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ling the fusion problematic when the information provided by the sources is both uncertain and

(highly) conflicting. This approach, known in literature as DSmT (standing for Dezert-Smarandache

Theory), proposes new useful rules of combinations. We gathered in this volume a presentation of DSmT

from the beginning to the latest development. Part 1 of this book presents the current state-of-the-art on

theoretical investigations while Part 2 presents several applications of this new theory. We hope that this

first book on DSmT will stir up some interests to researchers and engineers working in data fusion and in

artificial intelligence. Many simple but didactic examples are proposed throughout the book. As a young

emerging theory, DSmT is probably not exempt from improvements and its development will continue to

evolve over the years. We just want through this book to propose a new look at the Information Fusion

problematic and open a new track to attack the combination of information.
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Prefaces

A
dvances in science and technology often result from paradigm shifts. In the 1910’s, Einstein tried

to reconcile the notion of absolute space and time of Cartesian dynamics, with Maxwell’s electro-

dynamic equations, which introduced an absolute speed for light in vacuum. Addressing this dilemma

inevitably lead him to put space and time on an equal footing, for any observer in an inertial frame,

and special relativity was born. When he then tried to include gravitation in the picture, space and

time became warped by mass (or energy) and general relativity emerged by connecting locally inertial

frames. In each case, a new theory arose from relaxing assumptions, which formerly were thought to

be immutable. We all know now the ideal regions of applicability of Cartesian dynamics (slow-moving

objects) compared to those of special relativity (fast moving objects) and general relativity (cosmology

and strong gravitational fields). However general relativity can reduce to special relativity, which itself

can become Cartesian dynamics in everyday life. The price to pay in going from Cartesian dynamics to

the more general formulations of relativity is increasing complexity of the calculations.

In his classic 1976 book, Shafer stated the paradigm shift, which led him to formulate an alternative

to the existing Bayesian formalism for automated reasoning, thus leading to what is commonly known as

Dempster-Shafer (DS) evidential reasoning. The basic concept was that an expert’s complete ignorance

about a statement need not translate into giving 1/2 a probability to the statement and the other 1/2 to its

complement, as was assumed in Bayesian reasoning. Furthermore, when there are several possible single

mutually exclusive alternatives (singletons) and the expert can only state positively the probabilities of

a few of these, the remaining probabilities had to be distributed in some a priori fashion amongst all

the other alternatives in Bayesian reasoning. The complete set of all the N alternatives (the frame of

discernment) had to be known from the outset, as well as their natural relative frequency of occurrence.

By allowing as an alternative that the ignorance could be assigned to the set of all remaining alternatives

without any further dichotomy, a new theory was thus born that reasoned over sets of alternatives, DS

theory.

xiii



Clearly the problem became more complex, as one had to reason over 2N alternatives, the set of all

subsets of the N singletons (under the union operator). When Dempster’s orthogonal sum rule is used

for combining (fusing) information from experts who might disagree with each other, one obtains the

usual Dempster-Shafer (DS) theory. The degree of disagreement, or conflict, enters prominently in the

renormalization process of the orthogonal sum rule and signals also when DS theory should be used with

extreme caution: the conflict must not be too large. Indeed several paradoxes arise for highly conflicting

experts (sources), and these have to be resolved in some way. Going back to relativity for a moment, the

twin paradox occurs when one tries to explain it with special relativity, when actually it is a problem

that has to be handled by general relativity. A paradigm shift was necessary and one will be needed here

to solve the paradoxes (referred to in this book as counter-examples) of DS theory: the relaxation of an

a priori completely known frame of discernment made of mutually exclusive singletons, and this is what

Dezert-Smarandache (DSm) theory is basically all about.

In the first part of this book, DSm theory is motivated by expanding the frame of discernment to

allow for presumed singletons in DS (or Bayesian) theory to actually have a well-defined intersection,

which immediately states when this theory should be used: whenever it is impossible to estimate at the

outset the granularity required to solve the problem at hand, either by construction (fuzzy concepts which

cannot be refined further), or when the problem evolves in time to eventually reveal a finer granularity

than originally assumed. It would then be important to continue being able to reason, rather than to go

back and expand the frame of discernment and start the reasoning process over again.

However, clearly the problem again becomes more complex than DS theory, as one has to reason now

over more alternatives (following Dedekind’s sequence of numbers as N increases), consisting of the set

of all subsets of the N original singletons (but under the union and the intersection operators). This is

still less than would be required for a refined DS theory (if possible), which would consist of 2 to the

power 2N − 1 alternatives. The classic DSm rule of combination ensures the desired commutativity and

associativity properties, which made DS theory viable when the original orthogonal sum rule is used.

This classic DSm rule is particularly simple and corresponds to the Free DSm model. Because the classic

DSm rule does not involve a renormalization depending on the conflict, it will not exhibit the problems

of DS theory under highly conflicting conditions. However since one of the applications of DSm theory

involves dealing with problems with dynamic constraints (elements can be known not to occur at all at

a certain time), a hybrid rule of combination is also proposed which deals with exclusivity constraints

as well (some singletons are known to be truly exclusive). One can think of many examples where such

available knowledge fluctuates with time. In this first part, the authors make a special effort to present

instructive examples, which highlight both the free DSm model and the hybrid DSm model with exclusiv-



ity and/or non-existential constraints. The classic counter-examples to DS theory are presented, together

with their solution in DSm theory.

In the second part of the book, data/information fusion applications of DSm theory are presented,

including the Tweety Penguin triangle, estimation of target behavior tendencies, generalized data associ-

ation for multi-target tracking in clutter, Blackman’s data association problem, neutrosophic frameworks

for situation analysis, land cover change detection from imagery, amongst others. This second part of

the book is much more of an applied nature than the theoretical first part. This dual nature of the book

makes it interesting reading for all open-minded scientists/engineers. Finally, I would like to thank the

authors for having given me the opportunity to peer-review this fascinating book.

Pierre Valin, Prof., Ph.D.

Dept. de Physique

Université de Montréal

Montréal, Québec, Canada

May, 2004

T
his book presents the foundations, advances and some applications of a new theory of paradoxical

and plausible reasoning developed by Jean Dezert and Florentin Smarandache, known as DSmT.

This theory proposes a general method for combining uncertain, highly conflicting and imprecise data,

provided by independent sources of information. It can be considered as a generalization of classical

Dempster-Shafer mathematical theory of evidence, overcoming its inherent constraints, closely related

with the acceptance of the law of the excluded middle. Refuting that principle, DSmT proposes a formal-

ism to describe, analyze and combine all the available information, allowing the possibility for paradoxes

between the elements of the frame of discernment. It is adapted to deal with each model of fusion occur-

ring, taking into account all possible integrity constraints of the problem under consideration, due to the

true nature and granularity of the concepts involved. This theory shows through the considered appli-

cations that conclusions drawn from it provides coherent results, which agree with the human reasoning

and improves performances with respect to Dempster-Shafer Theory.

Krassimir Atanassov, Prof., Ph.D.

Centre of Biomedical Engineering

Bulgarian Academy of Sciences

Sofia, Bulgaria

May, 2004



S
ciences advancement has always been through achievements, ideas and experiences accumulation.

New ideas and approaches sometimes suffer misunderstanding and sometimes from a kind of “rejec-

tion” because they disturb existing approaches and, humans do not easily accept the changes. Simply,

this is the human being history.

Information processing domain is not an exception. While preparing this preface, I remembered what

happened when the fuzzy sets theory was developed. In the 1970’s, some said “Fuzzy logic is the opium

of sciences”! Amazing to see how things have changed since that time and how fuzzy sets theory is now

well accepted and so well applied.

The scientific area of Information Fusion is beautifully “disturbing” our ways of thinking. In fact,

this area imposes important questions: What is information? What is really informative in information?

How to make information fusion? etc. From my own point of view, this area is pushing the scientific

community towards promising approaches. One of these approaches is raised by Florentin Smarandache

& Jean Dezert in their book: Advances and Applications of DSmT for Information Fusion. This approach

aims to formalize the fusion approach in the very particular context of uncertain and highly conflicting

information. The Dezert-Smarandache Theory (DSmT) should be considered as an extension of the

Dempster-Shafer (DS) as well as the Bayesian theories. From a technical point of view, the fundamental

question concerning the granularity of the singletons forming the frame of discernment is clearly raised.

The book is not only limited to theoretical developments but also presents a set of very interesting ap-

plications, making thus, its reading a real pleasure.

I would like to thank the authors for their original contribution and to encourage the development of

this very promising approach.

Bassel Solaiman, Prof., Ph.D.

ENST Bretagne

Brest - France

May, 2004
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Chapter 1

Presentation of DSmT

Jean Dezert Florentin Smarandache

ONERA Department of Mathematics

29 Av. de la Division Leclerc University of New Mexico

92320 Châtillon Gallup, NM 8730

France U.S.A.

Abstract: This chapter presents a general overview and foundations of the DSmT,

i.e. the recent theory of plausible and paradoxical reasoning developed by the au-

thors, specially for the static or dynamic fusion of information arising from several

independent but potentially highly conflicting, uncertain and imprecise sources of

evidence. We introduce and justify here the basis of the DSmT framework with

respect to the Dempster-Shafer Theory (DST), a mathematical theory of evidence

developed in 1976 by Glenn Shafer. We present the DSm combination rules and

provide some simple illustrative examples and comparisons with other main rules of

combination available in the literature for the combination of information for sim-

ple fusion problems. Detailed presentations on recent advances and applications of

DSmT are presented in the next chapters of this book.

1.1 Introduction

T
he Dezert-Smarandache Theory (DSmT) of plausible and paradoxical reasoning proposed by the

authors in recent years [9, 10, 36] can be considered as an extension of the classical Dempster-Shafer

theory (DST) [33] but includes fundamental differences with the DST. DSmT allows to formally combine

any types of independent sources of information represented in term of belief functions, but is mainly

focused on the fusion of uncertain, highly conflicting and imprecise sources of evidence. DSmT is able

to solve complex static or dynamic fusion problems beyond the limits of the DST framework, specially

3
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when conflicts between sources become large and when the refinement of the frame of the problem under

consideration, denoted Θ, becomes inaccessible because of the vague, relative and imprecise nature of

elements of Θ [10].

The foundation of DSmT is based on the definition of the Dedekind’s lattice DΘ also called hyper-

power set of the frame Θ in the sequel. In the DSmT framework, Θ is first considered as only a set

{θ1, . . . , θn} of n exhaustive elements (closed world assumption) without introducing other constraint

(exclusivity or non-existential constraints). This corresponds to the free DSm model on which is based

the classic DSm rule of combination. The exhaustivity (closed world) assumption is not fundamental

actually, because one can always close any open world theoretically, say ΘOpen by including into it an

extra element/hypothesis θ0 (although not precisely identified) corresponding to all missing hypotheses

of ΘOpen to work with the new closed frame Θ = {θ0} ∪ ΘOpen = {θ0, θ1, . . . , θn}. This idea has been

already proposed and defended by Yager, Dubois & Prade and Testemale in [45, 13, 30] and differs from

the Transferable Belief Model (TBM) of Smets [42]. The proper use of the free DSm model for the fusion

depends on the intrinsic nature of elements/concepts θi involved in the problem under consideration

and becomes naturally justified when dealing with vague/continuous elements which cannot be precisely

defined and separated (e.g. the relative concepts of smallness/tallness, pleasure/pain, hot/cold, colors

(because of the continuous spectrum of the light), etc) so that no refinement of Θ in a new larger set

Θref of exclusive refined hypotheses is possible. In such case, we just call Θ the frame of the problem.

When a complete refinement (or maybe sometimes an only partial refinement) of Θ is possible and

thus allows us to work on Θref , then we call Θref the frame of discernment (resp. frame of partial

discernment) of the problem because some elements of Θref are truly exclusive and thus they become

(resp. partially) discernable. The refined frame of discernment assuming exclusivity of all elements θi ∈ Θ

corresponds to the Shafer’s model on which is based the DST and can be obtained from the free DSm

model by introducing into it all exclusivity constraints. All fusion problems dealing with truly exclusive

concepts must obviously be based on such model since it describes adequately the real and intrinsic nature

of hypotheses. Actually, any constrained model (including Shafer’s model) corresponds to what we called

an hybrid DSm model. DSmT provides a generalized hybrid DSm rule of combination for working with

any kind of hybrid models including exclusivity and non-existential constraints as well and it is not only

limited to the most constrained one, i.e. Shafer’s model (see chapter 4 for a detailed presentation and

examples on the hybrid DSm rule). Before going further into this DSmT presentation it is necessary to

briefly present the foundations of the DST [33] for pointing out the important differences between these

two theories for managing the combination of evidence.
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1.2 Short introduction to the DST

In this section, we present a short introduction to the Dempster-Shafer theory. A complete presentation

of the Mathematical Theory of Evidence proposed by Glenn Shafer can be found in his milestone book

in [33]. Advances on DST can be found in [34, 48] and [49].

1.2.1 Shafer’s model and belief functions

Let Θ = {θ1, θ2, . . . , θn} be the frame of discernment of the fusion problem under consideration having n

exhaustive and exclusive elementary hypotheses θi. This corresponds to Shafer’s model of the problem.

Such a model assumes that an ultimate refinement of the problem is possible (exists and is achievable)

so that θi are well precisely defined/identified in such a way that we are sure that they are exclusive and

exhaustive (closed-world assumption).

The set of all subsets of Θ is called the power set of Θ and is denoted 2Θ. Its cardinality is 2|Θ|. Since

2Θ is closed under unions, intersections, and complements, it defines a Boolean algebra.

By example, if Θ = {θ1, θ2, θ3} then 2Θ = {∅, θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.

In Shafer’s model, a basic belief assignment (bba) m(.) : 2Θ → [0, 1] associated to a given body of

evidence B (also called corpus of evidence) is defined by [33]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1 (1.1)

Glenn Shafer defines the belief (credibility) and plausibility functions of A ⊆ Θ as

Bel(A) =
∑

B∈2Θ,B⊆A

m(B) (1.2)

Pl(A) =
∑

B∈2Θ,B∩A 6=∅

m(B) = 1− Bel(Ā) (1.3)

where Ā denotes the complement of the proposition A in Θ.

The belief functions m(.), Bel(.) and Pl(.) are in one-to-one correspondence [33]. The set of elements

A ∈ 2Θ having a positive basic belief assignment is called the core/kernel of the source of evidence under

consideration and is denoted K(m).

1.2.2 Dempster’s rule of combination

Let Bel1(.) and Bel2(.) be two belief functions provided by two independent (and a priori equally reliable)

sources/bodies of evidence B1 and B2 over the same frame of discernment Θ and their corresponding
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bba m1(.) and m2(.). Then the combined global belief function denoted Bel(.) = Bel1(.) ⊕ Bel2(.) is

obtained by combining the bba m1(.) and m2(.) through the following Dempster rule of combination [33]

m(.) = [m1 ⊕m2](.) where







m(∅) = 0

m(A) =

∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y )

1−
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y )
∀(A 6= ∅) ∈ 2Θ

(1.4)

m(.) is a proper basic belief assignment if and only if the denominator in equation (1.4) is non-zero.

The degree of conflict between the sources B1 and B2 is defined by

k12 ,
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y ) (1.5)

The effect of the normalizing factor 1 − k12 in (1.4) consists in eliminating the conflicting pieces

of information between the two sources to combine, consistently with the intersection operator. When

k12 = 1, the combined bba m(.) does not exist and the bodies of evidences B1 and B2 are said to be in

full contradiction. Such a case arises when there exists A ⊂ Θ such that Bel1(A) = 1 and Bel2(Ā) = 1.

The core of the bba m(.) equals the intersection of the cores of m1 and m2, i.e K(m) = K(m1) ∩K(m2).

Up to the normalization factor 1−k12, Dempster’s rule is formally nothing but a random set intersection

under stochastic assumption and it corresponds to the conjunctive consensus [13]. Dempster’s rule of

combination can be directly extended for the combination ofN independent and equally reliable sources of

evidence and its major interest comes essentially from its commutativity and associativity properties [33].

A recent discussion on Dempster’s and Bayesian rules of combination can be found in [5].

1.2.3 Alternatives to Dempster’s rule of combination

The DST is attractive for the Information Fusion community because it gives a nice mathematical model

for the representation of uncertainty and it includes Bayesian theory as a special case [33] (p. 4). Although

very appealing, the DST presents some weaknesses and limitations [27] already reported by Zadeh [50,

51, 52, 53] and Dubois & Prade in the eighties [12] and reinforced by Voorbraak in [43] because of the

lack of complete theoretical justification of Dempster’s rule of combination, but mainly because of our

low confidence to trust the result of Dempster’s rule of combination when the conflict becomes important

between sources (i.e. k12 ↗ 1). Indeed, there exists an infinite class of cases where Dempster’s rule of

combination can assign certainty to a minority opinion (other infinite classes of counter-examples are

discussed in chapter 5) or where the ”ignorance” interval disappears forever whenever a single piece of

evidence commits all its belief to a proposition and its negation [29]. Moreover, elements of sets with
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larger cardinality can gain a disproportionate share of belief [43]. These drawbacks have fed intensive

debates and research works for the last twenty years:

• either to interpret (and justify as best as possible) the use of Dempster’s rule by several approaches

and to circumvent numerical problems with it when conflict becomes high. These approaches are

mainly based on the extension of the domain of the probability functions from the propositional

logic domain to the modal propositional logic domain [31, 32, 28] or on the hint model [22] and

probabilistic argumentation systems [14, 15, 1, 2, 16, 17, 18, 19, 20]. Discussions on these interpre-

tations of DST can be found in [38, 40, 42], and also in chapter 12 of this book which analyzes and

compares Bayesian reasoning, Dempster-Shafer’s reasoning and DSm reasoning on a very simple

but interesting example drawn from [28].

• or to propose new alternative rules. DSmT fits in this category since it extends the foundations of

DST and also provides a new combination rules as it will be shown in next sections.

Several interesting and valuable alternative rules have thus been proposed in literature to circumvent

the limitations of Dempster’s rule of combination. The major common alternatives are listed in this

section and most of the current available combination rules have been recently unified in a nice gen-

eral framework by Lefèvre, Colot and Vanoorenberghe in [25]. Their important contribution, although

strongly criticized by Haenni in [19] but properly justified by Lefevre et al. in [26], shows clearly that

an infinite number of possible rules of combinations can be built from Shafer’s model depending on the

choice for transfer of the conflicting mass (i.e. k12). A justification of Dempster’s rule of combination

has been proposed afterwards in the nineties by the axiomatic of Philippe Smets [37, 24, 41, 42] based

on his Transferable Belief Model (TBM) related to anterior works of Cheng and Kashyap in [6], a non-

probabilistic interpretation of Dempster-Shafer theory (see [3, 4] for discussion).

Here is the list of the most common rules of combination1 for two independent sources of evidence

proposed in the literature in the DST framework as possible alternatives to Dempster’s rule of combination

to overcome its limitations. Unless explicitly specified, the sources are assumed to be equally reliable.

• The disjunctive rule of combination [11, 13, 39]: This commutative and associative rule pro-

posed by Dubois & Prade in 1986 and denoted here by the index ∪ is examined in details in chapter

9. m∪(.) is defined ∀A ∈ 2Θ by






m∪(∅) = 0

m∪(A) =
∑

X,Y ∈2Θ

X∪Y=A

m1(X)m2(Y ) ∀(A 6= ∅) ∈ 2Θ (1.6)

1The MinC rule of combination is not included here since it is covered in details in chapter 10.
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The core of the belief function given by m∪ equals the union of the cores of Bel1 and Bel2. This rule

reflects the disjunctive consensus and is usually preferred when one knows that one of the source

B1 or B2 is mistaken but without knowing which one among B1 and B2.

• Murphy’s rule of combination [27]: This commutative (but not associative) trade-off rule,

denoted here with index M , drawn from [46, 13] is a special case of convex combination of bba m1

and m2 and consists actually in a simple arithmetic average of belief functions associated with m1

and m2. BelM (.) is then given ∀A ∈ 2Θ by:

BelM (A) =
1

2
[Bel1(A) + Bel2(A)] (1.7)

• Smets’ rule of combination [41, 42]: This commutative and associative rule corresponds actually

to the non-normalized version of Dempster’s rule of combination. It allows positive mass on the

null/empty set ∅. This eliminates the division by 1− k12 involved in Dempster’s rule (1.4). Smets’

rule of combination of two independent (equally reliable) sources of evidence (denoted here by index

S) is given by:






mS(∅) ≡ k12 =
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y )

mS(A) =
∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y ) ∀(A 6= ∅) ∈ 2Θ

(1.8)

• Yager’s rule of combination [45, 46, 47]: Yager admits that in case of conflict the result is not

reliable, so that k12 plays the role of an absolute discounting term added to the weight of ignorance.

The commutative (but not associative) Yager rule, denoted here by index Y is given2 by:







mY (∅) = 0

mY (A) =
∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y ) ∀A ∈ 2Θ, A 6= ∅,A 6= Θ

mY (Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y ) when A = Θ

(1.9)

• Dubois & Prade’s rule of combination [13]: We admit that the two sources are reliable when

they are not in conflict, but one of them is right when a conflict occurs. Then if one observes a value

in set X while the other observes this value in a set Y , the truth lies in X ∩ Y as long X ∩ Y 6= ∅.
If X ∩ Y = ∅, then the truth lies in X ∪ Y [13]. According to this principle, the commutative (but

2Θ represents here the full ignorance θ1 ∪ θ2 ∪ . . . ∪ θn on the frame of discernment according the notation used in [33].
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not associative) Dubois & Prade hybrid rule of combination, denoted here by index DP , which is

a reasonable trade-off between precision and reliability, is defined3 by:







mDP (∅) = 0

mDP (A) =
∑

X,Y ∈2Θ

X∩Y=A
X∩Y 6=∅

m1(X)m2(Y ) +
∑

X,Y ∈2Θ

X∪Y=A
X∩Y=∅

m1(X)m2(Y ) ∀A ∈ 2Θ, A 6= ∅ (1.10)

1.2.3.1 The unified formulation for rules of combinations involving conjunctive consensus

We present here the unified framework recently proposed by Lefèvre, Colot and Vanoorenberghe in [25] to

embed all the existing (and potentially forthcoming) combination rules involving conjunctive consensus

in the same general mechanism of construction. Here is the principle of their general formulation based

on two steps.

• Step 1: Computation of the total conflicting mass based on the conjunctive consensus

k12 ,
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y ) (1.11)

• Step 2: This step consists in the reallocation (convex combination) of the conflicting masses on

(A 6= ∅) ⊆ Θ with some given coefficients wm(A) ∈ [0, 1] such that
∑

A⊆Θwm(A) = 1 according to







m(∅) = wm(∅)k12

m(A) = [
∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y )] + wm(A)k12 ∀(A 6= ∅) ∈ 2Θ (1.12)

The particular choice of the set of coefficients wm(.) provides a particular rule of combination. Actually

this nice and important general formulation shows there exists an infinite number of possible rules of

combination. Some rules are then justified or criticized with respect to the other ones mainly on their

ability to, or not to, preserve the associativity and commutativity properties of the combination. It

can be easily shown in [25] that such general procedure provides all existing rules involving conjunctive

consensus developed in the literature based on Shafer’s model. As examples:

• Dempster’s rule of combination (1.4) can be obtained from (1.12) by choosing ∀A 6= ∅

wm(∅) = 0 and wm(A) =
1

1− k12

∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y ) (1.13)

3taking into account the the correction of the typo error in formula (56) given in [13], page 257.
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• Yager’s rule of combination (1.9) is obtained by choosing

wm(Θ) = 1 and wm(A 6= Θ) = 0 (1.14)

• Smets’ rule of combination (1.8) is obtained by choosing

wm(∅) = 1 and wm(A 6= ∅) = 0 (1.15)

• Dubois and Prade’s rule of combination (1.10) is obtained by choosing

∀A ⊆ P , wm(A) =
1

1− k12

∑

A1,A2|A1∪A2=A

A1∩A2=∅

m? (1.16)

where m? , m1(A1)m2(A2) corresponds to the partial conflicting mass which is assigned to A1∪A2.

P is the set of all subsets of 2Θ on which the conflicting mass is distributed. P is defined by [25]

P , {A ∈ 2Θ | ∃A1 ∈ K(m1), ∃A2 ∈ K(m2), A1 ∪A2 = A and A1 ∩A2 = ∅} (1.17)

The computation of the weighting factors wm(A) of Dubois and Prade’s rule of combination does

not depend only on propositions they are associated with, but also on belief mass functions which

have cause the partial conflicts. Thus the belief mass functions leading to the conflict allow to

compute that part of conflicting mass which must be assigned to the subsets of P [25]. Yager’s rule

coincides with the Dubois and Prade’s rule of combination when P = {Θ}.

1.2.4 The discounting of sources of evidence

Most of the rules of combination proposed in the literature are based on the assumption of the same

reliability of sources of evidence. When the sources are known not being equally reliable and the reliability

of each source is perfectly known (or at least has been properly estimated when it’s possible [42, 25]),

then is it natural and reasonable to discount each unreliable source proportionally to its corresponding

reliability factor according to method proposed by Shafer in [33], chapter 11. Two methods are usually

used for discounting the sources:

• Classical discounting method [33, 13, 42, 25]:

Assume that the reliability/confidence4 factor α ∈ [0, 1] of a source is known, then the discounting

of the bba m(.) provided by the unreliable source is done to obtain a new (discounted) bba m′(.)

as follows: 





m′(A) = α ·m(A), ∀A ∈ 2Θ, A 6= Θ

m′(Θ) = (1− α) + α ·m(Θ)

(1.18)

4We prefer to use here the terminology confidence rather than reliability since the notion of reliability is closely related

to the repetition of experiments with random outputs which may not be always possible in the context of some information

fusion applications (see example 1.6 given by Shafer on the life on Sirius in [33], p.23)
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α = 1 means the total confidence in the source while α = 0 means a complete calling in question of

the reliability of the source.

• Discounting by convex combination of sources [13]: This method of discounting is based on

the convex combination of sources by their relative reliabilities, assumed to be known. Let consider

two independent unreliable sources of evidence with reliability factors α1 and α2 with α1, α2 ∈ [0, 1],

then the result of the combination of the discounted sources will be given ∀A ∈ 2Θ by

Bel(A) =
α1

α1 + α2
Bel1(A) +

α2

α1 + α2
Bel2(A) (1.19)

When the sources are highly conflicting and they have been sufficiently discounted, Shafer has

shown in [33], p. 253, that the combination of a large number n of equally reliable sources using

Dempster’s rule on equally discounted belief functions, becomes similar to the convex combination

of the n sources with equal reliability factors αi = 1/n. A detailed presentation of discounting

methods can be found in [13].

It is important to note that such discounting methods must not be chosen as an ad-hoc tool to adjust

the result of the fusion (once obtained) in case of troubles if a counter-intuitive or bad result arises, but

only beforehand when one has prior information on the quality of sources. In the sequel of the book we will

assume that sources under consideration are a priori equally reliable/trustable, unless specified explicitly.

Although being very important for practical issues, the case of the fusion of known unreliable sources of

information is not considered in this book because it depends on the own choice of the discounting method

adopted by the system designer (this is also highly related with the application under consideration and

the types of the sources to be combined). Fundamentally the problem of combination of unreliable sources

of evidence is the same as working with new sets of basic belief assignments and thus has little interest

in the framework of this book.

1.3 Foundations of the DSmT

1.3.1 Notion of free and hybrid DSm models

The development of the DSmT arises from the necessity to overcome the inherent limitations of the DST

which are closely related with the acceptance of Shafer’s model (the frame of discernment Θ defined as

a finite set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded principle

(i.e. the existence of the complement for any elements/propositions belonging to the power set of Θ),

and the acceptance of Dempter’s rule of combination (involving normalization) as the framework for the

combination of independent sources of evidence. We argue that these three fundamental conditions of

the DST can be removed and another new mathematical approach for combination of evidence is possible.
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The basis of the DSmT is the refutation of the principle of the third excluded middle and Shafer’s

model, since for a wide class of fusion problems the intrinsic nature of hypotheses can be only vague and

imprecise in such a way that precise refinement is just impossible to obtain in reality so that the exclu-

sive elements θi cannot be properly identified and precisely separated. Many problems involving fuzzy

continuous and relative concepts described in natural language and having no absolute interpretation

like tallness/smallness, pleasure/pain, cold/hot, Sorites paradoxes, etc, enter in this category. DSmT

starts with the notion of free DSm model, denotedMf (Θ), and considers Θ only as a frame of exhaustive

elements θi, i = 1, . . . , n which can potentially overlap. This model is free because no other assumption is

done on the hypotheses, but the weak exhaustivity constraint which can always been satisfied according

the closure principle explained in the introduction of this chapter. No other constraint is involved in the

free DSm model. When the free DSm model holds, the classic commutative and associative DSm rule

of combination (corresponding to the conjunctive consensus defined on the free Dedekind’s lattice - see

next subsection) is performed.

Depending on the intrinsic nature of the elements of the fusion problem under consideration, it can

however happen that the free model does not fit the reality because some subsets of Θ can contain el-

ements known to be truly exclusive but also truly non existing at all at a given time (specially when

working on dynamic fusion problem where the frame Θ varies with time with the revision of the knowl-

edge available). These integrity constraints are then explicitly and formally introduced into the free DSm

model Mf(Θ) in order to adapt it properly to fit as close as possible with the reality and permit to

construct a hybrid DSm model M(Θ) on which the combination will be efficiently performed. Shafer’s

model, denotedM0(Θ), corresponds to a very specific hybrid DSm model including all possible exclusiv-

ity constraints. The DST has been developed for working only with M0(Θ) while the DSmT has been

developed for working with any kind of hybrid model (including Shafer’s model and the free DSm model),

to manage as efficiently and precisely as possible imprecise, uncertain and potentially high conflicting

sources of evidence while keeping in mind the possible dynamicity of the information fusion problem-

atic. The foundations of the DSmT are therefore totally different from those of all existing approaches

managing uncertainties, imprecisions and conflicts. DSmT provides a new interesting way to attack the

information fusion problematic with a general framework in order to cover a wide variety of problems. A

detailed presentation of hybrid DSm models and hybrid DSm rule of combination is given in chapter 4.

DSmT refutes also the idea that sources of evidence provide their beliefs with the same absolute in-

terpretation of elements of the same frame Θ and the conflict between sources arises not only because of

the possible unreliabilty of sources, but also because of possible different and relative interpretation of Θ,

e.g. what is considered as good for somebody can be considered as bad for somebody else. There is some
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unavoidable subjectivity in the belief assignments provided by the sources of evidence, otherwise it would

mean that all bodies of evidence have a same objective and universal interpretation (or measure) of the

phenomena under consideration, which unfortunately rarely occurs in reality, but when bba are based on

some objective probabilities transformations. But in this last case, probability theory can handle properly

and efficiently the information, and the DST, as well as the DSmT, becomes useless. If we now get out of

the probabilistic background argumentation for the construction of bba, we claim that in most of cases,

the sources of evidence provide their beliefs about elements of the frame of the fusion problem only based

on their own limited knowledge and experience without reference to the (inaccessible) absolute truth of

the space of possibilities.

The DSmT includes the possibility to deal with evidences arising from different sources of information

which do not have access to the absolute and same interpretation of the elements of Θ under consideration.

The DSmT, although not based on probabilistic argumentation can be interpreted as an extension of

Bayesian theory and Dempster-Shafer theory in the following sense. Let Θ = {θ1, θ2} be the simplest

frame made of only two hypotheses, then

• the probability theory deals, under the assumptions on exclusivity and exhaustivity of hypotheses,

with basic probability assignments (bpa) m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) = 1

• the DST deals, under the assumptions on exclusivity and exhaustivity of hypotheses, with bba

m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

• the DSmT theory deals, under only assumption on exhaustivity of hypotheses (i.e. the free DSm

model), with the generalized bba m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) +m(θ1 ∪ θ2) +m(θ1 ∩ θ2) = 1

1.3.2 Notion of hyper-power set DΘ

One of the cornerstones of the DSmT is the notion of hyper-power set (see chapters 2 and 3 for examples

and a detailed presentation). Let Θ = {θ1, . . . , θn} be a finite set (called frame) of n exhaustive elements5.

The Dedekind’s lattice, also called in the DSmT framework hyper-power set DΘ is defined as the set of

all composite propositions built from elements of Θ with ∪ and ∩ operators6 such that:

5We do not assume here that elements θi are necessary exclusive. There is no restriction on θi but the exhaustivity.
6Θ generates DΘ under operators ∪ and ∩
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1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ

which are self-dual (dual to themselves), for example α8 for the case when n = 3 in the example below.

The cardinality of DΘ is majored by 22n

when the cardinality of Θ equals n, i.e. |Θ| = n. The generation

of hyper-power set DΘ is closely related with the famous Dedekind problem [8, 7] on enumerating the set

of isotone Boolean functions. The generation of the hyper-power set is presented in chapter 2. Since for

any given finite set Θ, |DΘ| ≥ |2Θ| we call DΘ the hyper-power set of Θ.

Example of the first hyper-power sets DΘ

• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 , ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 , ∅, α1 , θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 , ∅, α1 , θ1 ∩ θ2,

α2 , θ1, α3 , θ2 and α4 , θ1 ∪ θ2.

• When Θ = {θ1, θ2, θ3}, one has DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 with

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3 α10 , θ2

α2 , θ1 ∩ θ2 α11 , θ3

α3 , θ1 ∩ θ3 α12 , (θ1 ∩ θ2) ∪ θ3
α4 , θ2 ∩ θ3 α13 , (θ1 ∩ θ3) ∪ θ2
α5 , (θ1 ∪ θ2) ∩ θ3 α14 , (θ2 ∩ θ3) ∪ θ1
α6 , (θ1 ∪ θ3) ∩ θ2 α15 , θ1 ∪ θ2
α7 , (θ2 ∪ θ3) ∩ θ1 α16 , θ1 ∪ θ3
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 , θ2 ∪ θ3
α9 , θ1 α18 , θ1 ∪ θ2 ∪ θ3

Note that the complement Ā of any proposition A (except for ∅ and for the total ignorance It ,

θ1 ∪ θ2 ∪ . . . ∪ θn), is not involved within DSmT because of the refutation of the third excluded middle.

In other words, ∀A ∈ DΘ with A 6= ∅ or A 6= It, Ā 6∈ DΘ. Thus (DΘ,∩,∪) does not define a Boolean al-

gebra. The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [35],

i.e. 1,2,5,19,167,7580,7828353,... (see next chapter for details).
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Elements θi, i = 1, . . . , n of Θ constitute the finite set of hypotheses/concepts characterizing the fusion

problem under consideration. DΘ constitutes what we call the free DSm model Mf (Θ) and allows to

work with fuzzy concepts which depict a continuous and relative intrinsic nature. Such kinds of concepts

cannot be precisely refined in an absolute interpretation because of the unapproachable universal truth.

However for some particular fusion problems involving discrete concepts, elements θi are truly exclu-

sive. In such case, all the exclusivity constraints on θi, i = 1, . . . , n have to be included in the previous

model to characterize properly the true nature of the fusion problem and to fit it with the reality. By

doing this, the hyper-power set DΘ reduces naturally to the classical power set 2Θ and this constitutes

the most restricted hybrid DSm model, denotedM0(Θ), coinciding with Shafer’s model. As an exemple,

let’s consider the 2D problem where Θ = {θ1, θ2} with DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2} and assume now

that θ1 and θ2 are truly exclusive (i.e. Shafer’s model M0 holds), then because θ1 ∩ θ2 M0

= ∅, one gets

DΘ = {∅, θ1 ∩ θ2 M0

= ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} ≡ 2Θ.

Between the class of fusion problems corresponding to the free DSm model Mf (Θ) and the class of

fusion problems corresponding to Shafer’s modelM0(Θ), there exists another wide class of hybrid fusion

problems involving in Θ both fuzzy continuous concepts and discrete hypotheses. In such (hybrid) class,

some exclusivity constraints and possibly some non-existential constraints (especially when working on

dynamic7 fusion) have to be taken into account. Each hybrid fusion problem of this class will then be

characterized by a proper hybrid DSm model M(Θ) with M(Θ) 6= Mf(Θ) and M(Θ) 6= M0(Θ), see

examples presented in chapter 4.

1.3.3 Generalized belief functions

From a general frame Θ, we define a map m(.) : DΘ → [0, 1] associated to a given body of evidence B as

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (1.20)

The quantity m(A) is called the generalized basic belief assignment/mass (gbba) of A.

The generalized belief and plausibility functions are defined in almost the same manner as within the

DST, i.e.

Bel(A) =
∑

B⊆A
B∈DΘ

m(B) (1.21)

Pl(A) =
∑

B∩A 6=∅
B∈DΘ

m(B) (1.22)

7i.e. when the frame Θ is changing with time.
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These definitions are compatible with the definitions of classical belief functions in the DST framework

when DΘ reduces to 2Θ for fusion problems where Shafer’s model M0(Θ) holds. We still have ∀A ∈
DΘ, Bel(A) ≤ Pl(A). Note that when working with the free DSm modelMf (Θ), one has always Pl(A) =

1 ∀A 6= ∅ ∈ DΘ which is normal.

1.3.4 The classic DSm rule of combination

When the free DSm model Mf (Θ) holds for the fusion problem under consideration, the classic DSm

rule of combination mMf (Θ) ≡ m(.) , [m1 ⊕m2](.) of two independent sources of evidences B1 and B2

over the same frame Θ with belief functions Bel1(.) and Bel2(.) associated with gbba m1(.) and m2(.)

corresponds to the conjunctive consensus of the sources. It is given by [9, 10]:

∀C ∈ DΘ, mMf (Θ)(C) ≡ m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (1.23)

Since DΘ is closed under ∪ and ∩ set operators, this new rule of combination guarantees that m(.) is

a proper generalized belief assignment, i.e. m(.) : DΘ → [0, 1]. This rule of combination is commutative

and associative and can always be used for the fusion of sources involving fuzzy concepts. This rule can

be directly and easily extended for the combination of k > 2 independent sources of evidence (see the

expression for S1(.) in the next section and chapter 4 for details).

This classic DSm rule of combination becomes very expensive in terms of computations and memory

size due to the huge number of elements in DΘ when the cardinality of Θ increases. This remark is

however valid only if the cores (the set of focal elements of gbba) K1(m1) and K2(m2) coincide with DΘ,

i.e. when m1(A) > 0 and m2(A) > 0 for all A 6= ∅ ∈ DΘ. Fortunately, it is important to note here that in

most of the practical applications the sizes of K1(m1) and K2(m2) are much smaller than |DΘ| because

bodies of evidence generally allocate their basic belief assignments only over a subset of the hyper-power

set. This makes things easier for the implementation of the classic DSm rule (1.23).

The DSm rule is actually very easy to implement. It suffices for each focal element of K1(m1) to

multiply it with the focal elements of K2(m2) and then to pool all combinations which are equivalent

under the algebra of sets according to figure 1.1.

The figure 1.1 represents the DSm network architecture of the DSm rule of combination. The first

layer of the network consists in all gbba of focal elements Ai, i = 1, . . . , n of m1(.). The second layer

of the network consists in all gbba of focal elements Bj , j = 1, . . . , k of m2(.). Each node of layer 2 is

connected with each node of layer 1. The output layer (on the right) consists in the combined basic

belief assignments of all possible intersections Ai ∩ Bj , i = 1, . . . , n and j = 1, . . . , k. The last step
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of the classic DSm rule (not included on the figure) consists in the compression of the output layer by

regrouping (summing up) all the combined belief assignments corresponding to the same focal elements

(by example if X = A2 ∩ B3 = A4 ∩ B5, then m(X) = m(A2 ∩ B3) + m(A4 ∩ B5)). If a third body of

evidence provides a new gbba m3(.), the one combines it by connecting the output layer with the layer

associated to m3(.), and so on. Because of commutativity and associativity properties of the classic DSm

rule, the DSm network can be designed with any order of the layers.
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Figure 1.1: Representation of the classic DSm rule on Mf (Θ)

1.3.5 The hybrid DSm rule of combination

When the free DSm model Mf (Θ) does not hold due to the true nature of the fusion problem under

consideration which requires to take into account some known integrity constraints, one has to work with

a proper hybrid DSm model M(Θ) 6=Mf (Θ). In such case, the hybrid DSm rule of combination based

on the chosen hybrid DSm model M(Θ) for k ≥ 2 independent sources of information is defined for all

A ∈ DΘ as (see chapter 4 for details):

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(1.24)

where φ(A) is the characteristic non-emptiness function of a set A, i.e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0

otherwise, where ∅ , {∅M, ∅}. ∅M is the set of all elements of DΘ which have been forced to be empty

through the constraints of the modelM and ∅ is the classical/universal empty set. S1(A) ≡ mMf (θ)(A),

S2(A), S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (1.25)
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S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (1.26)

S3(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∪X2∪...∪Xk)=A
(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi) (1.27)

with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) where u(X) is the union of all singletons θi that compose X and

It , θ1∪θ2∪ . . .∪θn is the total ignorance. S1(A) corresponds to the classic DSm rule of combination for

k independent sources based on the free DSm model Mf(Θ); S2(A) represents the mass of all relatively

and absolutely empty sets which is transferred to the total or relative ignorances; S3(A) transfers the

sum of relatively empty sets to the non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of combination and is not

equivalent to Dempter’s rule. It works for any models (the free DSm model, Shafer’s model or any other

hybrid models) when manipulating precise generalized (or eventually classical) basic belief functions. An

extension of this rule for the combination of imprecise generalized (or eventually classical) basic belief

functions is presented in chapter 6 and is not reported in this presentation of DSmT.

1.3.6 On the refinement of the frames

Let’s bring here a clarification on the notion of refinement and its consequences with respect to DSmT

and DST. The refinement of a set of overlapping hypotheses Θ = {θi, i = 1, . . . , n} consists in getting a

new finer set of hypotheses θ′i, i = 1, . . . , n′, n′ > n} such that we are sure that θ′i are truly exclusive and

∪ni=1θi ≡ ∪n
′

i=1θ
′
i, i.e. Θ = {θ′i, i = 1, . . . , n′ > n}. The DST starts with the notion of frame of discern-

ment (finite set of exhaustive and exclusive hypotheses). The DST assumes therefore that a refinement

exists to describe the fusion problem and is achievable while DSmT does not make such assumption at its

starting. The assumption of existence of a refinement process appears to us as a very strong assumption

which reduces drastically the domain of applicability of the DST because the frames for most of prob-

lems described in terms of natural language manipulating vague/continuous/relative concepts cannot be

formally refined at all. Such an assumption is not fundamental and is relaxed in DSmT.

As a very simple but illustrative example, let’s consider Θ defined as Θ = {θ1 = Small, θ2 = Tall}.
The notions of smallness (θ1) and tallness (θ2) cannot be interpreted in an absolute manner actually

since these notions are only defined with respect to some reference points chosen arbitrarily. Two inde-

pendent sources of evidence (human ”experts” here) can provide a different interpretation of θ1 and θ2

just because they usually do not share the same reference point. θ1 and θ2 represent actually fuzzy con-
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cepts carrying only a relative meaning. Moreover, these concepts are linked together by a continuous path.

Let’s examine now a numerical example. Consider again the frame Θ = {θ1 , Small, θ2 , Tall} on

the size of person with two independent witnesses providing belief masses

m1(θ1) = 0.4 m1(θ2) = 0.5 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.6 m2(θ2) = 0.2 m2(θ1 ∪ θ2) = 0.2

If we admit that θ1 and θ2 cannot be precisely refined according to the previous justification, then the

result of the classic DSm rule (denoted by index DSmc here) of combination yields:

mDSmc(∅) = 0 mDSmc(θ1) = 0.38 mDSmc(θ2) = 0.22 mDSmc(θ1∪θ2) = 0.02 mDSmc(θ1∩θ2) = 0.38

Starting now with the same information, i.e. m1(.) and m2(.), we volontary assume that a refinement

is possible (even if it does not make sense actually here) in order to compare the previous result with

the result one would obtain with Dempster’s rule of combination. So, let’s assume the existence of an

hypothetical refined frame of discernment Θref , {θ′1 = Small’, θ′2 , Medium, θ′3 = Tall’} where θ′1, θ′2

and θ′3 correspond to some virtual exclusive hypotheses such that θ1 = θ′1∪θ′2, θ2 = θ′2∪θ′3 and θ1∩θ2 = θ′2

and where Small’ and Tall’ correspond respectively to a finer notion of smallness and tallness than in

original frame Θ. Because, we don’t change the information we have available (that’s all we have), the

initial bba m1(.) and m2(.) expressed now on the virtual refined power set 2Θref are given by

m′
1(θ′1 ∪ θ′2) = 0.4 m′

1(θ′2 ∪ θ′3) = 0.5 m′
1(θ′1 ∪ θ′2 ∪ θ′3) = 0.1

m′
2(θ′1 ∪ θ′2) = 0.6 m′

2(θ′2 ∪ θ′3) = 0.2 m′
2(θ′1 ∪ θ′2 ∪ θ′3) = 0.2

Because Θref is a refined frame, DST works and Dempster’s rule applies. Because there is no positive

masses for conflicting terms θ′1∩θ′2, θ′1∩θ′3, θ′2∩θ′3 or θ′1∩θ′2∩θ′3, the degree of conflict reduces to k12 = 0

and the normalization factor involved in Dempster’s rule is 1 in this refined example. One gets formally,

where index DS denotes here Dempster’s rule, the following result:

mDS(∅) = 0

mDS(θ′2) = m′
1(θ′1 ∪ θ′2)m′

2(θ′2 ∪ θ′3) +m′
2(θ′1 ∪ θ′2)m′

1(θ′2 ∪ θ′3) = 0.2 · 0.4 + 0.5 · 0.6 = 0.38

mDS(θ′1 ∪ θ′2) = m′
1(θ′1 ∪ θ′2)m′

2(θ′1 ∪ θ′2) +m′
1(θ′1 ∪ θ′2 ∪ θ′3)m′

2(θ′1 ∪ θ′2) +m′
2(θ′1 ∪ θ′2 ∪ θ′3)m′

1(θ′1 ∪ θ′2)

= 0.4 · 0.6 + 0.1 · 0.6 + 0.2 · 0.4 = 0.38

mDS(θ′2 ∪ θ′3) = m′
1(θ′2 ∪ θ′3)m′

2(θ′2 ∪ θ′3) +m′
1(θ′1 ∪ θ′2 ∪ θ′3)m′

2(θ′2 ∪ θ′3) +m′
2(θ′1 ∪ θ′2 ∪ θ′3)m′

1(θ′2 ∪ θ′3)

= 0.2 · 0.5 + 0.1 · 0.2 + 0.2 · 0.5 = 0.22

mDS(θ′1 ∪ θ′2 ∪ θ′3) = m′
1(θ′1 ∪ θ′2 ∪ θ′3)m′

2(θ′1 ∪ θ′2 ∪ θ′3) = 0.1 · 0.2 = 0.02
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But since θ′2 = θ1 ∩ θ2, θ′1 ∪ θ′2 = θ1, θ′2 ∪ θ′3 = θ2 and θ′1 ∪ θ′2 ∪ θ′3 = θ1 ∪ θ2, one sees that Dempster’s

rule reduces to the classic DSm rule of combination, which means that the refinement of the frame Θ

does not help to get a more specific (better) result from the DST when the inputs of the problem remain

the same. Actually, working on Θref with DST does not bring a difference with DSmT, but just brings

an useless complexity in derivations. Note that the hybrid DSm rule of combination can also be applied

on Shafer’s model associated with Θref , but it naturally provides the same result as with the classic DSm

rule in this case.

If the inputs of the problem are now changed by re-asking (assuming that such process is possible)

the sources to provide their revised belief assignents directly on Θref , with m′
i(θ

′
1) > 0, m′

i(θ
′
2) > 0 and

m′
i(θ

′
3) > 0 (i = 1, 2) rather than on Θ, then the hybrid DSm rule of combination will be applied instead

of Dempster’s rule when adopting the DSmT. The fusion results will then differ, which is normal since

the hybrid DSm rule is not equivalent to Dempster’s rule, except when the conflict is zero.

1.3.7 On the combination of sources over different frames

In some fusion problems, it can happen that sources provide their basic belief assignment over distinct

frames (which can moreover sometimes partially overlap). As simple example, let’s consider two equally

reliable sources of evidence B1 and B2 providing their belief assignments repectively on distinct frames

Θ1 and Θ2 defined as follows

Θ1 = {P , Plane, H , Helicopter,M , Missile}

Θ2 = {S , Slow motion, F , Fast motion}

In other words, m1(.) associated with B1 is defined either on DΘ
1 or 2Θ

1 (if Shafer’s model is assumed

to hold) while m2(.) associated with B2 is defined either on DΘ
2 or 2Θ

2 . The problem relates here to the

combination of m1(.) with m2(.).

The basic solution of this problem consists in working on the global frame8 Θ = {Θ1,Θ2} and in

following the deconditionning method proposed by Smets in [39] based on the principle on the minimum

of specificity to revise the basic belief assignments m1(.) and m2(.) on Θ. When additional information

on compatibility links between elements of Θ1 and Θ2 is known, then the refined method proposed by

Janez in [21] is preferred. Once the proper modelM(Θ) for Θ has been chosen to fit with the true nature

of hypotheses and the revised bba mrev
1 (.) and mrev

2 (.) defined on DΘ are obtained, the fusion of belief

assignments is performed with the hybrid DSm rule of combination.

8with suppression of possible redundant elements when Θ1 and Θ2 overlap partially.
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1.4 Comparison of different rules of combinations

1.4.1 First example

In this section, we compare the results provided by the most common rules of combinations on the

following very simple numerical example where only 2 independent sources (a priori assumed equally

reliable) are involved and providing their belief initially on the 3D frame Θ = {θ1, θ2, θ3}. It is assumed

in this example that Shafer’s model holds and thus the belief assignments m1(.) and m2(.) do not commit

belief to internal conflicting information. m1(.) and m2(.) are chosen as follows:

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

These belief masses are usually represented in the form of a belief mass matrix M given by

M =




0.1 0.4 0.2 0.3

0.5 0.1 0.3 0.1



 (1.28)

where index i for the rows corresponds to the index of the source no. i and the indexes j for columns

of M correspond to a given choice for enumerating the focal elements of all sources. In this particular

example, index j = 1 corresponds to θ1, j = 2 corresponds to θ2, j = 3 corresponds to θ3 and j = 4

corresponds to θ1 ∪ θ2.

Now let’s imagine that one finds out that θ3 is actually truly empty because some extra and certain

knowledge on θ3 is received by the fusion center. As example, θ1, θ2 and θ3 may correspond to three

suspects (potential murders) in a police investigation, m1(.) and m2(.) corresponds to two reports of

independent witnesses, but it turns out that finally θ3 has provided a strong alibi to the criminal police

investigator once arrested by the policemen. This situation corresponds to set up a hybrid modelM with

the constraint θ3
M
= ∅ (see chapter 4 for a detailed presentation on hybrid models).

Let’s examine the result of the fusion in such situation obtained by the Smets’, Yager’s, Dubois &

Prade’s and hybrid DSm rules of combinations. First note that, based on the free DSm model, one would

get by applying the classic DSm rule (denoted here by index DSmc) the following fusion result

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11
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But because of the exclusivity constraints (imposed here by the use of Shafer’s model and by the

non-existential constraint θ3
M
= ∅), the total conflicting mass is actually given by

k12 = 0.06 + 0.21 + 0.13 + 0.14 + 0.11 = 0.65 (conflicting mass)

• If one applies the Disjunctive rule (1.6), one gets:

m∪(∅) = 0

m∪(θ1) = m1(θ1)m2(θ1) = 0.1 · 0.5 = 0.05

m∪(θ2) = m1(θ2)m2(θ2) = 0.4 · 0.1 = 0.04

m∪(θ3) = m1(θ3)m2(θ3) = 0.2 · 0.3 = 0.06

m∪(θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)] + [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

+ [m1(θ1)m2(θ1 ∪ θ2) +m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ2)m2(θ1 ∪ θ2) +m2(θ2)m1(θ1 ∪ θ2)]

= [0.3 · 0.1] + [0.01 + 0.20] + [0.01 + 015] + [0.04 + 0.03]

= 0.03 + 0.21 + 0.16 + 0.007 = 0.47

m∪(θ1 ∪ θ3) = m1(θ1)m2(θ3) +m2(θ1)m1(θ3) = 0.03 + 0.10 = 0.13

m∪(θ2 ∪ θ3) = m1(θ2)m2(θ3) +m2(θ2)m1(θ3) = 0.12 + 0.02 = 0.14

m∪(θ1 ∪ θ2 ∪ θ2) = m1(θ3)m2(θ1 ∪ θ2) = 0.02 + 0.09 = 0.11

• If one applies the hybrid DSm rule (1.24) (denoted here by index DSmh) for 2 sources (k = 2),

one gets:

mDSmh(∅) = 0

mDSmh(θ1) = 0.21 + 0.13 = 0.34

mDSmh(θ2) = 0.11 + 0.14 = 0.25

mDSmh(θ1 ∪ θ2) = 0.03 + [0.2 · 0.1 + 0.3 · 0.3] + [0.1 · 0.1 + 0.5 · 0.4] + [0.2 · 0.3] = 0.41

• If one applies Smets’ rule (1.8), one gets:

mS(∅) = m(∅) = 0.65 (conflicting mass)

mS(θ1) = 0.21

mS(θ2) = 0.11

mS(θ1 ∪ θ2) = 0.03
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• If one applies Yager’s rule (1.9), one gets:

mY (∅) = 0

mY (θ1) = 0.21

mY (θ2) = 0.11

mY (θ1 ∪ θ2) = 0.03 + k12 = 0.03 + 0.65 = 0.68

• If one applies Dempster’s rule (1.4) (denoted here by index DS), one gets:

mDS(∅) = 0

mDS(θ1) = 0.21/[1− k12] = 0.21/[1− 0.65] = 0.21/0.35 = 0.600000

mDS(θ2) = 0.11/[1− k12] = 0.11/[1− 0.65] = 0.11/0.35 = 0.314286

mDS(θ1 ∪ θ2) = 0.03/[1− k12] = 0.03/[1− 0.65] = 0.03/0.35 = 0.085714

• If one applies Murphy’s rule (1.7), i.e average of masses, one gets:

mM (∅) = (0 + 0)/2 = 0

mM (θ1) = (0.1 + 0.5)/2 = 0.30

mM (θ2) = (0.4 + 0.1)/2 = 0.25

mM (θ3) = (0.2 + 0.3)/2 = 0.25

mM (θ1 ∪ θ2) = (0.3 + 0.1)/2 = 0.20

But if one finds out with certainty that θ3 = ∅, where does mM (θ3) = 0.25 go to? Either one

accepts here that mM (θ3) goes to mM (θ1 ∪ θ2) as in Yager’s rule, or mM (θ3) goes to mM (∅) as in

Smets’ rule. Catherine Murphy does not provide a solution for such a case in her paper [27].

• If one applies Dubois & Prade’s rule (1.10), one gets because θ3
M
= ∅ :

mDP (∅) = 0 (by definition of Dubois & Prade’s rule)

mDP (θ1) = [m1(θ1)m2(θ1) +m1(θ1)m2(θ1 ∪ θ2) +m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ1)m2(θ3) +m2(θ1)m1(θ3)]

= [0.1 · 0.5 + 0.1 · 0.1 + 0.5 · 0.3] + [0.1 · 0.3 + 0.5 · 0.2] = 0.21 + 0.13 = 0.34

mDP (θ2) = [0.4 · 0.1 + 0.4 · 0.1 + 0.1 · 0.3] + [0.4 · 0.3 + 0.1 · 0.2] = 0.11 + 0.14 = 0.25

mDP (θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)] + [m1(θ1 ∪ θ2)m2(θ3) +m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

= [0.30.1] + [0.3 · 0.3 + 0.1 · 0.2] + [0.1 · 0.1 + 0.5 · 0.4] = [0.03] + [0.09 + 0.02] + [0.01 + 0.20]

= 0.03 + 0.11 + 0.21 = 0.35
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Now if one adds up the masses, one gets 0+0.34+0.25+0.35 = 0.94 which is less than 1. Therefore

Dubois & Prade’s rule of combination does not work when a singleton, or an union of singletons,

becomes empty (in a dynamic fusion problem). The products of such empty-element columns of the

mass matrix M are lost; this problem is fixed in DSmT by the sum S2(.) in (1.24) which transfers

these products to the total or partial ignorances.

In this particular example, using the hybrid DSm rule, one transfers the product of the empty-element

θ3 column, m1(θ3)m2(θ3) = 0.2·0.3 = 0.06, to mDSmh(θ1∪θ2), which becomes equal to 0.35+0.06 = 0.41.

In conclusion, DSmT is a natural extension of DST and Yager’s, Smets’ and Dubois & Prade’s ap-

proaches. When there is no singleton nor union of singletons empty, DSmT is consistent with Dubois &

Prade’s approach, getting the same results (because the sum S2(.) is not used in this case in the hybrid

DSm rule of combination). Otherwise, Dubois & Prade’s rule of combination does not work (giving a

sum of fusionned masses less than 1) for dynamic fusion problems involving non existential constraints.

Murphy’s rule does not work either in this case because the masses of empty sets are not transferred.

If the conflict is k12 is total (i;e. k12 = 1, DST does not work at all (one gets 0/0 in Dempster’s rule

of combination), while Smets’ rule gives mS(∅) = 1 which is upon to us for the reasons explained in

this introduction and in chapter 5 not necessary justified. When the conflict is total, the DSm rule is

consistent with Yager’s and Dubois & Prade’s rules.

The general hybrid DSm rule of combination works on any models for solving static and dynmaic

fusion problems and is designed for all kinds of conflict: 0 ≤ m(conflict) ≤ 1. When the conflict is

converging towards zero, all rules (Dempster’s, Yager’s, Smets’, Murphy’s, Dubois & Prade’s, DSmT)

are converging towards the same result. This fact is important because it shows the connection among

all of them. But if the conflict is converging towards 1, the results among these rules diverge more and

more, getting the point when some rules do not work at all (Dempster’s rule). Murphy’s rule is the

only one which is idempotent (being the average of masses). Dubois & Prade’s rule does not work in

the Smets’ case (when m(∅) > 0). For models with all intersections empty (Shafer’s model) and conflict

1, Dempster’s rule is not defined. See below example on Θ = {θ1, θ2, θ3, θ4} with all θi, i = 1, 2, 3, 4

exclusive:

m1(θ1) = 0.1 m1(θ2) = 0 m1(θ3) = 0.7 m1(θ4) = 0

m2(θ1) = 0 m2(θ2) = 0.6 m2(θ3) = 0 m2(θ4) = 0.4

Using Dempster’s rule, one gets 0/0, undefined. Conflicting mass is 1.
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Yager’s rule provides in this case mY (θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 1 which does not bring specific informa-

tion, while Smets’ rule gives m(∅) = 1 which is also not very useful. Murphy’s rule gives mM (θ1) = 0.15,

mM (θ2) = 0.30, mM (θ3) = 0.35 and mM (θ4) = 0.20 which is very specific while the hybrid DSm rule pro-

vides mDSmh(θ1∪θ2) = 0.18, mDSmh(θ1∪θ4) = 0.12, mDSmh(θ2∪θ3) = 0.42 and mDSmh(θ3∪θ4) = 0.28

which is less specific than Murphy’s result but characterizes adequately the internal conflict between

sources after the combination and partial ignorances.

The disjunctive rule gives in this last example m∪(θ1 ∪ θ2) = m1(θ1)m2(θ2) + m2(θ1)m1(θ2) = 0.18.

Similarly, one gets m∪(θ1 ∪ θ4) = 0.12, m∪(θ2 ∪ θ3) = 0.42 and m∪(θ3 ∪ θ4) = 0.28. This coincides with

the hybrid DSm rule when all intersections are empty.

1.4.2 Second example

This example is an extension of Zadeh’s example discussed in chapter 5. Let’s consider two independent

sources of evidences over the frame Θ = {θ1, θ2, θ3, θ4} and assume that Shafer’s model holds. The basic

belief assignments are chosen as follows:

m1(θ1) = 0.998 m1(θ2) = 0 m1(θ3) = 0.001 m1(θ4) = 0.001

m2(θ1) = 0 m2(θ2) = 0.998 m2(θ3) = 0 m2(θ4) = 0.02

In this simple numerical example, Dempster’s rule of combination gives the counter-intuitive result

mDS(θ4) =
0.001 · 0.002

0.998 · 0.998 + 0.998 · 0.002 + 0.998 · 0.001 + 0.998 · 0.001 + 0.001 · 0.002
=

0.000002

0.000002
= 1

Yager’s rule gives mY (θ4) = 0.000002 and mY (θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 0.999998.

Smets’ rule gives mS(θ4) = 0.000002 and mS(∅) = 0.999998.

Murphy’s rule gives mM (θ1) = 0.499, mM (θ2) = 0.499, mM (θ3) = 0.0005 and mM (θ4) = 0.0015.

Dubois & Prade’s rule gives mDP (θ4) = 0.000002, mDP (θ1 ∪ θ2) = 0.996004, mDP (θ1 ∪ θ4) = 0.001996,

mDP (θ2 ∪ θ3) = 0.000998, mDP (θ2 ∪ θ4) = 0.000998 and mDP (θ3 ∪ θ4) = 0.000002. Dubois & Prade’s

rule works only in Shafer’s modelM0(Θ), i.e. when all intersections are empty. For other hybrid models,

Dubois & Prade’s rule of combination fails to provide a reliable and reasonable solution to the combination

of sources (see next example).

The classic DSm rule of combination provides mDSmc(θ4) = 0.000002, mDSmc(θ1 ∩ θ2) = 0.996004,

mDSmc(θ1∩θ4) = 0.001996,mDSmc(θ2∩θ3) = 0.000998,mDSmc(θ2∩θ4) = 0.000998 andmDSmc(θ3∩θ4) =
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0.000002. If one now applies the hybrid DSm rule since one assumes here that Shafer’s model holds, one

gets the same result as Dubois & Prade’s. The disjunctive rule coincides with Dubois & Prade’s rule and

the hybrid DSm rule when all intersections are empty.

1.4.3 Third example

Here is an exemple for the Smets’ case (i.e. TBM) when m(∅) > 0 where Dubois & Prade’s rule of

combination does not work. Let’s consider the following extended9 belief assignments

m1(∅) = 0.2 m1(θ1) = 0.4 m1(θ2) = 0.4

m2(∅) = 0.3 m2(θ1) = 0.6 m2(θ2) = 0.1

In this specific case, the Dubois & Prade’s rule of combination gives (assuming all intersections empty)

mDP (∅) = 0 (by definition)

mDP (θ1) = m1(θ1)m2(θ1) + [m1(∅)m2(θ1) +m2(∅)m1(θ1)] = 0.24 + [0.12 + 0.12] = 0.48

mDP (θ2) = m1(θ2)m2(θ2) + [m1(∅)m2(θ2) +m2(∅)m1(θ2)] = 0.04 + [0.02 + 0.12] = 0.18

mDP (θ1 ∪ θ2) = m1(θ1)m2(θ2) +m2(θ1)m1(θ2) = 0.04 + 0.24 = 0.28

The sum of masses is 0.48 + 0.18 + 0.28 = 0.94 < 1. Where goes the mass m1(∅)m2(∅) = 0.2 ·0.3 = 0.06 ?

When using the hybrid DSm rule of combination, one getsmDSmh(∅) = 0, mDSmh(θ1) = 0.48,mDSmh(θ2) =

0.18 and

mDSmh(θ1 ∪ θ2) = [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)] + [m1(∅)m2(∅)] = [0.28] + [0.2 · 0.3] = 0.34

and the masses add up to 1.

The disjunctive rule gives in this example

m∪(θ1) = m1(θ1)m2(θ1) + [m1(∅)m2(θ1) +m2(∅)m1(θ1)] = 0.24 + [0.12 + 0.12] = 0.48

m∪(θ2) = m1(θ2)m2(θ2) + [m1(∅)m2(θ2) +m2(∅)m1(θ2)] = 0.04 + [0.02 + 0.12] = 0.18

m∪(θ1 ∪ θ2) = m1(θ1)m2(θ2) +m2(θ1)m1(θ2) = 0.04 + 0.24 = 0.28

m∪(∅) = m1(∅)m2(∅) = 0.06 > 0

One gets the same results for m∪(θ1), m∪(θ2) as with Dubois & Prade’s rule and as with the hybrid DSm

rule. The distinction is in the reallocation of the empty mass m1(∅)m2(∅) = 0.06 to θ1 ∪ θ2 in the hybrid

DSm rule, while in Dubois & Prade’s and disjunctive rules it is not.

9We mean here non-normalized masses allowing weight of evidence on the empty set as in the TBM of Smets.
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A major difference among the hybrid DSm rule and all other combination rules is that DSmT uses

from the beginning a hyper-power set, which includes intersections, while other combination rules need

to do a refinement in order to get intersections.

1.4.4 Fourth example

Here is another example where Dempster’s rule does not work properly (this is different from Zadeh’s

example). Let’s consider Θ = {θ1, θ2, θ3, θ4} and assume that Shafer’s model holds. The basic belief

assignments are now chosen as follows:

m1(θ1) = 0.99 m1(θ2) = 0 m1(θ3 ∪ θ4) = 0.01

m2(θ1) = 0 m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Applying Dempster’s rule, one gets mDS(θ1) = mDS(θ2) = 0 and

mDS(θ3 ∪ θ4) =
0.01 · 0.02

1− [0.99 · 0.98 + 0.99 · 0.02 + 0.98 · 0.01]
=

0.0002

1− 0.9998
=

0.0002

0.0002
= 1

which is abnormal.

The hybrid DSm rule gives mDSmh(θ1 ∪ θ2) = 0.99 · 0.98 = 0.9702, mDSmh(θ1 ∪ θ3 ∪ θ4) = 0.0198,

mDSmh(θ2 ∪ θ3 ∪ θ4) = 0.0098 and mDSmh(θ3 ∪ θ4) = 0.0002. In this case, Dubois & Prade’s rule gives

the same results as the hybrid DSm rule. The disjunctive rule provides a combined belief assignment

m∪(.) which is same as mDSmh(.) and mDP (.).

Yager’s rule gives mY (θ3 ∪ θ4) = 0.0002, mY (θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 0.9998 and Smets’ rule gives

mS(θ3 ∪ θ4) = 0.0002, mS(∅) = 0.9998. Both Yager’s and Smets’ results are less specific than the result

obtained with the hybrid DSm rule. There is a loss of information somehow when using Yager’s or Smets’

rules.

1.4.5 Fifth example

Suppose one extends Dubois & Prade’s rule from the power set 2Θ to the hyper-power set DΘ. It can be

shown that Dubois & Prade’s rule does not work when (because S2(.) term is missing):

a) at least one singleton is empty and the element of its column are all non zero

b) at least an union of singletons is empty and elements of its column are all non zero

c) or at least an intersection is empty and the elements of its column are non zero
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Here is an example with intersection (Dubois & Prade’s rule extended to the hyper-power set). Let’s

consider two independent sources on Θ = {θ1, θ2} with

m1(θ1) = 0.5 m1(θ2) = 0.1 m1(θ1 ∩ θ2) = 0.4

m2(θ1) = 0.1 m2(θ2) = 0.6 m2(θ1 ∩ θ2) = 0.3

Then the extended Dubois & Prade rule on the hyper-power set gives mDP (∅) = 0, mDP (θ1) = 0.05,

mDP (θ2) = 0.06, mDP (θ1 ∩ θ2) = 0.04 · 0.3 + 0.5 · 0.6 + 0.5 · 0.3 + 0.1 · 0.4 + 0.1 · 0.3 + 0.6 · 0.4 = 0.89.

Now suppose one finds out that θ1 ∩ θ2 = ∅, then the revised masses become

m′
DP (∅) = 0 (by definition)

m′
DP (θ1) = 0.05 + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0.05 + [0.5 · 0.3 + 0.1 · 0.4] = 0.24

m′
DP (θ2) = 0.06 + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.06 + [0.1 · 0.3 + 0.6 · 0.4] = 0.33

m′
DP (θ1 ∪ θ2) = m1(θ2)m2(θ2) +m2(θ1)m1(θ2) = 0.5 · 0.6 + 0.1 · 0.1 = 0.31

The sum of the masses is 0.24 + 0.33 + 0.31 = 0.88 < 1. The mass product m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) =

0.4 · 0.3 = 0.12 has been lost.

When applying the classic DSm rule in this case, one gets exactly the same results as Dubois & Prade,

i.e. mDSmc(∅) = 0, mDSmc(θ1) = 0.05, mDSmc(θ2) = 0.06, mDSmc(θ1 ∩ θ2) = 0.89. Now if one takes into

account the integrity constraint θ1 ∩ θ2 = ∅ and using the hybrid DSm rule of combination, one gets

mDSmh(∅) = 0 (by definition)

mDSmh(θ1) = 0.05 + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0.05 + [0.5 · 0.3 + 0.1 · 0.4] = 0.24

mDSmh(θ2) = 0.06 + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.06 + [0.1 · 0.3 + 0.6 · 0.4] = 0.33

mDSmh(θ1 ∪ θ2) = [m1(θ2)m2(θ2) +m2(θ1)m1(θ2)] + [m1(θ1 ∩ θ2)m2(θ1 ∩ θ2)
︸ ︷︷ ︸

S2 in hybrid DSm rule eq.

] = [0.31] + [0.12] = 0.43

Thus the sum of the masses obtained by the hybrid DSm rule of combination is 0.24 + 0.33 + 0.43 = 1.

The disjunctive rule extended on the hyper-power set gives for this example

m∪(∅) = 0

m∪(θ1) = [m1(θ1)m2(θ1)] + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0.05 + [0.15 + 0.04] = 0.24

m∪(θ2) = [m1(θ2)m2(θ2)] + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.06 + [0.15 + 0.04] = 0.33

m∪(θ1 ∪ θ2) = [m1(θ2)m2(θ2) +m2(θ1)m1(θ2)] = 0.31

m∪(θ1 ∩ θ2) = m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) = 0.4 · 0.3 = 0.12
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If now one finds out that θ1∩θ2 = ∅, then the revised masses m′
∪(.) become m′

∪(θ1) = m∪(θ1), m′
∪(θ2) =

m∪(θ2), m′
∪(θ1 ∪ θ2) = m∪(θ1 ∪ θ2) but m′

∪(∅) ≡ m∪(θ1 ∩ θ2) = 0.12 > 0.

1.5 Summary

DSmT has to be viewed as a general flexible Bottom-Up approach for managing uncertainty and conflicts

for a wide class of static or dynamic fusion problems where the information to combine is modelled as

a finite set of belief functions provided by different independent sources of evidence. The development

of DSmT emerged from the fact that the conflict between the sources of evidence arises not only from

the unreliability of sources themselves (which can be handled by classical discounting methods), but also

from a different interpretation of the frame itself by the sources of evidence due to their limited knowlege

and own (local) experience; not to mention the fact that elements of the frame cannot be truly refined at

all in many problems involving only fuzzy and continuous concepts. Based on this matter of fact, DSmT

proposes, according to the general block-scheme in Figure 1.2, a new appealing mathematical framework.

Here are the major steps for managing uncertain and conflicting information arising from independent

sources of evidence in the DSmT framework, once expressed in terms of basic belief functions:

1. Bottom Level: The ground level of DSmT is to start from the free DSm model Mf (Θ) associ-

ated with the frame Θ and the notion of hyper-power set (free Dedekind’s lattice) DΘ. At this

level, DSmT provides a general commutative and associative rule of combination of evidences (the

conjunctive consensus) to work on Mf (Θ).

2. Higher Level (only used when necessary): Depending on the absolute true intrinsic nature (as-

sumed to be known by the fusion center) of the elements of the frame Θ of the fusion problem

under consideration (which defines a set of integrity constraints on Mf (Θ) leading to a particular

hybrid DSm model M(Θ)), DSmT automatically adapts the combination process to work on any

hybrid DSm model with the general hybrid DSm rule of combination explaine in details in chapter

4. The taking into account of an integrity constraint consists just in forcing some elements of the

Dedekind’s lattice DΘ to be empty, when they truly are, given the problem under consideration.

3. Decision-Making: Once the combination is obtained after step 1 (or step 2 when necessary),

the Decision-making step follows. Although no real general consensus has emerged in literature

over last 30 years to give a well-accepted solution for the decision-making problem in the DST

framework, we follow here Smets’ idea and his justifications to work at the pignistic level [42] rather

than at the credal level when a final decision has to be taken from any combined belief mass m(.).

A generalized pignistic transformation is then proposed in chapter 7 based on DSmT.
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Source s1

m1(.) : DΘ → [0, 1]

6

mk(.) : DΘ → [0, 1]

Source sk

66

∀A ∈ DΘ, mMf (Θ)(A) =
∑

X1,...,Xk∈DΘ

(X1∩...∩Xk)=A

∏k
i=1mi(Xi)

Classic DSm rule based on free model Mf (Θ)

6

Introduction of integrity constraints into DΘ

Hybrid model M(Θ)

6

Hybrid DSm rule for hybrid model M(Θ)

∀A ∈ DΘ, mM(Θ)(A) = φ(A)
[

mMf (Θ)(A) + S2(A) + S3(A)
]

6

Decision-making

Figure 1.2: Block Scheme of the principle for the DSm fusion

The introduction of a specific integrity constraint in step 2 is like pushing an elevator button for going

a bit up in the complexity of the processing for managing uncertainty and conflict through the hybrid

DSm rule of combination. If one needs to go to a higher level, then one can take into account several

integrity constraints as well in the framework of DSmT. If we finally want to take into account all possible

exclusivity constraints only (when we really know that all elements of the frame of the given problem are

truly exclusive), then we go directly to the Top Level (i.e. Shafer’s model which serves as foundation for

Shafer’s mathematical theory of evidence), but we still apply the hybrid DSm rule instead of Dempster’s

rule of combination. The DSmT approach for modelling the frame and combining information is more

general than previous approaches which have been mainly10 based on the Shafer model (which is a very

specific and constrained DSm hybrid model) and works for static fusion problems.

The DSmT framework can easily handle not only exclusivity constraints, but also non existential

constraints or mixed constraints as well which is very useful in some dynamic fusion problems as it is

shown in chapter 4. Depending on the nature of the problem, we claim that it is unnecessary to try

working at the Top Level (as DST does), when working directly at a lower level is sufficient to manage

properly the information to combine using the hybrid DSm rule of combination.

10except the Transferable Belief Model of Smets [41] and the trade-off/averaging combination rules.
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It is also important to reemphasize here that the general hybrid DSm rule of combination is definitely

not equivalent to Dempster’s rule of combination (and to all its alternatives involving conjunctive consen-

sus based on the Top level and especially when working with dynamic problems) because DSmT allows to

work at any level of modelling for managing uncertainty and conflicts, depending on the intrinsic nature

of the problem. The hybrid DSm rule and Dempster’s rule do not provide the same results even when

working on Shafer’s model as it has been shown in examples of the previous section and explained in

details in forthcoming chapters 4 and 5.

DSmT differs from DST because it is based on the free Dedekind lattice. It works for any model (free

DSm model and hybrid models - including Shafer’s model as a special case) which fits adequately with

the true nature of the fusion problem under consideration. This ability of DSmT allows to deal formally

with any fusion problems expressed in terms of belief functions which can mix discrete concepts with

vague/continuous/relative concepts. The DSmT deals with static and dynamic fusion problematics in the

same theoretical way taking into account the integrity constraints into the model which are considered

either as static or eventually changing with time when necessary. The general hybrid DSm rule of

combination of independent sources of evidence works for all possible static or dynamic models and

does not require a normalization step. It differs from Dempster’s rule of combination and from all its

concurrent alternatives. The hybrid DSm rule of combination has been moreover extended to work for

the combination of imprecise admissible belief assignments as well. The approach proposed by the DSmT

to attack the fusion problematic throughout this book is therefore totally new both by its foundations,

its applicability and the solution provided.
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[49] Wierzchoń S.T., Klopotek M.A., Evidential reasoning. An interpretative investigation,Wydawnictwo

Akademii Podlaskiej Publisher, PL ISSN 0860-2719, 304 pages, Poland, January 2002 (see

http://www.ipipan.waw.pl/staff/m.klopotek/mak/book2a.htm).

[50] Zadeh L., On the validity of Dempster’s rule of combination, Memo M 79/24, Univ. of California,

Berkeley, 1979.

[51] Zadeh L., Review of Mathematical theory of evidence, by Glenn Shafer, AI Magazine, Vol. 5, No. 3,

pp. 81-83, 1984.

[52] Zadeh L., A simple view of the Dempster-Shafer theory of evidence and its implications for the rule

of combination, Berkeley Cognitive Science Report No. 33, University of California, Berkeley, CA,

1985.

[53] Zadeh L., A simple view of the Dempster-Shafer theory of evidence and its implication for the rule

of combination, AI Magazine 7, No.2, pp. 85-90, 1986.



36 REFERENCES



Chapter 2

The generation of hyper-power sets
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Abstract: The development of DSmT is based on the notion of Dedekind’s lattice,

called also hyper-power set in the DSmT framework, on which is defined the general

basic belief assignments to be combined. In this chapter, we explain the structure of

the hyper-power set, give some examples of hyper-power sets and show how they can

be generated from isotone Boolean functions. We also show the interest to work with

the hyper-power set rather than the power set of the refined frame of discernment in

terms of complexity.

2.1 Introduction

O
ne of the cornerstones of the DSmT is the notion of Dedekind’s lattice, coined as hyper-power set

by the authors in literature, which will be defined in next section. The starting point is to consider

Θ = {θ1, . . . , θn} as a set of n elements which cannot be precisely defined and separated so that no

refinement of Θ in a new larger set Θref of disjoint elementary hypotheses is possible. This corresponds

to the free DSm model. This model is justified by the fact that in some fusion problems (mainly those

manipulating vague or continuous concepts), the refinement of the frame is just impossible to obtain;

nevertheless the fusion still applies when working on Dedekind’s lattice and based on the DSm rule of

This chapter is based on a paper [6] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.
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combination. With the DSmT approach, the refinement of the frame is not prerequisite for managing

properly the combination of evidences and one can abandon Shafer’s model in general. Even if Shafer’s

model is justified and adopted in some cases, the hybrid DSm rule of combination appears to be a new

interesting and preferred alternative for managing high conflicting sources of evidence. Our approach

actually follows the footprints of our predecessors like Yager [23] and Dubois and Prade [7] to circumvent

the problem of the applicability of Dempster’s rule face to high conflicting sources of evidence but with a

new mathematical framework. The major reason for attacking the problem directly from the bottom level,

i.e. the free DSm model comes from the fact that in some real-world applications observations/concepts

are not unambiguous. The ambiguity of observations is explained by Goodman, Mahler and Nguyen

in [9] pp. 43-44. Moreover, the ambiguity can also come from the granularity of knowledge, known as

Pawlak’s indiscernability or roughness [15].

2.2 Definition of hyper-power set DΘ

The hyper-power set DΘ is defined as the set of all composite propositions built from elements of Θ with

∪ and ∩ (Θ generates DΘ under operators ∪ and ∩) operators such that

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ which

are self-dual (dual to themselves), for example α8 for the case when n = 3 in the example given in the

next section. The cardinality of DΘ is majored by 22n

when Card(Θ) = |Θ| = n. The generation of

hyper-power set DΘ is closely related with the famous Dedekind problem [4, 3] on enumerating the set

of monotone Boolean functions as it will be presented in the sequel with the generation of the elements

of DΘ.

2.3 Example of the first hyper-power sets

• In the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 , ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 , ∅, α1 , θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 , ∅, α1 , θ1 ∩ θ2,

α2 , θ1, α3 , θ2 and α4 , θ1 ∪ θ2.

• When Θ = {θ1, θ2, θ3}, the elements of DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 (see [5] for details)

are now given by (following the informational strength indexation explained in the next chapter):
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Elements of DΘ={θ1,θ2,θ3}

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3 α10 , θ2

α2 , θ1 ∩ θ2 α11 , θ3

α3 , θ1 ∩ θ3 α12 , (θ1 ∩ θ2) ∪ θ3
α4 , θ2 ∩ θ3 α13 , (θ1 ∩ θ3) ∪ θ2
α5 , (θ1 ∪ θ2) ∩ θ3 α14 , (θ2 ∩ θ3) ∪ θ1
α6 , (θ1 ∪ θ3) ∩ θ2 α15 , θ1 ∪ θ2
α7 , (θ2 ∪ θ3) ∩ θ1 α16 , θ1 ∪ θ3
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 , θ2 ∪ θ3
α9 , θ1 α18 , θ1 ∪ θ2 ∪ θ3

Note that the classical complementary Ā of any proposition A (except for ∅ and Θ), is not involved

within the free DSm model because of the refutation of the third excluded middle; it can however be

introduced if necessary when dealing with hybrid models as it will be shown in chapter 4 if we introduce

explicitly some exclusivity constraints into the free DSm model when one has no doubt on the exclusivity

between given elements of Θ depending on the nature of the fusion problem. |DΘ| for n ≥ 1 follows the

sequence of Dedekind’s numbers1 1, 2, 5, 19, 167, 7580, 7828353, 56130437228687557907787... [17]. Note

also that this huge number of elements of hyper-power set is comparatively far less than the total number

of elements of the power set of the refined frame Θref if one would to work on 2Θref and if we admit the

possibility that such refinement exists as it will be seen in section 2.4.1.

2.4 The generation of DΘ

2.4.1 Memory size requirements and complexity

Before going further on the generation of DΘ, it is important to estimate the memory size for storing

the elements of DΘ for |Θ| = n. Since each element of DΘ can be stored as a 2n − 1-binary string, the

memory size for DΘ is given by the right column of the following table (we do not count the size for ∅
which is 0 and the minimum length is considered here as the byte (8 bits)):

1Actually this sequence corresponds to the sequence of Dedekind minus one since we don’t count the last degenerate

isotone function f
22n

−1
(.) as element of DΘ (see section 2.4).
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|Θ| = n size/elem. # of elem. Size of DΘ

2 1 byte 4 4 bytes

3 1 byte 18 18 bytes

4 2 bytes 166 0.32 Kb

5 4 bytes 7579 30 Kb

6 8 bytes 7828352 59 Mb

7 16 bytes ≈ 2.4 · 1012 3.6 · 104 Gb

8 32 bytes ≈ 5.6 · 1022 1.7 · 1015 Gb

This table shows the extreme difficulties for our computers to store all the elements of DΘ when |Θ| > 6.

This complexity remains however smaller than the number of all Boolean functions built from the ultimate

refinement (if accessible) 2Θref of same initial frame Θ for applying DST. The comparison of |DΘ| with

respect to |2Θref | is given in the following table

|Θ| = n |DΘ| |2Θref | = 22n−1

2 5 23 = 8

3 19 27 = 128

4 167 215 = 32768

5 7580 231 = 2147483648

Fortunately, in most fusion applications only a small subset of elements of DΘ have a non null basic

belief mass because all the commitments are just usually impossible to assess precisely when the dimension

of the problem increases. Thus, it is not necessary to generate and keep in memory all elements of DΘ or

2Θref but only those which have a positive belief mass. However there is a real technical challenge on how

to manage efficiently all elements of the hyper-power set. This problem is obviously more difficult when

working on 2Θref . Further investigations and research have to be carried out to develop implementable

engineering solutions for managing high dimensional problems when the basic belief functions are not

degenerated (i.e. all m(A) > 0, A ∈ DΘ or A ∈ 2Θref ).

2.4.2 Monotone Boolean functions

A simple Boolean function f(.) maps n-binary inputs (x1, . . . , xn) ∈ {0, 1}n , {0, 1} × . . . × {0, 1} to a

single binary output y = f(x1, . . . , xn) ∈ {0, 1}. Since there are 2n possible input states which can map

to either 0 or 1 at the output y, the number of possible Boolean functions is 22n

. Each of these functions

can be realized by the logic operations ∧ (and), ∨ (or) and ¬ (not) [3, 21]. As a simple example, let’s

consider only a 2-binary input variable (x1, x2) ∈ {0, 1} × {0, 1} then all the 222

= 16 possible Boolean

functions fi(x1, x2) built from (x1, x2) are summarized in the following tables:
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(x1, x2) f0 f1 f2 f3 f4 f5 f6 f7

(0, 0) 0 0 0 0 0 0 0 0

(0, 1) 0 0 0 0 1 1 1 1

(1, 0) 0 0 1 1 0 0 1 1

(1, 1) 0 1 0 1 0 1 0 1

Notation False x1 ∧ x2 x1 ∧ x̄2 x1 x̄1 ∧ x2 x2 x1 Y x2 x1 ∨ x2

(x1, x2) f8 f9 f10 f11 f12 f13 f14 f15

(0, 0) 1 1 1 1 1 1 1 1

(0, 1) 0 0 0 0 1 1 1 1

(1, 0) 0 0 1 1 0 0 1 1

(1, 1) 0 1 0 1 0 1 0 1

Notation x1∨̄x2 x14x2 x̄2 x1 ∨ x̄2 x̄1 x̄1 ∨ x2 x1 Z x2 True

with the notation x̄ , ¬x, x1 Y x2 , (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) (xor), x1∨̄x2 , ¬(x1 ∨ x2) (nor), x14x2 ,

(x1 ∧ x2) ∨ (x̄1 ∧ x̄2) (xnor) and x1 Z x2 , ¬(x1 ∧ x2) (nand).

We denote by Fn(∧,∨,¬) = {f0(x1, . . . , xn), . . . , f22n−1(x1, . . . , xn)} the set of all possible Boolean

functions built from n-binary inputs. Let x , (x1, . . . , xn) and x′ , (x′1, . . . , x
′
n) be two vectors in

{0, 1}n. Then x precedes x′ and we denote x � x′ if and only if xi ≤ x′i for 1 ≤ i ≤ n (≤ is applied

componentwise). If xi < x′i for 1 ≤ i ≤ n then x strictly precedes x′ which will be denoted as x ≺ x′.

A Boolean function f is said to be a non-decreasing monotone (or isotone) Boolean function (or

just monotone Boolean function for short) if and only if ∀x,x′ ∈ {0, 1}n such that x � x′, then

f(x) � f(x′) [19]. Since any isotone Boolean function involves only ∧ and ∨ operators (no ¬ opera-

tions) [21] and there exists a parallel between (∨,∧) operators in logics with (+, ·) in algebra of numbers

and (∪,∩) in algebra of sets, the generation of all elements of DΘ built from Θ with ∪ and ∩ opera-

tor is equivalent to the problem of generating isotone Boolean functions over the vertices of the unit

n-cube. We denote by Mn(∧,∨) the set of all possible monotone Boolean functions built from n-binary

inputs. Mn(∧,∨) is a subset of Fn(∧,∨,¬). In the previous example, f1(x1, x2), f3(x1, x2), f5(x1, x2),

f7(x1, x2) are isotone Boolean functions but special functions f0(x1, x2) and f22n−1(x1, . . . , xn) must also

be considered as monotone functions too. All the other functions belonging to F2(∧,∨,¬) do not belong

to M2(∧,∨) because they require the ¬ operator in their expressions and we can check easily that the

monotonicity property x � x′ ⇒ f(x) � f(x′) does not hold for these functions.
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The Dedekind’s problem [4] is to determine the number d(n) of distinct monotone Boolean functions

of n-binary variables. Dedekind [4] computed d(0) = 2, d(1) = 3, d(2) = 6, d(3) = 20 and d(4) = 168.

Church [1] computed d(5) = 7581 in 1940. Ward [20] computed d(6) = 7828354 in 1946. Church [2]

then computed d(7) = 2414682040998 in 1965. Between sixties and eighties, important advances have

been done to obtain upper and lower bounds for d(n) [10, 12, 14]. In 1991, Wiedemann [22] computed

d(8) = 56130437228687557907788 (200 hours of computing time with a Cray-2 processor) which has

recently been validated by Fidytek and al. in [8]. Until now the computation of d(n) for n > 8 is still a

challenge for mathematicians even if the following direct exact explicit formula for d(n) has been obtained

by Kisielewicz and Tombak (see [11, 18] for proof) :

d(n) =

22n

∑

k=1

2n−1∏

j=1

j−1
∏

i=0

(1− bki (1− bkj )

l(i)
∏

m=0

(1− bim(1− bjm))) (2.1)

where l(0) = 0 and l(i) = [log2 i] for i > 0, bki , [k/2i]− 2[k/2i+1] and [x] denotes the floor function (i.e.

the nearest integer less or equal to x). The difficulty arises from the huge number of terms involved in

the formula, the memory size and the high speed computation requirements. The last advances and state

of art in counting algorithms of Dedekind’s numbers can be found in [18, 8, 19].

2.4.3 Generation of MBF

Before describing the general algorithm for generating the monotone Boolean functions (MBF), let exam-

ine deeper the example of section 2.4.2. From the previous tables, one can easily find the set of (restricted)

MBF M?
2(∧,∨) = {f0(x1, x2) = False, f1(x1, x2) = x1 ∧ x2, f5(x1, x2) = x2, f7(x1, x2) = x1 ∨ x2} which

is equivalent, using algebra of sets, to hyper-power set DX = {∅, x1 ∩ x2, x1, x2, x1 ∪ x2} associated with

frame of discernment X = {x1, x2}. Since the tautology f15(x1, x2) is not involved within DSmT, we do

not include it as a proper element of DX and we consider onlyM?
2(∧,∨) ,M2(∧,∨) \ {f15} rather than

M2(∧,∨) itself.

Let’s now introduce Smarandache’s codification for the enumeration of distinct parts of a Venn diagram

X with n partially overlapping elements xi,i = 1, 2, . . . , n. Such a diagram has 2n− 1 disjoint parts. One

denotes with only one digit (or symbol) those parts which belong to only one of the elements xi (one

denotes by < i > the part which belongs to xi only, for 1 ≤ i ≤ n), with only two digits (or symbols)

those parts which belong to exactly two elements (one denotes by < ij >, with i < j, the part which

belongs to xi and xj only, for 1 ≤ i < j ≤ n), then with only three digits (or symbols) those parts which

belong to exactly three elements (one denotes by < ijk > concatenated numbers, with i < j < k, the

part which belongs to xi, xj , and xk only, for 1 ≤ i < j < k ≤ n), and so on up to < 12 . . . n > which

represents the last part that belongs to all elements xi. For 1 ≤ n ≤ 9, Smarandache’s encoding works

normally as in base 10. But, for n ≥ 10, because there occur two (or more) digits/symbols in notation of
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the elements starting from 10 on, one considers this codification in base n+ 1, i.e. using one symbol to

represent two (or more) digits, for example: A = 10, B = 11, C = 12, etc.

• For n = 1 one has only one part, coded < 1 >.

• For n = 2 one has three parts, coded < 1 >, < 2 >, < 12 >. Generally, < ijk > does not represent

xi ∩ xj ∩ xk but only a part of it, the only exception is for < 12 . . . n >.

• For n = 3 one has 23 − 1 = 7 disjoint parts, coded < 1 >, < 2 >, < 3 >, < 12 >, < 13 >, < 23 >,

< 123 >. < 23 > means the part which belongs to x2 and x3 only, but < 23 > 6= x2 ∩ x3 because

x2 ∩ x3 = {< 23 >,< 123 >} in the Venn diagram of 3 elements x1, x2, and x3 (see next chapter).

• The generalization for n > 3 is straightforward. Smarandache’s codification can be organized in a

numerical increasing order, in lexicographic order or any other orders.

A useful order for organizing Smarandache’s codification for the generation of DX is the DSm-order

un = [u1, . . . , u2n−1]′ based on a recursive construction starting with u1 , [< 1 >]. Having constructed

un−1, then we can construct un for n > 1 recursively as follows:

• include all elements of un−1 into un;

• afterwards, include element < n > as well in un;

• then at the end of each element of un−1 concatenate the element < n > and get a new set u′
n−1

which then is also included in un.

This is un, which has (2n−1 − 1) + 1 + (2n−1 − 1) = 2n − 1 components.

For n = 3, as example, one gets u3 , [< 1 > < 2 > < 12 > < 3 > < 13 > < 23 > < 123 >]′. Because

all elements in un are disjoint, we are able to write each element di of DX in a unique way as a linear

combination of un elements, i.e.

dn = [d1, . . . , d2n−1]′ = Dn · un (2.2)

Thus un constitutes a basis for generating the elements of DX . Each row in the matrix Dn represents

the coefficients of an element of DX with respect to the basis un. The rows of Dn may also be regarded

as binary numbers in an increasing order.
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Example: For n = 2, one has:











d1 = x1 ∩ x2

d2 = x2

d3 = x1

d4 = x1 ∪ x2











︸ ︷︷ ︸

d2

=











0 0 1

0 1 1

1 0 1

1 1 1











︸ ︷︷ ︸

D2

·








< 1 >

< 2 >

< 12 >








︸ ︷︷ ︸

u2

(2.3)

where the ”matrix product” is done after identifying (+, ·) with (∪,∩), 0· < x > with ∅ and 1· < x >

with < x >.

The generation of DX is then strictly equivalent to generate un and matrix Dn which can be easily

obtained by the following recursive procedure:

• start with Dc
0 = [0 1]′ corresponding to all Boolean functions with no input variable (n = 0).

• build the Dc
1 matrix from each row ri of Dc

0 by adjoining it to any other row rj of Dc
0 such that

ri ∪ rj = rj . This is equivalent here to add either 0 or 1 in front (i.e. left side) of r1 ≡ 0 but only

1 in front of r2 ≡ 1. Since the tautology is not involved in the hyper-power set, then one has to

remove the first column and the last line of

Dc
1 =








0 0

0 1

1 1








to obtain finally D1 =




0

1





• build Dc
2 from Dc

1 by adjoining to each row ri of Dc
1, any row rj of Dc

1 such that ri ∪ rj = rj and

then remove the first column and the last line of Dc
2 to get D2 as in (2.3).

• build Dc
3 from Dc

2 by adjoining to each row ri of Dc
2 any row rj of Dc

2 such that ri ∪ rj = rj and

then remove the first column and the last line of Dc
3 to get D3 given by (where D′ denotes here the

transposed of the matrix D)

D′
3 =





















0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1

0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1

0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





















• Likewise, Dc
n is built from Dc

n−1 by adjoining to each row ri of Dc
n−1 any row rj of Dc

n−1 such that

ri ∪ rj = rj . Then Dn is obtained by removing the first column and the last line of Dc
n.
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Example for Θ = {θ1, θ2, θ3}: Note that the new indexation of elements of DΘ now follows the MBF

generation algorithm.



























































α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3
α2 , θ2 ∩ θ3
α3 , θ1 ∩ θ3

α4 , (θ1 ∪ θ2) ∩ θ3
α5 , θ3

α6 , θ1 ∩ θ2
α7 , (θ1 ∪ θ3) ∩ θ2
α8 , (θ2 ∪ θ3) ∩ θ1

α9 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)

α10 , (θ1 ∩ θ2) ∪ θ3
α11 , θ2

α12 , (θ1 ∩ θ3) ∪ θ2
α13 , (θ2 ∪ θ3)

α14 , θ1

α15 , (θ2 ∩ θ3) ∪ θ1
α16 , (θ1 ∪ θ3)

α17 , (θ1 ∪ θ2)

α18 , (θ1 ∪ θ2 ∪ θ3)



























































︸ ︷︷ ︸

d3

=



























































0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 0 0 0 1

0 0 1 0 0 1 1

0 0 1 0 1 0 1

0 0 1 0 1 1 1

0 0 1 1 1 1 1

0 1 1 0 0 1 1

0 1 1 0 1 1 1

0 1 1 1 1 1 1

1 0 1 0 1 0 1

1 0 1 0 1 1 1

1 0 1 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1



























































︸ ︷︷ ︸

D3

·





















< 1 >

< 2 >

< 12 >

< 3 >

< 13 >

< 23 >

< 123 >





















︸ ︷︷ ︸

u3

For convenience, we provide in appendix the source code in Matlab2 language to generate DΘ. This

code includes the identification of elements of DΘ corresponding to each monotone Boolean function

according to Smarandache’s codification.

2.5 Conclusion

In this chapter, one has introduced the notion of Dedekind’s lattice DΘ (hyper-power set) on which are

defined basic belief functions in the framework of DSmT and the acceptance of the free DSm model. The

justification of the free DSm model as a starting point (ground level) for the development of our new

theory of plausible and paradoxical reasoning for information fusion has been also given and arises from

the necessity to deal with possibly ambiguous concepts which can appear in real-world applications. The

lower complexity of the hyper-power set with respect to the complexity of the classical refined power set

2Matlab is a trademark of The MathWorks, Inc.



46 REFERENCES

2Θref has been clearly demonstrated here. We have proven the theoretical link between the generation of

hyper-power set with Dedekind’s problem on counting isotone Boolean functions. A theoretical solution

for generating lattices DΘ has been presented and a MatLab source code has been provided for users

convenience.
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Appendix: MatLab code for generating hyper-power sets

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Copyright ( c ) 2003 J . Dezert and F. Smarandache

%

% Purpose : Generation of DˆTheta f o r the DSmT for

% Theta={t he ta 1 , . . , Theta n } . Due to the huge

% # of e lements o f DˆTheta . only cases up to n<7

% are usua l l y t r a c t a b l e on computers .

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

n=input ( ’ Enter c a r d i n a l i t y f o r Theta (0<n<6) ? ’ ) ;

% Generation of the Smarandache c od i f i c a t i on

% Note : t h i s should be implemented using

% charac t e r s t r i n g s f o r n>9

u n = [ 1 ] ;

for nn=2:n

u n=[u n nn ( u n∗10+nn∗ones (1 , size ( u n ∗ 1 0 , 2 ) ) ) ] ;

end

% Generation of D n ( i so tone boolean f unc t i on s )

D n1 = [ 0 ; 1 ] ;

for nn=1:n , D n = [ ] ;

for i =1: size (D n1 , 1 ) , Li=D n1 ( i , : ) ;

for j=i : size (D n1 , 1 )

Lj=D n1 ( j , : ) ; L i i n t e r L j=and ( Li , Lj ) ;

L i un ion Lj=or ( Li , Lj ) ;

i f ( ( L i i n t e r L j==Li )&( L i un ion Lj==Lj ) )

D n=[D n ; Li Lj ] ;

end

end

end

D n1=D n ;

end

DD=D n ;DD( : , 1 ) = [ ] ;DD( size (DD, 1 ) , : ) = [ ] ; D n=DD;

% Resu l t d i s p l ay

disp ( [ ’ | Theta |=n=’ ,num2str(n ) ] )

disp ( [ ’ |DˆTheta |= ’ ,num2str( size (D n , 1 ) ) ] )

disp ( ’Elem . o f DˆTheta are obtained by D n∗u n ’ )

disp ( [ ’ with u n=[ ’ ,num2str( u n ) , ’ ] ’ ’ and ’ ] )

D n=D n

Matlab source code for generating DΘ
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Abstract: In this chapter, we examine several issues for ordering or partially or-

dering elements of hyper-power sets involved in the DSmT. We will show the benefit

of some of these issues to obtain a nice and interesting structure of matrix represen-

tation of belief functions.

3.1 Introduction to matrix calculus for belief functions

A
s rightly emphasized recently by Smets in [9], the mathematic of belief functions is often cum-

bersome because of the many summations symbols and all its subscripts involved in equations.

This renders equations very difficult to read and understand at first sight and might discourage potential

readers for their complexity. Actually, this is just an appearance because most of the operations encoun-

tered in DST with belief functions and basic belief assignments m(.) are just simple linear operations

and can be easily represented using matrix notation and be handled by elementary matrix calculus. We

just focus here our presentation on the matrix representation of the relationship between a basic belief

assignment m(.) and its associated belief function Bel(.). A nice and more complete presentation of

matrix calculus for belief functions can be found in [6, 7, 9]. One important aspect for the simplification

of matrix representation and calculus in DST, concerns the choice of the order of the elements of the

This chapter is based on a paper [4] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.
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power set 2Θ. The order of elements of 2Θ can be chosen arbitrarily actually, and it can be easily seen

by denoting m the bba vector of size 2n × 1 and Bel its corresponding belief vector of same size, that

the set of equations Bel(A) =
∑

B⊆Am(B) holding for all A ⊆ Θ is strictly equivalent to the following

general matrix equation

Bel = BM ·m ⇔ m = BM−1 ·Bel (3.1)

where the internal structure of BM depends on the choice of the order for enumerating the elements of

2Θ. But it turns out that the simplest ordering based on the enumeration of integers from 0 to 2n − 1

expressed as n-binary strings with the lower bit on the right (LBR) (where n = |Θ|) to characterize all

the elements of power set, is the most efficient solution and best encoding method for matrix calculus

and for developing efficient algorithms in MatLab1 or similar programming languages [9]. By choosing

the basic increasing binary enumeration (called bibe system), one obtains a very nice recursive algorithm

on the dimension n of Θ for computing the matrix BM. The computation of BM for |Θ| = n is just

obtained from the iterations up to i + 1 = n of the recursive relation [9] starting with BM0 , [1] and

where 0i+1 denotes the zero-matrix of size (i+ 1)× (i + 1),

BMi+1 =




BMi 0i+1

BMi BMi



 (3.2)

BM is a binary unimodular matrix (det(BM) = ±1). BM is moreover triangular inferior and symmet-

rical with respect to its antidiagonal.

