, A has
infinitly many elements.

Into B there are numbers k = t! =1 with ¢t > 3, t € N. Obviously, B
has infinitly many elements.

Definition 1 Let n € N*. We called triplet 71, the set:
n—1,n,n+1.

Definition 2 Let k < n. The triplets k, i are separated if
k+l<n-1,ien—-k>2.

Definition 3 The triplets k, 7 are l,-relatively prime if
(k—=1n-1)=1,(k+1,n+1)#1.

For example: 6 and 72 are l,-relatively prime.

Definition 4 The triplets k, 7 are lq-relatively prime if
(k-—1,n—-1)#1,(k+1ln+1)=1.

Definition 5 The triplets k, 7 are [-relatively prime if
(k=1n-1)=1(k+1l,n+1)=1.
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Definition 6 The triplets k, 7 are d-relatively prime if
(k—1,n+1)=1,(k+1,n—-1)=1.

For example: 2 and 6 are d-relatively prime.

Definition 7 Let k < n. The triplets k, 7 are d,-relatively prime if
(k—1,n+1)=1(k+1,n—-1)#1.

For example: 6 and 120 are d,-relatively prime.

Definition 8 Let k < n. The triplets k, 7 are dg-relatively prime if
(k-1,n+1)#1,(k+1,n-1)=1.

Example: 6 and 24 are dg-relatively prime.

Definition 9 The triplets k, 7 are p-relatively prime if
k-1,n-1)=1,(k-1,n+1)=1,(k+1,n-1)=1,(k+1,n+1)=1.

Obviously, if k, 7 are p-relatively prime, then they are ! and d-relatively
prime. .
For example: 24 and 120 are p-relatively prime.

Definition 10 Let k < n. The triplets k, A are F-relatively prime if

(k-1,n-1)=1(k+1,n-1)=1,
(k-1,n)=1,(k+1,n)=1
(k-1,n+1)=1,(k+1,n+1)=1.

Definition 11 The triplets k, 7 are t-relatively prime if
(k-1,n-1)-(k=1,n)-(k=1,n+1)-(k,n—1)-(k,n)- (k,n+1)
(k+1,n=1)-(k+1,n)-(k+1,n+1)=6.

For example: 2 and 4 and t-relatively prime.

Definition 12 Let H C N*. The triplet n, n € H 1s, respectively,
l,,143,1,d,d,,dg, p, F, t-prime concerned at H , if Vs € H, s < n, the triplets
3, n are, respectively, l,,14,1,d,d,, dq, p, F, t-relatively prime.

Let H = {n!|n € N*}. For the triplets 7, m € H there are particular
properties.

——

Proposition 1 Let k <n. The triplets (k!), (n!) are separated if
n > max{2,k}.
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Proof. Obviously, n! — k! >2ifn > 2and k <n,ie n>max{2k}.

Proposition 2 Letn > max{2,k} and My, = {m € Njk!+1 <m < n!-1}.
If ki < ky and ny > max{2,k1}, na > max{2,k,}, then
ny — ky <ny —ky = cardMy,n, < cardMi,n, -

Proof. For n > k > 2 it is true that
nt—(n-1I>k-(k-1)! (1)

Letn >k >2,1<s<k. Using (1) we can write:

By summing this inequalities, it results:
—(n—s)! > k! —(k—s)! (2)

Let2§k1<n1,2§k2<n2,k1 <k2,n1—k1§n2—k2. Then ny —ny 2
ky — k1 > 1 and there is n3 such that ny > n3 > n; and ng —ng = ky — k; .
Using (2) we can write:

TLQ!—TL3! >k2!—k1!

Since n3! > n;! we have:

According to cardMy,,,, =n;! =1 - (k! + 1),
cardMy,n, =no! — 1 — (ka! + 1), it results that:

Cl].’f'd./»[kﬂ,,2 - CCLTC{AJ};V-,1 = TLQ! - TL]! - (kQ’ - kl,)
That is, taking into account (3), cardMy,n, < cardMi,n, -

Definition 13 Let k < n. The triplets (k) , (n!) are linked if
kKl—1l=norkl+l=n.

Proposition 3 Fork € N* there is p prime number, such that for any s > p
the triplets (k‘) , (s’) are not F-relatively prime.
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Proof. Obviously, for k =1 and k = 2, the proposition is true.
In=7p7 p5% - -p divide k! — 1 or k! +1, then p; > k > 3, for
je{L,2,...,3}.
Letﬁzpl-pQ -p; and p = max{p;}.

1<5<t

Obviously, 7 > 3 because p >k > 3, A/k! — lor a/k! + 1.
For any s > p, ii/s! and so, the triplets (k!), (s!) are not F-relatively prime.

Remark 11i)Letk<n.If (k’) ( ') are linked, thenn —k=k!—kx1.
If2 <k <ng, (kl’) with (nl') are linked and ky < ns, (kz') with (ng‘) are
linked, then k; < ko = n, — k; < ny — ky and in view of the proposition 2,
results card Mg, n, < cardMg,n, -

ii) There are twin prime numbers with the triplet (n’) For ezample 5 with
7 are from (3!) .

Definition 14 Considering the canonical decomposition of natural numbers

n=pi' - py?---p¥, we define i = {p7*,p3%,..., P77},
M = {f|jn € N*}.

Definition 15 On M we consider the relation of order C defined by:

(P, 05%, ..., 0"} E{& % - &'}
ifand Only if{Pl;?%--wPr} C {41,42,“-1%} and zfpt =Qj: then a; SIBJ'

Remark 2 For any triplet (n‘) n € N* | we consider the sets:
A,, {kEN‘]kEn'} Ar={ke€ A,k & A, forh <n}
{kEN"]kEn'—l} B: = {k € Bplk € By forh <n}

—-{keN‘]kEn'+l} Cy={k€C,lk & Cy forh <m}
M,={keN'kCnlorkCni—1 orkCnl+1}

M‘_{keM |k & My forh <n}.

It 1s obvious that:

A, =5n), By =f7'(n), Cr=fi'(n), My =F'(n).

If k € A; | it is said that k has a factorial signature which is equivalent with

the factorial signature of n! (see [1]).

Letk € B, k=17 -t?---t*. Then {t,} £ nl for r = 1,1 and for any

h<n, therearet; ,1 < j<i, such that {t7} & RI—1.

Similarly, fork € C; : {t.} Z n! forr =1,i and for any h < n, there are

t7,1<j<1i,suchthat {t7} Thi+1.
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EXPLORING SOME NEW IDEAS ON SMARANDACHE TYPE
SETS, FUNCTIONS AND SEQUENCES

{(Amarnath Murthy ,Superintending Engineer(E&T) Well Logging Section ,0il And Natural Gas
Corporation Ltd., Chandkheda, Ahmedabad, India-380005)

ABSTRACT: In this article | have defined a number of
SMARANDACHE type sets ,sequences which | found very
interesting. The problems and conjectures proposed would give
food for thought and would pave ways for more work in this field.

(1)SMARANDACHE PATTERNED PERFECT SQUARE SEQUENCES.
Consider following sequence of numbers
13, 133, 1333, 13333, . . .-~eceun (1)

The sequence formed by the square of the numbers is

169, 17689, 1776889, 177768889, . . . ------- (2)

We define (1) as the root sequence

{t is evident that the above sequence (2) follows a pattern.

i.e. The square of one followed by n three’s is ,one followed by (n-
1) seven’s, followed by a six, followed by (n-1) eight’s followed by
a nine.

There are a finite number of such patterned perfect square
sequences. Here we list the root sequences.

() 13, 133, 1333, 13333, . ..
(2) 16, 166, 1666, 16666, . . .
(3) 19, 199, 1999, 19999, . . .
(4) 23, 233, 2333, 23333, . . .
(5) 26, 266, 2666, 266686, . . .
(6) 29, 299, 2999, 29999, . . .

on similar lines we have the root sequences with the first terms as
(7) 33, (8) 36, (9) 39,(10) 43,( 11) 46,(12) 49, (13) 53,(14) 66,
(15) 73, (16) 93,(17) 96,(18) 99.

There are some root sequences which start with a three digit
number , like

799, 7999, 79999, . ..

The patterned perfect square sequence is

638401, 63984001 , 6399840001 , 639998400001

_— — —— —_— — _—

( the nine’s and zero’s inserted are shown in darker print to identify
the pattern.)
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Open Problem : (1) Are there any patterned perfect cube
sequences ?

(2) Are there any patterned higher perfect power sequences ?
(2) SMARANDACHE BREAKUP SQUARE SEQUENCES
4, 9, 284, 61209, ...

the terms are such that we have

4 =27

49 = 77

49284 = 222

4928461209 = 702037

T, = the smallest number whose digits when placed adjacent to
other terms of the sequence in the following manner

T1T2...Ta:1Tn  yields a perfect square.
(TiTa ToTa )12

Lt where k is the number of digits in the

N—>c 10"

numerator for this kind of sequence can be analyzed. As it is evident that
for large values of n the value of ( T4T2...TotTa )“2 is

10k

close to either 2.22.... or to 7.0203. ..

(3) SMARANDACHE BREAKUP CUBE SEQUENCES

On similar lines SMARANDACHE BREAKUP CUBE SEQUENCES
can be defined. The same idea can be extended to define
SMARANDACHE BREAKUP PERFECT POWER SEQUENCES

(4) SMARANDACHE BREAKUP INCREMENTED PERFECT
POWER SEQUENCES

1, 6, 6375,

1=1",16 = 4% , 166375 = 55° , etc.

T, = the smallest number whose digits when placed adjacent to
other terms of the sequence in the following manner

T:T2...TaaTn  yields a perfect n* power.
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(5) SMARANDACHE BREAKUP PRIME SEQUENCE
2,3,3,...

2, 23, 233 etc. are primes.

T1T2...TaqTn is a prime

(6) SMARANDACHE SYMMETRIC PERFECT SQUARE SEQUENCE
1,4, 9, 121, 484, 14641, ...

(7) SMARANDACHE SYMMETRIC PERFECT CUBE SEQUENCE

1, 8, 343, 1331 ...

This can be extended to define
(8) SMARANDACHE SYMMETRIC PERFECT POWER SEQUENCE

(9) SMARANDACHE DIVISIBLE BY n SEQUENCE
1,2,3,2,5,2,5,6,1,0,8, 4. ..

the terms are the smallest numbers such that n divides T1T12...Tq.1 T4 the
terms placed adjacent digit wise.

e.g. 1 divides 1, 2 divides 12, 3 divides 123, 4 divides 1232,

5 divides 12325, 6 divides 123252 , 7 divides 1232535, 8 divides
12325256 9 divides 123252561 , 10 divides 1232525610, 11 divides
12325256108 ,

12 divides 123252561084 | etc.

(9) SMARANDACHE SEQUENCE OF NUMBERS WITH SUM OF THE
DIGIT’S = PRIME

2,3,5,7,11,12,14,16,20,21,23,25 29, . . .

(10) SMARANDACHE SEQUENCE OF PRIMES WITH SUM OF THE DIGIT’S
= PRIME

2,3,5,7,11,23, 29, 41,43, 47, 61, 67, 83, 89,. ..

(11) SMARANDACHE SEQUENCE OF PRIMES SUCH THAT 2P+ 11S
ALSO A PRIME

2,3,5 11,23, 29, 41, 83, . ..
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(11) SMARANDACHE SEQUENCE OF PRIMES SUCH THAT 2P -11S
ALSO A PRIME

3,7,19, 31, . ..

(13) SMARANDACHE SEQUENCE OF PRIMES SUCH THAT P2+ 2 IS
ALSO A PRIME

3,17, . ..

(14) SMARANDACHE SEQUENCE OF SMALLEST PRIME WHICH DIFFER
BY 2n FROM ITS PREDECESSOR

5,17 ,29, 97, ..

(T4 =5=3+2,T,=17=13+4, T3=29 = 23+6,T,=97 =89 + 8 etc.)
(15) ) SMARANDACHE SEQUENCE OF SMALLEST PRIME p FOR
WHICH p + 2r IS A PRIME

3, 13, 23, 89,. ..

3+2X1=5isaprime,13+2X2=17isaprime,23+2X3=29,
89 +2X 4 =97 is aprime etc.

(16) SMARANDACHE SEQUENCE OF THE SMALLEST NUMBER WHOSE
SUM OF DIGITS IS n .

1,2,3,4,5,6,7,8,9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 289, 399,
499, 599,699, ...

It is a sequence of the only numbers which have the following property.
k
N+1= TII(ar+1)
r=1

PROOF:
Let N be a k-digit number with a, the r'" digit (a; = LSB ) such that

k

N+1= TI(a+1)  -ceeemooeees (1)

to find all such k -digit numbers.

174



The largest k-digit number is N = 10 - 1, with all the digits as 9 . It
can be verified that this is a solution. Are there other solutions ?

Let the m' digit be changed from 9 to an (am < 9) .
Then the right member of (1) becomes 10" (a, +1 ) .This
amounts to the reduction in value by 10%*"( 9-an ). The value of
the k-digit number N goes down by 10™'(9-a,). For the new
number to be a solution these two values have to be equal which
occurs only at m = k. This gives 8 more solutions. In all there are
9 solutions given by a.10%- 1, for a=1to 9.
e.g. for k = 3 the solutions are

199, 299, 399, 499, ,599, 699, 799, 899, 999 ,.

Are there infinitely many primes in this sequence.

(17) SMARANDACHE SEQUENCE OF NUMBERS SUCH THAT THE SUM
OF THE DIGITS DIVIDES n
1,3,6,9,10,12,18,20,21,24,27,30,36,40,42,45,48,50,54,60,63,72,80,81,84,90,
100,102,108,110,112,114,120,126,132,133,135,140,144,150, . . .

(18) ) SMARANDACHE SEQUENCE OF NUMBERS SUCH THAT EACH
DIGIT DIVIDES n

1,2,3,4,5,6,7,8,9,10,11,12,15,20,22,24,30,33,36,40,44,50,55,60,686, . . .

(19) ) SMARANDACHE POWER STACK SEQUENCE FOR n

SPSS(2)

1,12, 124, 1248, 124816, 12481632,

The n'™ termis obtained by placing the digits of the powers of 2 starting

from 2° to 2" from left to right.

SPSS(3)
1,13, 139, 13927, 1392781, 1392781243, . . .

Problem : If nis an odd number not divisible by 5 how many of
the above sequence SPSS(n) are prime ? ( It is evident that n
divides T, iff n=0 mod (5)).

(20) SMARANDACHE SELF POWER STACK SEQUENCE

SSPSS
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1, 14, 1427, 1427256, 14272563125, 142725631257776, . . .

T,=T,-1a1a2a3...ak where , rro= d182a83...dak

( the digits are placed adjacent).

How many terms of the above sequence, SSPSS are prime ?

(21) SMARANDACHE PERFECT SQUARE COUNT PARTITION
SEQUENCE

the rth term of SPSCPS (n) is defined as

Tr= O{x]| xisaperfect square , nr+1< x< nr+ n}
O stands for the order of the set

e.g. forn=12 SPSCPS(12) is
3,1,2,0,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0, 1

( number of perfect squares <12is 3 (1, 4, and 9), number of
perfect squares between 13 to 24 is 1 (only 16) etc.)

(21) SMARANDACHE PERFECT POWER COUNT PARTITION SEQUENCE

The r™ term of SPPCPS ( n,k) is defined as

T.=0{x | xis a k™ perfect power,nr+1< x< nr+ n}
where O stands for the order of the set

By this definition we get

SPSCPS(12) = SPPCPS ( 12,2)

Another example, SPPCPS ( 100,3)is
4111,0,10,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0, 1, ...

Problem: Does X (T,/(nr)) convergeas n—> « ?

(22) SMARANDACHE BERTRAND PRIME SEQUENCE

According to Bertrand ‘s postulate there exists a prime between n and 2n.
Starting from 2 let us form a sequence by taking the largest prime less
than double of the previous prime in the sequence . We get
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2,3,5, 7,13, 23, 43, 83, 163, . ..

(23) SMARANDACHE SEMI- PERFECT NUMBER SEQUENCE
6, 12, 18, 20, 24, 30, 386, 40,

A semi perfect number is defined as one which can be expressed as the sum
of its ( all or fewer ) distinct divisors.

eg. 12=2+4+6 =1+2 + 3+ 6
20=1+4+5+10
30=2+3+10+ 15=5+10+15= 1 +3 +5+6 + 15 etc.

It is evident that every perfect number is also a semi perfect number.

THEOREM : There are infinitely many semi perfect numbers.
Proof: We shall prove that N = 2" p where p is a prime less than

2™' -1, is a semi- perfect number.

The divisors of N are

[OW 1------ 1,2,2% 2% ,2¢,...2"

row 2------ p, 2p, 2%p, 2°p, 2%p, ... 2"
n-1

wehave ¥ 2'p =p(1+2+ 22 +2%+ .. 2"") =p(2"-1)=M
r =0

M is short of N by p . The task ahead is to express p as the sum of
divisors from the first row. It is an established fact that every number can
be expressed as the sum of powers of 2 .i.e.

n
p=Y a.2" , wherea =0ora,=1.iff p<2™'-1 , the
r =0

equality giving a perfect number.

(note:ajazas . . .a, is the binary representation of p).

N =M + p is expressible as the sum of its divisors.

Remark: This of-course i$ not exhaustive. There are many more such

exampies possible giving infinitely many semi perfect numbers. One can
explore the possibility of more such expressions.
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(24) SMARANDACHE CO-PRIME BUT NO PRIME SEQUENCE

4,9, 10, 21, 22, 25, 26, 27, 28, 33,34, 35, 36 ,49, 50, 51,52, . ..

The n'" term T, is defined as follows

T ={ x| (Tha ., x) =1, xisnotaprimeand (Top1,y) =1 for Th1 <y<x}

The smallest number which is not a prime but is relatively prime to the
previous term in the sequence.

Open probiem : Is it possible to as large as we want but finite increasing

sequence Kk, k+1, k+2 , 6 k+3, ... included in the above sequence?

DEFINITION : We define a prime to be week , strong or balanced prime
accordingly as p, < =o0r > (p.1 + pre1 ) /2. where p, is the r'" prime.
e.g. 3 <(2+5)/2 3 is week prime . 5= (3 + 7)/2 is a balanced prime . 71 >
(67 +73)/2 is a strong prime .

(25) SMARANDACHE WEEK PRIME SEQUENCE :

3,7,13,19, 23,29, 31, 37,

(26) SMARANDACHE STRONG PRIME SEQUENCE :

11,17, 41, . ..

(27) SMARANDACHE BALANCED PRIME SEQUENCE :

5,157, 173, 257, 263, 373, . ..

It is evident that for a balanced prime >5, p,=p.; +6k.

OPEN PROBLEM: Are there infinitly many terms in the SMARANDACHE
BALANCED PRIME SEQUENCE ?

178



How big is N? One of the first estimates of its size was approximately [6]:

106846168

But this is a rather large number; to test all odd numbers up to this limit would take
more time and computer power than we have. Recent work has improved the
estimate of N. In 1989 J.R. Chen and T. Wang computed N to be approximately [7]:

1043000

This new value for N is much smaller than the previous one, and suggests that some
day soon we will be able to test all odd numbers up to this limit to see if they can be
written as the sum of three primes.

Anyway assuming the truth of the generalized Riemann hypothesis [5], the number
N has been reduced to 102° by Zinoviev [9], Saouter [10] and Deshouillers.
Effinger, te Riele and Zinoviev{11] have now successfully reduced N to 5.
Therefore the weak Goldbach conjecture is true, subject to the truth of the
generalized Riemann hypothesis.

Let's now analyse the generalizations of Goldbach conjectures reported in [3] and
[4); six different conjectures for odd numbers and four conjectures for even
numbers have been formulated. We will consider only the conjectures 1, 4 and 5 for
the odd numbers and the conjectures 1, 2 and 3 for the even ones.

4.1 First Smarandache Goldbach conjecture on even numbers.

Every even integer n can be written as the difference of two odd primes, that is
n=p—q withp and q two primes.

This conjecture is equivalent to:

For each even integer n, we can find a prime q such that the sum of n and q is itself
a prime p.

A program in Ubasic language to check this conjecture has been written.
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for SLES and SLOS.

(2) SMARANDACHE DIVISOR SEQUENCES:
DefineAn,= {x]d(x)=n}
Then
A= {1}
A={p|pisaprime}
A3={x|x=p2 , pis aprime}
A4={x|x=p3orx=p1p2,p,p1 P2 are primes } .
A - 6,8,10,14 15,21 22 ,26,27, ...
We have
> U T,=1 for Ay

This limit does not exist for A,

Lt ¥ 1/T, exists and is less than 7%/6 for A; as Lt S1/n? = 7%6.
n— o

The above limit does exist for A, where pis a prime.

* Whether these limits exist for Ay As etc is to be explored.
DIVISOR SUB SEQUENCES

The sub sequences for Ay As etc can be defined as follows:
B(ry, rz 13, ... 1) is the sequence of numbers fl”//p:’zf:’smlp:k
in increasing order ,where p1, p2, P, . . . Px are primes . All the
numbers having the same unique factorization structure.
DIVISOR MULTIPLE SEQUENCE

SDMS ={n|n=k. d(n)}.

SDMS — 1,2,8,9,12,. ..

(3) SMARANDACHE QUAD PRIME SEQUENCE GENERATOR :

SQPSG ={r|90r+11, 90r+13, 90r+17, 90r+ 19 are all primes }
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SQPSG - 0,1,2,...

Are there infintely many terms in the above sequence ?

(4) SMARANDACHE PRIME LOCATION SEQUENCES
Define Po = sequence of primes .
P1 = sequence of primeth primes
Py—>3,5,11, 17, ...
P> = sequence of primeth , primeth prime .

1
s

P = sequence of primeth , primeth , . . . r times ,primes
*If To is the n™ term of P, , then what is the minimum value of r for which

Lt > 1/T, exists ?.
n—ow

(5) SMARANDACHE PARTITION SEQUENCES
(i) PRIME PARTITION

Number of partitions into prime parts

Spp(n) » 0,1,1,1,12,2,3, ...

(i) COMPOSITE PARTITION

Number of partitions into composite parts

Spe(n) - 1,1,1,2,1,3,...

(iii) DIVISOR PARTITIONS
Number of partitions into parts which are the divisors of n.
SP4(n) —» 1,,1,1,2 1,
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On similar lines following two partition sequences can be defined.
(iv) CO-PRIME PARTITIONS : SP(n)

Number of partitions into co-prime parts .

(v) NON- CO-PRIME PARTITIONS SPp,(n)

Number of partitions into non coprime parts.

(vi) PRIME SQUARE PARTITIONS

Partitions into prime square parts .

This idea could be generalised to define more such functions.
(6) SMARANDACHE COMBINATORIAL SEQUENCES.

(1) Let the first two terms of a sequence be 1 & 2. The (n+1)th
term is defined as

Taet = sum of all the products of the previous terms of the
sequence taking two at a time .
T1=1,T2=2,=2>T3=2,and T4=8,

SCS(2)=1,2,2,8 48, . ..

The above definition can be generalized as follows:

Let Tx=kfor k=1ton.

Ta+1 = sum of all the products of the previous terms of the
sequence taking r at a time. This defines SCS(r) .