Example for Θ = {θ1, θ2, θ3}
The bibe system gives us the following order for elements of 2Θ = {α0, . . . , α7}:

α0 ≡ 000 ≡ ∅ α1 ≡ 001 ≡ θ1 α2 ≡ 010 ≡ θ2 α3 ≡ 011 ≡ θ1 ∪ θ2
α4 ≡ 100 ≡ θ3 α5 ≡ 101 ≡ θ1 ∪ θ3 α6 ≡ 110 ≡ θ2 ∪ θ3 α7 ≡ 111 ≡ θ1 ∪ θ2 ∪ θ3 ≡ Θ

Each element αi of 2Θ is a 3-bits string. With this bibe system, one has m = [m(α0), . . . ,m(α7)]′ and

Bel = [Bel(α0), . . . ,Bel(α7)]′. The expressions of the matrix BM3 and its inverse BM3
−1 are given by

BM3 =
























1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
























1Matlab is a trademark of The MathWorks, Inc.
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BM3
−1 =
























1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

1 −1 −1 1 0 0 0 0

−1 0 0 0 1 0 0 0

1 −1 0 0 −1 1 0 0

1 0 −1 0 −1 0 1 0

−1 1 1 −1 1 −1 −1 1
























3.2 Ordering elements of hyper-power set for matrix calculus

As within the DST framework, the order of the elements of DΘ can be arbitrarily chosen. We denote the

Dedekind number or order n as d(n) , |DΘ| for n = |Θ|. We denote also m the gbba vector of size d(n)×1

and Bel its corresponding belief vector of the same size. The set of equations Bel(A) =
∑

B∈DΘ,B⊆Am(B)

holding for all A ∈ DΘ is then strictly equivalent to the following general matrix equation

Bel = BM ·m ⇔ m = BM−1 ·Bel (3.3)

Note the similarity between these relations with the previous ones (3.1). The only difference resides

in the size of vectors Bel and m and the size of matrix BM and their components. We explore in the

following sections the possible choices for ordering (or partially ordering) the elements of hyper-power set

DΘ, to obtain an interesting matrix structure of BM matrix. Only three issues are examined and briefly

presented in the sequel. The first method is based on the direct enumeration of elements of DΘ according

to their recursive generation via the algorithm for generating all isotone Boolean functions presented in

the previous chapter and in [3]. The second (partial) ordering method is based on the notion of DSm

cardinality which will be introduced in section 3.2.2. The last and most interesting solution proposed for

partial ordering over DΘ is obtained by introducing the notion of intrinsic informational strength s(.)

associated to each element of hyper-power set.

3.2.1 Order based on the enumeration of isotone Boolean functions

We have presented in chapter 2 a recursive algorithm based on isotone Boolean functions for generating

DΘ with didactic examples. Here is briefly the principle of the method. Let’s consider Θ = {θ1, . . . , θn}
satisfying the DSm model and the DSm order un of Smarandache’s codification of parts of Venn diagram

Θ with n partially overlapping elements θi, i = 1, . . . , n. All the elements αi of DΘ can then be obtained

by the very simple linear equation dn = Dn · un where dn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]′ is the vector of

elements of DΘ, un is the proper codification vector and Dn a particular binary matrix. The final result

dn is obtained from the previous matrix product after identifying (+, ·) with (∪,∩) operators, 0 ·x with ∅
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and 1 · x with x. Dn is actually a binary matrix corresponding to isotone (i.e. non-decreasing) Boolean

functions obtained by applying recursively the steps (starting with Dc
0 = [0 1]′)

• Dc
n is built from Dc

n−1 by adjoining to each row ri of Dc
n−1 any row rj of Dc

n−1 such that ri∪rj = rj .

Then Dn is obtained by removing the first column and the last line of Dc
n.

We denote riso(αi) the position of αi into the column vector dn obtained from the previous enumer-

ation/generation system. Such a system provides a total order over DΘ defined ∀αi, αj ∈ DΘ as αi ≺ αj
(αi precedes αj) if and only if riso(αi) < riso(αj). Based on this order, the BM matrix involved in (3.3)

presents unfortunately no particular interesting structure. We have thus to look for better solutions for

ordering the elements of hyper-power sets.

3.2.2 Ordering based on the DSm cardinality

A second possibility for ordering the elements of DΘ is to (partially) order them by their increasing DSm

cardinality.

Definition of the DSm cardinality

The DSm cardinality of any element A ∈ DΘ, denoted CM(A), corresponds to the number of parts of A in

the Venn diagram of the problem (modelM) taking into account the set of integrity constraints (if any),

i.e. all the possible intersections due to the nature of the elements θi. This intrinsic cardinality depends

on the model M. M is the model that contains A which depends on the dimension of Venn diagram,

(i.e. the number of sets n = |Θ| under consideration), and on the number of non-empty intersections in

this diagram. CM(A) must not be confused with the classical cardinality |A| of a given set A (i.e. the

number of its distinct elements) - that’s why a new notation is necessary here.

Some properties of the DSm cardinality

First note that one has always 1 ≤ CM(A) ≤ 2n− 1. In the (general) case of the free-modelMf (i.e. the

DSm model) where all conjunctions are non-empty, one has for intersections:

CMf (θ1) = . . . = CMf (θn) = 2n−1

CMf (θi ∩ θj) = 2n−2 for n ≥ 2

CMf (θi ∩ θj ∩ θk) = 2n−3 for n ≥ 3

It can be proven by induction that for 1 ≤ m ≤ n, one has CMf (θi1 ∩ θi2 ∩ . . .∩ θim) = 2n−m. For the

cases n = 1, 2, 3, 4, this formula can be checked on the corresponding Venn diagrams. Let’s consider this

formula true for n sets, and prove it for n + 1 sets (when all intersections/conjunctions are considered

non-empty). From the Venn diagram of n sets, we can get a Venn diagram with n+ 1 sets if one draws

a closed curve that cuts each of the 2n − 1 parts of the previous diagram (and, as a consequence, divides



3.2. ORDERING ELEMENTS OF HYPER-POWER SET FOR MATRIX CALCULUS 53

each part into two disjoint subparts). Therefore, the number of parts of each intersection is doubling

when passing from a diagram of dimension n to a diagram of dimension n+ 1. Q.e.d.

In the case of the free-model Mf , one has for unions:

CMf (θi ∪ θj) = 3(2n−2) for n ≥ 2

CMf (θi ∪ θj ∪ θk) = 7(2n−3) for n ≥ 3

It can be proven also by induction that for 1 ≤ m ≤ n, one has CMf (θi1 ∪ θi2 ∪ . . . ∪ θim) =

(2m− 1)(2n−m). The proof is similar to the previous one, and keeping in mind that passing from a Venn

diagram of dimension n to a dimension n + 1, each part that forms the union θi ∩ θj ∩ θk will be split

into two disjoint parts, hence the number of parts is doubling.

For other elements A in DΘ, formed by unions and intersections, the closed form for CMf (A) seems

more complicated to obtain. But from the generation algorithm of DΘ, DSm cardinal of a set A from

DΘ is exactly equal to the sum of its coefficients in the un basis, i.e. the sum of its row elements in

the Dn matrix, which is actually very easy to compute by programming. The DSm cardinality plays in

important role in the definition of the Generalized Pignistic Transformation (GPT) for the construction of

subjective/pignistic probabilities of elements of DΘ for decision-making at the pignistic level as explained

in chapter 7 and in [5]. If one imposes a constraint that a set B from DΘ is empty, then one suppresses

the columns corresponding to the parts which compose B in the Dn matrix and the row of B and the

rows of all elements of DΘ which are subsets of B, getting a new matrix D′
n which represents a new

model M′. In the un basis, one similarly suppresses the parts that form B, and now this basis has the

dimension 2n − 1− CM(B).

Example of DSm cardinals on Mf

Consider the 3D case Θ = {θ1, θ2, θ3} with the free-model Mf corresponding to the following Venn

diagram (where < i > denotes the part which belongs to θi only, < ij > denotes the part which belongs

to θi and θj only, etc; this is Smarandache’s codification (see the previous chapter).

Figure 3.1: Venn Diagram for Mf
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The corresponding partial ordering for elements of DΘ is then summarized in the following table:

A ∈ DΘ CMf (A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 ∩ θ3 1

α2 , θ1 ∩ θ2 2

α3 , θ1 ∩ θ3 2

α4 , θ2 ∩ θ3 2

α5 , (θ1 ∪ θ2) ∩ θ3 3

α6 , (θ1 ∪ θ3) ∩ θ2 3

α7 , (θ2 ∪ θ3) ∩ θ1 3

α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 4

α9 , θ1 4

α10 , θ2 4

α11 , θ3 4

α12 , (θ1 ∩ θ2) ∪ θ3 5

α13 , (θ1 ∩ θ3) ∪ θ2 5

α14 , (θ2 ∩ θ3) ∪ θ1 5

α15 , θ1 ∪ θ2 6

α16 , θ1 ∪ θ3 6

α17 , θ2 ∪ θ3 6

α18 , θ1 ∪ θ2 ∪ θ3 7

Table 3.1: CMf (A) for free DSm model Mf

Note that this partial ordering doesn’t properly catch the intrinsic informational structure/strength

of elements since by example (θ1 ∩ θ2)∪ (θ1 ∩ θ3)∪ (θ2 ∩ θ3) and θ1 have the same DSm cardinal although

they don’t look similar because the part < 1 > in θ1 belongs only to θ1 but none of the parts of

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) belongs to only one part of some θi. A better ordering function is then

necessary to catch the intrinsic informational structure of elements of DΘ. This is the purpose of the

next section.

Example of DSm cardinals on an hybrid DSm model M

Consider now the same 3D case with the hybrid DSm model M 6= Mf in which we force all possible

conjunctions to be empty, but θ1 ∩ θ2 according to the following Venn diagram.
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Figure 3.2: Venn Diagram for M

The corresponding partial ordering for elements of DΘ is then summarized in the following table:

A ∈ DΘ CM(A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 1

α2 , θ3 1

α3 , θ1 2

α4 , θ2 2

α5 , θ1 ∪ θ2 3

α6 , θ1 ∪ θ3 3

α7 , θ2 ∪ θ3 3

α8 , θ1 ∪ θ2 ∪ θ3 4

Table 3.2: CM(A) for hybrid DSm model M

Another example based on Shafer’s model

Consider now the same 3D case but including all exclusivity constraints on θi, i = 1, 2, 3. This corre-

sponds to the 3D Shafer’s model M0 presented in the following Venn diagram.

&%
'$

&%
'$

&%
'$

@R
θ1

�	
θ2

� θ3<3>

<2><1>

Then, one gets the following list of elements (with their DSm cardinal) for the restricted DΘ, which

coincides naturally with the classical power set 2Θ:
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A ∈ (DΘ ≡ 2Θ) CM0(A)

α0 , ∅ 0

α1 , θ1 1

α2 , θ2 1

α3 , θ3 1

α4 , θ1 ∪ θ2 2

α5 , θ1 ∪ θ3 2

α6 , θ2 ∪ θ3 2

α7 , θ1 ∪ θ2 ∪ θ3 3

Table 3.3: CM0(A) for Shafer’s model M0

The partial ordering of DΘ based on DSm cardinality does not provide in general an efficient solution

to get an interesting structure for the BM matrix involved in (3.3), contrary to the structure obtained by

Smets in the DST framework as in section 3.1. The partial ordering presented in the sequel will however

allow us to get such a nice structure for the matrix calculus of belief functions.

3.2.3 Ordering based on the intrinsic informational content

As already pointed out, the DSm cardinality is insufficient to catch the intrinsic informational content of

each element di of DΘ. A better approach to obtain this, is based on the following new function s(.), which

describes the intrinsic information strength of any di ∈ DΘ. A previous, but cumbersome, definition of

s(.) had been proposed in our previous works [1, 2] but it was difficult to handle and questionable with

respect to the formal equivalent (dual) representation of elements belonging to DΘ.

Definition of the s(.) function

We propose here a better choice for s(.), based on a very simple and natural geometrical interpretation

of the relationships between the parts of the Venn diagram belonging to each di ∈ DΘ. All the values of

the s(.) function (stored into a vector s) over DΘ are defined by the following equation:

s = Dn ·wn (3.4)

with s , [s(d0) . . . s(dp)]
′ where p is the cardinal of DΘ for the model M under consideration. p is

equal to Dedekind’s number d(n) − 1 if the free-model Mf is chosen for Θ = {θ1, . . . , θn}. Dn is the

hyper-power set generating matrix. The components wi of vector wn are obtained from the components

of the DSm encoding basis vector un as follows (see previous chapter for details about Dn and un) :

wi , 1/l(ui) (3.5)
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where l(ui) is the length of Smarandache’s codification ui of the part of the Venn diagram of the model

M, i.e the number of symbols involved in the codification.

For example, if ui =< 123 >, then l(ui) = 3 just because only three symbols 1, 2, and 3 enter in the

codification ui, thus wi = 1/3.

From this new DSm ordering function s(.) we can partially order all the elements di ∈ DΘ by the

increasing values of s(.).

Example of ordering on DΘ={θ1,θ2} with Mf

In this simple case, the DSm ordering of DΘ is given by

αi ∈ DΘ s(αi)

α0 = ∅ s(α0) = 0

α1 = θ1 ∩ θ2 s(α1) = 1/2

α2 = θ1 s(α2) = 1 + 1/2

α3 = θ2 s(α3) = 1 + 1/2

α4 = θ1 ∪ θ2 s(α4) = 1 + 1 + 1/2

Based on this ordering, it can be easily verified that the matrix calculus of the beliefs Bel from m by

equation (3.3), is equivalent to















Bel(∅)
Bel(θ1 ∩ θ2)

Bel(θ1)

Bel(θ2)

Bel(θ1 ∪ θ2)















︸ ︷︷ ︸

Bel

=















1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 0 1 0

1 1 1 1 1















︸ ︷︷ ︸

BM2















m(∅)
m(θ1 ∩ θ2)

m(θ1)

m(θ2)

m(θ1 ∪ θ2)















︸ ︷︷ ︸

m

where the BM2 matrix has a interesting structure (triangular inferior and unimodular properties,

det(BM2) = det(BM−1
2 ) = 1). Conversely, the calculus of the generalized basic belief assignment

m from beliefs Bel will be obtained by the inversion of the previous linear system of equations



58 CHAPTER 3. PARTIAL ORDERING ON HYPER-POWER SETS















m(∅)
m(θ1 ∩ θ2)

m(θ1)

m(θ2)

m(θ1 ∪ θ2)















︸ ︷︷ ︸

m

=















1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 −1 0 1 0

0 1 −1 −1 1















︸ ︷︷ ︸

MB2=BM
−1
2















Bel(∅)
Bel(θ1 ∩ θ2)

Bel(θ1)

Bel(θ2)

Bel(θ1 ∪ θ2)















︸ ︷︷ ︸

Bel

Example of ordering on DΘ={θ1,θ2,θ3} with Mf

In this more complicated case, the DSm ordering of DΘ is now given by

αi ∈ DΘ, i = 0, ..., 18 s(αi)

∅ 0

θ1 ∩ θ2 ∩ θ3 1/3

θ1 ∩ θ2 1/3 + 1/2

θ1 ∩ θ3 1/3 + 1/2

θ2 ∩ θ3 1/3 + 1/2

(θ1 ∪ θ2) ∩ θ3 1/3 + 1/2 + 1/2

(θ1 ∪ θ3) ∩ θ2 1/3 + 1/2 + 1/2

(θ2 ∪ θ3) ∩ θ1 1/3 + 1/2 + 1/2

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 1/3 + 1/2 + 1/2 + 1/2

θ1 1/3 + 1/2 + 1/2 + 1

θ2 1/3 + 1/2 + 1/2 + 1

θ3 1/3 + 1/2 + 1/2 + 1

(θ1 ∩ θ2) ∪ θ3 1/3 + 1/2 + 1/2 + 1 + 1/2

(θ1 ∩ θ3) ∪ θ2 1/3 + 1/2 + 1/2 + 1 + 1/2

(θ2 ∩ θ3) ∪ θ1 1/3 + 1/2 + 1/2 + 1 + 1/2

θ1 ∪ θ2 1/3 + 1/2 + 1/2 + 1 + 1/2 + 1

θ1 ∪ θ3 1/3 + 1/2 + 1/2 + 1 + 1/2 + 1

θ2 ∪ θ3 1/3 + 1/2 + 1/2 + 1 + 1/2 + 1

θ1 ∪ θ2 ∪ θ3 1/3 + 1/2 + 1/2 + 1 + 1/2 + 1 + 1

The order for elements generating the same value of s(.) can be chosen arbitrarily and doesn’t change

the structure of the matrix BM3 given right after. That’s why only a partial order is possible from s(.).

It can be verified that BM3 holds also the same previous interesting matrix structure properties and that

det(BM3) = det(BM−1
3 ) = 1. Similar structure can be shown for problems of higher dimensions (n > 3).
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Although a nice structure for matrix calculus of belief functions has been obtained in this work, and

conversely to the recursive construction of BMn in DST framework, a recursive algorithm (on dimension

n) for the construction of BMn from BMn−1 has not yet be found (if such recursive algorithm exists ...)

and is still an open difficult problem for further research.

BM3 =



























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0

1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



























































3.3 Conclusion

In this chapter, one has analyzed several issues to obtain an interesting matrix representation of the

belief functions defined in the DSmT. For ordering the elements of hyper-power set DΘ we propose three

such orderings: first, using the direct enumeration of isotone Boolean functions, second, based on the

DSm cardinality, and third, and maybe the most interesting, by introducing the intrinsic informational

strength function s(.) constructed from the DSm encoding basis. The third order permits to get a nice

internal structure of the transition matrix BM in order to compute directly and easily by programming

the belief vector Bel from the basic belief mass vector m and conversely by inversion of matrix BM.
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[7] Kennes R., Computational Aspects of the Möbius Transformation of Graphs, IEEE Trans. on SMC.

22, pp. 201-223, 1992.

[8] Shafer G., A Mathematical Theory of Evidence, Princeton Univ. Press, Princeton, NJ, 1976.

[9] Smets Ph., Matrix Calculus for Belief Functions, http://iridia.ulb.ac.be/~psmets/MatrixRepresentation.pdf.



Chapter 4

Combination of beliefs on hybrid

DSm models

Jean Dezert Florentin Smarandache

ONERA Department of Mathematics

29 Av. de la Division Leclerc University of New Mexico

92320 Châtillon Gallup, NM 8730

France U.S.A.

Abstract: This chapter presents a general method for combining uncertain and

paradoxical (i.e. highly conflicting) sources of evidence for a wide class of fusion

problems. From the foundations of the DSmT we show how the DSm rule of com-

bination can be extended to take into account all possible integrity constraints (if

any) of the problem under consideration due to the true nature of elements/concepts

involved into it. We show how Shafer’s model can be considered as a specific hybrid

DSm model and can be easily handled by the DSmT and one presents here a new

efficient alternative to Dempster’s rule of combination, following steps of previous

researchers towards this quest. Several simple didactic examples are also provided to

show the efficiency and the generality of the approach proposed in this work.

4.1 Introduction

A
ccording to each model occurring in real-world fusion problems, we present a general hybrid DSm

rule which combines two or more masses of independent sources of information and takes care of

constraints, i.e. of sets which might become empty at time tl or new sets/elements that might arise in the

frame at time tl+1. The hybrid DSm rule is applied in a real time when the hyper-power set DΘ changes
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(i.e. the set of all propositions built from elements of frame Θ with ∪ and ∩ operators - see [3] for details),

either increasing or decreasing its focal elements, or when even Θ decreases or increases influencing the

DΘ as well, thus the dynamicity of our DSmT.

This chapter introduces the reader to the independence of sources of evidences, which needs to be

studied deeper in the future, then one defines the models and the hybrid DSm rule, which is different from

other rules of combination such as Dempster’s, Yager’s, Smets’, Dubois-Prade’s and gives seven numerical

examples of applying the hybrid DSm rule in various models and several examples of dynamicity of DSmT,

then the Bayesian hybrid DSm models mixture.

4.2 On the independence of the sources of evidences

The notion of independence of the sources of evidence plays a major role in the development of efficient

information fusion algorithms but is very difficult to formally establish when manipulating uncertain and

paradoxical (i.e. highly conflicting) sources of information. Some attempts to define the independence of

uncertain sources of evidences have been proposed by P. Smets and al. in Dempster-Shafer Theory (DST)

and Transferable Belief Model in [12, 13, 14] and by other authors in possibility theory [1, 2, 5, 8, 10]. In

the following, we consider that n sources of evidences are independent if the internal mechanism by which

each source provides its own basic belief assignment doesn’t depend on the mechanisms of other sources

(i.e. there is no internal relationship between all mechanisms) or if the sources don’t share (even partially)

same knowledge/experience to establish their own basic belief assignment. This definition doesn’t exclude

the possibility for independent sources to provide the same (numerical) basic belief assignments. The

fusion of dependent uncertain and paradoxical sources is much more complicated because, one has first

to identify precisely the piece of redundant information between sources in order to remove it before

applying the fusion rules. The problem of combination of dependent sources is under investigation.

4.3 DSm rule of combination for free-DSm models

4.3.1 Definition of the free-DSm model Mf(Θ)

Let’s consider a finite frame Θ = {θ1, . . . θn} of the fusion problem under consideration. We abandon

Shafer’s model by assuming here that the fuzzy/vague/relative nature of elements θi i = 1, . . . , n of Θ can

be non-exclusive. We assume also that no refinement of Θ into a new finer exclusive frame of discernment

Θref is possible. This is the free-DSm model Mf (Θ) which can be viewed as the opposite (if we don’t

introduce non-existential constraints - see next section) of Shafer’s model, denoted M0(Θ) where all θi

are forced to be exclusive and therefore fully discernable.
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4.3.2 Example of a free-DSm model

Let’s consider the frame of the problem Θ = {θ1, θ2, θ3}. The free Dedekind lattice DΘ = {α0, . . . , α18}
over Θ owns the following 19 elements (see chapter 2)

Elements of DΘ for Mf (Θ)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3 6= ∅ α10 , θ2 6= ∅
α2 , θ1 ∩ θ2 6= ∅ α11 , θ3 6= ∅
α3 , θ1 ∩ θ3 6= ∅ α12 , (θ1 ∩ θ2) ∪ θ3 6= ∅
α4 , θ2 ∩ θ3 6= ∅ α13 , (θ1 ∩ θ3) ∪ θ2 6= ∅
α5 , (θ1 ∪ θ2) ∩ θ3 6= ∅ α14 , (θ2 ∩ θ3) ∪ θ1 6= ∅
α6 , (θ1 ∪ θ3) ∩ θ2 6= ∅ α15 , θ1 ∪ θ2 6= ∅
α7 , (θ2 ∪ θ3) ∩ θ1 6= ∅ α16 , θ1 ∪ θ3 6= ∅
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 6= ∅ α17 , θ2 ∪ θ3 6= ∅
α9 , θ1 6= ∅ α18 , θ1 ∪ θ2 ∪ θ3 6= ∅

The free-DSm modelMf (Θ) assumes that all elements αi, i > 0, are non-empty. This corresponds to

the following Venn diagram where in Smarandache’s codification ”i” denotes the part of the diagram which

belongs to θi only, ”ij” denotes the part of the diagram which belongs to θi and θj only, ”ijk” denotes the

part of the diagram which belongs to θi and θj and θk only, etc [3]. On such Venn diagram representation

of the model, we emphasize the fact that all boundaries of intersections must be seen/interpreted as only

vague boundaries just because the nature of elements θi can be, in general, only vague, relative and even

imprecise (see chapter 6).

Figure 4.1: Venn Diagram for Mf (Θ)

For the chapter to be self-contained, we recall here the classical DSm rule of combination based on

Mf (Θ) over the free Dedekind’s lattice built from elements of Θ with ∩ and ∪ operators, i.e. DΘ.



64 CHAPTER 4. COMBINATION OF BELIEFS ON HYBRID DSM MODELS

4.3.3 Classical DSm rule for 2 sources for free-DSm models

For two independent uncertain and paradoxical (i.e. highly conflicting) sources of information (experts/-

bodies of evidence) providing generalized basic belief assignment m1(.) and m2(.) over DΘ (or over any

subset of DΘ), the classical DSm conjunctive rule of combination mMf (Θ)(.) , [m1 ⊕m2](.) is given by

∀A 6= ∅ ∈ DΘ, mMf (Θ)(A) , [m1 ⊕m2](A) =
∑

X1,X2∈D
Θ

(X1∩X2)=A

m1(X1)m2(X2) (4.1)

mMf (Θ)(∅) = 0 by definition, unless otherwise specified in special cases when some source assigns a

non-zero value to it (like in the Smets TBM approach [9]). This DSm rule of combination is commutative

and associative. This rule, dealing with both uncertain and paradoxical/conflicting information, requires

no normalization process and can always been applied.

4.3.4 Classical DSm rule for k ≥ 2 sources for free-DSm models

The above formula can be easily generalized for the free-DSm model Mf (Θ) with k ≥ 2 independent

sources in the following way:

∀A 6= ∅ ∈ DΘ, mMf (Θ)(A) , [m1 ⊕ . . .mk](A) =
∑

X1,...,Xk∈D
Θ

(X1∩...∩Xk)=A

k∏

i=1

mi(Xi) (4.2)

mMf (Θ)(∅) = 0 by definition, unless otherwise specified in special cases when some source assigns a

non-zero value to it. This DSm rule of combination is still commutative and associative.

4.4 Presentation of hybrid DSm models

4.4.1 Definition

Let Θ be the general frame of the fusion problem under consideration with n elements θ1, θ2, . . ., θn.

A hybrid DSm model M(Θ) is defined from the free-DSm model Mf (Θ) by introducing some integrity

constraints on some elements A of DΘ if one knows with certainty the exact nature of the model corre-

sponding to the problem under consideration. An integrity constraint on A consists in forcing A to be

empty (vacuous element), and we will denote such constraint as A
M≡ ∅ which means that A has been

forced to ∅ through the model M(Θ). This can be justified by the knowledge of the true nature of each

element θi of Θ. Indeed, in some fusion problems, some elements θi and θj of Θ can be fully discernable

because they are truly exclusive while other elements cannot be refined into finer exclusive elements.

Moreover, it is also possible that for some reason with some new knowledge on the problem, an element

or several elements θi have to be forced to the empty set (especially if dynamical fusion problems are

considered, i.e when Θ varies with space and time). For example, if we consider a list of three potential
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suspects into a police investigation, it can occur that, during the investigation, one of the suspects can

be withdrawn of the initial frame of the problem if his innocence is proven with an ascertainable alibi.

The initial basic belief masses provided by sources of information one had on the three suspects, must

then be modified by taking into account this new knowledge on the model of the problem.

There exists several possible kinds of integrity constraints which can be introduced in any free-DSm

model Mf(Θ) actually. The first kind of integrity constraint concerns exclusivity constraints by taking

into account that some conjunctions of elements θi, . . . , θk are truly impossible (i.e. θi ∩ . . . ∩ θk
M≡ ∅).

The second kind of integrity constraint concerns the non-existential constraints by taking into account

that some disjunctions of elements θi, . . . , θk are also truly impossible (i.e. θi ∪ . . .∪ θk
M≡ ∅). We exclude

from our presentation the completely degenerate case corresponding to the constraint θ1 ∪ . . . ∪ θn
M≡ ∅

(total ignorance) because there is no way and no interest to treat such a vacuous problem. In such a

degenerate case, we can just set m(∅) , 1 which is useless because the problem remains vacuous and DΘ

reduces to ∅. The last kind of possible integrity constraint is a mixture of the two previous ones, like for

example (θi ∩ θj) ∪ θk or any other hybrid proposition/element of DΘ involving both ∩ and ∪ operators

such that at least one element θk is a subset of the constrained proposition. From any Mf (Θ), we can

thus build several hybrid DSm models depending on the number of integrity constraints one needs to fully

characterize the nature of the problem. The introduction of a given integrity constraint A
M≡ ∅ ∈ DΘ

implies necessarily the set of inner constraints B
M≡ ∅ for all B ⊂ A. Moreover the introduction of two

integrity constraints, say on A and B in DΘ implies also necessarily the constraint on the emptiness of the

disjunction A∪B which belongs also to DΘ (because DΘ is closed under ∩ and ∪ operators). This implies

the emptiness of all C ∈ DΘ such that C ⊂ (A ∪ B). The same remark has to be extended for the case

of the introduction of n integrity constraints as well. Shafer’s model is the unique and most constrained

hybrid DSm model including all possible exclusivity constraints without non-existential constraint since

all θi 6= ∅ ∈ Θ are forced to be mutually exclusive. Shafer’s model is denoted M0(Θ) in the sequel. We

denote by ∅M the set of elements of DΘ which have been forced to be empty in the hybrid DSm model

M.

4.4.2 Example 1 : hybrid DSm model with an exclusivity constraint

Let Θ = {θ1, θ2, θ3} be the general frame of the problem under consideration and let’s consider the

following hybrid DSm model M1(Θ) built by introducing the following exclusivity constraint α1 , θ1 ∩
θ2 ∩ θ3

M1≡ ∅. This exclusivity constraint implies however no other constraint because α1 doesn’t contain

other elements of DΘ but itself. Therefore, one has now the following set of elements for DΘ
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Elements of DΘ for M1(Θ)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

M1≡ ∅ α10 , θ2 6= ∅
α2 , θ1 ∩ θ2 6= ∅ α11 , θ3 6= ∅
α3 , θ1 ∩ θ3 6= ∅ α12 , (θ1 ∩ θ2) ∪ θ3 6= ∅
α4 , θ2 ∩ θ3 6= ∅ α13 , (θ1 ∩ θ3) ∪ θ2 6= ∅
α5 , (θ1 ∪ θ2) ∩ θ3 6= ∅ α14 , (θ2 ∩ θ3) ∪ θ1 6= ∅
α6 , (θ1 ∪ θ3) ∩ θ2 6= ∅ α15 , θ1 ∪ θ2 6= ∅
α7 , (θ2 ∪ θ3) ∩ θ1 6= ∅ α16 , θ1 ∪ θ3 6= ∅
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 6= ∅ α17 , θ2 ∪ θ3 6= ∅
α9 , θ1 6= ∅ α18 , θ1 ∪ θ2 ∪ θ3 6= ∅

Hence the initial basic belief mass over DΘ has to be transferred over the new constrained hyper-power

set DΘ(M1(Θ)) with the 18 elements defined just above (including actually 17 non-empty elements). The

mechanism for the transfer of basic belief masses fromDΘ ontoDΘ(M1(Θ)) will be obtained by the hybrid

DSm rule of combination presented in the sequel.

4.4.3 Example 2 : hybrid DSm model with another exclusivity constraint

As the second example for a hybrid DSm modelM2(Θ), let’s consider Θ = {θ1, θ2, θ3} and the following

exclusivity constraint α2 , θ1∩θ2
M2≡ ∅. This constraint implies also α1 , θ1∩θ2∩θ3

M2≡ ∅ since α1 ⊂ α2.

Therefore, one has now the following set of elements for DΘ(M2(Θ))

Elements of DΘ for M2(Θ)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

M2≡ ∅ α10 , θ2 6= ∅
α2 , θ1 ∩ θ2

M2≡ ∅ α11 , θ3 6= ∅
α3 , θ1 ∩ θ3 6= ∅ α12 , (θ1 ∩ θ2) ∪ θ3

M2≡ α11 6= ∅
α4 , θ2 ∩ θ3 6= ∅ α13 , (θ1 ∩ θ3) ∪ θ2 6= ∅
α5 , (θ1 ∪ θ2) ∩ θ3 6= ∅ α14 , (θ2 ∩ θ3) ∪ θ1 6= ∅
α6 , (θ1 ∪ θ3) ∩ θ2

M2≡ α4 6= ∅ α15 , θ1 ∪ θ2 6= ∅
α7 , (θ2 ∪ θ3) ∩ θ1

M2≡ α3 6= ∅ α16 , θ1 ∪ θ3 6= ∅
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)

M2≡ α5 6= ∅ α17 , θ2 ∪ θ3 6= ∅
α9 , θ1 6= ∅ α18 , θ1 ∪ θ2 ∪ θ3 6= ∅

Note that in this case several non-empty elements of DΘ(M2(Θ)) coincide because of the constraint

(α6
M2≡ α4, α7

M2≡ α3, α8
M2≡ α5, α12

M2≡ α11). DΘ(M2(Θ)) has now only 13 different elements. Note

that the introduction of both constraints α1 , θ1 ∩ θ2 ∩ θ3
M2≡ ∅ and α2 , θ1 ∩ θ2

M2≡ ∅ doesn’t change

the construction of DΘ(M2(Θ)) because α1 ⊂ α2.
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4.4.4 Example 3 : hybrid DSm model with another exclusivity constraint

As the third example for a hybrid DSm model M3(Θ), let’s consider Θ = {θ1, θ2, θ3} and the following

exclusivity constraint α6 , (θ1 ∪ θ3) ∩ θ2
M3≡ ∅. This constraint implies now α1 , θ1 ∩ θ2 ∩ θ3

M3≡ ∅ since

α1 ⊂ α6, but also α2 , θ1 ∩ θ2
M3≡ ∅ because α2 ⊂ α6 and α4 , θ2 ∩ θ3

M3≡ ∅ because α4 ⊂ α6. Therefore,

one has now the following set of elements for DΘ(M3(Θ))

Elements of DΘ for M3(Θ)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

M3≡ ∅ α10 , θ2 6= ∅
α2 , θ1 ∩ θ2

M3≡ ∅ α11 , θ3 6= ∅
α3 , θ1 ∩ θ3 6= ∅ α12 , (θ1 ∩ θ2) ∪ θ3

M3≡ α11 6= ∅
α4 , θ2 ∩ θ3

M3≡ ∅ α13 , (θ1 ∩ θ3) ∪ θ2 6= ∅
α5 , (θ1 ∪ θ2) ∩ θ3

M3≡ α3 6= ∅ α14 , (θ2 ∩ θ3) ∪ θ1
M3≡ α9 6= ∅

α6 , (θ1 ∪ θ3) ∩ θ2
M3≡ ∅ α15 , θ1 ∪ θ2 6= ∅

α7 , (θ2 ∪ θ3) ∩ θ1
M3≡ α3 6= ∅ α16 , θ1 ∪ θ3 6= ∅

α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M3≡ α5 6= ∅ α17 , θ2 ∪ θ3 6= ∅

α9 , θ1 6= ∅ α18 , θ1 ∪ θ2 ∪ θ3 6= ∅

DΘ(M3(Θ)) has now only 10 different elements.

4.4.5 Example 4 : Shafer’s model

As the fourth particular example for a hybrid DSm model M4(Θ), let’s consider Θ = {θ1, θ2, θ3} and

the following exclusivity constraint α8 , {(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2)
M4≡ ∅. Therefore, one has now the

following set of elements for DΘ(M4(Θ))

Elements of DΘ for M4(Θ) (Shafer’s model)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

M4≡ ∅ α10 , θ2 6= ∅
α2 , θ1 ∩ θ2

M4≡ ∅ α11 , θ3 6= ∅
α3 , θ1 ∩ θ3

M4≡ ∅ α12 , (θ1 ∩ θ2) ∪ θ3
M4≡ α11 6= ∅

α4 , θ2 ∩ θ3
M4≡ ∅ α13 , (θ1 ∩ θ3) ∪ θ2

M4≡ α10 6= ∅
α5 , (θ1 ∪ θ2) ∩ θ3

M4≡ ∅ α14 , (θ2 ∩ θ3) ∪ θ1
M4≡ α9 6= ∅

α6 , (θ1 ∪ θ3) ∩ θ2
M4≡ ∅ α15 , θ1 ∪ θ2 6= ∅

α7 , (θ2 ∪ θ3) ∩ θ1
M4≡ ∅ α16 , θ1 ∪ θ3 6= ∅

α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M4≡ ∅ α17 , θ2 ∪ θ3 6= ∅

α9 , θ1 6= ∅ α18 , θ1 ∪ θ2 ∪ θ3 6= ∅
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This model corresponds actually to Shafer’s modelM0(Θ) because this constraint includes all possible

exclusivity constraints between elements θi, i = 1, 2, 3 since α1 , θ1 ∩ θ2 ∩ θ3 ⊂ α8, α2 , θ1 ∩ θ2 ⊂ α8,

α3 , θ1 ∩ θ3 ⊂ α8 and α4 , θ2 ∩ θ3 ⊂ α8. DΘ(M4(Θ)) has now 2|Θ| = 8 different elements and

coincides obviously with the classical power set 2Θ. This corresponds to Shafer’s model and serves as the

foundation for Dempster-Shafer Theory.

4.4.6 Example 5 : hybrid DSm model with a non-existential constraint

As the fifth example for a hybrid DSm modelM5(Θ), let’s consider Θ = {θ1, θ2, θ3} and the following non-

existential constraint α9 , θ1
M5≡ ∅. In other words, we remove θ1 from the initial frame Θ = {θ1, θ2, θ3}.

This non-existential constraint implies α1 , θ1 ∩ θ2 ∩ θ3
M5≡ ∅, α2 , θ1 ∩ θ2

M5≡ ∅, α3 , θ1 ∩ θ3
M5≡ ∅ and

α7 , (θ2 ∪ θ3) ∩ θ1
M5≡ ∅. Therefore, one has now the following set of elements for DΘ(M5(Θ))

Elements of DΘ for M5(Θ)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

M5≡ ∅ α10 , θ2 6= ∅
α2 , θ1 ∩ θ2

M5≡ ∅ α11 , θ3 6= ∅
α3 , θ1 ∩ θ3

M5≡ ∅ α12 , (θ1 ∩ θ2) ∪ θ3
M5≡ α11 6= ∅

α4 , θ2 ∩ θ3 6= ∅ α13 , (θ1 ∩ θ3) ∪ θ2
M5≡ α10 6= ∅

α5 , (θ1 ∪ θ2) ∩ θ3
M5≡ α4 6= ∅ α14 , (θ2 ∩ θ3) ∪ θ1

M5≡ α4 6= ∅
α6 , (θ1 ∪ θ3) ∩ θ2

M5≡ α4 6= ∅ α15 , θ1 ∪ θ2
M5≡ α10 6= ∅

α7 , (θ2 ∪ θ3) ∩ θ1
M5≡ ∅ α16 , θ1 ∪ θ3

M5≡ α11 6= ∅
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)

M5≡ α4 6= ∅ α17 , θ2 ∪ θ3 6= ∅
α9 , θ1

M5≡ ∅ α18 , θ1 ∪ θ2 ∪ θ3
M5≡ α17 6= ∅

DΘ(M5(Θ)) has now 5 different elements and coincides obviously with the hyper-power set DΘ\θ1 .

4.4.7 Example 6 : hybrid DSm model with two non-existential constraints

As the sixth example for a hybrid DSm model M6(Θ), let’s consider Θ = {θ1, θ2, θ3} and the following

two non-existential constraints α9 , θ1
M6≡ ∅ and α10 , θ2

M6≡ ∅. Actually, these two constraints are

equivalent to choose only the following constraint α15 , θ1 ∪ θ2
M5≡ ∅. In other words, we remove now

both θ1 and θ2 from the initial frame Θ = {θ1, θ2, θ3}. These non-existential constraints implies now

α1 , θ1 ∩ θ2 ∩ θ3
M6≡ ∅, α2 , θ1 ∩ θ2

M6≡ ∅, α3 , θ1 ∩ θ3
M6≡ ∅, α4 , θ2 ∩ θ3

M6≡ ∅, α5 , (θ1 ∪ θ2)∩ θ3
M6≡ ∅,

α6 , (θ1 ∪ θ3) ∩ θ2
M6≡ ∅, α7 , (θ2 ∪ θ3) ∩ θ1

M6≡ ∅, α8 , {(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2)
M6≡ ∅, α13 ,

(θ1 ∩ θ3) ∪ θ2
M6≡ ∅, α14 , (θ2 ∩ θ3) ∪ θ1

M6≡ ∅. Therefore, one has now the following set of elements for

DΘ(M6(Θ)):
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Elements of DΘ for M6(Θ)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

M6≡ ∅ α10 , θ2
M6≡ ∅

α2 , θ1 ∩ θ2
M6≡ ∅ α11 , θ3 6= ∅

α3 , θ1 ∩ θ3
M6≡ ∅ α12 , (θ1 ∩ θ2) ∪ θ3

M6≡ α11 6= ∅
α4 , θ2 ∩ θ3

M6≡ ∅ α13 , (θ1 ∩ θ3) ∪ θ2
M6≡ ∅

α5 , (θ1 ∪ θ2) ∩ θ3
M6≡ ∅ α14 , (θ2 ∩ θ3) ∪ θ1

M6≡ ∅
α6 , (θ1 ∪ θ3) ∩ θ2

M6≡ ∅ α15 , θ1 ∪ θ2
M6≡ ∅

α7 , (θ2 ∪ θ3) ∩ θ1
M6≡ ∅ α16 , θ1 ∪ θ3

M6≡ α11 6= ∅
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)

M6≡ ∅ α17 , θ2 ∪ θ3
M6≡ α11 6= ∅

α9 , θ1
M6≡ ∅ α18 , θ1 ∪ θ2 ∪ θ3

M6≡ α11 6= ∅

DΘ(M6(Θ)) reduces now to only two different elements ∅ and θ3. DΘ(M6(Θ)) coincides obviously

with the hyper-power set DΘ\{θ1,θ2}. Because there exists only one possible non empty element in

DΘ(M6(Θ)), such kind of a problem is called a trivial problem. If one now introduces all non-existential

constraints in the free-DSm model, then the initial problem reduces to a vacuous problem also called the

impossible problem corresponding to m(∅) ≡ 1 (such kind of a ”problem” is not related to reality). Such

kinds of trivial or vacuous problems are not considered anymore in the sequel since they present no real

interest for engineering information fusion problems.

4.4.8 Example 7 : hybrid DSm model with a mixed constraint

As the seventh example for a hybrid DSm modelM7(Θ), let’s consider Θ = {θ1, θ2, θ3} and the following

mixed exclusivity and non-existential constraint α12 , (θ1 ∩ θ2)∪ θ3
M7≡ ∅. This mixed constraint implies

α1 , θ1 ∩ θ2 ∩ θ3
M7≡ ∅, α2 , θ1 ∩ θ2

M7≡ ∅, α3 , θ1 ∩ θ3
M7≡ ∅, α4 , θ2 ∩ θ3

M7≡ ∅, α5 , (θ1 ∪ θ2)∩ θ3
M7≡ ∅,

α6 , (θ1∪θ3)∩θ2
M7≡ ∅, α7 , (θ2∪θ3)∩θ1

M7≡ ∅, α8 , {(θ1∩θ2)∪θ3}∩(θ1∪θ2)
M7≡ ∅ and α11 , θ3

M7≡ ∅.
Therefore, one has now the following set of elements for DΘ(M7(Θ))
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Elements of DΘ for M7(Θ)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

M7≡ ∅ α10 , θ2 6= ∅
α2 , θ1 ∩ θ2

M7≡ ∅ α11 , θ3
M7≡ ∅

α3 , θ1 ∩ θ3
M7≡ ∅ α12 , (θ1 ∩ θ2) ∪ θ3

M7≡ ∅
α4 , θ2 ∩ θ3

M7≡ ∅ α13 , (θ1 ∩ θ3) ∪ θ2
M7≡ α10 6= ∅

α5 , (θ1 ∪ θ2) ∩ θ3
M7≡ ∅ α14 , (θ2 ∩ θ3) ∪ θ1

M7≡ α9 6= ∅
α6 , (θ1 ∪ θ3) ∩ θ2

M7≡ ∅ α15 , θ1 ∪ θ2 6= ∅
α7 , (θ2 ∪ θ3) ∩ θ1

M7≡ ∅ α16 , θ1 ∪ θ3
M7≡ α9 6= ∅

α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M7≡ ∅ α17 , θ2 ∪ θ3

M7≡ α10 6= ∅
α9 , θ1 6= ∅ α18 , θ1 ∪ θ2 ∪ θ3

M7≡ α15 6= ∅

DΘ(M7(Θ)) reduces now to only four different elements ∅, θ1, θ2, and θ1 ∪ θ2.

4.5 DSm rule of combination for hybrid DSm models

In this section, we present a general DSm-hybrid rule of combination able to deal with any hybrid DSm

models (including Shafer’s model). We will show how this new general rule of combination works with

all hybrid DSm models presented in the previous section and we list interesting properties of this new

useful and powerful rule of combination.

4.5.1 Notations

Let Θ = {θ1, . . . θn} be a frame of partial discernment (i.e. a frame Θ for which at least one conjunctive

element of DΘ \ {∅} is known to be truly empty) of the constrained fusion problem, and DΘ the free

distributive lattice (hyper-power set) generated by Θ and the empty set ∅ under ∩ and ∪ operators. We

need to distinguish between the empty set ∅, which belongs to DΘ, and by ∅ we understand a set which

is empty all the time (we call it absolute emptiness or absolutely empty) independent of time, space and

model, and all other sets from DΘ. For example θ1 ∩ θ2 or θ1 ∪ θ2 or only θi itself, 1 ≤ i ≤ n, etc,

which could be or become empty at a certain time (if we consider a fusion dynamicity) or in a particular

modelM (but could not be empty in other model and/or time) (we call a such element relative emptiness

or relatively empty). We’ll denote by ∅M the set of relatively empty such elements of DΘ (i.e. which

become empty in a particular modelM or at a specific time). ∅M is the set of integrity constraints which

depends on the DSm model M under consideration, and the model M depends on the structure of its

corresponding fuzzy Venn Diagram (number of elements in Θ, number of non-empty intersections, and

time in case of dynamic fusion). Through our convention ∅ /∈ ∅M. Let’s note by ∅ , {∅,∅M} the set of

all relatively and absolutely empty elements.
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For any A ∈ DΘ, let φ(A) be the characteristic non emptiness function of the set A, i.e. φ(A) = 1

if A /∈ ∅ and φ(A) = 0 otherwise. This function assigns the value zero to all relatively or absolutely

empty elements of DΘ through the choice of hybrid DSm model M. Let’s define the total ignorance

on Θ = {θ1, θ2, . . . , θn} as It , θ1 ∪ θ2 ∪ . . . ∪ θn and the set of relative ignorances as Ir , {θi1 ∪
. . . ∪ θik , where i1, ..., ik ∈ {1, 2, ..., n} and 2 ≤ k ≤ n − 1}, then the set of all kind of ignorances as

I = It ∪ Ir . For any element A in DΘ, one considers u(A) as the union of all singletons θi that compose

A. For example, if A is a singleton then u(A) = A; if A = θ1 ∩ θ2 or A = θ1 ∪ θ2 then u(A) = θ1 ∪ θ2; if

A = (θ1∩θ2)∪θ3 then u(A) = θ1∪θ2∪θ3. ; by convention u(∅) , ∅. The second summation of the hybrid

DSm rule (see eq. (4.3) and (4.5) and denoted S2 in the sequel) transfers the mass of ∅ [if any; sometimes,

in rare cases, m(∅) > 0 (for example in Smets’ work); we want to catch this particular case as well] to the

total ignorance It = θ1 ∪ θ2 ∪ . . .∪ θn. The other part of the mass of relatively empty elements, θi and θj

together for example, i 6= j, goes to the partial ignorance/uncertainty m(θi∪θj). S2 multiplies, naturally

following the DSm classic network architecture, only the elements of columns of absolutely and relatively

empty sets, and then S2 transfers the mass m1(X1)m2(X2) . . .mk(Xk) either to the element A ∈ Dθ in

the case when A = u(X1) ∪ u(X2)∪ . . .∪ u(Xk) is not empty, or if u(X1) ∪ u(X2)∪ . . .∪ u(Xk) is empty

then the mass m1(X1)m2(X2) . . .mk(Xk) is transferred to the total ignorance. We include all degenerate

problems/models in this new DSmT hybrid framework, but the degenerate/vacuous DSm-hybrid model

M∅ defined by the constraint It = θ1 ∪ θ2 ∪ . . . ∪ θn
M∅≡ ∅ which is meaningless and useless.

4.5.2 Programming of the u(X) function

We provide here the issue for programming the calculation of u(X) from the binary representation of

any proposition X ∈ DΘ expressed in the Dezert-Smarandache order (see chapters 2 and 3). Let’s con-

sider the Smarandache codification of elements θ1, . . . , θn. One defines the anti-absorbing relationship

as follows: element i anti-absorbs element ij (with i < j), and let’s use the notation i << ij, and also

j << ij; similarly ij << ijk (with i < j < k), also jk << ijk and ik << ijk. This relationship is

transitive, therefore i << ij and ij << ijk involve i << ijk; one can also write i << ij << ijk as a

chain; similarly one gets j << ijk and k << ijk. The anti-absorbing relationship can be generalized for

parts with any number of digits, i.e. when one uses the Smarandache codification for the corresponding

Venn diagram on Θ = {θ1, θ2, . . . , θn}, with n ≥ 1. Between elements ij and ik, or between ij and jk

there is no anti-absorbing relationship, therefore the anti-absorbing relationship makes a partial order on

the parts of the Venn diagram for the free DSm model. If a proposition X is formed by a part only, say

i1i2 . . . ir, in the Smarandache codification, then u(X) = θi1 ∪ θi2 ∪ . . . ∪ θir . If X is formed by two or

more parts, the first step is to eliminate all anti-absorbed parts, ie. if A << B then u(A,B) = u(A);

generally speaking, a part B is anti-absorbed by part A if all digits of A belong to B; for an anti-

absorbing chain A1 << A2 << ... << As one takes A1 only and the others are eliminated; afterwards,
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when X is anti-absorbingly irreducible, u(X) will be the unions of all singletons whose indices occur in

the remaining parts of X - if one digit occurs many times it is taken only once. For convenience, one

provides below the MatLab1 source code for computing u(X), X ∈ DΘ. The input variable un of this

routine corresponds to the DSm base encoding and can be obtained by the method proposed in chapter 2.

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

function [UX]=GetUX( u n ,X) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% GetUX computes the funct ion u(X) invo lved

% in the DSm hybrid ru l e of combination .

% Inputs : u n => Dezert−Smarandache base encoding

% X => Element of DˆTheta in base u n

% Example for n=3: i f Theta={theta1 , theta2 , the ta3}

% then u 3 =[1 2 12 3 13 23 123]

% Output : Ux => u(X) expressed in base u n

% Copyrights ( c ) 2003 − J . Dezert & F . Smarandache

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

UX=zeros (1 , s ize ( u n , 2 ) ) ;XP=u n ( find (X==1)) ’;

AF=zeros ( s ize (XP, 1 ) , 1 ) ; XC= [ ] ;

for j j =1: s ize (XP, 1 )

i f (AF( j j )==0) , u j j=num2str(XP( j j ) ) ;

for kk=1: s ize (XP, 1 )

i f (AF(kk)==0)

ukk=num2str(XP(kk ) ) ;w=i n t e r s e c t ( u j j , ukk ) ;

i f ( isempty (w)==0) ,

i f ( ( i s e qu a l (w, u j j )+ i s equ a l (w, ukk))>0)

XC=[XC; str2num(w ) ] ;

i f ( s ize ( u j j ,2)< s ize (ukk , 2 ) ) ,AF(kk )=1;end

i f ( s ize (ukk ,2)< s ize ( u j j , 2 ) ) ,AF( j j )=1;end

end ; end ; end ; end ; end ; end

XC=unique (XC) ;XCS=unique (num2str(XC’ ) ) ;

for i i =1: s ize (XCS, 2 ) , i f (XCS( i i )˜= ’ ’ )

for j j =1: s ize ( u n , 2 )

i f ( isempty ( i n t e r s e c t (XCS( i i ) ,num2str( u n ( j j ))))==0)

UX( j j )=1;end ; end ; end ;end

Matlab source code for computing u(X), X ∈ DΘ

Here are some examples for the case n = 3: 12 << 123, i.e. 12 anti-absorbs 123. Between 12 and 23

there is no anti-absorbing relationship.

• If X = 123 then u(X) = θ1 ∪ θ2 ∪ θ3.

• If X = {23, 123}, then 23 << 123, thus u({23, 123}) = u(23), because 123 has been eliminated,

hence u(X) = u(23) = θ2 ∪ θ3.

• If X = {13, 123}, then 13 << 123, thus u({13, 123}) = u(13) = θ1 ∪ θ3.

1Matlab is a trademark of The MathWorks, Inc.
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• If X = {13, 23, 123}, then 13 << 123, thus u({13, 23, 123}) = u({13, 23}) = θ1 ∪ θ2 ∪ θ3 (one takes

as theta indices each digit in the {13, 23}) - if one digit is repeated it is taken only once; between

13 and 23 there is no relation of anti-absorbing.

• If X = {3, 13, 23, 123}, then u(X) = u({3, 13, 23}) because 23 << 123, then u({3, 13, 23}) =

u({3, 13}) because 3 << 23, then u({3, 13}) = u(3) = θ3 because 3 << 13.

• If X = {1, 12, 13, 23, 123}, then one has the anti-absorbing chain: 1 << 12 << 123, thus u(X) =

u({1, 13, 23}) = u({1, 23}) because 1 << 13, and finally u(X) = θ1 ∪ θ2 ∪ θ3.

• If X = {1, 2, 12, 13, 23, 123}, then 1 << 12 << 123 and 2 << 23 thus u(X) = u({1, 2, 13}) =

u({1, 2}) because 1 << 13, and finally u(X) = θ1 ∪ θ2.

• If X = {2, 12, 3, 13, 23, 123}, then 2 << 23 << 123 and 3 << 13 thus u(X) = u({2, 12, 3}), but

2 << 12 hence u(X) = u({2, 3}) = θ2 ∪ θ3.

4.5.3 The hybrid DSm rule of combination for 2 sources

To eliminate the degenerate vacuous fusion problem from the presentation, we assume from now on that

the given hybrid DSm modelM under consideration is always different from the vacuous modelM∅ (i.e.

It 6= ∅). The hybrid DSm rule of combination, associated to a given hybrid DSm model M 6=M∅ , for

two sources is defined for all A ∈ DΘ as:

mM(Θ)(A) , φ(A)
[ ∑

X1,X2∈D
Θ

(X1∩X2)=A

m1(X1)m2(X2)

+
∑

X1,X2∈∅

[(u(X1)∪u(X2))=A]∨[(u(X1)∪u(X2)∈∅)∧(A=It)]

m1(X1)m2(X2)

+
∑

X1,X2∈D
Θ

(X1∪X2)=A
X1∩X2∈∅

m1(X1)m2(X2)
]

(4.3)

The first sum entering in the previous formula corresponds to mass mMf (Θ)(A) obtained by the classic

DSm rule of combination (4.1) based on the free-DSm model Mf (i.e. on the free lattice DΘ), i.e.

mMf (Θ)(A) ,
∑

X1,X2∈D
Θ

(X1∩X2)=A

m1(X1)m2(X2) (4.4)

The second sum entering in the formula of the DSm-hybrid rule of combination (4.3) represents the

mass of all relatively and absolutely empty sets which is transferred to the total or relative ignorances.

The third sum entering in the formula of the DSm-hybrid rule of combination (4.3) transfers the sum

of relatively empty sets to the non-empty sets in a similar way as it was calculated following the DSm

classic rule.
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4.5.4 The hybrid DSm rule of combination for k ≥ 2 sources

The previous formula of hybrid DSm rule of combination can be generalized in the following way for all

A ∈ DΘ :

mM(Θ)(A) , φ(A)
[ ∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi)

+
∑

X1,X2,...,Xk∈∅

[(u(X1)∪u(X2)∪...∪u(Xk))=A]∨[(u(X1)∪u(X2)∪...∪u(Xk)∈∅)∧(A=It)]

k∏

i=1

mi(Xi)

+
∑

X1,X2,...,Xk∈D
Θ

(X1∪X2∪...∪Xk)=A
X1∩X2∩...∩Xk∈∅

k∏

i=1

mi(Xi)
]

(4.5)

The first sum entering in the previous formula corresponds to mass mMf (Θ)(A) obtained by the classic

DSm rule of combination (4.2) for k sources of information based on the free-DSm model Mf (i.e. on

the free lattice DΘ), i.e.

mMf (Θ)(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (4.6)

4.5.5 On the associativity of the hybrid DSm rule

From (4.5) and (4.6), the previous general formula can be rewritten as

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(4.7)

where

S1(A) ≡ mMf (Θ)(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (4.8)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[(u(X1)∪u(X2)∪...∪u(Xk))=A]∨[(u(X1)∪u(X2)∪...∪u(Xk)∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (4.9)

S3(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∪X2∪...∪Xk)=A
X1∩X2∩...∩Xk∈∅

k∏

i=1

mi(Xi) (4.10)

This rule of combination can be viewed actually as a two-step procedure as follows:

• Step 1: Evaluate the combination of the sources over the free lattice DΘ by the classical DSm rule

of combination to get for all A ∈ DΘ, S1(A) = mMf (Θ)(A) using (4.6). This step preserves the

commutativity and associativity properties of the combination. When there is no constraint (when

using the free DSm model), the hybrid DSm rule reduces to the classic DSm rule because ∅ = {∅}
and mi(∅) = 0, i = 1, . . . k and therefore Φ(A) = 1 and S2(A) = S3(A) = 0 ∀A 6= ∅ ∈ DΘ. For

A = ∅, Φ(A) = 0 and thus mMf (∅) = 0.
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• Step 2: Transfer the masses of the integrity constraints of the hybrid DSm model M according

to formula (4.7). Note that this step is necessary only if one has reliable information about the

real integrity constraints involved in the fusion problem under consideration. More precisely, when

some constraints are introduced to deal with a given hybrid DSm model M(Θ), there exists some

propositions A
M
= ∅ for which Φ(A) = 0. For these propositions, it is actually not necessary to

compute S1(A), S2(A) and S3(A) since the product Φ(A)[S1(A) + S2(A) + S3(A)] equals zero

because Φ(A) = 0. This reduces the cost of computations. For propositions A
M
6= ∅ characterized

by Φ(A) = 1, the derivation of S1(A), S2(A) and S3(A) is necessary to get mM(Θ)(A). The last

part of the hybrid DSm combination mechanism (called compression step) consists in gathering

(summing) all masses corresponding to same proposition because of the constraints of the model.

As example, if one considers the 3D frame Θ = {θ1, θ2, θ3} with the constraint θ2∩θ3 M
= ∅, then the

mass resulting from the hybrid DSm fusion rule (4.7) mM(Θ)(θ1 ∪ (θ2 ∩ θ3)) will have to be added

to mM(Θ)(θ1) because θ1 ∪ (θ2 ∩ θ3)
M
= θ1 due to the constraint θ2 ∩ θ3 M

= ∅.

The second step does not preserve the full associativity of the rule (same remark applies also with

Yager’s or Dubois & Prade’s rules), but this is not a fundamental requirement because this problem can

be easily circumvented by keeping in parallel the two previous steps 1 and 2. The fusion has to start

always on the free-DSm model. The second step is applied only when some integrity constraints are

introduced and before the decision-making. In other words, if one has only 2 independent sources of

information giving m1(.) and m2(.) and some integrity constraints on the frame Θ, one applies step 1 to

get2 m1,2
Mf (Θ)

(.) = [m1 ⊕m2](.) defined on the free-DSm model and then one applies step 2 to get the

final result m1,2
M(Θ)(.) on the hybrid-model. If a third source of information is introduced, say m3(.), one

combines it with the two previous ones by step 1 again to get m1,2,3
Mf (Θ)

(.) = [m3 ⊕m1,2
Mf (Θ)

](.) and then

one applies step 2 to get the final result m1,2,3
M(Θ)(.) on the hybrid-model M(Θ).

There is no technical difficulty to process the fusion in this way and that’s why the full associativity

of the fusion rule is not so fundamental despite of all criticisms against the alternatives to Dempster’s

rules emerging in litterature over the years. The full/direct associativity property is realized only through

Demspter’s rule of combination when working on Shafer’s model. This is one of reasons for which Demp-

ster’s rule is usually preferred to the other fusion rules, but in turn this associativity property (through

the normalization factor 1−m(∅)) is also one of the main sources of the criticisms for more than twenty

years because one knows that Dempster’s rule fails to provide coherent results when conflicts become

high (see chapters 5 and 12 for examples) and something else must be carried out anyway to prevent

problems. This matter of fact is quite paradoxical.

2We introduce here the notation m1,2(.) to explicitly express that the resulting mass is related to the combination of

sources 1 and 2 only.
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To avoid the loss of information in the fusion, one has first to combine all sources using DSm rule on

free-DSm model and then to adapt the belief masses according to the integrity constraints of the model

M. If one first adapts the local masses m1(.), ...mk(.) to the hybrid-modelM and afterwards one applies

the combination rule, the fusion becomes only suboptimal because some information is lost forever during

the transfer of masses of integrity constraints. The same remark holds if the transfer of masses of integrity

constraints is done at some intermediate steps after the fusion of m sources with m < k.

Let’s note also that this formula of transfer is more general (because we include the possibilities to

introduce both exclusivity constraints and non-existential constraints as well) and more precise (because

we explicitly consider all different relative emptiness of elements into the general transfer formula (4.7))

than the generic transfer formulas used in the DST framework proposed as alternative rules to Dempster’s

rule of combination [6] and discussed in section 4.5.10.

4.5.6 Property of the hybrid DSm Rule

The following equality holds:

∑

A∈DΘ

mM(Θ)(A) =
∑

A∈DΘ

φ(A)
[

S1(A) + S2(A) + S3(A)
]

= 1 (4.11)

Proof: Let’s first prove that
∑

A∈DΘ m(A) = 1 where all massesm(A) are obtained by the DSm classic

rule. Let’s consider each mass mi(.) provided by the ith source of information, for 1 ≤ i ≤ k, as a vector

of d = | DΘ | dimension, whose sum of components is equal to one, i.e. mi(D
Θ) = [mi1,mi2, . . . ,mid],

and
∑

j=1,dmij = 1. Thus, for k ≥ 2 sources of information, the mass matrix becomes

M =








m11 m12 . . . m1d

. . . . . . . . . . . .

mk1 mk2 . . . mkd








If one denotes the sets in DΘ by A1, A2, ..., Ad (it doesn’t matter in what order one lists them) then the

column (j) in the matrix represents the masses assigned to Aj by each source of information s1, s2, . . .,

sk; for example si(Aj) = mij , where 1 ≤ i ≤ k. According to the DSm network architecture [3], all the

products in this network will have the form m1j1m2j2 . . .mkjk , i.e. one element only from each matrix

row, and no restriction about the number of elements from each matrix column, 1 ≤ j1, j2, . . . , jk ≤ d.

Each such product will enter in the fusion mass of one set only from DΘ. Hence the sum of all components

of the fusion mass is equal to the sum of all these products, which is equal to

k∏

i=1

d∑

j=1

mij =

k∏

i=1

1 = 1 (4.12)
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The hybrid DSm rule has three sums S1, S2, and S3. Let’s separate the mass matrix M into two disjoint

sub-matrices M∅ formed by the columns of all absolutely and relatively empty sets, and MN formed by

the columns of all non-empty sets. According to the DSm network architecture (for k ≥ 2 rows):

• S1 is the sum of all products resulted from the multiplications of the columns of MN following the

DSm network architecture such that the intersection of their corresponding sets is non-empty, i.e.

the sum of masses of all non-empty sets before any mass of absolutely or relatively empty sets could

be transferred to them;

• S2 is the sum of all products resulted from the multiplications of M∅ following the DSm network

architecture, i.e. a partial sum of masses of absolutely and relatively empty sets transferred to the

ignorances in I , It ∪ Ir or to singletons of Θ.

• S3 is the sum of all the products resulted from the multiplications of the columns of MN and M∅

together, following the DSm network architecture, but such that at least a column is from each

of them, and also the sum of all products of columns of MN such that the intersection of their

corresponding sets is empty (what did not enter into the previous sum S1), i.e. the remaining sum

of masses of absolutely or relatively empty sets transferred to the non-empty sets of the hybrid

DSm model M.

If one now considers all the terms (each such term is a product of the form m1j1m2j2 . . .mkjk ) of these

three sums, we get exactly the same terms as in the DSm network architecture for the DSm classic rule,

thus the sum of all terms occurring in S1, S2, and S3 is 1 (see formula (4.12)) which completes the

proof. The hybrid DSm rule naturally derives from the DSm classic rule. Entire masses of relatively and

absolutely empty sets in a given hybrid DSm model M are transferred to non-empty sets according to

the formula (4.7) and thus

∀A ∈ ∅ ⊂ DΘ, mM(Θ)(A) = 0 (4.13)

The entire mass of a relatively empty set (from DΘ) which has in its expression θj1 , θj2 , . . ., θjr , with

1 ≤ r ≤ n will generally be distributed among the θj1 , θj2 , . . ., θjr or their unions or intersections, and the

distribution follows the way of multiplication from the DSm classic rule, explained by the DSm network

architecture [3]. Thus, because nothing is lost, nothing is gained, the sum of all mM(Θ)(A) is equal to 1

as just proven previously, and fortunately no normalization constant is needed which could bring a loss

of information in the fusion rule. The three summations S1(.), S3(.) and S3(.) are disjoint because:

• S1(.) multiplies the columns corresponding to non-empty sets only - but such that the intersections

of the sets corresponding to these columns are non-empty [from the definition of DSm classic rule];

• S2(.) multiplies the columns corresponding to absolutely and relatively empty sets only;

• S3(.) multiplies:
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a) either the columns corresponding to absolutely or relatively empty sets with the columns

corresponding to non-empty sets such that at least a column corresponds to an absolutely or

relatively emptyset and at least a column corresponds to a non-emptyset,

b) or the columns corresponding to non-empty sets - but such that the intersections of the sets

corresponding to these columns are empty.

The multiplications are following the DSm network architecture, i.e. any product has the above general

form: m1j1m2j2 . . .mkjk , i.e. any product contains as factor one element only from each row of the mass

matrix M and the total number of factors in a product is equal to k. The function φ(A) automatically

assigns the value zero to the mass of any empty set, and allows the calculation of masses of all non-empty

sets.

4.5.7 On the programming of the hybrid DSm rule

We briefly give here an issue for a fast programming of the DSm rule of combination. Let’s consider

Θ = {θ1, θ2, . . . , θn}, the sources B1, B2,. . ., Bk, and p = min{n, k}. One needs to check only the focal

sets, i.e. sets (i.e. propositions) whose masses assigned to them by these sources are not all zero. Thus,

if M is the mass matrix, and we consider a set Aj in DΘ, then the column (j) corresponding to Aj ,

i.e. (m1j m2j . . . mkj) transposed has not to be identical to the null-vector of k-dimension (0 0 . . . 0)

transposed. Let DΘ(step1) be formed by all focal sets at the beginning (after sources B1, B2,. . ., Bk have

assigned masses to the sets in DΘ). Applying the DSm classic rule, besides the sets in DΘ(step1) one

adds r-intersections of sets in DΘ(step1), thus:

DΘ(step2) = DΘ(step1) ∨ {Ai1 ∧Ai2 ∧ . . . ∧Air}

where Ai1 , Ai2 , . . . , Air belong to DΘ(step1) and 2 ≤ r ≤ p.

Applying the hybrid DSm rule, due to its S2 and S3 summations, besides the sets in DΘ(step2) one

adds r-unions of sets and the total ignorance in DΘ(step2), thus:

DΘ(step3) = DΘ(step2) ∨ It ∨ {Ai1 ∨Ai2 ∨ . . . ∨Air}

where Ai1 , Ai2 , . . . , Air belong to DΘ(step2) and 2 ≤ r ≤ p.

This means that instead of computing the masses of all sets in DΘ, one needs to first compute the

masses of all focal sets (step 1), second the masses of their r-intersections (step 2), and third the masses

of r-unions of all previous sets and the mass of total ignorance (step 3).
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4.5.8 Application of the hybrid DSm rule on previous examples

We present in this section some numerical results of the hybrid DSm rule of combination for 2 independent

sources of information. We examine the seven previous examples in order to help the reader to check by

himself (or herself) the validity of our new general formula. We will not go in details in the derivations,

but we just present the main intermediary results S1(A), S2(A) and S3(A) (defined in (4.8), (4.9), (4.10))

involved into the general formula (4.3) with setting the number of sources to combine to k = 2. Now

let’s consider Θ = {θ1, θ2, θ3} and two independent bodies of evidence with the generalized basic belief

assignments3 m1(.) and m2(.) given in the following table4.

ElementA of DΘ m1(A) m2(A) mMf (Θ)(A)

∅ 0 0 0

θ1 ∩ θ2 ∩ θ3 0 0 0.16

θ2 ∩ θ3 0 0.20 0.19

θ1 ∩ θ3 0.10 0 0.12

(θ1 ∪ θ2) ∩ θ3 0 0 0.01

θ3 0.30 0.10 0.10

θ1 ∩ θ2 0.10 0.20 0.22

(θ1 ∪ θ3) ∩ θ2 0 0 0.05

(θ2 ∪ θ3) ∩ θ1 0 0 0

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 0 0 0

(θ1 ∩ θ2) ∪ θ3 0 0 0

θ2 0.20 0.10 0.03

(θ1 ∩ θ3) ∪ θ2 0 0 0

θ2 ∪ θ3 0 0 0

θ1 0.10 0.20 0.08

(θ2 ∩ θ3) ∪ θ1 0 0 0.02

θ1 ∪ θ3 0.10 0.20 0.02

θ1 ∪ θ2 0.10 0 0

θ1 ∪ θ2 ∪ θ3 0 0 0

The right column of the table gives the result obtained by the DSm rule of combination based on the

free-DSm model. The following sections give the results obtained by the hybrid DSm rule on the seven

previous examples of section 4.3. The tables show the values of φ(A), S1(A), S2(A) and S3(A) to help the

reader to check the validity of these results. It is important to note that the values of S1(A), S2(A) and

S3(A) when φ(A) = 0 do not need to be computed in practice but are provided here only for verification.

3A general example with m1(A) > 0 and m2(A) > 0 for all A 6= ∅ ∈ DΘ will be briefly presented in next section.
4The order of elements of DΘ is the order obtained from the generation of isotone Boolean functions - see chapter 2.
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4.5.8.1 Application of the hybrid DSm rule on example 1

Here is the numerical result corresponding to example 1 with the hybrid-model M1 (i.e with the exclu-

sivity constraint θ1 ∩ θ2 ∩ θ3
M1≡ ∅). The right column of the table provides the result obtained using the

hybrid DSm rule, ie. ∀A ∈ DΘ, mM1(Θ)(A) = φ(A)
[
S1(A) + S2(A) + S3(A)

]

ElementA of DΘ φ(A) S1(A) S2(A) S3(A) mM1(Θ)(A)

∅ 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3
M1≡ ∅ 0 0.16 0 0 0

θ2 ∩ θ3 1 0.19 0 0 0.19

θ1 ∩ θ3 1 0.12 0 0 0.12

(θ1 ∪ θ2) ∩ θ3 1 0.01 0 0.02 0.03

θ3 1 0.10 0 0 0.10

θ1 ∩ θ2 1 0.22 0 0 0.22

(θ1 ∪ θ3) ∩ θ2 1 0.05 0 0.02 0.07

(θ2 ∪ θ3) ∩ θ1 1 0 0 0.02 0.02

{(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2) 1 0 0 0 0

(θ1 ∩ θ2) ∪ θ3 1 0 0 0.07 0.07

θ2 1 0.03 0 0 0.03

(θ1 ∩ θ3) ∪ θ2 1 0 0 0.01 0.01

θ2 ∪ θ3 1 0 0 0 0

θ1 1 0.08 0 0 0.08

(θ2 ∩ θ3) ∪ θ1 1 0.02 0 0.02 0.04

θ1 ∪ θ3 1 0.02 0 0 0.02

θ1 ∪ θ2 1 0 0 0 0

θ1 ∪ θ2 ∪ θ3 1 0 0 0 0

DM1 =











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

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













0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 0 1 1

0 0 1 1 1 1

0 1 1 0 0 1

0 1 1 0 1 1

0 1 1 1 1 1

1 0 1 0 1 0

1 0 1 0 1 1

1 0 1 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1
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From the previous table of this first numerical example, we see in column corresponding to S3(A)

how the initial combined mass mMf (Θ)(θ1 ∩ θ2 ∩ θ3) ≡ S1(θ1 ∩ θ2 ∩ θ3) = 0.16 is transferred (due to

the constraint of M1) only onto the elements (θ1 ∪ θ2) ∩ θ3, (θ1 ∪ θ3) ∩ θ2, (θ2 ∪ θ3) ∩ θ1, (θ1 ∩ θ2) ∪ θ3,

(θ1 ∩ θ3) ∪ θ2, and (θ2 ∩ θ3) ∪ θ1 of DΘ. We can easily check that the sum of the elements of the column

for S3(A) is equal to mMf (Θ)(θ1 ∩ θ2 ∩ θ3) = 0.16 (i.e. to the sum of S1(A) for which φ(A) = 0) and that

the sum of S2(A) for which φ(A) = 1 is equal to the sum of S3(A) for which φ(A) = 0 (in this example

the sum is zero). Thus after introducing the constraint, the initial hyper-power set DΘ reduces to 18

elements as follows

DΘ
M1

= {∅, θ2 ∩ θ3, θ1 ∩ θ3, (θ1 ∪ θ2) ∩ θ3, θ3, θ1 ∩ θ2, (θ1 ∪ θ3) ∩ θ2, (θ2 ∪ θ3) ∩ θ1, {(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2),

(θ1 ∩ θ2) ∪ θ3, θ2, (θ1 ∩ θ3) ∪ θ2, θ2 ∪ θ3, θ1, (θ2 ∩ θ3) ∪ θ1, θ1 ∪ θ3, θ1 ∪ θ2, θ1 ∪ θ2 ∪ θ3}
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As detailed in chapter 2, the elements of DΘ
M1

can be described and encoded by the matrix product

DM1 · uM1 with DM1 given above and the basis vector uM1 defined5 as uM1 = [< 1 >< 2 >< 12 ><

3 >< 13 >< 23 >]′. Actually uM1 is directly obtained from uMf by removing its component < 123 >

corresponding to the constraint introduced by the model M1. In general, the encoding matrix DM for

a given hybrid DSm model M is obtained from DMf by removing all its columns corresponding to the

constraints of the chosen modelM and all the rows corresponding to redundant/equivalent propositions.

In this particular example with model M1, we will just have to remove the last column of DMf to get

DM1 and no row is removed from DMf because there is no redundant/equivalent proposition involved

in this example. This suppression of some rows of DMf will however occur in the next examples.

4.5.8.2 Application of the hybrid DSm rule on example 2

Here is the numerical result corresponding to example 2 with the hybrid-model M2 (i.e with the exclu-

sivity constraint θ1 ∩ θ2
M2≡ ∅ ⇒ θ1 ∩ θ2 ∩ θ3

M2≡ ∅). One gets now

ElementA of DΘ φ(A) S1(A) S2(A) S3(A) mM2(Θ)(A)

∅ 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3
M2≡ ∅ 0 0.16 0 0 0

θ2 ∩ θ3 1 0.19 0 0 0.19

θ1 ∩ θ3 1 0.12 0 0 0.12

(θ1 ∪ θ2) ∩ θ3 1 0.01 0 0.02 0.03

θ3 1 0.10 0 0 0.10

θ1 ∩ θ2
M2≡ ∅ 0 0.22 0 0.02 0

(θ1 ∪ θ3) ∩ θ2
M2≡ θ2 ∩ θ3 1 0.05 0 0.02 0.07

(θ2 ∪ θ3) ∩ θ1
M2≡ θ1 ∩ θ3 1 0 0 0.02 0.02

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M2≡ (θ1 ∪ θ2) ∩ θ3 1 0 0 0 0

(θ1 ∩ θ2) ∪ θ3
M2≡ θ3 1 0 0 0.07 0.07

θ2 1 0.03 0 0.05 0.08

(θ1 ∩ θ3) ∪ θ2 1 0 0 0.01 0.01

θ2 ∪ θ3 1 0 0 0 0

θ1 1 0.08 0 0.04 0.12

(θ2 ∩ θ3) ∪ θ1 1 0.02 0 0.02 0.04

θ1 ∪ θ3 1 0.02 0 0.04 0.06

θ1 ∪ θ2 1 0 0.02 0.07 0.09

θ1 ∪ θ2 ∪ θ3 1 0 0 0 0

5DMf was denoted Dn and uMf as un in chapter 2.
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From the previous table of this numerical example, we see in the column corresponding to S3(A)

how the initial combined masses mMf (Θ)(θ1 ∩ θ2 ∩ θ3) ≡ S1(θ1 ∩ θ2 ∩ θ3) = 0.16 and mMf (Θ)(θ1 ∩ θ2) ≡
S1(θ1∩θ2) = 0.22 are transferred (due to the constraint ofM2) onto some elements of DΘ. We can easily

check that the sum of the elements of the column for S3(A) is equal to 0.16 + 0.22 = 0.38 (i.e. to the

sum of S1(A) for which φ(A) = 0) and that the sum of S2(A) for which φ(A) = 1 is equal to the sum of

S3(A) for which φ(A) = 0 (this sum is 0.02). Because some elements of DΘ are now equivalent due to the

constraints ofM2, we have to sum all the masses corresponding to same equivalent propositions/elements

(by example {(θ1∩θ2)∪θ3}∩(θ1∪θ2)
M2≡ (θ1∪θ2)∩θ3). This can be viewed as the final compression step.

One then gets the reduced hyper-power set DΘ
M2

having now 13 different elements with the combined

belief masses presented in the following table.

The basis vector uM2 and the encoding matrix DM2 for the elements of DΘ
M2

are given by uM2 =

[< 1 >< 2 >< 3 >< 13 >< 23 >]′ and below. Actually uM2 is directly obtained from uMf by removing

its components < 12 > and < 123 > corresponding to the constraints introduced by the model M2.

ElementA of DΘ
M2

mM2(Θ)(A)

∅ 0

θ2 ∩ θ3 0.19 + 0.07 = 0.26

θ1 ∩ θ3 0.12 + 0.02 = 0.14

(θ1 ∪ θ2) ∩ θ3 0.03 + 0 = 0.03

θ3 0.10 + 0.07 = 0.17

θ2 0.08

(θ1 ∩ θ3) ∪ θ2 0.01

θ2 ∪ θ3 0

θ1 0.12

(θ2 ∩ θ3) ∪ θ1 0.04

θ1 ∪ θ3 0.06

θ1 ∪ θ2 0.09

θ1 ∪ θ2 ∪ θ3 0

and DM2 =


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















0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1
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4.5.8.3 Application of the hybrid DSm rule on example 3

Here is the numerical result corresponding to example 3 with the hybrid-model M3 (i.e with the exclu-

sivity constraint (θ1 ∪ θ3)∩ θ2
M3≡ ∅). This constraint implies directly θ1 ∩ θ2 ∩ θ3

M3≡ ∅, θ1 ∩ θ2
M3≡ ∅ and

θ2 ∩ θ3
M3≡ ∅. One gets now

Element A of DΘ φ(A) S1(A) S2(A) S3(A) mM3(Θ)(A)

∅ 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3
M3≡ ∅ 0 0.16 0 0 0

θ2 ∩ θ3
M3≡ ∅ 0 0.19 0 0 0

θ1 ∩ θ3 1 0.12 0 0 0.12

(θ1 ∪ θ2) ∩ θ3
M3≡ θ1 ∩ θ3 1 0.01 0 0.02 0.03

θ3 1 0.10 0 0.06 0.16

θ1 ∩ θ2
M3≡ ∅ 0 0.22 0 0.02 0

(θ1 ∪ θ3) ∩ θ2
M3≡ ∅ 0 0.05 0 0.02 0

(θ2 ∪ θ3) ∩ θ1
M3≡ θ1 ∩ θ3 1 0 0 0.02 0.02

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M3≡ θ1 ∩ θ3 1 0 0 0 0

(θ1 ∩ θ2) ∪ θ3
M3≡ θ3 1 0 0 0.07 0.07

θ2 1 0.03 0 0.09 0.12

(θ1 ∩ θ3) ∪ θ2 1 0 0 0.01 0.01

θ2 ∪ θ3 1 0 0 0.05 0.05

θ1 1 0.08 0 0.04 0.12

(θ2 ∩ θ3) ∪ θ1
M3≡ θ1 1 0.02 0 0.02 0.04

θ1 ∪ θ3 1 0.02 0 0.06 0.08

θ1 ∪ θ2 1 0 0.02 0.09 0.11

θ1 ∪ θ2 ∪ θ3 1 0 0.02 0.05 0.07

We see in the column corresponding to S3(A) how the initial combined massesmMf (Θ)((θ1∪θ3)∩θ2) ≡
S1((θ1∪θ3)∩θ2) = 0.05, mMf (Θ)(θ1∩θ2∩θ3) ≡ S1(θ1∩θ2∩θ3) = 0.16, mMf (Θ)(θ2∩θ3) ≡ S1(θ2∩θ3) = 0.19

and mMf (Θ)(θ1 ∩ θ2) ≡ S1(θ1 ∩ θ2) = 0.22 are transferred (due to the constraint of M3) onto some

elements of DΘ. We can easily check that the sum of the elements of the column for S3(A) is equal to

0.05 + 0.16 + 0.19 + 0.22 = 0.62 (i.e. to the sum of S1(A) for which φ(A) = 0) and that the sum of S2(A)

for which φ(A) = 1 is equal to 0.02+0.02 = 0.04 (i.e. to the sum of S3(A) for which φ(A) = 0). Due to the

modelM3, one has to sum all the masses corresponding to same equivalent propositions. Thus after the

final compression step, one gets the reduced hyper-power set DΘ
M3

having only 10 different elements with

the following combined belief masses. The basis vector uM3 is given by uM3 = [< 1 >< 2 >< 3 >< 13 >]′

and the encoding matrix DM3 is shown just right after.
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ElementA of DΘ
M3

mM3(Θ)(A)

∅ 0

θ1 ∩ θ3 0.12 + 0.03 + 0.02 + 0 = 0.17

θ3 0.16 + 0.07 = 0.23

θ2 0.12

(θ1 ∩ θ3) ∪ θ2 0.01

θ2 ∪ θ3 0.05

θ1 0.12 + 0.04 = 0.16

θ1 ∪ θ3 0.08

θ1 ∪ θ2 0.11

θ1 ∪ θ2 ∪ θ3 0.07

and DM3 =


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0 0 0 0

0 0 0 1

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1
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4.5.8.4 Application of the hybrid DSm rule on example 4 (Shafer’s model)

Here is the result obtained with the hybrid-model M4, i.e. Shafer’s model.

ElementA of DΘ φ(A) S1(A) S2(A) S3(A) mM4(Θ)(A)

∅ 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3
M4≡ ∅ 0 0.16 0 0 0

θ2 ∩ θ3
M4≡ ∅ 0 0.19 0 0 0

θ1 ∩ θ3
M4≡ ∅ 0 0.12 0 0 0

(θ1 ∪ θ2) ∩ θ3
M4≡ ∅ 0 0.01 0 0.02 0

θ3 1 0.10 0 0.07 0.17

θ1 ∩ θ2
M4≡ ∅ 0 0.22 0 0.02 0

(θ1 ∪ θ3) ∩ θ2
M4≡ ∅ 0 0.05 0 0.02 0

(θ2 ∪ θ3) ∩ θ1
M4≡ ∅ 0 0 0 0.02 0

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M4≡ ∅ 0 0 0 0 0

(θ1 ∩ θ2) ∪ θ3
M4≡ θ3 1 0 0 0.07 0.07

θ2 1 0.03 0 0.09 0.12

(θ1 ∩ θ3) ∪ θ2
M4≡ θ2 1 0 0 0.01 0.01

θ2 ∪ θ3 1 0 0 0.05 0.05

θ1 1 0.08 0 0.06 0.14

(θ2 ∩ θ3) ∪ θ1
M4≡ θ1 1 0.02 0 0.02 0.04

θ1 ∪ θ3 1 0.02 0 0.15 0.17

θ1 ∪ θ2 1 0 0.02 0.09 0.11

θ1 ∪ θ2 ∪ θ3 1 0 0.06 0.06 0.12
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From the previous table of this numerical example, we see in column corresponding to S3(A) how the

initial combined masses of the eight elements forced to the empty set by the constraints of the model

M4 are transferred onto some elements of DΘ. We can easily check that the sum of the elements of the

column for S3(A) is equal to 0.16 + 0.19 + 0.12 + 0.01 + 0.22 + 0.05 = 0.75 (i.e. to the sum of S1(A) for

which φ(A) = 0) and that the sum of S2(A) for which φ(A) = 1 is equal to the sum of S3(A) for which

φ(A) = 0 (this sum is 0.02 + 0.06 = 0.08 = 0.02 + 0.02 + 0.02 + 0.02).

After the final compression step (i.e. the clustering of all equivalent propositions), one gets the reduced

hyper-power set DΘ
M4

having only 23 = 8 (corresponding to the classical power set 2Θ) with the following

combined belief masses:

ElementA of DΘ
M4

mM4(Θ)(A)

∅ 0

θ3 0.17 + 0.07 = 0.24

θ2 0.12 + 0.01 = 0.13

θ2 ∪ θ3 0.05

θ1 0.14 + 0.04 = 0.18

θ1 ∪ θ3 0.17

θ1 ∪ θ2 0.11

θ1 ∪ θ2 ∪ θ3 0.12

and DM4 =




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


















0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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The basis vector uM4 is given by uM4 = [< 1 >< 2 >< 3 >]′ and the encoding matrix DM4 is shown

just above.

4.5.8.5 Application of the hybrid DSm rule on example 5

The following table presents the numerical result corresponding to example 5 with the hybrid-modelM5

including the non-existential constraint θ1
M5≡ ∅. This non-existential constraint implies θ1∩θ2∩θ3

M5≡ ∅,
θ1 ∩ θ2

M5≡ ∅, θ1 ∩ θ3
M5≡ ∅ and (θ2 ∪ θ3) ∩ θ1

M5≡ ∅.

From the table, we see in the column corresponding to S3(A) how the initial combined masses of

the 5 elements forced to the empty set by the constraints of the model M5 are transferred onto some

elements of DΘ. We can easily check that the sum of the elements of the column for S3(A) is equal

to 0 + 0.16 + 0.12 + 0.22 + 0 + 0.08 = 0.58 (i.e. to the sum of S1(A) for which φ(A) = 0) and that

the sum of S2(A) for which φ(A) = 1 is equal to the sum of S3(A) for which φ(A) = 0 (this sum is

0.02 + 0.06 + 0.04 = 0.12 = 0.02 + 0.02 + 0.08).
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Element A of DΘ φ(A) S1(A) S2(A) S3(A) mM5(Θ)(A)

∅ 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3
M5≡ ∅ 0 0.16 0 0 0

θ2 ∩ θ3 1 0.19 0 0 0.19

θ1 ∩ θ3
M5≡ ∅ 0 0.12 0 0 0

(θ1 ∪ θ2) ∩ θ3
M5≡ θ2 ∩ θ3 1 0.01 0 0.02 0.03

θ3 1 0.10 0 0.01 0.11

θ1 ∩ θ2
M5≡ ∅ 0 0.22 0 0.02 0

(θ1 ∪ θ3) ∩ θ2
M5≡ θ2 ∩ θ3 1 0.05 0 0.02 0.07

(θ2 ∪ θ3) ∩ θ1
M5≡ ∅ 0 0 0 0.02 0

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M5≡ θ2 ∩ θ3 1 0 0 0 0

(θ1 ∩ θ2) ∪ θ3
M5≡ θ3 1 0 0 0.07 0.07

θ2 1 0.03 0 0.05 0.08

(θ1 ∩ θ3) ∪ θ2
M5≡ θ2 1 0 0 0.01 0.01

θ2 ∪ θ3 1 0 0 0 0

θ1
M5≡ ∅ 0 0.08 0.02 0.08 0

(θ2 ∩ θ3) ∪ θ1
M5≡ θ2 ∩ θ3 1 0.02 0 0.02 0.04

θ1 ∪ θ3
M5≡ θ3 1 0.02 0.02 0.17 0.21

θ1 ∪ θ2
M5≡ θ2 1 0 0.06 0.09 0.15

θ1 ∪ θ2 ∪ θ3
M5≡ θ2 ∪ θ3 1 0 0.04 0 0.04

After the final compression step (i.e. the clustering of all equivalent propositions), one gets the reduced

hyper-power set DΘ
M5

having only 5 different elements according to:

ElementA of DΘ
M5

mM5(Θ)(A)

∅ 0

θ2 ∩ θ3 0.19 + 0.03 + 0.07 + 0 + 0.04 = 0.33

θ3 0.11 + 0.07 + 0.21 = 0.39

θ2 0.08 + 0.01 + 0.15 = 0.24

θ2 ∪ θ3 0 + 0.04 = 0.04

and DM5 =















0 0 0

0 0 1

0 1 1

1 0 1

1 1 1















The basis vector uM5 is given by uM5 = [< 2 >< 3 >< 23 >]′. and the encoding matrix DM5 is

shown just above.
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4.5.8.6 Application of the hybrid DSm rule on example 6

Here is the numerical result corresponding to example 6 with the hybrid-modelM6 including the two non-

existential constraint θ1
M6≡ ∅ and θ2

M6≡ ∅. This is a degenerate example actually, since no uncertainty

arises in such trivial model. We just want to show here that the hybrid DSm rule still works in this

example and provide a legitimate result. By applying the hybrid DSm rule of combination, one now gets:

ElementA of DΘ φ(A) S1(A) S2(A) S3(A) mM6(Θ)(A)

∅ 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3
M6≡ ∅ 0 0.16 0 0 0

θ2 ∩ θ3
M6≡ ∅ 0 0.19 0 0 0

θ1 ∩ θ3
M6≡ ∅ 0 0.12 0 0 0

(θ1 ∪ θ2) ∩ θ3
M6≡ ∅ 0 0.01 0 0.02 0

θ3 1 0.10 0 0.07 0.17

θ1 ∩ θ2
M6≡ ∅ 0 0.22 0 0.02 0

(θ1 ∪ θ3) ∩ θ2
M6≡ ∅ 0 0.05 0 0.02 0

(θ2 ∪ θ3) ∩ θ1
M6≡ ∅ 0 0 0 0.02 0

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M6≡ ∅ 0 0 0 0 0

(θ1 ∩ θ2) ∪ θ3
M6≡ θ3 1 0 0 0.07 0.07

θ2
M6≡ ∅ 0 0.03 0.02 0.11 0

(θ1 ∩ θ3) ∪ θ2
M6≡ ∅ 0 0 0 0.01 0

θ2 ∪ θ3
M6≡ θ3 1 0 0.04 0.05 0.09

θ1
M6≡ ∅ 0 0.08 0 0.08 0

(θ2 ∩ θ3) ∪ θ1
M6≡ ∅ 0 0.02 0 0.02 0

θ1 ∪ θ3
M6≡ θ3 1 0.02 0.02 0.19 0.23

θ1 ∪ θ2
M6≡ ∅ 0 0 0.21 0.12 0

θ1 ∪ θ2 ∪ θ3
M6≡ θ3 1 0 0.36 0.08 0.44

We can still verify that the sum of S3(A) (i.e. 0.88) equals the sum of S1(A) for which φ(A) = 0 and

that the sum of S2(A) for which φ(A) = 1 (i.e. 0.42) equals the sum of S3(A) for which φ(A) = 0. After

the clustering of all equivalent propositions, one gets the reduced hyper-power set DΘ
M6

having only 2

different elements according to:

ElementA of DΘ
M6

mM6(Θ)(A)

∅ 0

θ3 0.17 + 0.07 + 0.09 + 0.23 + 0.44 = 1

The encoding matrix DM6 and the basis vector uM6 for the elements of DΘ
M6

reduce to DM6 = [01]′

and uM6 = [< 3 >].
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4.5.8.7 Application of the hybrid DSm rule on example 7

Here is the numerical result corresponding to example 7 with the hybrid-model M7 including the mixed

exclusivity and non-existential constraint (θ1∩θ2)∪θ3
M7≡ ∅. This mixed constraint implies θ1∩θ2∩θ3

M7≡ ∅,
θ1 ∩ θ2

M7≡ ∅, θ1 ∩ θ3
M7≡ ∅, θ2 ∩ θ3

M7≡ ∅, (θ1 ∪ θ2) ∩ θ3
M7≡ ∅, (θ1 ∪ θ3) ∩ θ2

M7≡ ∅, (θ2 ∪ θ3) ∩ θ1
M7≡ ∅,

{(θ1 ∩ θ2)∪ θ3}∩ (θ1 ∪ θ2)
M7≡ ∅ and θ3

M7≡ ∅. By applying the hybrid DSm rule of combination, one gets:

ElementA of DΘ φ(A) S1(A) S2(A) S3(A) mM7(Θ)(A)

∅ 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3
M7≡ ∅ 0 0.16 0 0 0

θ2 ∩ θ3
M7≡ ∅ 0 0.19 0 0 0

θ1 ∩ θ3
M7≡ ∅ 0 0.12 0 0 0

(θ1 ∪ θ2) ∩ θ3
M7≡ ∅ 0 0.01 0 0.02 0

θ3
M7≡ ∅ 0 0.10 0.03 0.10 0

θ1 ∩ θ2
M7≡ ∅ 0 0.22 0 0.02 0

(θ1 ∪ θ3) ∩ θ2
M7≡ ∅ 0 0.05 0 0.02 0

(θ2 ∪ θ3) ∩ θ1
M7≡ ∅ 0 0 0 0.02 0

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)
M7≡ ∅ 0 0 0 0 0

(θ1 ∩ θ2) ∪ θ3
M7≡ ∅ 0 0 0 0.07 0

θ2 1 0.03 0 0.09 0.12

(θ1 ∩ θ3) ∪ θ2
M7≡ θ2 1 0 0 0.01 0.01

θ2 ∪ θ3
M7≡ θ2 1 0 0.06 0.05 0.11

θ1 1 0.08 0 0.06 0.14

(θ2 ∩ θ3) ∪ θ1
M7≡ θ1 1 0.02 0 0.02 0.04

θ1 ∪ θ3
M7≡ θ1 1 0.02 0.01 0.22 0.25

θ1 ∪ θ2 1 0 0.02 0.09 0.11

θ1 ∪ θ2 ∪ θ3
M7≡ θ1 ∪ θ2 1 0 0.16 0.06 0.22

After the clustering of all equivalent propositions, one gets the reduced hyper-power set DΘ
M7

having

only 4 different elements according to:

ElementA of DΘ
M7

mM7(Θ)(A)

∅ 0

θ2 0.12 + 0.01 + 0.11 = 0.24

θ1 0.14 + 0.04 + 0.25 = 0.43

θ1 ∪ θ2 0.11 + 0.22 = 0.33
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The basis vector uM7 and the encoding matrix DM7 for the elements of DΘ
M7

are given by

uM7 = [< 1 >< 2 >]′ and DM7 =











0 0

0 1

1 0

1 1











We can still verify that the sum of S3(A) (i.e. 0.85) equals the sum of S1(A) for which φ(A) = 0 and

that the sum of S2(A) for which φ(A) = 1 (i.e. 0.25) equals the sum of S3(A) for which φ(A) = 0.

4.5.9 Example with more general basic belief assignments m1(.) and m2(.)

We present in this section the numerical results of the hybrid DSm rule of combination applied upon the

seven previous models Mi, i = 1, ..., 7 with two general basic belief assignments m1(.) and m2(.) such

that m1(A) > 0 and m2(A) > 0 for all A 6= ∅ ∈ DΘ={θ1,θ2,θ3}. We just provide here the results. The

verification is left to the reader. The following table presents the numerical values chosen for m1(.) and

m2(.) and the result of the fusion obtained by the classical DSm rule of combination

ElementA of DΘ m1(A) m2(A) mMf (A)

∅ 0 0 0

θ1 ∩ θ2 ∩ θ3 0.01 0.40 0.4389

θ2 ∩ θ3 0.04 0.03 0.0410

θ1 ∩ θ3 0.03 0.04 0.0497

(θ1 ∪ θ2) ∩ θ3 0.01 0.02 0.0257

θ3 0.03 0.04 0.0311

θ1 ∩ θ2 0.02 0.20 0.1846

(θ1 ∪ θ3) ∩ θ2 0.02 0.01 0.0156

(θ2 ∪ θ3) ∩ θ1 0.03 0.04 0.0459

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 0.04 0.03 0.0384

(θ1 ∩ θ2) ∪ θ3 0.04 0.03 0.0296

θ2 0.02 0.01 0.0084

(θ1 ∩ θ3) ∪ θ2 0.01 0.02 0.0221

θ2 ∪ θ3 0.20 0.02 0.0140

θ1 0.01 0.02 0.0109

(θ2 ∩ θ3) ∪ θ1 0.02 0.01 0.0090

θ1 ∪ θ3 0.04 0.03 0.0136

θ1 ∪ θ2 0.03 0.04 0.0175

θ1 ∪ θ2 ∪ θ3 0.40 0.01 0.0040
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The following table shows the results obtained by the hybrid DSm rule before the final compression

step of all redundant propositions for the hybrid DSm models presented in the previous examples.

ElementA of DΘ mM1(A) mM2(A) mM3(A) mM4(A) mM5(A) mM6(A) mM7(A)

∅ 0 0 0 0 0 0 0

θ1 ∩ θ2 ∩ θ3 0 0 0 0 0 0 0

θ2 ∩ θ3 0.0573 0.0573 0 0 0.0573 0 0

θ1 ∩ θ3 0.0621 0.0621 0.0621 0 0 0 0

(θ1 ∪ θ2) ∩ θ3 0.0324 0.0324 0.0335 0 0.0334 0 0

θ3 0.0435 0.0435 0.0460 0.0494 0.0459 0.0494 0

θ1 ∩ θ2 0.1946 0 0 0 0 0 0

(θ1 ∪ θ3) ∩ θ2 0.0323 0.0365 0 0 0.0365 0 0

(θ2 ∪ θ3) ∩ θ1 0.0651 0.0719 0.0719 0 0 0 0

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 0.0607 0.0704 0.0743 0 0.0764 0 0

(θ1 ∩ θ2) ∪ θ3 0.0527 0.0613 0.0658 0.0792 0.0687 0.0792 0

θ2 0.0165 0.0207 0.0221 0.0221 0.0207 0 0.0221

(θ1 ∩ θ3) ∪ θ2 0.0274 0.0309 0.0340 0.0375 0.0329 0 0.0375

θ2 ∪ θ3 0.0942 0.1346 0.1471 0.1774 0.1518 0.1850 0.1953

θ1 0.0151 0.0175 0.0175 0.0195 0 0 0.0195

(θ2 ∩ θ3) ∪ θ1 0.0182 0.0229 0.0243 0.0295 0.0271 0 0.0295

θ1 ∪ θ3 0.0299 0.0385 0.0419 0.0558 0.0489 0.0589 0.0631

θ1 ∪ θ2 0.0299 0.0412 0.0452 0.0544 0.0498 0 0.0544

θ1 ∪ θ2 ∪ θ3 0.1681 0.2583 0.3143 0.4752 0.3506 0.6275 0.5786

The next tables present the final results of the hybrid DSm rule of combination after the compression

step (the merging of all equivalent redundant propositions) presented in previous examples.

ElementA of DΘ
M7

mM7(Θ)(A)

∅ 0

θ2 0.2549

θ1 0.1121

θ1 ∪ θ2 0.6330

ElementA of DΘ
M6

mM6(Θ)(A)

∅ 0

θ3 1

ElementA of DΘ
M5

mM5(Θ)(A)

∅ 0

θ2 ∩ θ3 0.2307

θ3 0.1635

θ2 0.1034

θ2 ∪ θ3 0.5024

On example no. 7 On example no. 6 On example no. 5
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ElementA of DΘ
M4

mM4(Θ)(A)

∅ 0

θ3 0.1286

θ2 0.0596

θ2 ∪ θ3 0.1774

θ1 0.0490

θ1 ∪ θ3 0.0558

θ1 ∪ θ2 0.0544

θ1 ∪ θ2 ∪ θ3 0.4752

ElementA of DΘ
M3

mM3(Θ)(A)

∅ 0

θ1 ∩ θ3 0.2418

θ3 0.1118

θ2 0.0221

(θ1 ∩ θ3) ∪ θ2 0.0340

θ2 ∪ θ3 0.1471

θ1 0.0418

θ1 ∪ θ3 0.0419

θ1 ∪ θ2 0.0452

θ1 ∪ θ2 ∪ θ3 0.3143

On example no 4 On example no 3

ElementA of DΘ
M2

mM2(Θ)(A)

∅ 0

θ2 ∩ θ3 0.0938

θ1 ∩ θ3 0.1340

(θ1 ∪ θ2) ∩ θ3 0.1028

θ3 0.1048

θ2 0.0207

(θ1 ∩ θ3) ∪ θ2 0.0309

θ2 ∪ θ3 0.1346

θ1 0.0175

(θ2 ∩ θ3) ∪ θ1 0.0229

θ1 ∪ θ3 0.0385

θ1 ∪ θ2 0.0412

θ1 ∪ θ2 ∪ θ3 0.2583

ElementA of DΘ
M1

mM1(Θ)(A)

∅ 0

θ2 ∩ θ3 0.0573

θ1 ∩ θ3 0.0621

(θ1 ∪ θ2) ∩ θ3 0.0324

θ3 0.0435

θ1 ∩ θ2 0.1946

(θ1 ∪ θ3) ∩ θ2 0.0323

(θ2 ∪ θ3) ∩ θ1 0.0651

(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) 0.0607

(θ1 ∩ θ2) ∪ θ3 0.0527

θ2 0.0165

(θ1 ∩ θ3) ∪ θ2 0.0274

θ2 ∪ θ3 0.0942

θ1 0.0151

(θ2 ∩ θ3) ∪ θ1 0.0182

θ1 ∪ θ3 0.0299

θ1 ∪ θ2 0.0299

θ1 ∪ θ2 ∪ θ3 0.1681

On example no 2 On example no 1
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4.5.10 The hybrid DSm rule versus Dempster’s rule of combination

In its essence, the hybrid DSm rule of combination is close to Dubois and Prade’s rule of combination

(see chapter 1 and [4]) but more general and precise because it works on DΘ ⊃ 2Θ and allows us to

include all possible exclusivity and non-existential constraints for the model one has to work with. The

advantage of using the hybrid DSm rule is that it does not require the calculation of weighting factors,

nor a normalization. The hybrid DSm rule of combination is definitely not equivalent to Dempster’s rule

of combination as one can easily prove in the following very simple example:

Let’s consider Θ = {θ1, θ2} and the two sources in full contradiction providing the following basic

belief assignments

m1(θ1) = 1 m1(θ2) = 0

m2(θ1) = 0 m2(θ2) = 1

Using the classic DSm rule of combination working with the free DSm model Mf , one gets

mMf (θ1) = 0 mMf (θ2) = 0 mMf (θ1 ∩ θ2) = 1 mMf (θ1 ∪ θ2) = 0

If one forces θ1 and θ2 to be exclusive to work with Shafer’s model M0, then the Dempster’s rule of

combination can not be applied in this limit case because of the full contradiction of the two sources of

information. One gets the undefined operation 0/0. But the hybrid DSm rule can be applied in such

limit case because it transfers the mass of this empty set (θ1 ∩ θ2 ≡ ∅ because of the choice of the model

M0) to non-empty set(s), and one gets:

mM0(θ1) = 0 mM0(θ2) = 0 mM0(θ1 ∩ θ2) = 0 mM0(θ1 ∪ θ2) = 1

This result is coherent in this very simple case with Yager’s and Dubois-Prade’s rule of combination [11, 4].

Now let examine the behavior of the numerical result when introducing a small variation ε > 0 on

initial basic belief assignments m1(.) and m2(.) as follows:

m1(θ1) = 1− ε m1(θ2) = ε and m2(θ1) = ε m2(θ2) = 1− ε

As shown in figure 4.2, limε→0mDS(.), where mDS(.) is the result obtained from the Dempster’s rule

of combination, is given by

mDS(θ1) = 0.5 mDS(θ2) = 0.5 mDS(θ1 ∩ θ2) = 0 mDS(θ1 ∪ θ2) = 0

This result is very questionable because it assigns same belief on θ1 and θ2 which is more informational

than to assign all the belief to the total ignorance. The assignment of the belief to the total ignorance
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appears to be more justified from our point of view because it properly reflects the almost total contra-

diction between the two sources and in such cases, it seems legitimate that the information can be drawn

from the fusion. When we apply the hybrid DSm rule of combination (using Shafer’s model M0), one

gets the expected belief assignment on the total ignorance, i.e. mM0(θ1∪θ2) = 1. The figure below shows

the evolution of belief assignments on θ1, θ2 and θ1 ∪ θ2 with ε obtained with the classical Dempster rule

and the hybrid DSm rule based on Shafer’s modelM0 (i.e. θ1 ∩ θ2
M0≡ ∅).
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Figure 4.2: Comparison of Dempster’s rule with the hybrid DSm rule on Θ = {θ1, θ2}

4.6 Dynamic fusion

The hybrid DSm rule of combination presented in this paper has been developed for static problems,

but is also directly applicable for easily handling dynamic fusion problems in real time as well, since at

each temporal change of the models, one can still apply such a hybrid rule. If DΘ changes, due to the

dynamicity of the frame Θ, from time tl to time tl+1, i.e. some of its elements which at time tl were not

empty become (or are proven) empty at time tl+1, or vice versa: if new elements, empty at time tl, arise

non-empty at time tl+1, this hybrid DSm rule can be applied again at each change. If Θ stays the same

but its set non-empty elements of DΘ increases, then again apply the hybrid DSm rule.

4.6.1 Example 1

Let’s consider the testimony fusion problem6 with the frame

Θ(tl) , {θ1 ≡ young, θ2 ≡ old, θ3 ≡ white hairs}

with the following two basic belief assignments

m1(θ1) = 0.5 m1(θ3) = 0.5 and m2(θ2) = 0.5 m2(θ3) = 0.5

6This problem has been proposed to the authors in a private communication by L. Cholvy in 2002.
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By applying the classical DSm fusion rule, one then gets

mMf (Θ(tl))(θ1 ∩ θ2) = 0.25 mMf (Θ(tl))(θ1 ∩ θ3) = 0.25

mMf (Θ(tl))(θ2 ∩ θ3) = 0.25 mMf (Θ(tl))(θ3) = 0.25

Suppose now that at time tl+1, one knows that young people don’t have white hairs (i.e θ1∩θ3 ≡ ∅). How

can we update the previous fusion result with this new information on the model of the problem? We

solve it with the hybrid DSm rule, which transfers the mass of the empty sets (imposed by the constraints

on the new modelM available at time tl+1) to the non-empty sets of DΘ, going on the track of the DSm

classic rule. Using the hybrid DSm rule with the constraint θ1 ∩ θ3 ≡ ∅, one then gets:

mM(θ1 ∩ θ2) = 0.25 mM(θ2 ∩ θ3) = 0.25 mM(θ3) = 0.25

and the mass mM(θ1 ∩ θ3) = 0, because θ1 ∩ θ3 = {young} ∩ {white hairs} M≡ ∅ and its previous mass

mMf (Θ(tl))(θ1 ∩ θ3) = 0.25 is transferred to mM(θ1 ∪ θ3) = 0.25 by the hybrid DSm rule.

4.6.2 Example 2

Let Θ(tl) = {θ1, θ2, . . . , θn} be a list of suspects and let’s consider two observers who eyewitness the scene

of plunder at a museum in Bagdad and who testify to the radio and TV the identities of thieves using the

basic beliefs assignments m1(.) and m2(.) defined on DΘ(tl), where tl represents the time of the observa-

tion. Afterwards, at time tl+1, one finds out that one suspect, among this list Θ(tl), say θi, could not be

a suspect because he was on duty in another place, evidence which was certainly confirmed. Therefore he

has to be taken off the suspect list Θ(tl), and a new frame of discernment results in Θ(tl+1). If this one

changes again, one applies again the hybrid DSm of combining of evidences, and so on. This is a typically

dynamical example where models change with time and where one needs to adapt fusion results with the

current model over time. In the meantime, one can also take into account new observations/testimonies

in the hybrid DSm fusion rule as soon as they become available to the fusion system.

If Θ (and therefore DΘ) diminish (i.e. some of their elements are proven to be empty sets) from time

tl to time tl+1, then one applies the hybrid DSm rule in order to transfer the masses of empty sets to the

non-empty sets (in the way of the DSm classic rule) getting an updated basic belief assignment mtl+1|tl(.).

Contrarily, if Θ and DΘ increase (i.e. new elements arise in Θ, and/or new elements in DΘ are proven

different from the empty set and as a consequence a basic belief assignment for them is required), then

new masses (from the same or from the other sources of information) are needed to describe these new

elements, and again one combines them using the hybrid DSm rule.
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4.6.3 Example 3

Let’s consider a fusion problem at time tl characterized by the frame Θ(tl) , {θ1, θ2} and two independent

sources of information providing the basic belief assignments m1(.) and m2(.) over DΘ(tl) and assume

that at time tl+1 a new hypothesis θ3 is introduced into the previous frame Θ(tl) and a third source of

evidence available at time tl+1 provides its own basic belief assignment m3(.) over DΘ(tl+1) where

Θ(tl+1) , {Θ(tl), θ3} ≡ {θ1, θ2, θ3}

To solve such kind of dynamical fusion problems, we just use the classical DSm fusion rule as follows:

• combine m1(.) and m2(.) at time tl using classical DSm fusion rule to get m12(.) = [m1 ⊕m2](.)

over DΘ(tl)

• because DΘ(tl) ⊂ DΘ(tl+1), m12(.) assigns the combined basic belief on a subset of DΘ(tl+1), it is

still directly possible to combine m12(.) with m3(.) at time tl+1 by the classical DSm fusion rule to

get the final result m123(.) over DΘ(tl+1) given by

mtl+1
(.) , m123(.) = [m12 ⊕m3](.) = [(m1 ⊕m2)⊕m3](.) ≡ [m1 ⊕m2 ⊕m3](.)

• eventually apply hybrid DSm rule if some integrity constraints have to be taken into account in the

model M of the problem

This method can be directly generalized to any number of sources of evidences and, in theory, to any

structure/dimension of the frames Θ(tl), Θ(tl+1), ... In practice however, due to the huge number of

elements of hyper-power sets, the dimension of the frames Θ(tl), Θ(tl+1), . . . must be not too large. This

practical limitation depends on the computer resources available for the real-time processing. Specific

suboptimal implementations of DSm rule will have to be developed to deal with fusion problems of large

dimension.

It is also important to point out here that DSmT can easily deal, not only with dynamical fusion

problems but with decentralized fusion problems as well working on non exhaustive frames. For example,

let’s consider a set of two independent sources of information providing the basic belief assignments m1(.)

and m2(.) over DΘ12(tl)={θ1,θ2} and another group of three independent sources of information providing

the basic belief assignments m3(.), m4(.) and m5(.) over DΘ345(tl)={θ3,θ4,θ5,θ6}, then it is still possible to

combine all information in a decentralized manner as follows:

• combine m1(.) and m2(.) at time tl using classical DSm fusion rule to get m12(.) = [m1 ⊕m2](.)

over DΘ12(tl).

• combine m3(.), m4(.) and m5(.) at time tl using classical DSm fusion rule to get m345(.) = [m3 ⊕
m4 ⊕m5](.) over DΘ345(tl).
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• consider now the global frame Θ(tl) , {Θ12(tl),Θ345(tl)}.

• eventually apply hybrid DSm rule if some integrity constraints have to be taken into account in the

model M of the problem.

Note that this static decentralized fusion can also be extended to decentralized dynamical fusion also

by mixing the two previous approaches.

One can even combine all five masses together by extending the vectorsmi(.), 1 ≤ i ≤ 5, with null com-

ponents for the new elements arisen from enlarging Θ to {θ1, θ2, θ3, θ4, θ5} and correspondingly enlarging

DΘ, and using the hybrid DSm rule for k = 5. And more general combine the masses of any k ≥ 2 sources.

We give now several simple numerical examples for such dynamical fusion problems involving non

exclusive frames.

4.6.3.1 Example 3.1

Let’s consider Θ(tl) , {θ1, θ2} and the two following basic belief assignments available at time tl:

m1(θ1) = 0.1 m1(θ2) = 0.2 m1(θ1 ∪ θ2) = 0.3 m1(θ1 ∩ θ2) = 0.4

m2(θ1) = 0.5 m2(θ2) = 0.3 m2(θ1 ∪ θ2) = 0.1 m2(θ1 ∩ θ2) = 0.1

The classical DSm rule of combination gives

m12(θ1) = 0.21 m12(θ2) = 0.17 m12(θ1 ∪ θ2) = 0.03 m12(θ1 ∩ θ2) = 0.59

Now let’s consider at time tl+1 the frame Θ(tl+1) , {θ1, θ2, θ3} and a third source of evidence with

the following basic belief assignment

m3(θ3) = 0.4 m3(θ1 ∩ θ3) = 0.3 m3(θ2 ∪ θ3) = 0.3

Then the final result of the fusion is obtained by combining m3(.) with m12(.) by the classical DSm rule

of combination. One thus obtains:

m123(θ1∩θ2∩θ3) = 0.464 m123(θ2∩θ3) = 0.068 m123(θ1∩θ3) = 0.156 m123((θ1∪θ2)∩θ3) = 0.012

m123(θ1 ∩ θ2) = 0.177 m123(θ1 ∩ (θ2 ∪ θ3)) = 0.063 m123(θ2) = 0.051 m123((θ1 ∩ θ3) ∪ θ2) = 0.009
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4.6.3.2 Example 3.2

Let’s consider Θ(tl) , {θ1, θ2} and the two previous following basic belief assignments m1(.) and m2(.)

available at time tl. The classical DSm fusion rule gives gives as before

m12(θ1) = 0.21 m12(θ2) = 0.17 m12(θ1 ∪ θ2) = 0.03 m12(θ1 ∩ θ2) = 0.59

Now let’s consider at time tl+1 the frame Θ(tl+1) , {θ1, θ2, θ3} and the third source of evidence as in

previous example with the basic belief assignment

m3(θ3) = 0.4 m3(θ1 ∩ θ3) = 0.3 m3(θ2 ∪ θ3) = 0.3

The final result of the fusion obtained by the classical DSm rule of combination corresponds to the result

of the previous example, but suppose now one finds out that the integrity constraint θ3 = ∅ holds, which

implies also constraints θ1 ∩ θ2 ∩ θ3 = ∅, θ1 ∩ θ3 = ∅, θ2 ∩ θ3 = ∅ and (θ1 ∪ θ2)∩ θ3 = ∅. This is the hybrid

DSm model M under consideration here. We then have to readjust the mass m123(.) of the previous

example by the hybrid DSm rule and one finally gets

mM(θ1) = 0.147 mM(θ2) = 0.060 + 0.119 = 0.179

mM(θ1 ∪ θ2) = 0 + 0 + 0.021 = 0.021 mM(θ1 ∩ θ2) = 0.240 + 0.413 = 0.653

Therefore, when we restrain back θ3 = ∅ and apply the hybrid DSm rule, we don’t get back the same

result (i.e. mM(.) 6= m12(.)) because still remains some information from m3(.) on θ1, θ2, θ1 ∪ θ2, or

θ1 ∩ θ2, i.e. m3(θ2) = 0.3 > 0.

4.6.3.3 Example 3.3

Let’s consider Θ(tl) , {θ1, θ2} and two previous following basic belief assignments m1(.) and m2(.)

available at time tl. The classical DSm fusion rule gives as before

m12(θ1) = 0.21 m12(θ2) = 0.17 m12(θ1 ∪ θ2) = 0.03 m12(θ1 ∩ θ2) = 0.59

Now let’s consider at time tl+1 the frame Θ(tl+1) , {θ1, θ2, θ3, θ4} and another third source of evidence

with the following basic belief assignment

m3(θ3) = 0.5 m3(θ4) = 0.3 m3(θ3 ∩ θ4) = 0.1 m3(θ3 ∪ θ4) = 0.1

Then, the DSm rule applied at time tl+1 provides the following combined belief assignment

m123(θ1∩θ3) = 0.105 m123(θ1∩θ4) = 0.063 m123(θ1∩ (θ3∪θ4)) = 0.021 m123(θ1∩θ3∩θ4) = 0.021

m123(θ2∩θ3) = 0.085 m123(θ2∩θ4) = 0.051 m123(θ2∩ (θ3∪θ4)) = 0.017 m123(θ2∩θ3∩θ4) = 0.017

m123(θ3 ∩ (θ1 ∪ θ2)) = 0.015 m123(θ4 ∩ (θ1 ∪ θ2)) = 0.009 m123((θ1 ∪ θ2) ∩ (θ3 ∪ θ4)) = 0.003

m123((θ1 ∪ θ2) ∩ (θ3 ∩ θ4)) = 0.003 m123(θ1 ∩ θ2 ∩ θ3) = 0.295 m123(θ1 ∩ θ2 ∩ θ4) = 0.177

m123((θ1 ∩ θ2) ∩ (θ3 ∪ θ4)) = 0.059 m123(θ1 ∩ θ2 ∩ θ3 ∩ θ4) = 0.059
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Now suppose at time tl+2 one finds out that θ3 = θ4 = ∅, then one applies the hybrid DSm rule after

re-adjusting the combined belief mass m123(.) by cumulating the masses of all empty sets. Using the

hybrid DSm rule, one finally gets:

mtl+2
(θ1) = m123(θ1) + {m12(θ1)m3(θ3) +m12(θ1)m3(θ4) +m12(θ1)m3(θ3 ∪ θ4) +m12(θ1)m3(θ3 ∩ θ4)}

= 0 + {(0.21× 0.5) + (0.21× 0.3) + (0.21× 0.1) + (0.21× 0.1)} = 0.21

mtl+2
(θ2) = m123(θ2) + {m12(θ2)m3(θ3) +m12(θ2)m3(θ4) +m12(θ2)m3(θ3 ∪ θ4) +m12(θ2)m3(θ3 ∩ θ4)}

= 0 + {(0.17× 0.5) + (0.17× 0.3) + (0.17× 0.1) + (0.17× 0.1)} = 0.17

mtl+2
(θ1 ∪ θ2) = m123(θ1 ∪ θ2) + {m12(θ1 ∪ θ2)m3(θ3) +m12(θ1 ∪ θ2)m3(θ4)

+m12(θ1 ∪ θ2)m3(θ3 ∪ θ4) +m12(θ1 ∪ θ2)m3(θ3 ∩ θ4)}

+
∑

X1,X2∈{θ3,θ4,θ3∪θ4,θ3∩θ4}

m12(X1)m3(X2)

= 0 + {(0.03× 0.5) + (0.03× 0.3) + (0.03× 0.1) + (0.03× 0.1)}+ {0} = 0.03

mtl+2
(θ1 ∩ θ2) = m123(θ1 ∩ θ2) + {m12(θ1 ∩ θ2)m3(θ3) +m12(θ1 ∩ θ2)m3(θ4)

+m12(θ1 ∩ θ2)m3(θ3 ∪ θ4) +m12(θ1 ∩ θ2)m3(θ3 ∩ θ4)}

= 0 + {(0.59× 0.5) + (0.59× 0.3) + (0.59× 0.1) + (0.59× 0.1)} = 0.59

Thus we get the same result as for m12(.) at time tl, which is normal.

Remark: note that if the third source of information doesn’t assign non-null masses to θ1, or θ2 (or

to their combinations using ∪ or ∩ operators), then one obtains the same result at time tl+2 as at time tl

as in this example 3.3, i.e. ml+2(.) = ml(.), when imposing back θ3 = θ4 = ∅. But, if the third source of

information assigns non-null masses to either θ1, or θ2, or to some of their combinations θ1∪θ2 or θ1∩θ2,

then when one returns from 4 singletons to 2 singletons for Θ, replacing θ3 = θ4 = ∅ and using the hybrid

DSm rule, the fusion results at time tl+2 is different from that at time tl, and this is normal because some

information/mass is left from the third source and is now fusioned with that of the previous sources (as

in example 3.2 or in the next example 3.4).

In general, let’s suppose that the fusion of k ≥ 2 masses provided by the sources B1, B2, ..., Bk has

been done at time tl on Θ(tl) = {θ1, θ2, ..., θn}. At time tl+1 new non-empty elements θn+1, θn+2, . . .,

θn+m appear, m ≥ 1, thus Θ(tl+1) = {θ1, θ2, ..., θn, θn+1, θn+2, . . . , θn+m} and of course one or more

sources (i.e. bodies of evidences) Bk+1, . . ., Bk+l, where l ≥ 1, appear to assign masses to these new

elements.
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a) If all these new sources Bk+1, . . ., Bk+l assign null masses to all elements from DΘ(tl+1) which

contain in their structure/composition at least one of the singletons θ1, θ2, . . ., θn, then at time

tl+2 if one sets back the constraints that θn+1 = θn+2 = . . . = θn+m = ∅, then using the hybrid

DSm rule, one obtains the same result as at time tl, i.e. ml+2(.) = ml(.).

b) Otherwise, the fusion at time tl+2 will be different from the fusion at time tl because there still

remains some information/mass from sources Bk+1, . . ., Bk+l on singletons θ1, θ2, . . ., θn or on some

elements from DΘ(tl) which contain at least one such singleton, information/mass which fusions with

the previous sources.

4.6.3.4 Example 3.4

Let’s consider Θ(tl) , {θ1, θ2} and the two following basic belief assignments available at time tl:

m1(θ1) = 0.6 m1(θ2) = 0.4 and m2(θ1) = 0.7 m2(θ2) = 0.3

The classical DSm rule of combination gives m12(θ1) = 0.42, m12(θ2) = 0.12 and m12(θ1 ∩ θ2) = 0.46.

Now let’s consider at time tl+1 the frame Θ(tl+1) , {θ1, θ2, θ3} and a third source of evidence with the

following basic belief assignment m3(θ1) = 0.5, m3(θ2) = 0.2 and m3(θ3) = 0.3. Then the final result

obtained from the classical DSm rule of combination is still as before

m123(θ1) = 0.210 m123(θ2) = 0.024 m123(θ1 ∩ θ2) = 0.466 m123(θ1 ∩ θ3) = 0.126

m123(θ2 ∩ θ3) = 0.036 m123(θ1 ∩ θ2 ∩ θ3) = 0.138

Suppose now one finds out that the integrity constraint θ1∩θ3 = ∅ which also implies θ1∩θ2 ∩θ3 = ∅.
This is the hybrid DSm model M under consideration. By applying the hybrid DSm fusion rule, one

forces mM(θ1 ∩ θ3) = 0 and mM(θ1 ∩ θ2 ∩ θ3) = 0 and we transfer m123(θ1 ∩ θ2 ∩ θ3) = 0.138 towards

mM((θ1 ∩ θ2)∪ θ3) and the mass m123(θ1 ∩ θ3) = 0.126 has to be transferred towards mM(θ1 ∪ θ3). One

then gets finally

mM(θ1) = 0.210 mM(θ2) = 0.024 mM(θ1 ∩ θ2) = 0.466 mM(θ2 ∩ θ3) = 0.036

mM((θ1 ∩ θ2) ∪ θ3) = 0.138 mM(θ1 ∪ θ3) = 0.126

4.6.3.5 Example 3.5

Let’s consider Θ(tl) , {θ1, θ2} and the two previous basic belief assignments available at time tl as in

previous example, i.e.

m1(θ1) = 0.6 m1(θ2) = 0.4 and m2(θ1) = 0.7 m2(θ2) = 0.3

The classical DSm rule of combination gives

m12(θ1) = 0.42 m12(θ2) = 0.12 m12(θ1 ∩ θ2) = 0.46
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Now let’s consider at time tl+1 the frame Θ(tl+1) , {θ1, θ2, θ3} and a third source of evidence with the

following basic belief assignment

m3(θ1) = 0.5 m3(θ2) = 0.2 m3(θ3) = 0.3

Then the final result of the fusion is obtained by combining m3(.) with m12(.) by the classical DSm rule

of combination. One thus obtains now

m123(θ1) = 0.210 m123(θ2) = 0.024 m123(θ1 ∩ θ2) = 0.466 m123(θ1 ∩ θ3) = 0.126

m123(θ2 ∩ θ3) = 0.036 m123(θ1 ∩ θ2 ∩ θ3) = 0.138

But suppose one finds out that the integrity constraint is now θ3 = ∅ which implies necessarily also

θ1 ∩ θ3 = θ2 ∩ θ3 = θ1 ∩ θ2 ∩ θ3 ≡ ∅ and (θ1 ∪ θ2) ∩ θ3 = ∅ (this is our new hybrid DSm model M under

consideration in this example). By applying the hybrid DSm fusion rule, one gets finally the non-null

masses

mM(θ1) = 0.336 mM(θ2) = 0.060 mM(θ1 ∩ θ2) = 0.604

4.6.3.6 Example 3.6

Let’s consider Θ(tl) , {θ1, θ2, θ3, θ4} and the following basic belief assignments available at time tl :






m1(θ1) = 0.5 m1(θ2) = 0.4 m1(θ1 ∩ θ2) = 0.1

m2(θ1) = 0.3 m2(θ2) = 0.2 m2(θ1 ∩ θ3) = 0.1 m2(θ4) = 0.4

The classical DSm rule of combination gives

m12(θ1) = 0.15 m12(θ2) = 0.08 m12(θ1∩θ2) = 0.27 m12(θ1∩θ3) = 0.05 m12(θ1∩θ4) = 0.20

m12(θ2 ∩ θ4) = 0.16 m12(θ1 ∩ θ2 ∩ θ3) = 0.05 m12(θ1 ∩ θ2 ∩ θ4) = 0.04

Now assume that at time tl+1 one finds out that θ1 ∩ θ2
M≡ θ1 ∩ θ3

M≡ ∅. Using the hybrid DSm rule, one

gets:






mM(θ1 ∩ θ2) = mM(θ1 ∩ θ3) = mM(θ1 ∩ θ2 ∩ θ3) = mM(θ1 ∩ θ2 ∩ θ4) = 0

mM(θ1) = m12(θ1) +m2(θ1)m1(θ1 ∩ θ2) +m1(θ1)m2(θ1 ∩ θ3) = 0.15 + 0.03 + 0.05 = 0.23

mM(θ2) = m12(θ2) +m2(θ2)m1(θ1 ∩ θ2) +m1(θ2)m2(θ1 ∩ θ3) = 0.08 + 0.02 + 0.04 = 0.14

mM(θ4) = m12(θ4) +m1(θ1 ∩ θ2)m2(θ4) = 0 + 0.04 = 0.04

mM(θ1 ∩ θ4) = m12(θ1 ∩ θ4) = 0.20

mM(θ2 ∩ θ4) = m12(θ2 ∩ θ4) = 0.16

mM(θ1 ∪ θ2) = m12(θ1 ∪ θ2) +m1(θ1)m2(θ2) +m2(θ1)m1(θ2) +m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) = 0.22

mM(θ1 ∪ θ2 ∪ θ3) = m12(θ1 ∪ θ2 ∪ θ3) +m1(θ1 ∩ θ2)m2(θ1 ∩ θ3) +m2(θ1 ∩ θ2)m1(θ1 ∩ θ3)

+m1(θ1 ∩ θ2 ∩ θ3)m2(θ1 ∩ θ2 ∩ θ3) = 0.01
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4.6.3.7 Example 3.7

Let’s consider Θ(tl) , {θ1, θ2, θ3, θ4} and the following basic belief assignments available at time tl :







m1(θ1) = 0.2 m1(θ2) = 0.4 m1(θ1 ∩ θ2) = 0.1 m1(θ1 ∩ θ3) = 0.2 m1(θ4) = 0.1

m2(θ1) = 0.1 m2(θ2) = 0.3 m2(θ1 ∩ θ2) = 0.2 m2(θ1 ∩ θ3) = 0.1 m2(θ4) = 0.3

The classical DSm rule of combination gives

m12(θ1) = 0.02 m12(θ2) = 0.12 m12(θ1 ∩ θ2) = 0.28 m12(θ1 ∩ θ3) = 0.06 m12(θ4) = 0.03

m12(θ1 ∩ θ4) = 0.07 m12(θ2 ∩ θ4) = 0.15 m12(θ1 ∩ θ2 ∩ θ3) = 0.15

m12(θ1 ∩ θ2 ∩ θ4) = 0.05 m12(θ1 ∩ θ3 ∩ θ4) = 0.07

Now assume that at time tl+1 one finds out that θ1 ∩ θ2
M≡ θ1 ∩ θ3

M≡ ∅. Using the hybrid DSm rule, one

gets:







mM(θ1 ∩ θ2) = mM(θ1 ∩ θ3) = mM(θ1 ∩ θ2 ∩ θ3) = mM(θ1 ∩ θ2 ∩ θ4) = 0

mM(θ1) = m12(θ1) +m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2) +m1(θ1)m2(θ1 ∩ θ3)

+m2(θ1)m1(θ1 ∩ θ3) = 0.11

mM(θ2) = m12(θ2) +m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2) +m1(θ2)m2(θ1 ∩ θ3)

+m2(θ2)m1(θ1 ∩ θ3) = 0.33

mM(θ4) = m12(θ4) +m1(θ4)m2(θ1 ∩ θ2) +m2(θ4)m1(θ1 ∩ θ2) +m1(θ4)m2(θ1 ∩ θ3)

+m2(θ4)m1(θ1 ∩ θ3) = 0.15

mM(θ1 ∩ θ4) = m12(θ1 ∩ θ4) = 0.07

mM(θ2 ∩ θ4) = m12(θ2 ∩ θ4) = 0.15

mM(θ1 ∪ θ2) = m12(θ1 ∪ θ2) +m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) +m1(θ1)m2(θ2) +m2(θ1)m1(θ2) = 0.12

mM(θ1 ∪ θ3) = m12(θ1 ∪ θ3) +m1(θ1 ∩ θ3)m2(θ1 ∩ θ3) = 0.02

mM(θ1 ∪ θ2 ∪ θ3) = m12(θ1 ∪ θ2 ∪ θ3) +m1(θ1 ∩ θ2)m2(θ1 ∩ θ3) +m2(θ1 ∩ θ2)m1(θ1 ∩ θ3) = 0.05

4.7 Bayesian mixture of hybrid DSm models

In the preceding, one has first shown how to combine generalized basic belief assignments provided by

k ≥ 2 independent and equally reliable sources of information with the general hybrid DSm rule of com-

bination for dealing with all possible kinds of integrity constraints involved in a model. This approach

implicitly assumes that one knows/trusts with certainty that the modelM (usually a hybrid DSm model)

of the problem is valid and corresponds to the true model. In some complex fusion problems however

(static or dynamic ones), one may have some doubts about the validity of the model M on which is
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based the fusion because of the nature and evolution of elements of the frame Θ. In such situations, we

propose to consider a set of exclusive and exhaustive models {M1,M2, . . . ,MK} with some probabil-

ities {P{M1}, P{M2}, . . . , P{MK}}. We don’t go here deeper on the justification/acquisition of such

probabilities because this is highly dependent on the nature of the fusion problem under consideration.

We just assume here that such probabilities are available at any given time tl when the fusion has to

be done. We propose then to use the Bayesian mixture of combined masses mMi(Θ)(.) i = 1, . . . ,K to

obtain the final result :

∀A ∈ DΘ, mM1,...,MK
(A) =

K∑

i=1

P{Mi}mMi(Θ)(A) (4.14)

4.8 Conclusion

In this chapter we have extended the DSmT and the classical DSm rule of combination to the case

of any kind of hybrid model for the frame Θ involved in many complex fusion problems. The free-

DSm model (which assumes that none of the elements of the frame is refinable) can be interpreted as

the opposite of Shafer’s model (which assumes that all elements of the frame are truly exclusive) on

which is based the mathematical theory of evidence (Dempster-Shafer Theory - DST). Between these two

extreme models, there exists actually many possible hybrid models for the frames Θ depending on the real

intrinsic nature of elements of the fusion problem under consideration. For real problems, some elements

of Θ can appear to be truly exclusive whereas some others cannot be considered as fully discernable

or refinable. This present research work proposes a new hybrid DSm rule of combination for hybrid

models based on the DSmT. The hybrid DSm rule works in any model and is involved in calculation

of mass fusion of any number of sources of information, no matter how big is the conflict/paradoxism

of sources, and on any frame (exhaustive or non-exhaustive, with elements which may be exclusive or

non-exclusive or both). This is an important rule since does not require the calculation of weighting

factors, neither normalization as other rules do, and the transfer of masses of empty-sets to the masses

of non-empty sets is naturally done following the DSm network architecture which is derived from the

DSm classic rule. DSmT together with hybrid DSm rule is a new solid alternative to classical approaches

and to existing combination rules. This new result is appealing for the development of future complex

(uncertain/incomplete/paradoxical/dynamical) information fusion systems.
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Abstract: This chapter presents several classes of fusion problems which cannot

be directly approached by the classical mathematical theory of evidence, also known

as Dempster-Shafer Theory (DST), either because Shafer’s model for the frame of

discernment is impossible to obtain, or just because Dempster’s rule of combination

fails to provide coherent results (or no result at all). We present and discuss the

potentiality of the DSmT combined with its classical (or hybrid) rule of combination

to attack these infinite classes of fusion problems.

5.1 Introduction

I
n this chapter we focus our attention on the limits of the validity of Dempster’s rule of combination

in Dempster-Shafer theory (DST) [5]. We provide several infinite classes of fusion problems where

Dempster rule of combination fails to provide coherent results and we show how these problems can be

attacked directly by the DSmT presented in previous chapters. DST and DSmT are based on a different

approach for modelling the frame Θ of the problem (Shafer’s model versus free-DSm, or hybrid-DSm

model), on the choice of the space (classical power set 2Θ versus hyper-power set DΘ) on which will
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be defined the basic belief assignment functions mi(.) to be combined, and on the fusion rules to apply

(Dempster rule versus DSm rule or hybrid DSm rule of combination).

5.2 First infinite class of counter examples

The first infinite class of counter examples for Dempster’s rule of combination consists trivially in all cases

for which Dempster’s rule becomes mathematically not defined, i.e. one has 0/0, because of full conflicting

sources. The first sub-class presented in subsection 5.2.1 corresponds to Bayesian belief functions. The

subsection 5.2.2 will present counter-examples for more general conflicting sources of evidence.

5.2.1 Counter-examples for Bayesian sources

The following examples are devoted only to Bayesian sources, i.e. sources for which the focal elements of

belief functions coincide only with some singletons θi of Θ.

5.2.1.1 Example with Θ = {θ1, θ2}

Let’s consider the frame of discernment Θ = {θ1, θ2}, two independent experts, and the basic belief

masses:

m1(θ1) = 1 m1(θ2) = 0

m2(θ1) = 0 m2(θ2) = 1

We represent these belief assignments by the mass matrix

M =




1 0

0 1





• Dempster’s rule can not be applied because one formally gets m(θ1) = 0/0 and m(θ2) = 0/0 as

well, i.e. undefined.

• The DSm rule works here because one obtains m(θ1) = m(θ2) = 0 and m(θ1 ∩ θ2) = 1 (the total

paradox, which it really is! if one accepts the free-DSm model). If one adopts Shafer’s model and

applies the hybrid DSm rule, then one gets mh(θ1 ∪ θ2) = 1 which makes sense in this case. The

index h denotes here the mass obtained with the hybrid DSm rule to avoid confusion with result

obtained with the DSm classic rule.

5.2.1.2 Example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider the frame of discernment Θ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass

matrix 


0.6 0 0.4 0

0 0.2 0 0.8




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• Again, Dempster’s rule can not be applied because: ∀1 ≤ j ≤ 4, one gets m(θj) = 0/0 (undefined!).

• But the DSm rule works because one obtains: m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0, and m(θ1 ∩
θ2) = 0.12, m(θ1 ∩ θ4) = 0.48, m(θ2 ∩ θ3) = 0.08, m(θ3 ∩ θ4) = 0.32 (partial paradoxes/conflicts).

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies

the hybrid DSm rule and one gets (index h stands here for hybrid rule): mh(θ1 ∪ θ2) = 0.12,

mh(θ1 ∪ θ4) = 0.48, mh(θ2 ∪ θ3) = 0.08 and mh(θ3 ∪ θ4) = 0.32.

5.2.1.3 Another example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider the frame of discernment Θ = {θ1, θ2, θ3, θ4}, three independent experts, and the mass

matrix 






0.6 0 0.4 0

0 0.2 0 0.8

0 0.3 0 0.7








• Again, Dempster’s rule can not be applied because: ∀1 ≤ j ≤ 4, one gets m(θj) = 0/0 (undefined!).

• But the DSm rule works because one obtains: m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0, and

m(θ1 ∩ θ2) = 0.6 · 0.2 · 0.3 = 0.036

m(θ1 ∩ θ4) = 0.6 · 0.8 · 0.7 = 0.336

m(θ2 ∩ θ3) = 0.4 · 0.2 · 0.3 = 0.024

m(θ3 ∩ θ4) = 0.4 · 0.8 · 0.7 = 0.224

m(θ1 ∩ θ2 ∩ θ4) = 0.6 · 0.2 · 0.7 + 0.6 · 0.3 · 0.8 = 0.228

m(θ2 ∩ θ3 ∩ θ4) = 0.2 · 0.4 · 0.7 + 0.3 · 0.4 · 0.8 = 0.152

(partial paradoxes/conflicts) and the others equal zero. If we add all these masses, we get the sum

equals to 1.

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies the

hybrid DSm rule and one gets: mh(θ1 ∪ θ2) = 0.036, mh(θ1 ∪ θ4) = 0.336, mh(θ2 ∪ θ3) = 0.024,

mh(θ3 ∪ θ4) = 0.224, mh(θ1 ∪ θ2 ∪ θ4) = 0.228, mh(θ2 ∪ θ3 ∪ θ4) = 0.152.

5.2.1.4 More general

Let’s consider the frame of discernment Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, and k experts, for k ≥ 2. Let

M = [aij ], 1 ≤ i ≤ k, 1 ≤ j ≤ n, be the mass matrix with k rows and n columns. If each column of the

mass matrix contains at least a zero, then Dempster’s rule can not be applied because one obtains for
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all 1 ≤ j ≤ n, m(θj) = 0/0 which is undefined! The degree of conflict is 1. However, one can use the

classical DSm rule and one obtains: for all 1 ≤ j ≤ n, m(θj) = 0, and also partial paradoxes/conflicts:

∀1 ≤ vs ≤ n, 1 ≤ s ≤ w, and 2 ≤ w ≤ k, m(θv1 ∩ θv2 ∩ . . . ∩ θvw
) =

∑
(a1t1) · (a2t2) · . . . · (aktk ), where

the set T = {t1, t2, . . . , tk} is equal to the set V = {v1, v2, . . . , vw} but the order may be different and

the elements in the set T could be repeated; we mean from set V one obtains set T if one repeats some

elements of V ; therefore: summation
∑

is done upon all possible combinations of elements from columns

v1, v2, . . . , vw such that at least one element one takes from each of these columns v1, v2, . . . , vw and also

such that from each row one takes one element only; the product (a1t1) · (a2t2) · . . . · (aktk ) contains one

element only from each row 1, 2, . . . , k respectively, and one or more elements from each of the columns

v1, v2, . . . , vw respectively.

5.2.2 Counter-examples for more general sources

We present in this section two numerical examples involving general (i.e. non Bayesian) sources where

Dempster’s rule cannot be applied.

5.2.2.1 Example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider Θ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ1 ∪ θ2
m1(.) 0.4 0.5 0 0 0.1

m2(.) 0 0 0.3 0.7 0

Dempster’s rule cannot apply here because one gets 0/0 for all m(θi), 1 ≤ i ≤ 4, but the DSm rules

(classical or hybrid) work.

Using the DSm classical rule: m(θ1 ∩ θ3) = 0.12, m(θ1 ∩ θ4) = 0.28, m(θ2 ∩ θ3) = 0.15, m(θ2 ∩ θ4) = 0.35,

m(θ3 ∩ (θ1 ∪ θ2)) = 0.03, m(θ4 ∩ (θ1 ∪ θ2)) = 0.07.

Suppose now one finds out that one has a Shafer model; then one uses the hybrid DSm rule (denoted

here with index h): mh(θ1 ∪ θ3) = 0.12, mh(θ1 ∪ θ4) = 0.28, mh(θ2 ∪ θ3) = 0.15, mh(θ2 ∪ θ4) = 0.35,

mh(θ3 ∪ θ1 ∪ θ2) = 0.03, mh(θ4 ∪ θ1 ∪ θ2) = 0.07.

5.2.2.2 Another example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider Θ = {θ1, θ2, θ3, θ4}, three independent experts, and the mass matrix:
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θ1 θ2 θ3 θ4 θ1 ∪ θ2 θ3 ∪ θ4
m1(.) 0.4 0.5 0 0 0.1 0

m2(.) 0 0 0.3 0.6 0 0.1

m3(.) 0.8 0 0 0 0.2 0

Dempster’s rule cannot apply here because one gets 0/0 for all m(θi), 1 ≤ i ≤ 4, but the DSm rules

(classical or hybrid) work.

Using the DSm classical rule, one gets:

m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0 m(θ1 ∪ θ2) = m(θ3 ∪ θ4) = 0

m(θ1 ∩ θ3) = 0.096 m(θ1 ∩ θ3 ∩ (θ1 ∪ θ2)) = m(θ1 ∩ θ3) = 0.024

m(θ1 ∩ θ4) = 0.192 m(θ1 ∩ θ4 ∩ (θ1 ∪ θ2)) = m(θ1 ∩ θ4) = 0.048

m(θ1 ∩ (θ3 ∪ θ4)) = 0.032 m(θ1 ∩ (θ3 ∪ θ4) ∩ (θ1 ∪ θ2)) = m(θ1 ∩ (θ3 ∪ θ4)) = 0.008

m(θ2 ∩ θ3 ∩ θ1) = 0.120 m(θ2 ∩ θ3 ∩ (θ1 ∪ θ2)) = m(θ2 ∩ θ3) = 0.030

m(θ2 ∩ θ4 ∩ θ1) = 0.240 m(θ2 ∩ θ4 ∩ (θ1 ∪ θ2)) = m(θ2 ∩ θ4) = 0.060

m(θ2 ∩ (θ3 ∪ θ4) ∩ θ1) = m((θ1 ∩ θ2) ∩ (θ3 ∪ θ4)) = 0.040 m(θ2 ∩ (θ3 ∪ θ4) ∩ (θ1 ∪ θ2)) = m(θ2 ∩ (θ3 ∪ θ4)) = 0.010

m((θ1 ∪ θ2) ∩ θ3 ∩ θ1) = m(θ1 ∩ θ3) = 0.024 m((θ1 ∪ θ2) ∩ θ3) = 0.006

m((θ1 ∪ θ2) ∩ θ4 ∩ θ1) = m(θ1 ∩ θ4) = 0.048 m((θ1 ∪ θ2) ∩ θ4) = 0.012

m((θ1 ∪ θ2) ∩ (θ3 ∪ θ4) ∩ θ1) = m(θ1 ∩ (θ3 ∪ θ4)) = 0.008 m((θ1 ∪ θ2) ∩ (θ3 ∪ θ4)) = 0.002

After cumulating, one finally gets with DSm classic rule:

m(θ1 ∩ θ3) = 0.096 + 0.024 + 0.024 = 0.144 m(θ1 ∩ θ4) = 0.192 + 0.048 + 0.048 = 0.288

m(θ2 ∩ θ3) = 0.030 m(θ2 ∩ θ4) = 0.060

m(θ1 ∩ θ2 ∩ θ3) = 0.120 m(θ1 ∩ θ2 ∩ θ4) = 0.240

m((θ1 ∪ θ2) ∩ θ3) = 0.006 m((θ1 ∪ θ2) ∩ θ4) = 0.012

m(θ1 ∩ (θ3 ∪ θ4)) = 0.032 + 0.008 + 0.008 = 0.048 m(θ1 ∩ θ2 ∩ (θ3 ∪ θ4)) = 0.040

m(θ2 ∩ (θ3 ∪ θ4)) = 0.010 m((θ1 ∪ θ2) ∩ (θ3 ∪ θ4)) = 0.002

Suppose now, one finds out that all intersections are empty. Using the hybrid DSm rule one gets:

mh(θ1 ∪ θ3) = 0.144 mh(θ1 ∪ θ4) = 0.288

mh(θ2 ∪ θ3) = 0.030 mh(θ2 ∪ θ4) = 0.060

mh(θ1 ∪ θ2 ∪ θ3) = 0.120 + 0.006 = 0.126 mh(θ1 ∪ θ2 ∪ θ4) = 0.240 + 0.012 = 0.252

mh(θ1 ∪ θ3 ∪ θ4) = 0.048 mh(θ2 ∪ θ3 ∪ θ4) = 0.010

mh(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 0.040 + 0.002 = 0.042
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5.2.2.3 More general

Let’s consider the frame of discernment Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, and k experts, for k ≥ 2, and

the mass matrix M with k rows and n+ u columns, where u ≥ 1, corresponding to θ1, θ2, . . . , θn, and u

uncertainties θi1 ∪ . . . ∪ θis , . . . , θj1 ∪ . . . ∪ θjt respectively.

If the following conditions occur:

• each column contains at least one zero;

• all uncertainties are different from the total ignorance θ1∪ . . .∪θn (i.e., they are partial ignorances);

• the partial uncertainties are disjoint two by two;

• for each non-null uncertainty column cj , n + 1 ≤ j ≤ n + u, of the form say θp1 ∪ . . . ∪ θpw
, there

exists a row such that all its elements on columns p1, . . . , pw, and cj are zero.

then Dempster’s rule of combination cannot apply for such infinite class of fusion problems because one

gets 0/0 for all m(θi), 1 ≤ i ≤ n. The DSm rules (classical or hybrid) work for such infinite class of

examples.

5.3 Second infinite class of counter examples

This second class of counter-examples generalizes the famous Zadeh example given in [7, 8].

5.3.1 Zadeh’s example

Two doctors examine a patient and agree that it suffers from either meningitis (M), contusion (C) or

brain tumor (T). Thus Θ = {M,C, T }. Assume that the doctors agree in their low expectation of a

tumor, but disagree in likely cause and provide the following diagnosis

m1(M) = 0.99 m1(T ) = 0.01 and m2(C) = 0.99 m2(T ) = 0.01

If we combine the two basic belief functions using Dempster’s rule of combination, one gets the unexpected

final conclusion

m(T ) =
0.0001

1− 0.0099− 0.0099− 0.9801
= 1

which means that the patient suffers with certainty from brain tumor !!!. This unexpected result arises

from the fact that the two bodies of evidence (doctors) agree that the patient most likely does not

suffer from tumor but are in almost full contradiction for the other causes of the disease. This very sim-

ple but interesting example shows the limitations of the practical use of the DST for automated reasoning.
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This example has been examined in literature by several authors to explain the anomaly of the result

of Dempster’s rule of combination in such case. Due to the high degree of conflict arising in such extreme

case, willingly pointed out by Zadeh to show the weakness of this rule, it is often argued that in such case

the result of Dempster’s rule must not be taken directly without checking the level of the conflict between

sources of evidence. This is trivially true but there is no theoretical way to decide beforehand if one can

trust or not the result of such rule of combination, especially in complex systems involving many sources

and many hypotheses. This is one of its major drawback. The issue consists generally in choosing rather

somewhat arbitrarily or heuristically some threshold value on the degree of conflict between sources to

accept or reject the result of the fusion [9]. Such approach can’t be solidly justified from theoretical anal-

ysis. Assuming such threshold is set to a given value, say 0.70 for instance, is it acceptable to reject the

fusion result if the conflict appears to be 0.7001 and accept it when the conflict becomes 0.6999? What

to do when the decision about the fusion result is rejected and one has no assessment on the reliability

of the sources or when the sources have the same reliability/confidence but an important decision has to

be taken anyway? There is no theoretical solid justification which can reasonably support such kind of

approaches commonly used in practice up to now.

The two major explanations of this problem found in literature are mainly based, either on the fact

that problem arises from the closed-world assumption of Shafer’s model Θ and it is suggested to work

rather with an open-world model, and/or the fact that sources of evidence are not reliable. These ex-

planations although being admissible are not necessarily the only correct (sufficient) explanations. Note

that the open-world assumption can always be easily relaxed advantageously by introducing a new hy-

pothesis, say θ0 in the initial frame Θ = {θ1, . . . , θn} in order to close it. θ0 will then represent all

possible alternatives (although remaining unknown) of initial hypotheses θ1,. . . θn. This idea has been

already proposed by Yager in [6] through his hedging solution. Upon our analysis, it is not necessary to

adopt/follow the open-world model neither to admit the assumption about the reliability of the sources

to find a justification in this counter-intuitive result. Actually, both sources can have the same reliability

and Shafer’s model can be accepted for the combination of the two reports by using another rule of

combination. This is exactly the purpose of the hybrid DSm rule of combination. Of course when one

has some prior information on the reliability of sources, one has to take them into account properly by

some discounting methods. The discounting techniques can also apply in the DSmT framework and there

is no incompatibility to mix both (i.e. discounting techniques with DSm rules of combinations) when

necessary (when there is strong reason to justify doing it, i.e. when one has prior reliable information

on reliability of the sources). The discounting techniques must never been used as an artificial ad-hoc

mechanism to update Dempster’s result once problem has arisen. We strongly disagree with the idea that

all problems with Dempster’s rule can be solved beforehand by discounting techniques. This can help
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obviously to improve the assessment of belief function to be combined when used properly and fairly, but

this does not fundamentally solve the inherent problem of Dempster’s rule itself when conflict remains

high.

The problem comes from the fact that both sources provide essentially their belief with respect only to

their own limited knowledge and experience. It is also possible in some cases, that sources of information

even don’t have the same interpretation of concepts included in the frame of the problem. Such kind of

situation frequently appears for example in debates on TV, on radio or in most of the meetings where

important decision/approval have to be drawn and when the sources don’t share the same opinion. This

is what happens daily in real life and one has to deal with such conflicting situations anyway. In other

words, the sources do not speak about the same events or even they do, they there is a possibility that

they do not share the same interpretation of the events. This has already been pointed out by Dubois

and Prade in [3] (p. 256). In Zadeh’s controversy example, it is possible that the first doctor is expert

mainly in meningitis and in brain tumor while the second doctor is expert mainly in cerebral contusion

and in brain tumor. Because of their limited knowledges and experiences, both doctors can also have

also the same reliability. If they have been asked to give their reports only on Θ = {M,C, T } (but not

on an extended frame), their reports have to be taken with same weight and the combination has to be

done anyway when one has no solid reason to reject one report with respect to the other one; the result

of the Demsper’s rule still remains very questionable. No rational brain surgeon would take the decision

for a brain intervention (i.e. a risky tumor ablation) based on Dempster’s rule result, neither the family

of the patient. Therefore upon our analysis, the two previous explanations given in literature (although

being possible and admissible in some cases) are not necessary and sufficient to explain the source of

the anomaly. Several alternatives to Dempster’s rule to circumvent this anomaly have been proposed

in literature mainly through the works of R. Yager [6], D. Dubois and H. Prade [2] already reported in

chapter 1 or by Daniel in [1]. The DSmT offers just a new issue for solving also such controversy example

as it will be shown. In summary, some extreme caution on the degree of conflict of the sources must

always be taken before taking a final decision based on Dempster’s rule of combination, especially when

vital wagers are involved.

If we now adopt the free-DSm model, i.e. we replace the initial Shafer model by accepting the

possibility of non null intersections between hypotheses M , C and T and by working directly on hyper-

power set DΘ then one gets directly and easily the following result with the classical DSm rule of

combination:

m(M ∩ C) = 0.9801 m(M ∩ T ) = 0.0099 m(C ∩ T ) = 0.0099 m(T ) = 0.0001
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which makes sense when working with such a new model. Obviously same result can be obtained (the

proof is left here to the reader) when working with Dempster’s rule based on the following refined frame

Θref defined with basic belief functions on power set 2Θref :

Θref = {θ1 = M ∩ C ∩ T, θ2 = M ∩ C ∩ T̄ , θ3 = M ∩ C̄ ∩ T, θ4 = M̄ ∩ C ∩ T,

θ5 = M ∩ C̄ ∩ T̄ , θ6 = M̄ ∩ C ∩ T̄ , θ7 = M̄ ∩ C̄ ∩ T }

where T̄ ,C̄ and M̄ denote respectively the complement of T , C and M .

The equality of both results (i.e. by the classical DSm rule based on the free-DSm model and by

Dempster’s rule based on the refined frame) is just normal since the normalization factor 1− k of Demp-

ster’s rule in this case reduces to 1 because of the new choice of the new model. Based on this remark,

one could then try to argue that DSmT (together with its DSm classical rule for free-DSm model) is

superfluous. Such claim is obviously wrong for the two following reasons: it is unecessary to work with

a bigger space (keeping in mind that |DΘ| < |2Θref |) to get the result (the DSm rule offers just a direct

and more convenient issue to get the result), but also because in some fusion problems involving vague/-

continuous concepts, the refinement is just impossible to obtain and we are unfortunately forced to deal

with ambiguous concepts/hypotheses (see [4] for details and justification).

If one has no doubt on the reliability of both Doctors (or no way to assess it) and if one is absolutely

sure that the true origin of the suffering of the patient lies only in the frame Θ = {M,C, T } and we

consider these origins as truly exclusive, then one has to work with the initial frame of discernment

Θ satisfying Shafer’s model. As previously shown, Dempster’s rule fails to provide a reasonable and

acceptable conclusion in such high conflicting case. However, this case can be easily handled by the

hybrid DSm rule of combination. The hybrid DSm rule applies now because Shafer’s model is nothing

but a particular hybrid model including all exclusivity constraints between hypotheses of the frame Θ

(see chapter 4 for details). One then gets with the hybrid DSm rule for this simple case (more general

and complex examples have been already presented in chapter 4), after the proper mass transfer of all

sources of the conflicts:

m(M ∪ C) = 0.9801 m(M ∪ T ) = 0.0099 m(C ∪ T ) = 0.0099 m(T ) = 0.0001

This result is not surprising and makes perfectly sense with common intuition actually since it provides

a coherent and reasonable solution to the problem. It shows clearly that a brain intervention for ablation

of an hypothetical tumor is not recommended, but preferentially a better examination of the patient

focused on Meningitis or Contusion as possible source of the suffering. The consequence of the results of

Dempster’s rule and the hybrid DSm rule is therefore totally different.
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5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1− ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1− ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1− ε1 0 ε1

0 1− ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix




1− ε1 − ε2 0 ε1 ε2

0 1− ε3 0 ε3




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Again using Dempster’s rule of combination, one gets m(θ4) = 1 which is absurd while using the DSm rule

of combination based on free-DSm model, one gets m(θ4) = ε2ε3 which is reliable. Using the DSm classical

rule: m(θ1∩θ2) = (1−ε1−ε2)(1−ε3), m(θ1∩θ4) = (1−ε1−ε3)ε3, m(θ3∩θ2) = ε1(1−ε3),m(θ3∩θ4) = ε1ε3,

m(θ4) = ε2ε3. Suppose one finds out that all intersections are empty, then one applies the hybrid DSm

rule: mh(θ1 ∪ θ2) = (1 − ε1 − ε2)(1 − ε3), mh(θ1 ∪ θ4) = (1 − ε1 − ε3)ε3, mh(θ3 ∪ θ2) = ε1(1 − ε3),

mh(θ3 ∪ θ4) = ε1ε3, mh(θ4) = ε2ε3.

5.3.4 More general

Let’s consider 0 < ε1, . . . , εn < 1 be very tiny positive numbers, the frame of discernment be Θ =

{θ1, . . . , θn, θn+1}, have two experts giving the mass matrix




1− Sp1 0 ε1 0 ε2 . . . 0 εp

0 1− Snp+1 0 εp+1 0 . . . εn−1 εn





where 1 ≤ p ≤ n and Sp1 ,
∑p
i=1 εi and Snp+1 ,

∑n
i=p+1 εi. Again using Dempster’s rule of combination,

one gets m(θn+1) = 1 which is absurd while using the DSm rule of combination based on free-DSm model,

one gets m(θn+1) = εpεn which is reliable. This example is similar to the previous one, but generalized.

5.3.5 Even more general

Let’s consider 0 < ε1, . . . , εn < 1 be very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, . . . , θn, θn+1}, have k ≥ 2 experts giving the mass matrix of k rows and n+ 1 columns such

that:

• one column, say column j, is (εj1 , εj2 , . . . , εjk )′ (transposed vector), where 1 ≤ j ≤ n + 1 where

{εj1 , εj2 , . . . , εjk} is included in {ε1, ε2, . . . , εn};

• and each column (except column j) contains at least one element equals to zero.

Then Dempster’s rule of combination gives m(θj) = 1 which is absurd, while the classical DSm rule gives

m(θj) = εj1 · εj2 · . . . · εjk 6= 0 which is reliable.

Actually, we need to set restrictions only for εj1 , εj2 , . . . , and εjk to be very tiny positive numbers,

not for all ε1, ε2, . . . , εn (the others can be anything in the interval [0, 1) such that the sum of elements

on each row be equal 1).

5.4 Third infinite class of counter examples

This third class of counter-examples deals with belief functions committing a non null mass to some

uncertainties.
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5.4.1 Example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider Θ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ3 ∪ θ4
m1(.) 0.99 0 0 0 0.01

m2(.) 0 0.98 0 0 0.02

If one applies Dempster’s rule, one gets

m(θ3 ∪ θ4) =
(0.01 · 0.02)

(0 + 0 + 0 + 0 + 0.01 · 0.02)
= 1

(total ignorance), which doesn’t bring any information to the fusion. This example looks similar to

Zadeh’s example, but is different because it is referring to uncertainty (not to contradictory) result.

Using the DSm classical rule: m(θ1 ∩θ2) = 0.9702, m(θ1∩ (θ3 ∪θ4)) = 0.0198, m(θ2 ∩ (θ3 ∪θ4)) = 0.0098,

m(θ3 ∪ θ4) = 0.0002. Suppose now one finds out that all intersections are empty (i.e. one adopts

Shafer’s model). Using the hybrid DSm rule one gets: mh(θ1 ∪ θ2) = 0.9702, mh(θ1 ∪ θ3 ∪ θ4) = 0.0198,

mh(θ2 ∪ θ3 ∪ θ4) = 0.0098, mh(θ3 ∪ θ4) = 0.0002.

5.4.2 Example with Θ = {θ1, θ2, θ3, θ4, θ5}

Let’s consider Θ = {θ1, θ2, θ3, θ4, , θ5}, three independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ5 θ4 ∪ θ5
m1(.) 0.99 0 0 0 0 0.01

m2(.) 0 0.98 0.01 0 0 0.01

m3(.) 0.01 0.01 0.97 0 0 0.01

• If one applies Dempster’s rule, one gets

m(θ4 ∪ θ5) =
(0.01 · 0.01 · 0.01)

(0 + 0 + 0 + 0 + 0.01 · 0.01 · 0.01)
= 1

(total ignorance), which doesn’t bring any information to the fusion.

• Using the DSm classical rule one gets:

m(θ1 ∩ θ2) = 0.99 · 0.98 · 0.01 + 0.99 · 0.98 · 0.01 = 0.019404

m(θ1 ∩ θ3) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.97 = 0.009702

m(θ1 ∩ θ2 ∩ θ3) = 0.99 · 0.98 · 0.97 + 0.99 · 0.01 · 0.01 = 0.941193

m(θ1 ∩ θ3 ∩ (θ4 ∪ θ5)) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.97 + 0.01 · 0.01 · 0.01 = 0.009703

m(θ1 ∩ (θ4 ∪ θ5)) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.01 + 0.01 · 0.01 · 0.01 = 0.000199

m((θ4 ∪ θ5) ∩ θ2 ∩ θ1) = 0.01 · 0.98 · 0.01 + 0.99 · 0.01 · 0.01 + 0.99 · 0.98 · 0.01 = 0.009899
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m((θ4 ∪ θ5) ∩ θ2) = 0.01 · 0.98 · 0.01 + 0.01 · 0.98 · 0.01 + 0.01 · 0.01 · 0.01 = 0.000197

m((θ4 ∪ θ5) ∩ θ2 ∩ θ3) = 0.01 · 0.98 · 0.97 + 0.01 · 0.01 · 0.01 = 0.009507

m((θ4 ∪ θ5) ∩ θ3) = 0.01 · 0.01 · 0.97 + 0.01 · 0.01 · 0.01 + 0.01 · 0.01 · 0.97 = 0.000195

m(θ4 ∪ θ5) = 0.01 · 0.01 · 0.01 = 0.000001

The sum of all masses is 1.

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one uses the

hybrid DSm rule and one gets:

mh(θ1 ∪ θ2) = 0.019404 mh(θ1 ∪ θ3) = 0.009702

mh(θ1 ∪ θ2 ∪ θ3) = 0.941193 mh(θ1 ∪ θ3 ∪ θ4 ∪ θ5) = 0.009703

mh(θ1 ∪ θ4 ∪ θ5) = 0.000199 mh(θ4 ∪ θ5 ∪ θ2 ∪ θ1) = 0.009899

mh(θ4 ∪ θ5 ∪ θ2) = 0.000197 mh(θ4 ∪ θ5 ∪ θ2 ∪ θ3) = 0.009507

mh(θ4 ∪ θ5 ∪ θ3) = 0.000195 mh(θ4 ∪ θ5) = 0.000001

The sum of all masses is 1.

5.4.3 More general

Let Θ = {θ1, . . . , θn}, where n ≥ 2, k independent experts, k ≥ 2, and the mass matrix M of k rows and

n+ 1 columns, corresponding to θ1, θ2, . . . , θn, and one uncertainty (different from the total uncertainty

θ1 ∪ θ2 ∪ . . . ∪ θn) say θi1 ∪ . . . ∪ θis respectively. If the following conditions occur:

• each column contains at least one zero, except the last column (of uncertainties) which has only

non-null elements, 0 < ε1, ε2, . . . , εk < 1, very tiny numbers (close to zero);

• the columns corresponding to the elements θi1 ,. . . , θis are null (all their elements are equal to zero).

If one applies Dempster’s rule, one gets m(θi1 ∪ . . . ∪ θis) = 1 (total ignorance), which doesn’t bring any

information to the fusion.

5.4.4 Even more general

One can extend the previous case even more, considering to u uncertainty columns, u ≥ 1 as follows.

Let Θ = {θ1, . . . , θn}, where n ≥ 2, k independent experts, k ≥ 2, and the mass matrix M of k rows

and n+ u columns, corresponding to θ1, θ2, . . . , θn, and u uncertainty columns (different from the total

uncertainty θ1 ∪ θ2 ∪ . . . ∪ θn) respectively. If the following conditions occur:

• each column contains at least one zero, except one column among the last u uncertainty ones which

has only non-null elements 0 < ε1, ε2, . . . , εk < 1, very tiny numbers (close to zero);



118 CHAPTER 5. COUNTER-EXAMPLES TO DEMPSTER’S RULE OF COMBINATION

• the columns corresponding to all elements θi1 ,. . . , θis ,. . . , θr1 ,. . . , θrs
(of course, these elements

should not be all θ1, θ2,. . . , θn, but only a part of them) that occur in all uncertainties are null

(i.e., all their elements are equal to zero).

If one applies Dempster’s rule, one gets m(θi1 ∪ . . . ∪ θis) = 1 (total ignorance), which doesn’t bring any

information to the fusion.

5.5 Fourth infinite class of counter examples

This infinite class of counter-examples concerns Dempster’s rule of conditioning defined as [5] :

∀B ∈ 2Θ, m(B|A) =

∑

X,Y ∈2Θ,(X∩Y )=Bm(X)mA(Y )

1−∑X,Y ∈2Θ,(X∩Y )=∅m(X)mA(Y )

where m(.) is any proper basic belief function defined over 2Θ and mA(.) is a particular belief function

defined by choosing mA(A) = 1 for any A ∈ 2Θ with A 6= ∅.

5.5.1 Example with Θ = {θ1, . . . , θ6}

Let’s consider Θ = {θ1, . . . , θ6}, one expert and a certain body of evidence over θ2, with the mass matrix:

θ1 θ2 θ3 θ4 ∪ θ5 θ5 ∪ θ6
m1(.) 0.3 0 0.4 0.2 0.1

mθ2(.) 0 1 0 0 0

• Using Dempster’s rule of conditioning, one gets: m(.|θ2) = 0/0 for all the masses.

• Using the DSm classical rule, one gets:

m(θ1∩θ2|θ2) = 0.3 m(θ2∩θ3|θ2) = 0.4 m(θ2∩(θ4∪θ5)|θ2) = 0.2 m(θ2∩(θ5∪θ6)|θ2) = 0.1

• If now, one finds out that all intersections are empty (we adopt Shafer’s model), then using the

hybrid DSm rule, one gets:

mh(θ1∪θ2|θ2) = 0.3 mh(θ2∪θ3|θ2) = 0.4 mh(θ2∪θ4∪θ5|θ2) = 0.2 mh(θ2∪θ5∪θ6|θ2) = 0.1

5.5.2 Another example with Θ = {θ1, . . . , θ6}

Let’s change the previous counter-example and use now the following mass matrix:

θ1 θ2 θ3 θ4 ∪ θ5 θ5 ∪ θ6
m1(.) 1 0 0 0 0

mθ2(.) 0 1 0 0 0
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• Using Dempster’s rule of conditioning, one gets: m(.|θ2) = 0/0 for all the masses.

• Using the DSm classical rule, one gets: m(θ1 ∩ θ2|θ2) = 1, and others 0.

• If now, one finds out that all intersections are empty (we adopt Shafer’s model), then using the

hybrid DSm rule, one gets: mh(θ1 ∪ θ2|θ2) = 1, and others 0.

5.5.3 Generalization

Let Θ = {θ1, θ2, . . . , θn}, where n ≥ 2, and two basic belief functions/masses m1(.) and m2(.) such that

there exist 1 ≤ (i 6= j) ≤ n, where m1(θi) = m2(θj) = 1, and 0 otherwise. Then Dempster’s rule of

conditioning can not be applied because one gets division by zero.

5.5.4 Example with Θ = {θ1, θ2, θ3, θ4} and ignorance

Let’s consider Θ = {θ1, θ2, θ1, θ2}, one expert and a certain ignorant body of evidence over θ3 ∪ θ4, with

the mass matrix:

θ1 θ2 θ3 ∪ θ4
m1(.) 0.3 0.7 0

mθ3∪θ4(.) 0 0 1

• Using Dempster’s rule of conditioning, one gets 0/0 for all masses m(.|θ3 ∪ θ4).

• Using the classical DSm rule, one gets: m(θ1∩(θ3∪θ4)|θ3∪θ4) = 0.3, m(θ2∩(θ3∪θ4)|θ3∪θ4) = 0.7

and others 0.

• If now one finds out that all intersections are empty (Shafer’s model), using the hybrid DSm rule,

one gets m(θ1 ∪ θ3 ∪ θ4|θ3 ∪ θ4) = 0.3, m(θ2 ∪ θ3 ∪ θ4|θ3 ∪ θ4) = 0.7 and others 0.

5.5.5 Generalization

Let Θ = {θ1, θ2, . . . , θn, θn+1, . . . , θn+m}, for n ≥ 2 and m ≥ 2. Let’s consider the mass m1(.), which is a

row of its values assigned for θ1, θ2, . . . , θn, and some unions among the elements θn+1, . . . , θn+m such

that all unions are disjoint with each other. If the second mass mA(.) is a conditional mass, where A

belongs to {θ1, θ2, . . . , θn} or unions among θn+1, . . . , θn+m, such that m1(A) = 0, then Dempster’s rule

of conditioning can not be applied because one gets division by zero, which is undefined. [We did not

consider any intersection of θi because Dempster’s rule of conditioning doesn’t accept paradoxes]. But

the DSm rule of conditioning does work here as well.
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5.5.6 Example with a paradoxical source

A counter-example with a paradox (intersection) over a non-refinable frame, where Dempster’s rule of

conditioning can not be applied because Dempster-Shafer theory does not accept paradoxist/conflicting

information between elementary elements θi of the frame Θ:

Let’s consider the frame of discernment Θ = {θ1, θ2}, one expert and a certain body of evidence over

θ2, with the mass matrix:

θ1 θ2 θ1 ∩ θ2 θ1 ∪ θ2
m1(.) 0.2 0.1 0.4 0.3

mθ2(.) 0 1 0 0

Using the DSm rule of conditioning, one gets

m(θ1|θ2) = 0 m(θ2|θ2) = 0.1 + 0.3 = 0.4 m(θ1 ∩ θ2|θ2) = 0.2 + 0.4 = 0.6 m(θ1 ∪ θ2|θ2) = 0

and the sum of fusion results is equal to 1.

Suppose now one finds out that all intersections are empty. Using the hybrid DSm rule when θ1∩θ2 =

∅, one has:

mh(θ1 ∩ θ2|θ2) = 0

mh(θ1|θ2) = m(θ1|θ2) + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0

mh(θ2|θ2) = m(θ2|θ2) + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.4 + 0.1(0) + 1(0.4) = 0.8

mh(θ1 ∪ θ2|θ2) = m(θ1 ∪ θ2|θ2) + [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

+ [m1(θ1 ∩ θ2)m2(θ1 ∪ θ2) +m2(θ1 ∩ θ2)m1(θ1 ∪ θ2)] + [m1(θ1 ∩ θ2)m2(θ1 ∩ θ2)]

= 0 + [0.2(1) + 0(0.1)] + [0.4(0) + 0(0.3)] + [0.4(0)]

= 0.2 + [0] + [0] + [0] = 0.2

5.6 Conclusion

Several infinite classes of counter-examples to Dempster’s rule of combination have been presented in this

chapter for didactic purposes to show the limitations of this rule in the DST framework. These infinite

classes of fusion problems bring the necessity of generalizing the DST to a more flexible theory which

permits the combination of any kind of sources of information with any degree of conflict and working on

any frame with exclusive or non-exclusive elements. The DSmT with the hybrid DSm rule of combination

proposes a new issue to satisfy these requirements based on a new mathematical framework.
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Abstract: In this chapter one studies, within the DSmT framework, the case when

the sources of information provide imprecise belief functions/masses, and we gener-

alize the DSm rules of combination (classic or hybrid rules) from scalar fusion to

sub-unitary interval fusion and, more generally, to any set of sub-unitary interval

fusion. This work generalizes previous works available in literature which appear

limited to IBS (Interval-valued Belief Structures) in the Transferable Belief Model

framework. Numerical didactic examples of these new DSm fusion rules for dealing

with imprecise information are also presented.

6.1 Introduction

I
n the previous chapters, we had focused our efforts on the fusion of precise uncertain and conflicting/-

paradoxical generalized basic belief assignments (gbba). We mean here by precise gbba, basic belief

functions/masses m(.) defined precisely on the hyper-power set DΘ where each mass m(X), where X

belongs to DΘ, is represented by only one real number belonging to [0, 1] such that
∑

X∈DΘ m(X) = 1.

In this chapter, we extend the DSm fusion rules for dealing with admissible imprecise generalized basic

belief assignments mI(.) defined as real subunitary intervals of [0, 1], or even more general as real sub-

unitary sets [i.e. sets, not necessarily intervals]. An imprecise belief assignment mI(.) over DΘ is said

admissible if and only if there exists for every X ∈ DΘ at least one real number m(X) ∈ mI(X) such that

123
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∑

X∈DΘ m(X) = 1. The idea to work with imprecise belief structures represented by real subset intervals

of [0, 1] is not new and we strongly encourage the reader to examine the previous works of Lamata &

Moral and also Denœux for instance on this topic in [5, 1, 2] and references therein. The proposed works

available in the literature, upon our knowledge were limited only to sub-unitary interval combination in

the framework of Transferable Belief Model (TBM) developed by Smets [12, 13]. We extend the approach

of Lamata & Moral and Denœux based on subunitary interval-valued masses to subunitary set-valued

masses; therefore the closed intervals used by Denœux to denote imprecise masses are generalized to any

sets included in [0,1], i.e. in our case these sets can be unions of (closed, open, or half-open/half-closed)

intervals and/or scalars all in [0, 1]. In this work, the proposed extension is done in the context of the

DSmT framework, although it can also apply directly to fusion of IBS within TBM as well if the user

prefers to adopt TBM rather than DSmT.

In many fusion problems, it seems very difficult (if not impossible) to have precise sources of evidence

generating precise basic belief assignments (especially when belief functions are provided by human ex-

perts), and a more flexible plausible and paradoxical theory supporting imprecise information becomes

necessary. This chapter proposes a new way to deal with the fusion of imprecise, uncertain and con-

flicting source of information. The section 6.2 presents briefly the DSm rule of combination for precise

belief functions. In section 6.3, we present the operations on sets for the chapter to be self-contained and

necessary to deal with imprecise nature of information in our framework. In section 6.4, we propose a

method to combine simple imprecise belief assignment corresponding only to sub-unitary intervals also

known as IBS (Interval-valued belief structures) in [1]. In section 6.5, we present the generalization of

our new fusion rules to combine any type of imprecise belief assignment which may be represented by the

union of several sub-unitary (half-) open intervals, (half-)closed intervals and/or sets of points belonging

to [0,1]. Several numerical examples are also given. In the sequel, one uses the notation (a, b) for an open

interval, [a, b] for a closed interval, and (a, b] or [a, b) for a half open and half closed interval.

6.2 Combination of precise beliefs

6.2.1 General DSm rule of combination

Let’s consider a frame of discernment of a fusion problem Θ = {θ1, θ2, . . . , θn}, its hyper-power set DΘ

(i.e. the set of all propositions built from elements θi of Θ with ∩ and ∪ operators (see chapter 2), and k

independent (precise) sources of information B1, B2, . . ., Bk with their associated generalized basic belief

assignments (gbba) m1(.), m2(.), . . ., mk(.) defined over DΘ. Let M be the mass matrix
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M =











m11 m12 . . . m1d

m21 m22 . . . m2d

. . . . . . . . . . . .

mk1 mk2 . . . mkd











where d = | DΘ | is the dimension of the hyper-power set, and mij ∈ [0, 1] for all 1 ≤ i ≤ k and

1 ≤ j ≤ d, is the mass assigned by source Bi to the element Aj ∈ DΘ. We use the DSm ordering

procedure presented in chapter 3 for enumerating the elements A1, A2, . . . , Ad of the hyper-power set

DΘ. The matrix M characterizes all information available which has to be combined to solve the fusion

problem under consideration. Since m1(.), m2(.), . . ., mk(.) are gbba, the summation on each row of

the matrix must be one. For any (possibly hybrid) model M(Θ), we apply the DSm general rule of

combination (also called hybrid DSm rule) for k ≥ 2 sources to fuse the masses (see chapter 4) defined

for all A ∈ DΘ as:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(6.1)

φ(A) is the characteristic non emptiness function of the set A, i.e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0

otherwise. ∅ , {∅,∅M} represents the set absolutely empty and of all relatively empty elements belonging

to DΘ (elements/propositions which have been forced to empty set in the chosen hybrid model M(Θ)).

If no constraint is introduced in the model, ∅ reduces to {∅} and this corresponds to the free DSm model

(see chapter 4). If all constraints of exclusivity between elements θi ∈ Θ are introduced, the hybrid model

M(Θ) corresponds to Shafer’s model on which is based Dempster-Shafer Theory (DST) [9]. S1(A), S2(A)

and S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (6.2)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (6.3)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi) (6.4)

where It , θ1 ∪ θ2 ∪ . . .∪ θn and U , u(X1)∪ u(X2)∪ . . .∪ u(Xk). u(X) is the union of all singletons

θi that compose X . For example, if X is a singleton then u(X) = X ; if X = θ1 ∩ θ2 or X = θ1 ∪ θ2 then

u(X) = θ1 ∪ θ2; if X = (θ1 ∩ θ2) ∪ θ3 then u(X) = θ1 ∪ θ2 ∪ θ3, etc; by convention u(∅) , ∅.
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6.2.2 Examples

Let’s consider at time t the frame of discernment Θ = {θ1, θ2, θ3} and two independent bodies of evidence

B1 and B2 with the generalized basic belief assignments m1(.) and m2(.) given by:

A ∈ DΘ m1(A) m2(A)

θ1 0.1 0.5

θ2 0.2 0.3

θ3 0.3 0.1

θ1 ∩ θ2 0.4 0.1

Table 6.1: Inputs of the fusion with precise bba

Based on the free DSm model and the classical DSm rule (6.2), the combination denoted by the

symbol ⊕ (i.e. m(.) = [m1 ⊕m2](.)) of these two precise sources of evidence is

A ∈ DΘ m(A) = [m1 ⊕m2](A)

θ1 0.05

θ2 0.06

θ3 0.03

θ1 ∩ θ2 0.52

θ1 ∩ θ3 0.16

θ2 ∩ θ3 0.11

θ1 ∩ θ2 ∩ θ3 0.07

Table 6.2: Fusion with DSm classic rule

Then, assume at time t+ 1 one finds out for some reason that the free DSm model has to be changed

by introducing the constraint θ1 ∩ θ2 = ∅ which involves also θ1 ∩ θ2 ∩ θ3 = ∅. This characterizes the

hybrid-model M we have to work with. Then one uses the general hybrid DSm rule of combination for

scalars (i.e. for precise masses m1(.) and m2(.) to get the new result of the fusion at time t+1. According

to (6.1), one obtains m(θ1 ∩ θ2
M≡ ∅) = 0, m(θ1 ∩ θ2 ∩ θ3

M≡ ∅) = 0 and
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A ∈ DΘ m(A)

θ1 0.05 + [0.1(0.1) + 0.5(0.4)] = 0.26

θ2 0.06 + [0.2(0.1) + 0.3(0.4)] = 0.20

θ3 0.03 + [0.3(0.1) + 0.1(0.4)] = 0.10

θ1 ∩ θ3 0.16

θ2 ∩ θ3 0.11

θ1 ∪ θ2 0 + [0.13] + [0.04] = 0.17

Table 6.3: Fusion with hybrid DSm rule for model M

6.3 Operations on sets

To manipulate imprecise information and for the chapter to be self-contained, we need to introduce

operations on sets as follows (detailed presentations on Interval Analysis and Methods can be found

in [3, 4, 6, 7, 8]). The interval operations defined here about imprecision are similar to the rational inter-

val extension through the interval arithmetics [10], but they are different from Modal Interval Analysis

which doesn’t serve our fusion needs. We are not interested in a dual of an interval [a, b], used in the

Modal Interval Analysis, because we always consider a ≤ b, while its dual, Du([a, b]) = [b, a], doesn’t

occur. Yet, we generalize the interval operations to any set operations. Of course, for the fusion we only

need real sub-unitary sets, but these defined set operations can be used for any kind of sets.

Let S1 and S2 be two (unidimensional) real standard subsets of the unit interval [0, 1], and a number

k ∈ [0, 1], then one defines [11] :

• Addition of sets

S1�S2 = S2�S1 , {x | x = s1+s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1) + inf(S2)

sup(S1 � S2) = sup(S1) + sup(S2)

and, as a particular case, we have

{k}� S2 = S2 � {k} = {x | x = k + s2, s2 ∈ S2} with







inf({k}� S2) = k + inf(S2)

sup({k}� S2) = k + sup(S2)

Examples:

[0.1, 0.3] � [0.2, 0.5] = [0.3, 0.8] because 0.1 + 0.2 = 0.3 and 0.3 + 0.5 = 0.8;

(0.1, 0.3] � [0.2, 0.5] = (0.3, 0.8];

[0.1, 0.3] � (0.2, 0.5] = (0.3, 0.8];

[0.1, 0.3) � [0.2, 0.5] = [0.3, 0.8);
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[0.1, 0.3] � [0.2, 0.5) = [0.3, 0.8);

(0.1, 0.3] � (0.2, 0.5) = (0.3, 0.8);

[0.7, 0.8] � [0.5, 0.9] = [1.2, 1.7];

{0.4}� [0.2, 0.5] = [0.2, 0.5] � {0.4} = [0.6, 0.9] because 0.4 + 0.2 = 0.6 and 0.4 + 0.5 = 0.9;

{0.4}� (0.2, 0.5] = (0.6, 0.9];

{0.4}� [0.2, 0.5) = [0.6, 0.9);

{0.4}� (0.2, 0.5) = (0.6, 0.9).

• Subtraction of sets

S1 � S2 , {x | x = s1 − s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1)− sup(S2)

sup(S1 � S2) = sup(S1)− inf(S2)

and, as a particular case, we have

{k}� S2 = {x | x = k − s2, s2 ∈ S2} with







inf({k}� S2) = k − sup(S2)

sup({k}� S2) = k − inf(S2)

and similarly for S2 � {k} with







inf(S2 � {k}) = inf(S2)− k

sup(S2 � {k}) = sup(S2)− k

Examples:

[0.3, 0.7] � [0.2, 0.3] = [0.0, 0.5] because 0.3− 0.3 = 0.0 and 0.7− 0.2 = 0.5;

[0.3, 0.7] � {0.1} = [0.2, 0.6];

{0.8}� [0.3, 0.7] = [0.1, 0.5] because 0.8− 0.7 = 0.1 and 0.8− 0.3 = 0.5;

[0.1, 0.8] � [0.5, 0.6] = [−0.5, 0.3];

[0.1, 0.8] � [0.2, 0.9] = [−0.8, 0.6];

[0.2, 0.5] � [0.1, 0.6] = [−0.4, 0.4].

• Multiplication of sets

S1 � S2 , {x | x = s1 · s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1) · inf(S2)

sup(S1 � S2) = sup(S1) · sup(S2)

and, as a particular case, we have

{k}� S2 = S2 � {k} = {x | x = k · s2, s2 ∈ S2} with







inf({k}� S2) = k · inf(S2)

sup({k}� S2) = k · sup(S2)
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Examples:

[0.1, 0.6] � [0.8, 0.9] = [0.08, 0.54] because 0.1 · 0.8 = 0.08 and 0.6 · 0.9 = 0.54;

[0.1, 0.6] � {0.3} = {0.3}� [0.1, 0.6] = [0.03, 0.18] because 0.3 · 0.1 = 0.03 and 0.3 · 0.6 = 0.18.

• Division of sets

In our fusion context, the division of sets is not necessary since the DSm rules of combination

(classic or hybrid ones) do not require a normalization procedure and thus a division operation.

Actually, the DSm rules require only addition and multiplication operations. We however give here

the definition of division of sets only for the reader’s interest and curiosity. The division of sets is

defined as follows:

If 0 /∈ S2, then S1�S2 , {x | x = s1/s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1)/ sup(S2)

sup(S1 � S2) = sup(S1)/ inf(S2) if 0 6∈ S2

sup(S1 � S2) = +∞ if 0 ∈ S2

If 0 ∈ S2, then S1 � S2 = [inf(S1)/ sup(S2),+∞)

and as some particular cases, we have for k 6= 0,

{k}� S2 = {x | x = k/s2,where s2 ∈ S2 \ {0}} with







inf({k}� S2) = k/ sup(S2)

sup({k}� S2) = k/ inf(S2)

and if 0 ∈ S2 then sup({k}� S2) = +∞

One has also as some particular case for k 6= 0,

S2 � {k} = {x | x = s2/k,where s2 ∈ S2} with







inf(S2 � {k}) = inf(S2)/k

sup(S2 � {k}) = sup(S2)/k

Examples:

[0.4, 0.6] � [0.1, 0.2] = [2, 6] because 0.4/0.2 = 2 and 0.6/0.1 = 6;

[0.4, 0.6] � {0.4} = [1, 1.5] because 0.4/0.4 = 1 and 0.6/0.4 = 1.5;

{0.8}� [0.2, 0.5] = [1.6, 4] because 0.8/0.2 = 4 and 0.8/0.5 = 1.6;

[0, 0.5] � [0.1, 0.2] = [0, 5]: [0, 0.5] � {0.4} = [0, 1.25] because 0/0.4 = 0 and 0.5/0.4 = 1.25;

[0.3, 0.9] � [0, 0.2] = [1.5,+∞) because 0.3/0.2 = 1.5 and since 0 ∈ (S2 = [0, 0.2]), sup([0.3, 0.9] �

[0, 0.2]) = +∞;

[0, 0.9] � [0, 0.2] = [0,+∞):

{0.7}�[0, 0.2] = [3.5,+∞) because 0.7/0.2 = 3.5 and 0 ∈ (S2 = [0, 0.2]), sup({0.7}�[0, 0.2]) = +∞;
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{0}� [0, 0.2] = [0,+∞): [0.3, 0.9] � {0} = +∞:

[0, 0.9] � {0} = +∞:

[0.2, 0.7] � [0, 0.8] = [0.25,+∞).

These operations can be directly extended for any types of sets (not necessarily sub-unitary subsets

as it will be shown in our general examples of section 6), but for simplicity, we will start the presentation

in the following section only for sub-unitary subsets.

Due to the fact that the fusion of imprecise information must also be included in the unit interval [0, 1]

as it happens with the fusion of precise information, if the masses computed are less than 0 one replaces

them by 0, and similarly if they are greater than 1 one replaces them by 1. For example (specifically in

our fusion context): [0.2, 0.4] � [0.5, 0.8] = [0.7, 1.2] will be forced to [0.7, 1].

6.4 Fusion of beliefs defined on single sub-unitary intervals

6.4.1 DSm rules of combination

Let’s now consider some given sources of information which are not able to provide us a specific/precise

mass mij ∈ [0, 1], but only an interval centered1 in mij , i.e. Iij = [mij − εij ,mij + εij ] where 0 ≤ εij ≤ 1

and Iij ⊆ [0, 1] for all 1 ≤ i ≤ k and 1 ≤ j ≤ d. The cases when Iij are half-closed or open are similarly

treated.

Lemma 1: if A,B ⊆ [0, 1] and α ∈ [0, 1] then:







inf(A�B) = inf(A) · inf(B)

sup(A�B) = sup(A) · sup(B)







inf(A⊕B) = inf(A) + inf(B)

sup(A⊕B) = sup(A) + sup(B)







inf(α ·A) = α · inf(A)

sup(α · A) = α · sup(A)







inf(α+A) = α+ inf(A)

sup(α+A) = α+ sup(A)

We can regard a scalar α as a particular interval [α, α], thus all operations of the previous lemma

are reduced to multiplications and additions of sub-unitary intervals. Therefore, the DSm general rule

(6.1), which operates (multiplies and adds) sub-unitary scalars, can be extended to operate sub-unitary

intervals. The formula (6.1) remains the same, but mi(Xi), 1 ≤ i ≤ k, are sub-unitary intervals Iij . The

1This interval centered assumption is not important actually but has been adopted here only for notational convenience.
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mass matrix M is extended to:

inf(M) =











m11 − ε11 m12 − ε12 . . . m1d − ε1d
m21 − ε21 m22 − ε22 . . . m2d − ε2d

. . . . . . . . . . . .

mk1 − εk1 mk2 − εk2 . . . mkd − εkd











sup(M) =











m11 + ε11 m12 + ε12 . . . m1d + ε1d

m21 + ε21 m22 + ε22 . . . m2d + ε2d

. . . . . . . . . . . .

mk1 + εk1 mk2 + εk2 . . . mkd + εkd











Notations: Let’s distinguish between DSm general rule for scalars, noted as usual mM(Θ)(A), or mi(Xi),

etc., and the DSm general rule for intervals noted as mI
M(Θ)(A), or mI

i (Xi), etc. Hence, the DSm general

rule for interval-valued masses is:

inf(mI
M(Θ)(A)) , φ(A)

[

Sinf
1 (A) + Sinf

2 (A) + Sinf
3 (A)

]

(6.5)

with

Sinf
1 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k∏

i=1

inf(mI
i (Xi))

Sinf
2 (A) ,

∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

inf(mI
i (Xi))

Sinf
3 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k∏

i=1

inf(mI
i (Xi))

and

sup(mI
M(Θ)(A)) , φ(A)

[

Ssup
1 (A) + Ssup

2 (A) + Ssup
3 (A)

]

(6.6)

with

Ssup
1 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k∏

i=1

sup(mI
i (Xi))

Ssup
2 (A) ,

∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

sup(mI
i (Xi))

Ssup
3 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k∏

i=1

sup(mI
i (Xi))

Actually formula (6.5) results from applying the hybrid DSm rule for scalars to the matrix inf(M),

while formula (6.6) results from applying the hybrid DSm rule for scalars to the matrix sup(M). The
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bounds of the DSm classic rule for the free DSm model are given for all A ∈ DΘ by Sinf
1 (A) and Ssup

1 (A).

Combining (6.5) and (6.6), one gets directly:

mI
M(Θ)(A) = [inf mI

M(Θ)(A), supmI
M(Θ)(A)] (6.7)

Of course, the closeness of this interval to the left and/or to the right depends on the closeness of the

combined intervals Iij . If all of them are closed to the left, then mI
M(Θ)(A) is also closed to the left. But,

if at least one is open to the left, then mI
M(Θ)(A) is open to the left. Similarly for the closeness to the

right. Because one has ∀i = 1, . . . , k and ∀j = 1, . . . , d :

lim
εij→0

(inf(M)) = lim
εij→0

(sup(M)) = M (6.8)

It results the following theorem.

Theorem 1: ∀A ∈ DΘ, ∀i = 1, . . . , k and ∀j = 1, . . . , d, one has:

lim
εij→0

mI
M(Θ)(A) = [ lim

infij

(A), lim
supij

(A)] with







liminfij
(A) , limεij→0(inf(mI

M(Θ)(A)))

limsupij
(A) , limεij→0(sup(mI

M(Θ)(A)))

(6.9)

In other words, if all centered sub-unitary intervals converge to their corresponding mid points (the

imprecision becomes zero), then the DSm rule for intervals converges towards the DSm rule for scalars.

Normally we must apply the DSm classical or hybrid rules directly to the interval-valued masses, but

this is equivalent to applying the DSm rules to the inferior and superior bounds of each mass. If, after

fusion, the sum of inferior masses is < 1 (which occurs all the time because combining incomplete masses

one gets incomplete results) and the sum of superior masses is ≥ 1 (which occurs all the time because

combining paraconsistent masses one gets paraconsistent results), then there exist points in each resulted

interval-valued mass such that their sum is 1 (according to a continuity theorem - see section 6.5.2).

6.4.2 Example with the DSm classic rule

Let’s take back the previous example (see section 6.2.2), but let’s now suppose the sources of information

give at time t imprecise generalized basic belief assignments, i.e. interval-valued masses centered in the

scalars given in section 6.2.2, of various radii according to table 6.4.

Based on the free DSm model and the classical DSm rule applied to imprecise basic belief assignments

following the method proposed in previous section, one has:

mI(θ1) = [0.05, 0.15] � [0.4, 0.6] = [0.020, 0.090]

mI(θ2) = [0.1, 0.3] � [0.1, 0.5] = [0.010, 0.150]

mI(θ3) = [0.15, 0.45] � [0, 0.2] = [0, 0.090]
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A ∈ DΘ mI
1(A) mI

2(A)

θ1 [0.05, 0.15] [0.4, 0.6]

θ2 [0.1, 0.3] [0.1, 0.5]

θ3 [0.15, 0.45] [0, 0.2]

θ1 ∩ θ2 [0.2, 0.6] [0.05, 0.15]

Table 6.4: Inputs of the fusion with imprecise bba

mI(θ1 ∩ θ3) = [[0.05, 0.15] � [0, 0.2]] � [[0.4, 0.6] � [0.15, 0.45]] = [0, 0.030] � [0.060, 0.270] = [0.060, 0.300]

mI(θ2 ∩ θ3) = [[0.1, 0.3] � [0, 0.2]] � [[0.1, 0.5] � [0.15, 0.45]] = [0, 0.06] � [0.015, 0.225] = [0.015, 0.285]

mI(θ1 ∩ θ2 ∩ θ3) = [[0.15, 0.45] � [0.05, 0.15]] � [[0, 0.2] � [0.2, 0.6]]

= [0.0075, 0.0675] � [0, 0.12]

= [0.0075, 0.1875]

mI(θ1 ∩ θ2) = [[0.2, 0.6] � [0.05, 0.15]] � [[0.05, 0.15] � [0.05, 0.15]] � [[0.4, 0.6] � [0.2, 0.6]]�

[[0.1, 0.3] � [0.05, 0.15]] � [[0.1, 0.5] � [0.2, 0.6]]�

[[0.05, 0.15] � [0.1, 0.5]] � [[0.4, 0.6] � [0.1, 0.3]]

= [0.010, 0.90] � [0.0025, 0.0225] � [0.08, 0.36] � [0.005, 0.045]�

[0.02, 0.30] � [0.005, 0.075] � [0.04, 0.18] = [0.1625, 1.0725]≡ [0.1625, 1]

The last equality comes from the absorption of [0.1625, 1.0725] into [0.1625, 1] according to operations on

sets defined in this fusion context. Thus, the final result of combination mI(.) = [mI
1 ⊕mI

2](.) of these

two imprecise sources of evidence is given in table 6.5.

A ∈ DΘ mI(A) = [mI
1 ⊕mI

2](A)

θ1 [0.020, 0.090]

θ2 [0.010, 0.150]

θ3 [0, 0.090]

θ1 ∩ θ2 [0.1625, 1.0725→ 1]

θ1 ∩ θ3 [0.060, 0.300]

θ2 ∩ θ3 [0.015, 0.285]

θ1 ∩ θ2 ∩ θ3 [0.0075, 0.1875]

Table 6.5: Fusion with DSm classic rule for free DSm model

There exist some points, for example 0.03, 0.10. 0.07, 0.4, 0.1, 0.2, 0.1 from the intervals [0.020, 0.090], . . .,

[0.0075, 0.1875] respectively such that their sum is 1 and therefore the admissibility of the fusion result
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holds. Note that this fusion process is equivalent to using the DSm classic rule for scalars for inferior

limit and incomplete information (see table 6.6), and the same rule for superior limit and paraconsistent

information (see table 6.7).

A ∈ DΘ minf
1 (A) minf

2 (A) minf(A)

θ1 0.05 0.4 0.020

θ2 0.1 0.1 0.010

θ3 0.15 0 0

θ1 ∩ θ2 0.2 0.05 0.1625

θ1 ∩ θ3 0 0 0.060

θ2 ∩ θ3 0 0 0.015

θ1 ∩ θ2 ∩ θ3 0 0 0.0075

Table 6.6: Fusion with DSm classic rule on lower bounds

A ∈ DΘ msup
1 (A) msup

2 (A) msup(A)

θ1 0.15 0.6 0.090

θ2 0.3 0.5 0.150

θ3 0.45 0.2 0.090

θ1 ∩ θ2 0.6 0.15 1.0725→ 1

θ1 ∩ θ3 0 0 0.300

θ2 ∩ θ3 0 0 0.285

θ1 ∩ θ2 ∩ θ3 0 0 0.1875

Table 6.7: Fusion with DSm classic rule on upper bounds

6.4.3 Example with the hybrid DSm rule

Then, assume at time t+1, that one finds out for some reason that the free DSm model has to be changed

by introducing the constraint θ1 ∩ θ2 = ∅ which involves also θ1 ∩ θ2 ∩ θ3 = ∅. One directly applies the

hybrid DSm rule for set to get the new belief masses:

mI(θ1) = [0.020, 0.090] � [[0.05, 0.15] � [0.05, 0.15]] � [[0.4, 0.6] � [0.2, 0.6]]

= [0.020, 0.090] � [0.0025, 0.0225] � [0.08, 0.36] = [0.1025, 0.4725]
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mI(θ2) = [0.010, 0.150] � [[0.1, 0.3] � [0.05, 0.15]] � [[0.1, 0.5] � [0.2, 0.6]]

= [0.010, 0.150] � [0.005, 0.045] � [0.02, 0.30] = [0.035, 0.495]

mI(θ3) = [0, 0.090] � [[0.15, 0.45] � [0.05, 0.15]] � [[0, 0.2] � [0.2, 0.6]]

= [0, 0.090] � [0.0075, 0.0675] � [0, 0.12] = [0.0075, 0.2775]

mI(θ1 ∪ θ2) = [[02, 0.6] � [0.05, 0.15]] � [[0.05, 0.15] � [0.1, 0.5]] � [[0.4, 0.6] � [0.1, 0.3]]

= [0.010, 0.090] � [0.005, 0.075] � [0.04, 0.18] = [0.055, 0.345]

mI(θ1 ∩ θ2) = mI(θ1 ∩ θ2 ∩ θ3) = 0 by definition of empty masses (due to the choice of the hybrid

model M). mI(θ1 ∩ θ3) = [0.060, 0.300] and mI(θ2 ∩ θ3) = [0.015, 0.285] remain the same. Finally, the

result of the fusion of imprecise belief assignments for the chosen hybrid model M, is summarized in

table 6.8.

A ∈ DΘ mI(A) = [minf(A),msup(A)]

θ1 [0.1025, 0.4725]

θ2 [0.035, 0.495]

θ3 [0.0075, 0.2775]

θ1 ∩ θ2
M≡ ∅ [0, 0] = 0

θ1 ∩ θ3 [0, 060, 0.300]

θ2 ∩ θ3 [0.015, 0.285]

θ1 ∩ θ2 ∩ θ3
M≡ ∅ [0, 0] = 0

θ1 ∪ θ2 [0.055, 0.345]

Table 6.8: Fusion with hybrid DSm rule for model M

The admissibility of the fusion result still holds since there exist some points, for example 0.1, 0.3, 0.1,

0, 0.2, 0.1, 0, 0.2 from the intervals [0.1025, 0.4725], . . ., [0.055, 0.345] respectively such that their sum is

1. Actually in each of these examples there are infinitely many such groups of points in each respective

interval whose sum is 1. This can be generalized for any examples.

6.5 Generalization of DSm rules for sets

In this section, we extend the previous results on the fusion of admissible imprecise information defined

only on single sub-unitary intervals to the general case where the imprecision is defined on sets. In
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other words, in the previous section we dealt with admissible imprecise masses having the form mI(A) =

[a, b] ⊆ [0, 1], and now we deals with admissible imprecise masses having the form mI(A) = [a1, b1]∪ . . .∪
[am, bm]∪ (c1, d1)∪ . . .∪ (cn, dn)∪ (e1, f1]∪ . . .∪ (ep, fp]∪ [g1, h1)∪ . . .∪ [gq, hq)∪ {A1, . . . , Ar} where all

the bounds or elements involved into mI(A) belong to [0, 1].

6.5.1 General DSm rules for imprecise beliefs

From our previous results, one can generalize the DSm classic rule from scalars to sets in the following

way: ∀A 6= ∅ ∈ DΘ,

mI(A) =
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (6.10)

where
∑

and
∏

represent the summation, and respectively product, of sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in the following way:

mI
M(Θ)(A) , φ(A) �

[

SI1 (A) � SI2 (A) � SI3 (A)
]

(6.11)

φ(A) is the characteristic non emptiness function of the set A and SI1 (A), SI2(A) and SI3 (A) are defined

by

SI1 (A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (6.12)

SI2 (A) ,
∑

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

∏

i=1,...,k

mI
i (Xi) (6.13)

SI3 (A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

∏

i=1,...,k

mI
i (Xi) (6.14)

In the case when all sets are reduced to points (numbers), the set operations become normal operations

with numbers; the sets operations are generalizations of numerical operations.

6.5.2 Some lemmas and a theorem

Lemma 2: Let the scalars a, b ≥ 0 and the intervals I1, I2 ⊆ [0, 1], with a ∈ I1 and b ∈ I2. Then

obviously (a+ b) ∈ I1 � I2 and (a · b) ∈ I1 � I2.

Because in DSm rules of combining imprecise information, one uses only additions and subtractions of

sets, according to this lemma if one takes at random a point of each mass set and one combines them
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using the DSm rules for scalars, the resulting point will belong to the resulting set from the fusion of

mass sets using the DSm rules for sets.

Lemma 3: Let Θ = {θ1, θ2, . . . , θn} and K ≥ 2 independent sources of information, and d = dim(DΘ).

By combination of incomplete information in DSmT, one gets incomplete information.

Proof: Suppose the masses of the sources of information on DΘ are for all 1 ≤ j ≤ K, represented

by the mass-vector mj = [mj1 ,mj2 , . . . ,mjd ] with 0 ≤ ∑d
r=1mjr < 1. According to the DSm network

architecture, no matter what DSm rule of combination is applied (classic or hybrid), the sum of all

resulted masses has the form:

K∏

j=1

(mj1 +mj2 + . . .+mjd) < (1× 1× . . .× 1
︸ ︷︷ ︸

K times

) = 1 (6.15)

Lemma 4: By combination of paraconsistent information, one gets paraconsistent information.

Proof: Using the same notations and similar reasoning, one has for all 1 ≤ j ≤ K, mj = [mj1 ,mj2 , . . . ,mjd ],

with
∑d

r=1mjr > 1. Then

K∏

j=1

(mj1 +mj2 + . . .+mjd) > (1× 1× . . .× 1
︸ ︷︷ ︸

K times

) = 1

Lemma 5: Combining incomplete (sum of masses < 1) with complete (sum of masses = 1) information,

one gets incomplete information.

Lemma 6: Combining complete information, one gets complete information.

Remark: Combining incomplete with paraconsistent (sum of masses > 1) information can give any

result. For example:

• If the sum of masses of the first source is 0.99 (incomplete) and the sum of masses of the second source

is 1.01 (paraconsistent), then the sum of resulted masses is 0.99× 1.01 = 0.9999 (i.e. incomplete)

• But if the first is 0.9 (incomplete) and the second is 1.2 (paraconsistent), then the resulted sum of

masses is 0.9× 1.2 = 1.08 (i.e. paraconsistent).