Another generalization could be :

Let Tx=kfor k=1ton.

T, = sum of all products of (r-1) terms of the sequence taking
(r-2) atatime (r >n). This defines SC,S.

forn=2 Ty=1, T,=2,T3 =3, T4=17efc

SCS —» 1,2,3,17,. ..
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PROBLEM : (1) How many of the consecutive terms of SCS(r) are pairwise
coprime ?

(2) How many of the terms of SC,S are primes ?

(i) SMARANDACHE PRIME PRODUCT SEQUENCES
SPPS(n)

T. = sum of all the products of primes chosen from first n primes
taking (n-1) primes at a time.

SPPS(n) > 1, 5, 31, 247, 2927 . . .
T1=1,T2=2+3,T3=2"3+2*5+3"5 =31.

T4 =2"3"5 + 2*3*7 + 2*5%7 + 3*5*7 = 247 efc.

How many of these are primes ?

(7) SMARANDACHE ¢ -SEQUENCE

(S5¢S) ={n|n=k%(n)}

S¢S — 1,2,4,6,8,12. ..

(8) SMARANDACHE PRIME DIVISIBILITY SEQUENCE
SPDS = { n|n divides p,+1, paisthe n™ prime. }

SPDS—1,2,3,4,10, ...
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ON THE DIVISORS OF SMARANDACHE UNARY SEQUENCE

(Amarnath Murthy, Superintending Engineer(E&T),Well Logging Section
Oil And Natural Gas Corporation Ltd., Chandkheda, Ahmedabad, India-
380005)

ABSTRACT: Smarandache Unary Sequence is defined as follows:

u(n) = 1111 .. ., pydigits of “1” , where p, is the n™ prime.

1,111, 11111, 11111141 . .

Are there an infinite number of primes in this sequence ? Itis still an unsolved
problem. The following property of a divisor of u(n) is established.

If ‘d"is a divisor of u(n) then d=1 (mod p, ). , foralln> 3 ---(1),
DESCRIPTION: Let m)=1111,.. . mtimes =(10" -1)/9

Then u(n) = i{py) .

Following proposition will be applied to establish (1).

Proposition : I(p -1) =0 (mod p) .-——-(2)

PROOF: 9divides 10 -1 . From Fermat's little theorem if p>7isaprime
then p divides (10°' -1)/9

as(p,9 =(p,10)=1. Hence p divides I(p-1)

Coming back to the main proposition , let ‘d’ be a divisor of u(n).

Let d=. paqbrc. .,where p, q, r, are prime factors of d .

p divides|'d = p divides u(n) also p divides I(p-1) from proposition (2). in
other words

p divides (10" -1)/9 and p divides (10° -1)/9

p divides (10 *®" _-1)/9 and p divides ('®®* -1)/9
p divides (10 1-B2 /g

p divides 10%°P{ (10"PN-BP _ 1y/ g}

p divides (10°PV-B2 _ 4y/9 . —(3)

There exist A and B such that
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Ap-1)-Bpn=(p-1,pn).Asp,is a prime there are two possibilities :
(). (p-1.,pn)=1 or (i). (P-1,Pn)=Pn.
In the first case , from (3) we get p divides (10-1)/9or p

divides 1, whichisabsurdas p>1. hence (p-1,pPn)=Pn":
or p, divides p -1

p =1(modpn)

= p®

1 (mod pn)
on similar lines
q° =1 (mod p)
hence d =p°g°. .. =1(modps)
This completes the proof.

COROLLARY . Forany prime p there exists at least one prime q such that
g=1(modp)

Proof. As u(n)=1 (mod p,), and also every divisor of u(n) is

=1 (mod pn) , the corollary stands proved. Also clearly such a ‘q’ is greater
than p , this gives us a proof of the infinitude of the prime numbers as a by
product.
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On Iterations That Alternate the Pseudo-Smarandache
and Classic Functions of Number Theory

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, IA 52233 USA
The Pseudo-Smarandache function was recently defined in a book by Kashihara[1].

Definition: For n > 0 and an integer, the value of the Pseudo-Smarandache function Z(n)
is the smallest number m such that n evenly divides

m
Sk
k=1

(m+1)

Note: It is well-known that this is equivalent to n evenly dividing = 5

The classic functions of number theory are also well-known and have the following
definitions.

Let n be any integer greater than 1 with prime factorization
= maloa2 k
n=pypy”...p}

Definition: For n > 0 and an integer, the number of divisors function is denoted by d(n).
It is well-known that d(n) = (a1l = 1)}(@2 + 1) ... (ak + 1).

Definition: For n > 0 and an integer, the sum of the positive divisors of n is denoted by
o(n). It is well-known that

om)=(1+pr+pi+...+pf ). .. (1+pe+ps +...+p%F)

Definition: For n > 0 and an integer, the Euler phi function ¢(n), is the number of
integers k, 1 < k < n that are relatively prime to n. It is well-known that

o) =pFpr-1) . pEFTI ok - 1)
Choosing a number n and repeatedly iterating a function is something that has been done

many times before. What we will do here now is alternate the iterations between two
different functions.
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Example:
Construct the sequence of function iterations by starting with the number of divisors
function and then alternate it with the Pseudo-Smarandache function.
For example, if n = 3, then the iterations would be
d(3)=2 Z(2)=3.4(3)=2 Z()=3 ...
Or notationally
Z(. . .dZAZd@)))). . .)

For reference purposes, we will refer to this is as the Z-d sequence.

Note that for n = 3, the sequence of numbers is a two-cycle. This is no accident and it is
easy to prove that this is a general result. We do this in a roundabout way.

Theorem 1: Let p be a prime, then the Z-d sequence will always be the two cycle

232323...

Proof: Since d(p) = 2 for p any prime and Z(2) = 3, which is also a prime, the result is
mmmediate.

This behavior is even more general.
Theorem 2: If n = p;p,, then the Z-d sequence will always be the two cycle
472323, ..

Proof: Since d(n) =4 and Z(4) = 7 and d(7) = 2, which starts the repeated 2323 . ..
cycle.

Theorem 3: If n = p? | the Z-d sequence will always be the two cycle
322323232, ..

Proof: Since d(n) =3, Z(3) =2, d(2) =2, Z(2) = 3 and d(3) = 2. the result follows.

Thuis behavior is a general one that is easy to prove.

Theorem: If n is any integer greater than 1, then the Z-d sequence will always reduce to

the 2 cycle
23232323...
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Proof: Explicitly testing all numbers n < 50, the result holds. To complete the proof, we
rely on two simple lemmas.

Lemma 1: Ifn > 50, then # > 3.
n
Proof: By a double induction on the number of prime factors and their exponents.

Basis: If p > 50 is prime, then d(n) = 2.

Inductive 1: Assume thatn=p* > 50 and that ﬁ > 3. Then the ratio of

7 et i
G = Feiel D R > 3

Inductive 2: Assume that forn=p$* ... p}” , a(”T) > 3. Add an additional prime factor to
n to some power. Since the additional prime factor is not necessarily larger than the
others, we will call it q and append it to the end noting that the primes are not necessarily
in ascending order.

nxg™ _ nxg™
dinsq™) T d(n)xd(@™)

since d is multiplicative. Furthermore, it is well-known that d(n) < nforalln > 1.
Therefore, we have

neq™ _ __n=xg" _n_
Treq™) = Tmpedld) 2 am) > O

and the proof is complete.

Lemma 2: If n> 1 is an integer, then the largest value that the ratio @ can have is 2.

Proof: It is well-known that if n = 2, then Z(n) = 2¥*! -1. For all other values of n, Z(n)
Is at most n.

Therefore, we have an alternating sequence of numbers where one at most doubles the
previous value and the other always reduces it by at least a factor of three. Since the one
that always reduces by a factor of three is done first this guarantees that the iterations will
eventually reduce the value to a number less than 50.

Since the iteration of the Z-d sequence always goes to the same 2-cycle, the result will be
the same if the order of the iterations is reversed to the d-Z sequence.

Another iterated sequence that can be constructed involves the Euler phi function and the
Pseudo-Smarandache function.
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Definition: Forn > 1, the Z-phi sequence is the alternating iteration of the Euler phi
function followed by the Pseudo-Smarandache function.

Z(. . (o(Z(o(m)))) - - )
The sequence is the rather boring
11111 ...
for n=2.

This result is not universal, as for all numbers 3 < n < 14, the iterations move to the
same

232323

2-cycle. However, this is not a universal result, as when n = 13, the iteration creates the
2-cycle

815815815815 ...
which is also the cycle for 16 and 17.

Examining the behavior of the Z-phi iteration for all numbers n < 254, all create either
the

or
8158158158...
2-cycles. However, when n =255, the iteration creates the new 2-cycle
128 255128 255128 . ..
which is also the cycle for 256.

Creating and running a computer program to check for 2-cycles that are different from
the previous three, no new 2-cycle is encountered until for n=65535

32768 6553532768 6553532768 . ..

which is also the cycle for n=65536.
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The pattern so far is clear and is summarized in the following chart

Pattern First Instance
2-3 3=22-1
8-15 15=2%-1

128 - 255 255=28_1
32768 - 65535 | 65535=216_1

which raises several questions.

1) Does the Z-phi sequence always reduce to a 2-cycle of the form 2% ~1-2% -1 for
k >1?

2) Does any additional patterns always appear first for n = 22° .19
A computer search was conducted to test these questions.

Definition: Forn > 1, the Z-sigma sequence is the alternating iteration of the sigma,
sum of divisors function followed by the Pseudo-Smarandache function.

Z(.. (e(Z(em))) - - )
For n = 2, the Z-sigma sequence creates the 2-cycle
3232...
and for3 < n < 15, the Z-sigma sequence creates the 2-cycle
241524152415 ..
However, for n = 16, we get our first cycle that is not a 2-cycle, but is in fact a 12-cycle.
63 104 64 127 126312 143 168 48 124 31 3263 104 64 127 126 312 143 168 48 ...

The numbers 17 < n < 19 all generate the 2-cycle 24 1524 15 ..., butn=20
generates the 2-cycle

4220 42204220...
and n = 21 generates the 12-cycle

63 104 64 127 126 312 143 168 48 124 31 32 63 104 64 127 126 312 143 168 48 ...
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The numbers 20 < n < 24 all generate the 2-cycle 24 15, but n = 25 generates the 12-
cycle

63 104 64 127 126 312 143 168 48 124 3132 63 104 64 127 126 312 143 168 48 ..
and n =26 the 2-cycle 42204220 ...

It is necessary to go up to n = 381 before we get the new cycle 1023 1536 1023 1536 ...
and a search up to n = 552,000 revealed no additional generated cycles. This leads to
some obvious additional questions.

1) Is there another cycle generated by the Z-sigma sequence?

2) Is there an infinite number of numbers n that generate the 2-cycle 42 207

3) Are there any other numbers n that generate the two cycle 2 3?

4) Is there a pattern to the first appearance of a new cycle?

In conclusion, the iterated sequences created by alternating a classic function of number
theory with the Pseudo-Smarandache functions yields some interesting results that are
only touched upon here. The author strongly encourages others to further explore these
problems and is interested in hearing of any additional work in this area.
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THE ALMOST PRESUMABLE
MAXIMALITY OF SOME
TOPOLOGICAL LEMMA

Florian Munteanu’ Octavian Mustafa'
Department of Mathematics, University of Craiova
13, Al I. Cuza st., Craiova 1100, Romania

Abstract

Some splitting lemma of topological nature provides fundamental
information when dealing with dynamics (see (1], p2.79). Because the
set involved, namely X \ P, is neither open nor closed, a natural
question arise: can this set be modified in order to obtain aditional
data 7 Unfortunately, the answer is negative.

For a metric space X which is locally connected and locally com-
pact and for some continuous mapping f : X — X . the set w-set of
each element z of X is given by the formula

@ = = 3 kn : _
We also denote by w;(z), 1 <7 <r, the set

wj(z) = {y € Xly= lilil frTHz), lim omg = +oo}_

n—+oo

Now, w(z) can be splitted according to the following lemma.

Lemmal a) »(z)= Lrj wi(z);
j=1
b) f(wi(Z)) Cwit1)modr-

“e-maid address: munteanufm@hotmail.com
“e-mail address: Octawian@mail.yahoo.com

192



Its proof relies upon the properties of w(z).

Lemma 2 For some nonvoid subset S of X we consider C a compo-
nent of X\ S. i.e. a mazimal connected set (see (2], pg. 54). Then:
o) T cou (sn o%S) :

b) 8¥XC C (cmaXc> U (Sﬂé)XS),

where C signifies the closure of C under the topology of X while
&% C is the boundary of C under the same topology.

Remark 1 For instance. if S is closed, then 05C C 8¥S as the
components of a locally connected space are open.

Proof. a) First, let’s show that TYcCcuS. ForreX \(CuUS) =
(X\S)\C,as Cisclosed in X \ S, there will be some open G C X
such that

zeGN(X\S)CX\(CUS).
Obviously,

GNX\SnC=G6nNnC=10

and so .
r¢C .

Further on, let's assume that € - N S. lfz € X \ 8¥S. then

¢ X\ 5 There will be some open W C X such that

TEW;, WNX\S =0.

In particular, WNC =0 and so z ¢ c*.
b) According to a}, we have:

TUnXNCT = ofcc(enXNCT)u[(snots)nXNC]

= (cnXINCY)u(sné¥s)

because of SNA¥SCSCX\C.
Obviously,

cnX\ct = (cmxm*“)m@“:caaxc.
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Remark 2 [t worths noticing that the sets (CN 9% C) and (SN 8% S)
are disjoint; in other words. 3XC is piecewise-made. Lemma 2 works
equally well in any topological space.

Lemma 3 (Melbourne, Dellnitz, Golubitsky)
For some nonvoid subset S of X . we denote by P, the union

Let x be some element of S. Then either w(z) C ff or the following

are valid:

a) w(z)\P; is covered by finitely many (connected) components Cy, ..., C,_;
of X\ Ps;

b) These components can be ordered so that

&) C C(z-H) mod »

¢) w(z) C Ty U...UTY |

Remark 3 Notice the splitting in relation with lemma 1. As we men-
tioned in the Abstract. it is quite natural to ask if X\'Ps can be replaced
by the easier-to-work-with X \ P,. The following lemma shows that
this would imply no more the presence of finitely many components.

Lemma 4 Let S be some nonvoid subset of X which is not dense in
X, ie. 5 # X . We consider C a component of X \ SY and D a
component of X \ S such that C C D. Then any element of D\ C

belongs either to 8% S or to any other component of X \ 5

Proof. If z ¢ X\ Sthenz € (X\S)N3  c8¥s. W
An example would be appropriate: in R2, we denote by D(0,7) the

r-disk centered in 0. Now, for X = D(0,2) 2) ; S=D(0,1)U(1,2] U
[-2,-1), we have

SV =D DN UL U2, 1]

D=X\5S, CE{(X\§R2>ﬂ(y>0),(X\§R2)ﬂ(y<O)}.

Further exemples can be architectured easily even to obtain infinitely

many components of X \ 5.
In other words, finitely many components of X \ § may include infi-

nitely many components of X \ §
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ON THE CONVERGENCE OF THE EULER
HARMONIC SERIES

Sabin Tabirca™ Tatiana Tabirca*

Abstract: The aim of this article is to study the convergence of the Euler
harmonic series. Firstly, the results concerning the convergence of the
Smarandache and Erdos harmonic functions are reviewed. Secondly, the Euler
harmonic series is proved to be convergent for a>1, and divergent otherwise.
Finally, the sums of the Euler harmonic series are given.

Key words: series, convergence, Euler function.

The purpose of this article is to introduce the Euler harmonic series and to study its
convergence. This problem belongs to a new research direction in Number Theory that is
represented by convergence properties of series made with the most used Number Theory
functions.

1. Imtroduction

In this section, the important results concerning the harmonic series for the Smarandache and
Erdos function are reviewed.

. 1
Definition 1. If f: N — N is a function, then the series Z 1s the harmonic series

nx} f”(n)

associated to f'and is shortly named the fharmonic series.

The convergence of this sort of series has been studied for the Smarandache and Erdos
functions so far. Both are important functions in Number Theory being intensely studied. The
definitons and main properties of these two important functions are presented in the
following:

e The Smarandache functionis S: N* — N defined by

* Computer Science Department, Transilvania University of Brasov
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S(n)=min{k e Njk!' =Mn} (Yne N*). (O
e« The Erdos functionis P &* = N defined by

P(n)=max{pe N|n=Mp A pisprim}{vne ¥ *"{1}) P(1)=0. (2)
The main properties of them are:
(‘v’a,b eN *) (a,b) =1=S5(a - b) = max{S(a),S(b)}, P(a-b) = max{P(a),P(b)}.

3)
(Va eN *) P{a) £ S(a) £ a and the equalities occur iifa is prim. )
Erdos [1995] found the relationship between these two functions that is given by
. !!( =1Ln|P()< 5'(1)}
lim -=0 (3)
nN—x n

1
The series and Z are obviously divergent from Equation (4).

n>2 S(”) n22 P(n)
|

2

The divergence of the series Z

n2

[1998] proved the its divergence using an analytical technique. Luca [1999] was able to prove

. _ 1
the divergence of the series Z -
nz22 S (n)

was an open problem for more than ten years. Tabirca

refining Tabirca's technique. Thus, the Smarandache

1
harmonic series Z a € R is divergent. Based on this result and on Equation (3),

=2 S(n)’

1
Tabirca [1999] showed that the Erdos harmonic senies Z 0
n22 n

Unfortunately, this convergence property has not been studied for the Euler function. This

, a € R is divergent too.

function is defined as follow: @g:N — N, (VneN) o) = ;{k =1.2,....n(k,n)= 1},
The main properties {Hardy & Wnght, 1979] of this function are enumerated in the following:
(‘v’ abe N)(a,b) =1=¢{a-b)=p(a)- p(b) - the multiplicative property  (6)

7 A
a=p-py Py :>(p(a)=a-{1—%)1)’L1'%:)""'(1—ypsj o

(Vaen) old)=a. (8)
da
More properties concerning this functon can be found in [Hardy & Wright, 1979], [Jones &
Jones, 1998] or [Rosen, 1993].

2. The Convergence of the Euler Harmonic Series
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In this section, the problem of the convergence for the Euler harmonic series is totally solved.

The Euler harmonic series Z a € R 1s proved to have the same behavior as the

nzl ,w“(n)’

‘ , 1
harmonic series ZT ae R.
n

nzl

Proposition 1. The series Y 1 1s divergent for ¢ < 1.
wa 0°(n)

Proof
The proof is based on the equation

p(n)<n(v¥nx1). (9)
Since — 2 ia (\7’ nz 1) and ZLO 1s divergent, 1t follows that Z - 1s divergent

o (n) n P s @7 (n)

too.
.

The convergence of the series for a>1 is more difficult than the previous and is studied in the
following.

Let us define the function & : N* — N by d(n) = f{p prime‘n =A1p} . The main properties of
this function are given by the next proposition.

Proposition 2. The function d satisfies the following equation:

a) d(1)=0. (10a.)
b) (Va,beN*)(a,b)=1=d(a-b)=d(a)+d(b). (10b.)
c) (\7’ ne N*) d(n) < log,(n). (10c)
Proof

Equation (10a.) is obvious.

Leta=p-p-..-p" and b=q" -q¥ - - g% be the prime number decomposition of
two relative prime numbers. Thus, a-b=p™ -p* .- p™ -qf -q5 - _-q% gives the

prime number decomposition for ab. Since the equation d(u-b)=s+¢, d(a)=s and
d(b) = t hold in the above hypothesises, Equation (10b) is true.

Let n=p™ - p;* -...- p[" be the prime number decomposition of n. Equation (10b) gives
the following inequality

dmy=d(p" - p3* - pl)=d(pl")+d(pT*)+..+d(pl)=1+1+ _+1<

< log,(p[" )+ log, (o7 )+.. + log, (p ) = log, (p" - p* - ) = log,(n)
that proves Equation (10c). *

The following proposition proposes a new inequality concerning the Euler function.
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Proposition 3. (V n2 1) p(n) 2 ——.
I+log,n

Proof

Let n=p - -p*-..-pl be the prime number decomposition of »n such that

P < p,<..<p,. Thus, (p(n)zn-(l—/pl)-(l—%z)...-(l—%UJ holds. Using

the order p, < p, <..< p., it follows that 2< p,,3< p,,....d(n)+1< p . These
inequalities are used as follows:

Tt 2

Zn-(l—l)(l—l)-...-{l— 1 ): ?
2 3 dm+1) dn)+1

Equation (10c) used in the last inequality gives @(7) > —n—. .
1+log,n

[
Proposition 4. If a>1, then the series Z&
2l \ n

a
l1+log,n) .
———==— | 1s convergent.
Proof
The proof uses the following convergence test: "if (4,),,, is a decreasing sequence, then the

series Zan and 22" -a,, have the same convergence”.

n>0 n>0

1+log,n)" | . : :
Because the sequence | | —————— is decreasing, the above test can be applied. The
n>0

n

a

1+log, 2"\ 1+n) n
condensed series 1s 22" (—-——gi—j = Z(—n)— =2 ZW that is obviously

-{a-1
n21 2" n2l 2mtas n>2
convergent. .
Theorem 5. If a>1, then the series z " is convergent.
nzl ¢ (n)
Proof
_ .. ) 1+log,n . o
According to Proposition 4, the series Z ———==— | 1s convergent. Proposition 3 gives the
nzt n
1+log,nY 1 4 1 ,
inequality ( =2 2 ——, thus the series Z " is convergent too.
n QD (’7) nzl ¢7 (’1)

L 4
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The interesting fact is that the Euler harmonic series has the same behaviour as the classical
harmonic series. Therefore, both are convergent for a>1 and both are divergent for a<l. The
right question is to find information about the sum of the series in the convergence case. Let

us denote £{a) = -

Z: @"(n)
can be computed by using a simple computation. They are presented in Table 1 for a=23,
7.

the sum of the Euler harmonic series for a>1. These constants

LY

a E(a) a E(a)

2 3.39049431 5 2.09837919
3 2.47619474 6 2.04796102
4 2.20815078 7 2.02369872

Table 1. The values for £(a).