We can also have: incomplete information fusionned with paraconsistent information and get complete

information. For example: 0.8× 1.25 = 1.
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Admissibility condition:

An imprecise mass on DΘ is considered admissible if there exist at least a point belonging to [0, 1] in

each mass set such that the sum of these points is equal to 1 (i.e. complete information for at least a

group of selected points).

Remark: A complete scalar information is admissible. Of course, for the incomplete scalar information

and paraconsistent scalar information there can not be an admissibility condition, because by definitions

the masses of these two types of informations do not add up to 1 (i.e. to the complete information).

Theorem of Admissibility:

Let a frame Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, its hyper-power set DΘ with dim(DΘ) = d, and K ≥ 2

sources of information providing imprecise admissible masses on DΘ. Then, the resulted mass, after

fusion of the imprecise masses of these sources of information with the DSm rules of combination, is also

admissible.

Proof: Let sj , 1 ≤ j ≤ K, be an imprecise source of information, and its imprecise admissible mass

mI
j = [mI

j1
,mI

j2
, . . . ,mI

jd
]. We underline that all mI

jr
, for 1 ≤ r ≤ d, are sets (not scalars); if there is a

scalar α, we treat it as a set [α, α]. Because mI
j is admissible, there exist the points (scalars in [0, 1])

ms
j1
∈ mI

j1
, ms

j2
∈ mI

j2
,. . . ,ms

jd
∈ mI

jd
such that

∑d
r=1m

s
j1

= 1. This property occurs for all sources of

information, thus there exist such points ms
jr

for any 1 ≤ j ≤ K and any 1 ≤ r ≤ d. Now, if we fusion,

as a particular case, the masses of only these points, using DSm classic or hybrid rules, and according to

lemmas, based on DSm network architecture, one gets complete information (i.e. sum of masses equals

to 1). See also Lemma 2.

6.5.3 An example with multiple-interval masses

We present here a more general example with multiple-interval masses. For simplicity, this example is a

particular case when the theorem of admissibility is verified by a few points, which happen to be just on

the bounders. More general and complex examples (not reported here due to space limitations), can be

given and verified as well. It is however an extreme example, because we tried to comprise all kinds of

possibilities which may occur in the imprecise or very imprecise fusion. So, let’s consider a fusion problem

over Θ = {θ1, θ2}, two independent sources of information with the following imprecise admissible belief

assignments
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A ∈ DΘ mI
1(A) mI

2(A)

θ1 [0.1, 0.2] ∪ {0.3} [0.4, 0.5]

θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 6.9: Inputs of the fusion with imprecise bba

Using the DSm classic rule for sets, one gets

mI(θ1) = ([0.1, 0.2] ∪ {0.3}) � [0.4, 0.5]

= ([0.1, 0.2] � [0.4, 0.5]) ∪ ({0.3}� [0.4, 0.5])

= [0.04, 0.10]∪ [0.12, 0.15]

mI(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8]) � ([0, 0.4] ∪ {0.5, 0.6})

= ((0.4, 0.6) � [0, 0.4]) ∪ ((0.4, 0.6) � {0.5, 0.6})∪ ([0.7, 0.8] � [0, 0.4]) ∪ ([0.7, 0.8] � {0.5, 0.6})

= (0, 0.24) ∪ (0.20, 0.30)∪ (0.24, 0.36)∪ [0, 0.32]∪ [0.35, 0.40]∪ [0.42, 0.48]

= [0, 0.40] ∪ [0.42, 0.48]

mI(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})] � [[0.4, 0.5] � ((0.4, 0.6) ∪ [0.7, 0.8])]

= [([0.1, 0.2] � [0, 0.4]) ∪ ([0.1, 0.2] � {0.5, 0.6})∪ ({0.3}� [0, 0.4]) ∪ ({0.3}� {0.5, 0.6})]

� [([0.4, 0.5] � (0.4, 0.6)) ∪ ([0.4, 0.5] � [0.7, 0.8])]

= [[0, 0.08]∪ [0.05, 0.10]∪ [0.06, 0.12]∪ [0, 0.12] ∪ {0.15, 0.18}] � [(0.16, 0.30)∪ [0.28, 0.40]]

= [[0, 0.12]∪ {0.15, 0.18}] � (0.16, 0.40]

= (0.16, 0.52]∪ (0.31, 0.55]∪ (0.34, 0.58]

= (0.16, 0.58]

Hence finally the fusion admissible result is given by:

A ∈ DΘ mI(A) = [mI
1 ⊕mI

2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]

θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]

θ1 ∪ θ2 0

Table 6.10: Fusion result with the DSm classic rule
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If one finds out that θ1 ∩ θ2
M≡ ∅ (this is our hybrid model M one wants to deal with), then one uses the

hybrid DSm rule for sets (6.11): mI
M(θ1 ∩ θ2) = 0 and mI

M(θ1 ∪ θ2) = (0.16, 0.58], the others imprecise

masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]

θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2
M≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 6.11: Fusion result with the hybrid DSm rule for M

Let’s check now the admissibility conditions and theorem. For the source 1, there exist the pre-

cise masses (m1(θ1) = 0.3) ∈ ([0.1, 0.2] ∪ {0.3}) and (m1(θ2) = 0.7) ∈ ((0.4, 0.6) ∪ [0.7, 0.8]) such

that 0.3 + 0.7 = 1. For the source 2, there exist the precise masses (m1(θ1) = 0.4) ∈ ([0.4, 0.5]) and

(m2(θ2) = 0.6) ∈ ([0, 0.4] ∪ {0.5, 0.6}) such that 0.4 + 0.6 = 1. Therefore both sources associated with

mI
1(.) and mI

2(.) are admissible imprecise sources of information.

It can be easily checked that the DSm classic fusion of m1(.) and m2(.) yields the paradoxical basic

belief assignment m(θ1) = [m1 ⊕ m2](θ1) = 0.12, m(θ2) = [m1 ⊕ m2](θ2) = 0.42 and m(θ1 ∩ θ2) =

[m1 ⊕m2](θ1 ∩ θ2) = 0.46. One sees that the admissibility theorem is satisfied since (m(θ1) = 0.12) ∈
(mI(θ1) = [0.04, 0.10]∪ [0.12, 0.15]), (m(θ2) = 0.42) ∈ (mI(θ2) = [0, 0.40]∪ [0.42, 0.48]) and (m(θ1 ∩θ2) =

0.46) ∈ (mI(θ1 ∩ θ2) = (0.16, 0.58]) such that 0.12 + 0.42 + 0.46 = 1. Similarly if one finds out that

θ1 ∩ θ2 = ∅, then one uses the hybrid DSm rule and one gets: m(θ1 ∩ θ2) = 0 and m(θ1 ∪ θ2) = 0.46; the

others remain unchanged. The admissibility theorem still holds.

6.6 Conclusion

In this chapter, we proposed from the DSmT framework, a new general approach to combine, imprecise,

uncertain and possibly paradoxical sources of information to cover a wider class of fusion problems. This

work was motivated by the fact that in most of practical and real fusion problems, the information is

rarely known with infinite precision and the admissible belief assignment masses, for each element of the

hyper-power set of the problem, have to be taken/chosen more reasonably as sub-unitary (or as a set of

sub-unitary) intervals rather than a pure and simple scalar values. This is a generalization of previous

available works proposed in literature (mainly IBS restricted to TBM framework). One showed that it

is possible to fusion directly interval-valued masses using the DSm rules (classic or hybrid ones) and

the operations on sets defined in this work. Several illustrative and didactic examples have been given
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throughout this chapter to show the application of this new approach. The method developed here can

also combine incomplete and paraconsistent imprecise, uncertain and paradoxical sources of information

as well. This approach (although focused here only on the derivation of imprecise basic belief assignments)

can be extended without difficulty to the derivation of imprecise belief and plausibility functions as well

as to imprecise pignistic probabilities according to the generalized pignistic transformation presented in

chapter 7. This work allows the DSmT to cover a wider class of fusion problems.
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7.1 A short introduction to the DSm cardinality

O
ne important notion involved in the definition of the Generalized Pignistic Transformation (GPT)

is the DSm cardinality introduced in chapter 3 (section 3.2.2) and in [1]. The DSm cardinality of

any element A of hyper-power set DΘ, denoted CM(A), corresponds to the number of parts of A in the cor-

responding fuzzy/vague Venn diagram of the problem (modelM) taking into account the set of integrity

constraints (if any), i.e. all the possible intersections due to the nature of the elements θi. This intrinsic

cardinality depends on the model M (free, hybrid or Shafer’s model). M is the model that contains A,

which depends both on the dimension n = |Θ| and on the number of non-empty intersections present in

its associated Venn diagram. The DSm cardinality depends on the cardinal of Θ = {θ1, θ2, . . . , θn} and

on the model of DΘ (i.e., the number of intersections and between what elements of Θ - in a word the

structure) at the same time; it is not necessarily that every singleton, say θi, has the same DSm cardinal,

because each singleton has a different structure; if its structure is the simplest (no intersection of this

elements with other elements) then CM(θi) = 1, if the structure is more complicated (many intersections)

then CM(θi) > 1; let’s consider a singleton θi: if it has 1 intersection only then CM(θi) = 2, for 2 inter-

sections only CM(θi) is 3 or 4 depending on the modelM, for m intersections it is between m+ 1 and 2m

depending on the model; the maximum DSm cardinality is 2n−1 and occurs for θ1∪θ2∪ . . .∪θn in the free

model Mf ; similarly for any set from DΘ: the more complicated structure it has, the bigger is the DSm

cardinal; thus the DSm cardinality measures the complexity of en element from DΘ, which is a nice char-

acterization in our opinion; we may say that for the singleton θi not even |Θ| counts, but only its structure

(= how many other singletons intersect θi). Simple illustrative examples have already been presented in

chapter 3. One has 1 ≤ CM(A) ≤ 2n − 1. CM(A) must not be confused with the classical cardinality

|A| of a given set A (i.e. the number of its distinct elements) - that’s why a new notation is necessary here.

It has been shown in [1], that CM(A), is exactly equal to the sum of the elements of the row of Dn

corresponding to proposition A in the un basis (see chapter 2). Actually CM(A) is very easy to compute

by programming from the algorithm of generation of DΘ given in chapter 2 and in [2].

If one imposes a constraint that a set B from DΘ is empty (i.e. we choose a hybrid DSm model),

then one suppresses the columns corresponding to the parts which compose B in the matrix Dn and the

row of B and the rows of all elements of DΘ which are subsets of B, getting a new matrix D′
n which

represents a new hybrid DSm model M′. In the un basis, one similarly suppresses the parts that form

B, and now this basis has the dimension 2n − 1− CM(B).
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7.2 The Classical Pignistic Transformation (CPT)

We follow here Smets’ point of view [8] about the assumption that beliefs manifest themselves at two

mental levels: the credal level where beliefs are entertained and the pignistic level where belief functions

are used to make decisions. Pignistic terminology has been coined by Philippe Smets and comes from

pignus, a bet in Latin. The probability functions, usually used to quantify the beliefs at both levels,

are actually used here only to quantify the uncertainty when a decision is really necessary, otherwise we

argue as Philippe Smets does, that beliefs are represented by belief functions. To take a rational decision,

we propose to transform generalized beliefs into pignistic probability functions through the Generalized

Pignistic Transformation (the GPT) which will be presented in the following. We first recall the Classical

Pignistic Transformation (the CPT) based on Dempster-Shafer Theory (DST) and then we generalize it

within the Dezert-Smarandache Theory (DSmT) framework.

When a decision must be taken, we use the expected utility theory which requires to construct a proba-

bility function P{.} from basic belief function m(.) [8]. This is achieved by the so-called classical Pignistic

Transformation. In the Transferable Belief Model (the TBM) context [7] with open-world assumption,

Philippe Smets derives the pignistic probabilities from any non normalized basic belief assignment m(.)

(i.e. for which m(∅) ≥ 0) by the following formula [8]:

P{A} =
∑

X⊆Θ

|X ∩A|
|X |

m(X)

1−m(∅) (7.1)

where |A| denotes the number of worlds in the set A (with convention |∅|/|∅| = 1, to define P{∅}).
P{A} corresponds to BetP (A) in Smets’ notation [8]. Decisions are achieved by computing the expected

utilities of the acts using the subjective/pignistic P{.} as the probability function needed to compute

expectations. Usually, one uses the maximum of the pignistic probability as decision criterion. The max.

of P{.} is often considered as a prudent betting decision criterion between the two other alternatives (max

of plausibility or max. of credibility which appears to be respectively too optimistic or too pessimistic).

It is easy to show that P{.} is indeed a probability function (see [7]).

It is important to note that if the belief mass m(.) results from the combination of two independent

sources of evidence (i.e. m(.) = [m1 ⊕m2](.)) then, at the pignistic level, the classical pignistic probabil-

ity measure P (.) remains the same when using Dempster’s rule or when using Smets’ rule in his TBM

open-world approach working with m(∅) > 0. Thus the problem arising with the combination of highly

conflicting sources when using Dempster’s rule (see chapter 5), and apparently circumvented with the

TBM at the credal level, still fundamentally remains at the pignistic level. The problem is only trans-

ferred from credal level to pignistic level when using TBM. TBM does not help to improve the reliability
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of the decision-making with respect to Dempster’s rule of combination because the pignistic probabilities

are strictly and mathematically equivalent. In other words, if the result of the combination is wrong or

at least very questionable or counter-intuitive when the degree of the conflict m(∅) becomes high, then

the decision based on pignistic probabilities will become inevitably wrong or very questionable too.

Taking into account the previous remark, we rather prefer to adopt from now on the classical

Shafer’s definition for basic belief assignment m(.) : 2Θ → [0, 1] which imposes to take m(∅) = 0 and
∑

X∈2Θ m(X) = 1. We adopt therefore the following definition for the Classical Pignistic Transformation

(CPT):

P{A} =
∑

X∈2Θ

|X ∩A|
|X | m(X) (7.2)

7.3 A Generalized Pignistic Transformation (GPT)

7.3.1 Definition

To take a rational decision within the DSmT framework, it is necessary to generalize the Classical Pignistic

Transformation in order to construct a pignistic probability function from any generalized basic belief

assignment m(.) drawn from the DSm rules of combination (the classic or the hybrid ones - see chapter

1). We propose here the simplest and direct extension of the CPT to define a Generalized Pignistic

Transformation as follows:

∀A ∈ DΘ, P{A} =
∑

X∈DΘ

CM(X ∩A)

CM(X)
m(X) (7.3)

where CM(X) denotes the DSm cardinal of proposition X for the DSm model M of the problem under

consideration.

The decision about the solution of the problem is usually taken by the maximum of pignistic proba-

bility function P{.}. Let’s remark the close ressemblance of the two pignistic transformations (7.2) and

(7.3). It can be shown that (7.3) reduces to (7.2) when the hyper-power set DΘ reduces to classical power

set 2Θ if we adopt Shafer’s model. But (7.3) is a generalization of (7.2) since it can be used for computing

pignistic probabilities for any models (including Shafer’s model).

7.3.2 P{.} is a probability measure

It is important to prove that P{.} built from GPT is indeed a (subjective/pignistic) probability measure

satisfying the following axioms of probability theory [4, 5]:
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• Axiom 1 (nonnegativity): The (generalized pignistic) probability of any event A is bounded by 0

and 1

0 ≤ P{A} ≤ 1

• Axiom 2 (unity): Any sure event (the sample space) has unity (generalized pignistic) probability

P{S} = 1

• Axiom 3 (additivity over mutually exclusive events): If A, B are disjoint (i.e. A ∩ B = ∅) then

P (A ∪B) = P (A) + P (B)

The axiom 1 is satisfied because, by the definition of the generalized basic belief assignment m(.), one

has ∀αi ∈ DΘ, 0 ≤ m(αi) ≤ 1 with
∑

αi∈DΘ m(αi) = 1 and since all coefficients involved within GPT

are bounded by 0 and 1, it follows directly that pignistic probabilities are also bounded by 0 and 1.

The axiom 2 is satisfied because all the coefficients involved in the sure event S , θ1 ∪ θ2 ∪ ... ∪ θn
are equal to one because CM(X∩S)/CM(X) = CM(X)/CM(X) = 1, so that P{S} ≡∑αi∈DΘ m(αi) = 1.

The axiom 3 is satisfied. Indeed, from the definition of GPT, one has

P{A ∪B} =
∑

X∈DΘ

CM(X ∩ (A ∪B))

CM(X)
m(X) (7.4)

But if we consider A and B exclusive (i.e. A ∩B = ∅), then it follows:

CM(X ∩ (A ∪B)) = CM((X ∩A) ∪ (X ∩B)) = CM(X ∩A) + CM(X ∩B)

By substituting CM(X ∩ (A ∪B)) by CM(X ∩A) + CM(X ∩B) into (7.4), it comes:

P{A ∪B} =
∑

X∈DΘ

CM(X ∩A) + CM(X ∩B)

CM(X)
m(X)

=
∑

X∈DΘ

CM(X ∩A)

CM(X)
m(X) +

∑

X∈DΘ

CM(X ∩B)

CM(X)
m(X)

= P{A}+ P{B}

which completes the proof. From the coefficients CM(X∩A)
CM(X) involved in (7.3), it can also be easily checked

that A ⊂ B ⇒ P{A} ≤ P{B}. One can also easily prove the Poincaré’ equality: P{A ∪ B} = P{A} +

P{B} − P{A ∩ B} because CM(X ∩ (A ∪ B) = CM((X ∩ A) ∪ (X ∩ B)) = CM(X ∩A) + CM(X ∩B)−
CM(X ∩ (A ∩B)) (one has substracted CM(X ∩ (A ∩B)), i.e. the number of parts of X ∩ (A∩B) in the

Venn diagram, due to the fact that these parts were added twice: once in CM(X ∩ A) and second time

in CM(X ∩B).
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7.4 Some examples for the GPT

7.4.1 Example for the 2D case

• With the free DSm model:

Let’s consider Θ = {θ1, θ2} and the generalized basic belief function m(.) over the hyper-power set

DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}. It is easy to construct the pignistic probability P{.}. According

to the definition of the GPT given in (7.3), one gets:

P{∅} = 0

P{θ1} = m(θ1) +
1

2
m(θ2) +m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1) +m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ1 ∩ θ2} =
1

2
m(θ2) +

1

2
m(θ1) +m(θ1 ∩ θ2) +

1

3
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = P{Θ} = m(θ1) +m(θ2) +m(θ1 ∩ θ2) +m(θ1 ∪ θ2) = 1

It is easy to prove that 0 ≤ P{.} ≤ 1 and P{θ1 ∪ θ2} = P{θ1}+ P{θ2} − P{θ1 ∩ θ2}

• With Shafer’s model:

If one adopts Shafer’s model (we assume θ1 ∩ θ2
M0

≡ ∅), then after applying the hybrid DSm rule of

combination, one gets a basic belief function with non null masses only on θ1, θ2 and θ1 ∪ θ2. By

applying the GPT, one gets:

P{∅} = 0

P{θ1 ∩ θ2} = 0

P{θ1} = m(θ1) +
1

2
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

which naturally corresponds in this case to the pignistic probability built with the classical pignistic

transformation (7.2).

7.4.2 Example for the 3D case

• With the free DSm model:
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X CM(X∩α6)
CM(X) ≤ CM(X∩α10)

CM(X)

α1 1 ≤ 1

α2 1 ≤ 1

α3 (1/2) ≤ (1/2)

α4 1 ≤ 1

α5 (2/3) ≤ (2/3)

α6 1 ≤ 1

α7 (2/3) ≤ (2/3)

α8 (3/4) ≤ (3/4)

α9 (2/4) ≤ (2/4)

X CM(X∩α6)
CM(X) ≤ CM(X∩α10)

CM(X)

α10 (3/4) ≤ 1

α11 (2/4) ≤ (2/4)

α12 (3/5) ≤ (3/5)

α13 (3/5) ≤ (4/5)

α14 (3/5) ≤ (3/5)

α15 (3/6) ≤ (4/6)

α16 (3/6) ≤ (3/6)

α17 (3/6) ≤ (4/6)

α18 (3/7) ≤ (4/7)

Table 7.1: Coefficients CM(X∩α6)
CM(X) and CM(X∩α10)

CM(X)

Let’s consider Θ = {θ1, θ2, θ3}, its hyper-power set DΘ = {α0, . . . , α18} (with αi, i = 0, . . . , 18

corresponding to propositions shown in table 3.1 of chapter 3, and the generalized basic belief as-

signment m(.) over the hyper-power set DΘ. The six tables presented in the appendix show the full

derivations of all generalized pignistic probabilities P{αi} for i = 1, . . . , 18 (P{∅} = 0 by definition)

according to the GPT formula (7.3).

Note that P{α18} = 1 because (θ1 ∪ θ2 ∪ θ3) corresponds to the sure event in our subjective prob-

ability space and
∑

αi∈DΘ m(αi) = 1 by the definition of any generalized basic belief assignment

m(.) defined on DΘ.

It can be verified (as expected) on this example, although being a quite tedious task, that Poincaré’

s equality holds:

P{A1 ∪ . . . ∪An} =
∑

I⊂{1,...,n}

I 6=∅

(−1)
|I|+1

P{
⋂

i∈I

Ai} (7.5)

It is also easy to verify that ∀A ⊂ B ⇒ P{A} ≤ P{B} holds. By example, for (α6 , (θ1∪θ3)∩θ2) ⊂
α10 , θ2) and from the expressions of P{α6} and P{α10} given in appendix, we directly conclude

that P{α6} ≤ P{α10} because

∀X ∈ DΘ,
CM(X ∩ α6)

CM(X)
≤ CM(X ∩ α10)

CM(X)
(7.6)

as shown in the table above.
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• Example with a given hybrid DSm model:

Consider now the hybrid DSm model M 6= Mf in which we force all possible conjunctions to be

empty, but θ1 ∩ θ2 according to the second Venn diagram presented in Chapter 3 and shown in

Figure 3.2. In this case the hyper-power set DΘ reduces to 9 elements {α0, . . . , α8} shown in table

3.2 of Chapter 3. The following tables present the full derivations of the pignistic probabilities

P{αi} for i = 1, . . . , 8 from the GPT formula (7.3) applied to this hybrid DSm model.

P{α1} = P{α2} = P{α3} = P{α4} =

(1/1)m(α1) (0/1)m(α1) (1/1)m(α1) (1/1)m(α1)

+(0/1)m(α2) +(1/1)m(α2) +(0/2)m(α2) +(0/1)m(α2)

+(1/2)m(α3) +(0/2)m(α3) +(2/2)m(α3) +(1/2)m(α3)

+(1/2)m(α4) +(0/2)m(α4) +(1/2)m(α4) +(2/2)m(α4)

+(1/3)m(α5) +(0/3)m(α5) +(2/3)m(α5) +(2/3)m(α5)

+(1/3)m(α6) +(1/3)m(α6) +(2/3)m(α6) +(1/3)m(α6)

+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7) +(2/3)m(α7)

+(1/4)m(α8) +(1/4)m(α8) +(2/4)m(α8) +(2/4)m(α8)

Table 7.2: Derivation of P{α1 , θ1 ∩ θ2}, P{α2 , θ3}, P{α3 , θ1} and P{α4 , θ2}

P{α5} = P{α6} = P{α7} = P{α8} =

(1/1)m(α1) (1/1)m(α1) (1/1)m(α1) (1/1)m(α1)

+(0/1)m(α2) +(1/1)m(α2) +(2/2)m(α2) +(2/2)m(α2)

+(2/2)m(α3) +(2/2)m(α3) +(1/2)m(α3) +(2/2)m(α3)

+(2/2)m(α4) +(1/2)m(α4) +(2/2)m(α4) +(2/2)m(α4)

+(3/3)m(α5) +(2/3)m(α5) +(2/3)m(α5) +(3/3)m(α5)

+(2/3)m(α6) +(3/3)m(α6) +(2/3)m(α6) +(3/3)m(α6)

+(2/3)m(α7) +(2/3)m(α7) +(3/3)m(α7) +(3/3)m(α7)

+(3/4)m(α8) +(3/4)m(α8) +(3/4)m(α8) +(4/4)m(α8)

Table 7.3: Derivation of P{α5 , θ1 ∪ θ2}, P{α6 , θ1 ∪ θ3}, P{α7 , θ2 ∪ θ3} and P{α8 , θ1 ∪ θ2 ∪ θ3}

• Example with Shafer’s model:

Consider now Shafer’s model M0 6= Mf in which we force all possible conjunctions to be empty

according to the third Venn diagram presented in Chapter 3. In this case the hyper-power set



7.5. CONCLUSION 151

DΘ reduces to the classical power set 2Θ with 8 elements {α0, . . . , α7} explicated in table 3.3 of

Chapter 3. Applying, the GPT formula (7.3), one gets the following pignistic probabilities P{αi}
for i = 1, . . . , 7 which naturally coincide, in this particular case, with the values obtained directly

by the classical pignistic transformation (7.2):

P{α1} = P{α2} = P{α3} =

(1/1)m(α1) (0/1)m(α1) (0/1)m(α1)

+(0/1)m(α2) +(1/1)m(α2) +(0/1)m(α2)

+(0/1)m(α3) +(0/1)m(α3) +(1/1)m(α3)

+(1/2)m(α4) +(1/2)m(α4) +(0/2)m(α4)

+(1/2)m(α5) +(0/2)m(α5) +(1/2)m(α5)

+(0/2)m(α6) +(1/2)m(α6) +(1/2)m(α6)

+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7)

Table 7.4: Derivation of P{α1 , θ1}, P{α2 , θ2} and P{α3 , θ3}

P{α4} = P{α5} = P{α6} = P{α7} =

(1/1)m(α1) (1/1)m(α1) (0/1)m(α1) (1/1)m(α1)

+(1/1)m(α2) +(0/1)m(α2) +(1/1)m(α2) +(1/1)m(α2)

+(0/1)m(α3) +(1/1)m(α3) +(1/1)m(α3) +(1/1)m(α3)

+(2/2)m(α4) +(1/2)m(α4) +(1/2)m(α4) +(2/2)m(α4)

+(1/2)m(α5) +(2/2)m(α5) +(1/2)m(α5) +(2/2)m(α5)

+(1/2)m(α6) +(1/2)m(α6) +(2/2)m(α6) +(2/2)m(α6)

+(2/3)m(α7) +(2/3)m(α7) +(2/3)m(α7) +(3/3)m(α7)

Table 7.5: Derivation of P{α4 , θ1∪θ2}, P{α5 , θ1∪θ3}, P{α6 , θ2∪θ3} and P{α7 , θ1∪θ2∪θ3} = 1

7.5 Conclusion

A generalization of the classical pignistic transformation developed originally within the DST framework

has been proposed in this chapter. This generalization is based on the new theory of plausible and

paradoxical reasoning (DSmT) and provides a new mathematical issue to help the decision-making under

uncertainty and paradoxical (i.e. highly conflicting) sources of information. The generalized pignistic

transformation (GPT) proposed here allows to build a subjective/pignistic probability measure over the

hyper-power set of the frame of the problem under consideration for all kinds of models (free, hybrid

or Shafer’s model). The GPT coincides naturally with the classical pignistic transformation whenever

Shafer’s model is adopted. It corresponds with the assumptions of classical pignistic probability general-
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Appendix: Derivation of the GPT for the 3D free DSm model

P{α1} = P{α2} = P{α3} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +m(α2) +(1/2)m(α2)
+(1/2)m(α3) +(1/2)m(α3) +m(α3)
+(1/2)m(α4) +(1/2)m(α4) +(1/2)m(α4)
+(1/3)m(α5) +(1/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(2/3)m(α6) +(1/3)m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(1/4)m(α8) +(2/4)m(α8) +(2/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(1/4)m(α10) +(2/4)m(α10) +(1/4)m(α10)
+(1/4)m(α11) +(1/4)m(α11) +(2/4)m(α11)
+(1/5)m(α12) +(2/5)m(α12) +(2/5)m(α12)
+(1/5)m(α13) +(2/5)m(α13) +(2/5)m(α13)
+(1/5)m(α14) +(2/5)m(α14) +(2/5)m(α14)
+(1/6)m(α15) +(2/6)m(α15) +(2/6)m(α15)
+(1/6)m(α16) +(2/6)m(α16) +(2/6)m(α16)
+(1/6)m(α17) +(2/6)m(α17) +(2/6)m(α17)
+(1/7)m(α18) +(2/7)m(α18) +(2/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Derivation of P{α1}, P{α2} and P{α3} Derivation of P{α10}, P{α11} and P{α12}

P{α4} = P{α5} = P{α6} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +(1/2)m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +(2/3)m(α6) +m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(2/4)m(α8) +(3/4)m(α8) +(3/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(2/4)m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(2/5)m(α12) +(3/5)m(α12) +(3/5)m(α12)
+(2/5)m(α13) +(3/5)m(α13) +(3/5)m(α13)
+(2/5)m(α14) +(3/5)m(α14) +(3/5)m(α14)
+(2/6)m(α15) +(3/6)m(α15) +(3/6)m(α15)
+(2/6)m(α16) +(3/6)m(α16) +(3/6)m(α16)
+(2/6)m(α17) +(3/6)m(α17) +(3/6)m(α17)
+(2/7)m(α18) +(3/7)m(α18) +(3/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Derivation of P{α4}, P{α5} and P{α6} Derivation of P{α13}, P{α14} and P{α15}

P{α7} = P{α8} = P{α9} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+(1/2)m(α4) +m(α4) +(1/2)m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +m(α6) +(2/3)m(α6)
+m(α7) +m(α7) +m(α7)
+(3/4)m(α8) +m(α8) +(3/4)m(α8)
+(3/4)m(α9) +(3/4)m(α9) +m(α9)
+(2/4)m(α10) +(3/4)m(α10) +(2/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(3/5)m(α12) +(4/5)m(α12) +(3/5)m(α12)
+(3/5)m(α13) +(4/5)m(α13) +(3/5)m(α13)
+(3/5)m(α14) +(4/5)m(α14) +(4/5)m(α14)
+(3/6)m(α15) +(4/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(3/6)m(α17) +(4/6)m(α17) +(3/6)m(α17)
+(3/7)m(α18) +(4/7)m(α18) +(4/7)m(α18)

P{α16} = P{α17} = P{α18} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+m(α5) +m(α5) +m(α5)
+m(α6) +m(α6) +m(α6)
+m(α7) +m(α7) +m(α7)
+m(α8) +m(α8) +m(α8)
+m(α9) +(3/4)m(α9) +m(α9)
+(3/4)m(α10) +m(α10) +m(α10)
+m(α11) +m(α11) +m(α11)
+m(α12) +m(α12) +m(α12)
+(4/5)m(α13) +m(α13) +m(α13)
+m(α14) +(4/5)m(α14) +m(α14)
+(5/6)m(α15) +(5/6)m(α15) +m(α15)
+m(α16) +(5/6)m(α16) +m(α16)
+(5/6)m(α17) +m(α17) +m(α17)
+(6/7)m(α18) +(6/7)m(α18) +m(α18)

Derivation of P{α7}, P{α8} and P{α9} Derivation of P{α16}, P{α17} and P{α18}
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Chapter 8

Probabilized logics related to DSmT

and Bayes inference

Frédéric Dambreville

Délégation Générale pour l’Armement, DGA/CTA/DT/GIP/PRO

16 Bis, Avenue Prieur de la Côte d’Or

94114, Arcueil Cedex France

Abstract: This work proposes a logical interpretation of the non hybrid Dezert

Smarandache Theory (DSmT). As probability is deeply related to a classical seman-

tic, it appears that DSmT relies on an alternative semantic of decision. This se-

mantic is characterized as a probabilized multi-modal logic. It is noteworthy that

this interpretation justifies clearly some hypotheses usually made about the fusion

rule ( ie. the independence between the sensors). At last, a conclusion arises: there

could be many possible fusion rules, depending on the chosen semantic of decision;

and the choice of a semantic depends on how the actual problem is managed. Illus-

trating this fact, a logical interpretation of the Bayesian inference is proposed as a

conclusion to this chapter.

8.1 Introduction

W
hen a non deterministic problem appears to be too badly shaped, it becomes difficult to make a

coherent use of the probabilistic models. A particular difficulty, often neglected, comes from the

interpretation of the raw data. The raw data could have a good probabilistic modelling, but in general

such informations are useless: an interpretation is necessary. Determining the model of interpretation,

and its probabilistic law, is the true issue. Due to the forgotten/unknown case syndrome, it is possible
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that such model cannot be entirely constructed. In some cases, only a rather weak approximation of the

model is possible. Such approximated model of interpretation may produce paradoxical results. This is

particularly true in information fusion problems.

Several new theories have been proposed for managing these difficulties. Dempster Shafer Theory

of evidence [1, 5] is one of them. In this paper, we are interested in the Dezert Smarandache Theory

(DSmT) [3], a closely related theory. These theories, and particularly the DSmT, are able to manipulate

the model contradictions. But a difficulty remains: it seems uneasy to link these various theories. In

particular, their relation with the theory of probability seems unclear. Such a relation is perhaps not

possible, as could claim some authors, but it is necessary: it is sometimes needed to combine methods

and algorithms based on different theories. This paper intends to establish such relations. A probabilized

multi-modal logic is constructed. This probabilized logic, intended for the information fusion, induces the

same conjunctive fusion operator as DSmT (ie. operator ⊕). By the way, the necessity of independent

sources for applying the operator ⊕ is clarified and confirmed. Moreover, this logical interpretation in-

duces a possible semantic of the DSmT, and somehow enlightens the intuitions behind this theory. Near

the end, the paper keeps going by giving a similar interpretation of the Bayes inference. Although the

Bayes inference is not related to the DSmT, this last result suggests that probabilized logics could be a

possible common frame for several non deterministic theories.

Section 8.2 is beginning by a general discussion about probability. It is shown that probabilistic

modellings are sometimes questionable. Following this preliminary discussion, two versions of the theory

of evidence are introduced: the historical Dempster Shafer Theory and the Transferable Belief Model

of Smets [8]. Section 8.3 makes a concise presentation of the Dezert Smarandache Theory. The short

section 8.4 establishes some definitions about probability (and partial probability) over a set of logical

propositions. These general definitions are needed in the following sections. Section 8.5 gives a logical

interpretation of the DSmT on a small example. This section does not enter the theory too deeply:

the modal logic associated to this interpretation is described with practical words, not with formulae!

Section 8.6 generalizes the results to any cases. This section is much more theoretic. The modal logic is

defined mathematically. Section 8.7 proposes a similar logical interpretation of the Bayesian inference.

Section 8.8 concludes.
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8.2 Belief Theory Models

8.2.1 Preliminary: about probability

This subsection argues about the difficulty to modelize “everything” with probability. Given a measurable

universe of abstract events (or propositions) Ω = {ωi, i ∈ I}, a probability P could be defined as a bounded

and normalized measure over Ω . In this paper, we are interested in finite models (I is finite).

A probability P could also be defined from the probabilities ρ(ω) of the elementary events ω ∈ Ω . The

density of probability ρ should verify (finite case) :

ρ : Ω 7→ IR+,

and:
∑

ω∈Ω

ρ(ω) = 1 .

The probability P is recovered by means of the additivity property:

∀A ⊂ Ω, P (A) =
∑

ω∈A

ρ(ω).

It is important to remember how such abstract definitions are related to a concrete notion of “chance”

in the actual universe. Behind the formalism, behind the abstract events, there are actual events. The

formalism introduced by the abstract universe Ω is just a modelling of the actual universe. Such a

model is expected to be more suitable to mathematical manipulations and reasoning. But there is no

reason that these actual events are compatible with the abstract events. Probability theory assumes

this compatibility. More precisely, probability assumes that either the abstract and actual events are

the same, either there is a mapping from the actual events to the abstract events (figure 8.1). When this

mapping hypothesis is made, the density function makes sense then, in regard to the observation. Indeed,

a practical construction of ρ becomes possible with a frequentist taste:

1. Set ρ(ω) = 0 for all ω ∈ Ω ,

2. Make N tossing of an actual event. For each tossed event, a, do:

(a) Select the ω ∈ Ω such that a maps to ω ,

(b) Set ρ(ω) = ρ(ω) + 1 ,

3. Set ρ(ω) ' 1
N ρ(ω) for all ω ∈ Ω .

The next paragraph explains why the mapping from the actual events to the abstract events is not always

possible and how to overcome this difficulty.
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Actual universe (observations) Abstract universe (representation)

× × × •

• × • •

• • • •

• • • •

7−→

× × × •

• × • •

• • • •

• • • •

An abstract event is a connected component; in this example,

the ×-ed observations map to the unique ×-ed component

Figure 8.1: Event mapping: probabilist case

8.2.1.1 The impossible quest of the perfect universe

It is always possible to assume that there is a perfect universe, where all problems could be modeled, but

we are not able to construct it or to manipulate it practically. However, we are able to think with it. Let

A be the actual universe, let Ω be the abstract universe, and let Z be this perfect universe.

The structure of Ω is well known; it describes our modelling of the actual world. This is how we interpret

the observations. Practically, such interpretation is almost always necessary, while the raw observation

may be useless. But Ω is only an hypothesis: our knowledge about the observation is generally insufficient

for a true interpretation.

The universe A is observed, but like Z its structure is not really known: although an observation is

possible, it is not necessary possible to know the meaning, the true interpretation, of this observation.

For example, what is the meaning of an observation for a situation never seen before?

The universe Z is perfect, which means that it contains the two other, and is unknown. The word contains

has a logical signification here, ie. the events/propositions of A or Ω are macro-events/macro-propositions

of Z (figure 8.2) :

A ⊂ P(Z) and Ω ⊂ P(Z) ,

with the following exhaustiveness (x) and coherence (c) hypotheses for A and Ω :

x. Z =
⋃

a∈A

a =
⋃

ω∈Ω

ω ,

c1. [a1, a2 ∈ A , a1 6= a2]⇒ a1 ∩ a2 = ∅ ,

c2. [ω1, ω2 ∈ Ω , ω1 6= ω2]⇒ ω1 ∩ ω2 = ∅ .
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Actual universe Perfect universe Abstract universe

• • • •
2

• • •4 •
1 3

• • • •

• • • •
5 6

7−→

• • • •

• • • •

• • • •

• • • •

7−→

• • • •

• • • •
a b

• • • •c

•d • • •
e

An abstract event (ie. a, b, c, d, e) is a − connected component

An actual event (ie. 1, 2, 3, 4, 5, 6) is a = connected component

Figure 8.2: Event mapping: general case

The exhaustiveness and coherence hypotheses are questionable; it will be seen that these hypotheses

induce contradictions when fusing informations.

Of course, the abstract universe Ω is a coherent interpretation of the observations, when any actual

event a ∈ A is a subevent of an abstract event ω ∈ Ω. But since the interpretation of A is necessarily

partial and subjective, this property does not hold in general. The figure 8.2 gives an example of erroneous

interpretation of the observations: the actual event 5 intersects both the abstract event d and the abstract

event c . More precisely, if an actual event a ∈ A happens, there is a perfect event z ∈ a which has

happened. Since Z contains (ie. maps to) Ω, there is an unique abstract event, ω ∈ Ω, which checks z,

ie. z ∈ ω. As a conclusion, when a given actual event a happens, any abstract event ω ∈ Ω such that

ω ∩ a 6= ∅ is likely to happen. Practically, such situation is easy to decide, since it just happens when a

doubt appears in a measure classification. The table 8.1, refering to the example of figure 8.2, gives the

possible abstract events related to each tossed observation.

Finally, it does not seem possible to define a density of probability for unique abstract events from

partially decidable observations. But it is possible to define a density function for multiple events.

Again, a construction of such function, still denoted ρ, is possible in a frequentist manner:

1. Set ρ(φ) = 0 for all φ ⊂ Ω ,

2. Make N tossing of an actual event. For each tossed event, a, do:

(a) Define the set φ(a) = {ω ∈ Ω/ω ∩ a 6= ∅} ,

(b) Set ρ(φ(a)) = ρ(φ(a)) + 1 ,

3. Set ρ(φ) ' 1
N ρ(φ) for all φ ⊂ Ω .
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Tossed observation Possible abstract events

•

• •
1

• • •

•
a ,

•

• •

•

c

• •
2

• • •

•
a

•

•
3

•

•

• •

•

•

b

•4

•

• •

•

•

b

•

•
5

•

• •

•

c , •d

• •

• • •
6

•

• •

•

•

b

,

•

• •

•

c ,

•

•
e

Table 8.1: Event multi-mapping for figure 8.2

In particular, ρ(∅) = 0 .

In the particular case of table 8.1 , this density is related to the probability of observation by:

ρ{a, c} = p(1) , ρ{a} = p(2) , ρ{b} = p(3) + p(4) , ρ{c, d} = p(5) , ρ{b, c, e} = p(6) .
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The previous discussion has shown that the definition of a density of probability for the abstract events

does not make sense, when the interpretations of the observations are approximative. However, it is

possible to construct a density for multiple abstract events. Such a density looks quite similarly to the

Basic Belief Assignment of DST, defined in the next section.

8.2.2 Dempster Shafer Theory

8.2.2.1 Definition

A Dempster Shafer model [1, 2, 5] is characterized by a pair (Ω,m), where Ω is a set of abstract events

and the basic belief assignment (bba) m is a non negatively valued function defined over P(Ω) , the set

of subsets of Ω , such that:

m(∅) = 0 and
∑

φ⊂Ω

m(φ) = 1 .

A DSm (Ω,m) could be seen as a non deterministic interpretation of the actuality. Typically, it is a tool

providing informations from a sensor.

8.2.2.2 Belief of a proposition

Let φ ⊂ Ω be a proposition. Assume a basic belief assignment m. The degree of belief of φ , Bel(φ) , and

the plausibility of φ , Pl(φ) , are defined by:

Bel(φ) =
∑

ψ⊂φ

m(ψ) and Pl(φ) =
∑

ψ∩φ 6=∅

m(ψ) .

Bel and Pl do not satisfy the additivity property of probability. Bel(φ) and Pl(φ) are the lower and upper

measures of the “credibility” of the proposition φ . These measures are sometimes considered as the lower

bound and the upper bound of the probability of φ :

Bel(φ) ≤ P (φ) ≤ Pl(φ) .

This interpretation is dangerous, since it is generally admitted that probability and DST are quite different

theories.

8.2.2.3 Fusion rule

Assume two bba m1 and m2, defined on the same universe Ω, obtained from two different sources. It is

generally admitted that the sources are independent. Then, the bba m1 ⊕m2 is defined by:







m1 ⊕m2(∅) = 0 ,

m1 ⊕m2(φ) =
1

Z

∑

ψ1∩ψ2=φ

m1(ψ1)m2(ψ2) , where Z = 1−
∑

ψ1∩ψ2=∅

m1(ψ1)m2(ψ2) .

The operator ⊕ describes the (conjunctive) information fusion between two bba.
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The normalizer Z is needed since the bba is zeroed for the empty set ∅. Except some specific cases, it is

indeed possible that:

m1(ψ1)m2(ψ2) > 0 , (8.1)

ψ1 ∩ ψ2 = ∅ . (8.2)

In particular, the property (8.2) is related to an implied coherence hypothesis; more precisely, since the

universe Ω is defined as a set of events, the intersection of distinct singletons is empty:

∀{ω1}, {ω2} ⊂ Ω , {ω1} 6= {ω2} ⇒ {ω1} ∩ {ω2} = ∅ .

Notice that this hypothesis is quite similar to the hypothesis c2. of section 8.2.1 . The coherence hypothesis

seems to be the source of the contradictions in the abstract model, when fusing informations. Finally,

Z < 1 means that our abstract universe Ω has been incorrectly defined and is thus unable to fit the both

sensors. Z measures the error in our model of interpretation. This ability of the rule ⊕ is really new in

comparison with probabilistic rules.

8.2.3 Transferable Belief Model

Smets has made an extensive explanation of TBM [8]. This section focuses on a minimal and somewhat

simplified description of the model.

8.2.3.1 Definition

A Transferable Belief Model is characterized by a pair (Ω,m), where Ω is a set of abstract events and the

basic belief assignment m is a non negatively valued function defined over P(Ω) such that:

∑

φ⊂Ω

m(φ) = 1 .

In this definition, the hypothesis m(∅) = 0 does not hold anymore.

8.2.3.2 Fusion rule

Smets’ rule looks like a refinement of Dempster and Shafer’s rule:

m1 ⊕m2(φ) =
∑

ψ1∩ψ2=φ

m1(ψ1)m2(ψ2) .

Notice that the normalizer does not exist anymore. The measure of contradiction has been moved into

m(∅). This theory has been justified from an axiomatization of the fusion rule.
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8.2.3.3 TBM generalizes DST

First, notice that any bba for DST is a valid bba for TBM, but the converse is false because of ∅ . Now,

for any bba mT of TBM such that mT (∅) < 1 , construct the bba ∆(mT ) of DST defined by:

∆(mT )(∅) = 0 and ∀φ ⊂ Ω : φ 6= ∅ , ∆(mT )(φ) =
mT (φ)

1−mT (∅) .

∆ is an onto mapping. Any bba mD of DST is a bba of TBM, and ∆(mD) = mD .

∆ is a morphism for ⊕ . IE. ∆(mT,1 ⊕mT,2) = ∆(mT,1)⊕∆(mT,2) .

Proof. By definition, it is clear that:

∆(mT,1)⊕∆(mT,2)(∅) = 0 = ∆(mT,1 ⊕mT,2)(∅) .

Now, for any φ ⊂ Ω , such that φ 6= ∅ :

∆(mT,1)⊕∆(mT,2)(φ) =

∑

ψ1∩ψ2=φ

∆(mT,1)(ψ1)∆(mT,2)(ψ2)

∑

φ 6=∅

∑

ψ1∩ψ2=φ

∆(mT,1)(ψ1)∆(mT,2)(ψ2)

=

∑

ψ1∩ψ2=φ

mT,1(ψ1)

1−mT,1(∅) ×
mT,2(ψ2)

1−mT,2(∅)
∑

φ 6=∅

∑

ψ1∩ψ2=φ

mT,1(ψ1)

1−mT,1(∅) ×
mT,2(ψ2)

1−mT,2(∅)

=

∑

ψ1∩ψ2=φ

mT,1(ψ1)mT,2(ψ2)

∑

φ 6=∅

∑

ψ1∩ψ2=φ

mT,1(ψ1)mT,2(ψ2)

=
mT,1 ⊕mT,2(φ)

∑

φ 6=∅

mT,1 ⊕mT,2(φ)
=

mT,1 ⊕mT,2(φ)

1−mT,1 ⊕mT,2(∅) = ∆(mT,1 ⊕mT,2)(φ) .

222

Since ∆ is an onto morphism, TBM is a generalization of DST. More precisely, a bba of TBM contains

more information than a bba of DST, ie. the measure of contradiction m(∅), but this complementary

information remains compatible with the fusion rule of DST.

The Dezert Smarandache Theory is introduced in the next section. This theory shares many common

points with TBM. But there is a main and fundamental contribution of this theory. It does not make

the coherence hypothesis anymore and the contradictions are managed differently: the abstract model

is more flexible to the interpretation and it is not needed to rebuild the model in case of contradicting

sensors.

8.3 Dezert Smarandache Theory (DSmT)

Both in DST and in TBM, the difficulty in the model definition appears when dealing with the con-

tradictions between the informations. But contradictions are unavoidable, when dealing with imprecise

informations. This assertion is illustrated by the following example.
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B&W example. Assume a sensor s1 which tells us if an object is white (W) or not (NW), and gives

no answer (NA1) in litigious cases. The actual universe for this sensor is A1 = {W,NW,NA1} . Assume

a sensor s2 which tells us if an object is black (B) or not (NB), and gives no answer (NA2) in litigious

cases. The actual universe for this sensor is A2 = {B,NB,NA2} . These characteristics are not known,

but the sensors have been tested with black or white objects. For this reason, it is natural to model

our world by Ω = {black,white}. When a litigious case happens, its interpretation will just be the pair

{black,white} . Otherwise the good answer is expected. The following properties are then verified:

B,NW ⊂ black and W,NB ⊂ white .

The coherence hypothesis is assumed, that is black ∩ white = ∅ . The event black ∩ white is impossible.

This model works well, as long as the sensors work separately or the objects are still black or white. Now,

in a true universe there are many objects which are neither white and neither black, and this without

any litigation. For example: gray objects. Assume that the two sensors are activated. Then, the fused

sensors will answer NW∩NB , which will be interpreted by black∩white . This contradicts the coherence

hypothesis.

Conclusion. This example is a sketch of what generally happens, when constructing a system of de-

cision. Several sources of information are available (two sensors here). These sources have different

discrimination abilities. In fact, these discrimination abilities are not really known, but by running these

sources on several test samples (black and white objects here), a model of theses abilities is obtained

(here it is learned within Ω that our sensors distinguish between black and white objects). Of course, it

is never sure that this model is complete. It is still possible actually that some new unknown cases could

be discriminated by the information sources. In the example, the combination of two sensors made it

possible to discriminate a new class of objects: the neither black, neither white objects. But when fusing

these sensors, the new cases will become contradictions regarding the coherence hypothesis. Not only the

coherence hypothesis makes our model contradictory, but it also prevents us from discovering new cases.

The coherence hypothesis should be removed! Dezert and Smarandache proposed a model without the

coherence hypothesis.

8.3.1 Dezert Smarandache model

In DST and TBM, the coherence hypothesis was implied by the use of a set, Ω, to represent the ab-

stract universe. Moreover, the set operators ∩ , ∪ and c (ie. set complement) were used to explain the

interactions between the propositions φ ⊂ Ω . In fact, the notion of propositions is related to the notion

of Boolean Algebra. Sets together with set operators are particular models of Boolean Algebra. Since

DSmT does not make the coherence hypothesis, DSmT cannot rely on the set formalism. However, some

boolean relations are needed to explain the relations between propositions. Another fundamental Boolean
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Algebra is the propositional logic. This model should be used for the representation of the propositions

of DSmT. Nevertheless, the negation operator will be removed from our logic, since it implies itself some

coherence hypotheses, eg. φ ∧ ¬φ ≡ ⊥ ! By identifying the equivalent propositions of the resulting logic,

an hyper-power set of propositions is obtained. Hyper-power sets are used as models of universe for the

DSmT.

8.3.1.1 Hyper-power set

Let Φ = {φi/i ∈ I} be a set of propositions. The hyper-power set < Φ > is the free boolean pre-algebra

generated by Φ and the boolean operators ∧ and ∨ :

Φ, < Φ > ∧ < Φ >,< Φ > ∨ < Φ >⊂< Φ >

and ∧,∨ verify the properties:

Commutative. φ ∧ ψ ≡ ψ ∧ φ and φ ∨ ψ ≡ ψ ∨ φ ,

Associative. φ ∧ (ψ ∧ η) ≡ (φ ∧ ψ) ∧ η and φ ∨ (ψ ∨ η) ≡ (φ ∨ ψ) ∨ η ,

Distributive. φ ∧ (ψ ∨ η) ≡ (φ ∧ ψ) ∨ (φ ∧ η) and φ ∨ (ψ ∧ η) ≡ (φ ∨ ψ) ∧ (φ ∨ η) ,

Idempotent. φ ∧ φ ≡ φ and φ ∨ φ ≡ φ ,

Neutral sup/sub-elements. φ ∧ (φ ∨ ψ) ≡ φ and φ ∨ (φ ∧ ψ) ≡ φ ,

for any φ, ψ, η ∈< Φ > .

Unless more specifications about the free pre-algebra are made, this definition forbids the propositions to

be exclusive (no coherence assumption) or to be exhaustive. In particular, the negation operator, ¬, and

the never happen/always happen, ⊥/>, are excluded from the formalism. Indeed, the negation is related

to the coherence hypothesis, since > is related to the exhaustiveness hypothesis.

Property. It is easily proved from the definition that:

∀φ, ψ ∈< Φ >, φ ∧ ψ ≡ φ ⇐⇒ φ ∨ ψ ≡ ψ .

The order ≤ is a meta-operator defined over < Φ > by:

φ ≤ ψ ⇐⇒ φ ∧ ψ ≡ φ ⇐⇒ φ ∨ ψ ≡ ψ .

The order < is a meta-operator defined over < Φ > by:

φ < ψ ⇐⇒
[
φ ≤ ψ and φ 6≡ ψ

]
.

The hyper-power set order ≤ is the analogue of the set order ⊂ .
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8.3.1.2 Dezert Smarandache Model

A Dezert Smarandache model (DSmm) is a pair (Φ,m), where the (abstract) universe Φ is a set of

propositions and the basic belief assignment m is a non negatively valued function defined over < Φ >

such that:
∑

φ∈<Φ>

m(φ) = 1 .

8.3.1.3 Belief Function

The belief function Bel is defined by:

∀φ ∈< Φ >, Bel(φ) =
∑

ψ∈<Φ>:ψ≤φ

m(ψ) . (8.3)

Since propositions are never exclusive within < Φ >, the (classical) plausibility function is just equal to

1. The equation (8.3) is invertible:

∀φ ∈< Φ >, m(φ) = Bel(φ)−
∑

ψ∈<Φ>:ψ<φ

m(ψ) .

8.3.2 Fusion rule

For a given universe Φ , and two basic belief assignments m1 and m2, associated to different sensors, the

fused basic belief assignment is m1 ⊕m2 , defined by:

m1 ⊕m2(φ) =
∑

ψ1∧ψ2≡φ

m1(ψ1)m2(ψ2) . (8.4)

8.3.2.1 Dezert & Smarandache’s example

Assume a thief (45 years old) witnessed by a granddad and a grandson. The witnesses answer the

question: is the thief young or old? The universe is then Φ = {young, old}. The granddad answers that

the thief is rather young. Its testimony is described by the bba:

m1(young) = 0.9 and m1(young ∨ old) = 0.1 (slight unknown) .

Of course, the grandson thinks he is rather old:

m2(old) = 0.9 and m2(young ∨ old) = 0.1 (slight unknown) .

How to interpret the testimonies? The fusion rule says:







m1 ⊕m2(young ∧ old) = 0.9801 (highly contradicts → third case)

m1 ⊕m2(young) = m1 ⊕m2(old) = 0.0099

m1 ⊕m2(young ∨ old) = 0.0001

Our hypotheses contradict. There were a third case: the thief is middle aged.
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8.3.2.2 Comments

In DSmT, there is not a clear distinction between the notion of conjunction, ∧, the notion of third case

and the notion of contradiction. The model does not decide for that and leaves this distinction to our

last interpretation. It is our interpretation of the model which will make the distinction. Thus, the

DSm model avoids any over-abstraction of the actual universe. Consequently, it never fails although

we could fail in the last instance by interpreting it. Another good consequence is that DSmT specifies

any contradiction/third case: the contradiction φ ∧ ψ is not just a contradiction, it is the contradiction

between φ and ψ.

8.4 Probability over logical propositions

Probabilities are classically defined over measurable sets. However, this is only a manner to modelize the

notion of probability, which is essentially a measure of the belief of logical propositions. Probability could

be defined without reference to the measure theory, at least when the number of propositions is finite.

In this section, the notion of probability is explained within a strict logical formalism. This formalism is

of constant use in the sequel.

Intuitively, a probability over a set of logical propositions is a measure of belief which is additive (disjoint

propositions are adding their chances) and increasing with the proposition (weak propositions are more

probable). This measure should be zeroed for the impossible propositions and full for the ever-true

propositions. Moreover, a probability is a multiplicative measure for independent propositions. The

independence of propositions is a meta-relation between propositions, which generally depends on the

problem setting.

These intuitions are formalized now. It is assumed that the reader is used with some logical notions.

8.4.1 Definition

Let L be at least an extension of the classical logic of propositions, that is L contains the operators ∧ , ∨ ,

¬ (and, or, negation) and the propositions ⊥ , > (always false, always true) . Assume moreover that some

propositions pairs of L are recognized as independent propositions (this is a meta-relation not necessarily

related to the logic itself). A probability p over L is a IR+ valued function such that for any proposition

φ and ψ of L :

Additivity. p(φ ∧ ψ) + p(φ ∨ ψ) = p(φ) + p(ψ) ,

Coherence. p(⊥) = 0 ,

Finiteness. p(>) = 1 ,



168 CHAPTER 8. PROBABILIZED LOGICS RELATED TO DSMT AND BAYES INFERENCE

Multiplicativity. When φ and ψ are independent propositions, then p(φ ∧ ψ) = p(φ)p(ψ) .

8.4.2 Property

The coherence and additivity implies the increaseness of p:

Increaseness. p(φ ∧ ψ) ≤ p(φ) .

Proof. Since φ ≡ (φ ∧ ψ) ∨ (φ ∧ ¬ψ) and (φ ∧ ψ) ∧ (φ ∧ ¬ψ) ≡ ⊥, it follows from the additivity:

p(φ) + p(⊥) = p(φ ∧ ψ) + p(φ ∧ ¬ψ) .

From the coherence p(⊥) = 0 , it is deduced p(φ) = p(φ∧ψ) + p(φ∧¬ψ) . Since p is non negatively

valued, p(φ) ≥ p(φ ∧ ψ) .
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8.4.3 Partially defined probability

In the sequel, knowledges are alternately described by partially known probabilities over a logical system.

Typically, the probability p will be known only for a subset of propositions ` ⊂ L .

Partial probabilities have been investigated by other works [9], for the representation of partial knowl-

edge. In these works, the probabilities are characterized by constraints. It is believed that this area

has been insufficiently investigated. And although our presentation is essentially focused on the logical

aspect of the knowledge representation, it should be noticed that it is quite related to this notion of

partial probability. In particular, the knowledge of the probability for a subset of propositions implies

the definition of constraints for the probability over the whole logical system. For example, the knowledge

of π = p(φ ∧ ψ) implies a lower bound for p(φ) and p(ψ) : p(φ) ≥ π and p(ψ) ≥ π .

The next section introduces, on a small example, a new interpretation of DSmT by means of proba-

bilized logic.

8.5 Logical interpretation of DSmT: an example

A bipropositional DSm model ∆ = ({φ1, φ2},m) is considered. This section proposes an interpretation

of this DSm model by means of probabilized modal propositions.

8.5.1 A possible modal interpretation

Consider the following modal propositions:
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U . Unable to decide between the φi’s ,

αi . Proposition φi is sure ; No Other Information (NOI) ,

I . Contradiction between the φi’s .

It is noticeable that these propositions are exclusive:

∀ a, b ∈ {U,α1, α2, I} , a 6≡ b⇒ a ∧ b ≡ ⊥ . (8.5)

These propositions are clearly related to the propositions φi :







I ≤ φ1 ∧ φ2 , φ1 , φ2 , φ1 ∨ φ2 [the contradiction I implies everything]

αi ≤ φi , φ1 ∨ φ2 , for i = 1, 2 [αi implies φi and φ1 ∨ φ2]

U ≤ φ1 ∨ φ2 [U only implies φ1 ∨ φ2]

(8.6)

These propositions are also exhaustive; ie. in the universe Φ , either one of the propositions I, α1, α2, U

should be verified:

I ∨ α1 ∨ α2 ∨ U ≡ φ1 ∨ φ2 . (8.7)

Since the propositions αi, U, I are characterizing the knowledge about φi (with NOI), the doubt or the

contradiction, it seems natural to associate to these propositions a belief equivalent to m(φi) , m(φ1∨φ2)

and m(φ1 ∧ φ2) . These beliefs will be interpreted as probabilities over I, U and αi :

p(I) = m(φ1 ∧ φ2) , p(U) = m(φ1 ∨ φ2) . p(αi) = m(φi) , for i = 1, 2 . (8.8)

Such probabilistic interpretation is natural but questionable: it mixes probabilities together with bba.

Since the propositions φi are not directly manipulated, this interpretation is not forbidden however. In

fact, it will be shown next that this interpretation implies the fusion rule ⊕ and this will be a posterior

justification of such hypothesis .

8.5.2 Deriving a fusion rule

In this section, a fusion rule is deduced from the previous probabilized modal interpretation. This rule

happens to be the (conjunctive) fusion rule of DSmT.

Let ∆j = ({φ1, φ2},mj) be the DSm models associated to sensors j = 1, 2 working beside the same

abstract universe {φ1, φ2} . Define the set of modal propositions Sj = {Ij , αj1, αj2, Uj} :

Uj . Unable to decide between the φi’s, according to sensor j ,

αji . Proposition φi is sure and NOI, according to sensor j ,

Ij . Contradiction between the φi’s, according to sensor j .



170 CHAPTER 8. PROBABILIZED LOGICS RELATED TO DSMT AND BAYES INFERENCE

The propositions of Sj verify of course the properties (8.5) , (8.6) , (8.7) and (8.8) , the subscript j being

added when needed. Define:

S = S1 ∧ S2 = {a1 ∧ a2/a1 ∈ S1 and a2 ∈ S2} .

Consider a ≡ a1 ∧ a2 and b ≡ b1 ∧ b2 , two distinct elements of S. Then, either a1 6≡ b1 or a2 6≡ b2 . Since

Sj verifies (8.5) , it follows a1 ∧ b1 ≡ ⊥ or a2 ∧ b2 ≡ ⊥, thus yielding:

(a1 ∧ a2) ∧ (b1 ∧ b2) ≡ (a1 ∧ b1) ∧ (a2 ∧ b2) ≡ ⊥ .

S is made of exclusive elements. It is also known from (8.7) that φ1 ∨ φ2 ≡
∨

aj∈Sj
aj ; Sj is exhaustive.

It follows:

φ1 ∨ φ2 ≡ (φ1 ∨ φ2) ∧ (φ1 ∨ φ2) ≡
2∧

j=1

∨

aj∈Sj

aj ≡
∨

a∈S

a .

S is exhaustive. In fact, S enumerates all the possible cases of observation. It is thus reasonable to think

that the fused knowledge of these sensors could be constructed from S. The question then arising is:

what is the signification of a proposition a1 ∧ a2 ∈ S? It is remembered that a proposition of Sj just tells

what is known for sure according to sensor j. But the semantic for combining sure or unsure propositions

is quite natural:1

• unsure + unsure = unsure

• unsure + sure = sure

• sure + sure = sure OR contradiction

• anything + contradiction = contradiction

In particular contradiction arises, when two informations are sure and these informations are known

contradictory. This conduces to a general interpretation of S :

∧ I2 α21 α22 U2

I1 Contradiction Contradiction Contradiction Contradiction

α11 Contradiction φ1 is sure Contradiction φ1 is sure

α12 Contradiction Contradiction φ2 is sure φ2 is sure

U1 Contradiction φ1 is sure φ2 is sure Unsure

At last, any proposition of S is a sub-event of a proposition I, α1, α2 or U , defined by:

U . The sensors are unable to decide between the φi’s ,

αi . The sensors are sure of the proposition φi , but do not know anything else ,

I . The sensors contradict .
1In fact, the independence of the sensors is implicitly hypothesized in such combining rule (refer to next section).



8.6. MULTI-MODAL LOGIC AND INFORMATION FUSION 171

Since S is exhaustive, the propositions U , αi, I are entirely determined by S :

• I ≡ (I1 ∧ I2) ∨ (I1 ∧ α21) ∨ (I1 ∧ α22) ∨ (I1 ∧ U2) ∨ (α11 ∧ I2)∨
(α12 ∧ I2) ∨ (U1 ∧ I2) ∨ (α12 ∧ α21) ∨ (α11 ∧ α22) ,

• αi ≡ (α1i ∧ α2i) ∨ (U1 ∧ α2i) ∨ (α1i ∧ U2) ,

• U ≡ U1 ∧ U2 .

The propositions I, αi, U are thus entirely specified and since S is made of exclusive elements, their

probabilities are given by:

• p(I) = p(I1 ∧ I2) + p(I1 ∧ α21) + p(I1 ∧ α22) + p(I1 ∧ U2) + · · ·+ p(α11 ∧ α22) ,

• p(αi) = p(α1i ∧ α2i) + p(U1 ∧ α2i) + p(α1i ∧ U2) ,

• p(U) = p(U1 ∧ U2) .

At this point, the independence of the sensors is needed. The hypothesis implies p(a1 ∧ a2) = p(a1)p(a2).

The constraints (8.8) for each sensor j then yield:

• p(I) = m1(φ1 ∧ φ2)m2(φ1 ∧ φ2) +m1(φ1 ∧ φ2)m2(φ1) + · · ·+m1(φ1)m2(φ2) ,

• p(αi) = m1(φi)m2(φi) +m1(φ1 ∨ φ2)m2(φi) +m1(φi)m2(φ1 ∨ φ2) ,

• p(U) = m1(φ1 ∨ φ2)m2(φ1 ∨ φ2) .

The definition of m1 ⊕m2 implies finally:

p(I) = m1 ⊕m2(φ1 ∧ φ2) , p(αi) = m1 ⊕m2(φi) , and p(U) = m1 ⊕m2(φ1 ∨ φ2) .

Our interpretation of DSmT by means of probabilized modal propositions has implied the fusion rule ⊕ .

This result is investigated rigorously and generally in the next section.

8.6 Multi-modal logic and information fusion

This section generalizes the results of the previous section. The presentation is more formalized. In

particular, a multi-modal logic for the information fusion is constructed. This presentation is not fully

detailed and it is assumed that the reader is acquainted with some logical notions.

8.6.1 Modal logic

In this introductory section, we are just interested in modal logic, and particularly in the T-system. There

is no need to argue about a better system, since we are only interested in manipulating the modalities
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2, ¬2, � and ¬�.
Being given Φ a set of atomic propositions, the set of classical propositions, C(Φ) more simply denoted

C, is defined by:

• Φ ⊂ C , ⊥ ∈ C and > ∈ C ,

• If φ, ψ ∈ C , then ¬φ ∈ C , φ ∧ ψ ∈ C , φ ∨ ψ ∈ C and φ→ ψ ∈ C .

The set of modal propositions, M(Φ) also denoted M , is constructed as follows:

• C ⊂M ,

• If φ ∈M , then 2φ ∈M and �φ ∈M ,

• If φ, ψ ∈M , then ¬φ ∈M , φ ∧ ψ ∈M , φ ∨ ψ ∈M and φ→ ψ ∈M .

The proposition 2φ will mean that the proposition φ is true for sure. The proposition �φ will mean that

the proposition φ is possibly true.

In the sequel, the notation ` φ means that φ is proved in T. A proposition φ such that ` φ is also called

an axiom. The notation φ ≡ ψ means both ` φ→ ψ and ` ψ → φ .

All axioms are defined recursively by assuming some deduction rules and initial axioms.

Modus Ponens (MP). For any proposition φ, ψ ∈M , such that ` φ and ` φ→ ψ , it is deduced ` ψ .

Classical axioms. For any φ, ψ, η ∈M , it is assumed the axioms:

1. ` > ,

2. ` φ→ (ψ → φ) ,

3. ` (η → (φ→ ψ))→ ((η → φ)→ (η → ψ)) ,

4. ` (¬φ→ ¬ψ)→ ((¬φ→ ψ)→ φ) ,

5. ⊥ ≡ ¬> ,

6. φ→ ψ ≡ ¬φ ∨ ψ ,

7. φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ) .

It is deduced from these axioms that:

• The relation ` φ→ ψ is a pre-order with a minimum ⊥ and a maximum >: ⊥ is the strongest

proposition, > is the weakest proposition,

• The relation ≡ is an equivalence relation.

Modal axioms and rule. Let φ, ψ ∈M .

i. From ` φ is deduced ` 2φ ; axioms are sure. This does not mean ` φ→ 2φ which is false!
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ii. ` 2(φ→ ψ)→ (2φ→ 2ψ) ; when the inference is sure and the premise is sure, the conclusion

is sure,

iii. ` 2φ→ φ ; sure propositions are true,

iv. �φ ≡ ¬2¬φ ; is unsure what cannot be false for sure.

It is deduced that the proposition 2φ is stronger than φ which is stronger than �φ.

Notation. In the sequel, ψ ≤ φ means ` ψ → φ , and ψ < φ means both ψ ≤ φ and φ 6≡ ψ .

The logical operators are compatible with ≡ . Denote φ/≡ = {ψ ∈ M/ψ ≡ φ} , the class of

equivalence of φ . Let φ, ψ ∈M , φ̂ ∈ φ/≡ and ψ̂ ∈ ψ/≡ . Then holds:

• φ̂→ ψ̂ ∈ (φ→ ψ)/≡ • ¬φ̂ ∈ (¬φ)/≡ • φ̂ ∧ ψ̂ ∈ (φ ∧ ψ)/≡

• φ̂ ∨ ψ̂ ∈ (φ ∨ ψ)/≡ • 2φ̂ ∈ (2φ)/≡ • � φ̂ ∈ (�φ)/≡

The logical operators over M are thus extended naturally to the classes of M by setting:

• φ/≡ → ψ/≡
∆
= (φ→ ψ)/≡ • ¬φ/≡ ∆

= (¬φ)/≡ • φ/≡ ∧ ψ/≡ ∆
= (φ ∧ ψ)/≡

• φ/≡ ∨ ψ/≡ ∆
= (φ ∨ ψ)/≡ • 2φ/≡

∆
= (2φ)/≡ • � φ/≡ ∆

= (�φ)/≡

From now on, the class φ/≡ is simply denoted φ.

Hyper-power set. Construct the subset of classical propositions F (Φ) recursively by the properties

Φ ⊂ F (Φ) and ∀φ, ψ ∈ F (Φ) , [φ∧ψ ∈ F (Φ) and φ∨ψ ∈ F (Φ) ] . The hyper-power of Φ , denoted < Φ > ,

is the set of equivalence classes of F (Φ) according to the relation ≡:

< Φ >= F (Φ)/≡ = {φ/≡ / φ ∈ F (Φ)} .

8.6.1.1 Useful theorems

Let φ, ψ ∈M .

1. ` (2φ ∧2ψ)→ 2(φ ∧ ψ) and ` 2(φ ∧ ψ)→ (2φ ∧ 2ψ)

2. ` (�φ ∨ �ψ)→ �(φ ∨ ψ) and ` �(φ ∨ ψ)→ (�φ ∨ �ψ)

3. ` (2φ ∨2ψ)→ 2(φ ∨ ψ) but 0 2(φ ∨ ψ)→ (2φ ∨ 2ψ)

4. ` �(φ ∧ ψ)→ (�φ ∧ �ψ) but 0 (�φ ∧ �ψ)→ �(φ ∧ ψ)

Proof. Theorem 1 and theorem 2 are dual and thus equivalent (rules 7 and iv.). It is exactly the same

thing for theorem 3 and theorem 4.

Proof of ` (2φ ∧2ψ)→ 2(φ ∧ ψ).

Classical rules yield the axiom:
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` φ→ (ψ → (φ ∧ ψ))

Rule i. implies then:

` 2(φ→ (ψ → (φ ∧ ψ)))

Applying rule ii. twice, it is deduced:

` 2φ→ 2(ψ → (φ ∧ ψ))

` 2φ→ (2ψ → 2(φ ∧ ψ))

The proof is concluded by applying the classical rules.

Proof of ` 2(φ ∧ ψ)→ (2φ ∧ 2ψ).

Classical rules yield the axioms:

` (φ ∧ ψ)→ φ and ` (φ ∧ ψ)→ ψ

Rule i. implies then:

` 2((φ ∧ ψ)→ φ) and ` 2((φ ∧ ψ)→ ψ)

Applying rule ii., it is deduced:

` 2(φ ∧ ψ)→ 2φ and ` 2(φ ∧ ψ)→ 2ψ

The proof is concluded by applying the classical rules.

Proof of ` (2φ ∨2ψ)→ 2(φ ∨ ψ).

Classical rules yield the axioms:

` φ→ (φ ∨ ψ) and ` ψ → (φ ∨ ψ)

Rule i. implies then:

` 2(φ→ (φ ∨ ψ)) and ` 2(ψ → (φ ∨ ψ))

Applying rule ii., it is deduced:

` 2φ→ 2(φ ∨ ψ) and ` 2ψ → 2(φ ∨ ψ)

The proof is concluded by applying the classical rules.

Why 0 2(φ ∨ ψ)→ (2φ ∨ 2ψ) ?

To answer this question precisely, the Kripke semantic should be introduced. Such discussion is

outside the scope of this paper. However, some practical considerations will clarify this assertion.

When φ∨ψ is sure, does that mean that φ is sure or ψ is sure? Not really since we know that φ or

ψ is true, but we do not know which one is true. Moreover, it may happen that φ is true sometimes,

while ψ is true the other times. As a conclusion, we are not sure of φ and are not sure of ψ.

This example is a counter-example of ` 2(φ ∨ ψ)→ (2φ ∨ 2ψ) .

222
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8.6.2 A multi-modal logic

Assume that several informations are obtained from different sources. Typically, these informations

are modalities such as “according to the source σ , the proposition φ is sure” . Such a modality could

be naturally denoted 2σφ (a modality depending on σ) . A more readable notation [φ|σ]
∆≡ 2σφ is

prefered. Take note that [φ|σ] is not related to the Bayes inference (φ|σ)! Now, the question arising is

how to combine these modalities? For example, is it possible to deduce something from [φ1|σ1]∧ [φ2|σ2] ?

Without any relations between heterogeneous modalities, it is not possible to answer this question. Such

a relation, however, is foreseeable. Assume that the source τ involves the source σ , ie. τ → σ . Now

assume that the proposition φ should be known from the source σ , ie. [φ|σ] . Since τ involves σ , it is

natural to state that φ should be known from the source τ , ie. [φ|τ ] . This natural deduction could be

formalized by the rule:

` τ → σ implies ` [φ|σ]→ [φ|τ ] .

With this rule, it is now possible to define the logic.

The set of multi-modal propositions, mM(Φ) also denoted mM , is defined recursively:

• C ⊂ mM ,

• If φ, σ ∈ mM , then [φ|σ] ∈ mM ,

• If φ, ψ ∈ mM , then ¬φ ∈ mM , φ ∧ ψ ∈ mM , φ ∨ ψ ∈ mM and φ→ ψ ∈ mM .

The multi-modal logic obeys to the following rules and axioms:

Modus Ponens.

Classical axioms. Axioms 1 to 7 ,

Modal axioms and rule. Let σ, τ, φ, ψ ∈ mM .

m.i. From ` φ is deduced ` [φ|σ] : axioms are sure, according to any sources ,

m.ii. ` [φ→ ψ|σ]→ ([φ|σ] → [ψ|σ]) . If a source of information asserts a proposition and recognizes

a weaker proposition, then it asserts this weaker proposition ,

m.iii. ` [φ|σ]→ φ . The sources of information always tell the truth. If a source asserts a proposition,

this proposition is actually true ,

m.iv. ` τ → σ implies ` [φ|σ] → [φ|τ ] . Knowledge increases with stronger sources of informa-

tion.

The axiom m.iii. is questionable and may be changed. But the work presented in this paper is restricted

to this axiom.
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It is also possible to consider some exotic rules like φ ≡ [φ|⊥] , ie. a perfect source of information ⊥
yields a perfect knowledge of the propositions φ. Similarly, the modality [φ|>] could be interpreted as

the proposition “φ is an absolute truth” or “φ has a proof” : one does not need any source of information

to assert an absolute truth. . .

8.6.3 Some multi-modal theorems

8.6.3.1 Modal theorems map into multi-modal logic

Let µ ∈ M be a modal proposition. Let σ ∈ mM be a multi-modal proposition. Let µ[σ] ∈ mM be the

multi-modal proposition obtained by replacing 2 by [·|σ] and � by ¬[¬ · |σ] in the proposition µ . Then

` µ implies ` µ[σ] .

8.6.3.2 Useful multi-modal theorems

If the source σ asserts φ and the source τ asserts ψ , then the fused sources assert φ ∧ ψ :

`
(

[φ|σ] ∧ [ψ|τ ]
)
→ [φ ∧ ψ|σ ∧ τ ]

Proof. From the axioms ` (σ ∧ τ)→ σ and ` (σ ∧ τ)→ τ , it is deduced:

` [φ|σ]→ [φ|σ ∧ τ ] ,

and

` [ψ|τ ]→ [ψ|σ ∧ τ ] .

From the useful theorems proved for modal logic, it is deduced:

[φ|σ ∧ τ ] ∧ [ψ|σ ∧ τ ] ≡ [φ ∧ ψ|σ ∧ τ ] .

The proof is concluded by applying the classical rules.
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If one of the sources σ or τ asserts φ , then the fused sources assert φ :

`
(

[φ|σ] ∨ [φ|τ ]
)
→ [φ|σ ∧ τ ] .

Proof. This results directly from ` [φ|σ]→ [φ|σ ∧ τ ] and ` [φ|τ ]→ [φ|σ ∧ τ ] .
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The converse is not necessarily true:

0 [φ|σ ∧ τ ]→
(

[φ|σ] ∨ [φ|τ ]
)
.
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In fact, when sensors are not independent and possibly interactive, it is possible that the fused sensor σ∧τ
works better than σ and τ separately! On the other hand, this converse property could be considered as

a necessary condition for the sensor independence. This discussion leads to the introduction of a new

axiom, the independence axiom m.indep. :

m.indep. ` [φ|σ ∧ τ ]→
(

[φ|σ] ∨ [φ|τ ]
)
.

8.6.4 Sensor fusion

8.6.4.1 The context

Two sensors, σ and τ , are generating informations about a set of atomic propositions Φ . More precisely,

the sensors will measure independently the probability for each proposition φ ∈< Φ > to be sure. In this

section, it is discussed about fusing these sources of information.

This problem is clearly embedded in the multi-modal logic formalism. In particular, the modality [·|σ]

characterizes the knowledge of σ about the universe < Φ >. More precisely, the proposition [φ|σ] explains

if φ is sure according to σ or not. This knowledge is probabilistic: the working data are the probabilities

p([φ|σ]) and p([φ|τ ]) for φ ∈< Φ > . The problem setting is more formalized in the next section.

Notation. From now on, the notation p[φ|σ] is used instead of p([φ|σ]) . Beware that p[φ|σ] is not

the conditional probability p(φ|σ) !

8.6.4.2 Sensors model and problem setting

The set of multi-modal propositions,mM(Θ), is constructed from the set Θ = Φ∪{σ, τ} . The propositions

σ and τ are referring to the two independent sensors. The proposition σ ∧ τ is referring to the fused

sensor. It is assumed for sure that
∨

φ∈Φ φ is true:

`
[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
>
]

.

Consequently:
[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
σ ∧ τ

]

≡
[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
σ

]

≡
[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
τ

]

≡
[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
>
]

≡ > ,

and:

p

[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
σ ∧ τ

]

= p

[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
σ

]

= p

[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
τ

]

= 1 .

The sensors σ and τ are giving probabilistic informations about the certainty of the other propositions.

More precisely, it is known:

p[φ|σ] and p[φ|τ ] , for any φ ∈< Φ > .

Since the propositions σ and τ are referring to independent sensors, it is assumed that:
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• The axiom m.indep. holds for σ and τ ,

• For any φ, ψ ∈< Φ > , p([φ|σ] ∧ [ψ|τ ]) = p[φ|σ]p[ψ|τ ] .

A pertinent fused information is expected:

How to compute p[φ|σ ∧ τ ] for any φ ∈< Φ > ?

8.6.4.3 Constructing the fused belief

Defining tools. The useful propositions φ(σ) are defined for any φ ∈< Φ > :

φ(σ) ∆≡ [φ|σ] ∧ ¬
(

∨

ψ∈<Φ>:ψ<φ

[ψ|σ]

)

.

The same propositions φ(τ) are defined for τ :

φ(τ) ∆≡ [φ|τ ] ∧ ¬
(

∨

ψ∈<Φ>:ψ<φ

[ψ|τ ]

)

.

Properties.

The propositions φ(σ) are exclusive:

φ(σ) ∧ ψ(σ) ≡ ⊥ , for any φ 6≡ ψ .

Proof. Since [φ|σ] ∧ [ψ|σ] ≡ [φ ∧ ψ|σ] , it is deduced:

φ(σ) ∧ ψ(σ) ≡ [φ ∧ ψ|σ] ∧ ¬
(
∨

η:η<φ

[η|σ]

)

∧ ¬
(
∨

η:η<ψ

[η|σ]

)

.

It follows:

φ(σ) ∧ ψ(σ) ≡ [φ ∧ ψ|σ] ∧
(
∧

η:η<φ

¬[η|σ]

)

∧
(
∧

η:η<ψ

¬[η|σ]

)

.

Since φ ∧ ψ < φ or φ ∧ ψ < ψ when φ 6≡ ψ , the property is deduced.
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Lemma:
∨

ψ:ψ<φ

[ψ|σ] ≤ [φ|σ] .

Proof. The property ψ < φ implies successively ` ψ → φ , ` [ψ → φ|σ] and ` [ψ|σ]→ [φ|σ] . The lemma

is then deduced.
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The propositions φ(σ) are exhaustive:

∨

ψ:ψ≤φ

ψ(σ) ≡ [φ|σ] , and in particular:
∨

φ∈<Φ>

φ(σ) ≡ > .
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Proof. The proof is recursive. First, the smallest element of < Φ > is µ ≡ ∧φ∈<Φ> φ and verifies:

µ(σ) ≡ [µ|σ] .

Secondly:

∨

ψ:ψ≤φ

ψ(σ) ≡ φ(σ) ∨
(
∨

ψ:ψ<φ

ψ(σ)

)

≡ φ(σ) ∨
(
∨

ψ:ψ<φ

∨

η:η≤ψ

η(σ)

)

≡ φ(σ) ∨
(
∨

ψ:ψ<φ

[ψ|σ]

)

.

Since φ(σ) ≡ [φ|σ] ∧ ¬
(
∨

ψ:ψ<φ[ψ|σ]
)

and
∨

ψ:ψ<φ[ψ|σ] ≤ [φ|σ] , it follows:

∨

ψ:ψ≤φ

ψ(σ) ≡ [φ|σ] .

The second part of the property results from:

∨

φ∈<Φ>

φ(σ) ≡
∨

ψ:ψ≤
W

φ:φ∈Φ φ

ψ(σ) and

[
∨

φ∈Φ

φ

∣
∣
∣
∣
∣
σ

]

≡ > .
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The propositions φ(τ) are also exclusive and exhaustive:

φ(τ) ∧ ψ(τ) ≡ ⊥ , for any φ 6≡ ψ ,

and:
∨

φ∈<Φ>

φ(τ) ≡ > .

It is then deduced that the propositions φ(σ) ∧ ψ(τ) are exclusive and exhaustive:2

∀φ1, ψ1, φ2, ψ2 ∈< Φ > , (φ1, ψ1) 6≡ (φ2, ψ2) =⇒
(
φ

(σ)
1 ∧ ψ(τ)

1

)
∧
(
φ

(σ)
2 ∧ ψ(τ)

2

)
≡ ⊥ , (8.9)

and:
∨

φ,ψ∈<Φ>

(
φ(σ) ∧ ψ(τ)

)
≡ > . (8.10)

From the properties (8.9) and (8.10) , it results that the set:

Σ =
{

φ(σ) ∧ ψ(τ)
/
φ, ψ ∈< Φ >

}

is a partition of >. This property is particularly interesting, since it makes possible the computation of

the probability of any proposition factorized within Σ :

∀Λ ⊂ Σ , p

(
∨

φ∈Λ

φ

)

=
∑

φ∈Λ

p(φ) . (8.11)

2The notation (φ1, ψ1) ≡ (φ2, ψ2) means φ1 ≡ φ2 and ψ1 ≡ ψ2 .
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Factorizing φ(σ∧τ). It has been shown that ` ([φ|σ] ∧ [ψ|τ ])→ [φ ∧ ψ|σ ∧ τ ] . It follows:

`
∨

φ∧ψ≤η

([φ|σ] ∧ [ψ|τ ])→ [η|σ ∧ τ ] , (8.12)

The axiom m.indep. says ` [η|σ ∧ τ ] →
(
[η|σ] ∨ [η|τ ]

)
. Since

[∨

φ∈Φ φ
∣
∣σ
]
≡
[∨

φ∈Φ φ
∣
∣τ
]
≡ > , it is

deduced:

` [η|σ ∧ τ ]→
((

[η|σ] ∧
[
∨

φ∈Φφ
∣
∣
∣τ
])

∨
([
∨

φ∈Φφ
∣
∣
∣σ
]

∧ [η|τ ]

))

.

At last

[η|σ ∧ τ ] ≡
∨

φ∧ψ≤η

([φ|σ] ∧ [ψ|τ ]) . (8.13)

It is then deduced:

φ(σ∧τ) ≡ [φ|σ ∧ τ ] ∧ ¬
(
∨

ψ<φ

[ψ|σ ∧ τ ]

)

≡
(
∨

η∧ζ≤φ

([η|σ] ∧ [ζ|τ ])

)

∧ ¬
(
∨

ψ<φ

∨

η∧ζ≤ψ

([η|σ] ∧ [ζ|τ ])

)

.

Now:

∨

η∧ζ≤φ([η|σ] ∧ [ζ|τ ]) ≡ ∨η∧ζ≤φ

((
∨

ξ≤η ξ
(σ)

)

∧
(
∨

χ≤ζ χ
(τ)

))

≡ ∨η∧ζ≤φ
∨

ξ≤η

∨

χ≤ζ

(
ξ(σ) ∧ χ(τ)

)
≡ ∨η∧ζ≤φ

(
η(σ) ∧ ζ(τ)

)
.

At last:

φ(σ∧τ) ≡
(

∨

η∧ζ≤φ

(
η(σ) ∧ ζ(τ)

)

)

∧ ¬
(

∨

ψ<φ

∨

η∧ζ≤ψ

(
η(σ) ∧ ζ(τ)

)

)

≡
(

∨

η∧ζ≤φ

(
η(σ) ∧ ζ(τ)

)

)

∧ ¬
(

∨

η∧ζ<φ

(
η(σ) ∧ ζ(τ)

)

)

.

Since Σ is a partition, it is deduced the final results:

φ(σ∧τ) ≡
∨

η∧ζ≡φ

η(σ) ∧ ζ(τ) (8.14)

and:

p
(
φ(σ∧τ)

)
=
∑

η∧ζ≡φ

p
(
η(σ) ∧ ζ(τ)

)
. (8.15)

This last result is sufficient to derive p[φ|σ ∧ τ ] , as soon as we are able to compute the probability over

Σ . The next paragraph explains this computation.

The probability over Σ .

Computing p(φ(σ)) and p(φ(τ)) . These probabilities are computed recursively from p[φ|σ] and

p[φ|τ ] . More precisely, it is derived from the definition φ(σ) ≡ [φ|σ] ∧ ¬
(
∨

ψ<φ[ψ|σ]
)

and the property

[φ|σ] ≡ ∨ψ≤φ ψ(σ) that:

φ(σ) ≡ [φ|σ] ∧ ¬
(
∨

ψ<φ

ψ(σ)

)

.
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Since the propositions φ(σ) are exclusive and
∨

ψ<φ ψ
(σ) < [φ|σ], it follows:

p
(
φ(σ)

)
= p[φ|σ]−

∑

ψ<φ

p
(
ψ(σ)

)
. (8.16)

This equation, related to the Moebius transform, is sufficient for computing p
(
φ(σ)

)
recursively.

Deriving p
(
φ(σ∧τ)

)
. First, it is shown recursively that:

p
(
φ(σ) ∧ ψ(τ)

)
= p
(
φ(σ)

)
p
(
ψ(τ)

)
. (8.17)

Proof - step 1. For the smallest element µ ≡ ∧φ∈<Φ> φ , it happens that µ(σ) ≡ [µ|σ] and µ(τ) ≡ [µ|τ ] .

Since [µ|σ] and [µ|τ ] are independent propositions, it follows then p(µ(σ) ∧ µ(τ)
)

= p
(
µ(σ)

)
p
(
µ(τ)

)
.

Proof - step 2. Being given φ, ψ ∈< Φ > , assume p
(
η(σ) ∧ ζ(τ)

)
= p
(
η(σ)

)
p
(
ζ(τ)

)
for any η, ζ ∈< Φ >

such that (η ≤ φ and ζ < ψ) or (η < φ and ζ ≤ ψ) . From [φ|σ] ≡ ∨η≤φ η(σ) and [ψ|τ ] ≡ ∨ζ≤ψ ζ(τ)

it is deduced:

[φ|σ] ∧ [ψ|τ ] ≡
(
∨

η≤φ

η(σ)

)

∧
(
∨

ζ≤ψ

ζ(τ)

)

≡
∨

η≤φ

∨

ζ≤ψ

(

η(σ) ∧ ζ(τ)
)

.

It follows: 





p
(
[φ|σ] ∧ [ψ|τ ]

)
=
∑

η≤φ

∑

ζ≤ψ

p
(
η(σ) ∧ ζ(τ)

)

p[φ|σ] =
∑

η≤φ

p
(
η(σ)

)

p[ψ|τ ] =
∑

ζ≤ψ

p
(
ζ(τ)

)

Now, [φ|σ] and [ψ|τ ] are independent and p
(
[φ|σ] ∧ [ψ|τ ]

)
= p[φ|σ]p[ψ|τ ] . Then:

∑

η≤φ

∑

ζ≤ψ

p
(
η(σ) ∧ ζ(τ)

)
=
∑

η≤φ

∑

ζ≤ψ

p
(
η(σ)

)
p
(
ζ(τ)

)
.

From the recursion assumption, it is deduced p
(
φ(σ) ∧ ψ(τ)

)
= p
(
φ(σ)

)
p
(
ψ(τ)

)
.
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From the factorization (8.15) , it is deduced:

p
(
φ(σ∧τ)

)
=
∑

η∧ζ≡φ

p
(
η(σ)

)
p
(
ζ(τ)

)
(8.18)

This result relies strongly on the independence hypothesis about the sensors.

Back to [φ|σ ∧ τ ] . Reminding that [φ|σ ∧ τ ] ≡ ∨ψ≤φ ψ(σ∧τ) , the fused probability p[φ|σ ∧ τ ] is

deduced from p
(
ψ(σ∧τ)

)
by means of the relation:

p[φ|σ ∧ τ ] =
∑

ψ≤φ

p
(
ψ(σ∧τ)

)
. (8.19)
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Conclusion. It is possible to derive an exact fused information p[φ|σ ∧ τ ] , φ ∈< Φ > from the

informations p[φ|σ] , φ ∈< Φ > and p[φ|τ ] , φ ∈< Φ > obtained from two independent sensors σ and τ .

This derivation is done in 3 steps:

• Compute p
(
φ(σ)

)
and p

(
φ(τ)

)
by means of (8.16) ,

• Compute p
(
φ(σ∧τ)

)
by means of (8.18) ,

• Compute p[φ|σ ∧ τ ] by means of (8.19) .

8.6.4.4 Link with the DSmT

It is noteworthy that the relation (8.18) looks strangely like the DSmT fusion rule (8.4) , although these

two results have been obtained from quite different viewpoints. In fact the similarity is not just related

to the fusion rule and the whole construction is identical. More precisely, let us now consider the problem

from the DSmT viewpoint.

Let be defined for two sensors σ and τ the respective bba mσ and mτ over < Φ > . The belief function

associated to these two bba, denoted respectively Belσ and Belτ , are just verifying:

Belσ(φ) =
∑

ψ≤φ

mσ(ψ) and Belτ (φ) =
∑

ψ≤φ

mτ (ψ) .

Conversely, the bba mσ is recovered by means of the recursion:

∀φ ∈< Φ >, mσ(φ) = Belσ(φ)−
∑

ψ<φ

mσ(ψ) .

The fused bba mσ ⊕mτ is defined by:

mσ ⊕mτ (φ) =
∑

ψ∧η≡φ

mσ(ψ)mτ (η) .

Now make the hypothesis that the probabilities p[φ|σ] and p[φ|τ ] are initialized for any φ ∈< Φ > by:

p[φ|σ] = Belσ(φ) and p[φ|τ ] = Belτ (φ) .

Then, the following results are obviously obtained:

• p
(
φ(σ)

)
= mσ(φ) and p

(
φ(τ)

)
= mτ (φ) ,

• p
(
φ(σ∧τ)

)
= mσ ⊕mτ (φ) ,

• p[φ|σ ∧ τ ] = Belσ ⊕ Belτ (φ) , where Belσ ⊕ Belτ is the belief function associated to mσ ⊕mτ .

From this discussion, it seems natural to consider the probabilized multi-modal logic mM as a possible

logical interpretation of DSmT.
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Evaluate the consequence of the independence axiom. By using the axiom m.indep. , it is possible

to prove (8.13) . Otherwise, it is only possible to prove (8.12) , which means that possibly more belief

is put on the smallest propositions, in comparison with the independent sensors case. Such a property

expresses a better and more precise knowledge about the world. Then it appears, accordingly to the

mM interpretation of DSmT, that the fusion rule ⊕ is an optimal rule only for fusing independent and

(strictly) reliable sensors.

8.7 Logical interpretation of the Bayes inference

Notation. In the sequel, φ↔ ψ is just an equivalent notation for (ψ → φ) ∧ (φ→ ψ) .

General discussion. The Bayes inference explains the probability of a proposition ψ , while is known

a proposition φ . This probability is expressed as follows by the quantity p(ψ|φ) :

p(φ ∧ ψ) = p(φ)p(ψ|φ) .

From this implicit and probabilistic definition, (ψ|φ) appears more like a mathematical artifice than an

actual “logical” operator. However, (ψ|φ) has clearly a meta-logical meaning although it is intuitive and

just implied: it characterizes the knowledge about ψ , when a prior information φ is known. In this

section, we are trying to interpret the Bayes operator ( | ) as a logical operator. The author admits

that this viewpoint seems extremely suspicious: the Bayes inference implies a change of the probabilistic

universe, and then a change of the truth values! It makes no sense to put at the same level a conditional

probability with an unconditional probability! But in fact, there are logics which handle multiple truths:

the modal logics, and more precisely, the multi-modal logics. However, the model we are defining here is

quite different from the usual modal models.

From now on, we are assuming a same logic involving the whole operators, ie. ∧ , ¬ , ∨ , → and ( | ), and

a same probability function p defined over the resulting propositions.

When defining a logic, a first step is perhaps to enumerate the intuitive properties the new logic should

have, and then derive new language and rules. Since a probability is based on a Boolean algebra, this

logic will include the classical logic. A first question arises then: is the Bayes inference ( | ) the same

inference than in classical logic ? More precisely, do we have (ψ|φ) ≡ φ → ψ ? If our logical model is

coherent with the probability, this should imply:

p(ψ|φ) = p(φ→ ψ) = p(¬φ ∨ ψ) .

Applying the Bayes rule, it is deduced:

p(φ ∧ ψ) = p(φ)p(¬φ ∨ ψ) = (p(φ ∧ ψ) + p(φ ∧ ¬ψ))(1 − p(φ ∧ ¬ψ)) .
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This is clearly false: eg. taking p(φ ∧ ¬ψ) = 1
4 and p(φ ∧ ψ) = 1

2 results in 1
2 = 9

16 ! The Bayes inference

(ψ|φ) is not a classical inference. Since it is a new kind of inference, we have to explain the meaning of

this inference.

The Bayes inference seems to rely on the following principles:

• Any proposition φ induces a sub-universe, entirely characterized by the Bayes operator (·|φ) . For

this reason, (·|φ) could be seen as a conditional modality. But this modality possesses a strange

quality: the implied sub-universe is essentially classical. From now on, (·|φ) refers both to the

modality and its induced sub-universe,

• The sub-universe (·|>) is just the whole universe. The empty universe (·|⊥) is a singularity which

cannot be manipulated,

• The sub-universe (·|φ) is a projection of the sup-universe (which could be another sub-universe)

into φ . In particular, the axioms of (·|φ) result from the propositions which are axioms within the

range φ in the sup-universe. Moreover, the modus ponens should work in the sub-universes,

• Any sub-proposition (ψ|φ) implies the infered proposition φ → ψ in the sup-universe. This last

point in not exactly the converse of the previous point. The previous point concerns axioms, while

any possible propositions are considered here. This (modal-like) difference is necessary and makes

the distinction between ( | ) and → ,

• Since sub-universes are classical, the negation has a classical behavior: the double negation vanishes,

• The sub-universe of a sub-universe is the intersected sub-universe. For example, “considering blue

animals within a universe of birds” means “considering blue birds”.

In association with the Bayes inference is the notion of independence between propositions, described by

the meta-operator × , which is not an operator of the logic. More precisely, ψ is independent to φ , ie.

ψ×φ , when it is equivalent to consider ψ within the sub-universe φ or within the sup-universe. Deciding

whether this meta-operator is symmetric or not is probably another philosophical issue. In the sequel,

this hypothesis is made possible in the axiomatization but is not required. Moreover, it seems reasonable

that complementary propositions like φ and ¬φ cannot be independent unless φ ≡ >. In the following

discussion, such a rule is proposed but not required.

8.7.1 Definitions

8.7.1.1 Bayesian modal language

The set of the Bayesian propositions bM is constructed recursively:

• C ⊂ bM ,
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• If φ, ψ ∈ bM , then (ψ|φ) ∈ bM ,

• If φ, ψ ∈ bM , then ¬φ ∈ bM , φ ∧ ψ ∈ bM , φ ∨ ψ ∈ bM and φ→ ψ ∈ bM .

8.7.1.2 Bayesian logical rules

The logic over bM obeys the following rules and axioms:

• Classical axioms and modus ponens ,

b.i. (φ|>) ≡ φ ; the sub-universe of > is of course the whole universe,

b.ii. It is assumed 0 ¬φ . Then, ` φ→ ψ implies ` (ψ|φ) ; axioms within the range φ are axioms of the

sub-universe (·|φ) ,

b.iii. It is assumed 0 ¬φ . Then, ` (ψ → η|φ) →
(
(ψ|φ) → (η|φ)

)
; when both an inference and a

premise are recognized true in a sub-universe, the conclusion also holds true in this sub-universe.

This property allows the modus ponens within sub-universes,

b.iv. It is assumed 0 ¬φ . Then, ` (ψ|φ) → (φ → ψ) ; the modality (·|φ) implies the truth within the

range φ,

b.v. It is assumed 0 ¬φ . Then, ¬(¬ψ|φ) ≡ (ψ|φ) ; there is no doubt within the modality (·|φ) . Sub-

universes have a classical negation operator. However, truth may change depending on the propo-

sition of reference φ ,

b.vi. It is assumed 0 ¬(φ ∧ ψ) .3 Then,
(
(η|ψ)

∣
∣φ
)
≡ (η|ψ ∧ φ) ; the sub-universe (·|ψ) of a sub-universe

(·|φ) is the intersected sub-universe (·|φ ∧ ψ) ,

b.vii. ψ × φ means ` (ψ|φ) ↔ ψ ; a proposition ψ is independent to a proposition φ when it makes no

difference to observe it in the sub-universe (·|φ) or not,

b.viii. (optional) ψ × φ implies φ× ψ ; the independence relation is symmetric,

b.ix. (optional) Assuming φ× ψ and ` φ ∨ ψ implies ` φ or ` ψ ; this uncommon logical rule explains

that complementary and non trivial propositions cannot be independent. EG. to an extreme degree,

φ and ¬φ are strictly complementary and at the same time are not independent unless φ ≡ > or

φ ≡ ⊥.

These axioms leave the modality (·|⊥) undefined, by requiring the condition 0 ¬φ for any deduction on

the sub-universe (·|φ). In fact, the modality (·|⊥) is a singularity which cannot be defined according to

the common axioms and rules. Otherwise, it would be deduced from ` ⊥ → φ that ` (φ|⊥) ; this last

deduction working for any φ would contradict the negation rule ¬(¬φ|⊥) ≡ (φ|⊥) . Nevertheless, the

axioms b.vii. and b.viii. induces a definition of × for any pair of propositions, except (⊥,⊥).

3It will be proved that the hypothesis 0 ¬(φ ∧ ψ) implies the hypotheses 0 ¬φ and 0 (¬ψ|φ) .
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8.7.2 Properties

8.7.2.1 Probability over bM

A probability p over bM is defined according to the definition of section 8.4 . In particular, since the

meta-operator × characterizes an independence between propositions, it is naturally hypothesized that:

φ× ψ implies p(φ ∧ ψ) = p(φ)p(ψ) .

8.7.2.2 Useful theorems

Sub-universes are classical. It is assumed 0 ¬φ . Then:

• (¬ψ|φ) ≡ ¬(ψ|φ) ,

• (ψ ∧ η|φ) ≡ (ψ|φ) ∧ (η|φ) ,

• (ψ ∨ η|φ) ≡ (ψ|φ) ∨ (η|φ) ,

• (ψ → η|φ) ≡ (ψ|φ)→ (η|φ) .

Proof. The first theorem is a consequence of axiom b.v.

From axiom b.iii. , it is deduced ` (¬ψ ∨ η|φ) →
(
¬(ψ|φ) ∨ (η|φ)

)
. Applying the first theorem, it

is deduced ` (¬ψ ∨ η|φ)→
(
(¬ψ|φ) ∨ (η|φ)

)
. At last:

` (ψ ∨ η|φ)→
(
(ψ|φ) ∨ (η|φ)

)
. (8.20)

It is deduced ` ¬
(
(ψ|φ) ∨ (η|φ)

)
→ ¬(ψ ∨ η|φ) and, by applying the first theorem,

`
(
(¬ψ|φ) ∧ (¬η|φ)

)
→ (¬ψ ∧ ¬η|φ) .