Unfortunately, none of the above constants are known. Moreover, a relationship
between the classical constants (7 e, ..) and them are not obvious. Finding
properties concerning the constants £(«) still remains an open research problem.
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On two notes by M. Bencze

J. Sandor
Babeg-Bolyai University, 3400 Cluj-Napoca. Romania

In vol 10 of this Journal M. Bencze has published two notes on certain

inequalities for the Smarandache function. In [2] it is proved that
/ m \ m
S .= 2 St (1)
i=1 k=1

This, in other form is exactly inequality (2) from our paper [5], and follows
easily from Le’s inequality S(ab) < S(a) + S(b)
In {1]itis proved that

o)<

STat]" <> a.b. @)
\ =1 J k=1

The proof follows the method of the probltem from [3], e

S(m!”)s m-n (3)

This appears also in [4], [5]. We note here that relation (2) is a direct

consequence of (1) and (3), since

S(QL!b‘-~-an!b')5 S(alzbl)+“‘+5(an!b")s bxax-“_"‘;bnan

References

1. M. Bencze, A_new_inequality for the Smarandache function, SNJ, 10
(1999), No. 1-2-3 p. 139

2. M. Bencze, An inequality for the Smarandache function, SNJ. 10
(1999), No. 1-2-3, p. 160

3. J. Sandor, Problem L : 87 _Mat Lap (Clyj). No. 5/1957, p. 184

4. J. Séandor, On certain new inequalities and limits for the Smarandache
function, SNJ, 8 (1998), 63 — 69

5. J. Sandor, On an inequality for the Smarandache function, SNJ 10 (1999).
125 =127

201



On certain generalizations of the Smarandache

function

J. Sandor

Babes-Bolyai University, 3400 Cluj-Napoca, Romania

1. The famous Smarandache function is defined by S(n) := min{k € N nlk'},n>1
positive integer. This arithmetical function is connected to the number of divisors of n,
and other important number theoretic functions (see e.g. [6]‘, 7], [9], [10]). A very natural
generalization is the following one: Let f : N* — N~* be an arithmetical function which

satisfies the following property: ‘

(P,) For each n € N* there exists at least a k € N* such that n|f(k).

Let Fy: N* — N~ defined by
Fy(n) = min{k € N : n|f(k)}. (1)

Since every subset of natural numbers is well-ordered, the definition (1) is correct, and

clearly F¢(n) > 1 for alln € N™.

Examples. 1) Let :d(k) = k for all k > 1. Then clearly (P, ) is satisfied, and

Fu(n) =n. (2)
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2) Let f(k) = k'. Then Fi(n) = S(n) - the Smarandache function.

3) Let f(k) = pi!, where p; denotes the kth prime number. Then
Fy(n) = min{k € N™: n|p!}. (3)

Here (P;) is satisfied, as we can take for each n > 1 the least prime greater than n.

4) Let f(k) = ¢(k), Euler’s totient. First we prove that (P,) is satisfied. Let n > 1
be given. By Dirichlet’s theorem on arithmetical progressions ({1]) there exists a positive
integer a such that k& = an + 1 is prime (in fact for infinitely many a’s). Then clearly
(k) = an, which is divisible by n.

We shall denote this function by F,. (4)

5) Let f(k) = o(k), the sum of divisors of k. Let k be a prime of the form an — 1,
where n > 1 is given. Then clearly o(n) = an divisible by n. Thus (P,) is satisfied. One
obtains the arithmetical function F,. (5)

2. Let A CN~, A# 0 a nonvoid subset of N, having the property:

(P,) For each n > 1 there exists k € A such that nlkl.

Then the following arithmetical function may be introduced:
Sa(n) = min{k € A: nlk!}. (6)

Examples. 1) Let A = N". Then Sn(n) = S(n) - the Smarandache function.
2) Let A =N, = set of odd positive integers. Then clearly (P;) is satisfied. (7
3) Let A = N = set of even positive integers. One obtains a new Smarandache-type

function. (8)

4) Let A = P = set of prime numbers. Then Sp(n) = min{k € P : nlk!}. We shall
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denote this function by P(n), as we will consider more closely this function. (9)
3. Let g : N* = N” be a given arithmetical function. Suppose that g satisfies the
following assumption:
(P3) For each n > 1 there exists £ > 1 such that g(k)|n. (10)

Let the function G, : N* — N~ be defined as follows:
Gy(n) = max{k € N": g(k)in}. (1)

This 1s not a generalization of S(n), but for g(k) = k!, in fact one obtains a ”dual”-

function of §{n), namely
Gi(n) = max{k € N*: kl|n}. (12)
Let us denote this function by S.(n).

There are many other particular cases, but we stop here, and study in more detail

some of the above stated functions.

4. The function P(n)

This has been defined in (9) by: the least prime p such that n|p!. Some values are:
P(l) =1, P(2) =2, P(3) = 3, P(4) =5, P(5) =5, P(6) = 3, P(7) =17, P(8) = 5,
P(9) =7, P(10) =35, P(11) =11,...

Proposition 1. For each prime p one has P(p) = p, and if n is squarefree, then
P(n) = greatest prime divisor of n.

Proof. Since p|p! and p { ¢! with g < p, clearly P(p) = p. If n = pp, . .. p, is squarefree,
with py,...,p. distinct primes, if p. = max{p;,...,p-}, then p;...p.|p.!. On the other
hand, p;...p, { ¢! for ¢ < p., since p. { ¢!. Thus p, is the least prime with the required

property.
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The calculation of P(p?) is not so simple but we can state the following result:

Proposition 2. One has the inequality P(p?) > 2p+ 1. If 2p+ 1 = ¢ is prime, then
P(p?) = q. More generally, P(p™) > mp + 1 for all primes p and all integers m. There is
equality, if mp + 1 is prime.

Proof. From p?|(1-2...p)(p+1) ... (2p) we have p?|(2p)!. Thus P(p?) > 2p+1. One has

equality, if 2p+1 is prime. By writing p™|{1-2...p(p+1)...2p...{(m —1)p + 1]...mp,
D e P

~ "

where each group of p consecutive terms contains a member divistble by p, one obtains
P(p™) > mp+1.

Remark. If 2p 4+ 1 is not a prime, then clearly P(p?) > 2p + 3.

It is not known if there exist infinitely many primes p such that 2p + 1 is prime too
(see {4]).

Proposition 3. The following double inequality is true:
2p+1< P(p*)<3p—-1 (13)

mp+1< P(p™) < (m+1)p—1 (14)

if p 2> po.

Proof. We use the known fact from the prime number theory ([1], [8]) tha for all a > 2
there exists at least a prime between 2a and 3a. Thus between 2p and 3p there is at least
a prime, implying P(p?) < 3p — 1. On the same lines, for sufficiently large p, there is a
prime between mp and (m + 1)p. This gives the inequality (14).

Proposition 4. For all n,m > 1 one has:

S(n) < P(n) < 25(n) -1 (15)
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and
P(nm) < 2[P(n) + P(m)) — 1 (16)
where S(n) is the Smarandache function.

Proof. The left side of (15) is a consequence of definitions of S{n) and P(n), while the
right-hand side follows from Chebyshev’s theorem on the existence of a prime between a
and 2a¢ (where a = S(n), when 2a is not a prime).

For the right side of (16) we use the inequality S(mn) < S(n) + S(m) (see [3]):
P(nm) < 25(nm) — 1 < 2[S(n) + S(m)] — 1 < 2[P(n) + P(m)] = 1, by (15).

Corollary.

lim {/P(n) = 1. (17)

n—rco
This is an easy consequence of (15) and the fact that nliglo v S(n) = 1. (For other
limits, see [6]).
5. The function S.(n)
As we have seen in (12), S.(n) is in certain sense a dual of S(n), and clearly

(S5.(n))!In}(S(n))! which implies
1<5.(n)<S5(n)<n (18)

thus, as a consequence,

noeo \ S(m)

On the other hand, from known properties of S it follows that

. San) . S.(n) _
hﬂgf i) =0, lels::p Sin) = 1. (20)

For odd values n, we clearly have S.(n) = 1.
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Proposition 5. For n > 3 one has
S.nl+2)=2 (21)
and more generally, if p is a prime, then for n > p we have
S.(n'+(p-1))=p~- 1L (22)

Proof. (21) is true, since 2{(n! + 2) and if one assumes that k!}(n! + 2) with k > 3,
then 3|(n! + 2), impossible, since for n > 3, 3|n!. So k < 2, and remains k=2

For the general case, let us remark that if n > k + 1, then, since k|(n! + k!), we have
S.(n!+ k!) > k.

On the other hand, if for some s > k + 1 we have sl|(n! + k!), by £ +1 < n we get
(k + 1)|(n! + k') yielding (k + 1)|k!, since (k + 1)|n!. So, if (k +1)|k! is not true, then we
have

S.(n!+ k) = k. (23)
Particularly, for k = p— 1 (p prime) we have p{ (p — 1)!.
Corollary. For infinitely many m one has S.(m) = p — 1, where p is a given prime.

Proposition 6. For all k,m > 1 we have
S.(k'm} >k (24)

and for all a¢,6 > 1,

S.(ab) > max{S.(a), S.(b)}. (25)

Proof. (24) trivially follows from k!|(k!m), while (25) is a consequence of (S.(a))l]a =

(S.(a))!|(ab) so S.(ab) > S.(a). This is true if a is replaced by b, so (25) follows.
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Proposition 7. S.[z(z —1)...(z —a+1)] > a for all z > a (z positive integer).(26)

Proof. This is a consequence of the known fact that the product of a consecutive
integers is divisible by a!.

We now investigate certain properties of S.(a!b!). By (24) or (25) we have S.(a!b!) >
max{a, b}. If the equation

aldl = ¢! (27)

is solvable, then clearly S.(a!b!) = c. For example, since 3!-5! = 6!, we Have S.(3!-3!) = 6.
The equation (27) has a trivial solution ¢ = k!, a = k! — 1, b = k. Thus S.(k!(k!—1)!) = k.

In general, the nontrivial solutions of (27) are not known (see e.g. [3], [1]).

We now prove:

Proposition 8. 5.((2k)!(2k + 2)!) = 2k + 2, if 2k + 3 is a prime; (28)

S-((2E)'(2k + 2)!) > 2k + 4, if 2k + 3 is not a prime. (29)

Proof. If 2k +3 = p is a prime, (28) is obvious, since (2k + 2)!|(2k)!(2k + 2)!, but

(2k + 3)! { (2k)!(2k + 2)!. We shall prove first that if 2k + 3 is not prime, then
(2k +3)|(1-2...(2k)) (%)

Indeed, let 2k + 3 = ab, with a,b > 3 odd numbers. If a < b, then ¢ < k, and
from 2k + 3 > 3b we have b < %k + 1 < k. So (2k)! is divisible by ab, since a,b are
distinct numbers between 1 and k. If a = b, i.e. 2k + 3 = a?, then (x) is equivalent with
a®{(1-2...a)(a+1)...(a* — 3). We show that there is a positive integer k such that
a+1<ka<a*-3or Indeed, a(a —3) = a*—3a <a’-3fora>3anda(a-3)>a+l

by a® > 4a + 1, valid for a > 5. For a = 3 we can verifiy (x) directly. Now (x) gives

(2k + 3)1(2k)!(2k + 2)!, if 2k + 3 # prime (x%)
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implying inequality (29).
For consecutive odd numbers, the product of factorials gives for certain values
S.(31-51=6, S.(50-7)=8, S.(7-91) =10,
S.(9'-11Y) =12, S.(111-131) =16, S.(13!-15!) =16, S.(15!- 174 = 18,
S.(17!-191) =22, S.(19'-211) =22, S.(21!-23}) = 28.

The following conjecture arises:

Conjecture. S.((2k — 1)!(2k + 1)!) = g« — 1, where g is the first prime following
2k + 1.

Corollary. From (gi — 1)'}(2k — 1)}(2k + 1)! it follows that g > 2k + 1. On the other
hand, by (2k — 1)!(2k + 1)!|(4k)!, we get gx < 4k — 3. Thus between 2k + 1 and 4k + 2
there is at least a prime gx. This means that the above conjecture, if true, is stronger than
Bertrand’s postulate (Chebyshev’s theorem (1}, {8}).

6. Finally, we make some remarks on the functions defined by (4), (5), other functions
of this type, and certain other generalizations and analogous functions for further study,
related to the Smarandache function.

First, consider the function F, of (4), defined by

F, = min{k € N* : nfp(k)}.
First observe that if n + 1 = prime, then n = (n + 1), so F,(n) =n + 1. Thus
n+1=prime = F,(n)=n+1. (30)

This is somewhat converse to the p-function property

n+1=prime = ¢(n+1)=n.
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Proposition 9. Let ¢, be the nth cyclotomic polynomial. Then for each a > 2
(integer) one has
F,(n) < ¢n(a) for all n. (31)
Proof. The cyclotomic polynomial is the irreducible polynomial of grade ¢(n) with
integer coefficients with the primitive roots of order n as zeros. It is known (see [2]) the
following property:
nlo(én(a)) foralln > 1, alla > 2. | (32)
The definition of F,, gives immediately inequality (31).
Remark. We note that there exist in the literature a number of congruence properties
of the function ¢. E.g. it is known that n|p(a™ — 1) for all n > 1, a > 2. But this is a
consequence of (32), since ¢,(a)la™ — 1, and ujv = @(u)|p(v) implies (known property
of ¢) what we have stated.
The most famous congruence property of ¢ is the following
Conjecture. (D.H. Lehmer (see [4])) If p(n)|(n — 1), then n = prime.
Another congruence property of ¢ is contained in Euler’s theorem: m|(a®(™ — 1) for

(a,m) = 1. In fact this implies
S.[a®™) —1] > m for (a,m!) =1 (33)
and by the same procedure,
S.(¢(a™ = 1)] > n for all n. (34)
As a corollary of (34) we can state that

lim sup S.{p(k)] = +o0. (33)

k—o0
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(It is sufficient to take k = a™ — 1 — o0 as n —+ o0).
7. In a completely similar way one can define Fy(n) = min{k : nld(k)}, where d(k) is

the number of distinct divisors of k. Since d(2"~!) = n, one has
Fa(n) <2771, (36)

Let now n = pi* ... p2~ be the canonical factorization of the number . Then Smaran-
dache ([9]) proved that S(n) = max{S(pS*),...,S(pe")}.

In the analogous way, we may define the functions S,(n) = max{p(py'),...,o(p°")},
So(n) = max{o(p{'),...,o(po")}, etc.

But we can define 53 (n) = min{p(pf"),..., @(p2")}, S*(n) = min{p(p%), ..., 0(p2")},

etc. For an arithmetical function f one can define

Agp(n) = Lem L f(p7), ..., f(I7)}

and
5/("‘) = g.c.d.{f(pf‘ )’ R f(p(r]r)}

For the function A,(n) the following divisibility property is known (see [8], p.140,
Problem 6).
If (a,n) =1, then

n|la®e™ —1]. (37)

These functions and many related others may be studied in the near (or further)

future.
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On the numerical function S;ljln

Vasile Seleacu
Department of Mathematics, University of Craiova
13, AL L. Cuza st., Craiova 1100, Romania

In 1] on defines S, : N\ {1} = N, 52! (z) = min{S~(z)}, where
S™(z) = {a € N|S(a) =z}, and S is the Smarandache function.
For example S™1(6) = {2¢,2%-3,24.3% 32 3%2.2,32.22 32.2% 2¢.3.5,
28.32.5,24.32.5,32.5,2¢.5,32.5,32-2¢} and S_;,(6) = 32.
If S(z) = n one knows that card (S7'(n)) = d(n!) — d((n — 1)!) where d is
the number of divisors of n.
If z is a prime number, then card (§7(n)) =d((n — 1)!).
We give below a table of the values of SZ1 (n):

n 2 3 14 5 6 7 |8 12115
SIn) |2 |3 |4 |5 [32]7 & |35
n 16 {21124 {27 136 {4052 |36} 60
S—_l (TL) 212 73 310 311 316 59 134 78 54

One knows 2] that if p < g are two prime numbers, and n > 1 is a natural
number such that p-q | n, then p(™ > ¢4(®  where [,(n) is the exponent
of p in the prime factors decomposition of n!.

According to the above properties we can deduce the calculus formula for
function SZ. :

Sam (0 =pYipg?---pir) = plr(M7ort! (1)
where p; < pp < --- < pr are the prime numbers in the canonical decompo-

sition of the number n. ,

We list a set of properties of the function S} , which result directly from
the definition and from formula (1):

1. Sa

min

(p) = p if p is a prime number.
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2. S,

m.

(P q) = ¢F if p and g are prime numbers and p < q.
3. S(San(z) ==z.

4. S}

mun

(¢°) =p-qif p and ¢ are prime numbers and p < g.

5. Sgh(z) < SZi(y) if £ and y contain as the greatest prime factor p, and
r<y.

6. The equation S_,(z) = SZ1I (z + 1) has not solutions.

7. Szl (S(z)) is generally not equal to S(z).

8 A (S‘] (:z:)) = logp- , where A is the Mangoltd function.

min

It is open the problem to find other properties of the function S} .
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On Numbers Where the Values of the Pseudo-Smarandache
Function Of It and The Reversal Are 1dentical

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, IA 52233
e-mail 71603.522@compuserve.com

The Pseudo-Smarandache function was introduced by Kenichiro Kashihara in a book
that is highly recommended[1].

Definition: For anyn > 1, the value of the Pseudo-Smarandache function is the
smallest integer m such that n evenly divides

m
S k.
k=1

Definition: Let d = a,a,. . . a, be a decimal integer. The reversal of d, Rev(d) is the
number obtained by reversing the order of the digits of d.

Rev(d) = axar_1 . . . aa;.
If d contains trailing zeros, they are dropped when they become leading zeros.

In this paper, we will look for numbers n, such that Z(n) = Z(Rev(n)) and note some of
the interesting properties of the solutions. If n is palindromic, then the above property is
true by default. Therefore, we will restrict our set of interest to all non-palindromic
numbers n such that Z(n) = Z(Rev(n)).

A computer program was written to search for all suchnfor1 < n < 100,000 and the
solutions are summarized below.

7(180) = 80 = Z(81)
Z(990) = 44 = Z(99)
Z(1010) = 100 = Z(101)
Z(1089)=242 = Z(9801)
Z(1210) = 120 = Z(121)
Z(1313) =403 = Z(3131)
Z(1572) =392 =Z(2751)
Z(1810) =180 = Z(181)
Z(1818) =404 = Z(8181)
Z(2120) = 159 = Z(212)
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Z(2178) = 1088 = Z(8712)
Z(2420) = 120 = Z(242)
Z(2626) = 403 = Z(6262)
Z(2720)=255 = Z(272)
Z(2997) = 1295 = Z(7992)
Z(3630) =120 = Z(363)
Z(3636) =504 = Z(6363)
Z(4240) = 159 = Z(424)
Z(4284)= 1071 = Z(4842)
Z(4545) =404 = Z(5454)
Z(4640) =319 = Z(464)
Z(5050) = 100 = Z(505)
Z(6360) =159 = Z(636)
Z(7170)=239= Z(717)

Z(8780) = 439 = Z(878)
Z(9090) = 404 = Z(909)
Z(9490) = 364 = Z(949)
Z(9890) = 344 = Z(989)

Z(13332) = 1616 = Z(23331)
Z(15015) = 714 = Z(51051)
Z(16610) = 604 = Z(1661)
Z(21296) = 6655 = Z(69212)
Z(25520) =319 = Z(2552)
Z(26664) = 1616 = Z(46662)
Z(27027)=2079 = Z(72072)
Z(29970) = 1295 = Z(7992)
Z(32230) =879 = Z(3223)
Z(37730)= 1715 = Z(3773)
Z(39960) = 1295 = Z(6993)
Z(45045)=2079 = Z(54054)
Z(46662) = 1616 = Z(26664)
Z(49940) = 1815 = Z(4994)
Z(566350) = 824 = Z(5665)
Z(57057) = 2925 = Z(75075)
Z(63630) = 504 = Z(3636)
Z(64460) = 879 = Z(6446)
Z(80080) = 2079 = Z(8008)
Z(80640) = 4095 = Z(4608)
Z(81810) = 404 = Z(1818)
Z(92290) = 3355 = Z(9229)
Z(93390) = 1980 = Z(9339)
Z(96690) = 879 = Z(9669)
Z(97790) = 2540 = Z(9779)
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Several items to note from the previous list.
a) Of the 52 solutions discovered, 35 of the numbers have one trailing zero, where many
of them are palindromes when the zeros are dropped. While no numbers with two trailing

zeros were found, it seems likely that there are such numbers.

Unsolved Question: Given that Z(n) = Z(Rev(n)), what is the largest number of trailing
zeros that n can have?

The previous question is directly related to the speed with which the Pseudo-
Smarandache function grows.

d) Of the 17 remaining numbers, 9 exhibit the pattern d,d,d;d> or d;d»0d;ds.

Unsolved Question: Is this a pattern, in the sense that there is an infinite set of numbers
n, such that n =d;d,0 . . . 0d;d; and Z(n) = Z(Rev(n))?

e) Only three of the numbers contain unique nonzero digits and there are none with five
digits.

Unsolved Question: What is the largest number of unique nonzero digits that a number n
can have when Z(n) = Z(Rev(n)?

f) Three of the numbers exhibit the pattern d;ds. . . d>d3, with the largest interior pattern
being three digits in length.

Unsolved Question: What is the largest interior pattern of repeating digits d,. . . d; that
can appear in a number n =d;d; . . . dpd; such that Z(n) = Z(Rev(n))?
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SMARANDACHE RECIPROCAL PARTITION OF UNITY
SETS AND SEQUENCES

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: Expression of unity as the sum of the reciprocals
of natural numbers is explored . And in this connection
Smarandache Reciprocal partition of unity sets and sequences are
defined. Some results and Inequalities are derived and a few open
problems are proposed.
DISCUSSION:

Define Smarandache Repeatable Reciprocal partition of unity

set as follows:
n

SRRPS(n) ={xi{x=(ay, az, ..., a,) where X (1/a;) =1.}

r=1

frp(n) = order of the set SRRPS(n).
We have

SRRPS(1)={ (1)}, fre(1) = 1.
SRRPS(2) ={(2,2) }, fre(2) = 1.

SRRPS(3) = {(3,3,3),(2,3,6), (2,4,4) } , frp(3) = 3.,1 = 1/2 + 1/3 +
1/6 etc.

SRRPS(4) = { (4,4,4.4), (2,4,6,12), (2,3,7,42), (2,4,5,20),
(2.6.6.6).(2.4.8,8,).(2,3,12,12), ( 4.4.3,6) , (3,3,6,6), (2,3,10,15) }
frp(4) = 10.

SMARANDACHE REPEATABLE RECIPROCAL PARTITION OF

UNITY SEQUENCE is defined as
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1,1,3,10...

where the n'" term = frp(n) .

Define SMARANDACHE DISTINCT RECIPROCAL PARTITION OF

UNITY SET
as follows
n
SDRPS(n) = {x|x = (a4, az, ..., a,) where X (1/a,) =1 and a; =
a; < i = J} r=1

fop(n) = order of SDRPS(n).

SDRPS(1)={ (1)}, for(1) = 1.

SDRPS(2) ={ } . frp(2) = 0.

SDRPS(3) ={(2,3,6) }, fop(3) = 1.

SRRPS(4) = {(2,4,6,12), (2,3,7,42), (2,4,5,20),(2,3,10,15)}
for(4) = 4.

Smarandache Distinct Reciprocal partition of unity sequences

defined as follows
1,0,1.,4,12 ...

the n'™ term is fpp(n).
Following Inequality regarding the function fpp(n) has been
established.

THEOREM(1.1)

n-1

fop(n) = Y fop(k) + (n? -5n +8)/2 ,n>3  ----eeeee- (1.1)
k=3

This inequality will be established in two steps.
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Proposition (1.A)
For every n there exists a set of n natural numbers sum of
whose reciprocais is 1.

Proof: This will be proved by induction. Let the proposition be true

for n=r.

Let a; <ay <az<...<ans<a,=kberdistinct natural numbers
such that

1/ay + 1/a; + 1/az + ...+ 1/a, =1

We have , 1/k = 1/(k+1) + 1/ (k(k+1)) , which gives us a set of r+1
distinct numbers a; <a; <az;<... <a,q;<k+1< k(k+1), sum of
whose reciprocals is 1.

P(r) > P(r+1) , and as P(3) is true i.e. 1/2+1/3+1/6 =1,
‘The proposition is true for all n.

This completes the proof of proposition (1.A).

Note: If a; ,a; , as3,...a,s are n-1 distinct natural numbers
given by

a; = 2.

a, =a; + 1.

as; = aja, +1

a; = a;azasz...ai1 + 1. = agq(ap-1) +1

an-2 = @1@2@3...an.3 + 1
anp-1 = @4a2d3...3n-2
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then these numbers form a set of (n - 1) distinct natural numbers
such that

-1

n
Z 1/at = 1.
=1

~

we have a, = arq(ar.1 - 1) + 1 except whent=n-1 in which
case

8n-1 = @p2(a8n2-1)

Let the above set be called Principle Reciprocal Partition.

*** |t can easily be proved in the above set that

a, = 3 mod(10) and az+1 =7 mod (10) fort > 1.

Consider the principle reciprocal partition for n-1 numbers . Each
a, contributes one to fpp(n) if broken into ay + 1, a(ay + 1) except
for t = 1. (as 2, if broken into 3 and 6, to give 1/2 =1/3 + 1/6, the
number 3 is repeated and the condition of all distinct number is
not fulfilled). There is a contribution of n - 2 from the principle set
to fpp(n). The remaining fpp(n- 1) -1 members ( excluding the
principle partition) of SDRPS(n-1) would contribute at least one
each to fop(n) (breaking the largest number in each such set into
two parts) . The contribution to fpe(n) thus is at least

n-2 + fop(n-1) - 1 = fpe(n-1) + n - 3

fop(n) > fop(n-1) + N -3  ocoeoeme (1.2)
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Also for each member (b4, b, bhr.q ) of SDRPS(n-1) there

.....

exists a member of SDRPS(n) i.e. (2, 2b4, 2bs, . . . ,2b,¢ ) as we

can see that

1=(1/2)(1+1/by +1/b, + .. +1/byy)=1/2 +1/2by +. . _ +
1/2bn.. .
In this way there is a contribution of fgp(n-1) to fpp(n) . ------- (1.3)

Taking into account all these contributions to fpp(n) we get
for(n) 2 fpe(n-1) + n -3 + fpp(n-1)

fop(n) = 2fpp(n-1) + n -3

for(n) - fpp(n-1) > fpp(n-1) + N -3 —cocmmmmmeme (1.4)

from (4) by replacing n by 'n-1 , n-2 , etc. we get

fop(n-1) - fpp(n-2) > fpp(n-2) + n -4

for(n-2) - fpp(n-3) 2 fpp(n-3) + n -5

for(4) - fop(3) = fop(3) + 1

summing up all the above inequalities we get

. n-1 n-1
po(n) - po(3) > > po(k) +>r
k=3 r=1
n-1
for(n) 2 2 fop(k) + (n-3)(n-2)/2 + 1
k=3
n-1
fop(n) > X for(k) + (n® -5n +8)/2 , n>3
k=3
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Remarks : Readers can come up with stronger results as in my
opinion the order of fpp(n) should be much more than what has

been arrived at. This will be clear from the following theorem.

THEOREM(1.2):

If mis a member of an element of SRRPS(n) say,

n

(a4, a,, asz,..., a,).We have a, = m forsome k and > 1/ay, =1.
k=1

then m contributes [ {d(m) + 1}/2 ] elements to SRRPS(n+1),
where the symbol [ ] stands for integer value and d(m) is the
number of divisors of m.

Proof: For each divisor d of m there corresponds another
divisor m/d =d".

Case-l: m is not a perfect square . Then d(m).is even and there
are d(m)/2 pairs of the type (d,d’) such that dd" = m .

Consider the following identity

1/(p.q) = 1(p(p +q)) + 1/(q(p*tq))  --===-=mm--- (1.5)

for each divisor pair (d,d’) of m we have the following breakup
1/(d.d")y = 1/(d(d+d’)) + 1/(d'(d+d’))

Hence the contribution of m to SRRPS(n+1) is d(m)/2. As d(m)

is even d(m)/2 = [ {d(m) +1}/2] Also.
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Case-ll mis a perfect square. In this case d(m) is odd and there
is a divisor pair d=d’ = m"? . This will contribute one to
SRRPS(n+1) .The remaining {d(m) -1}/2 pairs of distinct divisors
will contribute as many i.e. say ({d(m) -1}/2) .Hence the total
contribution in this case would be

{d(m) -1}/2 + 1 = {d(m) +1}/2 =[ {d(m) +1}/2]

Hence m contributes [ {d(m) + 1}/2 ] elements to SRRPS(n+1)
This completes the proof.

Remarks:(1) The total contribution to SRRPS(n+1) by any element
of SRRPS(n) is 2 [{d(ak) + 1}/2]  -==------ (1.6),

where each ay is considered only once irrespective of its’
repeated occurrence.

(2) In case of SDRPS(n+1) , the contribution by an element of
SDRPS(n) is given by

n

Y [{d(ak)¥2]1 eeeeeeeee- (1.7)
k=1

because the divisor pair d =d’= a, ""?> does not contribute.
Hence the total contribution of SDRP(n) to generate SDRPS(n+1)

is the summation over all the elements of SDRPS(n) .

n
2. { X [{d(ax)}2] Yo e (1.8)
for(n) k=1

Generalizing the above approach.
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The readers can further extend this work by considering the

following identity

1 1 1 1
= s ----(1.9)
pqr pa(p+qg+r) qr(p+qg+r) rp(p+q+r)

which also suggests

1

r

= S {( I by )( Xbg)}y' e (1.10)

bsb,. . .b, k=1 t=1,tzk s=1

The above identity can easily be established by just summing up
the right hand member.

From (1.10) , the contribution of the elements of SDRPS(n) to
SDRPS(n+r) can be evaluated if an answer to following tedious
querries could be found.

OPEN PROBLEMS:

(1) In how many ways a number can be expressed as the product

of 3 of its divisors?

(2) In general in how many ways a number can be expressed as

the product of r of its’ divisors?

(3) Finally in how many ways a number can be expressed as the

product of its divisors?
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An attempt to get the answers to the above querries leads to the

need of the generalization of the theory of partition function.
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GENERALIZATION OF PARTITION FUNCTION,
INTRODUCING SMARANDACHE FACTOR PARTITION

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

Partition function P(n) is defined as the number of ways that

a positive integer can be expressed as the sum of positive
integers. Two partitions are not considered to be different if they
differ only in the order of their summands. A number of results
concerning the partition function were discovered using analytic
functions by Euler, Jacobi, Hardy , Ramanujan and others. Also a
number of congruence properties of the function were derived. In
the paper Ref.[1]

| “SMARANDACHE RECIPROCAL PARTITION OF UNITY

SETS AND SEQUENCES”

while dealing with the idea of Smarandache Reciprocal Partitions
of unity we are confronted with the problem as to in how many
ways a number can be expressed as the product of its divisors.
Exploring this lead to the generalization of the theory of partitions.

DISCUSSION:

Definition : SMARANDACHE FACTOR PARTITION FUNCTION:

Let o4, 0p,Q3,...0a beasetofr natural numbers and p1, P2,

ps ,. . .pr be arbitrarily chosen distinct primes then
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F(ay, a2, a3, . . . o ) called the Smarandache Factor Partition of

(a1, a2, a3z, ... o) is defined as the number of ways in which the
number

al a2 a3 ar
N = P+ P2 P3 ... P could be expressed as the

product of its’ divisors.

Example: F(1,2) = ?, |

Let pi=2andp,=3 ,N=py p,°2 =232 =18
N can be expressed as the product of its divisors in following 4
ways:
(1) N=18,(2) N=9X2
() N=6X3(4) N=3 X3 X 2. As perour definition F (1,2) = 4.
It is evident from the definition that F(ay, az ) = F(az, ay) orin
general the order of «; in F(ay, az, asz, . . . q; .. .0 ) is
immaterial. Also the primes py, p2, P3,. . .pr are dummies and can
be chosen arbitrarily.
We start with some elementry results to buildup the concept.
THEOREM(2.1) : F (o) = P(a)
where P(a) is the number of partitions of «a.
PROOF: Let p be any prime and N = p* .

Let a =x31+Xx, + ...+ X, be a partition of «.
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Then N = (p" ) (p*®) (P ... (p™) is a SFP of N .i.e. each
partition of a contributes one SFP. ---c-eee- (2.1)
Also let one of the SFP of N be
N = (N;).(N2.)(N3)...(Nc).Each N; has to be such that N, = p®
Let Ny =p* | N, =p*? | etc. N, = p** then
N= (p*)(p* ). . .(p*)

N = p(a1+32+a3+. . .+an)
= Q= a;taxzt+.. .+ a
which gives a partition of a. Obviously each SFP of N gives one
unique partition of a . -------- (2.2) .
from (2.1) and (2.2) we get

F (o) = P(a)
a
THEOREM (2.2) F(a, 1) = X P(k)
k=0

PROOF: Let N = p;® p, , where py, p, are arbitrarily chosen
primes.
Case(1) Writing N = (p2 ) p+® keeping p, as a separate entity
( one of the factors in the factor partition of N ) ,would yield P(a)
Smarandache factor partitions .( from theorem (2.1)) .
Case(2) Writing N = (p1.p2 ). p1*" keeping (p:p2) as a separate

entity ( one of the factors in the SFP of N ) ,would yield P(a-1)

SFPs.
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Case (r) In general writing N = (p;" .p2 ). p+*" and keeping (p:

.pz2) as a separate entity would yield P(a-r) SFPs.
Contributions towards F(N) in each case (1), (2),
mutually disjoint as p;' .p2 is unique for a given

ranges from zero to «. These are exhaustive also.

Hence
F(a, 1) = X P(oa-r)
r=0
Let a -1 =K r=0= k= «
r=a= k=0
0
Fla, 1) = X P(k)
k=Q
o
F(oe, 1) = X P(k)
k=0

This completes the proof of the theorem (2.2)

Some examples:
(1) F(3) =P(3)=3, Letp=2,N=2° =38

(WN=8, (2)N=4X2, (3) N=2X2X2.

(2) 4
F(4, 1)

k=0

=1 +1 +2 +3 +5 = 12
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Let N=2% X3 =48 here p; =2 , p, =3

The Smarandache factor partitions of 48 are

N W
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DEFINITIONS:
In what follows in the coming pages let us denote (for simplicity)

(1) F(oy, a2, 03, ...0r ) = F (N)
where
o8] a2 a3 oy o

N = P1 P2 P3 ... Pr ... Pn

and p,is the rth prime. py =2, p, =3 etc.

(2) Also for the case (N is a square free number)

01 = O =03 =...= o =...= 0, =1

Let us denote

F(1,1,1,1,1...) = F(1#n)
«— 0N -o0nes —>

Examples: F (1#2) =F(1,1) =F'(6) =2, =2X3=p1 Xps.

F(#3) =F (1,1, 1)=F (2X3X5)=F (30)=5.

(3) Smarandache Star Function
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F'(N) = Y F(d,) where d.|N
d/N

F ( N) = sum of F(d,) over all the divisors of N.
e.g. N =12 divisorsare 1,2, 3,4,6, 12
F'(12)=F (1) + F(2) + F(3) + F(4) + F(6) + F(12)

= 1 +1 +1 + 2 +2 +4 =11
THEOREM (2.3)

F'(N) =F(Np) , (p,N)=1, pis a prime.
PROOF: We have by definition

F'(N) = X F'(d,) where d,|N
d/N

d. ( Np/d;)

consider d; a divisor of N . Np
let ( Np/d,) =g(d,), then N = d,. g(d,)

for any divisor d, of N |, g(d;) is unique

di =d; < g(d) =g(d))

Considering g(d,) as a single term ( an entity , not further split
into factors ) in the SFP of N.p one gets F(d,) SFPs .

Each g(d,) contributes F (d,) factor partitions .

The condition p does not divide N , takes care that g(d;) = d; for
any divisor. because p divides g(d;) and p does not divide d,.
This ensures that contribution towards F (Np) from each g(d,) is
distinct and there is no repetition. Summing over all g(d;) ‘s we get

F(Np) = X F'(d,)
d/N
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or
F'(N) =F(Np)
This completes the proof of the theorem (3) .

An application of theorem (2.3)

Theorem (2.2) follows from theorem (2.3)
To prove

F(o, 1) = Za P(k)

k=0
Let N= p® p; then F(a,1) =F (p*.p1)
from theorem (2.3)

F'(p*.p1) =F (p*) = X F(dy)

The divisor of p* are p° p', p%, ..p

hence
F (p*.p1) =F(p%)+ F(pHh+...+ F (p%)

=P(0) + P(1) +P(2)+ ...+P (a-1)+P (a)
or

F(a, 1) = Za P(k)
k=0

THEOREM (2.4): o

F(1# (n+1)) = X "C, F(1#r)
r=0

PROOF: From theorem (2.3) we have F'(Np) = F'* (N) , p does not

divide N. Consider the case N = pyp2ps. . . Pn - We have |, F'(N)
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= F (1#n) and F'( Np ) = F (1#(n+1)) as p does not divide N.

Finally we get
F(1#(n+1)) =F*(N)  —eeemeee (2.3)

The number of divisors of N of the type pi1p2ps. . . pr. ( containing
exactly r primes is "C,. Each of the "C, divisors of the type pip2ps.

.. pr has the same number of SFPs F(1#r). Hence
n
F'*(N) = X "C,F(1#r) = -emmmeemmeee- (2.4)
r=
From (2.3) and (2.4) we get

n
F(1# (n+1)) = X "C, F(1#r)
’ r=0

NOTE: Itis to be noted that F(1#n) is the n'" Bell number.
Example: F(1#0) =F'(1) = 1.

F(1#1) = F'(p1) = 1.

F(1#2) = F'(p1 p2) = 2.

F(1#2) = F'(p1 p2p3) = 5.

(i) Pi Pz P3

(i)  (p1p2) X p3
(i)  (p1p3) X p2
(iv)  (p2p3) X pq

(v) p1Xp2Xps
Let Theorem (4) be applied to obtain F (1#4)
3

F(1#4) = Y "C, F(1#r)
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r=0
F(1#4) = >Co F(1#0) + >C,F(1#1) +3C, F(1#2) + >C3 F(1#3)
= 1X1+ 3X1 + 3X2 + 1X5 =15

F(1#4) = F (2 X3 X5X7)= F'(210) = 15.

(n 210

(ii) 105X 2
(iit) 70X 3
(iv) 42 X5

(v) 35X6
(vi) 35X3X2
(vii) 30 X7
(viti) 21 X 10
(ix) 21 X5X2
(x) 15X 14
(xi) 15 X7X2
(xii) 14 X5 X 3
(xili) 10 X 7 X 3
(ixv) 7 X6 X5
(xv) 7 X5 X3 X2

On similar lines one can obtain
F(1#5) = 52 , F(1#6) = 203 , F(1#7) = 877 , F(1#8) = 4140.

F(1#9) = 21,147,

DEFINITION:

F**(N) = SF"*(d)
d./N

d, ranges over all the divisors of N.

If Nis a square free number with n prime factors , let us denote
F'** (N )=F* (1#n)
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Example:
F**(p1p2ps) = F** (1#3) = X F' (d))
d,/N ’
=%Co F'*(1) + °C+F'*(p1) + 3C, F'*(p1pz) + °C3 F* (p1p2ps)
F*(1#3) =1 + [3F(1) + F'(py)] + 3[ F'(1) + 2F'(ps) + F'(p:ps)]

+[F(1) +3F(p1) +3F(pip2) + F (p1p2pa) ]

F*(1#3)= 1+6+15+15 =37
An interesting observation is

(1) F**(1#0) + F(1#1) = F(1#2)
or

F**(1#0) + F*(1#0) = F(1#2)

(2) F**(1#1) + F(1#2) = F(1#3)
or '

F*(1#1) + F*(1#1) = F(1#3)

(3) F**(1#5) + F(1#6) F(1#7)
F**(1#5) + F*(1#5) = F(1#7)
which suggests the possibility of
F**(1#n) + F*(1#n) = F(1#(n+2))
A stronger proposition

F'(Npip2) = F™(N) + F*(N)

is established in theorem (2.5).

DEFINITION:
Fyn*(N) = Z F’("'”* (d,)
d,/N n>1
where F’’(N) = > F'(d,)
d./N
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and d, ranges over all the divisors of N.
THEOREM(2.5) :

F'(Npipz2) = F'"(N) + F"™*(N)
from theorem (3) we have

F'(Npip2) = F™*(Np1)

Let d4, d;, ..., d, be all the divisors of N. The divisors of Np;
would be

dy, dp, ..., dj

dips, d2p1, . . ., GaP1

F'*(Npy) =[F'(dy) + F'(d2) + ...+ F'(dn) 1 + [ F'(d1p1)+ F'( dapy) +
.+ F'(dap1)]
= F*(N) + [F'*(dy) + F'*(d2) + ...+ F'*(dn) ]

F'*(N) + F**(N) ( by definition)

F**(Np1)
= F'*(N) + F?*(N)

This completes the proof of theorem (2.5).

THEOREM(2.6):

F'(Np:p2ps) = F’*(N) +3F?*(N) + F’*(N)

PROOF:
From theorem (2.3) we have
F'(Np1p2ps) = F™*(Np1p2).

Also If ds, dr, ..., d, be all the divisors of N. Then

the
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divisors of Npyp, would be

dy{, do, ..., d,
dip1 da2p1, ..., dnp1
dipz, d2p2, ..., dap2
dipiP2,  dopsP2, ..., dnpip2
Hence
F*(Npip2) = [F(dy) +F'(dg) + ...+ F(d)] +
[F'{dips) + F'(d2ps) + ... F'(dap4)] +
[F'(dip2) + F'(d2p2) + ... + F'(dap2)] +
[F'(dip1p2) + F'(d2p1p2) + . . . + F'(dap1p2)]
= F"(N) + 2[F'*(d4) + F’*(d3) + .. . + F’*(d)] + S ----(2.5)

where S = [F'(dip1p2) + F'(d2p4p2) + . .. + F'(d,p1p2)

Now from theorem (2.5) we get,

F'(dip1p2) = F'*(d4) + F'**(d) ----(1)
F'(dz2p1p2) = F'*(dz) + F'**(dy) ----(2)
F'(dap1p2) = F'*(ds) + F'**(dy) ~-~(n)
on summing up (1) ,(2) ... upto(n) we get
S = F?%(N)+ F3*(N) -—--(2.6)

substituting the value of S in (A) and also taking
F'*(d,) + F'*(dy) + . . . + F'*(d,) = F’?*(N)

we get.,
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F'(Np1papa) = F'*(N) + 2F'2%(N) + F'2*(N) + F*(N)

F'(Npsp2ps) = F'*(N) + 3F®*(N) + F>*(N)

This completes thé proof of theorem (2.6).The above result which
has been observed to follow a beautiful pattern can further be
generalized.
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A GENERAL RESULT ON THE SMARANDACHE STAR
FUNCTION

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRCT: In this paper ,the result ( theorem-2.6) Derived in
REF. [2], the paper “Generalization Of Partition Function,
Introducing ‘Smarandache Factor Partition’ which has been
observed to follow a beautiful pattern has been generalized.

DEFINITIONS In [2] we define SMARANDACHE FACTOR

PARTITION FUNCTION , as follows:

Let o4, as, (13‘, . ..o be a set of r natural numbers
and p1, P2, P3,- - -Pr be arbitrarily chosen distinct primes then
Flooy, 02, a3, . . . o) called the Smarandache Factor Partition of
(oty, 0o, a3, ... car)is defined as the number of ways in which the
number

al a2 a3 ar
N = Pt P2 P33 ... Pr could be expressed as the

product of its’ divisors. For simplicity , we denote F(ay, oz, a3, . .

.a; ) = F (N),where

(o8] a2 a3 (o33 [od

N = pP1 Pz Pz ... Pr ... Pn

and p,is the r'" prime. p; =2, p, =3 etc.
Also for the case
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we denote
F(1,1,1,1,1...) = F(1#n)

<~ N -o0nes -

Smarandache Star Function

(1) F'(N) = X F(d,) where d,|N
d/N

(2) Fre* ( N ) - 2 F’* (dr)
d,/N

d. ranges over all the divisors of N.

If N is a square free number with n prime factors , let us denote

F** (N)=F*" (1#n)
Here we generalise the above idea by the following definition
Smarandache Generalised Star Function
(3) F'"(N) = T F""*(d))
d,/N n>1
and d, ranges over all the divisors of N.
For simplicity we denote
F (Npip2. - .pn) = F’(N@1#n) |, where

(N,pi)=1fori=1ton andeach p;is a prime.

F'(N@1#n) is nothing but the Smarandache factor partition of (a

number N multiplied by n primes which are coprime to N).
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In [3] a proof of the following result is given:

F’(Np1pzps) = F*(N) +3F'**(N) + F’*(N)

The present paper aims at generalising the abve result.
DISCUSSION:

THEOREM(3.1)

n
F'(N@1#n) = F'(Np1P2. . .pn) = X [ a(nm F'™(N)]
m=0
where
m
An,m) = (1/m!) 2 ('1)m-k -ka k"
k=1
PROOF:

Let the divisors of N be
d11 d2 1 R dk

Consider the divisors of (Np4p.. . .pn) arranged as follows

d{, da, ..., de  meeeee- say type (0)
dipi, depi, ..., AP meeeees say type (1)
dipip;, depipy, ...,  dwpipy 0 mmmmee- say type (2)
dipip;..., d2PiPj.-. . . ., PPy mmmeees say type (1)

( there are t primes in the term dqp;p;... apart from dy )

dipip2- . -Pn,  d2p1P2. . .Pn, daPiP2. . .Pa, ==mm=-- say type (n)

There are "Cpo divisors sets of the type (0)
There are "Cy divisors sets of the type (1)
There are "C, divisors sets of the type (2) and so on

There are "C; divisors sets of the type (t)
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There are "C, divisors sets of the type (n)

Let Npip2. . .pn =M _.Then

F*(M) = "Co[sum of the factor partitions of all the divisors of row (0) ]
+ "C4[sum of the factor partitions of all the divisors of row (1) ]
+ "Cy[sum of the factor partitions of all the divisors of row (2)]

+ ...
+ "Cy[sum of the factor partitions of all the divisors of row (t)]

+ ...