At last:

`
(
(ψ|φ) ∧ (η|φ)

)
→ (ψ ∧ η|φ) .

Now, it is deduced from ` φ→
(
(ψ ∧ η)→ ψ

)
that:

`
(
(ψ ∧ η)→ ψ

∣
∣φ
)
.

By applying the axiom b.iii. :

` (ψ ∧ η|φ)→ (ψ|φ) .

It is similarly proved that ` (ψ ∧ η|φ)→ (η|φ) and finally:

` (ψ ∧ η|φ)→
(
(ψ|φ) ∧ (η|φ)

)
.

The second theorem is then proved.

Third theorem is a consequence of the first and second theorem.

Last theorem is a consequence of the first and third theorem.

222
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Inference property. It is assumed 0 ¬φ . Then (ψ|φ) ∧ φ ≡ φ ∧ ψ . In particular, the hypothesis

0 ¬(φ ∧ ψ) implies the hypotheses 0 ¬φ and 0 (¬ψ|φ) .

Proof. From b.iv. it comes ` (ψ|φ)→ (φ→ ψ) . Then ` ¬(φ→ ψ)→ ¬(ψ|φ) and ` (φ∧¬ψ)→ (¬ψ|φ) .

It follows ` (φ ∧ ψ)→ (ψ|φ) and finally:

` (φ ∧ ψ)→
(
(ψ|φ) ∧ φ

)
.

The converse is more simple. From ` (ψ|φ)→ (φ→ ψ) , it follows:

`
(
(ψ|φ) ∧ φ

)
→
(
(φ→ ψ) ∧ φ

)
.

Since (φ→ ψ) ∧ φ ≡ φ ∧ ψ , the converse is proved.

222

Intra-independence. It is assumed 0 ¬φ . Then (η|φ)× (ψ|φ) is equivalently defined by the property

`
(
(η|ψ)↔ η

∣
∣φ
)

.

Proof.
(
(η|ψ)↔ η

∣
∣φ
)
≡
(
(η|ψ)

∣
∣φ
)
↔ (η|φ) ≡ (η|φ ∧ ψ)↔ (η|φ)

≡
(
η
∣
∣φ ∧ (ψ|φ)

)
↔ (η|φ) ≡

(
(η|φ)

∣
∣(ψ|φ)

)
↔ (η|φ) .

222

Independence invariant. ψ × φ implies ¬ψ × φ .

Proof.

(¬ψ|φ)↔ ¬ψ ≡ ¬(ψ|φ)↔ ¬ψ ≡ (ψ|φ)↔ ψ .

222

Inter-independence. It is assumed 0 ¬φ . Then (ψ|φ)× φ .

Proof. From axiom b.vi. :

((ψ|φ)|φ) ≡ (ψ|φ ∧ φ) ≡ (ψ|φ) .

It is deduced (ψ|φ)× φ .

222

Corollary: assuming the rules b.viii. and b.ix. , the hypotheses 0 ¬φ and 0 (¬ψ|φ) imply the hypothesis

0 ¬(φ ∧ ψ) .

Proof. Assume ` ¬(φ ∧ ψ) . Then ` ¬
(
φ ∧ (ψ|φ)

)
and ` ¬φ ∨ ¬(ψ|φ) . Since (¬ψ|φ) × φ , it follows

φ×(¬ψ|φ) from rule b.viii. And then ¬φ×¬(ψ|φ) . Now, applying the rule b.ix. to ` ¬φ∨¬(ψ|φ) ,

it is deduced ` ¬φ or ` ¬(ψ|φ) .

222
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A proposition is true in its proper sub-universe. It is assumed 0 ¬φ . Then ` (φ|φ) .

Proof. Obvious from ` φ→ φ .

222

Narcissist independence. It is assumed 0 ¬φ . Then, φ×φ implies ` φ and conversely . In particular,

φ× φ implies φ ≡ > .

Proof.

(φ|φ)↔ φ ≡ > ↔ φ ≡ φ .

222

Non transitivity (modus barbara fails). It is assumed 0 ¬φ and 0 ¬ψ . Then

0 (ψ|φ)→
(
(η|ψ)→ (η|φ)

)
.

Proof. The choice ψ ≡ > , η ≡ ¬φ and φ 6≡ > is a counter example:

(>|φ)→
(
(¬φ|>)→ (¬φ|φ)

)
≡ > → (¬φ→ ⊥) ≡ φ .

222

8.7.2.3 Axioms and rules extend to sub-universes

Assume 0 ¬φ . The rules and axioms of bM extend on the sub-universe (·|φ) :

• ` ψ implies ` (ψ|φ) ,

• It is assumed 0 ¬(φ ∧ ψ) . Then ` (ψ → η|φ) implies `
(
(η|ψ)|φ

)
,

• It is assumed 0 ¬(φ ∧ ψ) . Then `
(
(η → ζ|ψ)

∣
∣φ
)
→
(
(η|ψ)→ (ζ|ψ)

∣
∣φ
)

,

• It is assumed 0 ¬(φ ∧ ψ) . Then `
(
(η|ψ)

∣
∣φ
)
→ (ψ → η|φ) .

Proof. ` ψ implies ` φ→ ψ and then ` (ψ|φ) . First point is then proved.

It is successively implied from ` (ψ → η|φ) :

` (ψ|φ)→ (η|φ) ,

`
(
(η|φ)

∣
∣(ψ|φ)

)
,

`
(
η
∣
∣φ ∧ (ψ|φ)

)
,

` (η|φ ∧ ψ) ,

`
(
(η|ψ)

∣
∣φ
)

.
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Second point is then proved.

By applying axiom b.iii. and first point, it comes:

`
(

(η → ζ|ψ)→
(
(η|ψ)→ (ζ|ψ)

)
∣
∣
∣φ
)

.

It follows:

`
(
(η → ζ|ψ)

∣
∣φ
)
→
(
(η|ψ)→ (ζ|ψ)

∣
∣φ
)
.

Third point is proved.

By applying axiom b.iv. and first point, it comes:

`
(
(η|ψ)→ (ψ → η)

∣
∣φ
)
.

It follows:

`
(
(η|ψ)

∣
∣φ
)
→ (ψ → η|φ) .

Fourth point is proved.

222

8.7.2.4 Bayes inference

It is assumed 0 ¬φ . Define p(ψ|φ) as an abbreviation for p
(
(ψ|φ)

)
. Then:

p(ψ|φ)p(φ) = p(φ ∧ ψ) .

Proof. This result is implied by the theorems (ψ|φ) ∧ φ ≡ φ ∧ ψ and (ψ|φ) × φ .

222

8.7.2.5 Conclusion

Finally, the Bayes inference has been recovered from our axiomatization of the operator (·|·) . Although

this result needs more investigation, in particular for the justification of the coherence of bM , it appears

that the Bayesian inference could be interpreted logically as a manner to handle the knowledges. A

similar result has been obtained for the fusion rule of DSmT. At last, it seems possible to conjecture that

logics and probability could be mixed in order to derive many other belief rules or inferences.

8.8 Conclusion

In this contribution, it has been shown that DSmT was interpretable in the paradigm of probabilized

multi-modal logic. This logical characterization has made apparent the true necessity of an independence

hypothesis about the sensors, when applying the ⊕ fusion rule. Moreover, it is expected that our work
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has given some clarifications about the semantic associated with the conjunctive rule of DSmT.

A similar logical interpretation of the Bayes inference has been constructed, although this preliminary

work should be improved. At last, it seems possible to handle probabilized logics as a relatively general

framework for manipulating non deterministic informations. This is perhaps a generic method for con-

structing new customized belief theories. The principle is first to construct a logic well adapted to the

problem, second to probabilize this logic, and third to derive the implied new belief theory (and forget

then the mother logic!) :

Classical Logic

↓
New Logic

Probabilized

=⇒
propositions

Probability

↓
New Belief Theory

It seems obviously that there could be many theories and rules for manipulating non deterministic infor-

mations. This is not a new result and I feel necessary to refer to the works of Sombo, Lefèvre, De Brucq

and al. [6, 4, 7] , which have investigated such questions.

At last, a common framework for both DSmT and Bayesian inference could be certainly derived by fusing

the logics mM and bM .
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Chapter 9

On conjunctive and disjunctive

combination rules of evidence

Hongyan Sun and Mohamad Farooq

Department of Electrical & Computer Engineering

Royal Military College of Canada

Kingston, ON, Canada, K7K 7B4

Abstract: In this chapter, the Dempster-Shafer (DS) combination rule is examined

based on the multi-valued mapping (MVM) and the product combination rule of mul-

tiple independent sources of information. The shortcomings in DS rule are correctly

interpreted via the product combination rule of MVM. Based on these results, a new

justification of the disjunctive rule is proposed. This combination rule depends on

the logical judgment of OR and overcomes the shortcomings of DS rule, especially, in

the case of the counter-intuitive situation. The conjunctive, disjunctive and hybrid

combination rules of evidence are studied and compared. The properties of each rule

are also discussed in details. The role of evidence of each source of information, the

comparison of the combination judgment belief and ignorance of each rule, the treat-

ment of conflicting judgments given by sources, and the applications of combination

rules are discussed. The new results yield valuable theoretical insight into the rules

that can be applied to a given situation. Zadeh’s example is also included in this

chapter for the evaluation of the performance and the efficiency of each combination

rule of evidence in case of conflicting judgments.
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9.1 Introduction

C
ombination theory of multiple sources of information is always an important area of research in

information processing of multiple sources. The initial important contribution in this area is due

to Dempster in terms of Dempster’s rule [1]. Dempster derived the combination rule for multiple in-

dependent sources of information based on the product space of multiple sources of information and

multi-valued mappings. In the product space, combination-mapping of multiple multi-valued mappings

is defined as the intersection of each multi-valued mapping, that is, an element can be judged by combi-

nation sources of information if and only if it can be judged by each source of information simultaneously,

irrespective of the magnitude of the basic judgment probability. Shafer extended Dempster’s theory to

the space with all the subsets of a given set (i.e. the power set) and defined the frame of discernment,

degree of belief, and, furthermore, proposed a new combination rule of the multiple independent sources

of information in the form of Dempster-Shafer’s (DS) combination rule [2]. However, the interpretation,

implementation, or computation of the technique are not described in a sufficient detail in [2]. Due to

the lack of details in [2], the literature is full of techniques to arrive at DS combination rule. For exam-

ple, compatibility relations [3, 4], random subsets [5, 6, 7], inner probability [8, 9], joint (conjunction)

entropy [10] etc. have been utilized to arrive at the results in [2]. In addition, the technique has been

applied in various fields such as engineering, medicine, statistics, psychology, philosophy and account-

ing [11], and multi-sensor information fusion [12, 13, 14, 15, 16] etc. DS combination rule is more efficient

and effective than the Bayesian judgment rule because the former does not require a priori probability

and can process ignorance. A number of researchers have documented the drawbacks of DS techniques,

such as the counter-intuitive results for some pieces of evidence [17, 18, 19], computational expenses and

independent sources of information [20, 21].

One of the problems in DS combination rule of evidence is that the measure of the basic probability

assignment of combined empty set is not zero, i.e. m(∅) 6= 0, however, it is supposed to be zero, i.e.

m(∅) = 0. In order to overcome this problem, the remaining measure of the basic probability assignment

is reassigned via the orthogonal technique [2]. This has created a serious problem for the combination

of the two sharp sources of information, especially, when two sharp sources of information have only one

of the same focal elements (i.e. two sources of information are in conflict), thus resulting in a counter-

intuitive situation as demonstrated by Zadeh. In addition, DS combination rule cannot be applied to

two sharp sources of information that have none of the same focal elements. These problems are not

essentially due to the orthogonal factor in DS combination rule (see references [22, 23]).

In general, there are two main techniques to resolve the Shafer problem. One is to suppose m(∅) 6= 0

or m(∅) > 0 as it is in reality. The Smets transferable belief model (TBM), and Yager, Dubois &
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Prade and Dezert-Smarandache (DSm) combination rules are the ones that utilize this fact in refer-

ences [20, 24, 25, 26, 27, 28]. The other technique is that the empty set in the combined focal elements is

not allowed and this idea is employed in the disjunctive combination rule [22, 23, 29, 30, 31]. Moreover,

E. Lefèvre et al. propose a general combination formula of evidence in [32] and further conjunctive com-

bination rules of evidence can been derived from it.

In this chapter, we present some of work that we have done in the combination rules of evidence.

Based on a multi-valued mapping from a probability space (X,Ω, µ) to space S, a probability measure

over a class 2S of subsets of S is defined. Then, using the product combination rule of multiple informa-

tion sources, Dempster-Shafer’s combination rule is derived. The investigation of the two rules indicates

that Dempster’s rule and DS combination rule are for different spaces. Some problems of DS combina-

tion rule are correctly interpreted via the product combination rule that is used for multiple independent

information sources. An error in multi-valued mappings in [11] is pointed out and proven.

Furthermore, a novel justification of the disjunctive combination rule for multiple independent sources

of information based on the redefined combination-mapping rule of multiple multi-valued mappings in

the product space of multiple independent sources of information is being proposed. The combination

rule reveals a type of logical inference in the human judgment, that is, the OR rule. It overcomes the

shortcoming of DS combination rule with the AND rule, especially, the one that is counter-intuitive, and

provides a more plausible judgment than DS combination rule over different elements that are judged by

different sources of information.

Finally, the conjunctive and disjunctive combination rules of evidence, namely, DS combination rule,

Yager’s combination rule, Dubois and Prade’s (DP) combination rule, DSm’s combination rule and the

disjunctive combination rule, are studied for the two independent sources of information. The properties

of each combination rule of evidence are discussed in detail, such as the role of evidence of each source

of information in the combination judgment, the comparison of the combination judgment belief and

ignorance of each combination rule, the treatment of conflict judgments given by the two sources of

information, and the applications of combination rules. The new results yield valuable theoretical insight

into the rules that can be applied to a given situation. Zadeh’s example is included in the chapter

to evaluate the performance as well as efficiency of each combination rule of evidence for the conflict

judgments given by the two sources of information.
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9.2 Preliminary

9.2.1 Source of information and multi-valued mappings

Consider n sources of information and corresponding multi-valued mappings [1]. They are mathemat-

ically defined by n basic probability spaces (Xi,Ωi, µi) and multi-valued mappings Γi which assigns a

subset Γixi ⊂ S to every xi ∈ Xi, i = 1, 2, . . . , n. The space S into which Γi maps is the same for each

i, namely: n different sources yield information about the same uncertain outcomes in S.

Let n sources be independent. Then based on the definition of the statistical independence, the

combined sources (X,Ω, µ) can be defined as

X = X1 ×X2 × . . .×Xn (9.1)

Ω = Ω1 × Ω2 × . . .× Ωn (9.2)

µ = µ1 × µ2 × . . .× µn (9.3)

for all x ∈ X , Γ is defined as

Γx = Γ1x ∩ Γ2x ∩ . . . ∩ Γnx (9.4)

The definition of Γ implies that xi ∈ Xi is consistent with a particular s ∈ S if and only if s ∈ Γixi,

for i = 1, 2, . . . , n, and consequently x = (x1, x2, . . . , xn) ∈ X is consistent with s if and only if s ∈ Γixi

for all i = 1, 2, . . . , n [1].

For finite S = {s1, s2, . . . , sn}, suppose Sδ1δ2...δn
denotes the subset of S which contains sj if δj = 1

and excludes sj if δj = 0, for j = 1, 2, . . . , n. Then the 2n subsets of S so defined are possible for all Γixi

(i = 1, 2, . . . , n), and partition Xi into

Xi =
⋃

δ1δ2...δm

X
(i)
δ1δ2...δm

(9.5)

where

X
(i)
δ1δ2...δn

= {xi ∈ Xi,Γixi = Sδ1δ2...δn
} (9.6)

and define [1]

p
(i)
δ1δ2...δn

= µ(X
(i)
δ1δ2...δn

) (9.7)
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9.2.2 Dempster’s combination rule of independent information sources

Based on (9.1) - (9.7), the combination of probability judgments of multiple independent information

sources is characterized by [1] p
(i)
δ1δ2...δn

, i = 1, 2, . . . , n. That is

pδ1δ2...δn
=

∑

δi=δ
(1)
i δ

(2)
i ...δ

(n)
i

p
(1)

δ
(1)
1 δ

(1)
2 ...δ

(1)
n

p
(2)

δ
(2)
1 δ

(2)
2 ...δ

(2)
n

. . . p
(n)

δ
(n)
1 δ

(n)
2 ...δ

(n)
n

(9.8)

Equation (9.8) indicates that the combination probability judgment of n independent information

sources for any element Sδ1δ2...δn
of S equals the sum of the product of simultaneously doing probability

judgment of each independent information source for the element. It emphasizes the common role of each

independent information source. That is characterized by the product combination rule.

9.2.3 Degree of belief

Definition 1:

If Θ is a frame of discernment, then function m : 2Θ → [0, 1] is called1 a basic belief assignment

whenever

m(∅) = 0 (9.9)

and
∑

A⊆Θ

m(A) = 1 (9.10)

The quantity m(A) is called the belief mass of A (or basic probability number in [2]).

Definition 2:

A function Bel : 2Θ → [0, 1] is called a belief function over Θ [2] if it is given by

Bel(A) =
∑

B⊆A

m(B) (9.11)

for some basic probability assignment m : 2Θ → [0, 1].

Definition 3:

A subset A of a frame Θ is called a focal element of a belief function Bel over Θ [2] if m(A) > 0. The

union of all the focal elements of a belief function is called its core.

Theorem 1:

If Θ is a frame of discernment, then a function Bel : 2Θ → [0, 1] is a belief function if and only if it

satisfies the three following conditions [2]:

1also called basic probability assignment in [2].
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1.

Bel(∅) = 0 (9.12)

2.

Bel(Θ) = 1 (9.13)

3. For every positive integer n and every collection A1, . . . , An of subsets of Θ,

Bel(A1 ∪ . . . ∪An) =
∑

I⊂{1,...,n}
I 6=∅

(−1)
|I|+1

Bel(∩i∈IAi) (9.14)

Definition 4:

The function Pl : 2Θ → [0, 1] defined by

Pl(A) = 1− Bel(Ā) (9.15)

is called the plausibility function for Bel. Ā denotes the complement of A in 2Θ.

Definition 5:

If Θ is a frame of discernment, then a function Bel : 2Θ → [0, 1] is called Bayesian belief [2] if and

only if

1. Bel(∅) = 0 (9.16)

2. Bel(Θ) = 1 (9.17)

3. If A,B ⊂ Θ and A ∩B = ∅, then Bel(A ∪B) = Bel(A) + Bel(B) (9.18)

Theorem 2:

If Bel : 2Θ → [0, 1] is a belief function over Θ, Pl is a plausibility corresponding to it, then the following

conclusions are equal [2]

1. The belief is a Bayesian belief.

2. Each focal element of Bel is a single element set.

3. ∀A ⊂ Θ, Bel(A) + Bel(Ā) = 1.

9.2.4 The DS combination rule

Theorem 3:

Suppose Bel1 and Bel2 are belief functions over the same frame of discernment Θ = {θ1, θ2, . . . , θn}
with basic belief assignments m1 and m2, and focal elements A1, A2, . . . , Ak and B1, B2, . . . , Bl, respec-

tively. Suppose
∑

i,j
Ai∩Bj=∅

m1(Ai)m2(Bj) < 1 (9.19)
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Then the function m : 2Θ → [0, 1] defined by m(∅) = 0 and

m(A) =

∑

i,j
Ai∩Bj=A

m1(Ai)m2(Bj)

1−
∑

i,j
Ai∩Bj=∅

m1(Ai)m2(Bj)
(9.20)

for all non-empty A ⊆ Θ is a basic belief assignment [2]. The core of the belief function given by m is

equal to the intersection of the cores of Bel1 and Bel2. This defines Dempster-Shafer’s rule of combination

(denoted as the DS combination rule in the sequel).

9.3 The DS combination rule induced by multi-valued mapping

9.3.1 Definition of probability measure over the mapping space

Given a probability space (X,Ω, µ) and a space S with a multi-valued mapping:

Γ : X → S (9.21)

∀x ∈ X,Γx ⊂ S (9.22)

The problem here is that if the uncertain outcome is known to correspond to an uncertain outcome

s ∈ Γx, then the probability judgement of the uncertain outcome s ∈ Γx needs to be determined.

Assume S consists of n elements, i.e. S = {s1, s2, . . . , sn}. Let’s denote Sδ1δ2...δn
the subsets of S,

where δi = 1 or 0, i = 1, 2, . . . , n, and

Sδ1δ2...δn
=

⋃

i6=j,δi=1,δj=0

si (9.23)

then from mapping (9.21)-(9.22) it is evident that Sδ1δ2...δn
is related to Γx. Therefore, the 2S subsets

such as in equation (9.23) of S yield a partition of X

X =
⋃

δ1δ2...δn

Xδ1δ2...δn
(9.24)

where

Xδ1δ2...δn
= {x ∈ X,Γx = Sδ1δ2...δn

} (9.25)

Define a probability measure over 2S = {Sδ1δ2...δn
} as M : 2S = {Sδ1δ2...δn

} → [0, 1] with

M(Sδ1δ2...δn
) =







0, Sδ1δ2...δn
= ∅

µ(Xδ1δ2...δn )

1−µ(X00...0)
, Sδ1δ2...δn

6= ∅
(9.26)
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where M is the probability measure over a class 2S = {Sδ1δ2...δn
} of subsets of space S which Γ maps X

into.

9.3.2 Derivation of the DS combination rule

Given two n = 2 independent information sources, then from equation (9.8), we have

µ(Xδ1δ2...δn
) =

∑

ΓXδ1δ2...δn=Γ(1)X
(1)

δ′1δ′2...δ′n
∩Γ(2)X

(2)

δ′′1 δ′′2 ...δ′′n

µ(1)(X
(1)
δ′1δ

′
2...δ

′
n
)µ(2)(X

(2)
δ′′1 δ

′′
2 ...δ

′′
n

) (9.27)

From equation (9.26), if Sδ1δ2...δn
6= ∅, we have for i = 1, 2

µ(i)(Xδ1δ2...δn
) = M (i)(Sδ1δ2...δn

)(1− µ(i)(X00...0)) (9.28)

and

µ(Xδ1δ2...δn
) = M(Sδ1δ2...δn

)(1− µ(X00...0)) (9.29)

where equations (9.28) and (9.29) correspond to information source i, (i = 1, 2) and their combined

information sources, respectively. Substituting equations (9.28)-(9.29) into equation (9.27), we have

M(Sδ1δ2...δn
) =

∑

δ=δ′δ′′

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n )[1− µ(1)(X
(1)
00...0)[1 − µ(2)(X

(2)
00...0)]

1− µ(X00...0)
(9.30)

and

[1− µ(1)(X
(1)
00...0)][1− µ(2)(X

(2)
00...0)]

1− µ(X00...0)
=

[1− µ(1)(X
(1)
00...0)][1− µ(2)(X

(2)
00...0)]

∑

Γ1X
(1)

δ′
1

δ′
2

...δ′n
∩Γ2X

(2)

δ′′
1

δ′′
2

...δ′′n
6=∅

µ(1)(X
(1)
δ′1δ

′
2...δ

′
n
)µ(2)(X

(2)
δ′′1 δ

′′
2 ...δ

′′
n

)

=
1

∑

Sδ′
1

δ′
2

...δ′n
∩Sδ′′

1
δ′′
2

...δ′′n
6=∅

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n )
(9.31)

Substitute (9.31) back into (9.30), hence we have

M(Sδ1δ2...δn
) =

∑

Sδ′
1

δ′
2

...δ′n
∩Sδ′′

1
δ′′
2

...δ′′n
=Sδ1δ2...δn

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n )

1−
∑

Sδ′1δ′2...δ′n
∩Sδ′′1 δ′′2 ...δ′′n

=∅

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n )
(9.32)

when Sδ1δ2...δn
= ∅,

M(Sδ1δ2...δn
) , 0 (9.33)

Thus, equations (9.32) and (9.33) are DS combination rule. Where space S = {s1, s2, . . . , sn} is the

frame of discernment.
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The physical meaning of equations (9.8) and (9.32)-(9.33) is different. Equation (9.8) indicates the

probability judgement combination in the combination space (X,Ω, µ) of n independent information

sources, while equations (9.32)-(9.33) denotes the probability judgement combination in the mapping

space (S, 2S ,M) of n independent information sources. The mappings of Γ and Γi, (i = 1, 2, . . . , n) relate

equations (9.8) and (9.32)-(9.33). This shows the difference between Dempster’s rule and DS combination

rule.

9.3.3 New explanations for the problems in DS combination rule

From the above derivation, it can be seen that DS combination rule is mathematically based on the prod-

uct combination rule of multiple independent information sources as evident from equations (9.1)-(9.8).

For each of the elements in the space, the combination probability judgement of independent information

sources is the result of the simultaneous probability judgement of each independent information source.

That is, if each information source yields simultaneously its probability judgement for the element, then

the combination probability judgement for the element can be obtained by DS combination rule, re-

gardless of the magnitude of the judgement probability of each information source. Otherwise, it is the

opposite. This gives raise to the following problems:

1. The counter-intuitive results

Suppose a frame of discernment is S = {s1, s2, s3}, the probability judgments of two independent

information sources, (Xi,Ωi, µi), i = 1, 2, are m1 and m2, respectively. That is:

(X1,Ω1, µ1) : m1(s1) = 0.99, m1(s2) = 0.01

and

(X2,Ω2, µ2) : m2(s2) = 0.01, m2(s3) = 0.99

Using DS rule to combine the above two independent probability judgements, results in

m(s2) = 1,m(s1) = m(s3) = 0 (9.34)

This is counter-intuitive. The information source (X1,Ω1, µ1) judges s1 with a very large probability

measure, 0.99, and judges s2 with a very small probability measure, 0.01, while the information

source (X2,Ω2, µ2) judges s3 with a very large probability measure, 0.99, and judges s2 with a very

small probability measure, 0.01. However, the result of DS combination rule is that s2 occurs with

probability measure, 1, and others occur with zero probability measure. The reason for this result

is that the two information sources simultaneously give their judgement only for an element s2 of

space S = {s1, s2, s3} although the probability measures from the two information sources for the
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element are very small and equal to 0.01, respectively. The elements s1 and s3 are not judged by

the two information sources simultaneously. According to the product combination rule, the result

in equation (9.34) is as expected.

It should be pointed out that this counter-intuitive result is not completely due to the normalization

factor in highly conflicting evidence [17, 18, 19] of DS combination rule. This can be proven by the

following example.

Suppose for the above frame of discernment, the probability judgments of another two independent

information sources, (Xi,Ωi, µi), i = 3, 4, are m2 and m4, are chosen. That is:

(X3,Ω3, µ3) : m3(s1) = 0.99, m3(S) = 0.01

and

(X4,Ω4, µ4) : m4(s3) = 0.99, m4(S) = 0.01

The result of DS combination rule is

m′(s1) = 0.4975,m′(s3) = 0.4975,m′(S) = 0.0050

This result is very different from that in equation (9.34) although the independent probability

judgements of the two information sources are also very conflicting for elements s1 and s3. That

is, the information source, (X3,Ω3, µ3), judges s1 with a very large probability measure, 0.99, and

judges S with a very small probability measure, 0.01, while the information source (X4,Ω4, µ4)

judges s3 with a very large probability measure, 0.99, and judges S with a very small probability

measure, 0.01.

This is due to the fact that the same element S = {s1, s2, s3} of the two information sources

includes elements s1 and s3. So, the element s1 in the information source, (X3,Ω3, µ3), and the

element S = {s1, s2, s3} in the information source, (X4,Ω4, µ4) have the same information, and

the element S = {s1, s2, s3} in information source, (X3,Ω3, µ3), and the element s3 in information

source, (X4,Ω4, µ4) have the same information. Thus, the two independent information sources can

simultaneously give information for the same probability judgement element S = {s1, s2, s3}, and

also simultaneously yield the information for the conflicting elements s1 and s3, respectively. That

is required by the product combination rule.

2. The combination of Bayesian (sensitive) information sources

If two Bayesian information sources cannot yield the information about any element of the frame

of discernment simultaneously, then the two Bayesian information sources cannot be combined

by DS combination rule. For example, there are two Bayesian information sources (X1,Ω1, µ1)
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and (X2,Ω2, µ2) over the frame of discernment, S = {s1, s2, s3, s4}, and the basic probability

assignments are, respectively,

(X1,Ω1, µ1) : m1(s1) = 0.4, m1(s2) = 0.6

and

(X2,Ω2, µ2) : m2(s3) = 0.8, m2(s4) = 0.2

then their DS combination rule is

m(s1) = m(s2) = m(s3) = m(s4) = 0

This indicates that every element of the frame of discernment occurs with zero basic probability

after DS combination rule is applied. This is a conflict. This is because the source (X1,Ω1, µ1)

gives probability judgements for elements s1 and s2 of the frame of discernment, S = {s1, s2, s3, s4},
while the source (X2,Ω2, µ2) gives probability judgements for elements s3 and s4 of the frame of dis-

cernment, S = {s1, s2, s3, s4}. The two sources cannot simultaneously give probability judgements

for any element of the frame of discernment, S = {s1, s2, s3, s4}. Thus, the product combination

rule does not work for this case.

Based on the above analysis, a possible solution to the problem is to relax the conditions used in

the product combination rule (equations (9.1)-(9.4)) for practical applications, and establish a new

theory for combining information of multiple sources (see sections 9.4 and 9.5).

9.3.4 Remark about “multi-valued mapping” in Shafer’s paper

On page 331 of [11] where G. Shafer explains the concept of multi-valued mappings of DS combination

rule, the Dempter’s rule is considered as belief, Bel(T ) = P{x|Γ(x) ⊆ T, ∀T ⊂ S}, combination. The

following proof shows this is incorrect.

Proof: Given the two independent information sources, equations (9.1)-(9.4) become as the followings:

X = X1 ×X2 (9.35)

Ω = Ω1 × Ω2 (9.36)

µ = µ1 × µ2 (9.37)

Γx = Γ1x ∩ Γ2x (9.38)
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then

Bel(T ) 6= Bel1(T )⊕ Bel2(T )

in fact, ∀T ⊂ S,

{Γ(x) ⊆ T }; {Γ(x1) ⊆ T } ∩ {Γ(x2) ⊆ T }

hence,

{x ∈ X |Γ(x) ⊆ T } 6= {x1 ∈ X1|Γ(x1) ⊆ T } × {x2 ∈ X2|Γ(x2) ⊆ T }

i.e. the product combination rule in equations (9.35)-(9.38) is not satisfied by the defined belief Bel(T ) =

P{x|Γ(x) ⊆ T, ∀T ⊂ S}. Therefore, the combination belief cannot be obtained from equations (9.35)-

(9.38) with the belief, Bel(T ) = P{x|Γ(x) ⊆ T, ∀T ⊂ S}. When we examine the product combination

rule in equations (9.1)-(9.4), it is known that the combination rule is neither for upper probabilities, nor

for lower probabilities (belief), nor for probabilities of the type, pδ1δ2...δn
= µ(Xδ1δ2...δn

) [1]. It is simply

for probability spaces of multiple independent information sources with multi-valued mappings.

9.4 A new combination rule of probability measures over map-

ping space

It has been demonstrated in section 9.3 that DS combination rule is mathematically based on the product

combination rule of multiple independent information sources. The combination probability judgment of n

independent information sources for each element is the result of the simultaneous probability judgment

of each independent information source. That is, if each information source yields simultaneously its

probability judgment for the element, then the combination probability judgment for the element can

be obtained by DS combination rule regardless of the magnitude of the judgment probability of each

information source. Otherwise, such results are not plausible. This is the main reason that led to

the counter-intuitive results in [17, 18, 19]. We will redefine the combination-mapping rule Γ using n

independent mapping Γi, i = 1, 2, . . . , n in order to relax the original definition in equation (9.4) in

section 9.2.1. The combination of probabilities of type p
(i)
δ2δ1...δn

in the product space (X,Ω, µ) will then

be realized, and, furthermore, the combination rule of multiple sources of information over mapping space

S will also be established.

9.4.1 Derivation of combination rule of probabilities p
(i)
δ1δ2...δn

Define a new combination-mapping rule for multiple multi-valued mappings as

Γx = Γ1x ∪ Γ2x ∪ . . . ∪ Γnx (9.39)
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It shows that xi ∈ X is consistent with a particular s ∈ S if and only if s ∈ Γixi, for i = 1, 2, . . . , n,

and consequently x = {x1, x2, . . . , xn} ∈ X is consistent with that s if and only if there exist certain

i ∈ {1, 2, . . . , n}, such that s ∈ Γixi.

For any T ⊂ S, we construct sets

T̄ = {x ∈ X,Γx ⊂ T } (9.40)

T̄i = {xi ∈ Xi,Γixi ⊂ T } (9.41)

and let

λ(T ) = µ(T̄ ) (9.42)

λ(i)(T ) = µi(T̄i) (9.43)

Hence,

T̄ = T̄1 × T̄2 × . . .× T̄n (9.44)

and

λ(T ) = λ(1)(T )× λ(2)(T )× . . .× λ(n)(T ) (9.45)

Consider a finite S = {s1, s2, s3} and two independent sources of information characterized by p
(i)
000, p

(i)
100,

p
(i)
010, p

(i)
001, p

(i)
110, p

(i)
101, p

(i)
011 and p

(i)
111, i = 1, 2. Suppose λ(i)(T ), (i = 1, 2) corresponding to T = ∅, {s1},

{s2}, {s3}, {s1, s2}, {s2, s3}, {s1, s3}, {s1, s2, s3} is expressed as λ
(i)
000, λ

(i)
100, λ

(i)
010, λ

(i)
001, λ

(i)
110, λ

(i)
101, λ

(i)
011

and λ
(i)
111, i = 1, 2. Then for i = 1, 2,

λ
(i)
000 = p

(i)
000 (9.46)

λ
(i)
100 = p

(i)
000 + p

(i)
100 (9.47)

λ
(i)
010 = p

(i)
000 + p

(i)
010 (9.48)

λ
(i)
001 = p

(i)
000 + p

(i)
001 (9.49)

λ
(i)
110 = p

(i)
000 + p

(i)
100 + p

(i)
010 + p

(i)
110 (9.50)

λ
(i)
101 = p

(i)
000 + p

(i)
100 + p

(i)
001 + p

(i)
101 (9.51)

λ
(i)
011 = p

(i)
000 + p

(i)
010 + p

(i)
001 + p

(i)
011 (9.52)

λ
(i)
111 = p

(i)
000 + p

(i)
100 + p

(i)
010 + p

(i)
001 + p

(i)
110 + p

(i)
101 + p

(i)
011 + p

(i)
111 (9.53)

If λδ1δ2δ3 and pδ1δ2δ3 (δi = 1 or 0, i = 1, 2, 3) are used to express the combined probability measure of

two independent sources of information in spaces S = {s1, s2, s3} and (X,Ω, µ), respectively, then based

on equation (9.45) and through equations (9.46)-(9.53), the following can be obtained
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p000 = p
(1)
000p

(2)
000 (9.54)

p100 = p
(1)
000p

(2)
100 + p

(1)
100p

(2)
000 + p

(1)
100p

(2)
100 (9.55)

p010 = p
(1)
000p

(2)
010 + p

(1)
010p

(2)
000 + p

(1)
010p

(2)
010 (9.56)

p001 = p
(1)
000p

(2)
001 + p

(1)
001p

(2)
000 + p

(1)
001p

(2)
001 (9.57)

p110 = p
(1)
000p

(2)
110 + p

(1)
100p

(2)
010 + p

(1)
100p

(2)
110 + p

(1)
010p

(2)
100

+ p
(1)
010p

(2)
110 + p

(1)
110p

(2)
000 + p

(1)
110p

(2)
100 + p

(1)
110p

(2)
010 + p

(1)
110p

(2)
110 (9.58)

p101 = p
(1)
000p

(2)
101 + p

(1)
100p

(2)
001 + p

(1)
100p

(2)
101 + p

(1)
001p

(2)
100

+ p
(1)
001p

(2)
101 + p

(1)
101p

(2)
000 + p

(1)
101p

(2)
100 + p

(1)
101p

(2)
001 + p

(1)
101p

(2)
101 (9.59)

p011 = p
(1)
000p

(2)
011 + p

(1)
010p

(2)
001 + p

(1)
010p

(2)
011 + p

(1)
001p

(2)
010

+ p
(1)
001p

(2)
011 + p

(1)
011p

(2)
000 + p

(1)
011p

(2)
010 + p

(1)
011p

(2)
001 + p

(1)
011p

(2)
011 (9.60)

p111 = p
(1)
000p

(2)
111 + p

(1)
100p

(2)
011 + p

(1)
100p

(2)
111 + p

(1)
010p

(2)
101

+ p
(1)
010p

(2)
111 + p

(1)
001p

(2)
110 + p

(1)
001p

(2)
111 + p

(1)
011p

(2)
100 + p

(1)
011p

(2)
101

+ p
(1)
011p

(2)
110 + p

(1)
011p

(2)
111 + p

(1)
101p

(2)
010 + p

(1)
101p

(2)
011 + p

(1)
101p

(2)
110

+ p
(1)
101p

(2)
111 + p

(1)
110p

(2)
001 + p

(1)
110p

(2)
011 + p

(1)
110p

(2)
101 + p

(1)
110p

(2)
111

+ p
(1)
111p

(2)
000 + p

(1)
111p

(2)
100 + p

(1)
111p

(2)
010 + p

(1)
111p

(2)
001 + p

(1)
111p

(2)
011

+ p
(1)
111p

(2)
101 + p

(1)
111p

(2)
110 + p

(1)
111p

(2)
111 (9.61)

For the case of S = {s1, s2, . . . , sn}, the general combination rule is

pδ1δ2...δn
=

∑

δi=δ
′
i∪δ

′′
i

i=1,2,...,m

p
(1)
δ′1δ

′
2...δ

′
n
p
(2)
δ′′1 δ

′′
2 ...δ

′′
n

(9.62)

for all (δ′1, δ
′
2, . . . , δ

′
m, δ

′′
1 , δ

′′
2 , . . . , δ

′′
n).

9.4.2 Combination rule of probability measures in space S

Define a probability measure over 2S = {Sδ1δ2...δn
} as M : 2S = {Sδ1δ2...δm

} → [0, 1] with

M(Sδ1δ2...δn
) =







0, Sδ1δ2...δn
= S00...0

µ(Xδ1δ2...δn )

1−µ(X00...0)
, Sδ1δ2...δn

6= S00...δ0

(9.63)

where M is the probability measure over a class 2S = {Sδ1δ2...δn
} of subsets of space S and Γ maps X

into S.
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The combination rule:

Given two independent sources of information (Xi,Ωi, µi), i = 1, 2, and the corresponding mapping

space, S = {s1, s2, . . . , sn} = {Sδ1δ2...δn
}, where Γi maps Xi into S. Based on equation (9.62), we have

µ(Xδ1δ2...δn
) =

∑

δi=δ
′
i∪δ

′′
i

i=1,2,...,n

µ(1)(X
(1)
δ′1δ

′
2...δ

′
n
)µ(2)(X

(2)
δ′′1 δ

′′
2 ...δ

′′
n

) (9.64)

From equation (9.63), for any Sδ1δ2...δm
6= S00...0, there exists

µ(1)(X
(1)
δ′1δ

′
2...δ

′
n
) = M (1)(Sδ1δ2...δn

)(1 − µ(1)(X
(1)
00...0)) (9.65)

µ(2)(X
(2)
δ′1δ

′′
2 ...δ

′′
n

) = M (2)(Sδ1δ2...δn
)(1− µ(2)(X

(2)
00...0)) (9.66)

and

µ(Xδ1δ2...δn
) = M(Sδ1δ2...δn

)(1− µ(X00...0)) (9.67)

such that equation (9.64) becomes

M(Sδ1δ2...δn
) =

∑

δi=δ
′
i∪δ

′′
i

i=1,2,...,n

M (1)(Sδ1δ2...δn
)M (2)(Sδ1δ2...δn

)[1− µ(1)(X
(1)
00...0)[1− µ(2)(X

(2)
00...0)]

1− µ(X00...0)
(9.68)

and
[1− µ(1)(X

(1)
00...0)][1 − µ(2)(X

(2)
00...0)]

1− µ(X00...0)
=

1
∑

δ′i∪δ
′′
i 6=0

i=1,2,...,n

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n )
(9.69)

Substitute (9.69) into (9.68),

M(Sδ1δ2...δn
) =

∑

δi=δ
′
i∪δ

′′
i

i=1,2,...,n

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n )

1−
∑

δ′i∪δ
′′
i 6=0

i=1,2,...,n

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n )

=
∑

δi=δ
′
i∪δ

′′
i

i=1,2,...,n

M (1)(Sδ′1δ′2...δ′n)M (2)(Sδ′′1 δ′′2 ...δ′′n ) (9.70)

If Sδ1δ2...δn
= S00...0, we define

M(Sδ1δ2...δn
) , 0 (9.71)

Hence, equations (9.70)- (9.71) express the combination of two sources of information, (Xi,Ωi, µi), i = 1, 2,

for the mapping space, S = {s1, s2, . . . , sn} = Sδ1δ2...δn
, where Γi maps Xi into S.
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9.5 The disjunctive combination rule

Based on the results in section 9.4, the disjunctive combination rule for two independent sources of in-

formation is obtained as follows:

Theorem 4:

Suppose Θ = {θ1, θ2, . . . , θn} is a frame of discernment with n elements. The basic probability

assignments of the two sources of information, (X1,Ω1, µ2) and (X2,Ω2, µ2) over the same frame of

discernment are m1 and m2, and focal elements A1, A2, . . ., Ak and B1, B2, . . ., Bl, respectively. Then

the combined basic probability assignment of the two sources of information can be defined as

m(C) =







0, C = ∅
∑

C=Ai∪Bj

m1(Ai)m2(Bj), C 6= ∅
(9.72)

Proof: Since m(∅) = 0 by definition, m is a basic probability assignment provided only that the m(C)

sum to one. In fact,

∑

C⊆Θ

m(C) = m(∅) +
∑

C⊂Θ

C 6=∅

m(C)

=
∑

C⊂Θ
C 6=∅

∑

C=Ai∪Bj

i∈{1,2,...,k},j∈{1,2,...,l}

m1(Ai)m2(Bj)

=
∑

Ai∪Bj 6=∅
i∈{1,2,...,k},j∈{1,2,...,l}

m1(Ai)m2(Bj)

=
∑

Ai⊂Θ
Ai 6=∅

m1(Ai)
∑

Bj⊂Θ
Bj 6=∅

m2(Bj)

Hence, m is a basic probability assignment over the frame of discernment Θ = {θ1, θ2, . . . , θn}. Its

focal elements are

C = (
⋃

i=1,2,...,k

Ai)
⋃

(
⋃

j=1,2,...,l

Bl)

Based on theorem 4, theorem 5 can be stated as follows. A similar result can be found in [29, 31].

Theorem 5:
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If Bel1 and Bel2 are belief functions over the same frame of discernment Θ = {θ1, θ2, . . . , θn} with basic

probability assignments m1 and m2, and focal elements A1, A2, . . ., Ak and B1, B2, . . ., Bl, respectively,

then the function m : 2Θ → [0, 1] defined as

m(C) =







0, C = ∅
∑

C=Ai∪Bj

m1(Ai)m2(Bj), C 6= ∅
(9.73)

yields a basic probability assignment. The core of the belief function given by m is equal to the union of

the cores of Bel1 and Bel2.

Physical interpretations of the combination rule for two independent sources of information are:

1. The combination rule in theorem 4 indicates a type of logical inference in human judgments, namely:

the OR rule. That is, for a given frame of discernment, the elements that are simultaneously

judged by each source of information will also be judgment elements of the combined source of

information; otherwise, it will result in uncertainty so the combination judgments of the elements

will be ignorance.

2. The essential difference between the new combination rule and DS combination rule is that the

latter is a type of logical inference with AND or conjunction, while the former is based on OR

or disjunction. The new combination rule (or the OR rule) overcomes the shortcomings of DS

combination rule with AND, such as in the counter-intuitive situation and in the combination of

sharp sources of information.

3. The judgment with OR has the advantage over that with AND in treating elements that are not

simultaneously judged by each independent source of information. The OR rule gives more plausible

judgments for these elements than the AND rule. The judgment better fits to the logical judgment

of human beings.

Example 1

Given the frame of discernment Θ = {θ1, θ2}, the judgments of the basic probability from two sources of

information are m1 and m2 as follows:

m1(θ1) = 0.2, m1(θ2) = 0.4, m1(θ1, θ2) = 0.4

m2(θ1) = 0.4, m2(θ2) = 0.4, m2(θ1, θ2) = 0.2

Then through theorem 4, the combination judgment is

m(θ1) = 0.08, m(θ2) = 0.16, m(θ1, θ2) = 0.76
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Comparing the combined basic probabilities of θ1 and θ2, the judgment of θ2 occurs more often than θ1,

but the whole combination doesn’t decrease the uncertainty of the judgments, which is evident from the

above results.

Example 2 (the counter-intuitive situation)

Zadeh’s example:

The frame of discernment about the patient is Θ = {M,C, T }where M denotes meningitis, C repre-

sents contusion and T indicates tumor. The judgments of two doctors about the patient are

m1(M) = 0.99, m1(T ) = 0.01

m2(C) = 0.99, m2(T ) = 0.01

Combining these judgments through theorem 4, results in

m(M ∪ C) = 0.9801, m(M ∪ T ) = 0.0099, m(C ∪ T ) = 0.0099, m(T ) = 0.0001

From m(M ∪T ) = 0.0099 and m(C ∪T ) = 0.0099, it is clear that there are less uncertainties between

T and M , as well as T and C; which implies that T can easily be distinguished from M and C. Also,

T occurs with the basic probability m(T ) = 0.0001, i.e. T probably will not occur in the patient. The

patient may be infected with M or C. Furthermore, because of m(M ∪ C) = 0.9801, there is a bigger

uncertainty with 0.9801 between M and C, so the two doctors cannot guarantee that the patient has

meningitis (M) or contusion (C) except that the patient has no tumor (T ). The patient needs to be

examined by more doctors to assure the diagnoses.

We see the disjunctive combination rule can be used to this case very well. It fits to the human

intuitive judgment.

9.6 Properties of conjunctive and disjunctive combination rules

In the section, the conjunctive and disjunctive combination rules, namely, Dempster-Shafer’s combination

rule, Yager’s combination rule, Dubois and Prade’s (DP) combination rule, DSm’s combination rule and

the disjunctive combination rule, are studied. The properties of each combination rule of evidence are

discussed in detail, such as the role of evidence of each source of information in the combination judgment,

the comparison of the combination judgment belief and ignorance of each combination rule, the treatment

of conflict judgments given by the two sources of information, and the applications of combination rules.

Zadeh’s example is included in this section to evaluate the performance as well as efficiency of each

combination rule of evidence for the conflict judgments given by the two sources of information.



9.6. PROPERTIES OF CONJUNCTIVE AND DISJUNCTIVE COMBINATION RULES 211

9.6.1 The combination rules of evidence

9.6.1.1 Yager’s combination rule of evidence

Suppose Bel1 and Bel2 are belief functions over the same frame of discernment Θ = {θ1, θ2, . . . , θn} with

basic probability assignments m1 and m2 , and focal elements A1, A2, . . ., Ak and B1, B2, . . ., Bl,

respectively. Then Yager’s combined basic probability assignment of the two sources of information can

be defined as [20]

mY (C) =







∑

i,j
C=Ai∩Bj

m1(Ai)m2(Bj), C 6= Θ, ∅

m1(Θ)m2(Θ) +
∑

i,j
Ai∩Bj=∅

m1(Ai)m2(Bj), C = Θ

0, C = ∅

(9.74)

9.6.1.2 Dubois & Prade (DP)’s combination rule of evidence

Given the same conditions as in Yager’s combination rule, Dubois and Prade’s combined basic probability

assignment of the two sources of information can be defined as [26]

mDP (C) =







∑

i,j
C=Ai∩Bj

m1(Ai)m2(Bj) +
∑

i,j
C=Ai∪Bj

Ai∩Bj=∅

m1(Ai)m2(Bj), C 6= ∅

0, C = ∅

(9.75)

9.6.1.3 DSm combination rules of evidence

These rules are presented in details in chapters 1 and 4 and are just recalled briefly here for convenience

for the two independent sources of information.

• The classical DSm combination rule for free DSm model [27]

∀C ∈ DΘ, m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (9.76)

where DΘ denotes the hyper-power set of the frame Θ (see chapters 2 and 3 for details).

• The general DSm combination rule for hybrid DSm model M

We consider here only the two sources combination rule.

∀A ∈ DΘ, mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(9.77)
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where φ(A) is the characteristic non emptiness function of a set A, i.e. φ(A) = 1 if A /∈ ∅ and

φ(A) = 0 otherwise, where ∅ , {∅M, ∅}. ∅M is the set of all elements of DΘ which have been

forced to be empty through the constraints of the model M and ∅ is the classical/universal empty

set. S1(A) ≡ mMf (Θ)(A), S2(A), S3(A) are defined by (see chapter 4)

S1(A) ,
∑

X1,X2∈D
Θ

X1∩X2=A

2∏

i=1

mi(Xi) (9.78)

S2(A) ,
∑

X1,X2∈∅

[U=A]∨[U∈∅)∧(A=It)]

2∏

i=1

mi(Xi) (9.79)

S3(A) ,
∑

X1,X2∈D
Θ

X1∪X2=A
X1∩X2∈∅

2∏

i=1

mi(Xi) (9.80)

with U , u(X1)∪u(X2) where u(X) is the union of all singletons θi that compose X and It , θ1∪θ2
is the total ignorance. S1(A) corresponds to the classic DSm rule of combination based on the

free DSm model; S2(A) represents the mass of all relatively and absolutely empty sets which is

transferred to the total or relative ignorances; S3(A) transfers the sum of relatively empty sets to

the non-empty sets.

9.6.1.4 The disjunctive combination rule of evidence

This rule has been presented and justified previously in this chapter and can be found also in [22, 23, 29,

30, 31].

Suppose Θ = {θ1, θ2, . . . , θn} is a frame of discernment with n elements (it is the same as in theorem 3).

The basic probability assignments of the two sources of information over the same frame of discernment

are m1 and m2, and focal elements A1, A2, . . ., Ak and B1, B2, . . ., Bl, respectively. Then the combined

basic probability assignment of the two sources of information can be defined as

mDis(C) =







∑

i,j
C=Ai∪Bj

m1(Ai)m2(Bj), C 6= ∅

0, C = ∅

(9.81)

for any C ⊂ Θ. The core of the belief function given by m is equal to the union of the cores of Bel1 and

Bel2.
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9.6.2 Properties of combination rules of evidence

Given two independent sources of information defined over the frame of discernment Θ = {θ1, θ2}, their

basic probability assignments or basic belief masses over Θ are

S1 : m1(θ1) = 0.4, m1(θ2) = 0.3, m1(θ1 ∪ θ2) = 0.3

S2 : m2(θ1) = 0.5, m2(θ2) = 0.3, m2(θ1 ∪ θ2) = 0.2

Then the results of each combination rule of evidence for the two independent sources of information

are as follows. For the frame of discernment with n elements, similar results can be obtained.

S2 (m2) \ S1 (m1) {θ1} (0.4) {θ2} (0.3) {θ1, θ2} (0.3)

{θ1} (0.5) {θ1} (0.2) {θ1} ∩ {θ2} ⇒ k (0.15) {θ1} (0.15)

{θ2} (0.3) {θ1} ∩ {θ2} ⇒ k (0.12) {θ2} (0.09) {θ2} (0.09)

{θ1, θ2} (0.2) {θ1} (0.08) {θ2} (0.06) {θ1, θ2} (0.06)

Table 9.1: The conjunctive combination of evidence (DS)

S2 (m2) \ S1 (m1) {θ1} (0.4) {θ2} (0.3) {θ1, θ2} (0.3)

{θ1} (0.5) {θ1} (0.2) {θ1} ∩ {θ2} ⇒ Θ (0.15) {θ1} (0.15)

{θ2} (0.3) {θ1} ∩ {θ2} ⇒ Θ (0.12) {θ2} (0.09) {θ2} (0.09)

{θ1, θ2} (0.2) {θ1} (0.08) {θ2} (0.06) {θ1, θ2} (0.06)

Table 9.2: The conjunctive and disjunctive combination of evidence (Yager)

S2 (m2) \ S1 (m1) {θ1} (0.4) {θ2} (0.3) {θ1, θ2} (0.3)

{θ1} (0.5) {θ1} (0.2) {θ1} ∩ {θ2} ⇒ {θ1} ∪ {θ2} (0.15) {θ1, θ2} (0.15)

{θ2} (0.3) {θ1} ∩ {θ2} ⇒ {θ1} ∪ {θ2} (0.12) {θ2} (0.09) {θ2} (0.09)

{θ1, θ2} (0.2) {θ1} (0.08) {θ2} (0.06) {θ1, θ2} (0.06)

Table 9.3: The conjunctive and disjunctive combination of evidence (Dubois-Prade)

Property 1: the role of evidence of each source of information in the combination judgment:

1. With DS combination rule of evidence [2], the combined judgment for element θi (i = 1, 2) consists

of two parts. One is from the simultaneous support judgment of two sources of information for

the element θi (i = 1, 2) and the other is that one of two sources of information yields a support

judgment, while the second source is ignorant for the element θi (i = 1, 2) (i.e. ignorance). The
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A ∈ DΘ m1 m2 Φ(A) S1(A) S2(A) S3(A) mM(Θ)(A)

∅ 0 0 0 0 0 0 0

{θ1} 0.4 0.5 1 0.43 0 0 0.43

{θ2} 0.3 0.3 1 0.24 0 0 0.24

{θ1 ∩ θ2}
M(Θ)

= ∅ 0 0 0 0.27 0 0 0

{θ1 ∪ θ2} 0.3 0.2 1 0.06 0 0.27 0.33

Table 9.4: The hybrid DSm combination of evidence

S2 (m2) \ S1 (m1) {θ1} (0.4) {θ2} (0.3) {θ1, θ2} (0.3)

{θ1} (0.5) {θ1} (0.2) {θ1} ∪ {θ2} (0.15) {θ1, θ2} (0.15)

{θ2} (0.3) {θ1} ∪ {θ2} (0.12) {θ2} (0.09) {θ1, θ2} (0.09)

{θ1, θ2} (0.2) {θ1, θ2} (0.08) {θ1, θ2} (0.06) {θ1, θ2} (0.06)

Table 9.5: The disjunctive combination of evidence

combined total ignorance is from the total ignorance of both sources of information. The failure

combination judgment for some element is from the conflict judgments given by two sources of

information for the element.

2. The difference between Yager’s combination rule of evidence [20] and DS combination rule of evi-

dence [2] is that the conflict judgments of combination given by two sources of information for some

element is considered to be a part of combined ignorance i.e. it is added into the total ignorance.

3. Dubois and Prade’s combination rule of evidence [26] is different from that of Yager’s combination

rule [20] in that when two sources of information give the conflict judgments for an element in the

frame of discernment, one of two judgments is at least thought as a reasonable judgment. The

conflict judgments of combination for the two conflict elements are distributed to the judgment

corresponding to union of the two conflict elements.

4. The classical DSm combination rule of evidence [27] is different from those of Dubois and Prade’s

[26], Yager’s [20] and DS [2]. The conflict judgments given by two sources of information for an

element in the frame of discernment are considered as paradox. These paradoxes finally support

the combination judgment of each element θi (i = 1, 2). For the hybrid DSm combination rule, see

chapter 4, it consists of three parts. The first one is from the classic DSm rule of combination based

on the free-DSm model;the second one is the mass of all relatively and absolutely empty sets which

are transferred to the total or relative ignorance, while the third one is the mass that transfers the

all relatively empty sets to union of the elements that are included in the sets.
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5. With the disjunctive combination rule of evidence [22, 23, 29, 30, 31], the combination judgment

for each element is only from the simultaneous support judgment of each source of information

for the element θi (i = 1, 2). The combined ignorance consists of the combination of conflict

judgments given by two sources of information, the combination of the ignorance given by one

source of information and the support judgment for any element given by another source, and the

combination of the ignorance from both sources of information simultaneously. There is no failure

combination judgment. However, the combined belief is decreased and the ignorance is increased.

6. The combination rules of evidence of DS and the classical DSm are the conjunctive rule, the dis-

junctive combination rule of evidence is the disjunctive rule, while the combination rule of evidence

of Yager, Dubois & Prade, and the hybrid DSm are hybrid of the conjunctive and disjunctive rules.

Property 2: the comparison of combination judgment belief (Bel(.)) and ignorance (Ign(.) = Pl(.) −
Bel(.)) of each combination rule is:

BelDS(θi) > BelDSm(θi) > BelDP (θi) > BelY (θi) > BelDis(θi), i = 1, 2 (9.82)

IgnDS(θi) < IgnDSm(θi) > IgnDP (θi) < IgnY (θi) < IgnDis(θi), i = 1, 2 (9.83)

In fact, for the above two sources of information, the results from each combination rule are as the

following:

Combination rule m(θ1) m(θ2) m(Θ) Bel(θ1) Bel(θ2) Bel(Θ) Ign(θ1) Ign(θ2)

DS 0.589 0.329 0.082 0.589 0.329 1 0.082 0.082

Yager 0.43 0.24 0.33 0.43 0.24 1 0.33 0.33

DP 0.43 0.24 0.33 0.43 0.24 1 0.33 0.33

Hybrid DSm 0.43 0.24 0.33 0.43 0.24 1 0.33 0.33

Disjunctive 0.20 0.09 0.71 0.20 0.09 1 0.71 0.71

From the results in the above table, it can be observed that the hybrid DSm’s, Yager’s and Dubois &

Prade’s combination judgments are identical for the two independent sources of information. However,

for more than two independent sources of information, the results of combination judgments are as in

equations (9.82) and (9.83) (i.e. the results are different, the hybrid DSm model is more general than

Dubois-Prade’s and Yager’s, while Dubois-Prade’s model has less total ignorance than Yager’s).
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Property 3: The conflict judgments given by two sources of information for the frame of discernment:

Under DS combination rule, the combined conflict judgments are thought as failures and are deducted

from the total basic probability assignment of combination, while under Yager’s combination rule, they

are thought as the total ignorance; under Dubois & Prade’s combination rule; they are distributed to the

union of the two conflict elements. That means one of conflict judgments is at least reasonable. Under

the classical DSm combination rule, they constitute paradoxes to support the combined judgment belief

of each element, and are also thought as a new event that takes part in the subsequent judgment when

new evidences occur. While for the hybrid DSm combination rule, the treatment of conflict evidence is

similar to Dubois & Prade’s approach. For the disjunctive combination rule, the conflict judgments of

combination constitute ignorance, and take part in the subsequent judgment when the new evidences

occur.

Property 4: using them in applications:

Based on properties 1-3, when the two independent sources of information are not very conflict, the

disjunctive combination rule is more conservative combination rule. The combined results are uncertain

when conflict judgments of two sources of information occur and hence the final judgment is delayed until

more evidence comes into the judgment systems. Also, the combined judgment belief for each element

in the frame of discernment is decreased, and ignorance is increased as the new evidences come. Hence,

the disjunctive combination rule is not more efficient when we want the ignorance be decreased in the

combination of evidence. It is fair to assume that for the case when the two (conflict) judgments are not

exactly known which one is more reasonable, however, at least one of them should provide a reasonable

judgment. But DS combination rule is contrary to the disjunctive combination rule. It can make the final

judgment faster than other rules (see equations (9.82)-(9.83)), but the disjunctive combination rule will

make less erroneous judgments than other rules. The cases for the combination rules of the hybrid DSm,

Dubois & Prade, and Yager’s combination rule fall between the above two. For the other properties, for

instance, the two conflict independent sources of information, see the next section and the example that

follows.

9.6.3 Example

In this section, we examine the efficiency of each combination rule for conflict judgments via Zadeh’s

famous example. Let the frame of discernment of a patient be Θ = {M,C, T } whereM denotes meningitis,

C represents contusion and T indicates tumor. The judgments of two doctors about the patient are
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m1(M) = 0.99,m1(T ) = 0.01 and m2(C) = 0.99,m2(T ) = 0.01

The results from each combination rule of evidence are:

Rules m(T ) m(M ∪ C) m(C ∪ T ) m(M ∪ T ) m(Θ)

DS 1 0 0 0 0

Yager 0.0001 0 0 0 0.9999

DP 0.0001 0.9801 0.0099 0.0099 0

Hybrid DSm 0.0001 0.9801 0.0099 0.0099 0

Disjunctive 0.0001 0.9801 0.0099 0.0099 0

The basic belief masses m(M∩C), m(C∩T ) and m(M∩T ) equal zero with all five rules of combination

and the belief of propositions M ∩C, C ∩ T , M ∩ T , M ∪C, C ∪ T , M ∪ T , M , C, T and M ∪C ∪ T are

given in the next tables:

Rules Bel(M ∩ C) Bel(C ∩ T ) Bel(M ∩ T ) Bel(M ∪ C) Bel(C ∪ T ) Bel(M ∪ T )

DS 0 0 0 0 0 0

Yager 0 0 0 0 0 0

DP 0 0 0 0.9801 0.01 0.01

Hybrid DSm 0 0 0 0.9801 0.01 0.01

Disjunctive 0 0 0 0.9801 0.01 0.01

Rules Bel(M) Bel(C) Bel(T ) Bel(M ∪ C ∪ T )

DS 0 0 1 1

Yager 0 0 0.0001 1

DP 0 0 0.0001 1

Hybrid DSm 0 0 0.0001 1

Disjunctive 0 0 0.0001 1

Comparison and analysis of the fusion results:

1. DS combination judgment belief of each element is:

BelDS(T ) = 1, BelDS(M) = BelDS(C) = 0
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It means that the patient must have disease T with a degree of belief of 1 and must not have diseases

M and C, because their degrees of belief are 0, respectively. It is a counter-intuitive situation with

BelDS,1(M) = BelDS,2(C) = 0.99, BelDS,1(T ) = BelDS,2(T ) = 0.01. Moreover, in spite of the basic

probability assignment values over diseases T , M and C, the judgment of the two doctors for DS

combination rule will always be T with the degree of belief of 1, and each M and C with degree

of belief of 0. It shows DS combination rule is not effective in this case. The main reason for this

situation has been presented in sections 9.3-9.5.

2. Yager’s combination judgment belief of each element is:

BelY (T ) = 0.0001, BelY (M) = BelY (C) = 0

This degree of belief is too small to make the final judgment. Therefore, Yager’s combination rule

of evidence will wait for the new evidence to come in order to obtain more accurate judgment. The

reason for this result is that the rule transforms all conflict judgments into the total ignorance.

3. For Dubois & Prade’s combination rule, there is

BelDP (T ) = 0.0001, BelDP (M ∪ C) = 0.9801, BelDP (M ∪ T ) = BelDP (C ∪ T ) = 0.01

This result is the same as that of the disjunctive combination rule and the hybrid DSm combination

rule. With a belief of T , BelDP (T ) = 0.0001, we can judge that the patient having disease T is less

probable event. Furthermore, BelDP (M ∪ T ) = BelDP (C ∪ T ) = 0.01, hence the patient may have

disease M or C. Also, BelDP (M ∪C) = 0.9801, this further substantiates the fact that the patient

has either M or C, or both. For the final judgment, one needs the new evidence or diagnosis by

the third doctor.

Based on the judgments of two doctors, the different judgment results of each combination rules are

clearly demonstrated. For this case, the results from Dubois & Prade’s rulr, the hybrid DSm rule and

from the disjunctive combination rule are more suitable to human intuitive judgment; the result from

Yager’s combination rule, can’t make the final judgment immediately because of less degree of judgment

belief and more ignorance, while the results of DS combination rule is counter-intuitive. These results

demonstrate the efficiency of each combination rule for the conflict judgments given by two sources of

information for the element in the frame of discernment.

9.7 Conclusion

In this chapter, DS combination rule is examined based on multi-valued mappings of independent in-

formation sources and the product combination rule of multiple independent information sources. It is

obtained that Dempster’s rule is different from DS combination rule and shortcomings in DS combination
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rule are due to the result of the product combination rule. The drawback in the explanation of multi-

valued mappings when applied to Dempster’s rule were pointed out and proven. Furthermore, based

on these results, a novel justification of the disjunctive combination rule for two independent sources of

information based on the redefined combination-mapping rule of multiple multi-valued mappings in the

product space of multiple sources of information mappings has been proposed. The combination rule

depends on the logical judgment of OR. It overcomes the shortcomings of Dempster-Shafer’s combina-

tion rule, especially, in resolving the counter-intuitive situation. Finally, the conjunctive and disjunctive

combination rules of evidence, namely, Dempster-Shafer’s (DS) combination rule, Yager’s combination

rule, Dubois & Prade’s (DP) combination rule, DSm’s combination rule and the disjunctive combination

rule, are studied for the two independent sources of information. The properties of each combination

rule of evidence are discussed in detail, such as the role of evidence of each source of information in

the combination judgment, the comparison of the combination judgment belief and ignorance of each

combination rule, the treatment of conflict judgments given by the two sources of information, and the

applications of combination rules. The new results yield valuable theoretical insight into the rules that

can be applied to a given situation. Zadeh’s typical example is included in this chapter to evaluate the

performance as well as efficiency of each combination rule of evidence for the conflict judgments given by

the two sources of information.
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MinC combination rules
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Abstract: Both DSm and minC rules of combination endeavor to process conflicts

among combined beliefs better. The nature of conflicts as well as their processing

during the belief combination is sketched. An presentation of the minC combination,

an alternative to Dempster’s rule of combination, follows. Working domains, struc-

tures and mechanisms of the DSm and minC combination rules are compared in the

body of this chapter. Finally, some comparative examples are presented.

10.1 Introduction

T
he classical DSm rule of combination, originally presented in [5, 6], has served for combination of

two or several beliefs on the free DSm model. Later, a hybrid DSm combination rule has been

developed to be applicable also on the classical Shafer (or Dempster-Shafer, DS) and the hybrid DSm

model. The present state of the DSm rule is described in Chapter 4, see Equations (4.7)-(4.10).
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MinC combination (minimal conflict/minimal contradiction) rule introduced in [2, 4] is an alternative

to the Dempter’s rule of combination on the classical DS model. This rule has been developed for better

handling of conflicting situations, which is a weak point of the classical Dempster rule. A brief description

of the idea of the minC combination is presented in Section 10.3.

Both arguments and results of the DSm rule are beliefs in a DSm model, which admits intersections

of elements of the frame of discernment in general. The minC combination serves for combination of clas-

sical belief functions (BFs) where all intersections of elements (of the frame of discernment) are empty

and their resulting basic belief masses should be 0.

For finer processing of conflicts than the classical normalization in Dempster rule, a system of different

types of conflict (or empty set) is introduced. For representation of intermediate results, generalized BFs

serve on generalized frames of discernment which contains elements of the classical DS frame of discern-

ment and correspondent types of conflict.

Even if the two developed approaches were originally different (disjoint), as well as the paradigms of

both approaches, the intermediate working generalized beliefs of the minC combination are similar to

those in the free DSm model, and the way of combination on the generalized level is analogous to that

in the free DSm model. This surprising fact is the main reason why we compare these two seemingly

incomparable, and originally quite disjoint approaches.

Now, after the development of the DSm combination for any hybrid DSm model, it is, moreover,

possible to compare behavior of both approaches on classical BFs, i.e. in the application domain of the

minC combination.

10.2 Conflict in belief combination

In the DSm combination, which is specially designed for conflicting situations, there are no problems

with conflicts.

The common similar principle for Dempster rule, the minC combination and the DSm combination

rule is that the basic belief assignment/mass (bbm) m1(X), assigned to set X by the first basic belief

assignment (bba) m1, multiplied by bbm m2(Y ), assigned to set Y by the second bba m2, is assigned to

the set X ∩ Y by the resulting bba m12, i.e. m1(X)m2(Y ) is a part of m12(X ∩ Y ).
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This principle works relatively nicely if sets X and Y are not disjoint. There is also no problem for

the DSm rule because X ∩ Y is always an element of DΘ and its positive value is accepted even in the

case of sets X and Y without any common element of Θ.

In Dempster’s rule, disjoint X and Y tend to a conflict situation. All the conflicts are summed up

together and reallocated onto 2Θ by normalization in the classical normalized Dempster’s rule, see [9],

or stored as m(∅) in the non-normalized Dempster’s rule in Transferable Belief Model (TBM) by Smets,

see [10, 11]. It is a fact that in Smets’ approach the normalization is only postponed from the combination

process phase to the decisional one, as the normalization is the first step of computation of the classical

pignistic transformation in TBM. The non-normalized Dempster rule commutes with the normalization,

hence the pignistic probability is always the same in both the cases of normalized and non-normalized

Dempster’s rule.

A weak point of Dempster’s rule — combination of conflicting beliefs is caused by normalization or by

grouping all the conflicts together by the non-normalized version of Dempster’s rule. Therefore, different

types of conflict were introduced and a minC combination rule has been developed for a better handling

of conflicting situations.

10.3 The minC combination

The minC combination (the minimal contradiction/conflict combination) of belief functions was developed

[2, 4] with an effort to find a new associative combination which processes conflicts better than Dempster’s

rule. The classical Shafer model from Dempster-Shafer theory is supposed for both input and resulting

belief functions. The minC combination is a generalization1 of the un-normalized Dempster’s rule. m(∅) is

not considered as an argument for new unknown elements of the frame of discernment, m(∅) is considered

as a conflict2 arising by conjunctive combination. To handle it, a system of different types of conflicts is

considered with respect to sets which produce the conflicts.

10.3.1 A system of different types of conflicts

We distinguish conflicts according to the sets to which the original bbms were assigned by mi. There is

only one type of conflict among the belief functions defined on a binary frame of discernment, hence the

minC combination coincides with the non-normalized conjunctive rule there.

1Note that, on the other hand, the minC combination approach is a special case of an even more general approach of

combination belief functions ’per elements’, see [3]
2The term “contradiction” is used in [2, 4], while we use “conflict” here in order to have a uniform terminology.
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In the case of an n-ary frame of discernment we distinguish different types of conflicts, e.g. {θ1}×{θ2},
{θ1}×{θ2, θ3}, {θ1}×{θ2}×{θ3}, {θi, θj , θk}×{θm, θn, θo} etc. The symbol × serves here for a denotation

of conflicts, it is not used as any new operation on sets. Thus e.g. {θ1}×{θ2, θ3} simply denotes the

conflict between sets {θ1} and {θ2, θ3}.

We assume that products of the conflicting bbms are temporarily assigned (we all the time keep in

mind that Shafer’s constraints should be satisfied) to the corresponding conflicts: e.g. m1({θ1})m2({θ2})
is assigned to the conflict {θ1}×{θ2}. In this way we obtain so called generalized bbas, and generalized

BFs on a generalized frame of discernment given by Θ.

When combining 2 BFs defined on 3D frame Θ = {θ1, θ2, θ3} we obtain the following conflicts as

intersections of disjoint subsets of Θ: {θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}, {θ1, θ2}×{θ3}, {θ1, θ3}×{θ2},
and {θ2, θ3}×{θ1}.

Because we need a classical BF as a result of the combination, we have to reallocate bbms assigned

to conflicts among subsets of Θ after the combination. These bbms are proportionalized, i.e. propor-

tionally distributed, among subsets of Θ corresponding to the conflicts. A few such proportionalizations

are presented in [4]. Unfortunately, all these proportionalizations break required associativity of the

conjunctive combination. To keep the associativity as long as possible we must be able to combine the

generalized belief functions with other BFs and generalized BFs. From this reason other conflicts arise:

e.g. {θ1}×{θ2}×{θ3}, ({θ1, θ2}×{θ1, θ3})× {θ2}×{θ3}, ({θ1, θ2}×{θ3})× ({θ2}×{θ3}), etc.

A very important role for keeping associativity is played by so called partial or potential conflicts 3,

e.g. a partial conflict {θ1, θ2} × {θ2, θ3} which is not a conflict in the case of combination of two beliefs

{θ1, θ2}∩ {θ2, θ3} = {θ2}, but it can cause a conflict in a later combination with another belief, e.g. pure

or real conflict 4 {θ1, θ2}×{θ2, θ3}×{θ1, θ3} because there is {θ1, θ2}∩{θ2, θ3}∩{θ1, θ3} = ∅, in Shafer’s

model.

In order not to have an infinite number of different conflicts, the conflicts are divided into classes of

equivalence ∼ which are called types of conflicts, e.g. {θ1}×{θ2} ∼ {θ2}×{θ1} ∼ {θ1}×{θ2}×{θ2}×{θ2}×
{θ1}×{θ1}×{θ1}, etc. The minC combination works with these classes of equality (types of conflict)

instead of the set of all different conflicts. For more details see [4].

3Potential contradictions in the original terminology of [2, 4]
4A real contradiction in [2, 4].
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The conflicts are considered ”per elements” in the following way: conflict {θ1, θ2}×{θ3} is considered

as a set of elementary conflicts {{θ1}×{θ3}, {θ2}×{θ3}}, i.e. set of conflicts between/among single-

tons. Analogically, potential conflict {θ1, θ2} × {θ2, θ3} is considered as a set of elementary conflicts

{{θ1}×{θ2}, {θ1}×{θ3}, {θ2}, {θ2}×{θ3}}, where {θ2} ∼ {θ2}×{θ2} is so called trivial conflict5, i.e. no

conflict in fact. Note that any partial conflict contains at least one trivial conflict. The set of elementary

conflicts is constructed similarly to the Cartesian product of conflicting sets, where {θ1}×{θ2}× ...×{θk}
is used instead on n-tuple [θ1, θ2, ..., θk]. As the above equivalence ∼ of elementary conflicts is used, we

have elementary conflicts of different n-arity in the same set, thus we do not use n-tuples as it is usual in

the Cartesian product. The idea of ”conflicts per elements” was generalized also for non-conflicting sets

in the ”combination per elements”, see [3].

For further decreasing of the number of types of conflicts we consider only minimal conflicts in the

following sense: {θ1}×{θ2}, {θ3}, are minimal conflicts of the set {{θ1}×{θ2}, {θ3}, {θ1}×{θ2}×{θ3},
{θ1}×{θ2}×{θ4}×{θ5}, {θ1}×{θ3}×{θ5}}; i.e. the set of singletons contained in a minimal conflict is mini-

mal from the point of view of inclusion among all sets of singletons corresponding to elementary conflicts.

Thus {{θ1}×{θ2}, {θ3}} ∼ {{θ1}×{θ2}, {θ3}, {θ1}×{θ2}×{θ3}, {θ1}×{θ2}×{θ4}×{θ5}, {θ1}×{θ3}×{θ5}}.
Our concentration only to minimal conflicts brings us a simplification, which is closer to Shafer’s model,

and it has no influence on associativity of combination.

In this way we obtain 8 types of conflicts ({θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}, {θ1}×{θ2}×{θ3}, {{θ1}×
{θ2}, {θ1}×{θ3}}, {{θ1}×{θ2}, {θ2}×{θ3}}, {{θ1}×{θ3}, {θ2}×{θ3}}, {{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}})
and 3 types of potential conflicts ({{θ1}, {θ2}×{θ3}}, {{θ2}, {θ1}×{θ3}}, {{θ3}, {θ1}×{θ2}}) in a

3D case Θ = {θ1, θ2, θ3}. Together with 7 non-conflicting subsets of Θ we have 18 sets of conflicts to

which nonnegative bbms can be assigned in the 3D case, or 18 elements of a generalized 3D frame of

discernment.

10.3.2 Combination on generalized frames of discernment

As minC combination has a nature of a conjunctive rule of combination, m1(X)m2(Y ) is assigned to

X ∩ Y , if it is non-empty, or to X×Y otherwise. More precisely the least representative of the type of

conflict of X×Y is considered instead of X×Y . It is unique but an order of elementary conflicts and

an order of elements inside elementary conflicts. A fixation of these orders enables a unique selection of

representatives of ∼ classes of conflicts. A complete 18x18 table of minC combination for 3D is presented

in [2, 4]. We include here only an illustrative part of it, see Table 10.1. The resulting value m0(Z) of the

generalized bba is computed as a sum of all m1(X)m2(Y ) for which the field of the complete table in the

5A trivial contradiction.



228 CHAPTER 10. COMPARISON BETWEEN DSM AND MINC COMBINATION RULES

row corresponding to X and column corresponding to Y contains Z. In other words, generalized m0(Z)

is computed as a sum of all m1(X)m2(Y ) for which Z = X ∩ Y if (X ⊆ Y ) ∨ (Y ⊆ X) or Z ∼ X×Y
otherwise, where ∼ is the equivalence of conflicts from the previous subsection (Z and X×Y are in the

same ∼ class of conflicts.); i.e.

m0(Z) =
∑

Z=X∩Y
X⊆Y ∨Y⊆X

m1(X)m2(Y ) +
∑

Z∼X×Y
X*Y&Y*X

m1(X)m2(Y ). (10.1)

In order to decrease the size of the table below, the following abbreviations are used in this table:

A stands for {A}, similarly AB stands for {A,B}, and ABC stands for {A,B,C}, A × B stands for

{A} × {B}, similarly A × BC stands for {A} × {B,C}, × stands for {A} × {B} × {C}, 2A stands for

2{A}, and 2 stands for {A,B} × {A,C} × {B,C}, and similarly.

A B AB ABC A×B A×BC × 2 2A

A A A×B A A A×B A×BC × A×BC A

B A×B B B B A×B A×B × B ×AC B ×AC

C A× C B × C C ×AB C × A× C × C ×AB C ×AB

BC A×BC B 2B BC A×B A×BC × 2 2

AC A B ×AC 2A AC A×B A×BC × 2 2A

AB A B AB AB A×B A×BC × 2 2A

ABC A B AB ABC A×B A×BC × 2 2A

A×B A×B A×B A×B A×B A×B A×B × A×B A×B

A× C A× C × A× C A× C × × × A× C A× C

B × C × B × C B × C B × C × A× C × B × C B × C

A×BC A×BC A×B A×BC A× BC A×B A×BC × A×BC A×BC

B ×AC A×B B ×AC B ×AC B ×AC A×B A×B × B ×AC B ×AC

C ×AB A× C B × C C ×AB C × AB × A× C × C ×AB C ×AB

× × × × × × × × × ×

2 A×BC B ×AC 2 2 A×B A×BC × 2 2

2A A B ×AC 2A 2A A×B A×BC × 2 2A

2B A×BC B 2B 2B A×B A×BC × 2 2

2C A×BC B ×AC 2 2C A×B A×BC × 2 2

Table 10.1: A partial table of combination of 2 generalized BFs on Θ = {A,B,C}.

The minC combination is commutative and associative on generalized BFs. It overcomes some dis-

advantages of both Dempster’s rules (normalized and un-normalized). This theoretically nice combining

rule has however a computational complexity rapidly increasing with the size of the frame of discernment.
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10.3.3 Reallocation of belief masses of conflicts

Due to the belief masses being assigned also to types of conflicts and partial conflicts, the result of the

minC combination is a generalized belief function even if it is applied to classical BFs. To obtain a

classical belief function on Shafer’s model we have to do the following two steps: we first reassign the

bbms of partial conflicts to their non contradictive elements and then we proportionalize bbms of pure

(real) conflicts. Because of a different nature of pure and partial conflicts, also these two steps of bbms

reallocation are different.

10.3.3.1 Reallocation of gbbms of partial conflicts

Gbbms of partial conflicts (potential contradictions) are simply reassigned to the sets of their trivial

conflicts, i.e. to the sets of their non-contradictive elements (e.g. m0({θi, θj} × {θi, θk}) is reallocated to

{θi}). We denote resulting gbba of this step with m1 to distinguish it from gbba m0 on the completely

generalized level. Thus we obtain m1({θi, θj} × {θi, θk}) = 0 and m1({θi}) is a sum of all m0(X), where

{θi} is maximal nonconflicting part of X . Nothing is performed with gbbms of pure conflicts in this step,

hence m1(Y ) = m0(Y ) for any pure conflict Y .

10.3.3.2 Proportionalization of gbbms of pure conflicts

Let us present two ways how to accomplish a proportionalization of gbbms which has been assigned by

m0 to pure (real) conflicts . The basic belief mass of a conflict X × Y between two subsets of Θ can be

proportionalized, i.e. reallocated according to the proportions of the corresponding non-conflicting bbms:

a) among X,Y , and X∪Y as originally designed for so called proportionalized combination rule in [1].

b) among all nonempty subsets of X ∪ Y . This way combines the original idea of proportionalization

with the consideration of conflict ”per elements”.

For a conflict X of several subsets of a frame of discernment X1, X2, ..., Xk ⊂ Θ, e.g. for {θ1}×{θ2}×{θ3}
and 2 ∼ {{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}} ∼ {θ1, θ2}×{θ1, θ3}×{θ2, θ3} in 3D and further conflicts

from nD case, we have to generalize the above description of proportionalization in the following way.

The bbm of contradiction X = X1 ×X2 × ...×Xk can be proportionalized:

a) among all unions
⋃j
i=1Xi of j ≤ k sets Xi from {X1, X2, ..., Xk}.

b) among all nonempty subsets of X1 ∪X2 ∪ ... ∪Xk.

For an explicit expression, the conflicts of the subsets of 3D Θ = {θ1, θ2, θ3} should be proportionalized

among, see Table 10.2. The bbms of conflicts in the first column should be proportionalized by the

proportionalization ad a) among sets in the second column and by the proportionalization ad b) among

the sets in the third column.
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If gbbms m1(Xi) = 0 for all Xi then we divide the proportionalized gbbm m1(X1 × X2 × ... ×
Xk) by number of the sets among them the gbbm should be proportionalized, i.e. by 2k − 1 in the

proportionalization a) and by 2m − 1, where m = |X1 ∪X2 ∪ ... ∪Xk| in the case b).

Type of conflict Proportionalization ad a) Proportionalization ad b)

{θ1}×{θ2} {θ1}, {θ2}, {θ1, θ2} {θ1}, {θ2}, {θ1, θ2}

{θ1}×{θ2, θ3} {θ1}, {θ2, θ3}, {θ1, θ2, θ3} P({θ1, θ2, θ3})− ∅

{θ1, θ2}×{θ1, θ3}×{θ2, θ3} {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3} P({θ1, θ2, θ3})− ∅

{θ1}×{θ2}×{θ3} P({θ1, θ2, θ3})− ∅ P({θ1, θ2, θ3})− ∅

Table 10.2: Proportionalizations on a 3D frame of discernment

A proportionalization of the types of the conflicts from the Table is the same even if {θ1, θ2, θ3} ( Θ.

Hence we can see from the Table that the proportionalization is something like ’local normalization’ on the

power set of Θ′ ( Θ in the case b) or on a subset of such power set. E. g. m1({θ1}×{θ2,θ3}) is proportional-

ized with proportionalization a) among {θ1}, {θ2, θ3}, {θ1, θ2, θ3} so that m1({θ1})
m1({θ1})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned to {θ1}, m1({θ2,θ3})
m1({θ1})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned to

{θ2, θ3}, and m1({θ1,θ2,θ3})
m1({θ1})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned to {θ1, θ2, θ3}. Analogically

m1({θ2,θ3})
m1({θ1})+m1({θ2})+m1({θ3})+m1({θ1,θ2})+m1({θ1,θ3})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned

to {θ2, θ3} with proportionalization b), and similarly for other subsets of {θ1, θ2, θ3}. For single elemen-

tary conflicts both the proportionalizations coincide, see e.g. the 1st and the 4th rows of the Table 10.2.

Specially there is the only proportionalization in the 2D case because, there is the only conflict and it

is an elementary one. This proportionalization actually coincides with the classical normalization, see

examples in Section 10.5.

Let us remember that neither the reallocation of gbbms of partial conflicts nor the proportionalization

does not keep associativity of minC combination of the generalized level. Hence we have always to keep in

the consideration and to save the generalized version of the result to be prepared for a later combination

with another belief.

10.3.4 Summary of the idea of the minC combination

We can summarize the process of the minC combination of n ≥ beliefs as follows:

1. we apply (n− 1) times the generalized version of minC, to compute gbba m0, see formula (10.1);

2. after we once apply a reallocation of gbbms of the partial conflicts to produce gbba m1 and finally

we once apply the proportionalization a) or b) to obtain the final bbm m. If we want to keep as
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much as possible of associativity for future combining, we have to remember also the gbbm m0 and

continue further combination (if there is any) from it.

10.4 Comparison

10.4.1 Comparison of generalized frames of discernment

As has been already mentioned in the introduction of this chapter, DSm and minC rules of combination

arise from completely different assumptions and ideas. On the other hand, 18 different subsets of a frame

of discernment and types of conflicts and potential conflicts (7+8+3) in 3D case or 18 elements of a

generalized 3D frame of discernment correspond to 18 non empty elements of hyper-power set DΘ in the

free DSm model. Moreover, if we rewrite subsets of the frame of discernment, e.g. {θi, θj , θk}, and sets of

elementary conflicts as unions of their elements, e.g. {θi, θj , θk} ∼ θi∪θj∪θk, and conflicts as intersections,

e.g. {θi}×{θj} ∼ θi∩θj , {θi, θj}×{θi, θk} ∼ (θi∪θj)∩(θi∪θk), {{θi}×{θj}, {θj}×{θk}, {θi}×{θj}×{θk}} ∼
(θi ∩ θj) ∪ (θj ∩ θk) ∪ (θi ∩ θj ∩ θk), then we obtain the following:

{θ1} ∼ θ1 = α9

{θ2} ∼ θ2 = α10

{θ3} ∼ θ3 = α11

{θ1, θ2} ∼ θ1 ∪ θ2 = α15

{θ1, θ3} ∼ θ1 ∪ θ3 = α16

{θ2, θ3} ∼ θ2 ∪ θ3 = α17

{θ1, θ2, θ3} ∼ θ1 ∪ θ2 ∪ θ3 = α18

{θ1}×{θ2} ∼ θ1 ∩ θ2 = α2

{θ1}×{θ3} ∼ θ1 ∩ θ3 = α3

{θ2}×{θ3} ∼ θ2 ∩ θ3 = α4

{θ1}×{θ2, θ3} = {{θ1}×{θ2}, {θ1}×{θ3}} ∼ θ1 ∩ (θ2 ∪ θ3) = α7

{θ2}×{θ1, θ3} = {{θ1}×{θ2}, {θ2}×{θ3}} ∼ θ2 ∩ (θ1 ∪ θ3) = α6

{θ3}×{θ1, θ2} = {{θ3}×{θ1}, {θ3}×{θ2}} ∼ θ3 ∩ (θ1 ∪ θ2) = α5

{θ1}×{θ2}×{θ3} ∼ θ1 ∩ θ2 ∩ θ3 = α1

{{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}} ∼ (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ1 ∩ θ3) = α8

2θ1 = {{θ1}, {θ2}×{θ3}} ∼ θ1 ∪ (θ2 ∩ θ3) = α14

2θ2 = {{θ2}, {θ1}×{θ3}} ∼ θ2 ∪ (θ1 ∩ θ3) = α13

2θ3 = {{θ3}, {θ1}×{θ2}} ∼ θ3 ∪ (θ1 ∩ θ2) = α12.

Thus a generalized frame of discernment from the minC approach uniquely corresponds to DΘ − ∅.
Hence the minC approach is an alternative way how to generate Dedekind’s lattice.
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10.4.2 Comparison of principles of combination

For bbms of two non-conflicting sets X,Y ⊂ Θ both the minC and the DSm rules assign the product of

the belief masses to the intersection of the sets6. If one of the sets (or both of them) is (are) conflicting,

then the minC combination assigns the product of their bbms to the conflict X × Y . Similarly as above,

we can consider this conflict as an intersection X∩Y . We should verify whether X∩Y really corresponds

to the corresponding field of the minC combination table.

As first example, let’s denote by definition A1 , {θ1, θ3} × ({θ3} × {θ1, θ2}), then one has

A1 ∼ (θ1 ∪ θ3) ∩ (θ3 ∩ (θ1 ∪ θ2)) = (θ1 ∩ (θ3 ∩ (θ1 ∪ θ2))) ∪ (θ3 ∩ (θ3 ∩ (θ1 ∪ θ2)))

= (θ3 ∩ (θ1 ∩ (θ1 ∪ θ2))) ∪ (θ3 ∩ (θ1 ∪ θ2)) = (θ3 ∩ θ1) ∪ (θ3 ∩ (θ1 ∪ θ2)) = (θ3 ∩ (θ1 ∪ θ2))

∼ {θ3} × {θ1, θ2}

As second example, let’s denote A2 , ({θ1}×{θ2}×{θ3})×{{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}}, then

one has

A2 ∼ (θ1 ∩ θ2 ∩ θ3)× ((θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3))

∼ (θ1 ∩ θ2 ∩ θ3) ∩ ((θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3))

= θ1 ∩ θ2 ∩ θ3 ∩ ((θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)) = (θ1 ∩ θ2 ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3)

= θ1 ∩ θ2 ∩ θ3 ∼ {θ1} × {θ2} × {θ3}

As third example, let’s denote A3 , 2{θ1} × (θ1 × {θ2, θ3}), then one has

A3 = {{θ1}, {θ2 × θ3}} × (θ1 × {θ2, θ3})

∼ (θ1 ∪ (θ2 ∩ θ3)) ∩ (θ1 ∩ (θ2 ∪ θ3)) = (θ1 ∪ (θ2 ∩ θ3)) ∩ (θ1 ∩ (θ2 ∪ θ3))

= (θ1 ∩ (θ1 ∩ (θ2 ∪ θ3))) ∪ ((θ2 ∩ θ3)) ∩ (θ1 ∩ (θ2 ∪ θ3))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ ((θ2 ∩ θ3) ∩ (θ1 ∩ (θ2 ∪ θ3)))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ ((θ2 ∩ θ3 ∩ θ1 ∩ θ2) ∪ (θ2 ∩ θ3 ∩ θ1 ∩ θ3))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ ((θ1 ∩ θ2 ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ (θ1 ∩ θ2 ∩ θ3) = (θ1 ∩ (θ2 ∪ θ3)) ∼ (θ1 × {θ2, θ3})

6We have to mention here that the minC combination rule has never been formulated as a k-ary operator for combination

of k ≥ 2 belief sources, analogically to the DSm combination rule, see Equations (4.2) and (4.5). Nevertheless, it is

theoretically very easy to explicitly formulate it similarly to the DSm rule for k sources. Moreover, because of its associativity

on the generalized level we can obtain the same result by step-wise ((k−1)-times) application of the binary form, and continue

with reallocation of bbms of conflicts as is usual.



10.4. COMPARISON 233

In the case of {θ1, θ3}×{θ1, θ2} ∼ (θ1∪θ3)×(θ1∪θ2) ∼ (θ1∪θ3)∩(θ1∪θ2) = (θ1∩(θ1∪θ2)∪(θ3∩(θ1∪θ2) =

(θ1∩θ1∪θ1∩θ2)∪(θ3∩θ1∪θ3∩θ2) = (θ1)∪(θ3∩θ1)∪(θ3∩θ2) = (θ1)∪(θ3∩θ2) ∼ {{θ1}, {θ2×θ3}} ∼ 2{θ1}
we can show again that minC combination of bbms of sets {θ1, θ3}, {θ1, θ2} corresponds to the intersec-

tion of the corresponding elements of DΘ: (θ1 ∪ θ3) and (θ1 ∪ θ2), i.e. to θ1 ∪ (θ3 ∩ θ2). Moreover,

this shows a rise and the importance of a partial conflict (or potential contradiction) between two

sets with non-empty intersection {θ1, θ3} ∩ {θ1, θ2} = {θ1} in Shafer’s model. This intersection {θ1}
which is used in Dempster’s rule, is different from the generalized minC and the free DSm intersection

{θ1, θ3} ∩ {θ1, θ2} ∼ (θ1 ∪ θ3) ∩ (θ1 ∪ θ2) = (θ1) ∪ (θ3 ∩ θ2) ∼ 2{θ1} on the generalized level.

Analogically we can verify that all the fields in the complete minC combination table uniquely cor-

respond to intersections of corresponding sets. For a general nD case it is possible to verify that the

similarity relation ∼ on conflicts corresponds with properties of the lattice {Θ,∩,∪}. Thus the minC

combination equation (10.1) corresponds with the classical DSm combination equation (4.1).

Hence the minC combination7 on a generalized level fully corresponds to the DSm combination rule

on a free DSm model.

10.4.3 Two steps of combination

Because minC is not designed for the DSm model but for the classical Shafer’s model, we have to compare

it in the context of the special Shaferian case of the hybrid DSm rule. According to the present develop-

ment state of the hybrid DSm rule, see Chapter 4, in the first step all the combination is done on the free

DSm model — it is fully equivalent to the generalized minC combination — and in the second step con-

straints are introduced. The second step is analogous to the reallocation in the minC approach. It does

not explicitly distinguish anything like partial conflicts and pure conflicts, but analogically to the minC

combination, bbms are reallocated in two different ways. An introduction of constraints can joint two or

more elements of DΘ, e.g. see Example 4 in Chapter 4, where the element α9 is joined with the element

α14, and the elements α10, and α11 are joined with α13 and α12 respectively. Gbbms of such elements

are actually reallocated within this process. Really, the gbbms mMf (α9), mMf (α10), and mMf (α11)

are reallocated to mM0(α14), mM0(α13) and mM0(α12) respectively, as an analogy of the reallocation of

partial conflicts in the minC approach. We can verify that the elements α9, α10, α11 really correspond

to the partial conflicts of the minC approach. The step 2 consists further in grouping of all empty sets

together and in the reallocation of their bbms. This action fully corresponds to a proportionalization of

pure conflicts in the minC approach.

7For a comparison of the minC combination with other approaches for combination of conflicting beliefs, see [8].
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Hence, the only principal difference between the minC and the DSm combination rules consists in

reallocation of the bbms of conflicting (or empty) sets to non-conflicting (non-empty) ones, i.e. to the

subsets of the frame of discernment, because the reallocation performed in the 2nd step of the hybrid

DSm combination does not correspond to any of the above proportionalizations used in minC either.

10.4.4 On the associativity of the combination rules

As it was already mentioned both the DSm rule and the minC combination rule are fully associative on

the generalized level, i.e. on the free DSm model in DSm terminology. Steps 2 in both the combina-

tions, i.e. the introduction of constraints in DSm combination and the reallocation of conflicts including

both the proportionalizations, do not keep associativity. If we use results of combination with all the con-

straints as an input for another combination, we obtain suboptimal results, see Section 4.5.5 in Chapter 4.

In order to keep as much associativity of the combination on the generalized level as possible, we have

to use n-ary version of DSm rule. In the case where k input beliefs have been already combined, we have

to save all the k input belief functions. If we want to combine the previous result with the new (k+ 1)th

input mk+1, then we have either to repeat all the n-ary combination for k + 1 inputs this time, or we

can use the free DSm result of the previous combination (the result of the last application of the Step 1)

and apply the binary Step 1 to combine the new input (we obtain the same result as with an application

of n-ary version for k + 1 inputs). Nevertheless, after it we have to apply n-ary version of the Step 2 for

introduction of all constraints at the end.

There is another situation in the case of the minC combination. Because we consider only minimal

conflicts, the result of the Step 2 depends only on the generalized result m0 of the Step 1 and we need

not the input belief functions for the reallocation of partial conflicts and for the proportionalization. The

non-normalized combination rule including the generalized one, provides the same result either if n-ary

version is used for k inputs or if step-wise k− 1 times the binary version is applied. Hence binary version

of the generalized minC combination and unary reallocation satisfy for the optimal results in the sense

of Chapter 4. If we already have k inputs combined, it is enough to save and store only the generalized

result instead of all inputs. We perform the generalized combination with the input mk+1 after. And in

the end we perform Step 2 for obtaining classical Shaferian result. Of course it is also possible to store

all the inputs and to make a new combination, analogically, to the DSm approach.

10.4.5 The special cases

Specially in the 2D case minC corresponds to Dempster’s rule — there is only one type of conflict and

both the presented proportionalizations a) and b) coincide with normalization there. While the 2D DSm
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corresponds to Yager’s rule, see [12], where m1(X)m2(Y ) is assigned to X ∩ Y if it is non-empty or to Θ

for X ∩ Y = ∅, and it also coincides with Dubois-Prade’s rule, see [7], where m1(X)m2(Y ) is assigned to

X ∩ Y if it is non-empty or to X ∪ Y otherwise. To complete the 2D comparison, it is necessary to add

that the classical DSm combination rule for the 2D free DSm model corresponds to the non-normalized

Dempster’s rule used in TBM. For examples see Table 10.3 in Section10.5.

In an nD case for n > 2 neither the minC nor DSm rule correspond to any version of Dempster’s or

Yager’s rules. On the other hand the binary version of the hybrid DSm rule coincides with Dubois-Prade’s

rule on Shafer’s model, for an example see Table 10.6 in Section10.5.

10.4.6 Comparison of expressivity of DSm and minC approaches

As the minC combination is designed for combination of classical belief functions on frames of discern-

ment with exclusive elements, we cannot explicitly express that 2 elements of frame have a non-empty

intersection. The only way for it is a generalized result of combination of 2 classical BFs. On the other

hand, even if the hyper-power set DΘ has more elements than the number of parts in the corresponding

Venn’s diagram, we cannot assign belief mass to θ1 but not to θ2 in DSm approach. I. e. we cannot

assign bbms in such a way that for generalized pignistic probability, see Chapter 7, the following holds:

P (θ1) > 0 and P (θ2) = 0. The intersection θ1 ∩ θ2 is always a subset both of θ1 and θ2. Hence from

m(θ1) > 0 we always obtain P (θ1 ∩ θ2) > 0 and P (θ2) > 0. We cannot assign any gbbm to θ1 − θ2. The

only way how to do it is to add an additional constraint θ1 ∩ θ2 = ∅, but such a constraint should be

applied to all beliefs in the model and not only to one or several specific ones. As Shafer’s model has

already all the exclusivity constraints, the above described property is not related to it. Hence both the

DSm approach and the minC combination have the comparable expressivity on Shafer’s model. The DSm

approach utilizes, in addition to it, its capability to express positive belief masses of the intersections.

10.5 Examples

In this section we present a comparison on examples of combination. The first 2D example simply

compares not only the DSm and minC combination rules but also both the normalized and non-normalized

Dempster’s rule, Yager’s rule, and Dubois-Prade’s rule of belief combination, see Table 10.3. Because the

proportionalizations a) and b) coincide in the 2D case, and subsequently the corresponding bbas m
a)
12 and

m
b)
12 also coincide, we use mminC for m

a)
12 ≡ m

b)
12. This example enables us to make a wide comparison,

but it does not really discover a nature of the presented approaches to the belief combination. For

this reason we present also a more complicated 3D example, see Tables 10.4 and 10.5, which show us
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how conflicts and partial conflicts arise during combination, how constraints are introduced, and how

proportionalizations are performed.

m1 m2 mMf

12 mM0

12 m0
12 mminC

12 mTBM
12 mY

12 mDP
12 m⊕

12

θ1 ∼ {θ1} 0.6 0.2 0.48 0.48 0.48 0.6000 0.48 0.48 0.48 0.6000

θ2 ∼ {θ2} 0.1 0.3 0.17 0.17 0.17 0.2125 0.17 0.17 0.17 0.2125

θ1 ∪ θ2 ∼ {θ1, θ2} 0.3 0.5 0.15 0.35 0.15 0.1875 0.15 0.35 0.35 0.1875

θ1 ∩ θ2 ∼ {θ1}×{θ2} ∼ ∅ 0.20 0.20 0.20

Table 10.3: Comparison of combination of 2D belief functions

Table 10.4 provides a comparison of combination of 3D belief functions based on the free DSm model

with the classic DSm rule and on Shafer’s model with the hybrid DSm rule. The 5th column (mMf

12 )

gives the result of the combination of the sources 1 and 2 obtained with the classic DSm rule based on

the free DSm model. The 7th column (mMf

123 ) gives the result of the combination of the sources 1, 2 and

3 obtained with the classic DSm rule based also on the free DSm model. Column 6 (mM0

12 ) presents the

result of the hybrid DSm combination of sources 1 and 2 based on Shafer’s modelM0. Column 8 (mM0

123 )

presents the result of the hybrid DSm combination of sources 1, 2 and 3 based on Shafer’s model M0.

Column 9 and 10 shows the results obtained when performing suboptimal fusion. D© stands for the DSm

rule on the free DSm model and blank fields stand for 0.

Table 10.5 presents the results drawn from the minC combination rule. m0 corresponds to the gbba on

the generalized frame of discernment, m1 to the gbba after reallocation of bbms of partial conflicts, ma)

to the bba after proportionalization a) and mb) to the bba after proportionalization b). m0
12b3 denotes

(m
b)
12

m©m3)0, and m12b3 denotes (m
b)
12

m©m3)b), where m© stands for the generalized minC combination,

blank fields stand for 0.