+ "C,[sum of the factor partitions of all the divisors of row (n)]

Let us consider the contributions of divisor sets one by one.
Row (0) or type (0) contributes
F'(di) + F'(d2) + F'(d3) + . . . + F'(dn) = F""(N)

Row (1) or type (1) contributes

[F'(dip1) + F'(dzps) + . . . F'(dkp1)]
= [F(dy) + F'*(d2) +. .. + F*(di)]
= F'2*(N)

Row (2) or type (2) contributes

[F'(dipip2) + F'(d2p1p2) + . .. + F'(dkp1p2)

Applying theorem (5) on each of the terms

F'(dip1p2) = F’'*(dy) + F™"(d1) ----(1)

F'(d2pip2) = F'*(d2) + F'™*(d2) ----(2)

F'(dep1p2) = F'"(de) + F"*(dy) (k)
on summing up (1) , (2) ... upto(n) we get

F'25(N) + F>*(N)

At this stage let us denote the coefficients as a, etc. say
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FIN@1#r) = ag.)F *(N) + apF 25 (N) +. .+ acyF ™"{N) + ...+
ai.nF(N)

Consider row (t) , one divisor set is

dip1p2.--Pt , d2p1P2..-Pt ,. - . dkP1P2..-Pt ,

and we have

F(di@1#t) = a1 F'*(dq) + a2 (dy) +. ..+ aqnyF " (dy)

F (d@1#t) = aq 1,F'™(d2) + a(t,z)F’z*(dz) +.. . T a(t,t)F’t*(d2)

i:’(dk@1#t) = aqnF*(dy) + apyF?*(dy) +. ..+ aq.oF ™ (dk)
summing up both the sides columnwise we get for row (t) or
divisors of type (t) one of the "C, divisor sets contributes
aunF2*(N) + apnF > (N) + ..+ agyF'"I*(N)
similarly for row (n) we get
amnF 2 IN) + apaF > (N) + ..+ angF"%(N)
All the divisor sets of type (0) contribute
"Co ap0.0)F *(N) factor partitions.
All the divisor sets of type (1) contribute
"C, agr,,F'?*(N) factor partitions.
All the divisor sets of type (2) contribute
"C, {a(z,”F’Z"(N) +a(2,2)F’3*(N)} factor partitions.
All the divisor sets of type (3) contribute

"Cofap. nF 2 (N) + a@2F**(N) +a@yF**(N} factor partitions.
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All the divisor sets of row (t) or type (t) contribute

"Ci{anpnF?*(N) + anyF' 3 (N) + .+ agoF TN}

;l\ll the divisor sets of row (n) or type (n) contribute
"Co{amnF'?*(N) + amF**(N) +. ..+ agnF ™ (N)}

Summing up the contributions from the divisor sets of all the types
and considering the coefficient of F'"*(N) for m =1 to (n+1) we
get, coefficient of F'*(N) = apo =1 = apm+1,1

coefficient of F'?*(N)

="Cyapy+"Crapy +"Czaan+... "Ciagty +...+"Chanm

= A(n+1,2)

coefficient of F’3*(N)
- nC + nC + nC nC n
= L2 a2 3 8(3,2) 4842 t... tagz t...+7°Chany

= d(n+1,3)

coefficient of F'™*(N) =
An+1,m = Cmt-8m-tm-t) * "Cm.8mmety ...+ "Cn.A(n.m-1)
coefficient of F*("**(N) =
A(n+1,n+1) = nCn-a(n,n) = nCn-MCrm -8(n-1,n-1) ~ nCn-n-1Cn-1- ..
2Cy.a1.1)

= 1
Consider ag+1.2)

= "Cyrapn+"Cragn +... "Cragy *+...+"Chan
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nC1 +nC2+..

2" - 1

= (2" -2)2 .

Consider agp«+1.3

.+ "C,

nCz a2y t nC3 a2y T nC4 Ayt ... nCt a2y ...t nCn a(n,2)

"Cp(27-1) + "C3(2%-1) + "C4(2%-1) +. .. + "Co( 2" - 1)

"Co2' + "C32% + ...+ "Ch 2" - {"Co+"Cy+...+"C,}

n
:(1/2) {nC222 + nc323 + ...+ nCn 271} _ { Z nCr _ nC1 _ nCO }

r=0

n
(1/2) { X "C, 2" -"C1.2" -"Ce.2°}-{2"-n -1}

r=0

(1/2) { 3" -2n -1} - 2" +n + 1

(1/2) { 3" -

2n+1 + 1}

= (1/31} { (1).3""" - (3). 2"+ (3). ()" (1) (0)™}

Evaluating d(n+1,4)

apn+1,e) = "Caapa +'Csanps +... + "Chang

"Ca{3% +1 -2 2 +"Cu{ 33+ 1-2°}2+ ...+ "Co{ 3" +1-2"}/2

(1/2)[{32."C3+3°"Cy+...+3"""Cr}+ {"C3 + "Cy+...+"Cp}

- {"C32° +"C42% +. ..

= (1/2)[ (1/3) {Z "C, 3
r=0

+"Cn 2°}]

n
-32"C, -3"Cy-"Co}+{ X "C, -"C,-"C;
r=0

n
- "Co}-{Z"C,.2"-22"C; -2"C;y-"Co}]

r=J

= (1/2) [(1/3){ 4" - 9n(n-1)/2 - 3n -1} + { 2" - n(n-1)/2 - n - 1}
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- {3"-4n(n-1)/2 - 2n -1}

ety = (1/41) [ (1) 477 - (4) 3™1 + (6) 21 - (4) 1777 + 1(0)™"" ]

Observing the pattern we can explore the possibility of

r
Anny = (1) X (1) ."Cy k" -mme- (3.2)
k=0

which is yet to be established. Now we shall apply induction.

Let the following proposition (3.3) be true for rand alln >r.

)
Amern = (1/r) kz_1(-1)“"‘ RO UL —— (3.3)

Given (3.3) our aim is to prove that

r+1

Ansteery = (MDY T [ (D)WY 0 e (k)™ )]
k=1
we have

Q(n+1,r+1) = "Crapy t "Crag Aeret,r) T "Cre2 e,y t o« o+ "Cp @gan

r

]
an+1re1y = "Cr {(1/11) %_gn"" SCi K™} # "Craq {(1/r1) }:k(_-g)"k SCk K™

;
+ .+ "Ca{(Urh) T (-1 Cr kM)
k=

(..
0

i
= (1) T [(-1)F C{"C K" +"Cry KT+ +"C k" ]
k=0
r n r-1
= (1) T [-1)7Ch{ Z"Cek® - X "Cqk}]
k=0 g=0 q=0

1
[(-1) ."Ck {Z "Cq k¥ }]
0

= (1) T [T C (1K) - (1) 2
k=0 q=
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If we denote the I°' and the second term as Ty and T2 , we have

An+t,r+1y = T¢ - T2 mmeeemeee- (3.4)

-

consider Ty = (1/r]) ¥ [(-1)™™ ."C (1+k)" ]
k=0

-

= (1/r}) X [(v—1)"k { rt/((kD)(r-K)D} (1+Kk)" ]

k=0

= (1/(r+1)1) (D)™ {(r+ D) ((k+ 1) H(r-K)D}(T+K)™ ]

0 -

k

= (1/(r+1)1)

i -

k [ (-1)r-k .r+1Ck+1 (1+k)n+1 ]

= (U)X [EDOVED I (140 ]

N

k

Let k+1= s, ,weget,s=1atk=0ands=r+1at k=r

r+1

= (U(r+1))y T [ (-1 TIC (s)MT ]
s=1
replacing s by k we get
r+1
= (1(r+1)) T [ (D) e (k)™ ]
k=1

in this if we include k = 0 case we get

r+1

T, =(1U(r+1H) X [ (- -k " (k)"™'1 ---~(3.5)
k=0

T, is nothing but the right hand side member of (3.3).
To prove (3.3) we have to prove a(n+1,r+1) = T4
in view of (3.4) our next step is to prove that Tz =0
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r r-1

To= (1/rh) X [(-1)™."C{Z "Cak?}]
k=0 g=0

)
(/1) Z [(-1)™ "Ch {"Co k® +"C1 k' +"Co k2 +. . .+"C1 k™ }]
k=0

=(1rl)y T [(-1)"."C] +"Cy[ (1r1) X {(-1)™"Cck}] +
k=0 k=0 .

"Col(1/F) Z{-1)™  TCL KA + . . o+ "Coq[(1/) Z {(-1)7FC k™ Y
k=0 - k=0

(1/r1) X [(-1)7."C] +"Cq[ (1) T {(-1)"'k SCek}] +
k=0 k=0

["C, A *t "Cs Aar ot ...+ "Cey 810 ]

X +Y + [Z say where

r

r
X = (1) X [(-1)r'k SChl . Y = "CiL (M) X {(-1)TFCrk }
k=0 k=0 .
Z = ["Cy.apn *+"'Cs.apy *...+"Crq.301.n]

We shall provethat X =0,Y =0 , Z=0 seperately.
r

(1) X =(1/r) T [(-1)7™."Cy ]
k=0

= (1) T (-1 "Cru ]
k=0

let r-k=w thenwegetat k=0w=rand atk=r w=0.

0
=(1/r)) X [(-1)Y ."Cw ]

w=r

249



= (1/rl) X [(-1)Y.Cw ]

w=0

=(1-1)" /r!
=0

We have proved that X =0

(2) r
Y = "Ci[(1/r]) T {(-1)"*."Cc k }]
k=0
,

"Ci[ (1(r-1)) T DTN Ck Y]
k=1

1

r-
"Cil (-1 T )Y GG )
k-1=0

="Cq[ (1/(r-1))(1 - 1)
=0
We have proved that Y =0
(3) To prove
Z = ["C,.apny +"Cs.aany *+...+"Cry.80r1n] =0 ----(3.6)
Proof:

Refer the matrix

apn. a(1,2) a(1,3) a(1,4) R A(1,n)
a1 d2.2) a(2,3) aA(2,4) .. A(2,n
a(s,1) a(3,2) 233 a(3,4) - A3,
a(4,1) d(4,2) a(4,3) a4.4) d(4,5) «-- d(4,r)



r-1.r-1 A(r-1,r)
d(r.1) a(r,2) a(r,3) ... a(r,r-1) A
The Diagonal elements are underlined . And the the elements

above the leading diagonal are shown with bold face.

We have
;
ann = [(1/r) T {(-1)""."Cck}] =Y/"Cy= 0for r>1

k=0
All the elements of the first row except a1y ( the one on the
leading diagonal ) are zero.
Also

a(n+1yr) = a(n’r.‘]) + r. a(n'r) """" (3.7)

( This can be easily established by simplifying the right hand side.)
(7) gives us

az2n =age.n t r.agpn = 0 forr>2
i.e. ap.n can be expresssed as a linear combination of two
elements of the first row ( except the one on the leading diagonal )
=>apn=0 r>2
Similarly a3,y can be expresssed as a linear combination of two
elements of the second row of the type ai) with r>3
= apn=0 r>3
and soon agi1n =0
substituting
a@n =a@n =. .- =8y =0in(6)

weget Z2=0
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With X=Y=2Z=0 weget T, =0
or A(n+1,r+1) = Ty - Tz =T,

from (5) we have
r+1

Ty =(Ur+1)D S [ (1) % *1C, (k)™ ]

k=0
which gives
r+1
Qnereny = (M(r+D) T [ (DD ™C, (k)]
k=0

We have proved ,if the propposition (3.3) is true for r it is true for
(r+1) as weli .We have already verified it for 1, 2, 3 etc. Hence by
induction (3.3) is true for all n.

This completes the proof o_f theorem (3.1) .

Remarks: This proof is quite lengthy , clumsy and heavy in
algebra. The readers can try some analytic , combinatorial

épproach.
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MORE RESULTS AND APPLICATIONS OF THE
GENERALIZED SMARANDACHE STAR FUNCTION

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)
ABSTRCT: in [1] we define SMARANDACHE FACTOR

PARTITION FUNCTION , as follows:

Let oy, a0, a3, ... o be a set of r natural numbers
and p:, p2, Ps,- - .pr be arbitrarily chosen distinct primes then
F(oes , a2, a3, . . . o, ) called the Smarandache Factor Partition of
(o1, az, as, . ..o, ) is defined as the number of ways in which the
number

al 22 a3 ar
N = Pt P2 P3 ... Pr could be expressed as the

product of its’ divisors. For simplicity , we denote F(a4, a2, a3, .

.ar ) = F (N) ,where

¢ 2] A2 a3 Xy %n

N = Pt P2 P3 ... Pr ... Pn

and p,is the r'" prime. p; =2, p, =3 etc.
Also for the case
A1 = O T Q3 =...= O =...= op =1

Let us denote

F(1,1,1,1,1...)
«~ n-o0nes -

F ( 1#n)

In [2] we define The Generalized Smarandache Star
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Function as follows:

Smarandache Star Function

(1) F'(N) = X F(d,) where d,|N
d/N

(2) FP**(N) = X F*(d,)
d,/N

d. ranges over all the divisors of N.

If N is a square free number with n prime factors , let us denote

F**(N)=F* (1#n)
Smarandache Generalised Star Function
(3) F™(N) = LF""(d)
d,/N n>1
and d, ranges over all the divisors of N.
For simplicity we denote
F’(Npsp2. . .pn) = F’(N@1#n) , where

(N,pj)=1fori=1ton and each p;is a prime.

F' (N@1#n) is nothing but the Smarandache factor partition

of (a number N multiplied by n primes which are coprime to N).
In [3] | had derived a general result on the Smarandache
Generalised Star Function. In the present note some more
results and applications of Smarandache Generalised Star

Function are explored and derived.
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DISCUSSION:

THEOREM(4.1) :
F™(p%) = T "C. Plack) - (4.1)

Following proposition shall be applied in the proof of this
a
r+k_1Cr-1 = ol+rCr """" (42)
k=0
Let the proposition (4.1) be true for n=r to n=1.

a

F'™(p% = k_o”“c,_1 TS N — (4.3)

a
F)(r+1)*(pa)= Z Ftl’*gpt)
t=

( p ranges over all the divisors of p* fort=0to o)

RHS = F'™(p%) + F'™(p") + F'"*(p®?) +. . .+ F'™(p) + F'™(1)

from the proposition (4.3) we have

a
F(p) = T C Plack)

expanding RHS fromk =0to «
F,r*(pa) — r+a-1Cr-1 P(O) + r+a-2Cr-1 P(1) + o+ r-1Cr-1 P(a)
similarly

F'(p*') = ™*2C,, P(O) + ™*3C,, P(1)+...+ "'Cry P(a-1)

Far*(pa-Z) - r+a.-3c:r_1 P(O) + r+a-4Cr_1 P(1) + o+ r-1Cr-1 P((X‘Z)
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F'™(p) = 'Crt P(0) + “'C..y P(1)
F'™(1) = ""Cr.1 P(0)
summing up left and right sides separately we find that the
LHS = F{™D*(p)
The RHS contains a + 1 terms in which P(0) occurs , a terms in which

P(1) occurs etc. .

a a-1 1
RHS = [ X "*"Cry L.P(0) +  ™'C.y P(1) + . . .+ X "*'C.y P(a-1)
k=0 k=0 k=0

0
+ Z r+k—1Cr_1 P(OL)
k=0

Applying proposition (4.2) .to each of the X we get

RHS - r+aCr P(O) + r+a-1Cr P(1) _*\_I’-HI.-ZC:r P(2) +‘ o + rCr P(CX)

03
= ¥ "kC, P(a-k)
k=0
or o
F**p*) = % ™C, P(a-k)

k=0

The proposition is true for n=r+1 , as we have
0] a o3

F*(p*) = X P(a-k) = T *Co P(a-k) = ¥ “*"'Cy.4 P(a-k)
k=0

k=0 k=0

The proposition is true forn = 1
Hence by induction the proposition is true for all n.
This completes the proof of theorem (4.1).

Following theorem shall be applied in the proof of theorem (4.3)

THEOREM (4.2)
n-r
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2 nCr+k r+kCr mk = n(:r (1+m)(n-r)

k=0
PROOF:
n-r
LHS = Z nCr+k r+kCr mk
k=0
n-r
= 3 (N)A(r+K)1.(n-r-k)!} (r+k)1{(K)!.(r)!} . m*
k=0

i (DN (n-r)!1} (n-n){(K)!.(n-r-k)!} . m"
k=0

n-r

— nCr Z n-er mk
k=0

= "C, (1+m)""

This completes the proof of theorem (4.2)

THEOREM(4.3):

n

F™*(1#n) = X "C, m"" F(1#r)
r=0

Proof:
From theorem (2.4) (ref.[1] ne have

F*(1#n) = F (1# (n+1)) = X "C, F(1#r) = X "C, (1)"" F(1#r)
r=0 r=0

hence the proposition is true form = 1.

Let the proposition be true for m = s. Then we have

n
Fo*(1#n) = 2 "C, s"" F(1#r)
r=0

or
0] 1
FS*(1#0) = Y. "Co %" F(1#0) Fo=(1#1) = Y. "Cq 8" F(1#1)
r=0 r=0
2 3
Fs*(1#2) = Y. "C, 8% F(1#1) Fs*(1#3) = > "Cq %" F(1#3)
r=0 r=0
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F**(1#0)= °Cq F(1#0) ----(0)

Fo*(1#1) = 'Co s’ F(1#0) + 'Cy s°F(1#1) ——==(1)
For(1#2) = 2Co s? F(1#0) + C, s"F(1#1) + 2C, s°F(1#2) - (2)
Fe=(1#r) = "Cqo " F(1#0) + 'Cy s'F(1#1) + . . .+ "C, s°F(1#r) S—

F**(1#n) = "Co 8" F(1#0) + "C, s'F(1#1) + .. .+ "Co S"F(1#r) ---=(n)
multiplying the r'" equation with "C, and then summing up we get
the RHS as

=["Co°Co 8% +"C1'Co 8" + "C2%Co 8% +... + "C"Co s* +... + "C,"Co s"|F(1#0)

["C1'Cy s° +"C2°Cy s’ +"C3%Cy 8% +... + "Ci*Cy " +... + "C,"Cy s"IF(1#1)

["C/Crs”+"Cret™'Cy ' + . + "Cru"T*C, 8* ... + "C,"C, S"|F(1#r)
+ "Co"Cy s°JF(1#n)

n-r

n
= 2 {Z "Cac"*C,s* }F(1#n)
r=0 k=0

"C, (1+s)"" F(1#n) , by theorem (4.2)

n
ir1

r
n

LHS = X "C, F®*(1#r)
r=0

Let N = pip2ps. . . Pn. Then there are "C, divisors of N containing
exactly r primes . Then LHS = the sum of the s'" Smarandache
star functions of all the divisors of N. = F ®"V*(N) = FE"V*(1#n).

Hence we have

n
F(S+1)*(1#n) - Z n(:r (1+S)n-r F(1#n)
=0 258



Fe=(1#0)= °C, F(1#0) —---(0)

Fe=(1#1) = 'Co s' F(1#0) + 'C; s°F(1#1) (1)
Fe=(1#2) = 2Co s? F(1#0) + 2C4 s'F(1#1) + 2C, s°F(1#2) —eee(2)
Fe*(1#r) = 'Co 8" F(1#0) + 'C4 s'F(1#1) + . . .+ "'C, s°F(1#r) ——==(r)

Fr(1#n) = "Gy s" F(1#0) + "C; s'F(1#1) + .. .+ "C, s°F(1#r) ----(n)
multiplying the r'" equation with "C, and then summing up we get
the RHS as

=["C0o°Co s° +"C1"Co s’ +"C2%Co 8% +... + "C*Co s* +... + "C,"Cq s"|F(1#0)

["C1'Cy 8% +"C2%Cy s' +"C3%Cq 8% +... +"C*Cy sK +... + "CL"Cy S"IF(1#1)

[nCrrCr So +nCr+1r+1Cr S1 + ... + nCr+kr+kCr Sk +... + nCnnCr Sn]F(1#r)

+ "C,"C, s’JF(1#n)

n n-r
= 2 { T "Cux"*C,s*}F(1#n)
r=0 k=0
n
= > "C, (1+s)"" F(1#n) , by theorem (4.2)
r=0

n
LHS = X "C, F**(1#r)
r=0

Let N = pip2ps. . . Pn . Then there are "C, divisors of N containing
exactly r primes . Then LHS = the sum of the s'"" Smarandache
star functions of all the divisors of N. = F ®"V*(N) = F&**(1#n).

Hence we have-

n
F(S+1)*(1#n) = Z nCr (1+S)n-r F(1#n)
=0 259



which takes the same format
P(s) = P(s+1)
and it has been verified that the proposition is true form = 1

hence by induction the proposition is true for all m.
n
F™(1#n) = X "C, m"" F(1#r)
r=0
This completes the proof of theorem (4.3)

NOTE:
From theorem (3.1) we have

n

F’(N@1#n) = F,(Np1p2- . -pn) = Z a(n'm) F’m*(N)
m=0

where

m
am,m = (1/m!) X (-1)™*."Cy k"
k=1

If N =p4p2...px Then we get

. n k
F(1#(k+n) = [anm Z"Cem ' F(1#t)]  --oee (4.4)
m=0 t=0

The above result provides us with a formula to express B, in
terms of smaller Bell numbers. It is in a way generalisation of

theorem (2.4) in Ref [5].

THEOREM(4.4):

a n
F(o,1#(n+1)) = 2, 2, "C, F(k,1#r)
k=0 r=0

PROOF: LHS = F(a,1#(n+1)) = F(p* p1P2P3- - -Pn+1 ) = F*(p*p1p2ps.
Pn ) + YF’ { all the divisors containing only p°) + ZF' ( all the
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divisors containing only p') + YF’ ( all the divisors containing only
p?) +. . .+ IF ( all the divisors containing only p") +. . .+ F ( all

the divisors containing only p%)

n n n

n
= 2."C, F(0,1#r) + 2. "C, F(1,1#r) + 2. "C, F(2,1#r) + 2. "C, F(3,1#r)
r=0 =0 =0 =0

n

n
fo.4 D "C (K #D) +. .+ 2 "C, Flo, 1#)
r=0 r=0

[¢ 2 n
= 2. 2"C,F(k,1#n)

k=0 r=0
This is a reduction formula for F(a,1#(n+1))

A Result of significance

From theorem (3.1) of Ref.: [ 2], we have

n
F'(p°@1#(n+1)) = F(o,1#(n+1)) = Y @perm F'™(N)
m=0
where
m
ane1,m = (1/m!) X (-1)™™*."C, k"""
k=1
and
a
F,m*(pu) - Y m+k-1Cm.1 P((I-k)
k=0

This is the first result of some substance , giving a formula for
evaluating the number of Smarandache Factor Partitions of
numbers representable in a ( one of the most simple ) particular
canonical form. The complexity is evident. The challenging task
ahead for the readers is to derive similar expressions for other

canonical forms.
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PROPERTIES OF SMARANDACHE STAR TRIANGLE

(Amarnath Murthy ,S E. (E &T), Well Logging Services,Oil And Natural Gas
Corporation Ltd. ,Sabarmati, Ahmedbad, India- 330005.)

ABSTRCT: In [1] we define SMARANDACHE FACTOR PARTITION
FUNCTION , as follows: Let o;, oy, a3, ... o be a set of r natural
numbers and py, pa2, p3,. . .p: be arbitrarily chosen distinct primes then

F(a;, az, a3, . . . o) called the Smarandache Factor Partition of (o, o, a3

, ... 0 ) 1s defined as the number of ways in which the number

al o2 a3 ar

N = Pt P2 P35 ... p- couldbe expressed as the
product of its’ divisors. For simplicity , we denote F(a;, o, a3, .