Table 10.6 presents the results of several rules of combination for 3D belief functions for sources 1 and 2

on Shafer’s model, i.e. on the hybrid DSm modelM0 (for the source bbas m1,m2, and m3 see Table 10.4).

ma) corresponds to the bba of the minC combination (the minC combination of m1 and m2 or m1,m2

and m3 respectively) with proportionalization a); mb) corresponds to the bba of the minC combination

with proportionalization b); mM0

corresponds to the bba of the DSm combination. mTBM corresponds

to the bba of the combination with the TBM’s non-normalized Demspter’s rule; mY corresponds to the

bba of the Yager’s combination; mDB corresponds to the bba of Dubois-Prade’s combination and m⊕

corresponds to the bba of the normalized Dempster’s combination.
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m1 m2 m3 mMf

12 mM0

12 mMf

123 mM0

123 (mM0

12 D©m3)
Mf

(mM0

12 D©m3)
M0

α9 ∼ {θ1} 0.3 0.1 0.2 0.19 0.20 0.165 0.188 0.216 0.258

α10 ∼ {θ2} 0.2 0.1 0.1 0.15 0.17 0.090 0.109 0.119 0.145

α11 ∼ {θ3} 0.1 0.2 0.1 0.14 0.16 0.088 0.110 0.119 0.150

α15 ∼ {θ1, θ2} 0.1 0.0 0.2 0.03 0.08 0.021 0.056 0.058 0.112

α16 ∼ {θ1, θ3} 0.1 0.1 0.2 0.06 0.13 0.030 0.082 0.073 0.125

α17 ∼ {θ2, θ3} 0.0 0.2 0.1 0.04 0.09 0.014 0.039 0.035 0.068

α18 ∼ {θ1, θ2, θ3} 0.2 0.3 0.1 0.06 0.17 0.006 0.416 0.017 0.142

α2 ∼ {θ1}×{θ2} 0.05 0.106 0.054

α3 ∼ {θ1}×{θ3} 0.07 0.120 0.052

α4 ∼ {θ2}×{θ3} 0.05 0.074 0.033

α7 ∼{θ1}×{θ2, θ3} 0.06 0.083 0.038

α6 ∼{θ2}×{θ1, θ3} 0.03 0.060 0.047

α5 ∼{θ3}×{θ1, θ2} 0.02 0.048 0.040

α1 ∼ × 0.022

α8 ∼ 2 0.009

α14 ∼ 2θ1 0.01 0.023 0.042

α13 ∼ 2θ2 0.02 0.019 0.026

α12 ∼ 2θ3 0.02 0.022 0.031

Table 10.4: Comparison of combination of 3D belief functions based on DSm rules of combination.

We can see that during the combination of 2 belief functions a lot of types of conflict arise, but some

of them still remain with 0 bbm (α1 ∼ × and α8 ∼ 2). We can see how these conflicts arise when the

3rd BF is combined. We can see the difference between the combination of 3 BFs on the generalized

level (see m0
123) and the suboptimal combination of the 3rd belief with an intermediate result to which

constraints have already been introduced (see (mDSm
12 D©m3)0 and (m

b)
12

m©m3)0). We can see how the

gbbms are reallocated among the subsets of Θ during the second step of minC combination and finally

how the gbbms of all pure conflicts are reallocated in both ways a) and b).

The final results of DSm and minC combinations are compared in Table 10.6. We can note that

the small subsets of Θ (singletons in our 3D example) have greater bbms after the minC combination

while the great sets (2-element sets and namely whole {θ1, θ2, θ3} in our case) have greater bbms after

application of the DSm combination rule. I. e. the DSm combining rule is more cautious than the minC

combination within the reallocation of the conflicting gbbms. Thus we see that the minC combination
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m0
12 m1

12 m
a)
12 m

b)
12 m0

123 m1
123 m

a)
123 m

b)
123 m0

12b3 m12b3

α9 ∼ {θ1} 0.19 0.20 0.2983 0.2889 0.165 0.165 0.4031 0.4068 0.2396 0.4113

α10 ∼ {θ2} 0.15 0.17 0.2318 0.2402 0.090 0.090 0.2301 0.2306 0.1360 0.2319

α11 ∼ {θ3} 0.14 0.16 0.2311 0.2327 0.088 0.088 0.2288 0.2363 0.1364 0.2372

α15 ∼ {θ1, θ2} 0.03 0.03 0.0362 0.0383 0.021 0.021 0.0390 0.0377 0.0253 0.0354

α16 ∼ {θ1, θ3} 0.06 0.06 0.0762 0.0792 0.030 0.030 0.0586 0.0549 0.0376 0.0522

α17 ∼ {θ2, θ3} 0.04 0.04 0.0534 0.0515 0.014 0.014 0.0264 0.0249 0.0172 0.0236

α18 ∼ {θ1, θ2, θ3} 0.06 0.06 0.0830 0.0692 0.006 0.006 0.0140 0.0088 0.0069 0.0084

α2 ∼ {θ1}×{θ2} 0.05 0.05 0.106 0.106 0.0769

α3 ∼ {θ1}×{θ3} 0.07 0.07 0.120 0.120 0.0754

α4 ∼ {θ2}×{θ3} 0.05 0.05 0.074 0.074 0.0473

α7 ∼{θ1}×{θ2, θ3} 0.06 0.06 0.083 0.083 0.0392

α6 ∼{θ2}×{θ1, θ3} 0.03 0.03 0.060 0.060 0.0560

α5 ∼{θ3}×{θ1, θ2} 0.02 0.02 0.048 0.048 0.0504

α1 ∼ × 0.022 0.022

α8 ∼ 2 0.009 0.009

α14 ∼ 2θ1 0.01 0.023 0.0235

α13 ∼ 2θ2 0.02 0.019 0.0141

α12 ∼ 2θ3 0.02 0.022 0.0182

Table 10.5: Comparison of combination of 3D belief functions with the minC rule.

rule produces more specified results than the DSm rule does. The last three columns of the table show

us that the DSm and the minC with both the proportionalizations produce results different from those

of Yager’s rule and of both the versions of Dempster’s rule (see mY , mTMB , and m⊕ respectively).

While binary DSm result on Shafer’s model (M0) coincides with the results of Dubois-Prade’s rule of

combination.

Let us present numeric examples of parts of computation m0, m1, ma), and mb) for readers which

are interested in detail. We begin with a non-conflicting set {θ1, θ2}, i.e. with α15 = θ1 ∪ θ2 in the DSm

notation. It is an intersection with itself or with the whole Θ = {θ1, θ2, θ3} (i.e. θ1∪θ2∪θ3 in DSm), and

it is not ∼ equivalent to any other element of DΘ. Thus m0
12(θ1 ∪θ2) = m1(θ1 ∪θ2)m2(θ1 ∪θ2) +m1(θ1 ∪

θ2)m2(θ1∪θ2∪θ3)+m1(θ1∪θ2∪θ3)m2(θ1∪θ2) = 0.1·0.0+0.1·0.3+0.0·0.2 = 0.00+0.03+0.00 = 0.03. α15

is a non-conflicting element of DΘ, hence it is not further reassigned or proportionalized, i. e. its bbm will

not be decreased. α15 is not a non-conflicting part of any other element of DΘ, thus m1
12(α15) = m0

12(α15).
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mM0

12 m
a)
12 m

b)
12 mM0

123 m
a)
123 m

b)
123 mTBM

12 mY
12 mDP

12 m⊕
12

α9 ∼ {θ1} 0.20 0.2983 0.2889 0.188 0.4031 0.4068 0.20 0.20 0.20 0.2778

α10 ∼ {θ2} 0.17 0.2318 0.2402 0.109 0.2301 0.2306 0.17 0.17 0.17 0.2361

α11 ∼ {θ3} 0.16 0.2311 0.2327 0.110 0.2288 0.2363 0.16 0.16 0.16 0.2222

α15 ∼ {θ1, θ2} 0.08 0.0362 0.0383 0.056 0.0390 0.0377 0.04 0.04 0.08 0.0556

α16 ∼ {θ1, θ3} 0.13 0.0762 0.0792 0.082 0.0586 0.0549 0.06 0.06 0.13 0.0833

α17 ∼ {θ2, θ3} 0.09 0.0534 0.0515 0.039 0.0264 0.0249 0.03 0.03 0.09 0.0417

α18 ∼{θ1, θ2, θ3} 0.17 0.0830 0.6992 0.416 0.0140 0.0088 0.06 0.34 0.17 0.0833

∅ 0.28

Table 10.6: Comparison of combinations of sources 1 and 2 on Shafer’s model (i.e. on the hybrid DSm

model M0).

m
a)
12(α15) > m1

12(α15) because gbbms of some other elements are proportionalized, among others, also to

α15. For the same reason it holds also m
b)
12(α15) > m1

12(α15).

A potential conflict 2{θ1} ∼ (θ1 ∪ θ2)∩ (θ1 ∪ θ3) = α14 is equivalent to 2{θ1}×2{θ1}, to 2{θ1}×X ,

and to X × 2{θ1}, where {θ1} ⊂ X in Shafer’s model, see Table 10.1; or α14 = (θ1 ∪ θ2) ∩ (θ1 ∪ θ3)

is an intersection of itself with X , where α14 ⊆ X ⊆ θ1 ∪ θ2 ∪ θ3 in the DSm terminology. I.e.

m0
12(α14) = m0(θ1 ∩ (θ2 ∪ θ3)) = m1(α14)m2(α14) + m1(θ1 ∪ θ2)m2(θ1 ∪ θ3) +m1(θ1 ∪ θ3)m2(θ1 ∪ θ2) +

m1(α14)(m2(θ1∪θ2)+m2(θ1∪θ3)+m2(θ1∪θ2∪θ3))+(m1(θ1∪θ2)+m1(θ1∪θ3)+m1(θ1∪θ2∪θ3))m2(α14) =

0.0·0.0+0.1·0.1+0.1·0.0+0.0·(0.1+0.1+0.2)+(0.0+0.1+0.3)·0.0 = 0+0.01+0+0+0 = 0.01. α9 = {θ1}
is a non-conflicting part of θ1∩(θ2∪θ3), thus m0(α14) is reallocated to θ1. On the other hand {θ1} is not a

non-conflicting part of any other element of DΘ, hence m1(α9) = m0(α9)+m0(α14) = 0.19+0.01 = 0.20.

After this reallocation, the bbm of α14 equals 0, hence m1(α14) = ma)(α14) = mb)(α14) = 0.

A pure conflict {θ1}×{θ2, θ3} ∼ θ1∩ (θ2 ∪θ3) = α7 is contained in 24 fields of the full minC combina-

tion table (for its part see Table 10.1), e. g. in the fields corresponding to {A}× ({A}× {B,C}), {A}×
{B,C}, {A,B} × ({A} × {B,C}), but only some of them correspond to the Shaferian input beliefs (i.

e. only some of them are positive). Thus m1(α7) = m0(α7) = m1(θ1)m2(θ2 ∪ θ3) +m1(θ2 ∪ θ3)m2(θ1) =

0.3 · 0.2 + 0.1 · 0.0 = 0.06 + 0.00 = 0.06. As α7 is a pure conflict, thus its bbm is not changing dur-

ing the reallocation substep, and it is proportionalized among {θ1}, {θ2, θ3}, {θ1, θ2, θ3} with the pro-

portionalization a), and among all the subsets of Θ = {θ1, θ2, θ3} with the proportionalization b).

Thus m1(α7) · m1(θ1)
m1(θ1)+m1(θ2∪θ3)+m1(θ1∪θ2∪θ3)

= 0.06 0.20
0.20+0.04+0.06 = 0.06 0.20

0.30 = 0.040 is reassigned to

θ1 = α9; m1(α7) · m1(θ2∪θ3)
m1(θ1)+m1(θ2∪θ3)+m1(θ1∪θ2∪θ3)

= 0.06 0.04
0.20+0.04+0.06 = 0.06 0.04

0.30 = 0.008 is reassigned
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to θ2 ∪ θ3 = α17; and m1(α7) · m1(θ1∪θ2∪θ3)
m1(θ1)+m1(θ2∪θ3)+m1(θ1∪θ2∪θ3)

= 0.06 0.06
0.20+0.04+0.06 = 0.06 0.06

0.30 = 0.012 is

reassigned to θ1 ∪ θ2 ∪ θ3 = α18 with the proportionalization a). As belief masses 0.05 0.20
0.20+0.17+0.03 =

0.05 · 0.5 = 0.0250 and 0.07 0.20
0.20+0.16+0.06 = 0.07 · 0.4762 = 0.0333 are analogically proportionalized with

the proportionalization a) also to θ1, so we obtain m
a)
12(θ1) = m1(θ1) + 0.040 + 0.0250 + 0.0333 =

0.2000 + 0.040 + 0.0250 + 0.0333 = 0.2983. A value m
b)
12(θ1) is computed analogically; where e.g.

0.06 0.20
0.20+0.17+0.16+0.03+0.06+0.04+0.06 = 0.06 0.20

0.72 = 0.06 ·0.2777 = 0.0166 is proportionalized from m1(α7).

10.6 Conclusion

In this chapter we have compared two independently developed approaches to combination of conflicting

beliefs. Motivations and the starting points of the approaches are significantly different. The classical

frame of discernment with mutually exclusive elements is the starting point for the minC combination,

whereas the free DSm model is the starting point for the classical DSm approach. The approaches were

originally rather complementary than comparable.

Surprisingly, the internal combining structures and mechanisms of both these combination rules are

the same and the results of the classical DSm rule for the free DSm model are the same as the intermediate

results of the minC combination on a generalized frame of discernment. Nevertheless, this common step

is followed by reallocation of the belief masses temporarily assigned to conflicts to obtain classical belief

functions as results in the case of the minC combination.

After the recent development of versions of the DSm rule for Shafer’s model and for general hybrid

DSm models, which consider 2 steps of combination, the minC combination becomes an alternative to

the special case of the DSm combination rule for Shafer’s model.

The first step — a combination on a generalized frame — is the same again. Also a reallocation of

the generalized basic belief masses of potential conflicts is analogous. The main difference consists in

different reallocations of the generalized basic belief masses (gbbm) of pure conflicts: it is a reassigning

of the gbbms to the union of the corresponding sets in the DSm rule, whereas a proportionalization in

the minC approach.

In spite of this difference, we can also consider the DSm introduction of constraints as an alternative

to a reallocation of the belief masses of conflicts in the minC approach.
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Chapter 11

General Fusion Operators from

Cox’s Postulates
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Abstract: This chapter presents new important links between the most important

theories developed in literature for managing uncertainties (i.e. probability, fuzzy

sets and evidence theories). The Information fusion introduces special operators ◦
in the probability theory, in the fuzzy set theory and in the theory of evidence. The

mathematical theory of evidence and the fuzzy set theory often replace probabilities

in medicine, economy and automatics. The choice between these three quite distinct

theories depends on the intrinsic nature of the data to combine. This chapter shows

that same four postulates support actually these apparently distinct theories. We

unify these three theories from the four following postulates: non-contradiction, con-

tinuity, universality, context dependence and prove that a same functional equation

is supported by probability theory, evidence theory and fuzzy set theories. In other

words, the same postulates applied on confidences, under different conditions, either

in the dependence or independence situation, imply the same foundation for the var-

ious modern theories of information fusion in the framework of uncertainty by using

deductions that we have unified. The independence between elementary confidences

have not to be understood in the sense of probabilistic meaning.
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11.1 About uncertainty

I
n medical fields as in economics and control, one notes the limitation of the additive probabilities due

to the too strong constraints imposed. The modification of basic axioms to overcome these limitations

leads to different numerical theories and one finds approaches such as fuzzy set theory. By considering

the notion of lower probabilities and upper probabilities, one obtains the credibility and the plausibiliy

functions of Dempster-Shafer’s theory of evidence [6]. The 60’s has seen the development of theories that

are not directly linked to probabilities. For instance, Zadeh invented fuzzy set theory in 1965 [15]; he

then created the possibility theory in 1978 [16].

With the four postulates, which are the basis of the machines on confidences without adding the

additivity postulate that leads to probabilities and by considering the independence of the achievement

of these confidences, we obtain the fuzzy set theory.

In fact, we have observed that both basic equalities of information fusion are two continuous, com-

mutative and associative operations on confidences. Let Θ be a discrete body of evidence called frame of

discernment. Thus, both combinations can be written in terms of probabilities:

∀A,B ⊂ Θ, P (A ∩B) , P (A) P (B/A) , P (B) P (A/B)

and in term of membership functions:

∀A,B ⊂ Θ −→ µA∩B(x)
∆
= µA(x) ∧ µB(x)

These two operations had to verify the same basic postulates required to model data fusion.

When analyzing imprecise and uncertain data, all the usual techniques must be changed. It is a fact

that logic is only an abstract construction for reasoning and physical laws are only models of material

system evolutions. Nothing proves that logic can describe correctly all fusions. Moreover, imprecise and

uncertain analyses as in this chapter show that an infinity of fusions are possible. From the principles of

this chapter, it is possible to introduce a fusion denoted by the operator ◦ with any increasing function

from [0, 1] onto [0, 1]. More precisely, with two beliefs x, y instead of the product x ∗ y to describe the

fusion we write x ◦ y. For example instead of the probability P (A ∩ B) = P (A)P (B) of the intersection

A ∩B of two independent sets A, B, we write the belief [A and B/e] = [A/e] ◦ [B/e], the fusion ◦ of the

two beliefs [A/e] and [B/e]. Any equation of this book may be changed with this transformation.

Moreover, the hypothesis that the sum of masses of disjoint sets is equal to 1 is a global hypothesis

and seems to be hazardous.
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We demonstrate that the fusion operation ◦ is mainly described by a simple product after transfor-

mation. This previous transformation of confidence c(A) = [A/e] on A in the environment e is made by

using a continuous and strictly monotone function w. This result is easily understood by comparing the

transformation w with the Fourier transformation. The latter transforms the composition product of two

functions into the product of their Fourier transform. We observe that convolution is commutative and

associative. Similarly, Demspster-Shafer fusion is also commutative and associative. Communality of a

fusion is the simple product of the communalities of the sources. Without commutativity or associativity

other developments are necesary.

11.1.1 Probabilistic modelling

The probability theory has taken a leap during the 17th century with the study of games for luck calculus.

The ultimate objective of probability theory is the study of laws governing the random phenomena, that

is the presence of uncertainty. For many years, probabilistic methods have generated many debates, in

particular among defenders of the frequentist approach, the objective approach and the subjective ap-

proaches. Historically, the formulation of the axiomatic basis and the mathematical foundation of the

theory are due to Andrëı Kolmogorov in 1933.

Let an uncertain experiment be described by the sample space Ω whose elements, denoted ω are the

possible results of that experiment. Let A ∈ P (Ω) be subset of Ω. The subset A is a random event for

this theory and the event is said to occur when the result ω of the experiment belongs to A. The collection

of all the subsets of Ω, P (Ω), cannot always be associated to the set A of possible random events in Ω.

For logical coherence purposes, one restricts A to a σ-algebra, a subset of P (Ω) which is closed under

countable union and under complement. Thus, the pair (Ω,A) is a measurable space and a probability

measure P over (Ω,A) is then a positive real-valued function of sets with values in [0, 1] and defined over

A.

Definition 1. A probability measure P over (Ω,A) is an application of A with values in [0, 1] satisfying

the following axioms (Kolmogorov’s axioms): i) For all A ∈ A

0 ≤ P (A) ≤ 1 and P (Ω) = 1 (11.1)

ii) (additivity) For any finite family {Ai, i ∈ I} of mutually exclusive events, we have:

P

(
⋃

i

Ai

)

=
∑

i

P (Ai) (11.2)

iii) sequential monotonic continuity in ∅ For any sequence {An, n ≥ 1} of events decreasing to the empty

set ∅ that is A1 ⊃ A2 ⊃ A3 ⊃ ... and ∩An = ∅ , we have

lim
n
P (An) = 0 (11.3)
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P (A) characterizes the probability that the event A occurs. If P is a probability measure on (Ω,A),

the triple (Ω,A, P ) is a probability space. From the previous axioms, one easily deduces the following

properties:

A1 ⊆ A2 =⇒ P (A1) ≤ P (A2) , (11.4)

P (∅) = 0, (11.5)

P (A) = 1− P
(
A
)
, (11.6)

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) . (11.7)

The conditional probability is one of the most useful notions in probability theory. In practice, it is

introduced to allow reasoning on events of a referential. For instance, in the case of an exhaustive draw,

it is concerned with the probability of an event A, under the condition that an event E occurs. The

random event E represents the environment that is usually expressed as E = e. There is no reason for

having symmetry between event A and the environment e.

Definition 2. Let (Ω,A, P ) be a probability space, the conditional probability P (A/E) of an event A

given E such that P (E) > 0 is defined as:

P (A/E) =
P (A ∩ E)

P (E)
. (11.8)

If P (E) = 0, this definition has no sense. If A ⊂ E then P (A/E) = P (A)
P (E) , and one has P (E/E) = 1.

Obviously, the conditional probability P (A/E) will be seen as the probability of A when E becomes

the certain event following additional information asserting that E satisfies to (P (E) = 1).

The equation (11.8) is generalized by using the well known Bayes’ theorem. If one considers an event

E of which we can estimate, a priori, the probability (P (E) 6= 0) and a finite partition {H1, ..., Hn} of Ω

(set of mutually exclusive hypotheses describing n modalities of the realization of E). The Bayes’ formula

then yields:

P (Hi/E) =
P (E/Hi)P (Hi)
n∑

j=1

P (E/Hj)P (Hj)
. (11.9)

The conditional probabilities (11.9) allow the modification of the a priori probability of event Hi, ac-

cording to the new knowledge on the realization E = e.

Definition 3. Let (Ω,A, P ) be a probability space and let A and E be two events of A. The events A

and E are two independent events if and only if

P (A ∩E) = P (A)P (E) . (11.10)
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Property 1. Let (Ω,A, P ) be a probability space and let A and E, two events of A.

If P (E) > 0, then A and E are two independent events if and only if

P (A/E) = P (A) . (11.11)

Thus, if A and E are two independent events and if E is not impossible then the probability of A is

not modified if one receives information on E being realized.

11.1.2 The mathematical theory of evidence

The evidence theory or Dempster-Shafer’s theory (DST) of belief functions was born during a lecture

on inference statistics given by Arthur Dempster at Harvard University during the 60’s. Dempster’s

main idea has been reinterpreted by Glenn Shafer in his book entitled “A Mathematical Theory of Evi-

dence” [12].

Let us consider two spaces Ω and Θ, and a multivalued relation Γ associating the subset Γ (ω) ⊂ Θ to

each element ω ∈ Ω. Let assume that P is a probability measure defined on (Ω,A) made of the σ-algebra

A of the subsets of Ω. Considering that P represents the probability of occurrence of an uncertain event

ω ∈ Ω, and if it is established that this event ω is in correspondence with the events θ ∈ Γ (ω), what

probability judgment can we make about the occurrence of uncertain events θ ∈ Θ?

Dempster’s view is that the above consideration leads to the concept of compatible probability mea-

sures. He then refers to the envelope delimited by the lower probability and upper probability of this

probability family.

The probability space (Ω,A,P ) is the information source which allows the quantification of the (im-

perfect) state of knowledge over the new referential Θ by means of Γ.

In this study, (Ω, P,Γ,Θ) is called belief structure. By using these mathematical tools, Shafer has

proposed another interpretation to Dempster’s work. This new interpretation identifies the lower and

upper probabilities of the family of compatible measures of probability as authentic confidence measures.

Definition 4. Let Θ be a finite space and 2Θ (= P (Θ)) the power set of Θ. A credibility function1 Cr

is an application of 2Θ with values in [0, 1] which satisfies the following conditions :

(i) Cr (∅) = 0,

(ii) Cr (Θ) = 1,

1The belief function Cr is denoted Bel in [12]
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(iii) For all integer n and all family of subsets A1, ..., An of Θ

Cr (A1 ∪ . . . ∪An) ≥
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1Cr(∩i∈IAi) (11.12)

The condition (iii) is called the general suradditivity condition. When n = 2, (12) becomes,

Cr (A1 ∪A2) ≥ Cr (A1) + Cr (A2)− Cr (A1 ∩A2) . (11.13)

The credibility function allows to quantify the partial information in Θ. In theory, other functions are

associated to Cr, which are equivalent to it:

• The plausibility function, dual to the credibilities.

• The elementary probability mass function (also called basic belief assignment or mass function)

which is obtained from the credibility function by means of the Möbius transform.

Definition 5. The basic belief assignment is the function m : 2Θ −→ [0, 1], that satisfies the following

property
∑

A∈2Θ

m (A) = 1 (11.14)

with

m (∅) = 0. (11.15)

The evidence theory is often described as a generalization of probabilistic methods to the treatment

of uncertainty as it can handle events which are not necessarily exclusive.

Hence the advantage of being able to represent explicitly the uncertainty from imprecise knowledge.

The human being easily handled imprecise knowledge. For example, it does not indicate his age to the

day near, or his height to the inch near, even if it has access to sufficient information. A mathematical

formulation of the imprecisions has come from Lofti Zadeh through the fuzzy set theory [15]. The

modelling of uncertainties due to the imprecisions of knowledge gives rise to possibility theory that

constitutes with the fuzzy set theory the general framework of the fuzzy logic.

11.1.3 Fuzzy logic

The fuzzy logic appeared in 1965 with Lofti Zadeh’s work. The development of the fuzzy logic was

mainly motivated by the need for a conceptual framework that can address the issue of uncertainty and

lexical imprecision. From this work, it is necessary to keep the need of formalizing the representation and

the processing of imprecise or approximate knowledge with the intention to treat systems with a strong

complexity, in which human factors are often present. Thus, fuzzy logic intervenes to deal with imperfect
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knowledge.

The fuzzy logic is based on two main subject matters [9]: fuzzy set theory and modelling of approxi-

mate reasoning in the framework of possibility theory.

The definition of a fuzzy subset answers the need to represent imprecise knowledge. The concept

was introduced to avoid abrupt changes of a class to another(black to the white, for example) and to

authorize elements so that they cannot belong completely either to one of the classes or to another (to be

gray in the example). In a reference set Θ, a fuzzy subset of Θ is characterized by a membership function

µ w.r.t. A, defined as:

µA : Θ −→ [0, 1]

which is the extension of the classical membership function χ, indicator function of the set A that is:

χA : Θ −→ {0, 1} .

To emphasize the difference with the ordinary sets of Θ, we use lower case letters for the fuzzy sets

of Θ.

Definition 6. Let a be a fuzzy set of Θ and let α be a real value in [0, 1]. The α− cut aα is the subset

of Θ defined by:

aα
4
= {θ ∈ Θ; µa (θ) ≥ α} . (11.16)

Then ∀α, β ∈ [0, 1] ,

α ≤ β =⇒ aβ ⊆ aα

and ∀θ ∈ Θ,

µa (θ) = sup {α ∈ [0, 1] ; θ ∈ aα} . (11.17)

This allows the passage from the fuzzy sets to ordinary sets and gives immediately the fuzzy versions

of the usual operations used for ordinary sets.

Property 2. Let a and b be two fuzzy sets of Θ defined by their membership functions µa and µb, one

has:

• equality: a = b⇐⇒ ∀θ ∈ Θ, µa (θ) = µb (θ)

• inclusion: A ⊆ b⇐⇒ ∀θ ∈ Θ, µa (θ) ≤ µb (θ)

• union: a ∪ b←→ ∀θ ∈ Θ, µa∪b (θ) = max (µa (θ) , µb (θ))

• intersection: a ∩ b←→ ∀θ ∈ Θ, µa∩b (θ) = min (µa (θ) , µb (θ))

• complement: a←→ ∀θ ∈ Θ, µa (θ) = (1− µa (θ))
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The uncertainties about the truth of a statement are not verified in the case of the fuzzy set theory.

The possibility theory was introduced in 1978 by Lofti Zadeh in order to manipulate non-probabilistic

uncertainties for which the probability theory does not give any satisfactory solution. The possibility

theory provides a framework in which imprecise knowledge and uncertain knowledge can coexist and can

be treated jointly.

Possibility theory provides a method to formalize subjective uncertainties on events. It informs us in

which measure the realization of an event is possible and in which measure we are sure without having

any evaluation of probabilities at our disposal. One presents the possibility theory in a general form that

introduces the concepts of possibility measure and necessity measure.

Consider either the frame Ω (experiment space) or Θ (space of hypotheses). Set A, a family of subsets

of Ω or subsets of Θ. When Ω or Θ are finite then A is the set of all subsets.

Definition 7. A possibility measure Pos is an application of A ⊂ P(Θ) in [0, 1] such that:

i) Pos (∅) = 0, Pos (Θ) = 1.

ii) for any finite family {Ai, i ∈ I} of events, one has:

Pos

(
⋃

i

Ai

)

= sup
i
{Pos (Ai)} . (11.18)

According to Zadeh, this is the most pessimistic notion or the most prudent notion for a belief. One

has in particular:

max
(
Pos (A) , Pos

(
A
))

= 1 (11.19)

and then:

Pos (A) + Pos
(
A
)
≥ 1. (11.20)

11.1.4 Confidence measures

Definition : A confidence measure c is an application of P (Θ), parts of Θ, in [0, 1] which verifies the

following properties:

i) c (∅) = 0 and c (Θ) = 1

ii) (monotony) ∀A,B ∈ P (Θ) , A ⊂ B =⇒ c (A) ≤ c (B)

iii) (continuity) For all increasing or decreasing sequences (An)N of elements of P (Θ), one has :

lim c (An) = c (limAn) .
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Consequently, one has: ∀ A,B ∈ P (Θ) ,

c (A ∩B) ≤ min (c (A) , c (B)) and max (c (A) , c (B)) ≤ c (A ∪B).

The probabilities, the fuzzy sets, the possibility measures are special cases of the general notion of

confidence measures.

11.2 Fusions

As with Physics, the information fusion modelling aims at giving the best possible description of the

experimental reality. Let us give the postulates [14] that information fusions need to satisfy.

11.2.1 Postulates

1. Coherence or noncontradiction

2. Continuity of the method

3. Universality or completeness

4. No information refusal

A first consequence is that postulates 2 and 3 leads to use real numbers to represent and compare

degrees of confidence. However postulate 4 leads to hypothetical conditioning: the confidence degree is

only known conditionally upon the environment, the context.

The confidence granted to event A ∈ P (Θ) in the environment e is noted [A/e].

From Edwin Thompson Jaynes [10]: Obviously, the operation of real human brains is so complicated

that we can make no pretense of explaining its mysteries; and in any event we are not trying to explain,

much less reproduce, all the aberrations and inconsistencies of human brains. To emphasize this, instead

of asking, ”How can we build a mathematical model of human common sense?” let us ask, ”How could

we build a machine which would carry out useful plausible reasoning, following clearly defined principles

expressing an idealized common sense?”

11.2.2 Machine on confidence

We develop the approach essentially based on Cox’s work [5] later detailed by Tribus [14] while criticized.

i = impossible = 0 ≤ [A/e] ≤ c = certain = 1
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The various possible relations are listed by setting u , [A ∧B/e] that expresses the confidence pro-

vided by the fusion of A and B within the environment e. Let’s define:

x , [A/e] v , [A/Be] y , [B/e] w , [B/Ae]

Eleven functional relations are possible: u = F1 (x, v), u = F2 (x, y), u = F3 (x,w), u = F4 (v, y),

u = F5 (v, w), u = F6 (y, w), u = F7 (x, v, y), u = F8 (x, v, w), u = F9 (x, y, w), u = F10 (v, y, w) and

u = F11 (x, v, y, w)

Because of the postulates, the functions F5, F8, F10 and F11 have to be discarded. The symmetries

induce simplifications. The functional relations capable to meet the aspirations, are:

u = F2 (x, y) = F2 (y, x)

u = F3 (x,w) = F4 (v, y)

u = F7 (x, v, y) = F9 (x, y, w)

The associativity condition on the fusion confidence

[A ∧B ∧ C/e] = [A ∧ (B ∧ C) /e] = [(A ∧B) ∧ C/e]

discards F7.

On the other hand, F3 et F2 verify the same associativity equation. By calling ◦ the common operation

describing all the possible fusions between the confidences, this unique equation processes two different

situations :

• First case: u = F2 (x, y) = F2 (y, x)

[A ∧B/e] = [A/e] ◦ [B/Ae] = [B/e] ◦ [A/Be]

• Second case: u = F3 (x,w) = F4 (v, y)

[A ∧B/e] = [A/e] ◦ [B/e].

This second case was not considered by Cox, the consequences of which constitutes the first results

of this paper.

11.2.3 Operator

• First case:

[B/Ae] < [B′/Ae] =⇒ [A ∧B/e] < [A ∧B′/e] .
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The first case implies strict inequalities on the second variable. The mathematician Aczél [1] has

given the proof based on the strict monotony of one of both variables. The general solution for the

functional equation being such that:

w ([A ∧B/e]) = w ([A/e]) w ([B/Ae]) = w ([B/e]) w ([A/Be]) (11.21)

where w is a continuous strictly-monotone function of [0, 1] onto [0, 1]. Thus,

[A ∧B/e] = w−1(w ([A/e])w ([A/Be])) = [A/e] ◦ [B/Ae]

The fusion operation ◦ is described by a simple product of real numbers after transformation. This

previous transformation of confidence c(A) = [A/e] on A in the environment e is made by using

a continuous and strictly monotone function w. This result is easily understood by comparing the

transformation w with the Fourier transformation. The latter transforms the composition product

of two functions into the product of their Fourier transform.

The first case with additional properties gives the probability theory. The problem is to know if

there is a similar property in the second case.

• Second case: The strict monotony is not obvious.

If [A/e] ≤ [A/e] and [B/e] ≤ [B′/e] then [A ∧B/e] ≤ [A′ ∧B′/e]. On the other hand, one has the

commutativity property and ◦ has all the characteristics of a triangular norm, common notion in

data processing [9]. In this second case, the confidence fusions are associated to the t-norms. The

second case implies the fuzzy theory.

11.3 T-norm

Definition: A triangular norm - called t-norm - is a function ◦ : [0, 1]× [0, 1] −→ [0, 1] that verifies the

following conditions for all x, y, z, t in [0, 1]

i) (commutativity) x ◦ y = y ◦ x

ii) (associativity) (x ◦ y) ◦ z = x ◦ (y ◦ z)

iii) (isotony) if x ≤ z and y ≤ t, (x ◦ y) ≤ (z ◦ t)

iv) (neutral element 1) (x ◦ 1) = x

Example 1. The operator ◦ = min is a t-norm; this is the upper t-norm. For all x, y in [0, 1]

(x ◦ y) ≤ min (x, y)
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Lemma 1. If the associated t-norm is strictly increasing, the operator on the confidences is written as

follows: w [A ∧B/e] = w ([A/e]) w [B/e] where w is a continuous and strictly increasing bijection of

[0, 1] onto [0, 1].

According to the additional hypothesis, we retrieve: [A ∧B/e] = w−1(w ([A/e])w ([B/e])).

Theorem 1. The fuzzy operator [A ∧B/e] = [A/e]∧ [B/e] = inf {[A/e] , [B/e]} is the limit of a sequence

of strictly monotone operators ◦n.

Proof : Let (Tn)n>0 be the family of strictly monotone t-norms such that:

∀n ≥ 1, Tn(x, y) =
1

1 + n

√
(

1−x
x

)n
+
(

1−y
y

)n
= w−1

n (wn(x)wn(y)) with wn = exp−
(

1− x
x

)n

.

For all n ≥ 1, wn is a continuous and strictly increasing bijection of [0, 1] onto [0, 1]. We have for all

x, y :

lim
n→∞

T (x, y) =
1

1 + max
((

1−x
x

)
,
(

1−y
y

)).

In fact, if 0 ≤ a ≤ b
lim
n→∞

n
√
an + bn = lim

n→∞
b
(

1 +
(a

b

)n) 1
n

= b

therefore

lim
n→∞

T (x, y) = f−1 (max (f (x) , f (y)))

where f(x) = 1−x
x

max (f (x) , f (y)) = f (min(x, y))

Since f is strictly decreasing on [0, 1], it follows that

lim
n→∞

T (x, y) = min(x, y) �.

Here are the results obtained for several fusion operators. On x-axis, x increases by 0.1 jumps and equally

on y-axis, y increases by 0.1 jumps.
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• Result obtained with the product operator: x ◦ y ∆
= x ∗ y

0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000

0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000

0.0300 0.0600 0.0900 0.1200 0.1500 0.1800 0.2100 0.2400 0.2700 0.3000

0.0400 0.0800 0.1200 0.1600 0.2000 0.2400 0.2800 0.3200 0.3600 0.4000

0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.0600 0.1200 0.1800 0.2400 0.3000 0.3600 0.4200 0.4800 0.5400 0.6000

0.0700 0.1400 0.2100 0.2800 0.3500 0.4200 0.4900 0.5600 0.6300 0.7000

0.0800 0.1600 0.2400 0.3200 0.4000 0.4800 0.5600 0.6400 0.7200 0.8000

0.0900 0.1800 0.2700 0.3600 0.4500 0.5400 0.6300 0.7200 0.8100 0.9000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

• Result obtained with the operator: x ◦n y = 1

1+ n
q

( 1−x
x )

n
+( 1−y

y )
n

for n = 3.

0.0810 0.0975 0.0995 0.0999 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

0.0975 0.1656 0.1905 0.1973 0.1992 0.1998 0.1999 0.2000 0.2000 0.2000

0.0995 0.1905 0.2538 0.2838 0.2947 0.2984 0.2996 0.2999 0.3000 0.3000

0.0999 0.1973 0.2838 0.3460 0.3794 0.3933 0.3982 0.3996 0.4000 0.4000

0.1000 0.1992 0.2947 0.3794 0.4425 0.4784 0.4937 0.4987 0.4999 0.5000

0.1000 0.1998 0.2984 0.3933 0.4784 0.5435 0.5810 0.5959 0.5996 0.6000

0.1000 0.1999 0.2996 0.3982 0.4937 0.5810 0.6494 0.6872 0.6988 0.7000

0.1000 0.2000 0.2999 0.3996 0.4987 0.5959 0.6872 0.7605 0.7955 0.8000

0.1000 0.2000 0.3000 0.4000 0.4999 0.5996 0.6988 0.7955 0.8772 0.9000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

As soon as n = 3 we observe how near this operator approximates x ◦ y ∆
= min(x, y).

• Result obtained with the fusion operator: x ◦ y ∆
= min(x, y)

0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

0.1000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000

0.1000 0.2000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

0.1000 0.2000 0.3000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.1000 0.2000 0.3000 0.4000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.6000 0.6000 0.6000 0.6000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7000 0.7000 0.7000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.8000 0.8000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 0.9000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000



256 CHAPTER 11. GENERAL FUSION OPERATORS FROM COX’S POSTULATES

It was not obvious to obtain the functions wn. The fuzzy operator ◦ = min comes from a limit of

fusions ◦n, each admitting after confidence transformation wn [A/e] and wn [B/e], a decomposition in a

conventional product of real numbers.

11.3.1 Independence-interdependence

The second functional relation

w ([A ∧B/e]) = w ([A/e]) w ([B/e])

is discarded if we consider there is a link between the knowledge of two facts in a given environment.

This constraint, admitted by Cox then by Tribus, is however not valid for all uncertainty models. Let

us give two examples for which the argument given by Tribus is insufficient. In the probability theory,

randomly taking of balls with or without replacement leads to two different models. The testimony of

different persons is another example. The testimonies can be obtained separately or in a meeting.

Thus, because of the acquisition conditions of the knowledge, the postulates lead to two distinct the-

ories: the probability theory and the fuzzy logic.

In addition, from the four basic postulates explained above and valid for the three theories (proba-

bility theory, evidence theory and fuzzy logic), and while adding the hypothesis of interdependence and

admitting a postulate of precision leading to the additive rule, one would obtain the probabilities as well

as the transition probabilities and therefore the credibilities.

11.3.2 T-norm description

We have also obtained a result characterizing the t-norms by correcting and extending a previous demon-

stration [11]. This is our third result.

Theorem 2. Let ◦ be a continuous t-norm of [0, 1]× [0, 1]→ [0, 1]. Then, the interval [0, 1] is the union

1. of closed intervals [b, c] over which the equality s ◦ s = s is satisfied and

2. of open intervals (a, b) for which a ◦ a = a and b ◦ b = b and for which the inequality s ◦ s 6= s is

satisfied.

For the intervals [b, c] of first kind : ∀x ∈ [b, c] , ∀y ∈ [x, 1] , x ◦ y = x ∧ y.

For each second kind interval (a, b) there exists a function w strictly increasing from [a, b] into [0, 1]

such that w(b) = 1

If ∀s ∈ (a, b) s ◦ s 6= a then w(a) = 0 and ∀x, y ∈ [a, b] x ◦ y = w−1 (w (x)w (y))

If ∃s ∈ (a, b) s ◦ s = a then w(a) > 0 and ∀x, y ∈ [a, b] x ◦ y = w−1 (w (x)w (y)) ∨ a
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On each like-interval (a, b), the operation ◦ can be constant when x varies from a. However, the

interval within the function is really constant depending upon the value of the second variable y. The

separation curve {(x, y) ∈ [a, b]× [a, b] ;x ◦ y = a} in the space [a, b]× [a, b] is given by the equality

w(x ◦ y) = w(a) = w(x)w(y).

This theorem results from the lemmas hereafter.

Lemma 2. The set {x ∈ [0, 1] ;T (x, x) = x} is a union of closed intervals of the interval [0, 1].

Any adherence point s of a sequence (sn;n ∈ N, T (sn, sn) = sn) satisfies T (s, s) = s with respect

to the continuity of T , and therefore s belongs to the closed interval. Thus, for example, the set
{

[0] ,
[

1
3n ,

2
3n

]
;n ∈ N

}
constitutes an infinite family of closed intervals. On each of the open intervals

of the countable infinity of the complementary set, it is sufficient to define a t-norm by means of a

continuous and increasing function w. Each of these functions w depends on the open interval under

consideration.

Lemma 3. If α exists in the open interval (0, 1) such that T (α, α) 6= α then there are two real values

a, b satisfying the inequalities 0 ≤ a < α < b ≤ 1 as well as the equalities T (a, a) = a and T (b, b) = b.

Furthermore, for all real values in the open interval (a, b), the inequality T (s, s) 6= s is satisfied.

Lemma 4. Let T be a continuous t-norm. For all pair (x, y) of [0, 1] such that there exists a, x ≤ a ≤ y
with T (a, a) = a, we have:

T (x, y) = x = min(x, y).

Any continuous t-norm T coincides over [0, 1] × [0, 1] with the min function, except for the points

(x, y), x ≤ y for which one cannot find a real α such that:

x ≤ α ≤ y et T (α, α) = α.

One has to study the behavior of T in the regions [a, b]× [a, b] of the intervals [a, b] of the second kind.

Lemma 5. Consider the associative and commutative operation ◦ of [a, b] × [a, b] → [a, b] which is

continuous and decreasing with respect to both variables and such that a◦a = a and b◦b = b but such that

for all s in the open interval (a, b), one has the inequality s ◦ s 6= s. Let u be in the closed interval [a, b],

upper bound of v such that v ◦ v = a, that is such that u
4
= sup {v ∈ [a, b] ; v ◦ v = a}. The operation ◦ is

strictly increasing for each of both variables wherever x ◦ y 6= a, and if u = a then ◦ is strictly increasing

over [a, b]× [a, b].

Lemma 6. Under valid conditions of application of lemma 5, if u = a, then for all α in (a, b) and for

all nonzero positive rational number q, the real power α◦q is defined and is a real number in the (a, b).
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Remark 1. It can easily be verified that:

α◦ n
m = α◦ rn

rm

and thus:

α◦ n
m ◦ α◦ r

s = α◦ sn
sm ◦ α◦ rm

sm = α◦ rm+sn
sm = α◦( n

m
+ r

s
)

Lemma 7. Under valid conditions of application of lemma 5, if u = a the application q ∈ Q?
+ → α◦q ∈

(a, b) is strictly decreasing and satisfies to limq→0 α
◦q = b and limq→∞ α◦q = a.

Lemma 8. The application r ∈ [0,∞) → α◦r 4
= sup {α◦q; r < q} is continuous and decreasing and

α◦r 4
= inf {α◦q; q < r}.

Lemma 9. Under valid conditions of application of lemma 5, if u > a, one defines the application

r ∈ [0,∞) → u◦r in [a, b] as previously. With u◦r strictly decreasing over [0, 2] such that u◦0 = b,

u◦2 = a, and for all r ≥ 2 u◦r = a.

Lemma 10. Under valid conditions of application of lemma 5, if u > a, one defines for all α ∈ (a, b),

the application r ∈ [0,∞[→ α◦r in [a, b]. In this case, there is a positive real number r0 such that α◦r is

strictly decreasing over [0, r0], and α◦0 = b, α◦r0 = a, and for all r ≥ r0 α◦r = a .

Lemma 11. Consider the associative and commutative operation ◦ of [a, b] × [a, b] → [a, b] continuous

and strictly increasing with respect to both variables such that a ◦ a = a and b ◦ b = b but one has the

inequality s ◦ s 6= s for all s in the open interval (a, b). Therefore, there is a continuous and strictly

increasing function w such that:

x ◦ y = w−1(w(x)w(y)) ∨ a = max(a,w−1(w(x)w(y))) (11.22)

The results of the lemmas finish the justification of the theorem 2.

11.4 Conclusions

Finally, the same postulates applied on confidences, in different environments (either in dependence

or independence situation), imply the same foundation for the various modern theories of information

fusion in the framework of uncertainty by using deductions that we have unified. The independence

between elementary confidences does not need to be understood in the probabilistic sense. The formula

P (A/e) = P (A) of the probability of A in the environment e has no sense. One has to find another

conceptualization of the notion of independence moving away from the probabilistic concept.

We must make new models when fusion analysis is to be applied in all situations. We take the simple

example of logical implication

P and Q⇒ R
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Every logical proposition P,Q,R takes only one of the two numerical values 0, 1. Yet with Probability

these propositions are able to take any numerical value in the interval [0, 1] to represent the statistical

limit of existence when the experiment is repeated as often as possible. Nowadays, the numbers [P/e],

[Q/e] and [R/e] only give the intuitive beliefs when the conditions e on the surroundings are well defined.

To be more explicit, let take a plausible medical situation. Many patients present chaotic neurologic

disorders. Does the deterministic chaos P with the drug Q result in the end of illness R?

We have no reason in such a medical situation to introduce the limitation of logical implication. More-

over, we have the fusion ”and” about the two beliefs [P/e] on the disorder P and [Q/e] on the efficiency

of drug Q and we expect this fusion to give precisely the belief [R/e] of the recovery R from the two

beliefs [P/e] and [Q/e].

In addition, let us take the discussion of Zadeh’s example, discussed in Chapter 5, in order to make

a new analysis with our fusion principles. One has the values

m(M) = 0 m(C) = 0 m(T ) = 1

(M standing for Meningitis, C for contusion and T for tumor) for the masses from Dempster-Shafer

renormalization where the normalization coefficient is

1−m(∅) = 0.0001

From our principles, it is possible to give a belief for the global model. Without renormalization the

two doctors give the beliefs

[T/e]1 = 0.01 [T/e]2 = 0.01

With the principles of this chapter, the numerical value for any fusion arising from these two beliefs

is equal to or less than 0.01 = min([T/e]1, [T/e]2). So the Dempster-Shafer normalization is not a fusion!

The normalization is in contradiction with the arguments of this chapter. Note that the hybrid DSm rule

of combination proposed in Chapter 1 provides in this example explained in details in Chapter 5 (Section

5.3.1) Cr(T ) = m(T ) = 0.0001 ≤ min([T/e]1, [T/e]2) which is coherent with a confidence measure.

The probable explanation is that the Dempster-Shafer normalization is the only mistake of the model.

One supposes global cohesion between initial mass values coming from Demspster-Shafer rules. In math-

ematics, we know it is often impossible to adjust analytical functions in the whole complex plan C; global

cohesion is impossible! For example the logarithmic function is defined in any neighbourhood but it is not
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defined in the whole complex plan. The global cohesion is probably the mistake. The DSmT framework

seems to provide a better model to satisfy confidence measures and fusion postulates. Some theoretical

investigations are currently done to fully analyze DSmT in the context of this work.

Another way to explain losses of mass in Dempster-Shafer theory is to introduce new sets. In any

probability diffusion, we observe occasionally probability masses loading infinity with an evolution. Let

us take the mass 1 in position {n} and increase n to infinity we have no more mass on the real line

R. Similarly, let us take the masses 0.5 on {−n} and 0.5 on {n}; this time we load {−∞} and {∞},
n increasing to infinity. In Dempster-Shafer model, one sometimes loads the empty set {∅} and (or) an

extra set, only to explain vanishing masses.

Probably Dempster-Shafer renormalization is the only mistake of the model because false global prop-

erty of masses is supposed. It is important to know the necessary axioms given renormalization truth.

Surroundings are so different that fusion described only by product is certainly a construction that is

too restrictive.

The processing in concrete application of the results presented here suppose additional hypotheses,

since any information fusion introduces monotone functions strictly increasing whose existence is proven

in this paper. These functions (not only one!) remain to be identified for each application. Theoretical

considerations should allow to keep certain typical families of functions. Experimental results would next

identify some unknown parameters if some parameterized family of such functions.

Applications of such a methodology on the information fusion such as air pollution measures given

by sensors will be processed.

Moreover, during its time evolution, the information data fusion can thus be described by successive

t-norms amongst which probability should be introduced.
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[4] De Brucq D., Colot O., Sombo A., Identical Foundation of Probability theory and Fuzzy Set Theory,

IF 2002, 5th International Conference on InformationFusion, Annapolis, Maryland, July 7-11, pp.

1442-1449, 2002.

[5] Cox R.T., Pobability frequency and reasonable expectation , American Journal of Physics, 14(1) pp.

1-14,1946.

[6] Dempster A.P., Upper and lower probabilities induced by a multivalued mapping, Annals of mathe-

matical statistics, 1967.

[7] Denœux T., Decision analysis in evidence theoritical pattern classification,Pattern recognition, 1997.
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Abstract: In this chapter, one studies the famous well-known and challenging

Tweety Penguin Triangle Problem (TPTP or TP2) pointed out by Judea Pearl in

one of his books. We first present the solution of the TP2 based on the fallacious

Bayesian reasoning and prove that reasoning cannot be used to conclude on the abil-

ity of the penguin-bird Tweety to fly or not to fly. Then we present in details the

counter-intuitive solution obtained from the Dempster-Shafer Theory (DST). Fi-

nally, we show how the solution can be obtained with our new theory of plausible and

paradoxical reasoning (DSmT).

12.1 Introduction

J
udea Pearl claimed that DST of evidence fails to provide a reasonable solution for the combination

of evidence even for apparently very simple fusion problem [11, 12]. Most criticisms are answered by

Philippe Smets in [22, 23]. The Tweety Penguin Triangle Problem (TP2) is one of the typical exciting and

challenging problem for all theories managing uncertainty and conflict because it shows the real difficulty

to maintain truth for automatic reasoning systems when the classical property of transitivity (which is

basic to the material-implication) does not hold. In his book, Judea Pearl presents and discusses in

265
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details the semantic clash between Bayes vs. Dempster-Shafer reasoning. We present here our analysis

on this problem and provide a new solution of the Tweety Penguin Triangle Problem based on our new

theory of plausible and paradoxical reasoning, known as DSmT (Dezert-Smarandache Theory). We show

how this problem can be attacked and solved by our new reasoning with help of the (hybrid) DSm rule

of combination (see chapter 4). The purpose of this chapter is not to browse all approaches available in

literature for attacking the TP2 problem but only to provide a comparison of the DSm reasoning with

respect to the Bayesian reasoning and to the plausible reasoning of DST framework. Interesting but

complex analysis on this problem based on default reasoning and ε-belief functions can be also found

by example in [22] and [1]. Other interesting and promising issues for the TP2 problem based on the

fuzzy logic of Zadeh [25] jointly with the theory of possibilities [5, 6] are under investigations. Some

theoretical research works on new conditional event algebras (CEA) have emerged in literature [7] since

last years and could offer a new track for attacking the TP2 problem although unfortunately no clear

didactic, simple and convincing examples are provided to show the real efficiency and usefulness of these

theoretical investigations.

12.2 The Tweety Penguin Triangle Problem

This very important and challenging problem, as known as the Tweety Penguin Triangle Problem (TP2)

in literature, is presented in details by Judea Pearl in [11]. We briefly present here the TP2 and the

solutions based first on fallacious Bayesian reasoning and then on the Dempster-Shafer reasoning. We

will then focus our analysis of this problem from the DSmT framework and the DSm reasoning.

Let’s consider the set R = {r1, r2, r3} of given rules (as known as defaults in [1]):

• r1: ”Penguins normally don’t fly” ⇔ (p→ ¬f)

• r2: ”Birds normally fly” ⇔ (b→ f)

• r3: ”Penguins are birds” ⇔ (p→ b)

To emphasize our strong conviction in these rules we commit them some high confidence weights w1, w2

and w3 in [0, 1] with w1 = 1− ε1, w2 = 1− ε2 and w3 = 1 (where ε1 and ε2 are small positive quantities).

The conviction in these rules is then represented by the set W = {w1, w2, w3} in the sequel.

Another useful and general notation adopted by Judea Pearl in the first pages of his book [11] to

characterize these three weighted rules is the following one (where w1, w2, w3 ∈ [0, 1]):

r1 : p
w1→ (¬f) r2 : b

w2→ f r3 : p
w3→ b
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When w1, w2, w3 ∈ {0, 1} the classical logic is the perfect tool to conclude on the truth or on the falsity

of a proposition built from these rules based on the standard propositional calculus mainly with its three

fundamental rules (Modus Ponens, Modus Tollens and Modus Barbara - i.e. transitivity rule). When

0 < w1, w2, w3 < 1, the classical logic can’t be applied because the Modus Ponens, the Modus Tollens

and the Modus Barbara do not longer hold and some other tools must be chosen. This will discussed in

detail in section 3.2.

Question: Assume we observe an animal called Tweety (T) that is categorically classified as a bird (b)

and a penguin (p), i.e. our observation is O , [T = (b ∩ p)] = [(T = b) ∩ (T = p)]. The notation

T = (b ∩ p) stands here for ”Entity T holds property (b ∩ p)”. What is the belief (or the probability - if

such probability exists) that Tweety can fly given the observation O and all information available in our

knowledge base (i.e. our rule-based system R and W ) ?

The difficulty of this problem for most of artificial reasoning systems (ARS) comes from the fact

that, in this example, the property of transitivity, usually supposed satisfied from material-implication

interpretation [11], (p→ b, b→ f)⇒ (p→ f) does not hold here (see section 12.3.2). In this interesting

example, the classical property of inheritance is thus broken. Nevertheless a powerful artificial reasoning

system must be able to deal with such kind of difficult problem and must provide a reliable conclusion

by a general mechanism of reasoning whatever the values of convictions are (not only restricted to values

close to either 0 or 1). We examine now three ARS based on the Bayesian reasoning [11] which turns to

be fallacious and actually not appropriate for this problem and we explain why, on the Dempster-Shafer

Theory (DST) [16] and on the Dezert-Smarandache Theory (DSmT) (see part I of this book).

12.3 The fallacious Bayesian reasoning

We first present the fallacious Bayesian reasoning solution drawn from the J. Pearl’s book in [11] (pages

447-449) and then we explain why the solution which seems at the first glance correct with intuition is

really fallacious. We then explain why the common rational intuition turns actually to be wrong and

show the weakness of Pearl’s analysis.

12.3.1 The Pearl’s analysis

To preserve mathematical rigor, we introduce explicitly all information available in the derivations. In

other words, one wants to evaluate using the Bayesian reasoning, the conditional probability, if it exists,

P (T = f |O,R,W ) = P (T = f |T = p, T = b, R,W ). The Pearl’s analysis is based on the assumption that

a conviction on a given rule can be interpreted as a conditional probability (see [11] page 4). In other
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words if one has a given rule a
w→ b with w ∈ [0, 1] then one can interpret, at least for the calculus, w as

P (b|a) and thus the probability theory and Bayesian reasoning can help to answer to the question. We

prove in the following section that such model cannot be reasonably adopted. For now, we just assume

that such probabilistic model holds effectively as Judea Pearl does. Based on this assumption, since the

conditional term/information (T = p, T = b, R,W ) is strictly equivalent to (T = p,R,W ) because of the

knowledge of rule r3 with certainty (since w3 = 1), one gets easily the fallacious intuitive expected Pearl’s

result:

P (T = f |O,R,W ) = P (T = f |T = p, T = b, R,W )

P (T = f |O,R,W ) ≡ P (T = f |T = p,R,W )

P (T = f |O,R,W ) = 1− P (T = ¬f |T = p,R,W )

P (T = f |O,R,W ) = 1− w1 = ε1

From this simple analysis, the Tweety’s ”birdness” does not render her a better flyer than an ordinary

penguin as intuitively expected and the probability that Tweety can fly remains very low which looks

normal. We reemphasize here the fact, that in his Bayesian reasoning J. Pearl assumes that the weight

w1 for the conviction in rule r1 can be interpreted in term of a real probability measure P (¬f |p). This

assumption is necessary to provide the rigorous derivation of P (T = f |O,R,W ). It turns out however

that convictions wi on logical rules cannot be interpreted in terms of probabilities as we will prove in the

next section.

When rule r3 is not asserted with absolute certainty (i.e. w3 = 1) but is subject to exceptions, i.e.

w3 = 1 − ε3 < 1, the fallacious Bayesian reasoning yields (where notations T = f , T = b and T = p are

replaced by f , b and p due to space limitations):

P (f |O,R,W ) = P (f |p, b, R,W )

P (f |O,R,W ) =
P (f, p, b|R,W )

P (p, b|R,W )

P (f |O,R,W ) =
P (f, b|p,R,W )P (p|R,W )

P (b|p,R,W )P (p|R,W )

By assuming P (p|R,W ) > 0, one gets after simplification by P (p|R,W )

P (f |O,R,W ) =
P (f, b|p,R,W )

P (b|p,R,W )

P (f |O,R,W ) =
P (b|f, p,R,W )P (f |p,R,W )

P (b|p,R,W )

If one assumes P (b|p,R,W ) = w3 = 1 − ε3 and P (f |p,R,W ) = 1 − P (¬f |p,R,W ) = 1 − w1 = ε1, one

gets

P (f |O,R,W ) = P (b|f, p,R,W )× ε1
1− ε3
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Because 0 ≤ P (b|f, p,R,W ) ≤ 1, one finally gets the Pearl’s result [11] (p.448)

P (f |O,R,W ) ≤ ε1
1− ε3

(12.1)

which states that the observed animal Tweety (a penguin-bird) has a very small probability of flying

as long as ε3 remains small, regardless of how many birds cannot fly (ε2), and has consequently a high

probability of not flying because P (f |O,R,W )+P (f̄ |O,R,W ) = 1 since the events f and f̄ are mutually

exclusive and exhaustive (assuming that the Pearl’s probabilistic model holds ... ).

12.3.2 The weakness of the Pearl’s analysis

We prove now that the previous Bayesian reasoning is really fallacious and the problem is truly unde-

cidable to conclude about the ability of Tweety to fly or not to fly if a deep analysis is done. Actually,

the Bayes’ inference is not a classical inference (see chapter 8 for justification). Indeed, before applying

blindly the Bayesian reasoning as in the previous section, one first has to check that the probabilistic

model is well-founded to characterize the convictions of the rules of the rule-based system under anal-

ysis. We prove here that such probabilistic model doesn’t hold for a suitable and useful representation

of the problem and consequently for any problems based on the weighting of logical rules (with positive

weighting factors/convictions below than 1).

12.3.2.1 Preliminaries

We just remind here only few important principles of the propositional calculus of the classical Mathe-

matical Logic which will be used in our demonstration. A simple notation, which may appear as unusual

for logicians, is adopted here just for convenience. A detailed presentation of the propositional calculus

and Mathematical Logic can be easily found in many standard mathematical textbooks like [15, 10, 9].

Here are these important principles:

• Third middle excluded principle : A logical variable is either true or false, i.e.

a ∨ ¬a (12.2)

• Non-contradiction law : A logical variable can’t be both true and false, i.e.

¬(a ∧ ¬a) (12.3)

• Modus Ponens : This rule of the propositional calculus states that if a logical variable a is true

and a→ b is true, then b is true (syllogism principle), i.e.

(a ∧ (a→ b))→ b (12.4)
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• Modus Tollens : This rule of the propositional calculus states that if a logical variable ¬b is true

and a→ b is true, then ¬a is true, i.e.

(¬b ∧ (a→ b))→ ¬a (12.5)

• Modus Barbara : This rule of the propositional calculus states that if a→ b is true and b→ c is

true then a→ c is true (transitivity property), i.e.

((a→ b) ∧ (b→ c))→ (a→ c) (12.6)

From these principles, one can prove easily, based on the truth table method, the following property

(more general deducibility theorems in Mathematical Logic can be found in [18, 19]) :

((a→ b) ∧ (c→ d))→ ((a ∧ c)→ (b ∧ d)) (12.7)

12.3.2.2 Analysis of the problem when ε1 = ε2 = ε3 = 0

We first examine the TP2 when one has no doubt in the rules of our given rule-based systems, i.e.







r1 : p
w1=1−ε1=1→ (¬f)

r2 : b
w2=1−ε2=1→ f

r3 : p
w3=1−ε3=1→ b

From rules r1 and r2 and because of property (12.7), one concludes that

p ∧ b→ (f ∧ ¬f)

and using the non-contradiction law (12.3) with the Modus Tollens (12.5), one finally gets

¬(f ∧ ¬f)→ ¬(p ∧ b)

which proves that p ∧ b is always false whatever the rule r3 is. Interpreted in terms of the probability

theory, the event T = p ∩ b corresponds actually and truly to the impossible event ∅ since T = f and

T = f̄ are exclusive and exhaustive events. Under such conditions, the analysis proves the non-existence

of the penguin-bird Tweety.

If one adopts the notations1 of the probability theory, trying to derive P (T = f |T = p ∩ b) and

P (T = f̄ |T = p∩ b) with the Bayesian reasoning is just impossible because from one of the axioms of the

probability theory, one must have P (∅) = 0 and from the conditioning rule, one would get expressly for

this problem the indeterminate expressions:

1Because probabilities are related to sets, we use here the common set-complement notation f̄ instead of the logical

negation notation ¬f , ∩ for ∧ and ∪ for ∨ if necessary.



12.3. THE FALLACIOUS BAYESIAN REASONING 271

P (T = f |T = p ∩ b) = P (T = f |T = ∅)

P (T = f |T = p ∩ b) =
P (T = f ∩ ∅)
P (T = ∅)

P (T = f |T = p ∩ b) =
P (T = ∅)
P (T = ∅)

P (T = f |T = p ∩ b) =
0

0
(indeterminate)

and similarly

P (T = f̄ |T = p ∩ b) = P (T = f̄ |T = ∅)

P (T = f̄ |T = p ∩ b) =
P (T = f̄ ∩ ∅)
P (T = ∅)

P (T = f̄ |T = p ∩ b) =
P (T = ∅)
P (T = ∅)

P (T = f̄ |T = p ∩ b) =
0

0
(indeterminate)

12.3.2.3 Analysis of the problem when 0 < ε1, ε2, ε3 < 1

Let’s examine now the general case when one allows some little doubt on the rules characterized by taking

ε1 & 0 , ε2 & 0 and ε3 & 0 and examine the consequences on the probabilistic model on these rules.

First note that, because of the third middle excluded principle and the assumption of the existence

of a probabilistic model for a weighted rule, then one should be able to consider simultaneously both

”probabilistic/Bayesian” rules






a
P (b|a)=w→ b

a
P (b̄|a)=1−w→ ¬b

(12.8)

In terms of classical (objective) probability theory, these weighted rules just indicate that in 100 × w
percent of cases the logical variable b is true if a is true, or equivalently, that in 100×w percent of cases

the random event b occurs when the random event a occurs. When we don’t refer to classical probability

theory, the weighting factors w and 1− w indicate just the level of conviction committed to the validity

of the rules. Although very appealing at the first glance, this probabilistic model hides actually a strong

drawback/weakness especially when dealing with several rules as shown right below.

Let’s prove first that from a ”probabilized” rule a
P (b|a)=w→ b one cannot assess rigorously the convic-

tions onto its Modus Tollens. In other words, from (12.8) what can we conclude on







¬b P (ā|b̄)=?→ ¬a

b
P (ā|b)=?→ ¬a

(12.9)
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From the Bayes’ rule of conditioning (which must hold if the probabilitic model holds), one can express

P (ā|b̄) and P (ā|b) as follows







P (ā|b̄) = 1− P (a|b̄) = 1− P (a∩b̄)
1−P (b) = 1− P (b̄|a)P (a)

1−P (b)

P (ā|b) = 1− P (a|b) = 1− P (a∩b)
P (b) = 1− P (b|a)P (a)

P (b)

or equivalently by replacing P (b|a) and P (b̄|a) by their values w and 1− w, one gets







P (ā|b̄) = 1− (1− w) P (a)
1−P (b)

P (ā|b) = 1− wP (a)
P (b)

(12.10)

These relationships show that one cannot fully derive in theory P (ā|b̄) and P (ā|b) because the prior

probabilities P (a) and P (b) are unknown.

A simplistic solution, based on the principle of indifference, is then just to assume without solid jus-

tification that P (a) = P (ā) = 1/2 and P (b) = P (b̄) = 1/2. With such assumption, then one gets the

following estimates P̂ (ā|b̄) = w and P̂ (ā|b) = 1 − w for P (ā|b̄) and P (ā|b) respectively and we can go

further in the derivations.

Now let’s go back to our Tweety Penguin Triangle Problem. Based on the probabilistic model (assumed

to hold), one starts now with both







r1 : p
P (f̄ |p)=1−ε1→ ¬f

r2 : b
P (f |b)=1−ε2→ f

r3 : p
P (b|p)=1−ε3→ b







p
P (f |p)=ε1→ f

b
P (f̄ |b)=ε2→ ¬f

p
P (b̄|p)=ε3→ ¬b

(12.11)

Note that taking into account our preliminary analysis and accepting the principle of indifference, one

has also the two sets of weighted rules either







f
P̂ (p̄|f)=1−ε1→ ¬p

¬f P̂ (b̄|f̄)=1−ε2→ ¬b

¬b P̂ (p̄|b̄)=1−ε3→ ¬p







¬f P̂ (p̄|f̄)=ε1→ ¬p

f
P̂ (b̄|f)=ε2→ ¬b

b
P̂ (p̄|b)=ε3→ ¬p

(12.12)

One wants to assess the convictions (assumed to correspond to some conditional probabilities) into the

following rules

p ∧ b P (f |p∩b)=?→ f (12.13)

p ∧ b P (f̄ |p∩b)=?→ ¬f (12.14)
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The question is to derive rigorously P (f |p∩ b) and P (f̄ |p∩ b) from all previous available information. It

turns out that the derivation is impossible without unjustified extra assumption on conditional indepen-

dence. Indeed, P (f |p ∩ b) and P (f̄ |p ∩ b) are given by







P (f |p ∩ b) = P (f,p,b)
P (p,b) = P (p,b|f)P (f)

P (b|p)P (p)

P (f̄ |p ∩ b) = P (f̄ ,p,b)
P (p,b) = P (p,b|f̄)P (f̄)

P (b|p)P (p)

(12.15)

If one assumes as J. Pearl does, that the conditional independence condition also holds, i.e. P (p, b|f) =

P (p|f)P (b|f) and P (p, b|f̄) = P (p|f̄)P (b|f̄), then one gets







P (f |p ∩ b) = P (p|f)P (b|f)P (f)
P (b|p)P (p)

P (f̄ |p ∩ b) = P (p|f̄)P (b|f̄)P (f̄)
P (b|p)P (p)

By accepting again the principle of indifference, P (f) = P (f̄) = 1/2 and P (p) = P (p̄) = 1/2, one gets

the following expressions






P̂ (f |p ∩ b) = P (p|f)P (b|f)
P (b|p)

P̂ (f̄ |p ∩ b) = P (p|f̄)P (b|f̄)
P (b|p)

(12.16)

Replacing probabilities P (p|f), P (b|f), P (b|p), P (p|f̄) and P (b|f̄) by their values in the formula (12.16),

one finally gets






P̂ (f |p ∩ b) = ε1(1−ε2)
1−ε3

P̂ (f̄ |p ∩ b) = (1−ε1)ε2
1−ε3

(12.17)

Therefore we see that, even if one accepts the principle of indifference together with the conditional

independence assumption, the approximated ”probabilities” remain both small and do not correspond to

a real measure of probability since the conditional probabilities of exclusive elements f and f̄ do not add

up to one. When ε1, ε2 and ε3 tends towards 0, one has

P̂ (f |p ∩ b) + P̂ (f̄ |p ∩ b) ≈ 0

Actually our analysis based on the principle of indifference, the conditional independence assumption

and the model proposed by Judea Pearl, proves clearly the impossibility of the Bayesian reasoning to

be applied rigorously on such kind of weighted rule-based system, because no probabilistic model exists

for describing correctly the problem. This conclusion is actually not surprising taking into account the

Lewis’ theorem [13] explained in details in [7] (chapter 11).
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Let’s now explain the reason of the error in the fallacious reasoning which was looking coherent with

the common intuition. The problem arises directly from the fact that penguin class and bird class are

defined in this problem only with respect to the ”flying” and ”not-flying” properties. If one considers

only these properties, then none Tweety animal can be categorically classified as a penguin-bird, because

penguin-birdness doesn’t not hold in reality based on these exclusive and exhaustive properties (if we

consider only the information given within the rules r1, r2 and r3). Actually everybody knows that

penguins are effectively classified as bird because ”birdness” property is not defined with respect to

the ”flying” or ”not-flying” abilities of the animal but by other zoological characteristics C (birds are

vertebral oviparous animals with hot blood, a beak, feather and anterior members are wings) and such

information must be properly taken into account in the rule-based systems to avoid to fall in the trap of

such fallacious reasoning. The intuition (which seems to justify the fallacious reasoning conclusion) for

TP2 is actually biased because one already knows that penguins (which are truly classified as birds by

some other criterions) do not fly in real world and thus we commit a low conviction (which is definitely

not a probability measure, but rather a belief) to the fact that a penguin-bird can fly. Thus the Pear’ls

analysis proposed in [11] appears to the authors to be unfortunately incomplete and somehow fallacious.

12.4 The Dempster-Shafer reasoning

As pointed out by Judea Pearl in [11], the Dempster-Shafer reasoning yields, for this problem, a very

counter-intuitive result: birdness seems to endow Tweety with extra flying power ! We present here our

analysis of this problem based on the Dempster-Shafer reasoning.

Let’s examine in detail the available prior information summarized by the rule r1: ”Penguins normally

don’t fly” ⇔ (p→ ¬f) with the conviction w1 = 1− ε1 where ε1 is a small positive number close to zero.

This information, in the DST framework, has to be correctly represented in term of a conditional belief

Bel1(f̄ |p) = 1− ε1 rather than directly the mass m1(f̄ ∩ p) = 1− ε1.

Choosing Bel1(f̄ |p) = 1− ε1 means that there is a high degree of belief that a penguin-animal is also

a nonflying-animal (whatever kind of animal we are observing). This representation reflects perfectly

our prior knowledge while the erroneous coarse modeling based on the commitment m1(f̄ ∩ p) = 1 − ε1
is unable to distinguish between rule r1 and another (possibly erroneous) rule like r′1 : (¬f → p) hav-

ing same conviction value w1. This correct model allows us to distinguish between r1 and r′1 (even if

they have the same numerical level of conviction) by considering the two different conditional beliefs

Bel1(f̄ |p) = 1 − ε1 and Bel1′(p|f̄) = 1 − ε1. The coarse/inadequate basic belief assignment modeling (if

adopted) in contrary would make no distinction between those two rules r1 and r′1 since one would have
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to take m1(f̄ ∩ p) = m1′(p ∩ f̄) and therefore cannot serve as the starting model for the analysis

Similarly, the prior information relative to rules r2 : (b → f) and r3 : (p → b) with convictions

w2 = 1 − ε2 and w3 = 1 − ε3 has to be modeled by the conditional beliefs Bel2(f |b) = 1 − ε2 and

Bel3(b|p) = 1− ε3 respectively.

The first problem we have to face now is the combination of these three prior information character-

ized by Bel1(f̄ |p) = 1− ε1, Bel2(f |b) = 1− ε2 and Bel3(b|p) = 1− ε3. All the available prior information

can be viewed actually as three independent bodies of evidence B1, B2 and B3 providing separately the

partial knowledges summarized through the values of Bel1(f̄ |p), Bel2(f |b) and Bel3(b|p). To achieve the

combination, one needs to define complete basic belief assignments m1(.), m2(.) and m3(.) compatible

with the partial conditional beliefs Bel1(f̄ |p) = 1− ε1, Bel2(f |b) = 1− ε2 and Bel3(b|p) = 1− ε3 without

introducing extra knowledge. We don’t want to introduce in the derivations some extra-information we

don’t have in reality. We present in details the justification for the choice of assignment m1(.). The choice

for m2(.) and m3(.) will follow similarly.

The body of evidence B1 provides some information only about f̄ and p through the value of Bel1(f̄ |p)
and without reference to b. Therefore the frame of discernment Θ1 induced by B1 and satisfying Shafer’s

model (i.e. a finite set of exhaustive and exclusive elements) corresponds to

Θ1 = {θ1 , f̄ ∩ p̄, θ2 , f ∩ p̄, θ3 , f̄ ∩ p, θ4 , f ∩ p}

schematically represented by

f = θ2 ∪ θ4
{

p=θ3∪θ4
︷ ︸︸ ︷

θ4 , f ∩ p θ3 , f̄ ∩ p
θ2 , f ∩ p̄ θ1 , f̄ ∩ p̄
︸ ︷︷ ︸

p̄=θ1∪θ2

}

f̄ = θ1 ∪ θ3

The complete basic assignment m1(.) we are searching for and defined over the power set 2Θ1 which must

be compatible with Bel1(f̄ |p) is actually the result of the Dempster’s combination of an unknown (for

now) basic belief assignment m′
1(.) with the particular assignment m′′

1(.) defined by m′′
1 (p , θ3 ∪ θ4) = 1;

in other worlds, one has

m1(.) = [m′
1 ⊕m′′

1 ](.)

From now on, we introduce explicitly the conditioning term in our notation to avoid confusion and thus we

use m1(.|p) = m1(.|θ3 ∪ θ4) instead m1(.). From m′′
1(p , θ3 ∪ θ4) = 1 and from any generic unknow basic

assignment m′
1(.) defined by its components m′

1(∅) , 0, m′
1(θ1), m′

1(θ2), m′
1(θ3), m′

1(θ4), m′
1(θ1 ∪ θ2),

m′
1(θ1 ∪ θ3), m′

1(θ1 ∪ θ4), m′
1(θ2 ∪ θ3), m′

1(θ2 ∪ θ4), m′
1(θ3 ∪ θ4), m′

1(θ1 ∪ θ2 ∪ θ3), m′
1(θ1 ∪ θ2 ∪ θ4),
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m′
1(θ1 ∪ θ3 ∪ θ4), m′

1(θ2 ∪ θ3 ∪ θ4), m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) and applying Dempter’s rule, one gets easily the

following expressions for m1(.|θ3 ∪ θ4). All m1(.|θ3 ∪ θ4) masses are zero except theoretically

m1(θ3|θ3 ∪ θ4) =

1
︷ ︸︸ ︷

m′′
1(θ3 ∪ θ4)[m′

1(θ3) +m′
1(θ1 ∪ θ3) +m′

1(θ2 ∪ θ3) +m′
1(θ1 ∪ θ2 ∪ θ3)]/K1

m1(θ4|θ3 ∪ θ4) =

1
︷ ︸︸ ︷

m′′
1(θ3 ∪ θ4)[m′

1(θ4) +m′
1(θ1 ∪ θ4) +m′

1(θ2 ∪ θ4) +m′
1(θ1 ∪ θ2 ∪ θ4)]/K1

m1(θ3 ∪ θ4|θ3 ∪ θ4) =

1
︷ ︸︸ ︷

m′′
1(θ3 ∪ θ4)[m′

1(θ3 ∪ θ4) +m′
1(θ1 ∪ θ3 ∪ θ4) +m′

1(θ2 ∪ θ3 ∪ θ4) +m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4)]/K1

with

K1 , 1−
1

︷ ︸︸ ︷

m′′
1 (θ3 ∪ θ4)[m′

1(θ1) +m′
1(θ2) +m′

1(θ1 ∪ θ2)]

To complete the derivation of m1(.|θ3∪θ4), one needs to use the fact that one knows that Bel1(f̄ |p) =

1− ε1 which, by definition [16], is expressed by

Bel1(f̄ |p) = Bel1(θ1 ∪ θ3|θ3 ∪ θ4) = m1(θ1|θ3 ∪ θ4) +m1(θ3|θ3 ∪ θ4) +m1(θ1 ∪ θ3|θ3 ∪ θ4) = 1− ε1

But from the generic expression of m1(.|θ3 ∪ θ4), one knows also that m1(θ1|θ3 ∪ θ4) = 0 and m1(θ1 ∪
θ3|θ3 ∪ θ4) = 0. Thus the knowledge of Bel1(f̄ |p) = 1− ε1 implies to have

m1(θ3|θ3 ∪ θ4) = [m′
1(θ3) +m′

1(θ1 ∪ θ3) +m′
1(θ2 ∪ θ3) +m′

1(θ1 ∪ θ2 ∪ θ3)]/K1 = 1− ε1

This is however not sufficient to fully define the values of all components of m1(.|θ3∪θ4) or equivalently

of all components of m′
1(.). To complete the derivation without extra unjustified specific information, one

needs to apply the minimal commitment principle (MCP) which states that one should never give more

support to the truth of a proposition than justified [8]. According to this principle, we commit a non

null value only to the less specific proposition involved into m1(θ3|θ3 ∪ θ4) expression. In other words,

the MCP allows us to choose legitimately

m′
1(θ1) = m′

1(θ2) = m′
1(θ3) = 0

m′
1(θ1 ∪ θ2) = m′

1(θ1 ∪ θ3) = m′
1(θ2 ∪ θ3) = 0

m′
1(θ1 ∪ θ2 ∪ θ3) 6= 0

Thus K1 = 1 and m1(θ3|θ3 ∪ θ4) reduces to

m1(θ3|θ3 ∪ θ4) = m′
1(θ1 ∪ θ2 ∪ θ3) = 1− ε1

Since the sum of basic belief assignments must be one, one must also have for the remaining (uncom-

mitted for now) masses of m′
1(.) the constraint

m′
1(θ4) +m′

1(θ1 ∪ θ4) +m′
1(θ2 ∪ θ4) +m′

1(θ1 ∪ θ2 ∪ θ4)

+m′
1(θ3 ∪ θ4) +m′

1(θ1 ∪ θ3 ∪ θ4) +m′
1(θ2 ∪ θ3 ∪ θ4)

+m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε1
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By applying a second time the MCP, one chooses m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε1.

Finally, the complete and less specific belief assignment m1(.|p) compatible with the available prior

information Bel1(f̄ |p) = 1− ε1 provided by the source B1 reduces to

m1(θ3|θ3 ∪ θ4) = m′
1(θ1 ∪ θ2 ∪ θ3) = 1− ε1 (12.18)

m1(θ3 ∪ θ4|θ3 ∪ θ4) = m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε1 (12.19)

or equivalently

m1(f̄ ∩ p|p) = m′
1(p̄ ∪ f̄) = 1− ε1 (12.20)

m1(p|p) = m′
1(p̄ ∪ f̄ ∪ p ∪ f) = ε1 (12.21)

It is easy to check, from the mass m1(.|p), that one gets effectively Bel1(f̄ |p) = 1− ε1. Indeed:

Bel1(f̄ |p) = Bel1(θ1 ∪ θ3|p)

Bel1(f̄ |p) = Bel1((f̄ ∩ p̄) ∪ (f̄ ∩ p)|p)

Bel1(f̄ |p) = m1(f̄ ∩ p̄|p)
︸ ︷︷ ︸

0

+m1(f̄ ∩ p|p)

+m1((f̄ ∩ p̄) ∪ (f̄ ∩ p)|p)
︸ ︷︷ ︸

0

Bel1(f̄ |p) = m1(f̄ ∩ p|p)

Bel1(f̄ |p) = 1− ε1

In a similar way, for the source B2 with Θ2 defined as

Θ2 = {θ1 , f ∩ b̄, θ2 , b̄ ∩ f̄ , θ3 , f ∩ b, θ4 , f̄ ∩ b}

schematically represented by

f̄ = θ2 ∪ θ4
{

b=θ3∪θ4
︷ ︸︸ ︷

θ4 , f̄ ∩ b θ3 , f ∩ b
θ2 , f̄ ∩ b̄ θ1 , f ∩ b̄
︸ ︷︷ ︸

b̄=θ1∪θ2

}

f = θ1 ∪ θ3

one looks for m2(.|b) = [m′
2 ⊕ m′′

2 ](.) with m′′
2 (b) = m′′

2(θ3 ∪ θ4) = 1. From the MCP, the condition

Bel2(f |b) = 1− ε2 and with simple algebraic manipulations, one finally gets

m2(θ3|θ3 ∪ θ4) = m′
2(θ1 ∪ θ2 ∪ θ3) = 1− ε2 (12.22)

m2(θ3 ∪ θ4|θ3 ∪ θ4) = m′
2(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε2 (12.23)
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or equivalently

m2(f ∩ b|b) = m′
2(b̄ ∪ f) = 1− ε2 (12.24)

m2(b|b) = m′
2(b̄ ∪ f̄ ∪ b ∪ f) = ε2 (12.25)

In a similar way, for the source B3 with Θ3 defined as

Θ3 = {θ1 , b ∩ p̄, θ2 , b̄ ∩ p̄, θ3 , p ∩ b, θ4 , b̄ ∩ p}

schematically represented by

b̄ = θ2 ∪ θ4
{

p=θ3∪θ4
︷ ︸︸ ︷

θ4 , b̄ ∩ p θ3 , b ∩ p
θ2 , b̄ ∩ p̄ θ1 , b ∩ p̄
︸ ︷︷ ︸

p̄=θ1∪θ2

}

b = θ1 ∪ θ3

one looks for m3(.|p) = [m′
3 ⊕ m′′

3 ](.) with m′′
3(p) = m′′

3(θ3 ∪ θ4) = 1. From the MCP, the condition

Bel3(b|p) = 1− ε3 and with simple algebraic manipulations, one finally gets

m3(θ3|θ3 ∪ θ4) = m′
3(θ1 ∪ θ2 ∪ θ3) = 1− ε3 (12.26)

m3(θ3 ∪ θ4|θ3 ∪ θ4) = m′
3(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε3 (12.27)

or equivalently

m3(b ∩ p|p) = m′
3(p̄ ∪ b) = 1− ε3 (12.28)

m3(p|p) = m′
3(b̄ ∪ p̄ ∪ b ∪ p) = ε3 (12.29)

Since all the complete prior basic belief assignments are available, one can combine them with the

Dempster’s rule to summarize all our prior knowledge drawn from our simple rule-based expert system

characterized by rules R = {r1, r2, r3} and convictions/confidences W = {w1, w2, w3} in these rules.

The fusion operation requires to primilarily choose the following frame of discernment Θ (satisfying

Shafer’s model) given by

Θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}

where

θ1 , f ∩ b ∩ p θ5 , f̄ ∩ b ∩ p

θ2 , f ∩ b ∩ p̄ θ6 , f̄ ∩ b ∩ p̄

θ3 , f ∩ b̄ ∩ p θ7 , f̄ ∩ b̄ ∩ p

θ4 , f ∩ b̄ ∩ p̄ θ8 , f̄ ∩ b̄ ∩ p̄
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The fusion of masses m1(.) given by eqs. (12.20)-(12.21) with m2(.) given by eqs. (12.24)-(12.25)

using the Demspter’s rule of combination [16] yields m12(.) = [m1 ⊕m2](.) with the following non null

components

m12(f ∩ b ∩ p) = ε1(1− ε2)/K12

m12(f̄ ∩ b ∩ p) = ε2(1− ε1)/K12

m12(b ∩ p) = ε1ε2/K12

with K12 , 1− (1− ε1)(1− ε2) = ε1 + ε2 − ε1ε2.

The fusion of all prior knowledge by the Dempster’s rule m123(.) = [m1⊕m2⊕m3](.) = [m12⊕m3](.)

yields the final result :

m123(f ∩ b ∩ p) = m123(θ1) = ε1(1 − ε2)/K123

m123(f̄ ∩ b ∩ p) = m123(θ5) = ε2(1 − ε1)/K123

m123(b ∩ p) = m123(θ1 ∪ θ5) = ε1ε2/K123

with K123 = K12 , 1− (1 − ε1)(1 − ε2) = ε1 + ε2 − ε1ε2.

which defines actually and precisely the conditional belief assignment m123(.|p∩ b). It turns out that the

fusion with the last basic belief assignment m3(.) brings no change with respect to previous fusion result

m12(.) in this particular problem.

Since we are actually interested to assess the belief that our observed particular penguin-animal named

Tweety (denoted as T = (p∩ b)) can fly, we need to combine all our prior knowledge m123(.) drawn from

our rule-based system with the belief assignment mo(T = (p ∩ b)) = 1 characterizing the observation

about Tweety. Applying again the Demspter’s rule, one finally gets the resulting conditional basic belief

function mo123 = [mo ⊕m123](.) defined by

mo123(T = (f ∩ b ∩ p)|T = (p ∩ b)) = ε1(1− ε2)/K12

mo123(T = (f̄ ∩ b ∩ p)|T = (p ∩ b)) = ε2(1− ε1)/K12

mo123(T = (b ∩ p)|T = (p ∩ b)) = ε1ε2/K12

From the Dempster-Shafer reasoning, the belief and plausibity that Tweety can fly are given by [16]

Bel(T = f |T = (p ∩ b)) =
∑

x∈2Θ,x⊆f

mo123(T = x|T = (p ∩ b))

Pl(T = f |T = (p ∩ b)) =
∑

x∈2Θ,x∩f 6=∅

mo123(T = x|T = (p ∩ b))
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Because f = [(f ∩ b ∩ p) ∪ (f ∩ b ∩ p̄) ∪ (f ∩ b̄ ∩ p) ∪ (f ∩ b̄ ∩ p̄)] and the specific values of the masses

defining mo123(.), one has

Bel(T = f |T = (p ∩ b)) = mo123(T = (f ∩ b ∩ p)|T = (p ∩ b))

Pl(T = f |T = (p ∩ b)) = mo123(T = (f ∩ b ∩ p)|T = (p ∩ b)) +mo123(T = (b ∩ p)|T = (p ∩ b))

and finally

Bel(T = f |T = (p ∩ b)) =
ε1(1 − ε2)

K12
(12.30)

Pl(T = f |T = (p ∩ b)) =
ε1(1 − ε2)

K12
+
ε1ε2
K12

=
ε1
K12

(12.31)

In a similar way, one will get for the belief and the plausibility that Tweety cannot fly

Bel(T = f̄ |T = (p ∩ b)) =
ε2(1 − ε1)

K12
(12.32)

Pl(T = f̄ |T = (p ∩ b)) =
ε2(1 − ε1)

K12
+
ε1ε2
K12

=
ε2
K12

(12.33)

Using the first order approximation when ε1 and ε2 are very small positive numbers, one gets finally

Bel(T = f |T = (p ∩ b)) = Pl(T = f |T = (p ∩ b)) ≈ ε1
ε1 + ε2

In a similar way, one will get for the belief that Tweety cannot fly

Bel(T = f̄ |T = (p ∩ b)) = Pl(T = f̄ |T = (p ∩ b)) ≈ ε2
ε1 + ε2

This result coincides with the Judea Pearl’s result but a different analysis and detailed presentation

has been done here. It turns out that this simple and complete analysis corresponds actually to the

ballooning extension and the generalized Bayesian theorem proposed by Smets in [21, 24] and discussed

by Shafer in [17] although it was carried out independently of Smets’ works. As pointed out by Judea

Pearl, this result based on DST and the Dempster’s rule of combination looks very paradoxical/counter-

intuitive since it means that if nonflying birds are very rare, i.e. ε2 ≈ 0, then penguin-birds like our

observed penguin-bird Tweety, have a very big chance of flying. As stated by Judea Pearl in [11] pages

448-449: ”The clash with intuition revolves not around the exact numerical value of Bel(f) but rather

around the unacceptable phenomenon that rule r3, stating that penguins are a subclass of birds, plays no

role in the analysis. Knowing that Tweety is both a penguin and a bird renders Bel(T = f |T = (p ∩ b))
solely a function of m1(.) and m2(.), regardless of how penguins and birds are related. This stands

contrary to common discourse, where people expect class properties to be overridden by properties of more

specific subclasses. While in classical logic the three rules in our example would yield an unforgivable

contradiction, the uncertainties attached to these rules, together with Dempster’s normalization, now
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render them manageable. However, they are managed in the wrong way whenever we interpret if-then

rules as randomized logical formulas of the material-implication type, instead of statements of conditional

probabilities”. Keep in mind that this Pearl’s statement is however given to show the semantic clash

between the Dempster-Shafer reasoning vs. the fallacious Bayesian reasoning to support the Bayesian

reasoning approach.

12.5 The Dezert-Smarandache reasoning

We analyze here the Tweety penguin triangle problem with the DSmT (see Part I of this book for a

presentation of DSmT). The prior knowledge characterized by the rules R = {r1, r2, r3} and convictions

W = {w1, w2, w3} is modeled as three independent sources of evidence defined on separate minimal and

potentially paradoxical (i.e internal conflicting) frames Θ1 , {p, f̄}, Θ2 , {b, f} and Θ3 , {p, b} since

the rule r1 doesn’t refer to the existence of b, the rule r2 doesn’t refer to the existence of p and the rule

r3 doesn’t refer to the existence of f or f̄ . Let’s note that the DSmT doesn’t require the refinement of

frames as with DST (see previous section). We follow the same analysis as in previous section but now

based on our DSm reasoning and the DSm rule of combination.

The first source B1 relative to r1 with confidence w1 = 1 − ε1 provides us the conditional belief

Bel1(f̄ |p) which is now defined from a paradoxical basic belief assignment m1(.) resulting of the DSm

combination of m′′
1(p) = 1 with m′′

1(.) defined on the hyper-power set DΘ1 = {∅, p, f̄ , p ∩ f̄ , p ∪ f̄}. The

choice for m′
1(.) results directly from the derivation of the DSm rule and the application of the MCP.

Indeed, the non null components of m1(.) are given by (we introduce explicitly the conditioning term in

notation for convenience):

m1(p|p) =

1
︷ ︸︸ ︷

m′′
1 (p)m′

1(p) +

1
︷ ︸︸ ︷

m′′
1(p)m′

1(p ∪ f̄)

m1(p ∩ f̄ |p) =

1
︷ ︸︸ ︷

m′′
1 (p)m′

1(f̄) +

1
︷ ︸︸ ︷

m′′
1(p)m′

1(p ∩ f̄)

The information Bel1(f̄ |p) = 1− ε1 implies

Bel1(f̄ |p) = m1(f̄ |p) +m1(p ∩ f̄ |p) = 1− ε1
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Since m1(p|p) + m1(p ∩ f̄ |p) = 1, one has necessarily m1(f̄ |p) = 0 and thus from previous equation

m1(f̄ ∩ p|p) = 1− ε1, which implies both

m1(p|p) = ε1

m1(p ∩ f̄ |p) =

1
︷ ︸︸ ︷

m′′
1(p)m′

1(f̄) +

1
︷ ︸︸ ︷

m′′
1(p)m′

1(p ∩ f̄) = m′
1(f̄) +m′

1(p ∩ f̄) = 1− ε1

Applying the MCP, it results that one must choose

m′
1(f̄) = 1− ε1 and m′

1(p ∩ f̄) = 0

The sum of remaining masses of m′
1(.) must be then equal to ε1, i.e.

m′
1(p) +m′

1(p ∪ f̄) = ε1

Applying again the MCP on this last constraint, one gets naturally

m′
1(p) = 0 and m′

1(p ∪ f̄) = ε1

Finally the belief assignment m1(.|p) relative to the source B1 and compatible with the constraint

Bel1(f̄ |p) = 1− ε1, holds the same numerical values as within the DST analysis (see eqs. (12.20)-(12.21))

and is given by

m1(p ∩ f̄ |p) = 1− ε1

m1(p|p) = ε1

but results here from the DSm combination of the two following assignments (i.e. m1(.) = [m′
1⊕m′′

1 ](.) =

[m′′
1 ⊕m′

1](.))






m′
1(f̄) = 1− ε1 and m′

1(p ∪ f̄) = ε1

m′′
1(p) = 1

(12.34)

In a similarly manner and working on Θ2 = {b, f} for source B2 with the condition Bel2(f |b) = 1− ε2,

the mass m2(.|b) results from the internal DSm combination of the two following assignments







m′
2(f) = 1− ε2 and m′

2(b ∪ f) = ε2

m′′
2(b) = 1

(12.35)

Similarly and working on Θ3 = {p, b} for source B3 with the condition Bel3(b|p) = 1 − ε3, the mass

m3(.|p) results from the internal DSm combination of the two following assignments







m′
3(b) = 1− ε3 and m′

3(b ∪ p) = ε3

m′′
3(p) = 1

(12.36)
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It can be easily verified that these (less specific) basic belief assignments generates the conditions

Bel1(f̄ |p) = 1− ε1, Bel2(f |b) = 1− ε2 and Bel3(b|p) = 1− ε3.

Now let’s examine the result of the fusion of all these masses based on DSmT, i.e by applying the

DSm rule of combination of the following basic belief assignments

m1(p ∩ f̄ |p) = 1− ε1 and m1(p|p) = ε1

m2(b ∩ f |b) = 1− ε2 and m2(b|b) = ε2

m3(p ∩ b|p) = 1− ε3 and m3(p|p) = ε3

Note that these basic belief assignments turn to be identical to those drawn from DST framework

analysis done in previous section for this specific problem because of integrity constraint f ∩ f̄ = ∅ and

the MCP, but result actually from a slightly different and simpler analysis here drawn from DSmT. So

we attack the TP2 with the same information as with the analysis based on DST, but we will show that

a coherent conclusion can be drawn with DSm reasoning.

Let’s emphasize now that one has to deal here with the hypotheses/elements p, b, f and f̄ and thus our

global frame is given by Θ = {b, p, f, f̄}. Note that Θ doesn’t satisfy Shafer’s model since the elements of

Θ are not all exclusive. This is a major difference between the foundations of DSmT with respect to the

foundations of DST. But because only f and f̄ are truly exclusive, i.e. f̄ ∩ f = ∅, we are face to a quite

simple hybrid DSm model M and thus the hybrid DSm fusion must apply rather than the classic DSm

rule. We recall briefly here (a complete derivation, justification and examples can be found in chapter

4) the hybrid DSm rule of combination associated to a given hybrid DSm model for k ≥ 2 independent

sources of information is defined for all A ∈ DΘ as:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(12.37)

where φ(A) is the characteristic non emptiness function of the set A, i.e. φ(A) = 1 if A /∈ ∅ (∅ , {∅,∅M}
being the set of all relatively and absolutely empty elements) and φ(A) = 0 otherwise, and

S1(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (12.38)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (12.39)

S3(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∪X2∪...∪Xk)=A
(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi) (12.40)
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with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) where u(X) is the union of all singletons θi that compose X and

It , θ1 ∪ θ2 ∪ . . . ∪ θn is the total ignorance defined on the frame Θ = {θ1, . . . , θn}. For example, if X is

a singleton then u(X) = X ; if X = θ1 ∩ θ2 or X = θ1 ∪ θ2 then u(X) = θ1 ∪ θ2; if X = (θ1 ∩ θ2)∪ θ3 then

u(X) = θ1 ∪ θ2 ∪ θ3; by convention u(∅) , ∅.

The first sum S1(A) entering in the previous formula corresponds to mass mMf (Θ)(A) obtained by

the classic DSm rule of combination based on the free DSm modelMf (i.e. on the free lattice DΘ). The

second sum S2(A) entering in the formula of the hybrid DSm rule of combination (12.37) represents the

mass of all relatively and absolutely empty sets which is transferred to the total or relative ignorances.

The third sum S3(A) entering in the formula of the hybrid DSm rule of combination (12.37) transfers

the sum of relatively empty sets to the non-empty sets in the same way as it was calculated following the

DSm classic rule.

To apply the hybrid DSm fusion rule formula (12.37), it is important to note that (p∩ f̄ )∩(b∩f)∩p ≡
p∩b∩f ∩ f̄ = ∅ because f ∩ f̄ = ∅, thus the mass (1−ε1)(1−ε2)ε3 is transferred to the hybrid proposition

H1 , (p ∩ f̄) ∪ (b ∩ f) ∪ p ≡ (b ∩ f) ∪ p; similarly (p ∩ f̄) ∩ (b ∩ f) ∩ (p ∩ b) ≡ p ∩ b ∩ f ∩ f̄ = ∅
because f ∩ f̄ = ∅ and therefore its associated mass (1 − ε1)(1 − ε2)(1 − ε3) is transferred to the hybrid

proposition H2 , (p∩ f̄)∪ (b ∩ f) ∪ (p∩ b). No other mass transfer is necessary for this Tweety Penguin

Triangle Problem and thus we finally get from hybrid DSm fusion formula (12.37) the following result

for m123(.|p∩ b) = [m1⊕m2⊕m3](.) (where ⊕ symbol corresponds here to the DSm fusion operator and

we omit the conditioning term p ∩ b here due to space limitation):

m123((b ∩ f) ∪ p|p ∩ b) = (1− ε1)(1− ε2)ε3

m123((p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b)|p ∩ b) = (1− ε1)(1− ε2)(1 − ε3)

m123(p ∩ b ∩ f̄ |p ∩ b) = (1− ε1)ε2ε3 + (1 − ε1)ε2(1− ε3) = (1− ε1)ε2

m123(p ∩ b ∩ f |p ∩ b) = ε1(1− ε2)ε3 + ε1(1 − ε2)(1− ε3) = ε1(1− ε2)

m123(p ∩ b|p ∩ b) = ε1ε2ε3 + ε1ε2(1− ε3) = ε1ε2

We can check all these masses add up to 1 and that this result is fully coherent with the rational

intuition especially when ε3 = 0, because non null components of m123(.|p ∩ b) reduces to

m123((p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b)|p ∩ b) = (1− ε1)(1 − ε2)

m123(p ∩ b ∩ f̄ |p ∩ b) = (1− ε1)ε2

m123(p ∩ b ∩ f |p ∩ b) = ε1(1− ε2)

m123(p ∩ b|p ∩ b) = ε1ε2
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which means that from our DSm reasoning there is a strong uncertainty (due to the conflicting rules

of our rule-based system), when ε1 and ε2 remain small positive numbers, that a penguin-bird animal

is either a penguin-nonflying animal or a bird-flying animal. The small value ε1ε2 for m123(p ∩ b|p ∩ b)
expresses adequately the fact that we cannot commit a strong basic belief assignment only to p∩ b know-

ing p ∩ b just because one works on Θ = {p, b, f, f̄} and we cannot consider the property p ∩ b solely

because the”birdness” or ”penguinness” property endow necessary either the flying or non-flying property.

Therefore the belief that the particular observed penguin-bird animal Tweety ( corresponding to

the particular mass mo(T = (p ∩ b)) = 1) can be easily derived from the DSm fusion of all our prior

summarized by m123(.|p ∩ b) and the available observation summarized by mo(.) and we get

mo123(T = (p ∩ b ∩ f̄)|T = (p ∩ b)) = (1 − ε1)ε2

mo123(T = (p ∩ b ∩ f)|T = (p ∩ b)) = ε1(1− ε2)

mo123(T = (p ∩ b)|T = (p ∩ b)) = ε1ε2

mo123(T = (b ∩ f) ∪ p|T = (p ∩ b)) = (1 − ε1)(1 − ε2)ε3

mo123(T = (p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b)|T = (p ∩ b)) = (1 − ε1)(1 − ε2)(1 − ε3)

From the DSm reasoning, the belief that Tweety can fly is then given by

Bel(T = f |T = (p ∩ b)) =
∑

x∈DΘ,x⊆f

mo123(T = x|T = (p ∩ b))

Using all the components of mo123(.|T = (p ∩ b)), one directly gets

Bel(T = f |T = (p ∩ b)) = mo123(T = (f ∩ b ∩ p)|T = (p ∩ b))

and finally

Bel(T = f |T = (p ∩ b)) = ε1(1 − ε2) (12.41)

In a similar way, one will get for the belief that Tweety cannot fly

Bel(T = f̄ |T = (p ∩ b)) = ε2(1 − ε1) (12.42)

So now for both cases the beliefs remain very low which is normal and coherent with analysis done

in section 12.3.2. Now let’s examine the plausibilities of the ability for Tweety to fly or not to fly. These

are given by

Pl(T = f |T = (p ∩ b)) ,
∑

x∈DΘ,x∩f 6=∅

mo123(T = x|T = (p ∩ b))

Pl(T = f̄ |T = (p ∩ b)) ,
∑

x∈DΘ,x∩f̄ 6=∅

mo123(T = x|T = (p ∩ b))
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which turn to be after elementary algebraic manipulations

Pl(T = f |T = (p ∩ b)) = (1 − ε2) (12.43)

Pl(T = f̄ |T = (p ∩ b)) = (1 − ε1) (12.44)

So we conclude, as reasonably/rationally expected, that we can’t decide on the ability for Tweety of

flying or of not flying, since one has

[Bel(f |p ∩ b),Pl(f |p ∩ b)] = [ε1(1− ε2), (1 − ε2)] ≈ [0, 1]

[Bel(f̄ |p ∩ b),Pl(f̄ |p ∩ b)] = [ε2(1− ε1), (1 − ε1)] ≈ [0, 1]

Note that when setting ε1 = 0 and ε2 = 1 (or ε1 = 1 and ε2 = 0), i.e. one forces the full consistency

of the initial rules-based system, one gets coherent result on the certainty of the ability of Tweety to not

fly (or to fly respectively).