O ) = F (N} ,where

o & *5} o (e

N = Pt P2 P3 ... Pr ... Pn

and p, is the i prime. p;=2,p, =3 etc.
Also for the case

;= 0 =03 =...T ,=...= 0, =1
Let us denote

F(1,1,1,1,1...) = F(l#n)
< 11 -0nes -

In [2] we define The Generalized Smarandache Star

Function as follows:
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Smarandache Star Function

1) F'(N)= Y F@d,)  where d,|N
d/N

(2) F**(N)= XF*(d)
d/N

d; ranges over all the divisors of N.

If N is a square free number with n prime factors , let us denote
F** (N)=F** (1#n)

Smarandache Generalised Star Function

(@) P"N) = TF™Y* ()
d/N n>1

and d, ranges over all the divisors of N.

For simplicity we denote

F’(Np;pz. - -pn) = FP(N@1#n) , where

(N,p;)=1fori=1ton and each p; is a prime.

F’(N@1#n) is nothing but the Smarandache factor partition of (a
number N multiplied by n primes which are coprime to N).
In [2] 1had derived a general result on the Smarandache
Generalised Star Function. In the present  note we define
SMARANDACHE STAR TRIANGLE’ (SST) and derive some properties
of SST.

DISCUSSION:
DEFINITION : ‘SMARANDACHE STAR TRIANGLE’ (SST)
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As established in [2]

Aom = (1/m1) X (D)™ Cp K —mmmemeeee (1)
k=1
we have ag =an)) = land ag, = 0 for m>n. Now if one

arranges these elements as follows

a1,

a2, 1) a22)

EERY 43 2) 4(3,3)

Any) An2) .. Ann-1) An.n)

we get the following triangle which we call as the ‘SMARANDACHE
STAR TRIANGLE’ in which a;n is the m® element of the r row and is

given by (A) above. It is to be noted here that the elements are the Stirling

numbers of the first kind.
1

1 1

1 3 1
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Some propoerties of the SST.

(1) The elements of the first column and the last element of each row is
unity.

(2) The elements of the second column are 2™! _ 1, where n is the row
number.

(3) Sum of all the elements of the n® row is the n" Bell.

PROOF:
From theorem(3.1) of Ref; [2] we have

FN@1#n) =F(Npip2. . .pa) = 2 aamF *N)

m-0
if N=1wegetF™1)=F®M1)=F™*1Q) = . =F ()= 1

hence n
F’(plpz. . pn) = 2 4(n,m)
‘.=0

(4)The elements of a row can be obtained by the following reduction formula

Anttmin) = Bam T (ML) L Aqeime
instead of having to use the formula (4.5).

(5) If N=p intheorem (3.1) Ref;[2] we get F’™*(p) =m + 1. Hence

n
F’(ppip2- - -Pw) = X a(u,m)F’m*(N)
m=1

n
or Boy = 2 (mt1) anm
m=1
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(6) Elements of second leading diagonal are triangular numbers in their
ﬂatural order.
(7) If p is a prime, p divides all the elements of the p™ row except the I* and
the last, which are unity. This has been established in the following theorem.
THEOREM(1.1):

apn= 0 (mod p)if pisaprimeand 1<r<p

Proof:
m

apy = (1) (DT C K
k=1
Also -

° r-1
a0 = (VDY T EDTEIC R
' k=0

r-1

Qg = (LU(-1)h 155 (D™ MO+ )P - 1] +

r-1

(MUr-DH T D e,
k=0 )

applying Fermat’s little theorem, we get

apy —amultipleof p + 0

= a(p,,)::. 0 (mod p)
COROLLARY: {1.1)

F(1#p)= 2 (mod p)

ap1) = app = 1
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P p-l
Fl#p) = 2 2pn = X apm T2
k=0 k=2

F(1#p) = 2 (mod p)

(8) The coefficient of the ™ term°, in the expansion of x" as
X =y X+ e X 1) + o X2 Py P+t o P
is equal to 3¢ y) .
THEOREM(1.2): Bj,+; is even else By is odd.
From theorem (2.5) in REF. [1] we have
F’(Nq,q2) = FP*(N) + F**(N) where q; and q, are prime.
and (N,q;) = (N,gz) =1

let N =p;p,ps.. pa then one can write

F’(pip2ps.. Paqi92) = F*(pip2ps.. Pn) + F'**( P1P2P3.. Po)

or F(1#n+2)) = F(#(@n+1)) + F**(1#n)
but

n
F**(1#n)= 2. "C; 2" F(1#r)
=0
n-1
F**(1#n) = T {°C. 2™ F(1#n)} + F(l#n)
=0
the first term is an even number say =E ,This gives us

F(1#(n+2)) - F(1#(n+1)) - F(1#n) =E , an even number. ---(1.1)

Case- I: F(1#n) is even and F(1#(n+1)) is also even =
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F(1#(n+2)) is even.

Case -II: F(1#n) is even and F(1#(n+1)) is odd = F(1#(n+2)) is
odd.

agam by (1.1) we get

F(1#(n+3)) - F(1#(n+2)) - F(1#(n+1)) =E , = F(1#{Dn+3)) is
even. Finally we get

F(1#n) iseven <> F(1#(n+3)) is even

we know that F(1#2) =2 = F(1#2), F(1#5), F(1#8), .. .are
even

= Bs.+; is even else By is odd

This completes the proof.
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SMARANDACHE FACTOR PARTITIONS OF A
TYPICAL CANONICAL FORM.

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR

PARTITION FUNCTION | as follows:

Let oy, az, a3z, ... a be a set of r natural numbers
and pi, p2, P3,. . .pr be arbitrarily chosen distinct primes then
F(aq, a2, az, . . . a; ) called the Smarandache Factor Partition of
(1, a2, a3, ... o) is defined as the number of ways in which the
number

at a2 a3 ar
N = P1 Pz P3s ... Pr could be expressed as the

product of its’ divisors. For simplicity , we denote F(aq, oz, a3, . .

.ar ) = F (N) ,where

[e 4} o 4/] (o X [0 43 o &)

N = Pt P2 P3 ... Pr ..+ Pn
and p,is the r'" prime. p; =2, p, =3 etc.

In the present note we derive a formula forr the case N = p,*p,?

DISCUSSION:
Theorem(5.1):

F(ps°p:") = F(a,2) = 3 2 P{i)
k i=0

where 1 = [a/2] o =2ror o = 2r +1
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PROOF: Following are the distinct mutually exclusive and

exhaustive cases. Only the numbers in the bracket [ ] are to be

further decomposed.

(04
Case I: (p2) [p1®p.° ] gives F'*( pi%) =kZ P(i)
=0
Case ll: {A}—> (750 R (=25 H— — P(a)

{Az}—> (P2” p1 ) [p1®"]------ — P(a-1)

(Ad— (P2 pr®) [Pr=]  eoeer S P(a-0) =P(0)
94
Hence Case Il contributes X P(i)
i=0
Case lll: {B1}—>(p1p2)(p1p2 ) [p1¥2]  ---om- — P(a-2)
{B2}>(p1p2) (P+? P2 ) [p1*%] ~==---— P(a-3)
{Bo-2}— (P1P2) (P1®" p2) [P1*®]  ------ — P(a-a) =P(0)

-2
Hence Case Ill contributes 2. P(i)
i=0
Case IV: {Ci}>(p+® p2) (P1Pp2) [P**] - — P(a-4)
{C2}=>(pi® p2)(pip2 ) [P*°] —eme- — P(a-5)
(Carsd (P2 P2)(P2 P2 ) [P1®]  —oorme - P(a-a) =P(0)
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Hence Case IV contributes a{ P (i)

{ NOTE: The factor partition (lp=102 p2) (P1P2) [P1*7°] has already
been covered in case Il hence is omitted in case IV. The same
logic is extended to remaining (following) cases also.}

Case V: {Di}>(p:°p2) (p1>p2 ) [P+*%]  ---mm- - P(a-4)

{D2}>(p:°p2)(pip2) [P®7] —-e-- — P(a-5)

{Das}=>(Pi” p2)(P1*7 P2 ) [P1*7°]  =--e- — P(a-a) =P(0)
. -6
Hence Case V contributes 2 P(i)
I=0
On similar lines case VI contributes  «-8
> P(i)
i=0
we get contributions upto a-2r
2 P(i)
i=0
where 2r < a < 2r +1 or r = [a/2]
summing up all the cases we get
[0 r a-2j
F'(pi"p:") =F(a,2)= T P(k) + T 3  P(i)
k=0 j=0  i=0
where r = [a/2] a =2ror o= 2r +1

This completes the proof of theorem (5.1).

COROLLARY:(5.1)
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F'(p:°p:%) '= ¥ (k+2) [ P(a-2k) + P(0-2k-1)]  ----- (5.1)
k=0

Proof: In theorem (5.1) consider the case « =2r, we have
2r r a-2j

F(p+°'p.®) =F(a,2)= T P(k) + ¥ 3 P(i) w-eme- (5.2)
k=0 j=0 i=0

Second term on the RHS can be expanded as follows
Pla) + P(a-1) + P(a-2) + P(a-3) +. . .+ P(2)+ P(1)+ P(0)
P(a-2) + P(a-3) +. . .+ P(2) + P(1) + P(0)

P(a-4) +. . . P(2) + P(1) + P(0)

P(2) + P(1) + P(0)
P(0)
summing up column wise
= [P(a) + P(a-1)] +2 [P(a-2) + P(a-3)]+ 3 [ P(a-4) + P(a-5)]+. . .

+ (r-1) [P(2) + P(1)] + r P(0).

4 -

(k+1) [ P(a-2Kk) + P(a-2k-1)]

k=0

{Here P(-1) = 0 has been defined.}

hence

F'(p+"ps") =X P(k) + I (k+1)[P(a-2K) + P(a-2k-1)]
k=0

or

F'(p:°p.°) = EO (k+2) [ P(a-2k) + P(a-2k-1)]

Consider the case a =2r+1, the second term in the expression (5.2)

can be expanded as
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P(a) + P(a-1) + P(a-2) + P(a-3) +. . .+  P(2) + P(1) + P(0)
P(a-2) + P(a-3) +. . .+  P(2) + P(1) + P(0)

P(a-4) +. .. P(2) + P(1) + P(0)

P(3)+ P(2)+ P(1) + P(0)

P(1)+ P(0)
summing up column wise we get

= [P(a) + P(a-1)] 2 [P(a-2) + P(a-3)]+ 3 [ P(a-4) + P(a-5)]+. . .

+(r-1) [P(3) + P(2)] + r[ P(1) + P(0)].
= > (k+1) [ P{a-2k) + P(a-2k-1)], o =2r+1
k=0

on adding the first term , we get

F'(p+*p.") = X (k+2) [ P(a-2k) + P(a-2k-1)]
k=0

{Note here P(-1) shall not appear.}
Hence for all values of o« we have

[al2]
F'(p°p:?) = Y (k+2) [ P(a-2k) + P(a-2k-1)]
k=0

This completes the proof of the Corollary (5.1).
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LENGTH / EXTENT OF SMARANDACHE FACTOR PARTITIONS

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR

PARTITION FUNCTION (SFP), as follows:

Let oq, 02, a3z, ... o be a set of r natural numbers
and pi, P2, P3,. . -pr be arbitrarily chosen distinct brimes then
F(ay, a2, a3, . . . o, ) called the Smarandache Factor Partition of
(1, a2, a3, ... o0,) is defined as the number of ways in which the
number

ai a2 a3 ar
N = P1 P2 P3 ... Pr could be expressed as the

product of its’ divisors. For simplicity , we denote F(aq, a2, a3, . .

.o ) = F (N) ,where

oy ar a3 o, n

N = Pt P2 P3 ... Pr ... Pn

and p;is the r'" prime. p; =2, p, = 3 etc.

Also for the case

A1 = 0y TO3 =...= O =...= 0 =1
we denote
F(1,1,1,1,1...) = F ( 1#n)
<« n-ones -

In the present note we define two interesting parameters the
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length and extent of an SFP and study the interesting
properties they exhibit for square free numbers.

DISCUSSION:

DEFINITION: Let F'(N) =R

LENGTH : If we denote each SFP of N, say like Fy F,

, ... Fgr arbtrarily and let F, be the SFP representation

of N as the product of its divisors as follows:

Fi ---- N = (hy)(h2) (ha)(hs). . .(hy), where each h; (1<i<t)is

an entity in the SFP ‘Fy*' of N. Then T(Fg) =1t is

defined as the ‘length’ of the factor partition Fy.

e.g. say 60 =15 X2 X 2 ,is a factor partition Fyx of 60. Then
T(F¢) = 3.

T(Fg) can also be defined as one more than the number of

product signs in the factor partition.

EXTENT : The extent of a number is defined as the sum of the

lengths of all the SFPs.

Consider F(1#3)

N=pypop3=2X3 X5 =30.

SN Factor Partition fength
1 30 1
2 15 X 2 2
3 10 X 3 2
4 B X5 2
5 5X3X2 3

Extent (30) = 2 length = 10

We observe that
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F(1#4) - F(1#3) = 10.

Extent { F(1#4)}

Consider F(1#4)

N =2X3X5X7 =210

SN Factor Partition Length
1 210

2 105 X 2

3 70 X 3

4 42 X 5

5 35 X6

6 35 X3 X2

7 30 X7

8 21 X 10

9 21 X5 X2

10 15 X 14

11 15 X7X2

12 14 X5 X 2

13 10 X7X3

14 7 X6X5

BIWIWIWIWIN[LWININIWINININ(N|—

15 7X5X3X2

Extent(210) = 2 length = 37
We observe that
F(1#5) - F(1#4) = 37. =Extent { F(1#4)}

Similarly it has been verified that
F(1#6) - F(1#5) = Extent { F(1#5)}

CONJECTURE (6.1)
F(1#(n+1)) - F(1#n) = Extent { F(1#n)}

CONJECTURE (6.2)
n

F(1#(n+1)) = Extent {F(1#r)
r=0

Motivation for this conjecture:
271



If conjecture (1) is true then we would have

F(1#2) - F(1#1)

Extent { F(1#1)}

F(1#3) - F(1#2) = Extent { F(1#2)}

F(1#4) - F(1#3) = Extent { F(1#3)}

F(1#(n+1)) - F(1#n) = Extent { F(1#n)}
Summing up we would get

n
F(1#(n+1)) - F(1#1) = X Extent {F(1#r)
r=1
F(1#1) = 1 = Extent {F(1#0) can be taken , hence we get

n
F(1#(n+1)) = I Extent {F(1#r)
r=0

Another Interesting Observation:

Given below is the chart of r versus w where w is the number
of

SFPs having same length r.

F(1#0) =1 , Zr w=1
r 1
w 1
F(1#1) =1 , Zr. w=1
r 1
w 1

]
w

F(1#2) =2 ,Zr. w

F(1#3) =5 ,Xr. w=10
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F(1#4) =15 , X r. w= 37

r 1 12 13 14
w i1 17 16 |1
F(1#5) = 52, Sr.ow=151

The interesting observation is the row of w is the same as the n'" row

of the SMARANDACHE STAR TRIANGLE. (ref.: [4])

CONJECTURE (6.3)

W, = apn = (1/r1) I (-1)7F.Cy k"
k=0

where w, is the number of SFPs of F(1#n) having length r.
Further Scope: One can study the length and contents of other

cases ( other than the square-free numbers.) explore for patterns if
any.
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SOME MORE IDEAS ON SMARANDACHE FACTOR PARTITIONS

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Qil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR

PARTITION FUNCTION (SFP), as follows:

Let o1, az, oz, ... a, be a set of r natural numbers
and pi, p2, P3,- - -pr be arbitrarily chosen distinct primes then
F(ay, a2, a3, . . . o, ) called the Smarandache Factor Partition of
(1,02, az, ... ar)is defined as thé number of Ways in which the
number

al a2 a3 ar
N = Pi P2 P3z ... Pr could be expressed as the

product of its’ divisors. For simplicity , we denote F(aq, a2, a3, . .

.ar ) = F (N) ,where

[o X} a2 a3 [0 43 [0 3

N = P1 P2 P3 ... Pr ...pnn

and p;is the r'" prime. p; =2, p, =3 etc.

In this note another result pertaining to SFPs has been derived.
DISCUSSION:

Let

o B (o &) a3 oy

N = pP1 P2 P33 ... Pr

(1) L(N) = length of that factor partition of N which contains the
maximum number of terms. In this case we have
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L(N) = 2 a

) ALny = A set of L(N) distinct primes.
(3) BIN)={p:p| N, pisaprime.}

BIN)={p1.p2,...p}
(4) Y[ N, Ayny] = {x]d(x)=Nand B(x) ¢ ANy }, where d(x) is the
number of divisors of x.
To derive an expression for the order of the set W[ N, A (n)] defined
above.

There are F’(N) factor partitions of N. Let Fy be one of them.

Fi ----- > N= sy Xsa2X s3X...Xs¢
if
Sq -1 S» -1 S3 -1 St.-1 ) o) o)
6 = P1 P2 Ps .. .Pt Pt+1 Pt+2 . . . PLvy

where pt € Ay, then 8 e Y[ N, A ny] for

dB®) = sy XspX s3X.. . XsX1X1X1... =N

Thus each factor partition of N generates a few elements of ¥ .

Let E(F1) denote the number of elements generated by F;

Fi ----- - N= sy Xsz2X s3X.. .Xsy

multiplying the right member with unity as many times as required to make

the number of terms in the product equal to L(N) .

Z

L(N)
N = [T sk
k=1
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where Syyq = Sy42 = St+3 T . . .= SNy T 1

Let x; s’s are equal

X, s's are equal

Xm S's are equal

such that x1 + x2+ x3 + ...+ xn = L(N). Where any x; can be unity also.

Then we get

E(F1) = {LNDH 7/ {(x)H x2)1( x3)! ... (xm)!}
summing over all the factor partitions we get

F’(N)
O(Y[ N,AL(N)]) = X E(Fx) -----e----- (7.1)
k=1

Example:

E(Fy) = 31/7{(21)(11)} =3

I}
—

| > N=12 =6 X2X1, x4 Xz =1, x3=1

E(F2) = 31 /{(11) (1hH(11)} =6

Fy oome- S>N=12 =4X3X1,x=1, x2=1, x3=1

E(F3) = 3! /7{(11) (1)(1)} =6

Fgq----- > N=12 =3 X2X2, x1=1, X2=2

E(Fs) = 31/7{(21)(11)} = 3 282



F'(N)
OMW[N, Auwl)= 2 E(F)=3+6+6+3=18
k=1 ’

To verify we have
YN, Auw] = {27, 3" 5" 25X 3, 2°X3,3°X2,3°X5 5°X2.
5°X3,2°X3%, 2°X5% 33x 22 3¥x52 5°x22 5%x3% 22 X3X5

32 X2X5,5% X2X3,)
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A NOTE ON THE SMARANDACHE DIVISOR SEQUENCES

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Qil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR

PARTITION FUNCTION (SFP), as follows:

Let o4, oo, a3, ... a be a set of r natural numbers
and ps, p2, Ps,. - .pr be arbitrarily chosen distinct primes then
F(ay, oz, oz, . .. o ) called the Smarandache Factor Partition of
(o1, a2, oz, ... 0o,)is defined as the number of ways in which the
number

a1 a? ald . arr
N = P1 P2 P3 ... Pr could be expressed as the

product of its’ divisors. For simplicity , we denote F(ay, oo, a3, . .

.ar ) = F (N) ,where

o a3 a3 ar Un

N = Pt P2 P3 ... Pr ... Pn

and p,is the r'" prime. p; =2, p, =3 etc.

In [2] we have defined SMARANDACHE DIVISOR SEQUENCES
as follows

P, ={x]d(x)=n} ,d(x)=number of divisors of n.

P, = {1}

P,={x]| xis aprime}

P;={x]| x=p%, pisaprime}

P,={x] x=p> orx=pip2 ., p.p1,p2 are primes }
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Let F,; be a SFP of N.Let ¥e ={y]d(y) =N}, generated by
the SFP F; of N. It has been shown in Ref. [3] that each SFP

generates some elements of ¥ or P.,. Here each SFP generates
infinitely many elements of Pao. Similarly Wey | Wry |, Wes

Yrn) . are defined. It is evident that all these Fi's are disjoint
and also

Py = UW%s 1<kc< F'(N) .

THEOREM(7.1) There are F'(N) disjoint and exhaustive subsets
in which Py can be decomposed.

PROOF: Let 0 € Py , and let it be expressed in canonical form

as follows
(o8 a2 . a3 0
6= Pt P2 Pz ... Pr
Then d(6) = (a1+1)(a2+1)(a3+1) (ot 1)

Hence 6 e Wg for some k where F, is given by

N = (os+1)(a2+1)(as+1) . . (a,+1)
Again if 8 € WY, and 6 € Wg, then from unique factorisation
theorem Fs and F, are identical SFPs of N.

REFERENCES:
[1]  “"Amarnath Murthy” | ‘Generalization Of Partition Function,
- Introducing ‘Smarandache Factor Partition’, SNJ, Vol. 11, No. 1-2-3,
2000.
[2] - "Amarnath Murthy” | ‘Some New Smarandache Sequences,
Functions And Partitions °’, SNJ, Vol. 11, No. 1-2-3, 2000.

[3] “Amarnath Murthy” | * Some more Ideas on SFPS. SNJ, Vol. 11,
No. 1-2-3, 2000.

[4] " The Florentine Smarandache “ Special Collection, Archives
of American Mathematics, Centre for American History,

University of Texas at Austin, USA.
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ALGORITHM FOR LISTING OF SMARANDACHE FACTOR
PARTITIONS

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Qil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR

PARTITION FUNCTION (SFP), as follows:

Let o4, 02, as,...a be asetofrnatural numbers
and p4, pz, p3,...p: be arbitrarily chosen distinct primes then
F(a1, a2, a3, ... a,) called the Smarandache Factor Partition of
(a1, a2, a3, ... a;)is defined as the number of ways in which the
number

al 0.2 a3 ar
N = P1 P2 P3s ... P¢ could be expressed as the

product of its’ divisors. For simplicity , we denote F(a,, a5, a3, .

.ar ) = F (N) ,where

oy (o 93 a3 ar Up

N = p1 p2 p3 . pr .« e . pn

and p.is the r'" prime. p, =2, p, =3 etc.
In this note an algorithm to list out all the SFPs of a number
without missing any is developed.

DISCUSSION:
DEFINITION: F',(y) is defined as the number of those SFPs

of y which involve terms not greater than x.
If F4 be a factor partition of y :

Fi ----> x1 X x2 X x3 X . .. x, , then F, is included in F, (y) iff
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Xi £ x for 1< 1<r

clearly F'x(y) < F'(y) , The equality holds good iff x > vy.

Example: F'g(24) = 5. Out of 7 only the last 5 are inciuded in F's(24).

(1) 24

(2) 12X2

(3) 8X3

(4) 6 X4

(5) BX2X2

(6) 4X3X2

(7) 3X2X2X2.

ALGORITHM: Let d4,d>, ds, ... d, be the divisors of N in

descending order. For listing the factor partitions following are the
steps:

(A) (1) Start with d4 = N.

(2) Write all the factor partitions involving d, and so on.

(B) While listing care should be taken that the terms from left to
right should be written in descending order.

**At d¢ > NY® > d.; ,and onwards , step (B) will ensure

that there is no repeatition.

Example: N = 36, Divisors are 36, 18, 12,9 ,6,4, 3,2, 1.

36 --— 36

18 --—» 18 X 2

12 -5 12X 3

9 --» 9X4
9X2X2

6 --—- ©6X6
6 --— 6 X3X?2
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S ->3X3IX2X2
2 ---5NIL
1 --—>NIL

FORMULA FOR F’(N)

F’(N) =3  F’q(N/d,)
d./N
Example:
N =216 = 2°33

(1) 216
(2) 108 X 2
(3) 72X3
(4) 54X 4
(5) 54X2X2
(6) 36X6
(7) 36X3X2
(8) 27 X8
(9) 27X4X2
(10) 27 X2 X 2 X 2
(11) 24 X 9
(12) 24 X 3 X 3
(13) 18 X 12
(14) 18 X 6 X 2
(15) 18 X 4 X 3
(16) 18 X 3 X 2 X 2
(17) 12X 9 X 2
(18) 12 X 6 X 3
X 3

(19) 12X 3 X3 X 2

3
4
2
3
2
3
6
3
3

W N

(28) 6 X 4 X
(29) 6X3X3X2X2

(30) 4X3X3X3X2X2
(31) 3X3X3X2X2X2

------- (8.1)
—-—>F246(1) =1
--—>F408(2) =1
--—>F72(3) =1
--—>Fs4(4) =2
--—>F36(6) =2
--—>F27(8) =3
~>F24(9) =2
--—-)F18(12) =4
--—)F12(18) =3
--—>Fqg(24) =5
--—>Fg(27) =1

--—Fg(36) =4
--—>F4(54) =1
--—F3(72) =1
--—F,(108) =0

-->F4(216) =0
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F’(216) = > F’4(216/d,) = 31
d./N

Remarks: This algorithm would be quite helpfull in developing
a computer program for the listing of SFPs.
REFERENCES:
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EXPANSION OF x" IN SMARANDACHE TERMS OF
PERMUTATIONS

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, india--380005.)

ABSTRACT:

DEFINITION of SMARANDACHE TERM

Consider the expansion of x" as follows

x" = b(n,1) X + b(n,2) X(X-1) + b(n,3) X(X-1)(x-2) +. . .+ bin,n) *Pn ---(9.1)

We define b, ) X(x-1)(x-2). . .(x-r+1)(x-r) as the r'"
SMARANDACHE TERM in the above expansion of x".

In the present note we study the coefficients by, .of the the r'"
SMARANDACHE TERM in such an expansion. We are

encountered with fascinating coincidences.

DISCUSSION:
Let us examine the coefficients b, .of the the r'"
SMARANDACHE TERM in such an expansion.

Taking x =1 gives by =1

Taking x =2 gives b (2"-2)/2

Taking x =3 gives b3 ={3"-3-6(2"-2)/2}/6

= {1/31} { (1).3" - (3). 2"+ (3). ()" -(1) (0)" }
Taking x =4 gives

bnay = (1/41) [ (1) 4" -(4)3" + (6)2"-(4) 1" + 1(0)"]
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This suggests the possibility of

r
Bin,y = (1Url) T (-1)"%."Cx .k" = aqn
k=1

THEOREM (9.1)

r
Biny = (1Url) X (-1)"*."Cx k" =a,
k=1
First Proof:

This will be proved in two parts. First we shall prove the following

proposition.
bins1,y = Bin,rery + b,

we have

X" = bn1) X + bngy) X(X=-1) + bz X(X-1)(X-2) +. . .+ bn.ny *Pa

X =r, gives,

r"=bpyr + D(n,2) r(r-1) + bn 3 r(r-1)(r-2) +. . .+ b(n,.n) P,
multiplying both the sides by r,

"= by 1.0+ bz F(r=1) % by r.1(r-1)(r-2) +. . .+ by r. ‘P +
terms equal to zero.

" = bn1) L'Py + bnayr."P2 + buayT. Pa+. . .+ bpnr. P,
Using the identity r. 'Px = "Pxss + k.'Px we can write

" = by { P2+ 1P1} + by {Ps +2. P2} +. . .+ by {Pr+r.
Prr ) |

(™" = by Pr+ { bty + 2. b2} P2+ { Dn2) + 3. by} Pa+ ...+
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{bort)y*+rbun} P e (9.2)

Otherwise also we have

o= Bins1,1) 'P1 + binara Py + bins1,3). 'Pa+. . .+ bipary . P,
The coefficients of Pe(t <) are independent of r hence
these can seperately be equated giving us

b(n+1.r) = b(n,r-1) + r-b(n,r)

Now we shall proceed by induction. Let

;
Bny = (1rl) X (-1)™* ."Cy k"
k=0
Binrty = (1/(r-1)1) Z( 1) e, ke
be true. Then the sum b1y + Tb(n n equals

r-1

(-1 Z (1) K+ 1 (1) 8 (-1)7% e K7
k=0 k=0
r-1
= (D)) [EE) r {7C, - 'CK ] +
k=0

r-1
= (DT L ZEND kTR ]+
k=0

r-1
=(1/r!) X (-1)™* rc, k!
k=0

which gives us

r-1
Bav1y = (1/rl) T (-1)"k rC, k"
k=0

B(n+1,r) also takes the same form. Hence by induction the proof is

complete.
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Second Proof: This proof is totally based on a combinatolrial
approach . This method also provides us with a proof of the
Conecture (6.3) of ref. [3] as a by product.

If n objects no two alike are to be distributed in x boxes, no
two alike, the number of ways this can be done is x" since there
are k alternatives for disposals of the first object, k alternatives for
the disposal of the second, and so on.

Alternately let us proceed with a different approach. Let
us consider the number of distributions in which exactly a given
set of r boxes is filled (rest are_empty.). Let it be called f(n,r).

We derive a formula for f(n,r) by using the inclusion
exclusion principle.The method is illustrated by the computation of
f(n,5). Consider the total number of arrangements, 5" of n different
objects in 5 different boxes. Say that such an arrangement has
property ‘a’. In case the first box is empty, property ‘b’ incase the
second box is empty, and similar property ‘c’, ‘d’, and ‘e’ . for the
other three boxes respectively. To find the number of distributions
with no box empty, we simply count the number of distributions
having none of the properties ‘a’, ‘b’, ‘c’, . . .etc. We can apply the
following formula.

N -"CyN(a) +'C;N(a,b) -"C3N(a,b,c) +...------ (9.3)
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Here N = 5" is the total number of distributions. By N(a) we mean

the number of distributions with the first box empty.and so N(a) =
4", Similarly N(a,b) is the number of distributions with the first two
boxes empty. But this is the same as the number of distributions
into 3 boxes and N(a,b) = 3". Thus we can write

N =5",N(a) =4", N(a,b) = 3" etc. N(a,b,c,d,e) = 0.

Applying formula (9.3) we get

f(n,5) = 5" - 5C4.4" + 5C,.3"-°C3.2" + °C4.1" - °Cs.0"

by the direct generalization of this with r in place of 5, we see
that

f(n,r) = r" - "Cq.(r-1)" + 'Cy.(r-2)" - "C3.(r-3)" + ...
f(n,r)= T (-1)""Cy (r-k)"
k=0

f(n,r)=r!.apnn ,from theorem (3.1). of ref. [1]

Now these r boxes out of the given x boxes can be chosen in *C,
ways. Hence the total number of ways in which n distinct objects
distributed in x distinct boxes occupying exactly r of them ( with
the rest x-r boxes empty) , defined as d(n,r/x) , is given by
d(n,r/x) =r!. aqr *C;

d(n,r/x) = a,n- *Py

Summing up all the cases for r =0 to r = x, the total number of
ways in which n distinct objects can be distributed in x distinct

boxes is given by
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2d(nrix)) =X *Prap,y 00 eeeee- (9.4)
r=0

r=0

equating the two results obtained by two different approaches we

get n
x" = > xPr A(n,r)
r=0
REMARKS:

If n distinct objects are to be distributed in x
distinct boxes with no box empty , then n < x is mandetory for a
possible.distribution.e.g. 5 objects can not be placed in 7 boxes
with no empty boxes ( a sort of converse of peigon hole principle)
Hence we get the following result

f(n,r) = 0, for n < k.

f(n,r) = Eo (- "Ck (r-k)" =0 if n<r.

Further Generalisation:

(1) One can go ahead with the following generalisation of
expansion of x" as follows

X" = gk, 1) X + Gnrk,2) X(X-K) + Gonrk,3) X(X-K)(x-2K) +. . .+
G(nik,ny X{X-K)(x- 2k). . .(x-(n-1)k)(x -nk+ k)

J(nikry = Dby = @y for k =1 has been dealt with in this
note. One can explore for beautiful patterns for k =2, 3 etc.
We can call (define) g(n/k r) X(X-K)(x-2K). . .(x-(n-1)k)(x-rk+ k)

as the r'" Smarandache Term of the k'" kind in such an
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expansion.

(2) Another generalisation could be
X" = k1) (X-K) + Cram.2) (X-K)(XP-K) + Cenrk.3) (X-K) (xP-K) (x-
K) +. . .+ .+ Crmny (X-K) (X2-K)(x3-K)...( X" - k)

For k=1 if we denote C(nx.ry) = C(nry for simplicity we get

nl

X" = C(n1) (X-1) + Cn2) (X-1)(X?-1) + C(n3) (X-1)(x*-1)(x%-1)

+. 4+ i (X-1) (D)) (XN - 1)

We can define  Cink.n.(X-K) (x*-k)(x*-K)...( X" - k) as the

r'" Smarandache Factorial Term of the k'™ kind in the

expansion of x"'. One can again explore for patterns for the

coefficient C(n/k,r).
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MISCELLANEOUS RESULTS AND THEOREMS ON
SMARANDACHE TERMS AND FACTOR PARTITIONS

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR
PARTITION FUNCTION (SFP), as follows:

Let o1, a2, as, ... a be a set of r natural numbers
and py, p2, Ps,. . .pr be arbitrarily chosen distinct primes then
F(ay, a2, az, . . . a, ) called the Smarandache Factor Partition of

(a1, 02, 03, ...0:)is defined as the number of ways in which the

number

at a2 a3 | ar

N = Pi P2 P3s ... Pr could be expressed as the
product of its’ divisors. For simplicity , we denote F(a, ay, a3, .

.ar ) = F (N) ,where

(e8] X2 o3 ar o)

N = Pt P2 P3 ... Pr ... Pn

and p.is the r'" prime. p; =2, p, =3 etc.

Also for the case

a1 = A = Q3 = = o = = ap =1
we denote
F(1,1,1,1,1...) = F(1#n)
<~ N -0nes —>

In [2] we define b, x(x-1)(x-2). . .(x-r+1)(x-r) as the r'"

SMARANDACHE TERM in the expansion of
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x" = b(n,” X + bn,2) x(x-1) + b(n,3) X(x-1)(x-2) +. .

.+ b(n,n) xpn

In this note some more results depicting how closely the

coefficients of the SMARANDACHE TERM and SFPs are related.

are derived.
DISCUSSION:

Result on the [i] matrix:

Theorem (9.1) in [2] gives us the following result

n

X =
r=0

beautiful resulit.

X X
k" = X%

k
k
E: "?r a(n,r)
k=1 r=1

k=1

n
2 "Praq,y  which leads us to the following

In matrix notation the same can be written as follows for x=4 =n.

1 ] B ]
Py O 0 0 1 1 1 1
Py %P, 0 0 0 1 3 7
3 3 3 * |
P P, Ps 0 0 0 1 6
Py P2 Pyt o o 0 1
-1 e -

In gerneral

P *A” =Q where P
A = [a(i,j)_vl and Q = [IJ ]

nXn nXn

(A’ is the transpose of A)

Consider the expansion of x" , again
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X" = bn,1) X + ben2) X(X-1) + b3y X(X-1)(x-2) +. . .+ bn.ny *Pa

for x = 3 we get

X* = bay X + Daz) X(X-1) + bya 3) x(x-1)(x-2)

comparing the coefficient of powers of x on both sides we get
B(3,1) - ba,2) + 2 b3 =0

b2y - 3baa =0

b(3,3) =1
In matrix form
1 1 27 [ b1 | 0 7
0 1 -3 b(3'2) = 0
*
0 0 1 B(.3) 1
C3 * A3 = B3
-1
A3 = C3 B3
- -1 _ -
] 1 -1 2 1 1 1
-1 - —
Ciy = c 1 -3 = o 1 3
0 0 1 0 0 1
1 0 0 i )
-1 ' -
(C37) = (O
1 3 1




similarly it has been observed that

- . ——

(Cs) = 13 1 0

The above observation leads to the following theorem.
THEOREM (10.1)

In the expansion of x” as

X" = bn,1) X + bn,2) X(X-1) + b(n.3) X(X-1)(X-2) +. . .+ bn.n *Pa

If C, be the coefficient matrix of equations obtained by equating

the coefficient of powers of x on both sides then

(Cn1) = %(id’):} = star matrix of order n
nXxn

PROOF: It is evident that C,, the element of the p" row and q"
column of C, is the coefficient of x” in *P,. And also C,q is

independent of n. The coefficient of x? on the RHS is
n

coefficient of x* = X bn.q Cpq, also
q=1
coefficientof x° =1if p=n

coefficient of x* = =0 if p # n.

in matrix notation
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coefficient of x° = bn.q) Cpq

= iap Wherein, =1 ,if n=pand inp =0, if n=p.

= I, ( identity matrix of order n.)

— - - =
B(n,q) Co.q = I

~ 3 r e

A(n,q) Co.q = lq as b(n,q) = &g
- — - -

A, C; =1,

This completes the proof of theorem (10.1).
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THEOREM (10.2)

If Ck.n is the coefficient of x* in the expansion of *P,, then

n
Y F(1#K) Cixp =1
k=1

PROOF: In property (3) of the STAR TRIANGLE following

proposition has been established.

n

F'(1#n) = X 2nm = B, , in matrix notation the same can be

m=1

expressed as follows for n =4

[:1 1 1

In general

..
s

In Cnn , Cpq the p'" row and q'" column is the coefficient of

— _
1:| 1 1
0 1
0 0
0 o

*
a(i.j)

(Cn)

in *P,. Hence we have

1

3
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n

n
Z F(1#k) Ck,n =1 = Z Bk Ck,n
k=1 k=

THEOREM(10.3)

n n
Z F(1#(k+1)) Ck,n =n+1 = Z Bk#‘i Ck,n
k=1

k=1
PROOF:
It has already been established that
n
Brer = X (m+1) a(n,m)
m=1

In matrix notation

[J-l"]:} * a(i_j) [Bj+1
1" Xn - ' =

..
1 Xn Bj+1 *

1Xn (Cn)

nXn

Bys1 Ckn = n + 1

it45

k
There exist ample scope for more such results.
REFERENCES:

[1] “"Amarnath Murthy” , ‘Generalization Of Partition Function,
Introducing ‘Smarandache Factor Partition’, SNJ, Vol. 11, No. 1-2-3,

303



[5]

2000.
“Amarnath Murthy” , ‘A General Result On The “Smarandache

Star Function” , SNJ, Vol. 11, No. 1-2-3, 2000.

“Amarnath Murthy” , ‘More Results And Applications Of The
Generalized Smarandache Star Function’ SNJ, Vol. 11, No. 1-2-3,
2000.

“Amarnath Murthy” , ‘Expansion Of X" In Smarandache Terms
Of Permutations’ SNJ, Vol 11, No. 1-2-3, 2000.

“ The Florentine Smarandache " Special Collection, Archives
of American Mathematics, Centre for American History,
University of Texax at Austin, USA.

304



SMARANDACHE MAXIMUM RECIPROCAL REPRESENTATION
FUNCTION

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: Smarandache Maximum Reciprocal Representation
(SMRR) Function fsurr(n) is defined as follows
fsmrr(n) =t if

t t+1
>1/r £ n > 1lr

r=1 ' =1

IA

SMARANDACHE MAXIMUM RECIPROCAL REPRESENTATION
SEQUENCE

SMRRS is defined as Ty = foyra(n)

 fsmrr(1) =1
fsmrr(2) = 3, (1+ 1/2 +1/3 < 2< 1+ 1/2 + 1/3 + 1/4)
fSMRR(3) =10 10 11
‘ 2 1r < 3 < 1/r
r=1 r=1
SMRRS is

1,3,10,...

A note on The SMRR Function:
The harmonic series X 1/n satisfies the following inequality

log (n+1) < > 1/n < logn +1  -cceuee (1)
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This inequality can be derived as follows
We have e* > 1+x> ,x> 0

and (1 +1/m)"*") 5> 19 n>o
which gives
1/(r+1) < log(1+1/r) < 1/r

summing up for r = 1to n+ 1 and with some algebraic jugallary
we get (1). With the help of (1) we get the following result on
the SMRR function.
If SMRR(n) = m then [log(m)]~ n -1
Where [log(m) ] stands for the integer value of log(m).
SQME CONJECTURES:
(1.1). Every positive integer can be expressed as the sum of the
reciprocal of a finite number of distinct natural numbers. ( in
infinitely many ways.).

Let us define a function Rn(n) as the minimum number of natural
numbers required for such an expression.
(1.2). Every natural number can be expressed as the sum of the
reciprocals of a set of natural numbers which are in Arithmetic
Progression.
(1.3). Let
X1r £ n <X 1/(r+1)

where > 1/r stands for the sum of the reciprocals of first r
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natural numbers andlet S, = X 1/r
let S; = Sy + 1/(r+k,) such that S, + 1/(r+ks+1) > n > S,
let 83 = 82+ 1/(r+k2) such that 83 + 1/(r+k2+1) > n 2 S3

and so on , then there exists a finite m such that

Sm+1  +  1/(rtkyn) =n

Remarks : The veracity of conjecture (1.1) is deducible from

conjecture (1.3) .

(1.4). (a) There are infinitely many disjoint sets of natural numbers

sum of whose reciprocals is unity.

(b) Among the sets mentioned in (a) , there are sets which can

be organised in an order such that the largest element of any set

is §m'aller than the smallest element of the next set.
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OPEN PROBLEMS AND CONJECTURES ON THE
FACTOR /RECIPROCAL PARTITION THEORY:

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Qil And Natural
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

(1.1) To derive a formula for SFPs of given length m of pq® for

any value of a.

(1.2) To derive a formula for SFPs of

2 2 2 2

N = Pt P2 P33 ... Pr
(1.3) To derive a formula for SFPs of given length m of

a a a a

N = Pt P2 P3 ... Pr
(1.4) To derive a reduction formula for p°q® as a linear
combination of p®'q®" for r=0 to a-1.
Similar reduction formulae for (1-2) and {4: 3) also.

(1.5) In general , in how many ways a number can be expressed as

the product of its divisors?

(1.6). Every positive integer can be expressed as the sum of the
reciprocal of a finite number of distinct natural numbers. (_ in
infinitely many ways.).

Let us define a function Rn(n) as the minimum number of natural

numbers required for such an expression.
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(1.7). Every natural number can be expressed as the sum of the
reciprocals of a set of natural numbers which are in Arithmetic

Progression.

(1.8). Let

21 < n < X 1/(r+1)

where 2. 1/r stands for the sum of the reciprocals of first r
natural numbers andlet S, = Y 1/r

let S, = Sy + 1/(r+ks) suchthat S, + 1/(r+ks+1) > n > S,

let S; = Sz + 1/(r+kp) such that S; + 1/(r+kp,+1) > n > S,

and so on , then there exists a finite m such that

Smet  t+  1(r+km) =n

Remarks : The veracity of conjecture (1.6) is deducible from
conjecture (1.8) .

(1.9). (a) There are infinitely many disjoint sets of natural numbers
sum of whose reciprocals is unity.

(b) Among the sets mentioned in (a) , there are sets which can
be organised in én order such that the largest element of ahy set
is smaller than the smallest element of the next set.

DEFINITION: We can define Smarandache Factor Partition
Sequence as follows : T, = factor partion of n = F’(n)

T1:1Te:3 T12_:4>etc.
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SFPS is given by

1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5, 1,4,1,4,2,2,1,7,2, . . .,

DEFINITION: Let S be the smallest number such that F’(S) = n.
We define S a Vedam Number and the sequence formed

by Vedam numbers as the Smarandache Vedam Sequence.
Smarandache Vedam Sequence is given as follows:T, = F'(S)
1,4,8,12, 16, -?-, 24,

Note: There exist no number whose factor partition is equal to 6.
hence a question mark at the sixth slot. We define such numbers
as Dull numbers. The readers can explore the distribution
(frequency) and other properties of dull numbers.

DEFINITION: A number n is said to be a Balu number if it
satisfies the relation d(n) = F'(n) =r, and is the srﬁallest such
number .

1,16, 36 are all Balu numbers.

d(1) = F'(1) =i  d(16) = F'(16) =5, d(36) = F'(36) = 9.

Each Balu number > 16 , generates a Balu Class Cg (n) of
numbers having the same canonical form satisfying the equation
d(m) = F'(m).e.g. Cg(16) ={x|x=p*, pis aprime.} ={16, 81,

256, . . .}. Simiiarly Cg(36) = { x|x = p?g®, p and g are primes.}

310



Conjecture
(1.10): There are only finite number of Balu Classes.
In case Conjecture (1.10) is true , to find out the largest Balu

number.
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SMARANDACHE RECIPROCAL FUNCTION
AND AN ELEMENTARY INEQUALITY

( Amarnath Murthy , S.E.(E&T), Well Logging Services,
ONGC , Sabarmati , Ahmedabad , INDIA)

The Smarandache Function is defined as S(n) = k . Where k is the
smallest integer such that n divides k!
Let us define S.(n) Smarandache Reciprocal Function as follows:
S¢(n) = x where x + 1 does not divide n! and forevery y<x, vy | n!
THEOREM-I.
If Sc(n) = x,and n# 3, then x + 1 is the smallest prime greater than n.
PROOF: It is obvious that n! is divisible by 1,2, ... up to n. We have
to prove that n! is also divisible by n+1,n+2,...n+m (=x) , where
n+m+ 1 1s the smallest prime greater than n.. Let r be any of these
composite numbers. Then r must be factorable into two factors each of
which 1s > 2. Let r = p.q, where p, q= 2. If one of the factors (say q ) is
>nthen r =p.q 2 2n . But according to the Bertrand’s postulate there
must be a prime between n and 2n, there is a contradiction here since all
the numbers from n+ 1ton+m (n+1< r<n+m) are assumed to be
composite. Hence neither of the two factors p, q can be > n. So each must

be <n. Now there are two possibilities:

312



Case-I p = q.

In this case as each is <n so p.q=r divides n!
Case-II p =q = prime

In this case r = p’> where p is a prime. There are again three

possibilities:
(a) p25. Thenr=p’>4p = 4p < r< 2n = 2p < n. Therefore both
p and 2p are less than n so p? divides n!
(b) p =3, Thenr =p® =9 Therefore n must be 7 or 8 . and 9 divides 7!
and 8!.
(c)' p=2,then r= p2 =4 . Therefore n must be 3 . But 4 does not divide
3!, Hence the theorem holds for all integral values of n except n = 3. This
completes the proof.
Remarks: Readers can note that n! is divisible by all the composite
numbers between n and 2n.
Note: We have the well known inequality S(n) < n . -=--cee-- (2)
From the above theorem one can deduce the following inequality.