This coherent result (radically different from the one based on Dempster-Shafer reasoning but starting

with exactly the same available information) comes from the hybrid DSm fusion rule which transfers some

parts of the mass of empty set m(∅) = (1− ε1)(1− ε2)ε3 + (1− ε1)(1− ε2)(1− ε3) ≈ 1 onto propositions

(b ∩ f) ∪ p and (p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b).

It is clear however that the high value of m(∅) in this TP2 indicates a high conflicting fusion problem

which proves that the TP2 is a true almost impossible problem and the fusion result based on DSmT

reasoning allows us to conclude on the true undecidability on the ability for Tweety of flying or of not

flying. In other words, the fusion based on DSmT can be applied adequately on this almost impossible

problem and concludes correctly on its indecibility. Another simplistic solution would consist to say

naturally that the problem has to be considered as an impossible one just because m(∅) ≥ 0.5 .

12.6 Conclusion

In this chapter we have proposed a deep analysis of the challenging Tweety Penguin Triangle Problem.

The analysis proves that the Bayesian reasoning cannot be mathematically justified to characterize the

problem because the probabilistic model doesn’t hold, even with the help of acceptance of the principle

of indifference and the conditional independence assumption. Any conclusions drawn from such repre-

sentation of the problem based on a hypothetical probabilistic model are based actually on a fallacious

Bayesian reasoning. This is a fundamental result. Then one has shown how the Dempster-Shafer reason-

ing manages in what we feel is a wrong way the uncertainty and the conflict in this problem. We then
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proved that the DSmT can deal properly with this problem and provides a well-founded and reasonable

conclusion about the undecidability of its solution.
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Tendencies using DSmT
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Abstract: This chapter presents an approach for target behavior tendency es-

timation (Receding, Approaching). It is developed on the principles of Dezert-

Smarandache theory (DSmT) of plausible and paradoxical reasoning applied to con-

ventional sonar amplitude measurements, which serve as an evidence for correspond-

ing decision-making procedures. In some real world situations it is difficult to finalize

these procedures, because of discrepancies in measurements interpretation. In these

cases the decision-making process leads to conflicts, which cannot be resolved using

the well-known methods. The aim of the performed study is to present and to ap-

prove the ability of DSmT to finalize successfully the decision-making process and to

assure awareness about the tendencies of target behavior in case of discrepancies in

measurements interpretation. An example is provided to illustrate the benefit of the

proposed approach application in comparison of fuzzy logic approach, and its ability

to improve the overall tracking performance.
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13.1 Introduction

A
ngle-only tracking systems based on sonars are poorly developed topic due to a number of complica-

tions. These systems tend to be less precise than those based on active sensors, but one important

advantage is their vitality of being stealth. In a single sensor case only direction of the target as an

axis is known, but the true target position and behavior (approaching or descending) remain unknown.

Recently, the advances of computer technology lead to sophisticated data processing methods, which

improve sonars capability. A number of developed tracking techniques operating on angle-only measure-

ment data use additional information. In our case we utilize the measured emitter’s amplitude values in

consecutive time moments. This information can be used to assess tendencies in target’s behavior and,

consequently, to improve the overall angle-only tracking performance. The aim of the performed study

is to present and to approve the ability of DSmT to finalize successfully the decision-making process

and to assure awareness about the tendencies of target behavior in case of discrepancies of angle-only

measurements interpretation. Results are presented and compared with the respective results, but drawn

from the fuzzy logic approach.

13.2 Statement of the Problem

In order to track targets using angle-only measurements it is necessary to compensate the unknown ranges

by using additional information received from the emitter. In our case we suppose that in parallel with

measured local angle the observed target emits constant signal, which is perceived by the sensor with

a non-constant, but a varying strength (referred as amplitude). The augmented measurement vector at

the end of each time interval k = 1, 2, . . . is Z = {Zθ, ZA}, where: Zθ = θ + νθ denotes the measured

local angle with zero-mean Gaussian noise νθ = N (0, σνθ
) and covariance σνθ

; ZA = A + νA denotes

corresponding signal’s amplitude value with zero-mean Gaussian noise νA = N (0, σνA
) and covariance

σνA
. The variance of amplitude value is because of the cluttered environment and the varying unknown

distance to the object, which is conditioned by possible different modes of target behavior (approaching

or descending). Our goal is, utilizing received amplitude feature measurement, to predict and to estimate

the possible target behavior tendencies.

Figure 13.1 represents a block diagram of the target’s behavior tracking system. Regarding to the

formulated problem, we maintain two single-model-based Kalman-like filters running in parallel using two

models of possible target behavior - Approaching and Receding. At initial time moment k the target is

characterized by the fuzzified amplitude state estimates according to the models AApp(k|k) and ARec(k|k).

The new observation ZA(k + 1) = A(k + 1) + νA(k + 1) is assumed to be the true value, corrupted by

additive measurement noise. It is fuzzified according to the chosen fuzzification interface.
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Figure 13.1: Block diagram of target’s behavior tracking system

The tendency prediction approach is based on Zadeh compositional rule. The updating procedure uses

Dezert-Smarandache classical combination rule based on the free DSm model to estimate target behavior

states. Dezert-Smarandache Theory assures a particular framework where the frame of discernment is

exhaustive but not necessarily exclusive and it deals successfully with rational, uncertain or paradoxical

data. In general this diagram resembles the commonly used approaches in standard tracking systems [1, 2],

but the peculiarity consists in the implemented particular approaches in the realizations of the main steps.

13.3 Approach for Behavior Tendency Estimation

There are a few particular basic components in the block diagram of target’s behavior tracking system.

13.3.1 The fuzzification interface

A decisive variable in our task is the transmitted from the emitter amplitude value A(k), received at

consecutive time moments k = 1, 2, . . .. We use the fuzzification interface (fig. 13.2), that maps it into

two fuzzy sets defining two linguistic values in the frame of discernment Θ = {S , Small, B , Big}.
Their membership functions are not arbitrarily chosen, but rely on the inverse proportion dependency

between the measured amplitude value and corresponding distance to target.
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Figure 13.2: Fuzzification Interface

The length of fuzzy sets’ bases provide design parameter that we calibrate for satisfactory performance.

These functions are tuned in conformity with the particular dependency A ≈ f(1/δD) known as a

priori information The degree of overlap between adjacent fuzzy sets reflects amplitude gradients in the

boundary points of specified distance intervals.

13.3.2 The behavior model

In conformity with our task, fuzzy rules’ definition is consistent with the tracking of amplitude changes

tendency in consecutive time moments k = 1, 2, . . .. With regard to this a particular feature is that

considered fuzzy rules have one and the same antecedents and consequents. We define their meaning by

using the prespecified in paragraph linguistic terms and associated membership functions (according to

paragraph 13.3.1). We consider two essential models of possible target behavior:

Approaching Target - it’s behavior is characterized as a stable process of gradually amplitude

value increasing, i.e. the transition S → S → B → B is held in a timely manner;

Receding Target - it’s behavior is characterized as a stable process of gradually amplitude value

decreasing, i.e. the transition B → B → S → S is held in a timely manner.

To comprise appropriately these models the following rule bases have to be carried out:

Behavior Model 1: Approaching Target:

Rule 1: IF A(k) = S THEN A(k + 1) = S

Rule 2: IF A(k) = S THEN A(k + 1) = B

Rule 3: IF A(k) = B THEN A(k + 1) = B
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Behavior Model 2: Receding Target:

Rule 1: IF A(k) = B THEN A(k + 1) = B

Rule 2: IF A(k) = B THEN A(k + 1) = S

Rule 3: IF A(k) = S THEN A(k + 1) = S

The inference schemes for these particular fuzzy models are conditioned on the cornerstone principle

of each modeling process. It is proven [4], that minimum and product inferences are the most widely

used in engineering applications, because they preserve cause and effect. The models are derived as fuzzy

graphs:

g = max
i

(µAi×Bi
(u, v)) = max

i
(µAi

(u) · µBi
(v)) (13.1)

in which µAi×Bi
(u, v) = µAi

(u) · µBi
(v) corresponds to the Larsen product operator for the fuzzy con-

junction, g = maxi(µAi×Bi
) is the maximum for fuzzy union operator and

µB′(y) = max
xi

(min(µA′(xi), µA×B(xi, yi)))

is the Zadeh max-min operator for the composition rule.

The fuzzy graphs related to the two models are obtained in conformity with the above described

mathematical interpretations, by using the specified membership functions for linguistic terms Small,

Big, and taking for completeness into account all possible terms in the hyper-power set DΘ = {S,B, S ∩
B,S ∪B}:

k → k + 1 S S ∩B B S ∪B

S 1 0 1 0

S ∩B 0 0 0 0

B 0.2 0 1 0

S ∪B 0 0 0 0

Relation 1: Approaching Target

k → k + 1 S S ∩B B S ∪B

S 1 0 0.2 0

S ∩B 0 0 0 0

B 1 0 1 0

S ∪B 0 0 0 0

Relation 2: Receding Target
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13.3.3 The amplitude state prediction

At initial time moment k the target is characterized by the fuzzified amplitude state estimates according

to the models µAApp(k|k) and µARec(k|k). Using these fuzzy sets and applying the Zadeh max-min com-

positional rule [4] to relation 1 and relation 2, we obtain models’ conditioned amplitude state predictions

for time k+ 1, i.e. µAApp(k+ 1|k) is given by max(min(µAApp(k|k), µApp(k → k+ 1))) and µARec(k+ 1|k)

by max(min(µARec(k|k), µRec(k → k + 1))).

13.3.4 State updating using DSmT

The classical DSm combinational rule is used here for state updating. This procedure is realized on

the base of fusion between predicted states according to the considered models (Approaching, Receding)

and the new measurement. Since DΘ is closed under ∪ and ∩ operators, to obey the requirements to

guarantee that m(.) : DΘ 7→ [0, 1] is a proper general information granule, it is necessarily to transform

fuzzy membership functions representing the predicted state and new measurement into mass functions. It

is realized through their normalization with respect to the unity interval. Models’ conditioned amplitude

state prediction vector µ
App/Rec
pred (.) is obtained in the form:

[µ
A/R
pred(S), µ

A/R
pred(S ∩B), µ

A/R
pred(B), µ

A/R
pred(S ∪B)] (13.2)

In general the terms, contained in µ
App/Rec
pred represent the possibilities that the predicted amplitude

behavior belongs to the elements of hyper-power set DΘ and there is no requirement to sum up to unity.

In order to use the classical DSm combinational rule, it is necessary to make normalization over µ
App/Rec
pred

to obtain respective generalized basic belief assigments (gbba) ∀C ∈ DΘ = {S, S ∩B,B, S ∪B}:

m
App/Rec
pred (C) =

µ
App/Rec
pred (C)

∑

A∈DΘ µ
App/Rec
pred (A)

(13.3)

The equivalent normalization has to be made for the received new measurement before being fused

with the DSm rule of combination.

Example

Let’s consider at scan 3 the predicted vector for the model Approaching µ
App/Rec
pred (4|3) with components

µ(S) = 0.6, µ(S ∩ B) = 0.15, µ(B) = 0.05 and µ(S ∪ B) = 0.0, then the normalization constant is

K = 0.6 + 0.15 + 0.05 + 0.0 = 0.8 and after normalization, one gets the resulting gbba

m
App/Rec
pred (S) =

0.6

K
= 0.75 m

App/Rec
pred (S ∩B) =

0.15

K
= 0.1875

m
App/Rec
pred (B) =

0.05

K
= 0.0625 m

App/Rec
pred (S ∪B) =

0.0

K
= 0.0
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That way one can obtain m
App/Rec
pred (.) as a general (normalized) information granule for the prediction

of the target’s behavior.

The target behavior estimate m
App/Rec
upd (.) at measurement time is then obtained from m

App/Rec
pred (.)

and the amplitude belief assignment mmes(B) (built from the normalization of the new fuzzyfied crisp

amplitude measurement received) by the DSm rule of combination, i.e.

m
App/Rec
upd (C) = [m

App/Rec
pred ⊕mmes](C) =

∑

A,B∈DΘ,A∩B=C

m
App/Rec
pred (A)mmes(B) (13.4)

Since in contrast to the DST, DSmT uses a frame of discernment, which is exhaustive, but in general

case not exclusive (as it is in our case for Θ = {S,B}), we are able to take into account and to utilize

the paradoxical information S ∩ B although being not precisely defined. This information relates to the

case, when the moving target resides in an overlapping intermediate region, when it is hard to predict

properly the tendency in its behavior. Thus the conflict management, modeled that way contributes to

a better understanding of the target motion and to assure awareness about the behavior tendencies in

such cases.

13.4 The decision criterion

It is possible to build for each model M = (A)pproaching, (R)eceding a subjective probability measure

PM
upd(.) from the bba mM

upd(.) with the generalized pignistic transformation (GPT) [3, 6] defined ∀A ∈ DΘ

by

PM
upd{A} =

∑

C∈DΘ|A∩C 6=∅

CMf (C ∩A)

CMf (C)
mM

upd(C) (13.5)

where CMf (X) denotes the DSm cardinal of proposition X for the free DSm model Mf of the problem

under consideration here. The decision criterion for the estimation of correct model M is then based on

the evolution of the Pignistic entropies, associated with updated amplitude states:

HM
pig(P

M
upd) , −

∑

A∈V

PM
upd{A} ln(PM

upd{A}) (13.6)

where V denotes the parts of the Venn diagram of the free DSm model Mf . The estimation M̂(k) of

correct model at time k is given by the most informative model corresponding to the smallest value of

the pignistic entropy between HA
pig(PA

upd) and HR
pig(P

R
upd).

13.5 Simulation study

A non-real time simulation scenario is developed for a single target trajectory (fig.13.3) in plane coor-

dinates X ,Y and for constant velocity movement. The tracker is located at position (0km, 0km). The
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target’s starting point and velocities are: (x0 = 5km, y0 = 10km), with following velocities during the

two part of the trajectory (ẋ = 100m/s, ẏ = 100m/s) and (ẋ = −100m/s, ẏ = −100m/s).
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Figure 13.3: Target trajectory.
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Figure 13.4: Measurements statistics.

The time sampling rate is T = 10s. The dynamics of target movement is modeled by equations:

x(k) = x(k − 1) + ẋT and y(k) = y(k − 1) + ẏT

The amplitude value ZA(k) = A(k) + νA(k) measured by sonar is a random Gaussian distributed process

with mean A(k) = 1/D(k) and covariance σA(k) (fig. 13.4). D(k) =
√

x2(k) + y2(k) is the distance to

the target, (x(k), y(k)) is the corresponding vector of coordinates, and νA(k) is the measurement noise.

Each amplitude value (true one and the corresponding noisy one) received at each scan is processed

according to the block diagram (figure 13.1).
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Figure 13.5: Behavior tendencies (Noise-free measurements).
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Figure 13.6: Behavior Tendencies (Noisy measurements).

Figures 13.5 and 13.6 show the results obtained during the whole motion of the observed target.

Figure 13.5 represents the case when the measurements are without noise, i.e. Z(k) = A(k). Figure 13.6

represents the case when measured amplitude values are corrupted by noise. In general the presented

graphics show the estimated tendencies in target behavior, which are described via the scan consecutive

transitions of the estimated amplitude states.

Figure 13.7 represents the evolution of pignistic entropies associated with updated amplitude states

for the Approaching and Receding models in case of noisy measurements; the figure for the noise-free

measurement is similar. It illustrates the decision criterion used to choose the correct model. If one takes

a look at the figure 13.5 and figure 13.7, it can be seen that between scans 1st and 15th the target motion
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is supported by Approaching model, because that mode corresponds to the minimum entropies values,

which means that it is the more informative one.
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Figure 13.7: Evolution of the pignistic entropy for updated states.

The Approaching model is dominant, because the measured amplitude values during these scans stable

reside in the state Big, as it is obvious from the fuzzification interface (fig.13.2). In the same time, Reced-

ing model supports the overlapping region S ∩B, which is transition towards the state Small. Between

scans 16th and 90th the Receding model becomes dominant since the variations of amplitude changes

are minimal and their amplitude values stable support the state Small. During these scans Approaching

model has a small reaction to the measurement statistics, keeping paradoxical state S ∩ B.What it is

interesting and important to note is that between scans 16th and 30th the difference of entropies between

Approaching and Receding models increases, a fact, that makes us to be increasingly sure that the Re-

ceding mode is becoming dominant. Then, between scans 75th and 90th the difference of these entropies

is decreasing, which means that we are less and less sure, that Receding model remain still dominant.

After switching scan 91th the Approaching model becomes dominant one, until scan 100th. In general the

reaction of the considered models to the changes of target motion is not immediate, because the whole

behavior estimation procedure deals with vague propositions Small, Big, and sequences of amplitude

values at consecutive scans often reside stable in one and the same states.

Comparing the results in figure 13.6 with the results in figure 13.5, it is evident, that although some

disorder in the estimated behavior tendencies, one can make approximately correct decision due to the

possibility of DSmT to deal with conflicts and that way to contribute for a better understanding of target

behavior and evaluation of the threat.
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13.6 Comparison between DSm and Fuzzy Logic Approaches

The objective of this section is to compare the results received by using DSm theory and respective

results but drawn from the Fuzzy Logic Approach (FLA) [4, 8, 9], applied on the same simulation sce-

nario. The main differences between the two approaches consist in the domain of considered working

propositions and in the updating procedure as well. In present work, we use DSm combination rule to

fuse the predicted state and the new measurement to obtain the estimated behavior states, while in the

fuzzy approach state estimates are obtained through a fuzzy set intersection between these entities. It

is evident from the results, shown in figures 13.8 and 13.9, that here we deal with only two proposi-

tions Θ = {Small,Big}. There is no way to examine the behavior tendencies in the overlapping region,

keeping into considerations every one of possible target’s movements: from S∩B to B or from S∩B to S.
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Figure 13.8 shows the noise-free measurement case. It could be seen that between scan 10 and 90 target

motion is supported by the correct for that case Receding model, while Approaching one has no reaction

at all. If we compare corresponding figure 13.5 (DSm case) and present figure 13.8, we can see, that in

the case of DSm approach Receding model reacts more adequately to the true target tendency , because

there is a possibility to deal with the real situation – the tendency of the target to make a movement

from B to the overlapping region B ∩ S. In the FLA case there is no such opportunity and because of

that between scan 1st and 10th Receding model has no reaction to the real target movement towards the

B ∩ S. Figure 13.9 represents the case when the measured amplitude values are corrupted by noise. It

is difficult to make proper decision about the behavior tendency, especially after scan 90th., because it

is obvious, that here the model Approaching coincide with the model Receding. In order to reduce the

influence of measurement noise over tendency estimation, an additional noise reduction procedure has

to be applied to make the measurements more informative. Its application improves the overall process

of behavior estimation. Taking in mind all the results drawn from DSmT and FLA application, we can

make the following considerations:

• DSmT and FLA deal with a frame of discernment, based in general on imprecise/vague notions

and concepts Θ = {S,B}. But DSmT allows us to deal also with uncertain and/or paradoxical

data, operating on the hyper-power set DΘ = {S, S ∩ B,B, S ∪ B}. In our particular application

it gives us an opportunity for flexible tracking the changes of possible target behavior during the

overlapping region S ∩B.

• DSmT based behavior estimates can be characterized as a noise resistant, while FLA uses an

additional noise reduction procedure to produce ‘smoothed’ behavior estimates.

13.7 Conclusions

An approach for estimating the tendency of target behavior was proposed. It is based on Dezert-

Smarandache theory applied to conventional sonar measurements. It was evaluated using computer

simulation. The provided example illustrates the benefits of DSm approach in comparison of fuzzy logic

one. Dealing simultaneously with uncertain and paradoxical data, an opportunity for flexible and ro-

bust reasoning is realized, overcoming the described limitations relative to the fuzzy logic approach.

It is presented and approved the ability of DSmT to ensure reasonable and successful decision-making

procedure about the tendencies of target behavior in case of discrepancies of angle-only measurements

interpretation. The proposed approach yields confident picture for complex and ill-defined engineering

problems.
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Chapter 14

Generalized Data Association for

Multitarget Tracking in Clutter
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Abstract: The objective of this chapter is to present an approach for target track-

ing in cluttered environment, which incorporates the advanced concept of generalized

data (kinematics and attribute) association (GDA) to improve track maintenance

performance in complicated situations (closely spaced and/or crossing targets), when

kinematics data are insufficient for correct decision making. It uses Global Nearest

Neighbour-like approach and Munkres algorithm to resolve the generalized associ-

ation matrix. The main peculiarity consists in applying the principles of Dezert-

Smarandache theory (DSmT) of plausible and paradoxical reasoning to model and

process the utilized attribute data. The new general Dezert-Smarandache hybrid rule

of combination is used to deal with particular integrity constraints associated with

some elements of the free distributive lattice. The aim of the performed study is to

provide coherent decision making process related to generalized data association and

to improve the overall tracking performance. A comparison with the corresponding

results, obtained via Dempster-Shafer theory is made.
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14.1 Introduction

O
ne important function of each radar surveillance system in cluttered environment is to keep and

improve targets’ tracks maintenance performance. It becomes a crucial and challenging problem

especially in complicated situations of closely spaced, and/or crossing targets. The design of a modern

multitarget tracking (MTT) algorithms in a such real-life stressful environment motivates the incorpora-

tion of the advanced concepts for generalized data association. In order to resolve correlation ambiguities

and to select the best observation-track pairings, in this study, a particular generalized data association

(GDA) approach is proposed and incorporated in a MTT algorithm. It allows the introduction of target

attribute into the association logic, based on the general Dezert-Smarandache rule for combination, which

is adapted to deal with possible integrity constraints on the problem under consideration due to the true

nature of the elements involved into it. This chapter extends recent research work published in [15] which

was limited to target tracking in clutter-free environment.

14.2 Basic Elements of Tracking Process

The tracking process consists of two basic elements: data association and track filtering. The first element

is often considered as the most important. Its goal is to associate observations to existing tracks.

14.2.1 Data Association

To eliminate unlikely observation-to-track pairing at the begining a validation region (gate) is formed

around the predicted track position. The measurements in the gate are candidates for association to the

corresponding track.

14.2.1.1 Gating

We assume zero-mean Gaussian white noise for measurements. The vector difference between received

measurement vector zj(k) and predicted measurement vector ẑi(k|k − 1) of target i is defined to be

residual vector (called innovation)

z̃ij(k) = zj(k)− ẑi(k|k − 1)

with residual covariance matrix S = HPH′ + R, where P is the state prediction covariance matrix, H

is the measurement matrix and R is the measurement covariance matrix [2, 3, 4, 5]. The scan indexes k

will be dropped for notational convenience. The norm (normalized distance function) of the innovation

is evaluated as:

d2
ij = z̃′ijS

−1z̃ij
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One defines a threshold constant for gate γ such that correlation is allowed if the following relationship

is satisfied

d2
ij ≤ γ (14.1)

Assume that the measurement vector size is M . The quantity d2
ij is the sum of the squares of M

independent Gaussian random variables with zero means and unit standard deviations. For that reason

d2
ij will have χ2

M distribution with M degrees of freedom and allowable probability of a valid observation

falling outside the gate. The threshold constant γ can be defined from the table of the chi-square (χ2
M )

distribution [3].

14.2.1.2 Generalized Data Association (GDA)

If a single observation is within a gate and if that observation is not within a gate of any other track, the

observation can be associated with this track and used to update the track filter. But in a dense target

environment additional logic is required when an observation falls within the gates of multiple target

tracks or when multiple observations fall within the gate of a target track.

When attribute data are available, the generalized probability can be used to improve the assignment.

In view of independence of the kinematic and attribute measurement errors, the generalized probability

for measurement j originating from track i is:

Pgen(i, j) = Pk(i, j)Pa(i, j)

where Pk(i, j) and Pa(i, j) are kinematic and attribute probability terms respectively.

Our goal is to choose a set of assignments {χij}, for i = 1, . . . n and j = 1, . . . ,m, that assures

maximum of the total generalized probability sum. To find it, we use the solution of the assignment

problem

min

n∑

i=1

m∑

j=1

aijχij

where:

χij =







1 if measurement j is assigned to track i according to assignment problem solution

0 otherwise

If, in the attempt to maximize the number of assignments, the assignment algorithm chooses a pairing

that does not satisfy the gate, the assignment is later removed.

Because our probabilities vary 0 ≤ Pk(i, j), Pa(i, j) ≤ 1 and to satisfy the condition to be minimized, the

elements of the particular assignment matrix are defined as :

aij = 1− Pgen(i, j) = 1− Pk(i, j)Pa(i, j)
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14.2.2 Filtering

The used tracking filter is the first order extended Kalman filter [7] for target state vector x = [x ẋ y ẏ]′,

where x and y are Cartesian coordinates and ẋ and ẏ are velocities along Cartesian axes and measurement

vector z = [β D]′, where β is the azimuth (measured from the North), and D is the distance from the

observer to the target under consideration.

The measurement function h(.) is (assuming the sensor located at position (0,0)):

h(x) = [h1(x)h2(x]′ = [arctan(
x

y
)
√

x2 + y2]′

and the Jacobian [3]:

H = [Hij ] = [∂hi/∂xj ] i = 1, 2 j = 1, . . . , 4

We assume constant velocity target model. The process noise covariance matrix is: Q = σ2
vQT , where T

is the sampling/scanning period, σv is standard deviation of the process noise and QT is given by [8]:

QT = diag(Q2×2,Q2×2) with Q2×2 =





T 4

4
T 3

2

T 3

2 T 2





The measurement error matrix is R = diag(σ2
β , σ

2
D) where σβ and σD are the standard deviations of

measurement errors for azimuth and distance.

The track initiation is performed by two-point differencing [7]. After receiving observations for first

two scans the initial state vector is estimated by x̂ = [x(2) x(2)−x(1)T y(2) y(2)−y(1)T ]′ where (x(1), y(1)) and

(x(2), y(2)) are respectively the target positions at the first scan for time stamp k = 1, and at the second

scan for k = 2. The initial (starting at time stamp k = 2) state covariance matrix P is evaluated by:

P = diag(Px
2×2,P

y
2×2) with P

(.)
2×2 =




σ2

(.)

σ2
(.)

T

σ2
(.)

T

2σ2
(.)

T 2





where the index (.) must be replaced by either x or y indexes with σ2
x ≈ σ2

D sin2(zβ) + z2
Dσ

2
β cos2(zβ) and

σ2
y ≈ σ2

D cos2(zβ) + z2
Dσ

2
β sin2(zβ). zβ and zD are the components of the measurement vector received at

scan k = 2, i.e. z = [zβ zD]′ = h(x) + w with w ∼ N (0,R).

14.3 The Attribute Contribution to GDA

Data association with its goal of partitioning observations into tracks is a key function of any surveillance

system. An advanced tendency is the incorporation of generalized data (kinematics and attribute) asso-

ciation to improve track maintenance performance in complicated situations, when kinematics data are

insufficient for coherent decision making process. Analogously with the kinematic tracking, the attribute
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tracking can be considered as the process of combining information collected over time from one or more

sensors to refine the knowledge about the evolving attributes of the targets. The motivation for attribute

fusion is inspired from the necessity to ascertain the targets’ types, information, that in consequence has

an important implication to enhance the tracking performance. A number of techniques, probabilistic in

nature are available for attribute fusion. Their analysis led us to belief, that the theory of Dempster-

Shafer is well suited for representing uncertainty, but especially in case of low conflicts between the bodies

of evidence. When the conflict increases and becomes high, (case, which often occurs in data association

process) the combinational rule of Dempster hides the risk to produce indefiniteness. To avoid that sig-

nificant risk we consider the form of attribute likelihood function within the context of DSm theory, i.e.

the term to be used for computing the probabilities of validity for data association hypotheses. There

are a few basic steps, realizing the concept of attribute data association.

14.3.1 The Input Fuzzification Interface

Fuzzification interface (see fig. 14.1) transforms numerical measurement received from a sensor into fuzzy

set in accordance with the a priori defined fuzzy partition of input space-the frame of discernments Θ.

This frame includes all considered linguistic values related to the chosen particular input variable and

their corresponding membership functions. The fuzzification of numerical sensory data needs dividing an

optimal membership into a suitable number of fuzzy sets [14]. Such division provides smooth transitions

and overlaps among the associated fuzzy sets, according to the particular real world situation.
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Figure 14.1: Fuzzification interface
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The considerable input variable in the particular case is the Radar Cross Section (RCS) of the ob-

served targets. In our work the modeled RCS data are analyzed to determine the target size with the

subsequent declaration that the observed target is an aircraft of specified type (Fighter, Cargo) or False

Alarms. Taking it in mind, we define two frames of discernments: first one according to the size of

RCS: Θ1 = {Very Small (VS), Small (S),Big (B)} and the second one determining the corresponding to

its Target Type Θ2 = {False Alarms (FA),Fighter (F),Cargo (C)}.

The radar cross section according to the real targets is modeled as Swerling 3 type, where the density

function for the RCS σ is given by:

f(σ) =
4σ

σ2
ave

exp[− 2σ

σave
]

with the average RCS (σave) varying between different targets’ types [16]. The cumulative distribution

function of the radar cross section is given by

F (σ0) = P{0 ≤ σ ≤ σ0} = 1− (1 +
2σ0

σave
) exp[− 2σ0

σave
]

Since the probabilities F (σ0) for having different values of radar cross section are uniformly distributed

in the interval [0, 1] over time (i.e. these values are uncorrelated in time), a sample of observation of the

RCS can be simulated by solving equation:

(1 +
2σ0

σave
) exp[− 2σ0

σave
] = 1− x

where x is a random number that is uniformly distributed between 0 and 1.

The scenario considered in our work deals with targets’ types Fighter (F) and Military Cargo (C)

with an average RCS :

σF
ave = 1.2m2 and σC

ave = 4m2

The radar cross section according to the False Alarms [1] is modeled as Swerling 2 type, where the

density function for the RCS is given by:

f(σ) =
1

σave
exp[− σ

σave
] with σave = 0.3m2

The cumulative distribution function is given by

F (σ0) = P{0 ≤ σ ≤ σ0} = 1− exp[− σ0

σave
]

A sample of observation of the RCS can be computed by solving equation:

exp[− σ0

σave
] = 1− x

where x is a random number that is uniformly distributed between 0 and 1.
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The input fuzzification interface maps the current modeled RCS values into three fuzzy sets: VerySmall,

Small and Big, which define the corresponding linguistic values, defining the variable ”RCS”. Their

membership functions are not arbitrarily chosen, but rely on the calculated respective histograms for

10000 Monte Carlo runs. Actually these fuzzy sets form the frame of discernements Θ1. After fuzzification

the new RCS value (rcs) is obtained in the form :

rcs⇒ [µVerySmall(rcs), µSmall(rcs), µBig(rcs)]

In general, the grades µVerySmall(rcs), µSmall(rcs), µBig(rcs) represent the possibilities the new RCS value

to belong to the elements of the frame Θ1 and there is no requirement to sum up to unity. Figure 14.2

below shows the way which the new observations for Cargo, Fighter and False Alarms are modeled for

500 Monte Carlo runs, using the corresponding Swerling type functions type 3 and 2. It is evident that

they are too much mixed. It influences over the distinction between them. That fact hides the possibility

of intrinsic conflicts between the fused bodies of evidence (general basic belief assignment (gbba) of tar-

gets’ tracks and observations), because of their imprecise belief functions and consequently yields a poor

targets tracks’ performance. To deal successfuly with such kind of stressful, but real situation, we need

DSm theory to process flexibly and adequately these conflicts.
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14.3.2 Tracks’ Updating Procedures

14.3.2.1 Using Classical DSm Combinational Rule

After receiving the new observations, detected during the current scan k, to obey the requirements to

guarantee that their particular belief assignment m(.) are general information granules, it is necessary

to transform each measurement’s set of fuzzy membership grades into the corresponding mass function,

before being fused. It is realized through normalization with respect to the unity:

mmeas(C) =
µC(rcs)

∑

C∈Θ1
µC(rcs)

, ∀C ∈ Θ1 = {VS, S,B}

The general basic belief assignments (gbba) of tracks’ histories are described in terms of the hyper-

power set :

DΘ1 = {∅,VS, S,B,VS ∩ S ∩ B,VS ∩ S,VS ∩ B, S ∩ B, (VS ∪ S) ∩ B, (VS ∪ B) ∩ S,

(S ∪ B) ∩VS, (VS ∩ S) ∪ (VS ∩ B) ∪ (S ∩ B), (VS ∩ S) ∪ B, (VS ∩ B) ∪ S,

(S ∩B) ∪VS,VS ∪ S,VS ∪ B, S ∪B,VS ∪ S ∪ B}

Then DSm classical combinational rule (see chapter 1) is used for tracks’ updating:

mij
upd(C) = [mi

hist ⊕mj
meas](C) =

∑

A,B∈DΘ1 ,A∩B=C

mi
hist(A)mj

meas(B)

where mij
upd(.) represents the gbba of the updated track i with the new observation j; mi

hist, m
j
meas are

respectively gbba vectors of track’s i history and the new observation j.

It is important to note, that for us the two considered independent sources of information are the

tracks’ histories and the new observations with their gbbas maintained in terms of the two hyper-power

sets. That way we assure to obtain and to keep the decisions according to the target types during all the

scans.

Since, DSmT uses a frame of discernment, which is exhaustive, but in general case not exclusive,

we are able to take into account and to utilize the paradoxical information VS ∩ S ∩ B, VS ∩ S,VS ∩ B

and S ∩ B. This information relates to the cases, when the RCS value resides in an overlapping regions,

when it is hard to make proper judgement about the tendency of behavior of its value. Actually these

nonempty sets and related to it mass assignments contribute to a better understanding of the overall

tracking process.

14.3.2.2 Using Hybrid DSm Combinational Rule

As it was mentioned above in our work, RCS data here are used to analyze and subsequently to de-

termine the specified type of the observed targets. Because of this it is maintained the second frame of
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discernement Θ2 = {False Alarm (FA),Fighter (F),Cargo (C)}, in terms of which the decisions according

to target types have to be made. Doing this, we take in mind the following correspondencies:

• If rcs is Very Small then the ”target” is False Alarm

• If rcs is Small then the target is Fighter

• If rcs is Big then the target is Cargo

We may transform the gbba of updated tracks, formed in DΘ1 into respective gbba in DΘ2 , i.e:

mij
upd(CC∈DΘ2 ) = mij

upd(CC∈DΘ1 )

But let us go deeper into the meaning of the propositions in the second hyper-power set. It should

be:

DΘ2 = {∅,FA,F,C,FA ∩ F ∩ C,FA ∩ F,FA ∩ C,F ∩ C, (FA ∪ F) ∩ C, (FA ∪ C) ∩ F,

(F ∪C) ∩ FA, (FA ∩ F) ∪ (FA ∩C) ∪ (F ∩ C), (FA ∩ F) ∪ C, (FA ∩ C) ∪ F,

(F ∩C) ∪ FA,FA ∪ F,FA ∪ C,F ∪C,FA ∪ F ∪ C}

In the real life however, it is a proven fact, that the target can not be in one and the same time

FalseAlarm and Fighter; FalseAlarm and Cargo; Fighter and Cargo; FalseAlarm and Fighter and Cargo.

It leads to the following hybrid DSm model M1(Θ2), built by introducing the following exclusivity

constraints (see chapter 4 for a detailed presentation of the hybrid DSm models and the hybrid DSm rule

of combination):

FA ∩ F
M1≡ ∅ FA ∩C

M1≡ ∅ F ∩ C
M1≡ ∅ FA ∩ F ∩ C

M1≡ ∅

These exclusivity constraints imply directly the following ones:

(FA ∪ F) ∩ C
M1≡ ∅ (FA ∩ F) ∪ C

M1≡ C

(FA ∪ C) ∩ F
M1≡ ∅ (FA ∩ C) ∪ F

M1≡ F

(F ∪C) ∩ FA
M1≡ ∅ (F ∩ C) ∪ FA

M1≡ FA

and also the more generalized one

(FA ∩ F) ∪ (FA ∩C) ∪ (F ∩ C)
M1≡ ∅

The obtained that way model corresponds actually to Shafer’s model, which can be considered as a par-

ticular case of the generalized free DSm model.
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Therefore, while the corresponding sets in DΘ1 are usually non empty, because of the exclusivity

constraints, in the second frame Θ2, the hyper-power set DΘ2 is reduced to classical power set :

DΘ2

M1
= {∅,FA,F,C,FA ∪ F,FA ∪ C,F ∪ C,FA ∪ F ∪C}

So, we have to update the previous fusion result, obtained via the classical DSm rule of combination

with this new information on the model M1(Θ2) of the considered problem. It is solved with the hybrid

DSm rule (see chapter 4), which transfers the mass of these empty sets to the non-empty sets of DΘ2

M1
.

14.4 The Generalized Data Association Algorithm

We consider a particular cluster and assume the existence of a set of n tracks at the current scan and a

set of m received observations. A validated measurement is one which is either inside or on the boundary

of the validation gate of a target. The inequality given in (14.1) is a validation test. It is used for filling

the assignment matrix A :

A = [Aij ] =













a11 a12 a13

... a1m

a21 a22 a23

... a2m

...
...

...
...

...

an1 an2 an3

... anm













The elements of the assignment matrix A have the following values [13]:

aij =







∞ if d2
ij > γ

1− Pk(i, j)Pa(i, j) if d2
ij ≤ γ

The solution of the assignment matrix is the one that minimizes the sum of the choosen elements. We

solve the assignment problem by realizing the extension of Munkres algorithm, given in [10]. As a result, it

obtains the optimal measurements to tracks association. Because of the considered crossing and/or closely

spaced target scenarios, to produce the probability terms Pk and Pa, the joint probabilistic approach is

used [7]. It assures a common base for their defining, making that way them to be compatible.The

joint probabilistic data association (JPDA) approach imposes restriction on the problem size because

of exponential increasing of the number of generated hypotheses and the time for assignment problem

solution. That’s why it is advisable to make clustering before solving data association problem. Cluster

is a set of closely spaced objects. In our case if two tracks have an observation in their overlapping parts

of the gates, the tracks form cluster i.e. their clusters are merged. In such a way the number of clusters

are equal or less than the number of tracked tracks. The clustering is usefull at least for two reasons:

1. In such a way the size of assignment matrix and also the time for its solution decreases;

2. The number of hypotheses for JPDA like approach for defining kinematic and attribute probabilities

also decreases.
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In the worst case when all m measurements fall in the intersection of the validation regions of all n

tracks, the number of hypotheses can be obtained as:

S(n,m) =

min(n,m)
∑

i=0

CimA
i
n

where

Cim ,
m!

i!(m− i)! for 0 ≤ i ≤ m and Ain ,
n!

(n− i)! for 0 ≤ i ≤ n

With these formulae the number of hypotheses for various values of the m and n are computed and

are shown in the following table. The enormous increasing of the number of hypothesis can be seen.

Hyp. # Hyp. # Hyp. #

n = 2,m = 2 7 n = 4,m = 4 209 n = 6,m = 6 13327

n = 2,m = 3 13 n = 4,m = 5 501 n = 7,m = 8 394353

n = 3,m = 3 34 n = 5,m = 5 1546 n = 10,m = 9 58941091

n = 3,m = 4 73 n = 5,m = 6 4051 n = 10,m = 10 234662231

Table 14.1: Worst case hypotheses number

As further improvement, first k-best hypotheses can be used [12] as the score of the hypotheses de-

crease and a big amount of hypotheses practically does not influence the result. Another original frame

of hypotheses generation has been considerably optimized in [9] and that way it becomes a practical

alternative of Murty’s approach.

To define the probabilities for data association for different scenarios with random number of false

alarms we implement the following steps on each scan:

1. Check gating - using information for the received observations and for tracked targets (at the

moment) and for each pair (track i - observation j) check inequality (14.1). As a result an array

presents each observation in which track’s gates is fallen.

2. Clustering – define clusters with tracks and observations fallen in their gates.

3. For each cluster:

3.1 - Generate hypotheses following Depth First Search (DFS) procedure with certain constraints

[17]. In the JPDAF approach, the two constraints which have to be satisfied for a feasible

event are:

(a) each observation can have only one origin (either a specific target or clutter), and
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(b) no more than one observation originates from a target.

As a result of hypotheses generation for each hypothesis is defined a set of numbers representing

the observations assigned to the corresponding tracks, where the zero represents the assignment

of no observation to a given track.

3.2 - Compute hypothesis probabilities for kinematic and attribute contributions (detailed in the

next paragraphs).

3.3 - Fill assignment matrix, solve assignment problem and define observation to track association.

14.4.1 Kinematics probability term for generalized data association

On the basis of defined hypotheses, the kinematic probabilities are computed as:

P ′(Hl) = βNM−(NT−NnD)(1− Pd)NnDPd
(NT−NnD)

∏

i6=0,j 6=0|(i,j)∈Hl

gij

NM being the number of observations in cluster, NT the number of targets, NnD the number of not

detected targets. (i, j) ∈ Hl involved in the product represents all the possible observation to track

associations involved in hypothesis Hl.The likelihood function gij , associated with the assignment of

observation j to track i is:

gij =
e−d

2
ij/2

(2π)
M/2√|Si|

Pd is the probability of detection and β is the extraneous return density, that includes probability density

for new tracks and false alarms:

β = βNT + βFA

The normalized probabilities are computed as:

Pk(Hl) =
P ′(Hl)

∑NH

k=1 P
′(Hk)

where NH is the number of hypotheses. To compute the probability Pk(i, j) that observation j should be

assigned to track i, a sum is taken over the probabilities Pk(.) from those hypotheses Hl, in which this

assignment occurs.

As an particular example for a cluster with two tracks and two new observations, see Fig. 14.3,

detected during the moment of their closely spaced movement, where P1 and P2 are the tracks’ predictions

and O1, O2 are the received observations. The table 14.2 shows the particular hypotheses for the

alternatives with respect to targets tracks and associated probabilities.
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Hyp. # Track 1 Track 2 Hyp. proba. P ′(Hl)

H1 0 0 (1− Pd)2β2

H2 1 0 g11Pd(1 − Pd)β
H3 2 0 g12Pd(1 − Pd)β
H4 0 1 g21Pd(1 − Pd)β
H5 0 2 g22Pd(1 − Pd)β
H6 1 2 g11g22P

2
d

H7 2 1 g12g21P
2
d

Table 14.2: Target-oriented hypothesis based on kinematics.

Figure 14.3: Scenario with two tracks and two observations

14.4.2 Attribute probability terms for generalized data association

The way of calculating the attribute probability term follows the joint probabilistic approach.

P ′′(Hl) =
∏

i6=0,j 6=0|(i,j)∈Hl

de(i, j)

where

de(ij) =

√
∑

C∈DΘ1

[mi
hist(C)−mi,j

CandHist(C)]
2

where mi,j
CandHist(C) is a candidate history of the track - result, obtained after the fusion via DSm classical

rule of combination between the new received attribute observation j and predicted track’s attribute state

of the track i (the confirmed track history from the previous scan).

In the case of existence of two tracks and two new observations, considered in previous section and

on the basis of the hypotheses matrix, one can obtain the probabilities of the hypotheses according to

the following table:
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Hyp. # Track 1 Track 2 Closeness measure

H1 0 0 P ′′(H1) = de(0, 0) = 0

H2 1 0 P ′′(H2) = de(1, 1)

H3 2 0 P ′′(H3) = de(1, 2)

H4 0 1 P ′′(H4) = de(2, 1)

H5 0 2 P ′′(H5) = de(2, 2)

H6 1 2 P ′′(H6) = de(1, 1)de(2, 2)

H7 2 1 P ′′(H7) = de(1, 2)de(2, 1)

Table 14.3: Target-oriented hypothesis based on attributes.

The corresponding normalized probabilities of association drawn from attribute information are obtained

as:

Pa(Hl) =
P ′′(Hl)

∑NH

k=1 P
′′(Hk)

where NH is the number of association hypotheses.

To compute the probability P ′
a(i, j) that observation j should be assigned to track i, a sum is taken over

the probabilities Pa(.) from those hypotheses Hl, in which this assignment occurs. Because the Euclidean

distance is inversely proportional to the probability of association, the probability term Pa(i, j) = 1 −
P ′

a(i, j) is used to match the corresponding kinematics probability.

14.5 Simulation scenarios

14.5.1 Simulation scenario1: Crossing targets

The simulation scenario consists of two air targets (Fighter and Cargo) and a stationary sensor at the

origin with Tscan = 5 sec., measurement standard deviations 0.3 deg and 60 m for azimuth and range

respectively. The targets movement is from West to East with constant velocity of 250 m/sec. The

headings of the fighter and cargo are 225 deg and 315 deg from North respectively. During the scan 11th-

14th the targets perform maneuvers with 2.5g. Their trajectories are closely spaced in the vicinity of the

two crossing points. The target detection probabilities have been set to 0.99 for both targets and the

extraneous return density β to 10−6. In our scenario we consider the more complicated situations, when

the false alarms are available. The number of false alarms are Poisson distributed and their positions are

uniformly distributed in the observation space.
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Figure 14.4: Typical simulation for scenario 1 - Two Crossing Targets’ Tracks

14.5.2 Simulation scenario 2: Closely spaced targets

The second simulation scenario is influenced by the recent works of Bar-Shalom, Kirubarajan and Gokberk

[6], which considers a case of closely spaced ground targets, moving in parallel. Our case consists of four

air targets (alternating Fighter,Cargo, Fighter,Cargo) moving with constant velocity of 100 m/sec. The

heading at the begining is 155 [deg] from North. The targets make maneuvers with 0.85g - ( right, left ,

right turns). The sensor parameters and the false alarms are the same as in the first scenario.

Figure 14.5: Typical simulation for scenario 2 - Four Closely Spaced Air Targets’ Tracks
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14.6 Simulation results

In this section the obtained simulation results, based on 100 Monte Carlo runs are presented. The goal is

to demonstrate how the attribute measurements contribute for the improvement of the track performance,

especially in critical cases, when the tracks are crossing and/or closely spaced.

14.6.1 Simulation results: Two crossing targets

In the case when only kinematics data are available for data association (see fig. 14.6), it is evident

that after scan 15 (the second crossing moment for the targets), the tracking algorithm loses the proper

targets’ direction.

Here the Tracks’ Purity performance criterion is used to examine the ratio of the right associations.

Track purity is considered as a ratio of the number of correct observation-target associations (in case of

detected target) over the total number of available observations during tracking scenario.

The results from table 14.4 show the proper (observation-track) associations in that case. Here

“missed” is used for the case when in the track’s gate there is no observation, and “FA” is used for the

case, when the track is associated with the false alarm.

Obs. 1 Obs. 2 Missed FA

Track 1 0.7313 0.2270 0.0304 0.0113

Track 2 0.2409 0.7035 0.0426 0.0130

Table 14.4: Tracks’Purity in case of Kinematics Only Data Association (KODA).

Table 14.5 shows the result, when attribute data are utilized in the generalized data association

algorithm in order to improve the tracks’ maintenance performance. The hybrid DSm rule is applied to

produce the attribute probability term in generalized assignment matrix. As a result it is obvious that

the tracks’ purity increases

Obs. 1 Obs. 2 Missed FA

Track 1 0.8252 0.1496 0.0165 0.0087

Track 2 0.1557 0.8243 0.0165 0.0035

Table 14.5: Tracks’ Purity in case of Generalized Data Association based on DSmT.
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Figure 14.6: Performance of Tracking Algorithm with Kinematics Only Data Association

14.6.2 Simulation results: Four closely spaced targets

Figure 14.7 shows the performance of the implemented tracking algorithm with kinematics only data

association. One can see that the four closely spaced moving in parallel targets lose the proper directions

and the tracks switch.

Figure 14.7: Performance of Tracking Algorithm with Kinematics Only Data Association



320CHAPTER 14. GENERALIZED DATA ASSOCIATION FOR MULTITARGET TRACKING IN CLUTTER

The results in table 14.6 show the proper (observation-track) associations in that case. The corre-

sponding results in case of GDA based on DSmT are described in table 14.7.

Obs. 1 Obs. 2 Obs. 3 Obs. 4 Missed FA

Track 1 0.5874 0.3321 0.0558 0.0216 0.0021 0.0011

Track 2 0.2895 0.5411 0.1126 0.0521 0.0021 0.0026

Track 3 0.1089 0.0874 0.5084 0.2916 0.0021 0.0016

Track 4 0.0126 0.0332 0.3168 0.6337 0.0005 0.0032

Table 14.6: Tracks’ Purity in case of Kinematics Only Data Association.

Obs. 1 Obs. 2 Obs. 3 Obs. 4 Missed FA

Track 1 0.7026 0.2437 0.0037 0.0216 0.0026 0.0005

Track 2 0.2253 0.5826 0.0584 0.0521 0.0016 0.0000

Track 3 0.0511 0.0853 0.6047 0.2563 0.0011 0.0016

Track 4 0.0189 0.0853 0.2121 0.6805 0.0016 0.0016

Table 14.7: Tracks’ Purity with GDA based on DSmT.

14.6.3 Simulation results of GDA based on Dempster-Shafer theory

The results based on Dempster-Shafer theory for attribute data association are described in the tables

below. For scenario 1 (two crossing targets), the tracks’ purity is obtained in table 14.8. For scenario

2 (four closely spaced targets), the tracks’ purity performance is obtained in table 14.9.

Obs. 1 Obs. 2 Missed FA

Track 1 0.7548 0.1609 0.0643 0.0200

Track 2 0.2209 0.7548 0.0174 0.0070

Table 14.8: Tracks’ Purity with GDA based on Dempster-Shafer Theory (two crossing targets).
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Obs. 1 Obs. 2 Obs. 3 Obs. 4 Missed FA

Track 1 0.5874 0.2679 0.1211 0.0174 0.0016 0.0047

Track 2 0.2511 0.5489 0.1268 0.0700 0.0011 0.0021

Track 3 0.1216 0.1058 0.5926 0.1742 0.0021 0.0037

Track 4 0.0374 0.0711 0.1505 0.6563 0.0005 0.0042

Table 14.9: Tracks’ Purity with GDA based on Dempster-Shafer Theory (four closely spaced targets).

14.7 Comparative analysis of the results

It is evident from the simulation results presented in previous sections, that in general the incorporated ad-

vanced concept of generalized data association leads to improving of the tracks’ maintenance performance

especially in complicated situations (closely spaced and/or crossing targets in clutter). It influenced over

the obtained tracks’ purity results. In the same time one can see, that the tracks’ purity in case of using

Dezert-Smarandache theory increases in comparison with the obtained one via Dempster-Shafer theory.

Analysing all the obstacles making these simulations, it can be underlined that :

• Dezert-Smarandache theory makes possible to analize, process and utilize flexibly all the paradoxical

information - case, which is peculiar to the problem of multiple target tracking in clutter, when

the conflicts between the bodies of evidence (tracks’ attribute histories and corresponding attribute

measurements) often become high and critical. That way it contributes to a better understanding

of the overall tracking situation and to producing an adequate decision. Processing the paradoxes

(propositions, which are more specific than the others in the hyper-power set), the estimated entropy

in the confirmed (via the right track-observation association) tracks’ attribute histories decreases

during the consecutive scans. It can be seen on the last figure 14.8, where the Pignistic entropy (i.e

the Shannon entropy based on pignistic probabilities derived from the resulting belief mass [15, 11])

is estimated in the frame of Θ1 = {Very Small (VS), Small (S),Big (B)} and the corresponding

hyper-power set DΘ1 (blue color curve on the top subfigure). Simulation steps show, that source of

evidence here is a hybrid one - paradoxical and uncertain. In the same time the entropy of the track’s

attribute history, described in the second frame Θ2 = {False Alarm (FA),Fighter (F),Cargo (C)}
(red color curve on the bottom subfigure) increases. It can be explained with the applied here

hybrid DSm model M1(Θ2), built by introducing the exclusivity constraints, imposed by the real

life requirements (section 14.3.2.2). The obtained that way model corresponds actually to Shafer’s

model, which is a particular case of hybrid DSm model (the most constrained one). Therefore,

while the corresponding sets in DΘ1 are usually non empty, because of the exclusivity constraints,
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in the second frame Θ2, the hyper-power set is reduced to:

DΘ2

M1
= {∅,FA,F,C,FA ∪ F,FA ∪ C,F ∪C,FA ∪ F ∪ C}

So, it is obvious, in that frame, the track’s attribute history represents uncertain source of infor-

mation. Here the entropy increases with the uncertainty during the consequtive scans, because all

the masses assigned to the empty sets in DΘ2 are transferred to the non-empty sets, in our case

actually to the uncertainty.
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Figure 14.8: Variation of Pignistic Entropy in Track’s Attribute History in the two frames Θ1 and Θ2

• Because of the Swerling type modelling, the observations for False Alarms, Fighter and Cargo are

too much mixed. That fact causes some conflicts between general basic beliefs assignments of

the described bodies of evidence. When the conflict becomes unity, it leads to indefiniteness in

Dempster’s rule of combination and consequently the fusion process can not be realized. From the

other side, if the received modeled measurement leads to track’s attribute update, in which the

unity is assigned to some particular elementary hypothesis, after that point, the combinational rule

of Dempster becomes indifferent to any other measurements in the next scans. It means the track’s

attribute history remains the same, regardless of the received observations. It naturally leads to

non coherent and non adequate decisions according to the right observation-to-tracks associations.
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14.8 Conclusions

In this work an approach for target tracking, which incorporates the advanced concept of generalized data

(kinematics and attribute) association is presented. The realized algorithm is based on Global Nearest

Neighbour-like approach and uses Munkres algorithm to resolve the generalized association matrix. The

principles of Dezert-Smarandache theory of plausible and paradoxical reasoning to utilize attribute data

are applied. Especially the new general hybrid DSm rule of combination is used to deal with particular

integrity constraints associated with some elements of the free distributive lattice. A comparison with

the corresponding results, obtained via Dempster-Shafer theory is made. It is proven, that Dempster-

Shafer theory is well suited for representing uncertainty, but only in the cases of low conflicts between the

bodies of evidence, while Dezert-Smarandache theory contributes to improvement of track maintenance

performance in complicated situations (crossing and/or closely spaced targets), assuring a flexible and

coherent decision-making, when kinematics data are insufficient to provide the proper decisions.
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Abstract: Modern multitarget-multisensor tracking systems involve the develop-

ment of reliable methods for the data association and the fusion of multiple sensor

information, and more specifically the partitioning of observations into tracks. This

chapter discusses and compares the application of Dempster-Shafer Theory (DST)

and the Dezert-Smarandache Theory (DSmT) methods to the fusion of multiple sen-

sor attributes for target identification purpose. We focus our attention on the para-

doxical Blackman’s association problem and propose several approaches to outperform

Blackman’s solution. We clarify some preconceived ideas about the use of degree of

conflict between sources as potential criterion for partitioning evidences.

15.1 Introduction

T
he association problem is of major importance in most of modern multitarget-multisensor tracking

systems. This task is particularly difficult when data are uncertain and are modeled by basic

belief masses and when sources are conflicting. The solution adopted is usually based on the Dempster-

Shafer Theory (DST) [9] because it provides an elegant theoretical way to combine uncertain information.

This chapter is based on a paper [4] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.
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However Dempster’s rule of combination can give rise to some paradox/anomaly and can fail to provide

the correct solution for some specific association problems. This has been already pointed out by Samuel

Blackman in [2]. Therefore more study in this area is required and we propose here a new analysis

of Blackman’s association problem (BAP). We present in the sequel the original BAP and remind the

classical attempts to solve it based on DST (including Blackman’s method). In the second part of the

chapter we propose and compare new approaches based on the DSmT with the free DSm model. The

last part of the chapter provides a comparison of the performances of all the proposed approaches from

Monte-Carlo simulation results.

15.2 Blackman’s Data Association Problem

15.2.1 Association Problem no. 1

Let’s recall now the original Blackman’s association problem [2]. Consider only two target attribute

types corresponding to the very simple frame of discernment Θ = {θ1, θ2} and the association/assignment

problem for a single attribute observation Z and two tracks (T1 and T2). Assume now the following two

predicted basic belief assignments (bba) for attributes of the two tracks:

mT1(θ1) = 0.5 mT1(θ2) = 0.5 mT1(θ1 ∪ θ2) = 0

mT2(θ1) = 0.1 mT2(θ2) = 0.1 mT2(θ1 ∪ θ2) = 0.8

We now assume to receive the new following bba drawn from attribute observation Z of the system

mZ(θ1) = 0.5 mZ(θ2) = 0.5 mZ(θ1 ∪ θ2) = 0

The problem is to develop a general method to find the correct assignment of the attribute measure mZ(.)

with the predicted one mTi
(.), i = 1, 2. Since mZ(.) matches perfectly with mT1(.) whereas mZ(.) does

not match with mT2(.), the optimal solution is obviously given by the assignment (mZ(.)↔ mT1(.)). The

problem is to find an unique general and reliable method for solving this specific problem and for solving

all the other possible association problems as well.

15.2.2 Association Problem no. 2

To compare several potential issues, we propose to modify the previous problem into a second one by

keeping the same predicted bba mT1(.) and mT2(.) but by considering now the following bba mZ(.)

mZ(θ1) = 0.1 mZ(θ2) = 0.1 mZ(θ1 ∪ θ2) = 0.8

Since mZ(.) matches perfectly with mT2(.), the correct solution is now directly given by (mZ(.)↔ mT2(.)).

The sequel of this chapter in devoted to the presentation of some attempts for solving the BAP, not only
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for these two specific problems 1 and 2, but for the more general problem where the bba mZ(.) does not

match perfectly with one of the predicted bba mTi
, i = 1 or i = 2 due to observation noises.

15.3 Attempts for solutions

We examine now several approaches which have already been (or could be) envisaged to solve the general

association problem.

15.3.1 The simplest approach

The simplest idea for solving BAP, surprisingly not reported by Blackman in [2] is to use a classical

minimum distance criterion directly between the predictions mTi
and the observation mZ . The classical

L1 (city-block) or L2 (Euclidean) distances are typically used. Such simple criterion obviously provides

the correct association in most of cases involving perfect (noise-free) observations mZ(.). But there exists

numerical cases for which the optimal decision cannot be found at all, like in the following numerical

example:

mT1(θ1) = 0.4 mT1(θ2) = 0.4 mT1(θ1 ∪ θ2) = 0.2

mT2(θ1) = 0.2 mT2(θ2) = 0.2 mT2(θ1 ∪ θ2) = 0.6

mZ(θ1) = 0.3 mZ(θ2) = 0.3 mZ(θ1 ∪ θ2) = 0.4

From these bba, one gets dL1(T1, Z) = dL1(T2, Z) = 0.4 (or dL2(T1, Z) = dL2(T2, Z) ≈ 0.24) and no

decision can be drawn for sure, although the minimum conflict approach (detailed in next section) will

give us instead the following solution (Z ↔ T2). It is not obvious in such cases to justify this method

with respect to some other ones. What is more important in practice [2], is not only the association

solution itself but also the attribute likelihood function P (Z|Ti) ≡ P (Z ↔ Ti). As we know many

likelihood functions (exponential, hyper-exponential, Chi-square, Weibull pdf, etc) could be build from

dL1(Ti, Z) (or dL2(Ti, Z) measures but we do not know in general which one corresponds to the real

attribute likelihood function.

15.3.2 The minimum conflict approach

The first idea suggested by Blackman for solving the association problem was to apply Dempster’s rule

of combination [9] mTiZ(.) = [mTi
⊕mZ ](.) defined by mTiZ(∅) = 0 and for any C 6= ∅ and C ⊆ Θ,

mTiZ(C) =
1

1− kTiZ

∑

A∩B=C

mTi
(A)mZ(B)

and choose the solution corresponding to the minimum of conflict kTiZ . The sum in previous formula is

over all A,B ⊆ Θ such that A ∩ B = C. The degree of conflict kTiZ between mTi
and mZ is given by
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∑

A∩B=∅mTi
(A)mZ(B) 6= 0. Thus, an intuitive choice for the attribute likelihood function is P (Z|Ti) =

1−kTiZ . If we now apply Dempster’s rule for the problem 1, we get the same result for both assignments,

i.e. mT1Z(.) = mT2Z(.) with mTiZ(θ1) = mTiZ(θ2) = 0.5 for i = 1, 2 and mTZ(θ1 ∪ θ2) = 0, and more

surprisingly, the correct assignment (Z ↔ T1) is not given by the minimum of conflict between sources

since one has actually (kT1Z = 0.5) > (kT2Z = 0.1). Thus, it is impossible to get the correct solution for

this first BAP from the minimum conflict criterion as we firstly expected intuitively. This same criterion

provides us however the correct solution for problem 2, since one has now (kT2Z = 0.02) < (kT1Z = 0.1).

The combined bba for problem 2 are given by mT1Z(θ1) = mT1Z(θ2) = 0.5 and mT2Z(θ1) = mT2Z(θ2) =

0.17347, mT2Z(θ1 ∪ θ2) = 0.65306.

15.3.3 Blackman’s approach

To solve this apparent anomaly, Samuel Blackman has then proposed in [2] to use a relative, rather than

an absolute, attribute likelihood function as follows

L(Z | Ti) , (1 − kTiZ)/(1− kmin
TiZ)

where kmin
TiZ

is the minimum conflict factor that could occur for either the observation Z or the track Ti

in the case of perfect assignment (when mZ(.) and mTi
(.) coincide). By adopting this relative likelihood

function, one gets now for problem 1







L(Z | T1) = 1−0.5
1−0.5 = 1

L(Z | T2) = 1−0.1
1−0.02 = 0.92

Using this second Blackman’s approach, there is now a larger likelihood associated with the first

assignment (hence the right assignment solution for problem 1 can be obtained now based on the max

likelihood criterion) but the difference between the two likelihood values is very small. As reported by

S. Blackman in [2], more study in this area is required and we examine now some other approaches. It

is also interesting to note that this same approach fails to solve the problem 2 since the corresponding

likelihood functions for problem 2 become now






L(Z | T1) = 1−0.1
1−0.5 = 1.8

L(Z | T2) = 1−0.02
1−0.02 = 1

which means that the maximum likelihood solution gives now the incorrect assignment (mZ(.)↔ mT1(.))

for problem 2 as well.

15.3.4 Tchamova’s approach

Following the idea of section 15.3.1, Albena Tchamova has recently proposed in [3] to use rather the L1

(city-block) distance d1(Ti, TiZ) or L2 (Euclidean) distance d2(Ti, TiZ) between the predicted bba mTi
(.)
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and the updated/combined bba mTiZ(.) to measure the closeness of assignments with

dL1(Ti, TiZ) =
∑

A∈2Θ

| mTi
(A)−mTiZ(A) |

dL2(Ti, TiZ) = [
∑

A∈2Θ

[mTi
(A) −mTiZ(A)]2]

1/2

The decision criterion here is again to choose the solution which yields the minimum distance. This

idea is justified by the analogy with the steady-state Kalman filter (KF) behavior because if z(k + 1)

and ẑ(k + 1|k) correspond to measurement and predicted measurement for time k + 1, then the well-

known KF updating state equation [1] is given by (assuming here that dynamic matrix is identity)

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(z(k + 1) − ẑ(k + 1|k)). The steady-state is reached when z(k + 1)

coincides with predicted measurement ẑ(k + 1|k) and therefore when x̂(k + 1|k + 1) ≡ x̂(k + 1|k). In

our context, mTi(.) plays the role of predicted state and mTiZ(.) the role of updated state. Therefore it

a priori makes sense that correct assignment should be obtained when mTiZ(.) tends towards mTi
(.) for

some closeness/distance criterion. Monte Carlo simulation results will prove however that this approach

is also not as good as we can expect.

It is interesting to note that Tchamova’s approach succeeds to provide the correct solution for problem

1 with both distances criterions since (dL1(T1, T1Z) = 0) < (dL1(T2, T2Z) ∼ 1.60) and (dL2(T1, T1Z) =

0) < (dL2(T2, T2Z) ∼ 0.98), but provides the wrong solution for problem 2 since we will get both

(dL1(T2, T2Z) ∼ 0.29) > (dL1(T1, T1Z) = 0) and (dL2(T2, T2Z) ∼ 0.18) > dL2(T1, T1Z) = 0).

15.3.5 The entropy approaches

We examine here the results drawn from several entropy-like measures approaches. Our idea is now to use

as decision criterion the minimum of the following entropy-like measures (expressed in nats - i.e. natural

number basis with convention 0 log(0) = 0):

• Extended entropy-like measure:

Hext(m) , −
∑

A∈2Θ

m(A) log(m(A))

• Generalized entropy-like measure [5, 8]:

Hgen(m) , −
∑

A∈2Θ

m(A) log(m(A)/|A|)

• Pignistic entropy:

HbetP (m) , −
∑

θi∈Θ

P{θi} log(P{θi})
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where the pignistic(betting) probabilities P (θi) are obtained by

∀θi ∈ Θ, P{θi} =
∑

B⊆Θ|θi∈B

1

|B|m(B)

It can be easily verified that the minimum entropy criterion (based on Hext, Hgen or HbetP ) computed

from combined bba mT1Z(.) or mT2Z(.) are actually unable to provide us correct solution for problem

1 because of indiscernibility of mT1Z(.) with respect to mT2Z(.). For problem 1, we get Hext(mT1Z) =

Hext(mT2Z) = 0.69315 and exactly same numerical results for Hgen and HbetP because no uncertainty is

involved in the updated bba for this particular case. If we now examine the numerical results obtained

for problem 2, we can see that minimum entropy criteria is also unable to provide the correct solution

based on Hext, Hgen or HbetP criterions since one has Hext(mT2Z) = 0.88601 > Hext(mT1Z) = 0.69315,

Hgen(mT2Z) = 1.3387 > Hgen(mT1Z) = 0.69315 and HbetP (mT1Z) = HbetP (mT2Z) = 0.69315.

These first results indicate that approaches based on absolute entropy-like measures appear to be

useless for solving BAP since there is actually no reason which justifies that the correct assignment

corresponds to the absolute minimum entropy-like measure just because mZ can stem from the least

informational source. The association solution itself is actually independent of the informational content

of each source.

An other attempt is to use rather the minimum of variation of entropy as decision criterion. Thus,

the following min{∆1(.),∆2(.)} criterions are examined; where variations ∆i(.) for i = 1, 2 are defined as

the

• variation of extended entropy:

∆i(Hext) , Hext(mTiZ)−Hext(mTi
)

• variation of generalized entropy:

∆i(Hgen) , Hgen(mTiZ)−Hgen(mTi
)

• variation of pignistic entropy:

∆i(HbetP ) , HbetP (mTiZ)−HbetP (mTi
)

Only the 2nd criterion, i.e. min(∆i(Hgen)) provides actually the correct solution for problem 1 and

none of these criterions gives correct solution for problem 2.

The last idea is then to use the minimum of relative variations of pignistic probabilities of θ1 and θ2

given by the minimum on i of

∆i(P ) ,
2∑

j=1

|PTiZ(θj)− PTi
(θj)|

PTi
(θj)
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where PTiZ(.) and PTi
(.) are respectively the pignistic transformations of mTiZ(.) and mTi

(.). Unfortu-

nately, this criterion is unable to provide the solution for problems 1 and 2 because one has here in both

problems ∆1(P ) = ∆2(P ) = 0.

15.3.6 Schubert’s approach

We examine now the possibility of using a Dempster-Shafer clustering method based on metaconflict

function (MC-DSC) proposed in Johan Schubert’s research works [6, 8] for solving the associations prob-

lems 1 and 2. A DSC method is a method of clustering uncertain data using the conflict in Dempster’s

rule as a distance measure [7]. The basic idea is to separate/partition evidences by their conflict rather

than by their proposition’s event parts. Due to space limitation, we will just summarize here the principle

of the classical MC- DSC method.

Assume a given set of evidences (bba) E(k) , {mTi
(.), i = 1, . . . , n} is available at a given index

(space or time or whatever) k and suppose that a given set E(k + 1) , {mzj
(.), j = 1, . . . ,m} of new

bba is then available for index k+ 1. The complete set of evidences representing all available information

at index k + 1 is χ = E(k) ∪ E(k + 1) , {e1, . . . , eq} ≡ {mTi
(.), i = 1, . . . , n,mzj

(.), j = 1, . . . ,m} with

q = n + m. The problem we are faced now is to find the optimal partition/assignment of χ in disjoint

subsets χp in order to combine informations within each χp in a coherent and efficient way. The idea is

to combine, in a first step, the set of bba belonging to the same subsets χp into a new bba mp(.) having

a corresponding conflict factor kp. The conflict factors kp are then used, in a second step, at a metalevel

of evidence associated with the new frame of discernment Θ = {AdP,¬Adp} where AdP is short for

adequate partition. From each subset χp, p = 1, . . . P of the partition under investigation, a new bba is

defined as:

mχp
(¬AdP ) , kp and mχp

(Θ) , 1− kp

The combination of all these metalevel bba mχp
(.) by Dempster’s rule yields a global bba

m(.) = mχ1(.) ⊕ . . .⊕mχP
(.)

with a corresponding metaconflict factor denoted Mcf(χ1, . . . , χP ) , k1,...,P . It can be shown [6] that the

metaconflict factor can be easily calculated directly from conflict factors kp by the following metaconflict

function (MCF)

Mcf(χ1, . . . , χP ) = 1−
P∏

p=1

(1− kp) (15.1)

By minimizing the metaconflict function (i.e. by browsing all potential assignments), we intuitively

expect to find the optimal/correct partition which will hopefully solve our association problem. Let’s go

back now to our very simple association problems 1 and 2 and examine the results obtained from the
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MC-DSC method.

The information available in association problems is denoted χ = {mT1(.),mT2(.),mZ(.)}. We now

examine all possible partitions of χ and the corresponding metaconflict factors and decision (based on

minimum metaconflict function criterion) as follows:

• Analysis for problem 1:

– the (correct) partition χ1 = {mT1(.),mZ(.)} and χ2 = {mT2(.)} yields through Dempter’s rule

the conflict factors k1 , kT1Z = 0.5 for subset χ1 and k2 = 0 for subset χ2 since there is

no combination at all (and therefore no conflict) in χ2. According to (15.1), the value of the

metaconflict is equal to

Mcf1 = 1− (1− k1)(1 − k2) = 0.5 ≡ k1

– the (wrong) partition χ1 = {mT1(.)} and χ2 = {mT2(.),mZ(.)} yields the conflict factors

k1 = 0 for subset χ1 and k2 = 0.1 for subset χ2. The value of the metaconflict is now equal to

Mcf2 = 1− (1− k1)(1 − k2) = 0.1 ≡ k2

– since Mcf1 > Mcf2, the minimum of the metaconflict function provides the wrong assignment

and the MC-DSC approach fails to generate the solution for the problem 1.

• Analysis for problem 2:

– the (wrong) partition χ1 = {mT1(.),mZ(.)} and χ2 = {mT2(.)} yields through Dempter’s rule

the conflict factors k1 , kT1Z = 0.1 for subset χ1 and k2 = 0 for subset χ2 since there is

no combination at all (and therefore no conflict) in χ2. According to (15.1), the value of the

metaconflict is equal to

Mcf1 = 1− (1− k1)(1 − k2) = 0.1 ≡ k1

– the (correct) partition χ1 = {mT1(.)} and χ2 = {mT2(.),mZ(.)} yields the conflict factors

k1 = 0 for subset χ1 and k2 = 0.02 for subset χ2. The value of the metaconflict is now equal

to

Mcf2 = 1− (1− k1)(1− k2) = 0.02 ≡ k2

– since Mcf2 < Mcf1, the minimum of the metaconflict function provides in this case the correct

solution for the problem 2.

From these very simple examples, it is interesting to note that Schubert’s approach is actually exactly

equivalent (in these cases) to the min-conflict approach detailed in section 15.3.2 and thus will not provide
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unfortunately better results. It is also possible to show that Schubert’s approach also fails if one considers

jointly the two observed bbamZ1(.) andmZ2(.) corresponding to problems 1 and 2 withmT1(.) andmT2(.).

If one applies the principle of minimum metaconflict function, one will take the wrong decision since the

wrong partition {(Z1, T2), (Z2, T1)} will be declared. This result is in contradiction with our intuitive

expectation for the true opposite partition {(Z1, T1), (Z2, T2)} taking into account the coincidence of the

respective belief functions.

15.4 DSmT approaches for BAP

As within DST, several approaches can be attempted to try to solve Blackman’s Association prob-

lems (BAP). The first attempts are based on the minimum on i of new extended entropy-like measures

H?
ext(mTiZ) or on the minimum H?

betP (P ?). Both approaches actually fail for the same reason as for the

DST-based minimum entropy criterions.

The second attempt is based on the minimum of variation of the new entropy-like measures as criterion

for the choice of the decision with the new extended entropy-like measure:

∆i(H
?
ext) , H?

ext(mTiZ)−H?
ext(mTi

)

or the new generalized pignistic entropy:

∆i(H
?
betP ) , H?

betP (P ?{.|mTiZ})−H?
betP (P ?{.|mTi

})

The min. of ∆i(H
?
ext) gives us the wrong solution for problem 1 since ∆1(H?

ext) = 0.34657 and

∆2(H?
ext) = 0.30988 while min. of ∆i(H

?
betP ) give us the correct solution since ∆1(H?

betP ) = −0.3040

and ∆2(H?
betP ) = −0.0960. Unfortunately, both the ∆i(H

?
ext) and ∆i(H

?
betP ) criterions fail to pro-

vide the correct solution for problem 2 since one gets ∆1(H?
ext) = 0.25577 < ∆2(H?

ext) = 0.3273 and

∆1(H?
betP ) = −0.0396 < ∆2(H?

betP ) = −0.00823.

The third proposed approach is to use the criterion of the minimum of relative variations of pignistic

probabilities of θ1 and θ2 given by the minimum on i of

∆i(P
?) ,

2∑

j=1

|P ?TiZ
(θj)− P ?Ti

(θj)|
P ?Ti

(θj)

This third approach fails to find the correct solution for problem 1 (since ∆1(P ?) = 0.333 > ∆2(P ?) =

0.268) but succeeds to get the correct solution for problem 2 (since ∆2(P ?) = 0.053 < ∆1(P ?) = 0.066).
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The last proposed approach is based on relative variations of pignistic probabilities conditioned by

the correct assignment. The criteria is defined as the minimum of

δi(P
?) ,

|∆i(P
?|Z)−∆i(P

?|Ẑ = Ti)|
∆i(P ?|Ẑ = Ti)

where ∆i(P
?|Ẑ = Ti) is obtained as for ∆i(P

?) but by forcing Z = Ti or equivalently mZ(.) = mTi
(.) for

the derivation of pignistic probabilities P ?TiZ
(θj). This last criterion yields the correct solution for problem

1 (since δ1(P ?) = |0.333 − 0.333|/0.333 = 0 < δ2(P ?) = |0.268 − 0.053|/0.053 ≈ 4) and simultaneously

for problem 2 (since δ2(P ?) = |0.053− 0.053|/0.053 = 0 < δ1(P ?) = |0.066− 0.333|/0.333 ≈ 0.8).

15.5 Monte-Carlo simulations

As shown on the two previous BAP, it is difficult to find a general method for solving both these partic-

ular (noise-free mZ) BAP and all general problems involving noisy attribute bba mZ(.). The proposed

methods have been examined only for the original BAP and no general conclusion can be drawn from our

previous analysis about the most efficient approach. The evaluation of the global performances/efficiency

of previous approaches can however be estimated quite easily through Monte-Carlo simulations. Our

Monte-carlo simulations are based on 50.000 independent runs and have been done both for the noise-

free case (where mZ(.) matches perfectly with either mT1(.) or mT2(.)) and for two noisy cases (where

mZ(.) doesn’t match perfectly one of the predicted bba). Two noise levels (low and medium) have been

tested for the noisy cases. A basic run consists in generating randomly the two predicted bba mT1(.) and

mT2(.) and an observed bba mZ(.) according to a random assignmentmZ(.)↔ mT1(.) or mZ(.)↔ mT2(.).

Then we evaluate the percentage of right assignments for all chosen association criterions described in

this chapter. The introduction of noise on perfect (noise-free) observation mZ(.) has been obtained by

the following procedure (with notation A1 , θ1, A2 , θ2 and A2 , θ1 ∪ θ2): mnoisy

Z (Ai) = αimZ(Ai)/K

where K is a normalization constant such as
∑3
i=1m

noisy

Z (Ai) = 1 and weighting coefficients αi ∈ [0; 1]

are given by αi = 1/3± εi such that
∑3

i=1 αi = 1.

The table 1 shows the Monte-Carlo results obtained with all investigated criterions for the following

3 cases: noise-free (NF), low noise (LN) and medium noise (MN) related to the observed bba mZ(.).

The two first rows of the table correspond to simplest approach. The next twelve rows correspond to

DST-based approaches.
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Assoc. Criterion NF LN MN

Min dL1(Ti, Z) 100 97.98 92.14

Min dL2(Ti, Z) 100 97.90 92.03

Min kTiZ 70.01 69.43 68.77

Min L(Z|Ti) 70.09 69.87 67.86

Min dL1(Ti, TiZ) 57.10 57.41 56.30

Min dL2(Ti, TiZ) 56.40 56.80 55.75

Min Hext(mTiZ) 61.39 61.68 60.85

Min Hgen(mTiZ) 58.37 58.79 57.95

Min HbetP (mTiZ) 61.35 61.32 60.34

Min ∆i(Hext) 57.66 56.97 55.90

Min ∆i(Hgen) 57.40 56.80 55.72

Min ∆i(HbetP ) 71.04 69.15 66.48

Min ∆i(P ) 69.25 68.99 67.35

Min Mcfi 70.1 69.43 68.77

Table 1 : % of success of association methods

The table 2 shows the Monte-Carlo results obtained for the 3 cases: noise-free (NF), low noise (LN)

and medium noise (MN) related to the observed bba mZ(.) with the DSmT-based approaches.

Assoc. Criterion NF LN MN

Min H?
ext(mTiZ) 61.91 61.92 60.79

Min H?
betP (P ?) 42.31 42.37 42.96

Min ∆i(H
?
ext) 67.99 67.09 65.72

Min ∆i(H
?
betP ) 42.08 42.11 42.21

Min ∆i(P
?) 76.13 75.3 72.80

Min δi(P
?) 100 90.02 81.31

Table 2 : % of success of DSmT-based methods

15.6 Conclusion

A new examination of Blackman’s association problem has been presented in this chapter. Several

methods have been proposed and compared through Monte Carlo simulations. Our results indicate that

the commonly used min-conflict method doesn’t provide the best performance in general (specially w.r.t.

the simplest distance approach). Thus the metaconflict approach, equivalent here to min-conflict, does

not allow to get the optimal efficiency. Blackman’s approach and min-conflict give same performances.
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All entropy-based methods are less efficient than the min-conflict approach. More interesting, from the

results based on the generalized pignistic entropy approach, the entropy-based methods seem actually

not appropriate for solving BAP since there is no fundamental reason to justify them. The min-distance

approach of Tchamova is the least efficient method among all methods when abandoning entropy-based

methods. Monte Carlo simulations have shown that only methods based on the relative variations of

generalized pignistic probabilities build from the DSmT (and the free DSm model) outperform all methods

examined in this work but the simplest one. Analysis based on the DSmT and hybrid DSm rule of

combination are under investigation.
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Abstract: In situation analysis, an agent observing a scene receives information

from heterogeneous sources of information including for example remote sensing de-

vices, human reports and databases. The aim of this agent is to reach a certain

level of awareness of the situation in order to make decisions. For the purpose of

applications, this state of awareness can be conceived as a state of knowledge in the

classical epistemic logic sense. Considering the logical connection between belief and

knowledge, the challenge for the designer is to transform the raw, imprecise, con-

flictual and often paradoxical information received from the different sources into

statements understandable by both man and machines. Situation analysis appli-

cations need frameworks general enough to take into account the different types of

uncertainty and information present in the situation analysis context, doubled with a

semantics allowing meaningful reasoning on situations. The aim of this chapter is to

evaluate the capacity of neutrosophic logic and Dezert-Smarandache theory (DSmT)

to cope with the ontological and epistemic problems of situation analysis.
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16.1 Introduction

T
he aim of Situation Analysis (SA) in a decision-making process is to provide and maintain a state of

situation awareness for an agent observing a scene [1, 2]. For the purpose of applications, this state

of awareness can be conceived as a state of knowledge in the classical epistemic logic sense. Considering

the logical connection between belief and knowledge, the challenge for the designer is to transform the

raw, imprecise, conflictual and often paradoxical information received from the different sources into

statements understandable by both man and machines. Because the agent receives information from

heterogeneous sources of information including for example remote sensing devices, human reports and

databases, two simultaneous tasks need to be achieved: measuring the world and reasoning about the

structure of the world. A great challenge in SA is the conciliation of both quantitative and qualitative

information processing in mathematical and logical frameworks. As a consequence, SA applications

need frameworks general enough to take into account the different types of uncertainty and information

present in the SA context, doubled with a semantics allowing meaningful reasoning on belief, knowledge

and situations. The formalism should also allow the possibility to encompass the case of multiagent

systems in which the state of awareness can be distributed over several agents rather than localized.

A logical approach based on a possible worlds semantics for reasoning on belief and knowledge in

multiagent context is proposed in [3]. This work by Halpern and Moses can be used as a blueprint

considering that it allows to handle numerical evaluations of probabilities, thus treating separately but

nevertheless linking belief, knowledge and uncertainty. Related works are those of Fagin and Halpern [4]

but also Bundy [5] which extend the probability structure of Nilsson [6] based on possible worlds semantics

to a more general one close to the evidence theory developed by Dempster [7] and Shafer [8]. The result

is the conciliation of both measures and reasoning in a single framework.

Independently of these works has been introduced Neutrosophy, a branch of philosophy which studies

neutralities and paradoxes, and relations between a concept and its opposite [9]. Two main formal

approaches have emerged from Neutrosophy: neutrosophic logic, presented as a unified logic, of which

fuzzy logic, classical logic and others are special cases [10, 11]; and Dezert-Smarandache theory (DSmT)

that can be interpreted as a generalization of Dempster-Shafer theory. On one hand, neutrosophic logic

appears as an interesting avenue for SA because (1) indeterminacy is explicitly represented by the means

of an indeterminacy assignment, (2) falsity, truth and indeterminacy are represented independently (three

distinct assignments), (3) it is a quantified logic, meaning that numerical evaluations of truth, falsity and

indeterminacy values are allowed, (4) this quantification is allowed on hyperreals intervals, a generalization

of intervals of real numbers given a broader frame for interpretations, (5) many novel connectives are

defined (Neut-A, Anti-A, . . . ). On the other hand, being built on the hyper-power set of the universe of

discourse, the DSmT allows to take into account the indeterminacy linked to the very definition of the

individual elements of the universe of discourse, relaxing the mutual exclusivity hypothesis imposed by
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the Dempster-Shafer theory (DST). This framework extends thus the DST by allowing a wider variety

of events to be considered when measures become available. Indeed, a particularity of SA is that most

of the time it is impossible beforehand to list every possible situation that can occur. The elements of

the corresponding universe of discourse cannot, thus, be considered as an exhaustive list of situations.

Furthermore, in SA situations are not clearcut elements of the universe of discourse.

The aim of this chapter is to evaluate the potential of neutrosophic logic and Dezert-Smarandache

theory (DSmT) to cope with the ontological and epistemic obstacles in SA (section 16.3), i.e. problems

due to the nature of things and to cognitive limitations of the agents, human or artificial. Section

16.4 exposes four basic principles guiding SA systems design in practice, and highlight the capacity of

both neutrosophic logic and DSmT to cope with these principles. After brief formal descriptions of

neutrosophic logic and DSmT (section 16.5) we propose in section 16.6 different extensions based on

Kripke structures and Demspter-Shafer structures. In particular,a Kripke structure for neutrosophic

propositions is presented in section 16.6.2. In the latter section, we assess the ability of neutrosophic

logic to process symbolic and numerical statements on belief and knowledge using the possible worlds

semantics. Moreover, we investigate the representation of neutrosophic concepts of neutrality and opposite

in the possible worlds semantics for situation modelization. In section 16.6.3, after introducing Nilsson

and Dempster-Shafer structures, we present a possible extension to DSmT. We also propose an example

to illustrate the benefit of using a richer universe of discourse, and thus how DSmT appears as an

appropriate modelling tool for uncertainty in SA. We then propose a possible connection between DSmT

and neutrosophic logic in the Kripke structures setting (section 16.6.4). Finally, in section 16.7 we

conclude on possible research avenues for using DSmT and neutrosophic logic in SA.

16.2 Situation analysis

The term situation appears in the mid-fourteenth century derived from medieval Latin situatio meaning

being placed into a certain location. By the middle of the seventeenth century situation is used to discuss

the moral dispositions of a person, more specifically the set of circumstances a person lies in, the relations

linking this person to its milieu or surrounding environment. As will be shown below, the latter definition

is close to what is meant today in the field of High-Level Data Fusion, where the mental state of situation

awareness is studied in interaction with the surrounding environment. Common synonyms of situation

with a corresponding meaning are setting, case, circumstances, condition, plight, scenario, state, picture,

state of affairs.

Although the notion of situation is used informally in everyday language to designate a given state

of affairs, a simplified view of the world, and even the position of certain objects, situation is nowadays

a central concept in High-Level Data Fusion where it has been given more or less formal definitions. For
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Pew [12], a situation is “a set of environmental conditions and system states with which the participant is

interacting that can be characterized uniquely by a set of information, knowledge, and response options”.

16.2.1 Situation awareness as a mental state

For Endsley and Garland [1] Situation awareness (SAW) is “the perception of the elements in the environ-

ment within a volume of time and space, the comprehension of their meaning and the projection of their

status in the near future”. SAW is also defined in [13] as “the active mental representation of the status

of current cognitive functions activated in the cognitive system in the context of achieving the goals of a

specific task”. In particular, SAW involves three key tasks: (1) Perception, (2) Comprehension and (3)

Projection, in a general multiagent context (Fig. 16.1).

SITUATION AWARENESS

Projection
of future status

Comprehension
of current situation

Perception
of elements in

current

situation

Figure 16.1: The three basic processes of situation awareness according to Endlsey and Garland (modified

from [1]), in a multiagent context.

In contemporary cognitive science the concept of mental representation is used to study the interface

between the external world and mind. Mental states are seen as relations between agents and mental

representations. Formally, and following Pitt’s formulation [14], for an agent to be in a psychological state

Ψ with semantic property Γ is for that agent to be in a Ψ-appropriate relation to a mental representation

of an appropriate kind with semantic property Γ. As far as mental states are concerned, purely syntactic

approaches are not adequate for representation since semantic concepts need to be modeled.

Explicit reasoning on knowledge and the problems linked to its representation are distinctive features of

situation analysis. Our position is to refer to the sources of knowledge usually considered in epistemology,

namely, Perception, Memory, Reasoning, Testimony and Consciousness [15], and extend Endsley’s model

of situation awareness [1] where perception appears as the only source of knowledge.
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16.2.2 Situation Analysis as a process

For Roy [2] “Situation Analysis is a process, the examination of a situation, its elements, and their re-

lations, to provide and maintain a product, i.e. a state of Situation Awareness (SAW) for the decision

maker”. For a given situation the SA process creates and maintains a mental representation of the situa-

tion. Situation analysis corresponds to the levels 2, 3 and 4 of the JDL data fusion model [16, 17], hence to

higher-levels of data fusion. A revisited version of the well-known model is presented on figure 16.2, with

classical applications associated to the different levels. A complete situation model must take into ac-

Figure 16.2: Revisited JDL data fusion model and applications [18].

count the following tasks of: A. Situation perception composed of Situation Element Acquisition, Common

Referencing, Perception Origin Uncertainty Management, and Situation Element Perception Refinement

as subtasks. B. Situation comprehension composed of Situation Element Contextual Analysis, Situation

Element Interpretation, Situation Classification, Situation Recognition, and Situation Assessment as sub-

tasks. C. Situation projection composed of Situation Element Projection, Impact Assessment, Situation

Monitoring. Situation Watch, and Process Refinement [2].

The conception of a system for SA must rely on a mathematical and/or logical formalism capable of

translating the mechanisms of the SAW process at the human level. The formalism should also allow the

possibility to encompass the case of multiagent systems in which the state of awareness can be distributed

over several agents rather than localized. A logical approach based on a possible worlds semantics for

reasoning on belief and knowledge is proposed in [3]. This work by Halpern and Moses can be used
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as a blueprint considering that it allows to handle numerical evaluations of probabilities, thus treating

separately but nevertheless linking belief, knowledge and uncertainty.

Furthermore, mathematical and logical frameworks used to model mental states should be able to

represent and process autoreference such as beliefs about one’s own beliefs, beliefs about beliefs about

. . . and so on.

16.2.3 A general model of a distributed system

In 1990, Halpern and Moses proposed a model of distributed knowledge processing [3] that can be used

for the purpose of situation analysis, as stated above. Short definitions are given below for the different

components of the model:

• A distributed system is a finite collection of two or more interacting agentsA1, . . . , An (connected

by a communication network);

• The local state of an agent is the determined by the encapsulation of all the information an agent

has access to at a given instant;

• The state of the environment is defined as the information relevant to the system but not

contained in the state of the agents;

• The global state of a system is given by the sum of the agents’ local states together with the state

of the environment;

• A run is a function from time to global states;

• A point is a pair (r,m) consisting of a run r and a time m;

• A system is defined as a set of runs. A system can also be viewed as a Kripke structure supple-

mented with a way to assign truth values.

This model is illustrated on figure 16.3 and appears as a sufficient basis for defining the basic concepts of

situation analysis. Indeed, the local state of an agent Ai can also be called its Knowledge-Base (denoted

by KBi) upon which an awareness function delimits these subsets, the latter being particular views of a

given situation (see section 16.4.2 on contextualization). From an algebraic point of view, a same agent

can generate different views of the same situation, either disjoint or overlapping or nested.

16.3 Sources of uncertainty in Situation Analysis

Situation analysis is experimental by nature. A major obstacle encountered in the process lies in the

ubiquity of uncertainty. While in a previous paper [19], we highlighted four main facets of uncertainty:
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Global state

State of the environment

Local states

Communication links

Situation representations

Figure 16.3: The general model of a distributed system proposed by Halpern and Moses in [3] adapted

for situation representation.

(1) Meaning (mental sate or property of the information), (2) Interpretation (objective or subjective),

(3) Types (fuzziness, non-specificity and discord) and (4) Mathematical representations (quantitative

vs. qualitative approaches), in this section, we rather review the potential sources of uncertainty and

obstacles arising in a situation analysis context.

Uncertainty has two main meanings in most of the classical dictionaries [19]: Uncertainty as a state

of mind and uncertainty as a physical property of information. The first meaning refers to the state of

mind of an agent, which does not possess the needed information or knowledge to make a decision; the

agent is in a state of uncertainty: “I’m not sure that this object is a table”. The second meaning refers

to a physical property, representing the limitation of perception systems: “The length of this table is

uncertain” (given the measurement device used).

Sociologists like Gérald Bronner [20] consider uncertainty as a state of mind, this state depending on

our power on the uncertainty, and our capacity to avoid it. He distinguishes two types of uncertainty:

uncertainty in finality (or material uncertainty) and uncertainty of sense. Uncertainty in finality is “the

state of an individual that, wanting to fulfill a desire, is confronted with the open field of the possibles”

( “Will my car start?”). Whereas uncertainty of sense is “the state of an individual when a part, or the

whole of its systems of representation is deteriorated or can be”. Uncertainty in finality corresponds to

the uncertainty in which lies our understanding of the world, while uncertainty of sense bears on the
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representation of the world. Bronner identifies three types of uncertainty in finality, according to one’s

power on uncertainty, and the capacity to avoid it:

• Situation of type I: Uncertainty does not depend on the agent and can not be avoided;

• Situation of type II: Uncertainty does not depend on the agent but can be avoided;

• Situation of type III: Uncertainty is generated by the agent and can be avoided.

In situation analysis, agents are confronted to uncertainty of sense (data driven) from the bottom-up

perspective and to uncertainty in finality (goal driven) from the top-down perspective. It follows that

there are two kinds of limits to state estimation and prediction in Situation Analysis:

1. Ontological limits due to the nature of things and

2. Epistemic limits due to cognitive limitations of the agents, human or artificial.

Typical obstacles [21] are anarchy and instability when the situation is not governed by an identifiable

law or in the absence of nomic stability. Chance and chaos, are serious obstacles to state evaluation and

prediction as far as an exact estimation is sought for although regularities and determinism are observed.

Another typical obstacle is the vagueness of concepts. Natural language concepts are inherently vague,

meaning that their definition is approximate and borderline cases arise. This is true as well for properties

but also for concepts.

Indeterminacy is another unavoidable obstacle. It may arise from paradoxical conclusions to a given

inference (i.e. Russell’s paradox, or sorites paradox), from impossible physical measurements (i.e. posi-

tion and speed of an atomic particle) or for practical reasons (i.e. NP-complete problems). From a given

theoretical stand point (classical vs. quantum mechanics), indeterminacy may nevertheless be proposed

as a conclusion to specific unanswerable questions in order to nevertheless allow reasoning using the

remaining information.

Ignorance of the underlying laws governing the situation is a major cause of uncertainty. For example

not knowing that a given tactical maneuver is possible precludes the possibility to predict its occurrence.

Especially present in human affairs innovation can be a major obstacle in SA. New kinds of objects

(weapons), processes (courses of action) or ideas (doctrines) arise and one has no choice but to deal with

it and adapt.

Myopia or data ignorance, is also a typical problem in SA. Data must be available on time in order

to assess a situation, meaning that even if the information sources exist circumstances can prevent their

delivery. Another case of myopia occurs when data is not available in sufficient detail, as in pattern

recognition when classes are only coarsely defined or when sensors have limited spatial resolution. Data is

thus accessible through estimations obtained by sampling as in surveys, by the computation of aggregates

as in Data Fusion or by the modelization of rough estimates. As a consequence the available data is only
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imprecise and incomplete and leads most of the time to conflicting choices of decision. A major task of

SA is change detection, failure prediction.

Any attempt in the conception of a system is be bounded by inferential incapacity of human or

artificial agents. Limitations in agents can arise because of a lack of awareness. As far as knowledge is

concerned, an agent cannot always give a value to a proposition, for example if it is not even aware of the

existence of the concept denoted by the proposition at hand. Agents are resource bounded meaning that

agents have only limited memorization capabilities, in some cases they have power supply limitations, etc.

or have only limited cognitive and computational capabilities. Agents may also have limited visual or

auditory acuity. Sometimes, these limitations come from the outside and are situation driven: electronic

countermeasures, only a limited amount of time or money is available to do the job, etc. Furthermore

agents cannot focus on all issues simultaneously. As Fagin and Halpern puts it in [22] “[. . . ] Even if A
does perfect reasoning with respect to the limited number of issues on which he is focusing in any given

frame of mind, he may not put his conclusions together. Indeed, although in each frame of mind agent

A may be consistent, the conclusions A draws in different frames of mind may be inconsistent.” Finally,

agents must work with an inconsistent set of beliefs. For example, we know that lying is amoral, but in

some case we admit it could be a good alternative to a crisis.

16.4 Ontological principles in Situation Analysis

Given the limitations and the sources of uncertainty involved in Situation Analysis (section 16.3), we

state in this section four main ontological principles that should guide SA systems design in practice: (1)

allowing statements and reasoning about uncertainty to be made, (3) contextualization, (2) enrichment

of the universe of discourse, and (4) allowing autoreference.

16.4.1 Allowing statements and reasoning about uncertainty

We begin with two observations that will guide the discussion of this section:

1. Many concepts are linked to uncertainty: Vagueness, indeterminacy, truth, belief, indiscernibility,

ambiguity, non-specificity, incompleteness, imprecision to name a few. Although these concepts are

a priori distinct, it is common to confuse them and to be unable to talk about one without any

reference to the other. The recent development of new theories of uncertainty aims at separating

these aspects, and bring clarifications in this direction as it is the case for probability theory and

fuzzy logic. Another contribution in this direction is the axiomatization proposed by Fagin and

Halpern in [4] which provides a semantical structure to reasoning about both belief and probability,

and thus distinguishing these two often confused concepts.
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2. Although it is possible to deal with uncertainty in general using purely qualitative notions, the

mixture of discrete and continuous objects composing the world has led to introduce degrees.

In a very general sense as written in the previous section (section 16.3), uncertainty is often seen as the

result of indeterminacy. As far as formalization is concerned the classical means of reasoning soon exposed

their limitations. Propositional Calculus (PC) relies on the principle of bivalence expressing the fact that

a proposition is either True or False. Hence, only two truth values are allowed leaving no way to

express indeterminacy. The most common way go beyond bivalence is to introduce supplementary truth

values in the PC framework. The signification of the supplementary truth value differs from one author

to another, from one logic to another. However, it is common to denote truth, falsity and indeterminacy

by 1, 0 and 1
2 respectively.

Here the problem of the meaning of the uncertainty arises. For a given type of uncertainty (contingent

future events, indetermination, etc.) corresponds a particular interpretation of the set of connectives. If

 Lukasiewicz was primarily interested with the problem of contingent future event or possibility, Kleene in

1938 [23] proposed three value logics used in recursion theory in order to design stopping criteria and allow

for indeterminacy of some propositions. Bochvar (1938) [24] proposed a logic quantifying propositions as

sensible and senseless. For him true and false propositions are meaningful, the third truth-value designates

meaningless or paradoxical propositions. Bochvar’s system of logic, was later rediscovered by HalldÈn

in 1949 [25] and used to process vague and nonsensical propositions. In fact, the different meanings of

uncertainty are translated in the particular definitions given to logical connectors with respect to common

intuition of the terms at hand.

It is important to note that in general the truth values are not ordered and just like in PC the truth

values are purely conventional. In this sense, the so-called values of the truth tables can be considered

qualitative (see Fig. 16.4-(a)). However, these three truth values can also be ordered, representing then

a rough quantitative description of the world (see Fig. 16.4-(b)). But intuition also tells us that things

are not always clear cut in the real world and rather appear in tones of gray. A three-valued logic can

be generalized to a n-valued logic and by extension to fuzzy logic with an infinite number of truth-

values ranging on the real set interval [0; 1]. Such an extension introduces thus an order between truth

statements (see Fig. 16.4-(c)). Another consequence of this extension is that the notion of uncertainty

is now expressed explicitly in terms of truth or falsity. While in a three-valued logic, indeterminacy,

possibility or vagueness are expressed as neither True nor False, in  Lukasiewicz’s or fuzzy logic, to take

a more recent example, the uncertainty is expressed by an explicit reference to truth or falsity.

The introduction of degrees imposes then an order between values. The truth becomes then a kind of

false and vice-versa, and the qualitative aspect of the three initial truth values is lost, with their indepen-

dence. Yet another extension which conciliates both qualitative and quantitative aspects of indeterminacy

is to consider different independent aspects of uncertainty and represent them on independent axes. This
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Figure 16.4: Supplementary truth values for representing indeterminacy.

is the principle developed by Smarandache in the neutrosophic logic [10, 11], where the considered as-

pects of uncertainty are truth, falsity and indeterminacy (see Fig. 16.4-(d)). Hence, in neutrosophic logic

both the qualitative aspect of non-ordered three-valued logics and the quantitative aspect of fuzzy logic

are combined. One main benefit of neutrosophic logic is that indeterminacy can be addressed by two

different manners: (1) Using the indeterminacy function independently1 of the truth and falsity functions

or (2) using the three previous functions as it is commonly done in fuzzy logic. Moreover, because of the

assumed independence of the three concepts of truth, falsity and indeterminacy, NL is able to represent

paradoxes, for example something that is completely true, completely false and completely indeterminate.

Neutrosophy and neutrosophic logics are introduced respectively in sections 16.5.1 and 16.5.2.