If p, is the r'" prime and p, < n < p,; then S(n) < p,. (A slight

improvement on (2)).
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ie. S(p;) = pPr, S(p:+ 1) < PrsS(pr+2)<pr, ...S(pr+1 - 1)< Pr 5 S(prs+1.
= Pr+1
Summing up for all the numbers p, s n < p,+; one gets

Pes1 - Pr - 1

Zo S(Pr'*'t)S(Prﬂ"Pr)pr
t =

Summing up for all the numbers up to the s prime, defining po =1, we

get
Ps s
=Z1 S (k) < 3).? (Pr+1 = Pr ) Pr  =------- (3)

More generally from Ref. [1] following inequality on the nth partial
sum of the Smarandache ( Inferior ) Prime Part Sequence directly
follows.

Smarandache ( Inferior ) Prime Part Sequence

For any positive real number n one defines p,y(n) as the largest
prime number less than or equal ton. In[1] Prof. Krassimir T.

Atanassov proves that the value of the n'" partial sum of this

n
sequence X, = X py(k) is given by
k=1

z(n)

Ko = Z (k- Per ) Per *(B=Pam 1) Pam o (4)
k=

From (3) and (4) we get
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2 S(k) <X,
k=1
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SOME FUNNY EXAMPLES OF SMARANDACHE LUCKY METHODS IN
ALGEBRA , TRIGONOMETRY, AND CALCULUS

( Amarnath Murthy , S.E.(E&T), Well Logging Services,
ONGC , Sabarmati , Ahmedabad , INDIA)

ABSTRACT : A number is said to be a Smarandache Lucky Number if an incorrect
calculation leads to a correct result. For example, the fraction 42/21 = (4-2)/(2-1) = 2/1
= 2 is incorrectly calculated, but the result 2 is still correct. More generally a
Smarandache Lucky Method is said to be any incorrect method which leads to a correct

result. In Ref. [I] The following question is asked:

(1) Are there infinitely many Smarandache Lucky Numbers ?

We claim that the answer is YES.

Also in the present note we give some fascinating Smarandache Lucky Methods in
algebra , trigonometry, and calculus.

A SMARANDACHE LUCKY METHOD IN TRIGONOMETRY :

Some students at the early stage of just having introduced to the concept of function,
misunderstand the meaning of f(x) as the product of fand x.

e.g. forthem sin(x) = product of sinand x. This gives rise to a funny lucky method
applicable to the following identity.

To prove
sin’(x) - sin’(y) = sin(x+y).sin(x-y)

LHS=  sin’(x) - sin’(y)

= {sin(x) + sin(y) }.{sin(x) - sin(y)} --------- (A)
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Taking sin common from both the factors
= {sin(x+y)}. {sin(x-y)}
= RHS
The correct method from (A) onwards should have been
{2 sin((x +y)/2). cos((x - ¥)/2)}.{2 cos((x + y)/2). sin((x - y)/2)}. |
= {2 sin((x + y)/2). cos((x + y)/2)}.{2 cos((x - y)/2sin((x - y)/2)}.
= {sin(x+y)}. {sin(x-y)}
= RHS
Remarks : The funny thing is the wrong lucky method is a shortcut more so to get

carried away.

A SMARANDACHE LUCKY METHOD IN ALGEBRA:

In vector algebra the dot product of two vectors (a;i +ayj + 53 k) and

(b1 +byj +bsk) is given by

(a1 tayj +azk). (byi +byj +b3k) = ab; +ab, + asb;

The same idea if extended to ordinary algebra would mean
(a+b)(c+d) = ac + bd. -=mmermem- (B)

This wrong lucky method is applicable in proving the following algebraic identity.

a> +b’ +c’ -3abc =(a+b+c)( a® +b2+c? -ab-bc -ca)
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RHS = (a+b+c)(a® +b*>+c? -ab-bc -ca)
= (a+b+c){(a*-bc) +(b*-ac) + (c* -ab)}
applying the wrong lucky method (B) , one gets

= a(a’-bc) +b.(b*-ac) + c.(c? -ab)

= a° -abc + b’-abc +¢ - abc

=a’> +b’ +¢ -3 abc =LHS

A SMARANDACHE LUCKY METHOD IN CALCULLUS:

The fun involved in the following lucky method in calculus is two fold . It goes like
this . A student is asked to differentiate the product of two functions. Instead of
applying the formula for differentiation of product of two functions he applies the
method of integration of the product of two functions ( Integration by parts)and gets
the correct answer. The height of coincidence is if another student given the same
product of two functions and asked to integrate does the reverse of it i.e. he ends up in
applying the formula for differentiation of the product of two functions and yet gets
the correct answer. I would take the liberty to call such a lucky method to be
Smarandache superlucky method . The suspense ends.

Consider the product of two functions x and sin (x) .

flx) = x and g(x) = sin(x)

The Smarandache lucky method of differentiation ( integration by parts) is

d{ fix).g®)}dx = fx) [g(x)dx - f [{d(fx))dx}. | g(x)dx]dx

d{(x).sin(x)}/dx = (x) j sin(x)dx - J.[{d(x)/dx}. _[ sin(x)dx]dx
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= -(x).(cos(x)) + sin(x)
= -Xx.cos(x) + sin(x)

The Smarandache lucky method of Integration

j {(fx)). g()}dx. =flx).d{g(x)}/dx + g(x) d{fx)}/dx

Consider the same functions again we get by this lucky method

f {(x)sin(x)}dx. = (x). {cos(x) } + {sin(x)} (1)

or J, {(x).sin(x)}dx. = x . cos(x) + sin(x)

That, both the answers are correct, can be verified, by applying the right methods.
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On Smarandache Number in Quantum Physicsv

Dennis Jay Gordon
Philadelphia, PA, USA
E-mail: zylon@netzero.com

Abstract.

The Smarandache Number in Quantum Physics (Sm) is defined as the ratio of a particle’s
(or information’s) speed to the speed of light. It is similar to Mach Number (Ma), which is
the ratio of an object’s speed to the speed of sound. In this paper I present 4 things I
know which could be interpreted as "faster than light travel” and, thus, when Sm > 1.

FOUR CONSIDERATIONS ON SMARANDACHE NUMBER IN QUANTUM PHYSICS:

1. RELATIVISTIC TRAVEL, such as the ability to travel many lightyears in what seems to
the traveler to be one second.(This is possibie only in principle; the forces involved would
destroy anything bigger than an electron.) What is really happening here is that as you
approach c(the speed of light in a vacuum)there is a time-space interchange; the distance
to what you are traveling to decreases relative to you while your time goes out of sync
with earth. Even though you would make a round trip to alpha centauri in one second to
you, it would still be 8 years later on the earth, so you really did not exceed c.

2.EXCEEDING LIGHT SPEED IN A FLUID is easy. There are fluids in which the speed of light
is so slow that you can out-run it! "c” is only the speed of light in a vacuum; light goes
slower than c in fluids(that's what causes refraction). Relativity does not prohibit faster
than light in a fluid, just faster than light in a vacuum, which is faster than in any fluid.

3.QUANTUM TELEPORTATION does not involve transversing space. It is what is called
"nonlocal™ and is not part of relativity.

4 SUPERLUMINAL ILLUSIONS, where objects appear to exceed ¢ caused by gravitational
lensing or various optical effects, of course do not represent true velocity.
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Review of

Lion Hunting & Other Mathematical Pursuits: A Collection of Mathematics, Verse, and
Stories by Ralph P. Boas, Jr., edited by Gerald L. Alexanderson and Dale H. Mugler, The
Mathematical Association of America, Washington, D. C., 1995. 320 pp., $35.00(paper). ISBN
0-88385-323-X.

As a collection of diverse persons, mathematicians suffer from more negative stereotypes than

almost any other group. This is unfortunate, discouraging and most often wrong. Widely
characterized as lacking in humor, abstract and considered to be brilliant, eccentric imbeciles by
much of the public, mathematicians rarely fit that description. Of course, branding a group with a
stereotype is often a mask for insecurities. Ralph P. Boas Jr. is a fascinating counterexample to
most of these inaccurate assumptions. Filled with humor, verse and mathematics, his optimism
and love of life are captured just like the lions so prominently featured in the book.

So, how does an unarmed person capture a lion using only the weapons of mathematical
thought? There are more ways than you would think. Over thirty different “proven” methods are
given. My favorite is: “The lion is big game, hence certainly a game. There exists an optimal
strategy. Follow it.” It seems that every area of mathematics can be used to construct a way to
capture a lion. Of course, some are more efficient than others.

The verse varies from limericks to some that were seeded by material from Shakespeare. All are
quite good, although it is necessary to read some of them twice in order to capture the intended
meaning. Most mathematicians have heard of Nicolas Bourbaki, the mathematical polyglot who
is in fact a pseudonym for a collection of French mathematicians. When it came time to publish
the first material on the mathematics of lion hunting, Boas and his colleagues chose the
pseudonym, Hector Petard, from the Shakespearean line, “the engineer, hoist with his own
petard”; Hamlet Act III, Scene IV. To complete the circle, Boas and friends also “arranged” for a
wedding between Betti Bourbaki and H. Petard and duly announced the upcoming event.
Another main section of the book consists of reminiscences by Boas and those who knew
him best. As a mathematical man of mischief and an educator, he had few equals. Several
short papers describing some of his basic ideas for education are also included. These
ideas share one common trait. Simple to understand and execute. No fancy or complex
methods, just fundamental strategies to make mathematics more understandable.

The final part of the book consists of short anecdotes about his experiences in
mathematics. Some are about fellow mathematicians, others about students and the rest
about whatever seemed to happen during his eventful life. At times amusing, other times
profound, but at all times interesting, they are simple notes describing how the
mathematical world works.

Despite common misconceptions, there are some mathematicians who contain a bit of
the sprite and Ralph P. Boas Jr. was such a person. That impishness is captured in this
book, which is reason enough to read it.
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Review of

Non-Euclidean Geometry 6™ Edition, by H. S. M. Coxeter, The Mathematical
Association of America, Washington, D. C., 1998. 336 pp., $30.95(paper).
ISBN 0-88385-522-4.

Originally published in 1942, this book has lost none of its power in the last half century.

It is a commentary on the recent demise of geometry in many curricula that 33 years

elapsed between the publication of the fifth and sixth editions. Fortunately, like so many

things in the world, trends in mathematics are cyclic, and one can hope that the geometric

cycle is on the rise. We in mathematics owe so much to geometry. It is generally

conceded that much of the origins of mathematics is due to the simple necessity of

maintaining accurate plots in settlements. The only book from the ancient history of
mathematics that all mathematicians have heard of is the Elements by Euclid. It is one of

the most read books of all time, arguably the only book without a religious theme still in
widespread use over 2000 years after the publication of the first edition. The geometry

taught in high schools today is with only minor modifications found in the Euclidean

classic.

There are other reasons why geometry should occupy a special place in our hearts. Most of the
principles of the axiomatic method, the concept of the theorem and many of the techniques used
in proofs were born and nurtured in the cradle of geometry. For many centuries, it was nearly an
act of faith that all of geometry was Euclidean. That annoying fifth postulate seemed so out of
place and yet it could not be made to go away. Many tried to remove it, but finally the Holmsean
dictum of ,”once you have eliminated the impossible, what is left, not matter how improbable,
must be true”, had to be admitted. There were in fact three geometries, all of which are of equal
validity. The other two, elliptic and hyperbolic, are the main topics of this wonderful book.
Coxeter is arguably the best geometer of this century but there can be no argument that he is the
best explainer of geometry of this century. While fifty years is a mere spasm compared to the
time since Euclid, it is certainly possible that students will be reading Coxeter far into the future
with the same appreciation that we have when we read Euclid. His explanations of the
non-Euclidean geometries is so clear that one cannot help but absorb the essentials. In so many
ways, Euclidean geometry is but the middle way between the two other geometries. A point well
made and in great detail by Coxeter.

Geometry is a jewel that was born on the banks of the Nile river and we should treasure and
respect it as the seed from which so much of our basic reasoning processes sprouted. For this
reason, you should buy this book and keep a copy on your shelf.

Reviewed by
Charles Ashbacher

Charles Ashbacher Technologies
e-mail 71603.522@compuserve.com
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Krassimir T. Atanassov, "On Some of the Smarandache's Problems".
Lupton, AZ: American Research Press, 1999, 88pp, ISBN
1-879585-72-3. (Box 199, Lupton, AZ 86508, USA.)

This attractively, but inexpensively, produced monograph introduces
the reader to the flavour of the problems proposed in recent years
by Smarandache and others. These are generally of two kinds: those
which deal with recurring patterns within sequences and those which
extend classical number theoretic results. Those who are familiar
with the author's style will recognise his ingenuity in the latter
and his tenacity in the former.

An example of the former is Smarandache Problem 22: "In the
sequence of Smarandache Square Complements:
{1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,
21,22,23,6,1,26,3,7,29,30,31,2,33,34,35,1,37,
38,39,10,41,42,43,11,5,46,47,3,1,2,51,13,53,6,55,
14,57,58,59,15,61,62,7,1,65,66,67,17,69,70,71,2,...}, for

each integer n find the smallest integer k such that nk is a
perfect square."

An extension of a classical result is Smarandache Problem 117: "Let
P be an odd positive number. Prove that p and p+2 are twin primes
iff

(P-1) 1 {(1/p)+(2/(p+2))}+(1/p)+(1/(p+2)) is an integer."

Atanassov develops and utilises properties of "new" functions such
as the inverse factorial function defined by: x? = y iff y! =x, and
his digit sum which has appeared in a number of papers over the
last decade. These ensure that his solutions are always elegant
rather than the result of brute force. Readers might like to try
their hands at the above two problems and then buy the book to
enjoy more of these problems which are easy to understand but not
always easy to solve.

The book is in microfilm format too, and can be ordered from: UMI,
PO Box 1346, Ann Arbor, MI 48106-1346, USA;
tel: 1-800-521-0600.

Tony Shannon PhD EAD DSc

Professor Emeritus, University of Technology, Sydney, 2007, and
Provost, KvB Institute of Technology, North Sydney, 2060, Australia

323



CONTENTS

ARTICLES:
DWIRAJ TALURDAR, D-Form Of Smarandache Groupoid . . . . .5
DWIRAJ TAKURDAR, The Notions Of The Smarandache Group And The
Smarandache Boolean Ring . . . . . . . . . . . . - e . 16
ANGELA VASIU, NICOLAIE OPREA, From Bolyai’s Geometry To Smarandache
Anti-Geometry . . . .- . . . 24
ANGELA VASIU, Smarandache s New Geometrles. A Provocation Fbr An
Ammelioration Of Human Condition . . . . .« e . . e« . . 29
SABIN TABIRCA, TATIANA TABIRCA, The Average Of The Erdos Function .
e e e e e e e e e e e e e e . . e . . . ... 31
SABIN TABIRCA, TATIANA TABIRCA, On The Convergence Of The Erdos
Harmonic Series . . 34
FELICE RUSSO, An Experlmental Ev1dence On The Valldlty Of Thlrd
Smarandache Conjecture On Primes . . . . . . - . . 38
FELICE RUSSO, Some Results About Four Smarandache U;Product
Sequences . . . . . . . . - . . 42
FELICE RUSSO, On An Uhsolved Questlon About The Smarandache Square-
Partial-Digital Subsequences . . . .« « « « « « « « « « « « . . 50
CHARLES ASHBACHER, On A Conjecture By Russo . . . . . . . 53
SEBASTIAN MARTIN RUIZ, A Functional Recurrence To Obtaln The Prime
Numbers Using The Smarandache Coprime Function . . . . . - . 56
SEBASTIAN MARTIN RUIZ, The General Term Of The Prime NUmber
Sequence And The Smarandache Prime Function . . . . . 598
SEBASTIAN MARTIN RUIZ, Expressions Of The Smarandache Coprlme
Function . . . . . - e . . . 62
MLADEN V. VASSILEV-MISSANA, KRASSIMIR AIANBSSOV, the On the
Diophantine Equation 2x-:ﬁf;p B Y
HRISTO ALADJOV, KRASSIMIR ATANASSOV, Remark On The 62-th
Smarandache Problem . . . . . . e e e e s « « . .« 69
MAOHUA LE, The Integral Values Of log S(n) Y i |
'S

RONGI CHEN, MAOHUA LE, On The Functional Equation S(n)?+S(n)=kn 73
ZHONG LI, MAOHUA LE, On The Functional Equation Z(n)+¢(n)=d(n) . 77
M. BENCZE, Smarandache Relationships And Subsequences . . . . 79
SYLVESTER SMITH, A Set Of Conjectures On Smarandache Sequences . 86
FANEL IACOBESCU, Smarandache Partition Type And Other Sequences 93

HELEN MARIMUTHA, Smarandache Concatenate Type Sequences . . . . 97
MIHALY BENCZE, Smarandache Recurrence Type Sequences . . . . . . 99
SABIN TABIRCA, About Smarandache-Multiplicative Functions . . . 103
ANGHEL N. RUGINA, On Smarandache Mixed Non-Euclidean Geometries 105
K. R. S. SASTRY, Smarandache Number Related Triangles . . . . . 107
CHARLES ASHBACHER, Solutions To Some Sastry Problems On
Smarandache Number Related Triangles . . . . . . . . . . . . 110
MAOHUA LE, On The Difference S(Z(n))-Z(S(n)) . . . . . . . . . 116
ANTHONY BEGAY, Smarandache Ceil Functions . . . . - e . - . 117
CHARLES ASHBACHER, Some Problems Concerning The Smarandache
Deconstructive Sequence . . . . e e . . . 120

EMIIL, BURTON, S-Primality Degree Of A NUmber And S-Prime NUmbers 123
E. RADESCU, Some Elementary Algebraic Considerations Inspired By

Smarandache Type Functions (II) . . . ¢« « « « o« « « « « « . . 124

324



RONGJI CHEN, On The Functional Equation (S(n))"+ (S(n))™" + .. +

S(n) =n . . . . . . . . 128
ZHONG LI, Solutlon Of Two Questions Concernlng The DlVlsor Function

And The Pseudo-Smarandache Function . . . . . . . . . . 132
J. SANDOR, On A Conjecture Of Smarandache On Prime NUmbers . . 136
FLORIAN LUCA, On The Smarandache Irrationality Conjecture . . . 137
J. SANDOR, A Note On S(n), Where n Is An Even Perfect Number . 139
STEVEN FINCB, Moments Of The Smarandache Function . . . . . . . 140
GHEORGHE DINULESCU, The Intangible Absolute Truth . . . . 142
Y. V. CHEBRAKOV, Advance Of Smarandache Approach To Solv1ng Systems

Of Diophantine Equations . . . . - . 144

Y. V. CHEBRAKOV, V. V. SHMAGIN, Analytlcal Approach To Descrrptlon
Of Some Combinatorial And Number-Theoretic Computative Algorithms

P 11
I. BALACENOIU, D. BORDEA, V. SELEACU, Numerical Functions And
Triplets . . . . . 165
AMARNATHE MURTHY, Exploratlng Some New Ideas On Smarandache type
Sets, Functions And Sequences . . . . . e e e e . . 171
- AMARNATH MURTHY, Some New Smarandache Sequences, Eunctlons And
Partitions . . . . . - e . . 179

AMARNATH MORTHY, On The Divisors Of Smarandache Unary Sequence 184
CHARLES ASHBACHER, On Iterations That Alternate The Pseudo-

Smarandache And Classic Functions Of Number Theory . . . . . 186
FLORIAN MUNTEANU, OCTAVIAN MUSTAFA, The Almost Presumable
Maximality Of Some Topological Lemma . . . . . 192
SABIN TABIRCA, TATIANA TABIRCA, On The Convergence Of The Euler
Harmonic Series . . . . . e e e e e e e s s e e s s e . . . 196
J. SANDOR, On Two Notes By M’ Bencze . . . . . . . < . < < . . 201
J. SANDOR, On Certain Generalizations Of The Smarandache Function
. . - - . C e e e e e e e e e e e e 202
VASILE SELEACU, On The NUmerlcal Function Sain ' . . .« . 213
CHARLES ASHBACHER, On Numbers Where The Values Of The Pseudo-
Smarandache Function Of It And The Reversal Are Identical . . 215
AMARNATH MURTHY, Smarandache Reciprocal Partition Of Unity Sets And
Sequences . . . .+ ¢ ¢ 4 e v e e e e e e e e e e+ a e « . . . 218
AMARNATH MURTHY, Generalization Of Partition Function, Introducing
Smarandache Factor Partition . . . . . . . - e . . . 2271
AMARNATH MURTRY, A General Result On The Smarandache Star Function
. . - . 240
AMARNAEB MDREH!, Mbre Results And Appllcatlons Of Tbe Generallzed
Smarandache Star Function . . . - e . . e e e . - - . . 253
AMARNATH MURTHY, Properties Of Smarandache Star Trlangle . . . 263
AMARNATH MURTHY, Smarandache Factor Partitions Of A Typical
Canonical Form . . . . . . . . - . .« « . . 270

AMARNATE MURTHY, Length/Extent Of Smarandache Factor Partltlons 275
AMARNATH MURTHY, Some More Ideas On Smarandache Factor Partitions

e e e e e e e e e e e e e e e e e e e e e e e e e e e ... . 280
AMARNATH MURTHY, A Note On The Smarandache Divisor Sequences . 284
AMARNATH MURTHY, Algorithm For Listing Of Smarandache Factor

PartitiOnNsS . . = « o = a « 2 o o o o o o o o o o o o o« « . . 286
AMARNATH MURTHY, Expansion Of x" In Smarandache Terms Of
Permutations . . . . . . . 290

AMARNATH MURTHY, M&scellaneous Results And Theorems On Smarandache

325



Terms And Factor Partitions . . . - . . . 297
AMARNATH MURTHY, Smarandache Max1mum Rec;procal Representatlon

Function . . . . . « . . 305
AMARNATH MURTEY, Qpen Problems And Cbn]ectures On The
Factor/Reciprocal Partition Theory . . . . . . 308
AMARNATH MURTHY, Smarandache Reciprocal thctlon And An Elementa:y
Inequaliy . . . . - - . 312
AMARNATH MURTHY, Some thny Examples Of Smarandache Lucky Methods
In Algebra, Trigonometry, And Calculus . . . . . . . . . . . 316
DENNTS JAY GORDON, On Smarandache Number In Quantum Physics . . 320
REVIEWS:
Book Reviews (CHARLES ASHBACHER, TONNY SHANNON) . . . . . . . 321

326



The "Smarandache Notions”™ is partially online at:
http://www.gallup.unm.edu/~smarandache/
and selected papers are periodically added to our web site. The
authors are pleased to send, together with their hard copy

manuscripts, a floppy disk with HTML or ASCHII files to be put in
the Internet as well.

Papers in electronic format are accepted. They can be
e-mailed in Microsoft Word 97 (or lower) for Windows 98,
WordPerfect 6.0 (or lower) for Windows 95, HTML, or text files.

$49.95