1Note however that although truth, falsity and indeterminacy are considered independently in NL, the use of the

hyperreals is a means to make them dependent. Indeed, an absolutely True proposition (T (φ) = 1+) is also absolutely

False (F (φ) =− 0). This condition is not required for relatively True propositions (T (φ) = 1) [10].
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Finally, we remind that although indeterminacy has been discussed from a logical point of view, in-

determinacy is also represented in more quantitative approaches. Indeed, in probability theory, assigning

a probability value in ]0; 1[ to an event translates the indeterminate state of this event. It has nothing to

do with the truth of the event, but rather with its potential occurrence. By extension, Dempster-Shafer

theory, possibility theory or Dezert-Smarandache theory are other numerical approaches to deal with

indeterminacy. Some of these approaches are briefly discussed in section 16.5.3.

16.4.2 Contextualization

In SA, the operation of contextualization serves many purposes and is at the basis of the abstract notion

of situation itself as it is understood by defence scientists, software engineers and commanding officers

as well. According to Theodorakis [26], in the context of information modelling, “a context is viewed as

a reference environment relatively to which descriptions of real world objects are given. The notion of

context may be used to represent real world partitions, divisions, or in general, groups of information,

such as situations, viewpoints, workspaces, or versions”. In this sense a context is a mental, thus partial,

representation of a real situation. For Theodorakis [26] “A situation records the state of the world as it

is, independently of how it is represented in the mind of an agent. A situation is complete as it records

all the state of the world. Whereas, contexts are partial as they represent situations and hence capture

different perspectives or record different levels of detail of a particular situation”.

For Brézillon [27] a context can be “a set of preferences and/or beliefs, a window on a screen, an infinite

and only partially known collection of assumptions, a list of attributes, the product of an interpretation, a

collection of context schemata, paths in information retrieval, slots in object-oriented languages, buttons

which are functional, customizable and shareable, possible worlds, assumptions under which a statement

is true or false, a special, buffer-like data structure, an interpreter which controls the system’s activity,

the characteristics of the situation and the goals of the knowledge use, entities (things or events) related

in a certain way, the possibility that permits to listen what is said and what is not said”.

Contextualization is an operation largely applied in artificial intelligence, natural language processing,

databases and ontologies, communication, electronic documentation and machine vision. The principal

benefits from contextualization are the modularity of representation, context dependent semantics, and

focused information access [27]. As far as SA is concerned, a context or if one prefers, a representation

of a situation, is a means to encapsulate information while eliminating the unnecessary details, makes

it possible to refer to a given representation of the world while allowing different interpretations on the

meaning of this precise representation and finally gives a access to a mechanism to focus on details when

required.

Using the notation defined earlier (section 16.2.3), a context or a situation s is a view on the global

state of an agent A built on a given database KB. This view can be shared by multiple agents through
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communication links. As will be shown below, contexts are means to make reasoning local allowing for

example an agent to hold incoherent beliefs or to deal with incomplete information and knowledge.

Contextualizations are usually based on criteria such as

• time: limits due to real time applications requirements or planning objectives,

• space: limits due to range of sensors or territorial frontiers,

• function: discrimination according to objects functions or agents social roles,

• structure: distinction between cooperative or egoistic behavior.

Agents performing situation analysis are embedded in complex and dynamically changing environ-

ments. Many problems arise (1) from the unpredictability and instability of such environments, (2) from

the particularities of the SA tasks to accomplish and finally (3) from the agents own limitations, both

physical and mental.

1. The unpredictability and instability of the environment will force the agent to concentrate on the

most certain information available and leave unmeasured events that are not yet accessible.

In this case, the result of contextualization is for example the constitution of the σ-algebra used in

probability theory (see section 16.5.3). Similarly, the generic operation consisting in the specification

of upper and lower bounds over sets of events is also a form of contextualization. This operation

is present in different theories such as Demspter-Shafer theory (belief and plausibility measures or

lower and upper probabilities) and rough set theory (lower and upper approximations).

2. Depending on the complexity of the environment, the different tasks involved in SA will not require

the same level of attention, the same depth of reasoning and nor be subject to the same reaction

delays. Consequently the agents will only consider limited time and space frames in order to

efficiently answer operational requirements. These limits are imposed voluntarily by designers of

SA systems, implemented by experienced game players and but also innate to many biological

systems.

Two models have been proposed for the partition of sets of possibles worlds (see section 16.6.1),

the Rantala and sieve models. Rantala models [28] are a modification of the standard Kripke

model semantics that incorporate the notion of impossible worlds, allowing to distinguish them

from possible worlds. In these impossible worlds anything can hold even contradictions. The

notion captures the fact that a non-ideal agent may believe in things that are not consistent, false,

etc. but are nonetheless considered as epistemic alternatives. Sieve models have been proposed by

Fagin and Halpern in 1988 [22] in order to prevent the problem of omniscience by introducing a

function that act as a sieve. Instead of introducing nonstandard world or situations, sieve models
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introduce segregation between formulas that can be known or believed and other that cannot. The

sieve function indicates in fact if the agent is aware of a given formula in a given situation. Being

aware amounts at knowing or believing the formula in question.

3. It is a common practice in SA to consider resource bounded agents, even implicitly. In economics the

notion of unbounded rationality refers to the consideration of all possible alternatives and choosing

the best one often using optimization techniques. The opposite view of rational choice theory,

bounded rationality, rather considers that there are finite limits to information and calculations

a human brain or a mechanical memory device can hold i.e. Bremermann’s computational limit.

This view also holds that deliberation costs should be included in models, limiting furthermore

rationality for the sake of economy.

According to many authors [29, 30, 31], in neutrosophy the attribution of truth values can be bound to

specific circumstances making it thus a contextual theory of truth [32]. Unary neutrosophic connectives

such as A′, Anti-A, Neut-A (see section 16.5.1), seem particularly interesting for the manipulation of

contextual concepts.

16.4.3 Enrichment of the universe of discourse

The universe of discourse is the set of objects (concrete or abstract) considered in a given context. It

could be a set of classes, a set of targets, a set of actions to take, etc, but also a set of possible worlds

(i.e. of possible states of the world). Let S represent the universe of discourse, the set of all possible

outcomes of an experiment:

S = {s1, s2, . . . , sn} (16.1)

The universe of discourse is in a sense, the result of a contextualization operation (section 16.4.2) since

all objects existing in the world are not present in this set; a choice has been made (voluntarily or not).

It is then the support for problem-solving situation and represents the objects about which we are able

to talk.

However, it represents an ideal model assuming a perfect description. Unfortunately, real world is

often different and more complex than expected. Indeed, on one hand the agents have a limited access

to knowledge and on the other hand, objects in the real world itself are not clear cut and a perfect

description is in general impossible. These features of reality cannot in general be taken into account in

the modelization of the problem (i.e. in the definition of the universe of discourse). Hence, a solution to

deal with the two different kinds of limitations we face to in SA, epistemic limitation (due to cognitive

limitations of the agents, human or artificial) and ontological limitation (due to the nature of things),

(section 16.3), is to artificially enrich the universe of discourse.
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1. The failure of the sources of knowledge of an agent leads mainly to indiscernibility (see section

16.3). Indeed, an epistemic limitation implies the necessity of considering other objects than those

originally present in S. In particular, the incapacity of a agent to distinguish between two objects

s1 and s2 at a given time, in a given context is represented by s1 ∪ s2 which is another object, built

from S but not explicitly in S. s1 ∪ s2 is then the best answer the agent can give at a given time,

even if it knows that the answer is either s1 or s2.

In probability theory, because of the axiom of additivity, we cannot refer to s1∪s2 independently of

the rest of the universe. Indeed, µ(s1 ∪s2) = µ(s1) +µ(s2)−µ(s1 ∩s2) if µ is a probability measure

over S. Hence, to account for this limitation of the access to knowledge (epistemic limitation), we

can enrich the universe of discourse and consider the power set of S, i.e. the set of all subsets of S:

2S = {A|A ⊆ S} = {∅, s1, s2, . . . , sn, (s1, s2), . . . , (sn−1, sn), . . . , S}2 (16.2)

where ∅ denotes the empty set. This enrichment of the universe of discourse allows ignorance and

uncertainty to be best represented, as well as a supplementary types of conflict to be taken into

account. If probability theory is based on the classical set notion, the notion of power set is the

basis for Dempster-Shafer theory (see section 16.5.3 for a brief description), possibility theory and

rough sets theory. In this context, we can assign measures to every subset of S, independently

of the others. Note finally that Dempster-Shafer theory is based on the assumption of a universe

of discourse composed by an exhaustive list of mutually exclusive elements [33], a very restrictive

constraint in practice.

2. Another limitation is due to the fact that the observable world is more complex than we can describe.

This ontological limitation is linked to the properties of the objects and has nothing to do with our

perception means. For example, s1 ∩ s2 represents another object composed by both s1 and s2. It

is neither s1 nor s2 but something between them. Hence, yet another extension is the construction

of the hyper-power set constituted of all the combinations of the union and intersection operators

applied to the elements of S:

DS = {∅, s1, . . . , sn, (s1 ∪ s2), . . . , S, (s1 ∩ s2), . . . , (s1 ∩ s2) ∪ s3, . . .} (16.3)

If the elements of S are mutually exclusive (si ∩ sj = ∅, for all i 6= j), then DS = 2S. However,

considering DS is a more general case allowing si ∩ sj 6= ∅, i.e. allowing objects of the universe

of discourse to overlap. An example, is an universe constituted of vague concepts. Extending the

definition of the probability measure the hyper-power set is the principle of Dezert-Smarandache

theory [33]. In this framework, no initial assumption on the mutually exclusivity on S is imposed,

2Here, (s1, s2) is used to denote (s1 ∪ s2).
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and the exhaustivity is somewhat delayed since new objects can be constructed on those of S. A

brief description of DSmT is proposed in section 16.5.3.

Therefore, we can say that while Dempster-Shafer theory of evidence is an epistemic theory since it

only represents epistemic limitations, Dezert-Smarandache is basically an epistemic and ontological theory

since this framework combines both epistemic and ontological view points.

16.4.4 Autoreference

By autoreference we mean the capacity of an agent for introspection or selfreference. For example, an

agent should be granted the capacity of holding beliefs belief about its own declarations, and not only

about the declarations of the other agents.

1. A classical mean for modelling autoreference is by the way of hypersets. The notion of hyperset

has been first introduced by Aczel [34] and Barwise and Etchemendy [35] to overcome Russell’s

paradox3. A recursive definition extends the notion of classical set, allowing hypersets to contain

themselves, leading to infinitely deep sets (for example, x = 1 + 1/x). A well-founded set is a set

without infinite descending membership sequence, whereas the others are called non-well-founded

sets.

2. In modal logics, Kripke structures are used as a semantics (see section 16.6.1). In a Kripke structure,

an accessibility relation is defined over a set of possible worlds which models either the structure of

the world or the agent properties. The desired properties of an agent are then modeled by imposing

some properties to the accessibility relation. In particular, if the relation is reflexive and transitive,

then the agent possesses the capacity of positive introspection (the agent knows that it knows). Also

if the relation is an equivalence relation, the agent is capable of formulating declarations about its

ignorance (negative intropection).

Although these two models, hypersets and Kripke models, are presented here as distinct ones, both are

semantics of (multi-agent) modal logics. In [37, 38], it has been proven the equivalence of both semantics.

Indeed, with the notion of hyperset comes the graph metaphor which replaces the “container” metaphor

used in classical set theory (see figure 16.5). By definition, a graph G is a pair (S,R), where S is a set of

nodes and R is a relation over S. A labeled graph is a triple S = 〈S,R, π〉 = 〈G, π〉 where G is a graph

and π is a valuation function from P to 2S , with P being a set of propositional variables, that assigns

to each p of P a subset of S. However, a Kripke model can be viewed as a directed labeled graph, whose

3“Russell’s paradox is the most famous of the logical or set-theoretical paradoxes. The paradox arises within naive set

theory by considering the set of all sets that are not members of themselves. Such a set appears to be a member of itself if

and only if it is not a member of itself, hence the paradox” [36].
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Figure 16.5: Representation of classical sets. Arrows in figure (b) mean that si is a member of S.

nodes are the possible worlds, the link between nodes representing the accessibility relation, labeled by

truth assignments4.

First introduced for modal logics and knowledge logics, the model proposed by Kripke appears as an

elegant structure for reasoning about knowledge in a multi-agent context. Moreover, it is based on the

notion of possible world, which is close to the intuitive notion of situation. Hence, we choose it as the

basic structure for situation analysis. In section 16.6, we develop our argumentation to connect Kripke

structures with neutrosophic frameworks. After a more formal description of Kripke structures (section

16.6.1), we first extend this structure to neutrosophic logic (section 16.6.2). Then, considering mainly

the notion of possible worlds, we extend probability structures to DSm structures (section 16.6.3). And

finally, we make the connection between DSmT and neutrosophic logic through Kripke structures (section

16.6.4).

16.5 Neutrosophic frameworks for Situation Analysis

16.5.1 Neutrosophy

Neutrosophy is presented by F. Smarandache as “a new branch of philosophy, which studies the origin,

nature, and scope of neutralities, as well as their interactions with different ideational spectra” [9]. It is

formalized as follows:

Let A be an idea, a proposition, a theory, an event, a concept, an entity. Then, using different

unary operators, we define

• A′, a version of A;

• Anti-A, the opposite of A;

4Although the demonstration proposed in [37, 38] is more complex (!) it lies on the previous remark.
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• Non-A, what is not A;

• Neut-A, what is neither A nor Anti-A.

Neut-A represents a neutrality in between the two extremes, A and Anti-A. Hence, between A and

Anti-A there is a continuum-power spectrum of neutralities Neut-A, A − Neut-A − Anti-A. Note that

Non-A is different from Anti-A (Non-A 6= Anti-A), but also that Anti-A ⊂ Non-A, Neut-A ⊂ Non-A,

A ∩Anti-A = ∅, A ∩Non-A = ∅.

We give below an example for multi-agent situation analysis:

Let’s assume a system composed of n agents A1, . . . , An. Let call KBi the Knowledge-Base

of agent i, i = 1, . . . , n. Then,

• KB1 is all the information agent A1 has access to;

• KB′
1 is another version of KB1: for example, an update of KB1, or KB1 issued from a

partition of the sources of information of A1, hence another view of KB;

• Anti-KB1 is all the information agent A1 has not access to (or the information it did not

use for a given representation of the situation);

• Non-KB1 is all the information agents A2, . . . , An have access to, but not shared with

A1 plus the information nobody has access to;

• Neut-KB1 is all the information agents A2, . . . , An have access to, but not shared with

A1.

The only formal approaches derived from neutrosophy that will be studied in this chapter are: The

neutrosophic logic introduced by Smarandache [10, 11] and the Dezert-Smarandache theory proposed by

Dezert and Smarandache [33, 39]. In sections 16.5.2 and 16.5.3 we review the basics of these approaches.

16.5.2 Neutrosophic logic

Neutrosophic logic (NL) is a method for neutrosophic reasoning. This non-classical logic is a multiple-

valued logic which generalizes, among others, the fuzzy logic. It is the “(first) attempt to unify many

logics in a single field” [10].

While in classical logic, a concept (proposition) A is either True or False, while in fuzzy logic

A is allowed to be more or less True (and consequently more or less False) using truth degrees, in

neutrosophic logic, a concept A is T% True, I% Indeterminate and F% False, where (T, I, F ) ⊂
‖−0, 1+‖3. The interval ‖−0, 1+‖ is an hyperreal interval5, the heigh part of this notation refering to a

5Hyperreals - Non-standard reals (hyperreals) have been introduced in 1960. Let [0, 1] be the real standard interval i.e.

, the set of real numbers between 0 and 1. An extension of this interval is to replace the lower and lower bounds by the

non-standard counterparts −0 and 1+, being respectively 0− ε and 1 + ε, where ε > 0 is an infinitesimal number (i.e. such

that for all integer n > 0, ε < 1

n
).
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three-dimensional space. As a general framework, neutrosophic logic corresponds to an extension in three

distinct directions:

1. With A, are considered Non-A, Anti-A, Neut-A, and A′;

2. The semantics is based on three independent assignments, not a single one as it is commonly

used in the other logics;

3. These three assignments take their values as subsets of the hyperreal interval ‖−0, 1+‖, instead

in [0, 1].

A is thus characterized by a triplet of truth-values, called the neutrosophical value:

NL(A) = (T (A), I(A), F (A)) (16.4)

where (T (A), I(A), F (A)) ⊂ ‖−0, 1+‖3.

16.5.3 Dezert-Smarandache theory (DSmT)

Because the theory proposed by Dezert and Smarandache is presented as a generalization of Dempster-

Shafer theory, the latter being itself interpreted as a generalization of probability theory, we briefly review

the basics of these two theories before introducing DSmT.

A probability space is a 3-tuple P = 〈S, χ, µ〉 where:

• S = {s1, s2, . . . , sn} is the sample space, the set of the elementary events, the set of all outcomes

for a given experiment;

• χ is a σ-algebra of S;

• µ is a probability assignment from χ to [0, 1].

To each element of χ is assigned a non-negative real number µ(A), a probability measure of A (or simply

probability of A) that must satisfy the following axioms: (1) µ(A) ≥ 0; (2) µ(S) = 1; (3) µ(
⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai) if Ai ∩Aj = ∅ for Ai 6= Aj .

Axiom 3 is also known as the condition of σ-additivity, or simply axiom of additivity and plays a

crucial role in the theory of probability. Indeed, it imposes a restriction on the measurable sets (i.e. the

set to which we are able to assign probability measures), since one direct consequence is µ(A) = 1−µ(A),

where A = S\A. In other words, µ(A) does not depend on any µ(B) such that B ⊂ A.

The theory of evidence has been originally developed by Dempster in 1967 in his work on upper and

lower probabilities [7], and later on by Shafer in its famous book A Mathematical Theory of Evidence [8],

published in 1976. Often interpreted as an extension of the Bayesian theory of probabilities, the theory of

evidence offers the main advantage of better representing uncertainty because the measures are defined
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on the power set of the universe of discourse, instead of the universe itself as the probability theory

does. This particularity leads to the relaxation of the additivity axiom of the probability theory by a less

restrictive one, a super-additivity axiom.

A belief function is defined from 2S to [0, 1], satisfying the following axioms: (1) Bel(∅) = 0; (2)

Bel(S) = 1; (3) For every positive integer n, and for every collection A1, . . . , An of subsets of S, Bel(A1 ∪
. . .∪An) ≥∑i Bel(Ai)−

∑

i<j Bel(Ai∩Aj)+ . . .+(−1)n+1Bel(A1∩ . . .∩An). Contrary to the probability

measure, the belief measure is non-additive and the axiom of additivity for probability theory is replaced

by an axiom of superadditivity. The main consequence of this axiom is that every element of the power

set of S is measurable. Hence, we can have Bel(A) > Bel(B) if B ⊂ A.

A belief function is often defined using a basic probability assignment (or basic belief assignment) m

from 2S to [0, 1] that must satisfy the following conditions: (1) m(∅) = 0 and (2)
∑

A∈2S m(A) = 1.

Then we have Bel(A) =
∑

B⊆A,B∈2S m(B).

Dezert-Samrandache theory (DSmT) [33, 39] is another extension in this direction since all the ele-

ments of the hyper-power set are measurable. Then a general basic belief mass is defined from DS to

[0, 1], satisfying the following conditions:

m(∅) = 0 and
∑

A∈DS

m(A) = 1 (16.5)

Hence, for example elements of the type of si ∩ sj , i 6= j are allowed to be measured. The general belief

function is then defined by:

Bel′(A) =
∑

B⊆A,B∈DS

m(B) (16.6)

We note Bel′ to distinguish between the belief function in the Shafer sense, Bel.

DSmT is thus a more general framework that deals with both ontological and epistemic uncertainty.

However, as most of quantitative approaches it lacks a formal structure for reasoning. In the following

section, we propose a way to add such semantics to DSmT.

16.6 Possible worlds semantics for neutrosophic frameworks

The possible world semantics provides an intuitive means for reasoning about situations. It delivers a

general approach to providing semantics to logical approaches with applicability to neutrosophic logic

(section 16.6.2). Moreover, possible worlds semantics is often borrowed from logical approaches to fill the

lack of semantics of numerical approaches, as it will be detailed below (section 16.6.3).
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16.6.1 Kripke model

A Kripke model [40] is a mathematical structure that can be viewed as a directed labeled graph. The

graph’s nodes are the possible worlds s belonging to a set S of possible worlds, labeled by truth assign-

ments π. More formally,

A Kripke model is a triple structure SK of the form 〈S,R, π〉 where

• S is a non-empty set (the set of possible worlds);

• R ⊆ S × S is the accessibility relation;

• π : (S −→ P ) −→ {0; 1} is a truth assignment to the propositions per possible world.

where P = {p1, . . . , pn} is a set of propositional variables, and {0; 1} stands for {True; False}.

A world s is considered possible with respect to another world s′ whenever there is an edge linking s and

s′. This link is defined by an arbitrary binary relation, technically called the accessibility relation Figure

Fig. 16.6 illustrates the following example:

An agent is wondering if “it is raining in New York” (φ) and if “it is raining in Los Angeles”

(ψ). Since this agent has no information at all about the situation, it will consider possible

situations (worlds)S = {s1, s2, s3, s4}:

• A situation s1 in which it is both raining in New York and in Los Angeles, i.e. π(s1)(φ) =

True and π(s1)(ψ) = True.

• A situation s2 in which it is raining in New York but not in Los Angeles, i.e. π(s2)(φ) =

True and π(s2)(ψ) = False.

• A situation s3 in which it is not raining in New York and raining in Los Angeles, i.e.

π(s3)(φ) = False and π(s3)(ψ) = True.

• A situation s4 in which it is neither raining in New York nor in Los Angeles, i.e.

π(s4)(φ) = False and π(s4)(ψ) = False.

16.6.1.1 modelling the structure of the world

A very interesting feature of Kripke model semantics, is that it is possible to generate axioms for the

different systems of modal logic by expressing conditions on the accessibility function defined on SK .

These conditions can be used to express properties or limitations of agents (according to a given model

of the world). For example, any epistemic system built upon a Kripke model satisfying a reflexive

accessibility relation satisfies also the true knowledge axiom (T). If the model satisfies a reflexive and

transitive accessibility relation, it satisfies also the axiom of positive introspection (4). Satisfaction of the
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Figure 16.6: Example of a set of possible worlds and their accessibility relations.

axiom of negative introspection (5) is given by an equivalence relation (see table 16.1). System K45 is

obtained by making transitive and Euclidian the accessibility function, whereas KD45 which is sometimes

used to model evidential reasoning on Dempster-Shafer structures (see section 16.6.3.2) is obtained by

making R transitive, Euclidian and serial. This is summarized in , and explained below.

Table 16.1: Axioms, epistemic logic systems and accessibility relations between possible worlds.

Accessibility relation (R) Axioms

Reflexive (T) Kφ→ φ (True knowledge)

Reflexive + Transitive (4) Kφ→ KKφ (Positive introspection)

Equivalence (5) Kφ→ K¬Kφ (Negative intropection)

16.6.1.2 Truth assignment

As previously said, to each world s ∈ S, there is an associated truth assignment π(s) defined from P to

{0; 1} such that:

π(s)(p) =







1 if s � p

0 if s 2 p

(16.7)

where p ∈ P . s � p means that the world s entails the proposition p, or in other words, that p is True

in s.

The assignments π(s) are expected to obey to the classical definitions of the connectives so that for

example π(s)(p) = S\π(s)(p), π(s)(p ∧ q) = π(s)(p) ∩ π(s)(q), etc.

A formula is any composition of some elements of P with the basic connectives ¬ and ∧. Let call

Φ the set of formulae and φ an element of Φ. For example, φ1 = p1 ∧ ¬p2, φ2 = ¬p1, φ3 = p1 ∧ . . . pn,

φi ∈ Φ, i = 1, . . . , n. Hence, the truth assignments π(s) are also defined for any formula of Φ, π(s)(φ)

being equal to 1 if φ is True in s.
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To each p of P , there is an associated truth set Ap of all the elements of S for which π(s)(p) is True:

Ap = {s ∈ S|π(s)(p) = 1} (16.8)

Ap is then the set of possible worlds in which p is True, and can also be noted Ap = {s ∈ S|s � p}. By

extension, to each formula φ is associated a truth set, Aφ.

Note that the elements of P are not necessarily mutually exclusive. A way to obtain mutually

exclusive elements is to build the set At, the set of basic elements, where a basic element6 is a formula

of the (conjunctive) form δ = p′1 ∧ . . .∧ p′n with p′i being either pi or ¬pi, pi ∈ P . Any formula φ ∈ Φ can

then be written in a disjunctive form as φ = δ1 ∨ . . . ∨ δk, with δi ∈ At.
To each world s, there is an associated basic element δ of At describing thus the truth values of

the propositions of P in S. Whereas many worlds can be associated to the same basic element, a basic

element can be associated with any world (see example of section 16.6.3.4). The basic elements are just

an alternate way to specify the truth assignment π.

16.6.1.3 Multi-agent context

The definition of SK can easily be extended to the multi-agent case. Indeed, if we consider a set of agents

A1, . . . ,An, then on the same set of possible worlds S, and with the same truth assignment π, we can

define n accessibility relations Ri, i = 1, . . . , n, one per agent.

The different conditions on the Ris will characterize then the different properties of the Ais, facing to

the same situation.

16.6.2 Kripke structure for neutrosophic propositions

We introduced in section 16.5.2, the basics of neutrosophic logic.

While is classical logic, a formula φ is simply characterized by its truth value π(φ) being either 0

or 1 (True or False), in neutrosophic logic φ is allowed to be T% True and F% False, and I%

Indeterminate. φ is thus characterized by a triplet of truth-values, called the neutrosophical value:

NL(φ) = (T (φ), I(φ), F (φ)) (16.9)

where (T (φ), I(φ), F (φ)) ⊂ ‖−0, 1+‖3, ‖−0, 1+‖ being an interval of hyperreals.

In an equivalent manner as it is done in quantum logic, where Kripke structures are extended to deal

with fuzzy propositions [41], we propose here to extend the Kripke structure to deal with neutrosophic

assignments. Hence, we have,

A Kripke model for neutrosophic propositions is a triple structure SNLK of the form 〈S,R, ~π〉
where

6A basic element is sometimes called an atom.
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• S is a non-empty set (the set of possible worlds);

• R ⊆ S × S is the accessibility relation;

• ~π = (πT , πI , πF ) is a neutrosophic assignment to the propositions per possible world, i.e.

π : (S −→ P ) −→ ‖−0, 1+‖ with π being either πT or πI or πF .

where P = {p1, . . . , pn} is a set of propositional variables.

The “truth” assignment π of a classical Kripke model becomes then ~π = (πT , πF , πI), a three-

dimensional assignment, where πT is the truth assignment, πF is the falsity assignment and πI is the

indeterminacy assignment. Hence, in each possible world s of S, a proposition φ can be evaluated as

πT (s)(φ) True, πF (s)(φ) False and πI(s)(φ) Indeterminate. It follows that to φ is associated a

truth-set ATφ , a falsity-set AFφ and an indeterminacy-set AIφ:

ATφ = {s ∈ S|πT (s)(φ) 6= 0}

AFφ = {s ∈ S|πF (s)(φ) 6= 0}

AIφ = {s ∈ S|πI(s)(φ) 6= 0}

Note that ATφ , ATφ and ATφ are (1) no longer related, (2) fuzzy sets and may overlap.

16.6.2.1 Knowledge and belief

Halpern in [42] gives the following definitions for knowledge and belief in PWS:

• φ is known if it is True in all the possible worlds s of S

• φ is believed if it is True in at least one possible world s of S

On the other hand, Smarandache [10] uses the notion of world and states that T (φ) = 1+ if φ is True

in all the possible worlds s of S (absolute truth) and T (φ) = 1 if φ is True in at least one possible

world s of S (relative truth) (see Tab. 16.2). Hence, in the neutrosophical framework, we can state the

following definitions for knowledge and belief: φ is known if T (φ) = 1+ ≡ F (φ) =− 0 and φ is believed

if T (φ) = 1 ≡ F (φ) = 0. Table 16.2 shows several special cases.

Furthermore, one can consider the unary operators of neutrosophic logic (Non-φ, Anti-φ, Neut-φ, φ′)

to model new epistemic concepts but also as a means to represent situational objects, such as neutral

situation, environment (to be detailed in the final version).

16.6.3 Probability assignments and structures

Let S be the frame of discernment, s a singleton of S and A any subset of S. In probability theory,

measurable objects are singletons s of S. The measures assigned to any subsets A of S are guided by the

additivity axiom. Hence, measurable elements belong to a σ-algebra χ of 2S. In Dempster-Shafer theory,
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Table 16.2: Neutrosophical values for special cases (adapted from [10]).

φ is . . . in . . . poss. world(s) Neutrosophical value

true

false

indet.

all

T (φ) = 1+
≡ F (φ) =− 0

F (φ) = 1+
≡ T (φ) =− 0

I(φ) = 1+

true

false

indet.

at least one

T (φ) = 1 ≡ F (φ) = 0

F (φ) = 1 ≡ T (φ) = 1

I(φ) = 1

indet. no I(φ) =− 0

not indet. at least one I(φ) = 0

any element of the power set of S, 2S is measurable. Finally, Dezert-Smarandache theory allows any

element of the hyper-power set of S, DS , to be measured. Apart these extensions to probability theory

that rely on the definition set of the probability measure, there exists a clear interest for giving a better

semantics to these numerical approaches. For its probabilistic logic, Nilsson uses the possible worlds

semantics to build a “semantical generalization of logic”, combining logic with probability theory [6]

(see section 16.6.3.1). Later on, Fagin and Halpern [4] and also Bundy [43] extend Nilsson’s structure

for probabilities allowing all elements of the power set to be measurable, leading to a general structure

just as Dempster-Shafer theory generalizes probability theory, the Dempster-Shafer structure (see section

16.6.3.2).

In the following, after a brief review of Nilsson and Demspter-Shafer structures, we extend the latter

and propose a Dezert-Smarandache structure (section 16.6.3.3), combining the DSmT framework and the

possible worlds semantics. To end this part, we propose in section 16.6.3.4 an example of the potential

interest of such a structure.

16.6.3.1 Nilsson structure

A Nilsson structure is a tuple SN = 〈S, χ, µ, π〉 where

• S = {s1, s2, s3, . . .}, the set of all possible worlds;

• χ, a σ-algebra of subsets of S;

• µ, a probability measure defined on χ;

• π : (S −→ P ) −→ {0; 1}, is a truth assignment to the propositions per possible world.

with P being a set of propositional variables.

Note that 〈S, χ, µ〉 is a probability space, and Nilsson structure is also called a probabilistic structure.

In this kind of structure, the only measurable elements are those of χ. However, if we are interested in
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any other formula of Φ, the best thing we can do is to compute the inner and outer measures [4] defined

respectively by

µ∗(A) = sup{µ(B)|B ⊆ A,B ∈ χ} and µ∗(A) = inf{µ(B)|B ⊇ A,B ∈ χ}

The unknown value µ(Aφ) is replaced by the interval:

µ∗(Aφ) ≤ µ(Aφ) ≤ µ∗(Aφ) (16.10)

Hence, instead of a single probability measure µ from χ to [0, 1], we can compute a pair of probability

measures µ∗ and µ∗.

Because in a Nilsson structure, µ is defined on χ (the set of measurable subsets) means that χπ (the

image of χ by π) is a sub-algebra of χ to ensure that µ(φ) = µ(Aφ), for all φ ∈ Φ. Dropping this

condition is a means to extend µ to 2S (hence Nilsson structure) and leads to Dempster-Shafer structure

as formalized in [4]7 and detailed below. The probability measure µ is then replaced by its inner measure

µ∗.

16.6.3.2 Dempster-Shafer structure

Nilsson structure can be extended using the inner measure, i.e. allowing all the elements of 2S to be

measurable. Because the inner measure turns to be the belief measure introduced by Shafer in its theory

of evidence [8], the resulting structure is called Dempster-Shafer structure. Note that χ and π are no

longer required to be related in any sense.

A Dempster-Shafer structure [4] is a tuple SDS = 〈S, 2S ,Bel, π〉 in which

• S = {s1, s2, s3, . . .}, the set of all possible worlds;

• 2S , the powerset of S;

• Bel, a belief measure on 2S ;

• π : (S −→ P ) −→ {0; 1}, is a truth assignment to the propositions per possible world.

with P being a set of propositional variables.

Note that we can simply write SDS = 〈S,Bel, π〉, where Bel is a belief function Bel : 2S −→ [0, 1], in the

Shafer sense (see section 16.5.3).

A Nilsson structure is then a special case of Dempster-Shafer structures, in which

µ∗(Aφ) = µ∗(Aφ) = µ(Aφ) (16.11)

for any φ ∈ Φ.

7Another way is to consider a partial mapping π, leading to Bundy’s structure of incidence calculus [43].
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16.6.3.3 Dezert-Smarandache structure

In [33], the authors propose a generalization of Dempster-Shafer theory defining a belief function on the

hyper-power set instead of the power set as Shafer. This theory is called Dezert-Smarandache theory

or simply DSmT. In an equivalent manner to the extension of Nilsson’s structure to DS structure, the

definition of µ can be extended to DS , allowing all elements of the hyper-power set to be measurable.

We obtain then what we can call a Dezert-Smarandache structure (DSm structure), an extension of the

DS structure in an equivalent way as DSmT is an extension of Dempster-Shafer theory.

A Dezert-Smarandache structure is a tuple SDSm = 〈S,DS ,Bel′, π〉 where

• S = {s1, s2, s3, . . .}, the set of all possible worlds;

• DS , the hyper-power set of S;

• Bel′, a general belief measure on DS ;

• π : (S −→ P ) −→ {0; 1}, is a truth assignment to the propositions per possible world.

with P being a set of propositional variables.

Note that we can simply write SDSm = 〈S,Bel′, π〉 where Bel′ is the generalized belief function defined

on DS , as defined by Dezert and Smarandache (see section 16.5.3).

16.6.3.4 Example: Ron suits

This example is proposed in [4] as Example 2.4:

“Ron has two blue suits and two gray suits. He has a very simple method for deciding what

color suit to wear on any particular day: he simply tosses a (fair) coin. If it lands heads,

he wears a blue suit and if it lands tails, he wears a gray suit. Once he’s decided what color

suit to wear, he just chooses the rightmost suit of that color on the rack. Both of Ron’s blue

suits are single-breasted, while one of Ron’s gray suit is single-breasted and the other is double-

breasted. Ron’s wife, Susan, is (fortunately for Ron) a little more fashion-conscious than he is.

She also knows how Ron makes his sartorial choices. So, from time to time, she makes sure

that the gray suit she considers preferable is to the right (which depends on current fashions

and perhaps on other whims of Susan). Suppose we don’t know about the current fashion

(or about Susan’s current whims). What can we say about the probability of Ron’s wearing a

single-breasted suit on Monday? [4]”

Let P be a set of primitive propositions, P = {p1, p2}. Let p1=“The suit is gray” and let p2=“The

suit is double-breasted”. Then At, the corresponding set of basic elements is:

At = {p1 ∧ p2, p1 ∧ ¬p2,¬p1 ∧ p2,¬p1 ∧ ¬p2}
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At is thus a set of mutually exclusive hypotheses: “Ron chooses a gray double-breasted suit”, . . . , “Ron

chooses a blue single-breasted suit”.

S is the set of possible states of the world, i.e. the set of possible worlds, where a state corresponds

in this example to a selection of a particular suit by Ron. To fix the ideas, let number the suits from 1

to 4. Hence, S = {s1, s2, s3, s4}, si being the world in which Ron chooses the suit i. Table 16.3 lists the

possible worlds and their associated meaning and atom8. Table 16.4 give some sets of worlds of interest

and their associated formula. An alternative to describe the state of a world (i.e. the truth values of each

Table 16.3: The 4 states of the worlds and their associated basic element.

World Meaning Basic element

s1 Blue single-breasted suit nb 1 ¬p1 ∧ ¬p2

s2 Blue single-breasted suit nb 2 ¬p1 ∧ ¬p2

s3 Gray single-breasted suit p1 ∧ ¬p2

s4 Gray double-breasted suit p1 ∧ p2

propositions in P ) is by using π is a truth assignment defined from P to 2S . For each s in S, we have a

truth assignment π(s) defined from P to {0; 1}, such that π(s)(p) = 0 if p is false in s, and π(s)(p) = 1

if p is true in s.

Table 16.4: Some subsets of possible worlds of interest and their associated formula.

World(s) Meaning Formula

(s1, s2) A blue suit ¬p1

(s3, s4) A gray suit p1

(s1, s2, s3) A single-breasted suit ¬p2

Here, we have only 4 measurable events: µ(s1, s2) = µ(s3, s4) = 1
2 , µ(∅) = 0 and µ(S) = 1. The

question of interest here (What is the probability of Ron’s wearing a single-breasted suit?) concerns

another non-measurable event, i.e. (s1, s2, s3). In [4], the authors gave this example to illustrate the

utility of attributing values to non-measurable events, and then introduce Demspter-Shafer structures.

Their conclusion for this example is then that the best we can say is that 1
2 ≤ µ(s1, s2, s3) ≤ 1, based on

the inner and outer measures.

modelling the problem with 4 states means that given our prior knowledge, these states correspond

to the only possible situations after Ron’s selection: He will select one and only one suit among the

4 available. However, suppose that the two parts of the suits may have been mixed so we have two

pieces (trousers and jacket) on the same coat-hanger. The 4 possible worlds correspond then to the 4

coat-hangers, and no longer to the 4 distinct suits. Imagining that the trousers is inside the jacket, Ron

8Note that the basic element ¬p1 ∧ p2 is associated with any state, while ¬p1 ∧¬p2 is associated with two states, s1 and

s2.
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will select his suit only on the basis of the color of the jacket. Suppose for example, that the coat-

hanger he selects supports a blue jacket and gray trousers. Then, waht is the corresponding state of the

world? Clearly, this situation has not been considered in the modelisation of the problem, based on a

DS structure. However, using a DSm structure allow the elements of the hyper-power set of S to be

measurable. Hence, the state resulting of a selection of a mixed suit corresponds to si ∩ sj , with i 6= j.

This means that we are in both worlds si and sj , and that with a single selection, Ron selected in fact

two suits. So, we allow other events than those forecast to overcome.

One benefit of the resulting structure for situation analysis, is that it provides an interesting framework

for dealing with both vagueness and conflict, combining the logical, semantical and reasoning aspect

through the possible worlds semantics, and the measuring, combination aspect through the DSmT.

16.6.4 Connection between DSmT and neutrosophic logic in Kripke struc-

tures

Here we describe informally a possible connection between Dezert-Smarandache theory and the neutro-

sophic logic.

Let SDSm = 〈S,Bel′, π〉 be a DSm structure, and let SNLK = 〈S,R, ~π〉 be the corresponding Kripke

structure for neutrosophic propositions. Hence, we define a general neutrosophic structure to be SN =

〈S,Bel′,R, ~π〉, where:

• S = {s1, s2, s3, . . .}, the set of all possible worlds;

• Bel′, a general belief measure on DS , the hyper-power set of S;

• R ⊆ S × S is the accessibility relation9;

• ~π = (πT , πI , πF ) is a neutrosophic assignment to the propositions per possible world, i.e.

π : (S −→ P ) −→ ‖−0, 1+‖ with π being either πT or πI or πF .

where P = {p1, . . . , pn} is a set of propositional variables.

In order to reason on this structure, we need a set of axioms (as it is for example done in [4] for belief

and probability) characterizing valid formulae. This can be achieved by imposing conditions on the

accessibility relation R, conditions yielding hopefully to neutrosophic behaving agents.

Hence, the aim of this general structure is to conciliate (1) DSmT as a tool for modelling both epistemic

and ontological uncertainty, (2) possible worlds for the representation of situations, (3) neutrosophic logic

as a general logical approach to deal independently with truth, falsity and indeterminacy, and (4) Kripke

structures as a support for reasoning and modelling the properties of a collection of interacting agents.

We finally note, that although a connection can be found or stated, there is a priori no trivial link

between the neutrosophic assignments (πT (s)(φ), πF (s)(φ), πI(s)(φ)) that quantify truth, falsity and

9We consider here the monoagent case, although the extension to the multiagent case is trivial.
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indeterminacy of formulae, and the belief granted to the corresponding sets of possible worlds through

the general belief function proposed in DSmT, Bel′.

16.7 Conclusion

In this chapter, we proposed a discussion on neutrosophy and its capacity to tackle the situation analysis

challenges. In particular, we underlined and connected to neutrosophy four basic ontological principles

guiding the modelization in Situation Analysis: (1) allowing statements about uncertainty to be made, (2)

contextualization, (3) enrichment of the universe of discourse, (4) allowing autoreference. The advantages

of DSmT and neutrosophic logic were studied with these principles in mind. In particular, we highlighted

the capacity of neutrosophic logic to conciliate both qualitative and quantitative aspects of uncertainty.

Distinguishing ontological from epistemic obstacles in SA we further showed that being based on the

power set, Dempster-Shafer theory appears in fact as an epistemic theory whereas Dezert-Smarandache

theory, based on the richer hyper-power set, appears capable to deal with both epistemic and ontological

aspects of SA. Putting forward the connection between hypersets and Kripke structures as means to

model autoreference, we then focused on Kripke structures as an appropriate device for reasoning in SA.

In particular, we showed that it is feasible to build a DSm structure upon the possible worlds semantics,

an extension of the classical probabilistic and Dempster-Shafer structures. Considering neutrosophic

logic, we showed that is could be possible to extend Kripke structures in order to take into account

neutrosophic propositions, i.e. triplets of assignments on intervals of hyperreal numbers. We also showed

how to represent the concepts of belief and knowledge with hyperreal truth (resp. falsity, indeterminacy)

assignments on possible worlds. This allows one to introduce a clear qualitative distinction between certain

belief and knowledge, a distinction that is not clear in traditional epistemic logic frameworks. Finally, we

proposed a connection between neutrosophic logic and DSmT in the Kripke semantics setting.
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Abstract: This chapter presents an environmental application of DSmT for the

land cover prediction. The spatial prediction of land cover at the field scale in winter

is useful to reduce the bare soils in agricultural intensive regions. Fusion process with

the Dempster-Shafer theory (DST) proved to have limitations with the increase of

conflict between the sources of evidence that support land cover hypotheses. Several

modifications may be used such as source weighting or the hedging methods, but with

no benefit in the considered case studied since the conflict may not explain by itself

all the bad decisions. Actually, sources of evidence may induce all together a wrong

decision. Then, it is necessary to introduce paradoxical information. Nevertheless,

sources of evidence that are in use, are defined according to hypothesis “covered soil”

or “bare soil” in the frame of DST. We investigate several points of view to define

the belief assignments of the hyper-power set of the DSmT from the initial power set

of DST. So, smart belief assignments induce a better prediction of bare soils.
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17.1 Introduction

I
n intensive agricultural areas, water quality may be improved by reducing bare soil surfaces during

the winter months. In this context, the knowledge of the spatio-temporal variations of the land use

and cover as well as the spatial prediction of the land cover at the field scale appear essential for the issue

of bare soils reduction. Land-cover prediction, that is useful for stakeholders that manage water-quality

programs in focusing on the areas where the probability to find a bare soil is high, requires the identifica-

tion and characterization of the driving factors of observed land-cover changes. The high variability of the

driving factors that motivate land-cover changes between two successive winters induces the integration

of uncertainty in the modelling of the prediction process.

Several short-term predictions have been simulated with the Dempster-Shafer (DS) theory in pre-

vious studies to assess land-cover distribution in winter on a relatively intensive farming watershed of

61.5km2 [1]. This study area, located in western France, produces significant amounts of nitrogen be-

fore winter infiltration of water. Fusion process with the DS theory proved to have limitations with the

increase of conflict between the sources of evidence that support land cover hypotheses. Several mod-

ifications may be used (such as source weighting or the Hedging methods) but with no benefit in our

application. It appears that conflict may not explain by itself all the bad decisions. Actually, each sources

of evidence may induce all together a wrong decision. Then, paradoxical information was introduced to

improve the prediction accuracy.

A first application of the Dezert-Smarandache theory on the study area has pointed some results a

little bit better than the DS, but the rate for the hypothesis “bare soil” was still inferior to 40% of good

prediction. An improvement of the fusion process must be performed specially for this hypothesis. In

this application, sources of evidence that are in use, are still defined according to hypothesis “Covered

soil” or “Bare soil” in the frame of the Dempster-Shafer theory. Mass functions assignment determined

from statistical analysis and expert knowledge are defined to support the hypotheses but the high level of

conflict between sources requires a finest mass attribution and a “contextual” fusion process to manage

the uncertainty and the paradoxical.

This chapter focuses on the application of the Dezert-Smarandache theory for the land-cover prediction

in winter, and more precisely on the transfer from evidence to plausible and paradoxical reasoning. Our

objective is to improve the land-cover prediction scores in investigating several points of view to define

the belief assignments of the hyper-powerset of the Dezert-Smarandache theory from the initial powerset

of the Dempster-Shafer theory. A first part concerns the identification and hierarchization of the driving

factors that drive the land cover changes on the studied watershed for their transformation in pieces
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of evidences for the selected working hypothesis. The other one presents the process of the land cover

modelling with the Dezert-Smarandache theory comparatively to the Dempster-Shafer theory and its

adaptation for this specific environmental study.

17.2 Determination of information sources

The land cover in winter has been classified from remote sensing images in two land cover categories,

“Bare soil” and “Covered soil” that correspond to the two hypotheses of work. The determination of the

information sources for each hypothesis for the fusion process consists in identifying and hierarchizing

the factors that motivate the land cover changes between winters for the studied period (1996-2003).

17.2.1 Identification of the driving factors of land cover change

The land-cover changes between winters in intensive agricultural regions are characterized by an high

spatio-temporal variability depending on factors of several origin (economical, social, political, physics

constraints) that need to be carfully defined in the modelling process. The identification of the driving

factors of land-cover changes requires to study the land use on a quite long period. A set of 10 satellite

images (9 SPOT images and 1 IRS-LISS III —2 per year over 5 years since 1996—) has been acquired,

pre-processed and classified. Winter land cover change trajectories were produced by merging successively

all classifications [2]. All this data have been integrated in a GIS (Geographic Information System) to

identify the crop successions spatially and the land-cover changes between winters on the field scale. A

statistical analysis and a meeting with the agricultural experts provided four main driving factors of

land-cover changes, namely the field size, the crop successions, the agro-environmental actions and the

distance of the fields from farm buildings. All this factors explain the winter land-cover distribution in the

categories “Bare soil” or “Covered soil”. Then, a hierarchization of the identified driving factors of land-

cover change was needed in the fusion process to predict the future land-cover (Mass belief assignment

to the sources of evidence), to assess the respective “weight” of each explicative factors.

17.2.2 Hierarchization of the factors of land cover change

The mutual information between the variables has been used to hierarchize the explicative factors of land-

cover change. The mutual information analysis is based on the information theory [3]. It is used to outline

relations between the variables [4]. For this study, three indicators have been chosen to characterize the

relationship between variables that may explicit the land cover evolution between the winters.

• Entropy H: the main property of the information concept is that the quantity of information is

maximum when the events are distributed uniformly. It allows to calculate the information quantity
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between the set of events.

H =
N∑

i=1

pi log pi,

with N number of possible events and pi probability of event i.

• Mutual Information I: it represents the mutual information between two variables X and Y ; it is

obtained through the difference between the entropy H of X , Y and the joint entropy H(X,Y ) as

follows.

I(X,Y ) = H(X) +H(Y )−H(X,Y ).

• Redundancy R: It is issued from the entropy and the mutual information. It measures the hetero-

geneity rate of two variables X , Y .

R =
I(X,Y )

H(Y )
.

The process provides a hierarchization of the information quantity for the explicative variables with

the variable to explain. The results of the mutual information test (Table 17.1) show that the most repre-

sentative variable is “Crop successions (1996-2002)”, followed by “Size of the fields”, “Agro-environmental

actions” and “Distance from farm buildings” in decreasing representative order. These results allow to

optimise the mass belief assignment for the hypotheses “Bare soil” and “Covered soil”, in comparison

with an empirical “expert knowledge” method.

Classes NF (%) R I

Distance from 1: < 1.25 1255 (67.6 %)
0.14 % 0.0006

farm buildings 2: > 1.25 601 (32.4 %)

Agro-environmental 1: without 1619 (87.2 %)
0.2 % 0.0008

actions 2: with 237 (12.8 %)

Field size
1: < 1.5 ha 1517 (81.7 %)

0.97 % 0.0039

2: > 1.5 ha 339 ( 18.3 %)

1: (SC W) 1046 (56.4 %)

2: (BS 1W) 301 (16.2 %)

Crop rotation 3: (BS 2W) 186 (10 %)
5.19 % 0.0211

(1996–2002) 4: (BS 3W) 179 (9.64 %)

5: (BS 4W) 89 (4.8 %)

6: (BS 5W) 55 (2.96 %)

Table 17.1: Explicative variables hierarchization with the mutual information analysis.
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Column NF (%) of the Table 17.1 indicates the numbers NF of fields (and their percentage). Column

5 of the table indicates the values of redundancy R and column 6 the values of mutual information I.

In the last row (i.e. crop rotations during 1996-2000) of Table 17.1, six cases have been identified and

correspond to

1. (SC W) : soils covered during all winters

2. (BS 1W) : bare soil during one winter

3. (BS 2W) : bare soil during two winters

4. (BS 3W) :bare soil during three winters

5. (BS 4W) : bare soil during four winters

6. (BS 5W) : bare soil during five winters

17.3 Land cover prediction with the Dempster-Shafer Theory

The theory of evidence proposed by Dempster was developed by Shafer in 1976 and the basic concepts

of this theory have often been exposed [5, 6]. Detailed applications of the Dempster-Shafer theory can

be found in [7]. Previous applications of the DS theory for our study [1] showed that 45% of the infor-

mation sources were highly conflicting and generate misprediction results. Performances decrease when

the conflict between the evidences is rising (k < 0.6). In our case, only 75% of the fields concerned by

a high degree of conflict are correctly predicted. On the contrary, results become clearly better (91% of

right prediction) when the conflict is low (k < 0.2).

Several methods that attempt to make the fusion operators more reliable in considering the different

sources of conflict may be found in [8, 9, 10, 11]. No optimal techniques exist yet, even if an approximate

adjustment of the fusion threshold can be successful for some applications. In order to deal with the

conflict between the information sources, we have applied here a method based on the source weakness.

17.3.1 Basic belief assignment

The assignment of basic beliefs (membership function shape) on the selected indicators is assigned by

experts and from the evidence image distribution (Fig. 17.1). They are adjusted and validated with

past-observed data and expert’s knowledge. Table 17.2 illustrates this stage in including the uncertainty

through mass function affectation. For each evidences, denoted B for “bare soil”, C for “covered soil”,

and B ∪ C for “Bare soil or covered soil”, classes are defined in order to support one of the hypotheses

B, C or B ∪ C.
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Figure 17.1: Evidence image distribution for each hypothesis.

Classes hyp. B hyp. C hyp. B ∪ C

Distance from 1: < 1 km 0.3 0.5 0.2

farm buildings 2: > 1 km 0.6 0.2 0.2

Agro-environmental 1: without 0.6 0.3 0.1

actions 2: with 0.005 0.95 0.045

Field size
1: < 1.5 ha 0.2 0.5 0.3

2: > 1.5 ha 0.65 0.2 0.15

1: (SC W) 0.005 0.95 0.045

2: (BS 1W) 0.01 0.9 0.09

Crop rotation 3: (BS 2W) 0.25 0.7 0.05

(1996–2002) 4: (BS 3W) 0.45 0.4 0.15

5: (BS 4W) 0.65 0.3 0.05

6: (BS 5W) 0.85 0.1 0.05

Table 17.2: Affectation of the belief masses for the DS theory.
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17.3.2 Conflict managing with the source weakness

17.3.2.1 Principle

Sources weakness method (i.e. discounting technique presented in chapter 1 consists in taking in account

the reliability of the evidences by using reliability factor α for each source as a value such as 0 6 α 6 1.

This way, a source may be considered as totally reliable if α = 1, or on the contrary completely unreliable

if α = 0. Damping rule is defined as follows:







m′(A) = αm(A) ∀A 6= Θ

m′(Θ) = (1− α) + αm(Θ).

The weakness process is performed when the conflict is too high (relatively to a threshold, such as k < 0.4).

Two rules have been investigated:

• α is set to a value so that the source does not interfere in the decision process. Then,







m′(θbare soil) = 0.01

m′(θcovered soil) = 0.01

m′(θbare soil ∪ θcovered soil) = 0.98.

• α is set to a value linked to the conflict level k. So that the more the conflict, the more the weakness.

We remind the conflict between two sources is defined as:

k =
∑

A∩B 6=∅

m1(A)m2(B).

17.3.2.2 Results and partial conclusion

The results provided with this method are a little better than the simple application of the DS theory for

the hypothesis “bare soil” since 84 fields are correctly predicted against 73 for the DS. But the analysis

of the results showed that the conflict does not necessary take place in the mispredictions for the “bare

soil” hypothesis. Also, Plausibility-Belief interval can not be helpful for the accuracy of the predictions.

Then, an ambiguity between the sources must be taken into consideration in the process. Than is why,

prediction process has been moved to the DSm theory in order to deal with paradoxical.

17.4 Land cover prediction with DSmT

The Dezert-Smarandache theory (DSmT) can be considered as a generalization of the Dempster-Shafer.

In this new theory, the rule of combination takes into account both uncertain and paradoxical information,

see chapter 1 of this book and [12]. Let be the simplest frame of discernment Θ = {θbare soil, θcovered soil} in-

volving only two elementary hypotheses with no more additional assumptions on θbare soil and θcovered soil.
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DSm theory deals with new basic belief assignments m(·) ∈ [0, 1] in accepting the possibility for para-

doxical information such that:

m(θbare soil) +m(θcovered soil) +m(θbare soil ∪ θcovered soil) +m(θbare soil ∩ θcovered soil) = 1.

Recently, a hybrid rule of combination issued of the DSm theory has been developed by the authors of

the theory, see chapter 4 of this book. The fusion of paradoxical and uncertain evidences with the hybrid

DSm rule of combination combines several masses of independent sources of information and takes into

consideration the dynamics of data sets. Thus, hybrid DSm model can be considered as an intermediary

model between the DS and the DSm theory. The capacity to deals with several hyper-power set makes

the hybrid model an interesting alternative in various fusion problems.

17.4.1 Mass belief assignment

17.4.1.1 Fuzzy mass belief assignment

the mass belief assignment follows the same process as the DS theory. Nevertheless, a fuzzy mass belief

assignment is here applied for two sources of evidence: “size of fields” and “distance from farm buildings”

because of their specific characteristics (Fig. 17.1). For the variable “Size of fields” for example, the size

evolves to 0.05 to 7.7 ha. Then, a continuous mass belief affectation appears pertinent for fusion process,

by integrating paradoxical information when experts had introduced threshold instead. It is achieved by

smoothing the actual bi-level assignment (Fig. 17.2).
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Figure 17.2: Fuzzy mass belief assignment for the evidences “Distance” and “Field size”.

17.4.1.2 Contextual damping of source of evidence

since the conflit level between sources is not necessary involved in the misprediction for the “bare soil”

hypothesis, a contextual damping strategy is applied depending on the decision that is about to be taken.

Actually, we consider that when the decision is about to be taken to the “bare soil” hypothesis, distance

to farm and field size are completely paradoxical when crop rotation belongs to class 1 or 2. Furthermore,
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when the decision is to be taken to the “covered soil” hypothesis, all the sources become paradoxical when

crop rotation is greater than 3 (bare soil during two winters at least).

In order to make sources of evidence paradoxical, a partial damping is applied as follows:







m′(θbare soil) = αm(θbare soil)

m′(θcovered soil) = β m(θcovered soil)

m′(θbare soil ∪ θcovered soil) = m(θbare soil ∪ θcovered soil)

m′(θbare soil ∩ θcovered soil) = 1− αm(θbare soil)− β m(θcovered soil)−m(θbare soil ∪ θcovered soil).

The couple (α, β) allows to remove the mass of an hypothesis to the benefit of the paradoxical. Here,

(α, β) = (0.1, 1) is applied when the decision “bare soil” is about to be taken with crop rotation of 1 or 2

(bare soil during no more than one winter). Also, (α, β) is set to (1, 0.1) when deciding a “covered soil”

while crop rotation is greater than 3 (bare soil during 2 winters at least).

Here, this contextual partial damping allows the DSm rule to take into consideration a kind of contional

mass assignment.

17.4.2 Results

The application of a contextual DSm rule of combination provides better results for the hypotheses “bare

soil”. 121 fields (Table 17.4.2) are correctly predicted against 73 with the DS and 84 with the source

weakness process. The “bare soil” hypothesis still generates a high level of mispredictions, which is not

the case for the “covered soil” hypothesis. Several factors can explain the weak rate of right prediction for

the hypothesis “Bare soils”. It is strongly linked to the high spatio-temporal variability of the land-use.

Actually, an important number of fields covered with meadows during four or five years are ploughed in

autumn and re-integrated in a cycle of crop successions. This kind of change is difficult to model since it

can be due to unexpected individual human decisions, or exceptional and isolated weather-events. The

spatial distribution of the results can be analyzed on the Fig. 17.3. The west part of the watershed

corresponds to more intensive system farming than the east part. In the context of intensive system,

the variability of land cover changes is higher than the others systems, it depends mostly on economics

constraints that are difficult to model. On the contrary, the south part of the watershed is characterized

by dairy milk production system. In this part of the watershed, the land cover evolution is better known

and highly depends of the crop successions. Its integration into DSm theory is easier and the prediction

process yields finest results.
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Land use for winter 2001/2002 (from

remote sensing data)
Prediction (rate)

bare soils 266 fields 121 (0.46 %)

covered soils 1588 fields 1239 (0.78 %)

Total 1856 fields 1360 (0.73 %)

Table 17.3: Performance of hybrid DSm rule for land prediction

.

Figure 17.3: Prediction performance with the hybrid DSm rule on the Yar watershed (Brittany).
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17.5 Conclusion

Two studies have been analyzed in this chapter for the prediction of land cover on a watershed subject to

environmental problems. The land cover prediction with DS proved to have limitations with the increase

of conflict between the sources of evidence that support land cover hypotheses. Several modifications may

be used such as source weighting or the Hedging methods, but with no benefit in our case. To manage

the conflict, the DSm has been applied with a little improvement of the accuracy of predictions. Actually

conflict may not explain by itself all the bad decisions since the sources of evidence may induce all to-

gether a wrong decision. That is why, a contextual fusion rule appeared necessary for this environmental

problem where information sources can be paradoxical or/and uncertain. This new fusion process re-

quired first the identification of the driving factors of land cover changes. Then, a mass belief assignment

is built for the two hypotheses “covered soil” and “bare soil” through expert knowledge and a mutual

information analysis that yield a hierarchization of the source of evidences. A fuzzy affectation is per-

formed for two of the information sources and a “contextual” combination rule is applied to manage the

uncertainty and the paradoxical characteristics of the information sources into the DSm decision process.

The results for the “bare soil” hypothesis, which still generates too many mispredictions, are better than

the prediction through DS decision rule (46% of correct “bare soil” predictions against 36% issued from

the previous study). The hypothesis “covered soil” yields 78% of right prediction; this difference between

the hypotheses can be explained with the weak rate of bare soil on the watershed and especially with

the high variability of the land cover changes that characterized the intensive farm systems located on

the north-west part of the watershed. Nevertheless, the fusion process appears to be robust and doesn’t

require specifics data as input. Thus, prediction system developed with the DSm theory can be apply

on different watersheds in Brittany and provides a useful tool for assessing and planning land use. The

knowledge of land use is one of the key for restoring water quality intensive agricultural regions.
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Chapter 18

Power and Resource Aware

Distributed Smart Fusion

Shubha Kadambe
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3011 Malibu Canyon Rd., Malibu, CA 90265, USA

Abstract: Large distributed sensor networks (DSN) with disparate sensors, pro-

cessors and wireless communication capabilities are being developed for a variety of

commercial and military applications. Minimizing power consumption of the nodes

is a critical issue to their good functioning during the mission or application, to

reduce their size and weight, and their cost so that their deployment is economically

viable. In this chapter, we describe a robust, flexible, and distributed smart fusion

algorithm that provides high decision accuracy and minimizes power consumption

through efficient use of network sensing, communication, and processing resources.

Our approach, developed on information theory-based metrics, determines what net-

work resources (sensors, platforms, processing, and communication) are necessary to

accomplish mission tasks, then uses only those necessary resources. It minimizes the

network power consumption and combines valuable information at features and deci-

sion level using DSmT. We demonstrate the proposed optimal, fully autonomous,

smart distributed fusion algorithm for target detection and classification using a

DSN. Our experimental results show that our approach significantly improves the

detection and classification accuracy using the required high quality sensors and fea-

tures, and valuable fused information.

The part of this work was funded by DARPA/IXO under the contract # F30602-01-C-0192. The authors would like to

thank in particular Dr. Sri Kumar for funding this work under the SensIT program.
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18.1 Introduction

S
patially distributed network of inexpensive, small and smart nodes with multiple onboard sensors

is an important class of emerging networked systems for various defense and commercial applica-

tions. Since this network of sensors has to operate efficiently in adverse environments using limited

battery power and resources, it is important that appropriate sensors process information hierarchically

and share information only if it is valuable in terms of improving the decision accuracy such that highly

accurate decision is made progressively. One way to address this problem is to activate only those sensors

that provide missing and relevant information, to assess the quality of information obtained from the ac-

tivated sensors (this helps in determining the sensor quality), to assess the value of obtained information

in terms of improving the decision (e.g., target detection/track) accuracy, to communicate only relevant,

high quality and valuable information to the neighboring nodes and to fuse only valuable information

that aid in progressive decisions. Information theoretic approaches provide measures for relevance, utility,

missing information, value of information, etc. These measures help in achieving hierarchical extraction

of relevant and high quality of information that enable in selection/actuation of relevant sensors and

dynamically discard information from noisy or dead sensors and, progressive improvement of decision

accuracy and confidence by utilizing only valuable information while fusing information obtained from

neighboring nodes. In this chapter, we describe a minmax entropy based technique for missing informa-

tion (feature) and information type (sensor) discovery, within class entropy based technique for sensor

discrimination (i.e., quality assessment), mutual information for features quality assessment and, mutual

information and other measures for assessing the value of information in terms of improvement in decision

accuracy. In addition, we briefly describe how high quality, relevant and valuable information is fused us-

ing a new theory – DSmT which provides rules for combining two or more masses of independent sources

of information that is dynamically changing in real time which is essential in the network of disparate

sensors that is considered here.

To the best knowledge of this author there is no study on sensor discrimination using within class

entropy metric is reported even though, there is one study on using mutual information for selecting a

subset of features from a bigger set that is described in [2]. The technique described in this chapter uses

within class entropy as a metric to assess the quality (good vs. bad) of a sensor. Unlike our technique,

the technique in [2] is static in nature and cannot handle the case where the dimensionality of the feature

set varies. In [15], the author shows that in general by fusing data from selective sensors the performance

of a network of sensors can be improved. However, in this study, no specific novel metrics for the feature

discovery and feature/sensor discrimination were developed unlike in this chapter. In [10], techniques to

represent Kalman filter state estimates in the form of information – Fisher and Shannon entropy are pro-

vided. In such a representation it is straightforward to separate out what is new information from what is
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either prior knowledge or common information. This separation procedure is used in decentralized data

fusion algorithms that are described in [10]. However, to the best knowledge of this author no study has

been reported on using minmax entropy principle for the feature and information type discovery. Fur-

thermore, to our knowledge the proposed value of information based fusion is not studied by others and is

another significant contribution of this chapter. In addition, the significance of this study is the applica-

tion of feature discovery and sensor discrimination in awakening the required sensor and in the formation

of a cluster of distributed sensors to reduce the power consumption, to improve the decision accuracy and

to reduce the communication bandwidth requirements. This chapter is a comprehensive of our studies

reported in [6, 7, 8] with the addition of application of DSmT for fusion at both feature and decision levels.

In the next section, proposed techniques are described. The simulation description and experimental

results are provided in section 18.3. Conclusions and future research directions are provided in section

18.4.

18.2 Description of proposed research

18.2.1 Discovery of missing information

In the case of applications of a distributed network of disparate sensors such as (a) target detection,

identification and tracking, (b) classification, (c) coalition formation, etc., the missing information could

correspond to feature discovery. This helps in only probing (awakening) the sensor node that can provide

the missing information and thus save power and processing by not arbitrarily activating nodes and by

letting the unused sensor be in the sleep mode. We apply the minmax entropy principle described in [9]

for the feature discovery. The details of estimation of missing information in other words feature discovery

and information type using the minmax entropy principle are as follows.

18.2.1.1 Minmax entropy principle

Let N given values corresponds to n different information types. Let zij be the j-th member of i-th

information type (where the information type is defined as a sensor type that gives similar information

measures) so that

i = 1, 2, . . . , n j = 1, 2, . . . ,mi

n∑

i=1

mi = N (18.1)

Then the entropy for this type of classes of information is:

H = −
n∑

i=1

mi∑

j=1

zij
T

ln
zij
T

where T =

n∑

i=1

mi∑

j=1

zij (18.2)
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Let Ti =
∑mi

j=1 zij . Using this, H can be written as:

H =

n∑

i=1

Ti
T
Hi −

n∑

i=1

Ti
T

ln
Ti
T

= HW +HB (18.3)

where Hi = −
mi∑

j=1

zij
T

ln
zij
T

is the entropy of values that belong to information i.

In the equation above, HW and HB are entropy of within classes (information types) and between

classes, respectively. We would like types of information to be as distinguishable as possible and we

would like the information within each type to be as homogenous as possible. The entropy is high if the

values belonging to a type (class) represent similar information and is low if they represent dissimilar

information. Therefore, we would like HB to be as small as possible and HW as large as possible. This

is the principle of minmax entropy.

18.2.1.2 Application of minimax entropy principle for feature discovery

Let z be the missing value (feature). Let T be the total of all known values such that the total of all

values is T + z. Let T1 be the total of values that belong to information type to which z may belong.

T1 + z then is the total of that particular type of information. This leads to:







H = −
∑′ zij

T + z
ln

zij
T + z

− z

T + z
ln

z

T + z

HB = −
∑′′ Ti

T + z
ln

Ti
T + z

− T1 + z

T + z
ln
T1 + z

T + z

(18.4)

Here
∑′

denotes the summation over all values of i, j except that correspond to the missing informa-

tion and
∑′′

denotes over all values of i except for the type to which the missing information belongs,

respectively.

We can then estimate z by minimizing HB/HW or HB/(H − HB) or HB/H , or by maximizing

(H − HB)/HB or H/HB. The estimates of z provide the missing information values (features) and

information (sensor) type. From the above discussion, we can see that we will be able to discover features

as well as type of sensor from which these features can be obtained. This has the advantage of probing

the appropriate sensor in a DSN. The transfer of information and probing can be achieved in such a

network by using network routing techniques. Before trying to use the newly acquired feature set from

the estimated information type i.e., sensor, it is advisable to check the quality of the sensor to make

sure that the sensor from which we are seeking the information is not noisy (not functioning properly)

or “dead” to reduce the cost of processing. In a DSN this has an added advantage of reducing the

communication cost. We measure (see next section) the quality (i.e. discriminate a good sensor vs. bad

sensor) by using an information theoretic measure - the within class entropy.
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18.2.2 Measure of consistency

We measure relevance by measuring consistency. For this we have developed a metric based on within

class entropy that is described in this section. Let there are N events (values) that can be classified in

to m classes and let an event xij be the j-th member of i-th where i = 1, 2, . . . ,m, j = 1, 2, . . . , ni and
∑m

i=1 ni = N . The entropy for this classification is:

H =

m∑

i=1

ni∑

j=1

p(i)p(xij) log(
1

p(i)p(xij)
)

= −
m∑

i=1

ni∑

j=1

p(i)p(xij log(p(i)p(xij)

= −
m∑

i=1

p(i)

ni∑

j=1

p(xij) log(p(xij)−
m∑

i=1

p(i) log(p(i))

ni∑

j=1

p(xij)

=

m∑

i=1

p(i)Hi −
m∑

i=1

p(i) log(p(i))

= HW +HB

The penultimate equality comes from the definition of Hi = −
m∑

i=1

p(i)

ni∑

j=1

p(xij) log(p(xij) represent-

ing the entropy of a class i and the total probability theorem, i.e.
∑ni

j=1 p(xij) = 1. HW is called the

entropy within classes and HB is called the entropy between classes.

The entropy HW is high if the values or events belonging to a class represent similar information

and is low if they represent dissimilar information. This means HW can be used as a measure to define

consistency. That is, if two or more sensor measurements are similar then their Hw is greater than if they

are dissimilar. Therefore, this measure can be used in sensor discrimination. Note that even though the

definitions of within class and between class entropy here are slightly different from section 18.2.1, they

are similar in concept. Note also that the minmax entropy measure that uses both within and between

class entropies was used earlier in the estimation of missing information; but here, within class entropy

is defined as a consistency measure that can be used in sensor discrimination or selection. These two

metrics have different physical interpretations and are used for different purposes.

18.2.3 Feature discrimination

After making sure about the quality of sensor (the information type) from which missing information can

be obtained, it is necessary to make sure that the observations (features) from that sensor does help in

gaining information as far as the required decision is concerned. This step doubly makes sure that the

estimated missing information is indeed needed. For this, we have developed metrics based on conditional

entropy and mutual information which are described in the following two subsections.
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18.2.3.1 Conditional entropy and mutual information

Entropy is a measure of uncertainty. Let H(x) be the entropy of previously observed x events. Let y

be a new event. We can measure the uncertainty of x after including y by using the conditional entropy

which is defined as:

H(x|y) = H(x, y)−H(y) (18.5)

with the property 0 ≤ H(x|y) ≤ H(x). The conditional entropy H(x|y) represents the amount of

uncertainty remaining about x after y has been observed. If the uncertainty is reduced then there is

information gained by observing y. Therefore, we can measure the importance of observing estimated y

by using conditional entropy. Another measure that is related to conditional entropy that one can use is

the mutual information I(x, y) which is a measure of uncertainty that is resolved by observing y and is

defined as:

I(x, y) = H(x)−H(x|y) (18.6)

To explain how this measure can be used to measure the importance of estimated missing information

(e.g., features) which is referred to as feature discrimination, an example is provided below.

18.2.3.2 Example of feature discrimination based on entropy metrics

Let A = {ak}, k = 1, 2, . . . be the set of features from sensor 1 and let B = {bl}, l = 1, 2, . . . be the set

of features from sensor 2. Let p(ak) be the probability of feature ak and p(bl) the probability of feature

bl. Let H(A), H(B) and H(A|B) be the entropy corresponding to sensor 1, sensor 2 and sensor 1 given

sensor 2, respectively, and they are defined as [9]:






H(A) =
∑

k

p(ak) log(
1

p(ak)
)

H(A|B) = H(A,B)−H(B) =
∑

l

p(bl)H(A|bl) =
∑

l

p(bl)
∑

k

p(ak|bl) log(
1

p(ak|bl)
)

(18.7)

Here, the entropy H(A) corresponds to the prior uncertainty and the conditional entropy H(A|B)

corresponds to the amount of uncertainty remaining after observing features from sensor 2. The mu-

tual information I(A,B) = H(A)–H(A|B) corresponds to uncertainty that is resolved by observing B

in other words features from sensor 2. From the definition of mutual information, it can be seen that

the uncertainty that is resolved basically depends on the conditional entropy. Let us consider two types

of sensors at node 2. Let the set of features of these two sensors be B1 and B2, respectively and let

the set of features estimated by the minmax entropy principle described in the previous section be B1.

If H(A|B1) < H(A|B2) then I(A,B1) > I(A,B2). This implies that the uncertainty is better resolved

by observing B1 as compared to B2. This further implies that indeed the estimated B1 corresponds to

features that help in gaining information that aid in the decision process of sensor 1 and B2 does not and

hence, should not be considered.
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Note that even though in the above example only two sensor nodes are considered for simplicity, this

measure or metric can be used in a network of more than two sensors. In such a case, A would be a set

of features that a node already has from other sensors in a cluster that it is a member of and B would be

a new feature set that it receives from a different sensor type that it has not already received from and

it may be a member or not a member of that particular cluster. If the mutual information increases by

including the set of features B then we make a decision of including that sensor as part of this particular

cluster if it is not a member. In case it is a member and the mutual information does not increase then

it would be discarded from that particular cluster.

18.2.4 Measures of value of information

This section describes the measures of value of information that we have developed to determine when to

fuse information from disparate sources. The value is in terms of improving the decision accuracy. Even

though the mathematics of the metrics described below are not novel, the usage of metrics in the context

of verifying value of information with respect to improving the decision accuracy (e.g., classification

accuracy, detection accuracy) is new.

18.2.4.1 Mutual information

Mutual information defined in section 18.2.3.1 can also be used as a measure of value.

18.2.4.2 Euclidean Distance

Unlike mutual information, Euclidean distance does not evaluate the amount of information available

from a second source. It does, however, measure the similarity between two feature sets in Euclidean

space. This value can then be used to determine when to fuse two sources of information, whether they

are from different types of sensors on the same node or from same type of sensors different nodes. A

simple measure, Euclidean distance is defined as:

d =

√
∑

i

(ai − bi)2 (18.8)

where ai, bi and i are defined in Section 18.2.3.1.

18.2.4.3 Correlation

Correlation is also a well known measure of similarity. We use the standard measure of correlation as

defined by:

ρ =
E[(a− µa)(b − µb)]
E[a− µa]E[b − µb]

(18.9)
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where µa and µb are the means of feature sets a and b, respectively. Note that correlation is very closely

related to mutual information, I(x, y) because (18.6) can be rewritten as:

I(x, y) =
∑

k

p(ak, bk) log(
p(ak, bk)

p(ak)p(bk)
) (18.10)

18.2.4.4 Kullback-Liebler distance

Finally, the Kullback-Liebler (KL) distance is derived from entropy, and again is a measure of the sepa-

ration of two feature sets. It is defined as:

D =
∑

k

p(ak) log(
p(ak)

p(bk)
) +

∑

k

p(bk) log(
p(bk)

p(ak)
) (18.11)

18.2.5 Fusion using DSmT

Since in a network of disparate sensor nodes as is considered here, the sources of information are indepen-

dent and changing dynamically based on which sensor and features are selected, for the smart distributed

fusion we use the new theory of plausible and paradoxical reasoning – DSmT developed in [5]. This

theory provides a hybrid DSm rule which combines or fuses two or more masses of independent sources

of information and takes care of restraints i.e., of sets which might become empty at certain time or new

sets that might arise at some other time. In a network of sensor nodes these situations arise (sometimes

we discard the feature set or decision from the other nodes and sometimes we use features from different

type of sensors based on how the scene is changing dynamically) and hence, the application of hybrid

DSm rule for fusion is very appropriate. In addition, since fusion is not done at a centralized location

but done locally dynamically based on the information received from the neighboring nodes, we propose

to extend the decentralized dynamical fusion by combining dynamical fusion using the hybrid DSm rule

for the chosen hybrid model M. Specifically, at the feature level fusion at each sensor node the frame

under consideration at time tl will be

Θ(tl) , {θ1 = acoustic sensor, θ2 = seismic sensor, θ3 = IR sensor location}

and at decision level fusion, Θ(tl) = {θ1 = vehicle present, θ2 = vehicle not present} in the case of a

detection application and,

Θ(tl) , {θ1 = AAV, θ2 = DW, θ3 = HMMWV}

where AAV, DW, and HMMWV represent the vehicle types that are being classified) for the decision

level fusion in the case of a classification application.

Both detection and classification applications are described in section 18.3.2. We derive basic belief

assignments based on the observations (a) from the sensor type for feature level fusion, (b) from the
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features extracted from the sensors’ signals for fusion at the decision level in the case of classification

and detection applications. For example, ma(θ1) = 0 and ma(θ2) = 0, if the feature from the acoustic

sensor (a) – energy is well above the threshold level in the case of the detection application. Θ(tl) changes

as the observation is different based on the above described sensor and feature selection and results in

Θ(tl+1). If we discard observations from a sensor (based on the feature discrimination algorithm explained

above) then Θ diminishes and we apply the hybrid DSm rule to transfer the masses of empty sets to

non-empty sets. If we include observations from a new sensor then we use the classical DSm fusion rule to

generate basic belief assignments mtl+1
(.). For the decentralized decision level fusion at the current node,

consider the Θp(tl) obtained from the previous node and the Θ(tl) of the current node and apply the

hybrid DSm rule by taking the integrity constraints in to consideration. These constraints are generated

differently for the fusion between the sensors and for the fusion from node to node. The pseudo-codes

which generate these constraints are given in section 18.3.2. For example, in the case of node to node

fusion for classification application that is described in section 18.3.2.2.1 fuse_4class=1 will indicate

to put the constraint θ1 ∩ θ2 M
= ∅, θ1 ∩ θ3 M

= ∅, θ1 ∩ θ2 ∩ θ3 M
= ∅ at the current node if the classification at

the previous node corresponds to θ1 = AAV since if the vehicle at the previous node is AAV, the vehicle

at the current node which is very close to the previous node has to be AAV.

18.3 Experimental details and results

Above described algorithms have been applied for the feature discovery, sensor and feature evaluation

(discrimination), cluster formation and distributed smart fusion in a network of both simulated radar

sensors and a network of real disparate sensors and sensor nodes that are spatially distributed. First, in

section 18.3.1, the results obtained using a simple simulated network of radar sensors is provided for the

purposes of proving the concepts. In section 18.3.2 however, experimental results obtained by using a

real DSN of disparate sensors is provided.

18.3.1 Simulated network of radar sensors

This network of sensors is used for tracking multiple targets. Each sensor node has a local and global

Kalman filter based target trackers. These target trackers estimate the target states - position and ve-

locity in Cartesian co-ordinate system. The local tracker uses the local radar sensor measurements to

estimate the state estimates while the global tracker fuses target states obtained from other sensors if it

is consistent and improves the accuracy of the target tracks.

For the purposes of testing the proposed algorithms of this chapter, a network of three radar sen-

sors and a single moving target with constant velocity are considered. Two sensors are considered as
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good and one as bad. A sensor is defined as bad if its measurements were corrupted with high noise (for

example SNR = -6 dB) or is biased. In the first set of examples the SNR of a good sensor is set to be 10 dB.

In the case of simulation of a biased sensor, the bias was introduced as the addition of a random

number to the true position of a target. The bias was introduced this way because the biases in azimuth

and range associated with a radar sensor translate into measured target position that is different from

the true target position. In addition, in our simulations, we assume that the sensors are measuring

the target’s position in the Cartesian co-ordinate system instead of the polar co-ordinate system. The

amount of bias was varied by multiplying the random number by a constant k i.e.,measured position =

(true position + k·randn) + measurement noise.

First, the minmax entropy principle was applied to find the missing information, the appropriate

sensor was probed to obtain that information, then the consistency measure – within class entropy was

applied to check whether the new sensor type and the information obtained from that particular sensor

is consistent with the other sensors.

In the following two figures, within class entropy is plotted for features discovered from two unbiased

sensors and, one biased and one unbiased sensor. The measurement noise level was kept the same for all

three sensors. However, the bias k was set to 1.0 in Figure 18.1 and was set to 2 in Figure 18.2. The

within class entropy was computed for different iterations using the definition provided in the previous

section. The probability values needed in this computation were estimated using the histogram approach

which is elaborated below. From these two figures, it can be seen that the within class entropy of two

unbiased sensors is greater than the within class entropy of one biased and one unbiased sensors. This

indicates that the within class entropy can be used as a measure to discriminate between sensors or to

assess the quality of sensors (to select sensors).

Next, the conditional entropy and mutual information measures described in the previous section are

used to make sure the estimated features obtained from the selected sensors indeed aid in the decision

process.

For this, the target states that were estimated from the measurements of a simulated radar at each

sensor node using the local Kalman filter algorithm is used as feature sets. The estimated target states

at each sensor node were transmitted to other nodes. For this simulation, only estimated position was

considered for simplicity.
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Figure 18.1: The plot of within class entropy of sensors 1 & 2 (unbiased sensors) and, 1 (unbiased) and

3 (biased). Bias constant k = 1

Figure 18.2: The plot of within class entropy of sensors 1 & 2 (unbiased sensors) and, 1 (unbiased) and

3 (biased). Bias constant k = 2
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We considered the estimated state vector as the feature set here. Since the goal of this simulation

is proof of concept, the feature discrimination algorithm was implemented at sensor node 1 with the

assumption it is a good sensor. Let the state estimate outputs of this node be Ag. Let the state estimate

outputs of a second sensor correspond to Bg and a third sensor correspond to Bb.

For the computation of entropy, the probability values are needed as seen from the equation above.

To obtain these values, ideally, one would need probability distribution functions (pdfs). However, in

practice it is hard to obtain closed form pdfs. In the absence of knowledge of actual pdfs it is a general

practice to estimate them by using histograms [11]. Researchers in signal and image processing use this

technique most commonly [13]. Another practical solution to estimate the probability and conditional

probabilities is by using the counting or frequency approach [12]. However, it is well known that the

estimates of probabilities and conditional probabilities are more accurate if they are estimated by using

the pdfs that are approximated from the histograms. Therefore, we use the histogram approach here. In

order to obtain the histograms, initially, we need some data (features) to know how it is distributed. For

this purpose, it was assumed that initially N state estimate vectors were accumulated at each sensor node

and this accumulated vector was transmitted to other nodes. Note also that the accuracy of probability

estimates using the histogram approach depends on the amount of accumulated (training) data. Also

for non-stationary features, it depends on how often the histograms are updated. In practice, since the

training data is limited we have set N to 10 in this simulation. To take care of the non-stationarity of

the features, initially, we wait till N estimates are obtained at each node. From then on we update the

histograms every time instant using the new state estimate and previous nine state estimates. At each

time instant we discard the oldest feature (oldest state estimate).

To get the probability of occurrence of each feature vector, first the histogram was computed. For

this, bin size Nbin of 5 was used. The center point of each bin was chosen based on the minimum and

maximum feature values. In this simulation the bin centers were set as:

min(feature values) + (0 : Nbin − 1) · max(feature values)−min(feature values)

Nbin
(18.12)

Since the histogram provides the number of elements in a given bin, it is possible to compute the

probabilities from the histogram. In particular it is computed as:

Number of elements in a particular bin

Totalnumberofelements

Hence, from these histograms, probabilities were computed. Similarly, conditional probabilities of

p(Ag|Bg) and p(Ag|Bb) were computed from the conditional histograms and these conditional probabilities

are plotted in Figures 18.3 and 18.4, respectively.



18.3. EXPERIMENTAL DETAILS AND RESULTS 395

Figure 18.3: Conditional probability of position estimates of sensor 2 at node 2 given position estimates

of sensor 1 at node 1

Figure 18.4: Conditional probability of position estimates of sensor 3 at node 3 given position estimates

of sensor 1 at node 1
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Each colored line in these two plots represents one conditional probability distribution function. Note

that both A and B are vectors and there would be one pdf for each member of set A. Since we have

chosen bin size as 5 there would be 5 members in set A and hence, there are 5 subplots in Figures 18.3

and 18.4.

Using these probabilities, conditional entropies H(Ag|Bg) and H(Ag|Bb), and mutual information

I(Ag, Bg) and I(Ag, Bb) were computed using the equations mentioned above for one set of features from

sensor at node 2 and node 3. After this kind of initial computation of probabilities, conditional entropy

and mutual information, whenever a sensor estimates a new feature it is replaced by the oldest feature

in the feature set and transmitted to other sensors. Subsequently, histograms, probabilities, conditional

entropy and mutual information were computed using this updated feature set. This would take care

of the non-stationarties of features. Thus each new feature can be verified to make sure it is relevant

in terms of aiding in the decision process (e.g., track accuracy) and it is obtained from a good sensor.

Therefore, this technique is dynamic in nature.

18.3.1.1 Versatility of the algorithm

To verify the versatility of this algorithm we considered a different feature sets namely, the sensor measure-

ments itself instead of the position estimates and the first difference in position estimates. We performed

similar simulation that is described above using these two types of feature sets and the associated his-

tograms for the probability, entropy and mutual information computations. In these two cases also we

always obtained I(Ag, Bg) > I(Ag, Bb) for all the 100 runs of Monte Carlo simulations.

18.3.1.2 Sensitivity of the algorithm for sensor discrimination

Next, noise level at sensor 2 and 3 were varied to determine the sensitivity of the sensor discrimination

algorithm. The SNR at sensor 1 was fixed at 10 dB. The algorithm was able to discriminate between

good and bad sensor 100 % of the time when the noise level at sensor 2 is 8 dB and at sensor 3 is 3

dB. The algorithm was able to discriminate about 80 % of the time if the noise level at sensor 3 is 5

dB when the noise level at sensor 2 is fixed at 8 dB. If the noise level at both sensor 1 and 2 is 10 dB

then the algorithm was able to discriminate 100 % of the time when the noise level at sensor 3 is 5 dB.

However, when the noise level at sensor 3 was changed to 7 dB, the percentage of correct discrimination

was dropped to 82 %. Therefore, if the minimum difference between the noise level at sensor 2 and 3

is 5 dB then the discrimination accuracy is 100 %. If the noise level at both sensor 2 and 3 is close (a

difference of 1 dB) then the algorithm cannot discriminate as expected.
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18.3.1.3 Mutual information versus track accuracy

To check indeed when mutual information metric is used to evaluate the information gain by observing

the estimated missing features (information) and it aids in the improvement of the accuracy of decision

(e.g., track accuracy), the following experiment was conducted.

As before, mutual information I(Ag , Bg) and I(Ag , Bb) was computed using measurements as feature

set. If I(Ag,Bg) > I(Ag,Bb) then the state estimates from the good sensor was fused with sensor 1 using

the global Kalman filter algorithm and the DSm combination rule that is described in section 18.2.5. The

position estimation error was computed by comparing the fused state estimate with the true position. To

compare the track accuracies, the state estimates from the bad sensor and good sensor were also fused.

The position estimation error was then computed the same way as explained above.

In Fgure 18.5, the position estimation error using the fused state estimates of sensor 1 & a good sensor

(blue plot) and sensor 1 & a bad sensor (red plot) are plotted. From this figure, it can be seen that the

track accuracy after fusing state estimates from good sensors (1 & 2) is much better than fusing state

estimates from a good sensor and a bad sensor (1 & 3). This implies that better mutual information

correlates to better track accuracy.

In Figure 18.6, the position error is plotted for the case when the noise level at sensor 2 and 3 differs

by 5 dB. In this case also it can be seen that the track accuracy is better when the state estimates from

good sensors is fused as compared to the track accuracy of fused state estimates of a good sensor and a

bad sensor.

We then form a cluster of sensors that are consistent and apply the mutual information metric.

We have shown above that by fusing information from sensors when the mutual information increases,

the decision accuracy improves. We transmit the fused decision (which requires much lower bandwidth

compared to the transmission of decision of each sensor to every other in the network) to other clusters

of sensors and thus reduce the communication bandwidth requirement.
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Figure 18.5: Track accuracy comparison - Noise level at sensor 1 and 2 = 10dB and at sensor 3=0dB

Figure 18.6: Track accuracy comparison - Noise level at sensor 1 and 2 = 10dB and at sensor 3=0dB
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18.3.2 A real network of spatially DSN with disparate sensors

The proposed algorithms described in section 18.2 was implemented on sensor nodes that consists of

multiple sensors, a communication radio and a Sharc processor. These sensor nodes were distributed in

a rough terrain such as a desert. This network was used in detecting, tracking and classifying targets.

Even though we verified the algorithms that estimate the missing information, sensor selection, sensor

and feature assessment in this network of sensor node, in the following subsections, we are concentrating

on the value of information based smart fusion that is described in sections 18.2.4 and 18.2.5 since the

experimental results for the other algorithms are provided in the last section. We provide the experimental

details and the results. We begin with the review of detection and classification algorithms that were

used in this context.

18.3.2.1 Review of algorithms used to check the value of information based smart fusion

The metrics described in section 2.4 are used to measure the value of information obtained from other

sources such as multiple sensors on a single node and from the neighboring nodes in the context of target

detection and classification. For target detection, energy based detector was used and for classification,

maximum likelihood based classifier was used. As mentioned before the value of information is in terms

of improvement in the decision accuracy which corresponds to classification accuracy for a classifier and

detection accuracy or probability of detection for a detector. Note that in this study, we did not develop a

classifier or a detector; however, used those developed by others since the goal of this part of the study is

to develop measures of value of information and verify them in terms of improvement in decision accuracy

when they were used to make a decision of whether to fuse information obtained from the other source or

not. In the following two sections we review the classifier and the detector that were used in this study.

18.3.2.1.1 Maximum likelihood based classifier The classifier we used for the verification of

measures of value of information in terms of improving the decision accuracy is a maximum likelihood

based classifier developed by the University of Wisconsin [16] as part of DARPA’s sensor information

technology (SensIT) program. For a given training features and target labels a Gaussian mixture model

is determined during the training phase of the classifier. During testing the distance between the test

feature vector and ith class Gaussian mixture is computed. This corresponds to negative log likelihood.

Then a priori probability is used to obtain the maximum a posterior classification. The features’ set that

is used here consists of twenty features from the power spectral density. This is computed using 1024

FFT. The feature set is collected by summing up the values over equal length segments of the power

spectrum. For the acoustic and seismic sensors the maximum frequency used was 1000 and 200 Hz,

respectively.
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18.3.2.1.2 Energy based detector An energy based detector is also used for the verification of

improvement in decision accuracy when the value of information based fusion architecture is used. This

detector is developed by BAE, Austin [3]; also as part of the SensIT program. A brief description of this

detector is provided below.

For every block of a given signal the energy of the down sampled version of the power spectral density

is computed. For the computation of the power spectral density, 1024 point FFT is used. This energy is

compared with a threshold value. Whenever the energy is above the threshold it was declared that the

target was detected. The threshold value is adaptively changed based on the background energy.

18.3.2.2 Experimental details

The above described classifier and detector, and measures of value of information and the fusion algorithm

which uses these measures while deciding when to and when not to fuse information were implemented

and were tested using real data that was obtained by distributing sensor nodes along the east-west and

south-north road at Twentynine Palms, CA during one of the field tests (SITEX’02) as shown in Figure

18.7. These sensor nodes are manufactured by Sensoria. On each sensor node, three sensors - acoustic,

seismic and IR sensors, a four channel data acquisition board and a processing board are available. These

nodes also have communication capabilities. For more details on the sensor node, refer to [14].

Figure 18.7: Sensor node distribution at Twenty nine Palms, CA
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Three vehicles – AAV, Dragon Wagon (DW) and HMMWV were driven along the east-west and north-

south road as shown in Figure 18.7 while conducting the experiments. In this figure, nodes placements are

also provided. Totally twenty four nodes were considered in our experiments. We used both seismic and

acoustic data from these nodes when it is appropriate. In the next section, the classification experimental

details and the results are provided and in section 18.3.2.2.2 the detection experiments and the results

are provided. In both these sections experimental details and results are provided with and without value

of information based fusion technique that was developed in this study.

18.3.2.2.1 Classification experiments First, acoustic data from each node is considered. The

maximum likelihood classifier is trained using only acoustic data from individual nodes. The challenges

in the classification experiments are threefold: 1) when to reject a source of data, 2) when to propagate

data between sequential nodes, and 3) when to share individual sensor data within the same node. Using

only acoustic data, we investigated the effectiveness of the four measures of value of information outlined

in Section 18.2.4 - mutual information, Euclidean distance, correlation, and Kullback-Liebler distance.

In addition, we investigated two methods of using these measures. When evaluating the effectiveness

of fusing two sources of data, is it better to compare the two sources with each other or with the stored

training data? To answer this question, we devised several similarity measures to measure the closeness

of two data sources. We calculated these measures between data at all sequential nodes. Then for each

similarity measure, we computed its correlation with correct classification performance at each node. We

call this the performance correlation. The average performance correlation over all nodes for each class

of data using previous node similarity measures is shown in Figure 18.8. Next, we calculated the same

similarity measures between the data at each node and the data stored in the training sets. Again, for

each similarity measure, we computed its correlation with correct classification performance at each node.

The average performance correlation over all nodes for each class of data using training set similarity

measures is shown in Figure 18.9.

Inspection of Figures 18.8 and 18.9 show that the similarity measures Euclidean distance and cor-

relation are more closely aligned with correct classification performance than either mutual information

or Kullback-Liebler distance. In practice, however, we found that the Euclidean distance outperformed

correlation as the determining factor in fusion decisions. Furthermore, comparing Figures 18.8 and 18.9

shows that using the training set for similarity measures is more effective than using the data from the

previous node in the network. We found this to be true in practice as well. Subsequent work with the

seismic data echoed the findings of the acoustic data. Note that even though we use the training data to

make the fusion decision, we perform the actual data fusion with current and previous node data.
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Figure 18.8: Performance correlation of previous node data

Figure 18.9: Performance correlation of training class data
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Rejection of bad data Sometimes one node or one sensor can have bad data, in which case we

prefer to reject this data rather than classify with poor results. The feature discrimination algorithm is

used for this. By rejecting the data, we did not fuse it with any other data, pass it on to any other node,

nor even compute a classification at that source. Our method resulted in the rejection of several sources

of bad data, thus improving the overall classification results as shown in Figures 18.10 and 18.11.

Figure 18.10: Performance of node fusion for the AAV with acoustic sensor data

Figure 18.11: Performance of node fusion for the DW with seismic sensor data
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Node to node fusion The fusion decision can be made with a threshold, i.e. if the distance

between two features sets is below some value, then fuse the two feature sets. The threshold value can

be predetermined off-line or adaptive. We sidestep the threshold issue, however, by basing the fusion

decision on relative distances. To do so, we initially assume the current node belonged to the same class

(aka the target class) as the previous node and employ the following definitions. Let xn be the mean

vector of the current node data. Let xnf be the mean vector of the fused data at the current node.

Let xc1 be the mean vector of the target training class data. Let xc2 , xc3 be the mean vectors of the

remaining training classes. A Euclidean distance ratio is defined as:

rdist = dc1/min(dc2 , dc3) (18.13)

where dci
is the Euclidean distance (18.8) between xn and xci

. We then use the following pseudocode to

make our fusion decisions.

There are two outcomes to the fusion decision. First we decide whether or not to fuse the data at the

current node. If the current node has bad data, fusion can pull up the performance, however, we may not

want to carry the bad data forward to the next node (the second fusion decision outcome). fuse_4class

is a flag indicating whether or not to fuse for the current classification. fuse_4carry is a flag indicating

whether or not to include data from the current node in the fused data that is carried forward. Based on

this decision, the fusion of classification decision is achieved by applying the fusion algorithm described

in section 18.2.5. In Figures 18.10 and 18.11 we show the correct classification improvement gained by

fusing from node to node for the acoustic and seismic sensors, respectively. For the acoustic sensor we

show classification results from the AAV data, while using DW data for the seismic sensor results. In the

case of the acoustic data, the mean correct classification performance across all nodes increases from 70%

for independent operation to 93% with node to node fusion across the network. Similarly, the seismic

correct classification performance increases from 42% to 52%.
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Fusion between sensors After fusion from node to node of the individual sensors, we look at

the benefit of fusing the acoustic and seismic sensor data at the same node. To do so, we employ the

following definitions. Let rdist be defined as in (18.13) but with the new data types (a - acoustic, s -

seismic, and as – a concatenated acoustic/seismic vector). Let xa be the mean vector of the current node

acoustic data after fusion from node to node. Let xs be the mean vector of the current node seismic data

after fusion from node to node. Let xas = xa concatenated with xs (dumb fusion). Let xasf = smart

fusion of xa with xs. Let xin be the data input to the classifier. Now, we employ two steps in the sensor

fusion process as shown in the pseudocode below. In this case also for the fusion of features from two

independent sources such as acoustic and seismic, DSm based technique described in section 18.2.5 is

applied. First we employ a smart sensor fusion routine:

Next, we employ a final fusion routine:

Figure 18.12 shows the results of fusion at each stage in the form of a bar plot. The classification

performance is averaged over all the nodes for each vehicle class. The correct classification performance

improves at each stage of fusion processing as shown in Table 18.1. The results indicate that the fusion

based on value of information helps in improving the decision accuracy at each node significantly.

AAV DW HMMV

Acoustic independent 70% 58% 46%

Seismic independent 72% 42% 24%

Acoustic fusion 93% 80% 69%

Seismic fusion 93% 52% 31%

Acoustic & seismic, independent 76% 55% 58%

Acoustic & seismic with fusion 95% 90% 77%

Table 18.1: Summary of classification performance
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Figure 18.12: Average correct classification performance at each step in the fusion process

18.3.2.2.2 Detection experiments For the detection experiments also both acoustic and seismic

data were considered. First, only acoustic data from individual nodes were used. A threshold value was

initially set which was varied adaptively based on the background energy. The power spectral density

of acoustic data was computed using 1024 point FFT and it was downsampled by 8. The energy of the

downsampled version of the power spectral density was computed. This energy was compared with the

threshold value. If the energy was above the threshold value, it was decided that the target was detected.

The time of detection and the confidence on detection were also calculated. The detection and time of

detection were compared with the ground truth. If the target was detected when it is supposed to be

and if the time of detection is within the region of interest then it was counted towards calculating the

probability of detection. If the detection time is outside the region of interest (missed detection) and if

a target was detected when it should not have been (false alarm) it was counted towards computing the

probability of false alarm. The probability of detection and false alarm using only acoustic data from

individual nodes without any fusion for AAV, DW and HMMWV are: 0.8824, 0.8677, 0.8382 and 0.1176,

0.1323, 0.1618, respectively. Similarly, the probability of detection and false alarm using only seismic

data from individual nodes without any fusion for AAV, DW and HMMWV are: 0.8030, 0.7910, 0.5735

and 0.1970, 0.2090, 0.4265, respectively.
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Next, the mutual information based value of information measure was used on the energy of power

spectral density to make a decision of fusing data between sensors - acoustic and seismic on each individ-

ual node. The detector was tested using the fused data on each node. The probability of detection and

false alarm were computed as described above. The probability of detection of this intelligently fused

data for AAV, DW and HMMWV is: 0.9394, 0.9105 and 0.8529, respectively. The probability of false

alarm is not provided here because it is equal to 1 – probability of detection since both false alarm and

missed detections are combined together. These results are summarized in Figure 18.13 in the form of a

bar graph. From this, it can be seen that the intelligent sensor data fusion based on value of information

and DSmT significantly improves the detection accuracy. This type of fusion especially helps in difficult

data as in the case of HMMWV.

Figure 18.13: Performance of a detector
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18.4 Conclusions

In this chapter, we have described how minmax entropy principle can be used in feature (missing infor-

mation) discovery and the type of sensor (information type) from which this missing information can

be obtained. Further, a consistency measure is defined and it has been shown that this measure can

be used in discriminating or assessing the quality of sensors. Next, conditional entropy and mutual in-

formation measures are defined and it has been shown that these two measures can be used in making

sure that the estimated missing information or new feature set indeed help in gaining information and

aid in decision process. Further more, we have introduced several measures for value of information. We

have used these measures in deciding when to fuse information. For the fusion we have developed an

algorithm using DSmT. We have proven the concept of all the measures and fusion by first considering a

simulated network of radar sensors and then by considering a real network of spatially distributed sensor

nodes which have multiple sensors on each sensor node. The experimental results indicate that (a) the

minmax entropy principle can be used in estimating the missing information and information type and

it can be used in the cluster formation; (b) the constancy measure based on within class entropy can be

used in sensor discrimination; (c) the mutual information can be used in feature quality assessment and

in evaluating the value of information; (d) the measures of value of information helps in smart fusion;

(e) the distributed smart fusion significantly improves the decision accuracy. All these measures help

in probing (awakening) the required sensor for the required missing information, only transmitting the

valuable information when and where it is needed and fusing only valuable information. Thus, power

and, computing and communication resources can be efficiently utilized.
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Grégoire Mercier graduated from the Institut National des Télécommunications (INT), Evry, France
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This book presents the recent theoretical advances and applications of the Dezert-Smarandache Theory

(DSmT) of plausible and paradoxical reasoning for information fusion. DSmT proposes a new mathe-

matical framework to deal with the combination of uncertain, imprecise and highly conflicting sources

of information expressed in terms of generalized basic belief functions. DSmT works beyond the limits

of the Dempster-Shafer Theory and proposes a new general rule of combination which does not require

a normalization step and works with any models (free DSm, hybrid DSm and Shafer’s model) whatever

the degree of conflict between sources is. The DSmT is well adapted for static and dynamic fusion

problematics and allows to work on any finite frames (discrete, continuous and/or hybrid). Therefore it

can combine belief functions even if the refinement of the frame of discernment is inaccessible because

of the vague, relative, and imprecise intrinsic nature of its elements. Part 1 of this book presents in

details the last investigations on DSmT but also some related theoretical works with other approaches

for information fusion. Part 2 of the book presents interesting applications of DSmT for solving both

academic fusion problems and real-world fusion problems.
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